1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __LINUX_UACCESS_H__ 3 #define __LINUX_UACCESS_H__ 4 5 #include <linux/fault-inject-usercopy.h> 6 #include <linux/instrumented.h> 7 #include <linux/minmax.h> 8 #include <linux/sched.h> 9 #include <linux/thread_info.h> 10 11 #include <asm/uaccess.h> 12 13 /* 14 * Architectures should provide two primitives (raw_copy_{to,from}_user()) 15 * and get rid of their private instances of copy_{to,from}_user() and 16 * __copy_{to,from}_user{,_inatomic}(). 17 * 18 * raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and 19 * return the amount left to copy. They should assume that access_ok() has 20 * already been checked (and succeeded); they should *not* zero-pad anything. 21 * No KASAN or object size checks either - those belong here. 22 * 23 * Both of these functions should attempt to copy size bytes starting at from 24 * into the area starting at to. They must not fetch or store anything 25 * outside of those areas. Return value must be between 0 (everything 26 * copied successfully) and size (nothing copied). 27 * 28 * If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting 29 * at to must become equal to the bytes fetched from the corresponding area 30 * starting at from. All data past to + size - N must be left unmodified. 31 * 32 * If copying succeeds, the return value must be 0. If some data cannot be 33 * fetched, it is permitted to copy less than had been fetched; the only 34 * hard requirement is that not storing anything at all (i.e. returning size) 35 * should happen only when nothing could be copied. In other words, you don't 36 * have to squeeze as much as possible - it is allowed, but not necessary. 37 * 38 * For raw_copy_from_user() to always points to kernel memory and no faults 39 * on store should happen. Interpretation of from is affected by set_fs(). 40 * For raw_copy_to_user() it's the other way round. 41 * 42 * Both can be inlined - it's up to architectures whether it wants to bother 43 * with that. They should not be used directly; they are used to implement 44 * the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic()) 45 * that are used instead. Out of those, __... ones are inlined. Plain 46 * copy_{to,from}_user() might or might not be inlined. If you want them 47 * inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER. 48 * 49 * NOTE: only copy_from_user() zero-pads the destination in case of short copy. 50 * Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything 51 * at all; their callers absolutely must check the return value. 52 * 53 * Biarch ones should also provide raw_copy_in_user() - similar to the above, 54 * but both source and destination are __user pointers (affected by set_fs() 55 * as usual) and both source and destination can trigger faults. 56 */ 57 58 static __always_inline __must_check unsigned long 59 __copy_from_user_inatomic(void *to, const void __user *from, unsigned long n) 60 { 61 instrument_copy_from_user(to, from, n); 62 check_object_size(to, n, false); 63 return raw_copy_from_user(to, from, n); 64 } 65 66 static __always_inline __must_check unsigned long 67 __copy_from_user(void *to, const void __user *from, unsigned long n) 68 { 69 might_fault(); 70 if (should_fail_usercopy()) 71 return n; 72 instrument_copy_from_user(to, from, n); 73 check_object_size(to, n, false); 74 return raw_copy_from_user(to, from, n); 75 } 76 77 /** 78 * __copy_to_user_inatomic: - Copy a block of data into user space, with less checking. 79 * @to: Destination address, in user space. 80 * @from: Source address, in kernel space. 81 * @n: Number of bytes to copy. 82 * 83 * Context: User context only. 84 * 85 * Copy data from kernel space to user space. Caller must check 86 * the specified block with access_ok() before calling this function. 87 * The caller should also make sure he pins the user space address 88 * so that we don't result in page fault and sleep. 89 */ 90 static __always_inline __must_check unsigned long 91 __copy_to_user_inatomic(void __user *to, const void *from, unsigned long n) 92 { 93 if (should_fail_usercopy()) 94 return n; 95 instrument_copy_to_user(to, from, n); 96 check_object_size(from, n, true); 97 return raw_copy_to_user(to, from, n); 98 } 99 100 static __always_inline __must_check unsigned long 101 __copy_to_user(void __user *to, const void *from, unsigned long n) 102 { 103 might_fault(); 104 if (should_fail_usercopy()) 105 return n; 106 instrument_copy_to_user(to, from, n); 107 check_object_size(from, n, true); 108 return raw_copy_to_user(to, from, n); 109 } 110 111 #ifdef INLINE_COPY_FROM_USER 112 static inline __must_check unsigned long 113 _copy_from_user(void *to, const void __user *from, unsigned long n) 114 { 115 unsigned long res = n; 116 might_fault(); 117 if (!should_fail_usercopy() && likely(access_ok(from, n))) { 118 instrument_copy_from_user(to, from, n); 119 res = raw_copy_from_user(to, from, n); 120 } 121 if (unlikely(res)) 122 memset(to + (n - res), 0, res); 123 return res; 124 } 125 #else 126 extern __must_check unsigned long 127 _copy_from_user(void *, const void __user *, unsigned long); 128 #endif 129 130 #ifdef INLINE_COPY_TO_USER 131 static inline __must_check unsigned long 132 _copy_to_user(void __user *to, const void *from, unsigned long n) 133 { 134 might_fault(); 135 if (should_fail_usercopy()) 136 return n; 137 if (access_ok(to, n)) { 138 instrument_copy_to_user(to, from, n); 139 n = raw_copy_to_user(to, from, n); 140 } 141 return n; 142 } 143 #else 144 extern __must_check unsigned long 145 _copy_to_user(void __user *, const void *, unsigned long); 146 #endif 147 148 static __always_inline unsigned long __must_check 149 copy_from_user(void *to, const void __user *from, unsigned long n) 150 { 151 if (likely(check_copy_size(to, n, false))) 152 n = _copy_from_user(to, from, n); 153 return n; 154 } 155 156 static __always_inline unsigned long __must_check 157 copy_to_user(void __user *to, const void *from, unsigned long n) 158 { 159 if (likely(check_copy_size(from, n, true))) 160 n = _copy_to_user(to, from, n); 161 return n; 162 } 163 164 #ifndef copy_mc_to_kernel 165 /* 166 * Without arch opt-in this generic copy_mc_to_kernel() will not handle 167 * #MC (or arch equivalent) during source read. 168 */ 169 static inline unsigned long __must_check 170 copy_mc_to_kernel(void *dst, const void *src, size_t cnt) 171 { 172 memcpy(dst, src, cnt); 173 return 0; 174 } 175 #endif 176 177 static __always_inline void pagefault_disabled_inc(void) 178 { 179 current->pagefault_disabled++; 180 } 181 182 static __always_inline void pagefault_disabled_dec(void) 183 { 184 current->pagefault_disabled--; 185 } 186 187 /* 188 * These routines enable/disable the pagefault handler. If disabled, it will 189 * not take any locks and go straight to the fixup table. 190 * 191 * User access methods will not sleep when called from a pagefault_disabled() 192 * environment. 193 */ 194 static inline void pagefault_disable(void) 195 { 196 pagefault_disabled_inc(); 197 /* 198 * make sure to have issued the store before a pagefault 199 * can hit. 200 */ 201 barrier(); 202 } 203 204 static inline void pagefault_enable(void) 205 { 206 /* 207 * make sure to issue those last loads/stores before enabling 208 * the pagefault handler again. 209 */ 210 barrier(); 211 pagefault_disabled_dec(); 212 } 213 214 /* 215 * Is the pagefault handler disabled? If so, user access methods will not sleep. 216 */ 217 static inline bool pagefault_disabled(void) 218 { 219 return current->pagefault_disabled != 0; 220 } 221 222 /* 223 * The pagefault handler is in general disabled by pagefault_disable() or 224 * when in irq context (via in_atomic()). 225 * 226 * This function should only be used by the fault handlers. Other users should 227 * stick to pagefault_disabled(). 228 * Please NEVER use preempt_disable() to disable the fault handler. With 229 * !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled. 230 * in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT. 231 */ 232 #define faulthandler_disabled() (pagefault_disabled() || in_atomic()) 233 234 #ifndef ARCH_HAS_NOCACHE_UACCESS 235 236 static inline __must_check unsigned long 237 __copy_from_user_inatomic_nocache(void *to, const void __user *from, 238 unsigned long n) 239 { 240 return __copy_from_user_inatomic(to, from, n); 241 } 242 243 #endif /* ARCH_HAS_NOCACHE_UACCESS */ 244 245 extern __must_check int check_zeroed_user(const void __user *from, size_t size); 246 247 /** 248 * copy_struct_from_user: copy a struct from userspace 249 * @dst: Destination address, in kernel space. This buffer must be @ksize 250 * bytes long. 251 * @ksize: Size of @dst struct. 252 * @src: Source address, in userspace. 253 * @usize: (Alleged) size of @src struct. 254 * 255 * Copies a struct from userspace to kernel space, in a way that guarantees 256 * backwards-compatibility for struct syscall arguments (as long as future 257 * struct extensions are made such that all new fields are *appended* to the 258 * old struct, and zeroed-out new fields have the same meaning as the old 259 * struct). 260 * 261 * @ksize is just sizeof(*dst), and @usize should've been passed by userspace. 262 * The recommended usage is something like the following: 263 * 264 * SYSCALL_DEFINE2(foobar, const struct foo __user *, uarg, size_t, usize) 265 * { 266 * int err; 267 * struct foo karg = {}; 268 * 269 * if (usize > PAGE_SIZE) 270 * return -E2BIG; 271 * if (usize < FOO_SIZE_VER0) 272 * return -EINVAL; 273 * 274 * err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize); 275 * if (err) 276 * return err; 277 * 278 * // ... 279 * } 280 * 281 * There are three cases to consider: 282 * * If @usize == @ksize, then it's copied verbatim. 283 * * If @usize < @ksize, then the userspace has passed an old struct to a 284 * newer kernel. The rest of the trailing bytes in @dst (@ksize - @usize) 285 * are to be zero-filled. 286 * * If @usize > @ksize, then the userspace has passed a new struct to an 287 * older kernel. The trailing bytes unknown to the kernel (@usize - @ksize) 288 * are checked to ensure they are zeroed, otherwise -E2BIG is returned. 289 * 290 * Returns (in all cases, some data may have been copied): 291 * * -E2BIG: (@usize > @ksize) and there are non-zero trailing bytes in @src. 292 * * -EFAULT: access to userspace failed. 293 */ 294 static __always_inline __must_check int 295 copy_struct_from_user(void *dst, size_t ksize, const void __user *src, 296 size_t usize) 297 { 298 size_t size = min(ksize, usize); 299 size_t rest = max(ksize, usize) - size; 300 301 /* Deal with trailing bytes. */ 302 if (usize < ksize) { 303 memset(dst + size, 0, rest); 304 } else if (usize > ksize) { 305 int ret = check_zeroed_user(src + size, rest); 306 if (ret <= 0) 307 return ret ?: -E2BIG; 308 } 309 /* Copy the interoperable parts of the struct. */ 310 if (copy_from_user(dst, src, size)) 311 return -EFAULT; 312 return 0; 313 } 314 315 bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size); 316 317 long copy_from_kernel_nofault(void *dst, const void *src, size_t size); 318 long notrace copy_to_kernel_nofault(void *dst, const void *src, size_t size); 319 320 long copy_from_user_nofault(void *dst, const void __user *src, size_t size); 321 long notrace copy_to_user_nofault(void __user *dst, const void *src, 322 size_t size); 323 324 long strncpy_from_kernel_nofault(char *dst, const void *unsafe_addr, 325 long count); 326 327 long strncpy_from_user_nofault(char *dst, const void __user *unsafe_addr, 328 long count); 329 long strnlen_user_nofault(const void __user *unsafe_addr, long count); 330 331 #ifndef __get_kernel_nofault 332 #define __get_kernel_nofault(dst, src, type, label) \ 333 do { \ 334 type __user *p = (type __force __user *)(src); \ 335 type data; \ 336 if (__get_user(data, p)) \ 337 goto label; \ 338 *(type *)dst = data; \ 339 } while (0) 340 341 #define __put_kernel_nofault(dst, src, type, label) \ 342 do { \ 343 type __user *p = (type __force __user *)(dst); \ 344 type data = *(type *)src; \ 345 if (__put_user(data, p)) \ 346 goto label; \ 347 } while (0) 348 #endif 349 350 /** 351 * get_kernel_nofault(): safely attempt to read from a location 352 * @val: read into this variable 353 * @ptr: address to read from 354 * 355 * Returns 0 on success, or -EFAULT. 356 */ 357 #define get_kernel_nofault(val, ptr) ({ \ 358 const typeof(val) *__gk_ptr = (ptr); \ 359 copy_from_kernel_nofault(&(val), __gk_ptr, sizeof(val));\ 360 }) 361 362 #ifndef user_access_begin 363 #define user_access_begin(ptr,len) access_ok(ptr, len) 364 #define user_access_end() do { } while (0) 365 #define unsafe_op_wrap(op, err) do { if (unlikely(op)) goto err; } while (0) 366 #define unsafe_get_user(x,p,e) unsafe_op_wrap(__get_user(x,p),e) 367 #define unsafe_put_user(x,p,e) unsafe_op_wrap(__put_user(x,p),e) 368 #define unsafe_copy_to_user(d,s,l,e) unsafe_op_wrap(__copy_to_user(d,s,l),e) 369 #define unsafe_copy_from_user(d,s,l,e) unsafe_op_wrap(__copy_from_user(d,s,l),e) 370 static inline unsigned long user_access_save(void) { return 0UL; } 371 static inline void user_access_restore(unsigned long flags) { } 372 #endif 373 #ifndef user_write_access_begin 374 #define user_write_access_begin user_access_begin 375 #define user_write_access_end user_access_end 376 #endif 377 #ifndef user_read_access_begin 378 #define user_read_access_begin user_access_begin 379 #define user_read_access_end user_access_end 380 #endif 381 382 #ifdef CONFIG_HARDENED_USERCOPY 383 void __noreturn usercopy_abort(const char *name, const char *detail, 384 bool to_user, unsigned long offset, 385 unsigned long len); 386 #endif 387 388 #endif /* __LINUX_UACCESS_H__ */ 389