1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __LINUX_UACCESS_H__ 3 #define __LINUX_UACCESS_H__ 4 5 #include <linux/sched.h> 6 #include <linux/thread_info.h> 7 #include <linux/kasan-checks.h> 8 9 #define VERIFY_READ 0 10 #define VERIFY_WRITE 1 11 12 #define uaccess_kernel() segment_eq(get_fs(), KERNEL_DS) 13 14 #include <asm/uaccess.h> 15 16 /* 17 * Architectures should provide two primitives (raw_copy_{to,from}_user()) 18 * and get rid of their private instances of copy_{to,from}_user() and 19 * __copy_{to,from}_user{,_inatomic}(). 20 * 21 * raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and 22 * return the amount left to copy. They should assume that access_ok() has 23 * already been checked (and succeeded); they should *not* zero-pad anything. 24 * No KASAN or object size checks either - those belong here. 25 * 26 * Both of these functions should attempt to copy size bytes starting at from 27 * into the area starting at to. They must not fetch or store anything 28 * outside of those areas. Return value must be between 0 (everything 29 * copied successfully) and size (nothing copied). 30 * 31 * If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting 32 * at to must become equal to the bytes fetched from the corresponding area 33 * starting at from. All data past to + size - N must be left unmodified. 34 * 35 * If copying succeeds, the return value must be 0. If some data cannot be 36 * fetched, it is permitted to copy less than had been fetched; the only 37 * hard requirement is that not storing anything at all (i.e. returning size) 38 * should happen only when nothing could be copied. In other words, you don't 39 * have to squeeze as much as possible - it is allowed, but not necessary. 40 * 41 * For raw_copy_from_user() to always points to kernel memory and no faults 42 * on store should happen. Interpretation of from is affected by set_fs(). 43 * For raw_copy_to_user() it's the other way round. 44 * 45 * Both can be inlined - it's up to architectures whether it wants to bother 46 * with that. They should not be used directly; they are used to implement 47 * the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic()) 48 * that are used instead. Out of those, __... ones are inlined. Plain 49 * copy_{to,from}_user() might or might not be inlined. If you want them 50 * inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER. 51 * 52 * NOTE: only copy_from_user() zero-pads the destination in case of short copy. 53 * Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything 54 * at all; their callers absolutely must check the return value. 55 * 56 * Biarch ones should also provide raw_copy_in_user() - similar to the above, 57 * but both source and destination are __user pointers (affected by set_fs() 58 * as usual) and both source and destination can trigger faults. 59 */ 60 61 static __always_inline unsigned long 62 __copy_from_user_inatomic(void *to, const void __user *from, unsigned long n) 63 { 64 kasan_check_write(to, n); 65 check_object_size(to, n, false); 66 return raw_copy_from_user(to, from, n); 67 } 68 69 static __always_inline unsigned long 70 __copy_from_user(void *to, const void __user *from, unsigned long n) 71 { 72 might_fault(); 73 kasan_check_write(to, n); 74 check_object_size(to, n, false); 75 return raw_copy_from_user(to, from, n); 76 } 77 78 /** 79 * __copy_to_user_inatomic: - Copy a block of data into user space, with less checking. 80 * @to: Destination address, in user space. 81 * @from: Source address, in kernel space. 82 * @n: Number of bytes to copy. 83 * 84 * Context: User context only. 85 * 86 * Copy data from kernel space to user space. Caller must check 87 * the specified block with access_ok() before calling this function. 88 * The caller should also make sure he pins the user space address 89 * so that we don't result in page fault and sleep. 90 */ 91 static __always_inline unsigned long 92 __copy_to_user_inatomic(void __user *to, const void *from, unsigned long n) 93 { 94 kasan_check_read(from, n); 95 check_object_size(from, n, true); 96 return raw_copy_to_user(to, from, n); 97 } 98 99 static __always_inline unsigned long 100 __copy_to_user(void __user *to, const void *from, unsigned long n) 101 { 102 might_fault(); 103 kasan_check_read(from, n); 104 check_object_size(from, n, true); 105 return raw_copy_to_user(to, from, n); 106 } 107 108 #ifdef INLINE_COPY_FROM_USER 109 static inline unsigned long 110 _copy_from_user(void *to, const void __user *from, unsigned long n) 111 { 112 unsigned long res = n; 113 might_fault(); 114 if (likely(access_ok(VERIFY_READ, from, n))) { 115 kasan_check_write(to, n); 116 res = raw_copy_from_user(to, from, n); 117 } 118 if (unlikely(res)) 119 memset(to + (n - res), 0, res); 120 return res; 121 } 122 #else 123 extern unsigned long 124 _copy_from_user(void *, const void __user *, unsigned long); 125 #endif 126 127 #ifdef INLINE_COPY_TO_USER 128 static inline unsigned long 129 _copy_to_user(void __user *to, const void *from, unsigned long n) 130 { 131 might_fault(); 132 if (access_ok(VERIFY_WRITE, to, n)) { 133 kasan_check_read(from, n); 134 n = raw_copy_to_user(to, from, n); 135 } 136 return n; 137 } 138 #else 139 extern unsigned long 140 _copy_to_user(void __user *, const void *, unsigned long); 141 #endif 142 143 static __always_inline unsigned long __must_check 144 copy_from_user(void *to, const void __user *from, unsigned long n) 145 { 146 if (likely(check_copy_size(to, n, false))) 147 n = _copy_from_user(to, from, n); 148 return n; 149 } 150 151 static __always_inline unsigned long __must_check 152 copy_to_user(void __user *to, const void *from, unsigned long n) 153 { 154 if (likely(check_copy_size(from, n, true))) 155 n = _copy_to_user(to, from, n); 156 return n; 157 } 158 #ifdef CONFIG_COMPAT 159 static __always_inline unsigned long __must_check 160 copy_in_user(void __user *to, const void __user *from, unsigned long n) 161 { 162 might_fault(); 163 if (access_ok(VERIFY_WRITE, to, n) && access_ok(VERIFY_READ, from, n)) 164 n = raw_copy_in_user(to, from, n); 165 return n; 166 } 167 #endif 168 169 static __always_inline void pagefault_disabled_inc(void) 170 { 171 current->pagefault_disabled++; 172 } 173 174 static __always_inline void pagefault_disabled_dec(void) 175 { 176 current->pagefault_disabled--; 177 } 178 179 /* 180 * These routines enable/disable the pagefault handler. If disabled, it will 181 * not take any locks and go straight to the fixup table. 182 * 183 * User access methods will not sleep when called from a pagefault_disabled() 184 * environment. 185 */ 186 static inline void pagefault_disable(void) 187 { 188 pagefault_disabled_inc(); 189 /* 190 * make sure to have issued the store before a pagefault 191 * can hit. 192 */ 193 barrier(); 194 } 195 196 static inline void pagefault_enable(void) 197 { 198 /* 199 * make sure to issue those last loads/stores before enabling 200 * the pagefault handler again. 201 */ 202 barrier(); 203 pagefault_disabled_dec(); 204 } 205 206 /* 207 * Is the pagefault handler disabled? If so, user access methods will not sleep. 208 */ 209 #define pagefault_disabled() (current->pagefault_disabled != 0) 210 211 /* 212 * The pagefault handler is in general disabled by pagefault_disable() or 213 * when in irq context (via in_atomic()). 214 * 215 * This function should only be used by the fault handlers. Other users should 216 * stick to pagefault_disabled(). 217 * Please NEVER use preempt_disable() to disable the fault handler. With 218 * !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled. 219 * in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT. 220 */ 221 #define faulthandler_disabled() (pagefault_disabled() || in_atomic()) 222 223 #ifndef ARCH_HAS_NOCACHE_UACCESS 224 225 static inline unsigned long __copy_from_user_inatomic_nocache(void *to, 226 const void __user *from, unsigned long n) 227 { 228 return __copy_from_user_inatomic(to, from, n); 229 } 230 231 #endif /* ARCH_HAS_NOCACHE_UACCESS */ 232 233 /* 234 * probe_kernel_read(): safely attempt to read from a location 235 * @dst: pointer to the buffer that shall take the data 236 * @src: address to read from 237 * @size: size of the data chunk 238 * 239 * Safely read from address @src to the buffer at @dst. If a kernel fault 240 * happens, handle that and return -EFAULT. 241 */ 242 extern long probe_kernel_read(void *dst, const void *src, size_t size); 243 extern long __probe_kernel_read(void *dst, const void *src, size_t size); 244 245 /* 246 * probe_kernel_write(): safely attempt to write to a location 247 * @dst: address to write to 248 * @src: pointer to the data that shall be written 249 * @size: size of the data chunk 250 * 251 * Safely write to address @dst from the buffer at @src. If a kernel fault 252 * happens, handle that and return -EFAULT. 253 */ 254 extern long notrace probe_kernel_write(void *dst, const void *src, size_t size); 255 extern long notrace __probe_kernel_write(void *dst, const void *src, size_t size); 256 257 extern long strncpy_from_unsafe(char *dst, const void *unsafe_addr, long count); 258 259 /** 260 * probe_kernel_address(): safely attempt to read from a location 261 * @addr: address to read from 262 * @retval: read into this variable 263 * 264 * Returns 0 on success, or -EFAULT. 265 */ 266 #define probe_kernel_address(addr, retval) \ 267 probe_kernel_read(&retval, addr, sizeof(retval)) 268 269 #ifndef user_access_begin 270 #define user_access_begin() do { } while (0) 271 #define user_access_end() do { } while (0) 272 #define unsafe_get_user(x, ptr, err) do { if (unlikely(__get_user(x, ptr))) goto err; } while (0) 273 #define unsafe_put_user(x, ptr, err) do { if (unlikely(__put_user(x, ptr))) goto err; } while (0) 274 #endif 275 276 #endif /* __LINUX_UACCESS_H__ */ 277