xref: /openbmc/linux/include/linux/uaccess.h (revision 4562236b)
1 #ifndef __LINUX_UACCESS_H__
2 #define __LINUX_UACCESS_H__
3 
4 #include <linux/sched.h>
5 #include <linux/thread_info.h>
6 #include <linux/kasan-checks.h>
7 
8 #define VERIFY_READ 0
9 #define VERIFY_WRITE 1
10 
11 #define uaccess_kernel() segment_eq(get_fs(), KERNEL_DS)
12 
13 #include <asm/uaccess.h>
14 
15 /*
16  * Architectures should provide two primitives (raw_copy_{to,from}_user())
17  * and get rid of their private instances of copy_{to,from}_user() and
18  * __copy_{to,from}_user{,_inatomic}().
19  *
20  * raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and
21  * return the amount left to copy.  They should assume that access_ok() has
22  * already been checked (and succeeded); they should *not* zero-pad anything.
23  * No KASAN or object size checks either - those belong here.
24  *
25  * Both of these functions should attempt to copy size bytes starting at from
26  * into the area starting at to.  They must not fetch or store anything
27  * outside of those areas.  Return value must be between 0 (everything
28  * copied successfully) and size (nothing copied).
29  *
30  * If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting
31  * at to must become equal to the bytes fetched from the corresponding area
32  * starting at from.  All data past to + size - N must be left unmodified.
33  *
34  * If copying succeeds, the return value must be 0.  If some data cannot be
35  * fetched, it is permitted to copy less than had been fetched; the only
36  * hard requirement is that not storing anything at all (i.e. returning size)
37  * should happen only when nothing could be copied.  In other words, you don't
38  * have to squeeze as much as possible - it is allowed, but not necessary.
39  *
40  * For raw_copy_from_user() to always points to kernel memory and no faults
41  * on store should happen.  Interpretation of from is affected by set_fs().
42  * For raw_copy_to_user() it's the other way round.
43  *
44  * Both can be inlined - it's up to architectures whether it wants to bother
45  * with that.  They should not be used directly; they are used to implement
46  * the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic())
47  * that are used instead.  Out of those, __... ones are inlined.  Plain
48  * copy_{to,from}_user() might or might not be inlined.  If you want them
49  * inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER.
50  *
51  * NOTE: only copy_from_user() zero-pads the destination in case of short copy.
52  * Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything
53  * at all; their callers absolutely must check the return value.
54  *
55  * Biarch ones should also provide raw_copy_in_user() - similar to the above,
56  * but both source and destination are __user pointers (affected by set_fs()
57  * as usual) and both source and destination can trigger faults.
58  */
59 
60 static __always_inline unsigned long
61 __copy_from_user_inatomic(void *to, const void __user *from, unsigned long n)
62 {
63 	kasan_check_write(to, n);
64 	check_object_size(to, n, false);
65 	return raw_copy_from_user(to, from, n);
66 }
67 
68 static __always_inline unsigned long
69 __copy_from_user(void *to, const void __user *from, unsigned long n)
70 {
71 	might_fault();
72 	kasan_check_write(to, n);
73 	check_object_size(to, n, false);
74 	return raw_copy_from_user(to, from, n);
75 }
76 
77 /**
78  * __copy_to_user_inatomic: - Copy a block of data into user space, with less checking.
79  * @to:   Destination address, in user space.
80  * @from: Source address, in kernel space.
81  * @n:    Number of bytes to copy.
82  *
83  * Context: User context only.
84  *
85  * Copy data from kernel space to user space.  Caller must check
86  * the specified block with access_ok() before calling this function.
87  * The caller should also make sure he pins the user space address
88  * so that we don't result in page fault and sleep.
89  */
90 static __always_inline unsigned long
91 __copy_to_user_inatomic(void __user *to, const void *from, unsigned long n)
92 {
93 	kasan_check_read(from, n);
94 	check_object_size(from, n, true);
95 	return raw_copy_to_user(to, from, n);
96 }
97 
98 static __always_inline unsigned long
99 __copy_to_user(void __user *to, const void *from, unsigned long n)
100 {
101 	might_fault();
102 	kasan_check_read(from, n);
103 	check_object_size(from, n, true);
104 	return raw_copy_to_user(to, from, n);
105 }
106 
107 #ifdef INLINE_COPY_FROM_USER
108 static inline unsigned long
109 _copy_from_user(void *to, const void __user *from, unsigned long n)
110 {
111 	unsigned long res = n;
112 	might_fault();
113 	if (likely(access_ok(VERIFY_READ, from, n))) {
114 		kasan_check_write(to, n);
115 		res = raw_copy_from_user(to, from, n);
116 	}
117 	if (unlikely(res))
118 		memset(to + (n - res), 0, res);
119 	return res;
120 }
121 #else
122 extern unsigned long
123 _copy_from_user(void *, const void __user *, unsigned long);
124 #endif
125 
126 #ifdef INLINE_COPY_TO_USER
127 static inline unsigned long
128 _copy_to_user(void __user *to, const void *from, unsigned long n)
129 {
130 	might_fault();
131 	if (access_ok(VERIFY_WRITE, to, n)) {
132 		kasan_check_read(from, n);
133 		n = raw_copy_to_user(to, from, n);
134 	}
135 	return n;
136 }
137 #else
138 extern unsigned long
139 _copy_to_user(void __user *, const void *, unsigned long);
140 #endif
141 
142 static __always_inline unsigned long __must_check
143 copy_from_user(void *to, const void __user *from, unsigned long n)
144 {
145 	if (likely(check_copy_size(to, n, false)))
146 		n = _copy_from_user(to, from, n);
147 	return n;
148 }
149 
150 static __always_inline unsigned long __must_check
151 copy_to_user(void __user *to, const void *from, unsigned long n)
152 {
153 	if (likely(check_copy_size(from, n, true)))
154 		n = _copy_to_user(to, from, n);
155 	return n;
156 }
157 #ifdef CONFIG_COMPAT
158 static __always_inline unsigned long __must_check
159 copy_in_user(void __user *to, const void *from, unsigned long n)
160 {
161 	might_fault();
162 	if (access_ok(VERIFY_WRITE, to, n) && access_ok(VERIFY_READ, from, n))
163 		n = raw_copy_in_user(to, from, n);
164 	return n;
165 }
166 #endif
167 
168 static __always_inline void pagefault_disabled_inc(void)
169 {
170 	current->pagefault_disabled++;
171 }
172 
173 static __always_inline void pagefault_disabled_dec(void)
174 {
175 	current->pagefault_disabled--;
176 }
177 
178 /*
179  * These routines enable/disable the pagefault handler. If disabled, it will
180  * not take any locks and go straight to the fixup table.
181  *
182  * User access methods will not sleep when called from a pagefault_disabled()
183  * environment.
184  */
185 static inline void pagefault_disable(void)
186 {
187 	pagefault_disabled_inc();
188 	/*
189 	 * make sure to have issued the store before a pagefault
190 	 * can hit.
191 	 */
192 	barrier();
193 }
194 
195 static inline void pagefault_enable(void)
196 {
197 	/*
198 	 * make sure to issue those last loads/stores before enabling
199 	 * the pagefault handler again.
200 	 */
201 	barrier();
202 	pagefault_disabled_dec();
203 }
204 
205 /*
206  * Is the pagefault handler disabled? If so, user access methods will not sleep.
207  */
208 #define pagefault_disabled() (current->pagefault_disabled != 0)
209 
210 /*
211  * The pagefault handler is in general disabled by pagefault_disable() or
212  * when in irq context (via in_atomic()).
213  *
214  * This function should only be used by the fault handlers. Other users should
215  * stick to pagefault_disabled().
216  * Please NEVER use preempt_disable() to disable the fault handler. With
217  * !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled.
218  * in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT.
219  */
220 #define faulthandler_disabled() (pagefault_disabled() || in_atomic())
221 
222 #ifndef ARCH_HAS_NOCACHE_UACCESS
223 
224 static inline unsigned long __copy_from_user_inatomic_nocache(void *to,
225 				const void __user *from, unsigned long n)
226 {
227 	return __copy_from_user_inatomic(to, from, n);
228 }
229 
230 #endif		/* ARCH_HAS_NOCACHE_UACCESS */
231 
232 /*
233  * probe_kernel_read(): safely attempt to read from a location
234  * @dst: pointer to the buffer that shall take the data
235  * @src: address to read from
236  * @size: size of the data chunk
237  *
238  * Safely read from address @src to the buffer at @dst.  If a kernel fault
239  * happens, handle that and return -EFAULT.
240  */
241 extern long probe_kernel_read(void *dst, const void *src, size_t size);
242 extern long __probe_kernel_read(void *dst, const void *src, size_t size);
243 
244 /*
245  * probe_kernel_write(): safely attempt to write to a location
246  * @dst: address to write to
247  * @src: pointer to the data that shall be written
248  * @size: size of the data chunk
249  *
250  * Safely write to address @dst from the buffer at @src.  If a kernel fault
251  * happens, handle that and return -EFAULT.
252  */
253 extern long notrace probe_kernel_write(void *dst, const void *src, size_t size);
254 extern long notrace __probe_kernel_write(void *dst, const void *src, size_t size);
255 
256 extern long strncpy_from_unsafe(char *dst, const void *unsafe_addr, long count);
257 
258 /**
259  * probe_kernel_address(): safely attempt to read from a location
260  * @addr: address to read from
261  * @retval: read into this variable
262  *
263  * Returns 0 on success, or -EFAULT.
264  */
265 #define probe_kernel_address(addr, retval)		\
266 	probe_kernel_read(&retval, addr, sizeof(retval))
267 
268 #ifndef user_access_begin
269 #define user_access_begin() do { } while (0)
270 #define user_access_end() do { } while (0)
271 #define unsafe_get_user(x, ptr, err) do { if (unlikely(__get_user(x, ptr))) goto err; } while (0)
272 #define unsafe_put_user(x, ptr, err) do { if (unlikely(__put_user(x, ptr))) goto err; } while (0)
273 #endif
274 
275 #endif		/* __LINUX_UACCESS_H__ */
276