xref: /openbmc/linux/include/linux/uaccess.h (revision 2425c81f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_UACCESS_H__
3 #define __LINUX_UACCESS_H__
4 
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/instrumented.h>
7 #include <linux/minmax.h>
8 #include <linux/sched.h>
9 #include <linux/thread_info.h>
10 
11 #include <asm/uaccess.h>
12 
13 /*
14  * Architectures should provide two primitives (raw_copy_{to,from}_user())
15  * and get rid of their private instances of copy_{to,from}_user() and
16  * __copy_{to,from}_user{,_inatomic}().
17  *
18  * raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and
19  * return the amount left to copy.  They should assume that access_ok() has
20  * already been checked (and succeeded); they should *not* zero-pad anything.
21  * No KASAN or object size checks either - those belong here.
22  *
23  * Both of these functions should attempt to copy size bytes starting at from
24  * into the area starting at to.  They must not fetch or store anything
25  * outside of those areas.  Return value must be between 0 (everything
26  * copied successfully) and size (nothing copied).
27  *
28  * If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting
29  * at to must become equal to the bytes fetched from the corresponding area
30  * starting at from.  All data past to + size - N must be left unmodified.
31  *
32  * If copying succeeds, the return value must be 0.  If some data cannot be
33  * fetched, it is permitted to copy less than had been fetched; the only
34  * hard requirement is that not storing anything at all (i.e. returning size)
35  * should happen only when nothing could be copied.  In other words, you don't
36  * have to squeeze as much as possible - it is allowed, but not necessary.
37  *
38  * For raw_copy_from_user() to always points to kernel memory and no faults
39  * on store should happen.  Interpretation of from is affected by set_fs().
40  * For raw_copy_to_user() it's the other way round.
41  *
42  * Both can be inlined - it's up to architectures whether it wants to bother
43  * with that.  They should not be used directly; they are used to implement
44  * the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic())
45  * that are used instead.  Out of those, __... ones are inlined.  Plain
46  * copy_{to,from}_user() might or might not be inlined.  If you want them
47  * inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER.
48  *
49  * NOTE: only copy_from_user() zero-pads the destination in case of short copy.
50  * Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything
51  * at all; their callers absolutely must check the return value.
52  *
53  * Biarch ones should also provide raw_copy_in_user() - similar to the above,
54  * but both source and destination are __user pointers (affected by set_fs()
55  * as usual) and both source and destination can trigger faults.
56  */
57 
58 static __always_inline __must_check unsigned long
59 __copy_from_user_inatomic(void *to, const void __user *from, unsigned long n)
60 {
61 	instrument_copy_from_user(to, from, n);
62 	check_object_size(to, n, false);
63 	return raw_copy_from_user(to, from, n);
64 }
65 
66 static __always_inline __must_check unsigned long
67 __copy_from_user(void *to, const void __user *from, unsigned long n)
68 {
69 	might_fault();
70 	if (should_fail_usercopy())
71 		return n;
72 	instrument_copy_from_user(to, from, n);
73 	check_object_size(to, n, false);
74 	return raw_copy_from_user(to, from, n);
75 }
76 
77 /**
78  * __copy_to_user_inatomic: - Copy a block of data into user space, with less checking.
79  * @to:   Destination address, in user space.
80  * @from: Source address, in kernel space.
81  * @n:    Number of bytes to copy.
82  *
83  * Context: User context only.
84  *
85  * Copy data from kernel space to user space.  Caller must check
86  * the specified block with access_ok() before calling this function.
87  * The caller should also make sure he pins the user space address
88  * so that we don't result in page fault and sleep.
89  */
90 static __always_inline __must_check unsigned long
91 __copy_to_user_inatomic(void __user *to, const void *from, unsigned long n)
92 {
93 	if (should_fail_usercopy())
94 		return n;
95 	instrument_copy_to_user(to, from, n);
96 	check_object_size(from, n, true);
97 	return raw_copy_to_user(to, from, n);
98 }
99 
100 static __always_inline __must_check unsigned long
101 __copy_to_user(void __user *to, const void *from, unsigned long n)
102 {
103 	might_fault();
104 	if (should_fail_usercopy())
105 		return n;
106 	instrument_copy_to_user(to, from, n);
107 	check_object_size(from, n, true);
108 	return raw_copy_to_user(to, from, n);
109 }
110 
111 #ifdef INLINE_COPY_FROM_USER
112 static inline __must_check unsigned long
113 _copy_from_user(void *to, const void __user *from, unsigned long n)
114 {
115 	unsigned long res = n;
116 	might_fault();
117 	if (!should_fail_usercopy() && likely(access_ok(from, n))) {
118 		instrument_copy_from_user(to, from, n);
119 		res = raw_copy_from_user(to, from, n);
120 	}
121 	if (unlikely(res))
122 		memset(to + (n - res), 0, res);
123 	return res;
124 }
125 #else
126 extern __must_check unsigned long
127 _copy_from_user(void *, const void __user *, unsigned long);
128 #endif
129 
130 #ifdef INLINE_COPY_TO_USER
131 static inline __must_check unsigned long
132 _copy_to_user(void __user *to, const void *from, unsigned long n)
133 {
134 	might_fault();
135 	if (should_fail_usercopy())
136 		return n;
137 	if (access_ok(to, n)) {
138 		instrument_copy_to_user(to, from, n);
139 		n = raw_copy_to_user(to, from, n);
140 	}
141 	return n;
142 }
143 #else
144 extern __must_check unsigned long
145 _copy_to_user(void __user *, const void *, unsigned long);
146 #endif
147 
148 static __always_inline unsigned long __must_check
149 copy_from_user(void *to, const void __user *from, unsigned long n)
150 {
151 	if (likely(check_copy_size(to, n, false)))
152 		n = _copy_from_user(to, from, n);
153 	return n;
154 }
155 
156 static __always_inline unsigned long __must_check
157 copy_to_user(void __user *to, const void *from, unsigned long n)
158 {
159 	if (likely(check_copy_size(from, n, true)))
160 		n = _copy_to_user(to, from, n);
161 	return n;
162 }
163 
164 #ifndef copy_mc_to_kernel
165 /*
166  * Without arch opt-in this generic copy_mc_to_kernel() will not handle
167  * #MC (or arch equivalent) during source read.
168  */
169 static inline unsigned long __must_check
170 copy_mc_to_kernel(void *dst, const void *src, size_t cnt)
171 {
172 	memcpy(dst, src, cnt);
173 	return 0;
174 }
175 #endif
176 
177 static __always_inline void pagefault_disabled_inc(void)
178 {
179 	current->pagefault_disabled++;
180 }
181 
182 static __always_inline void pagefault_disabled_dec(void)
183 {
184 	current->pagefault_disabled--;
185 }
186 
187 /*
188  * These routines enable/disable the pagefault handler. If disabled, it will
189  * not take any locks and go straight to the fixup table.
190  *
191  * User access methods will not sleep when called from a pagefault_disabled()
192  * environment.
193  */
194 static inline void pagefault_disable(void)
195 {
196 	pagefault_disabled_inc();
197 	/*
198 	 * make sure to have issued the store before a pagefault
199 	 * can hit.
200 	 */
201 	barrier();
202 }
203 
204 static inline void pagefault_enable(void)
205 {
206 	/*
207 	 * make sure to issue those last loads/stores before enabling
208 	 * the pagefault handler again.
209 	 */
210 	barrier();
211 	pagefault_disabled_dec();
212 }
213 
214 /*
215  * Is the pagefault handler disabled? If so, user access methods will not sleep.
216  */
217 static inline bool pagefault_disabled(void)
218 {
219 	return current->pagefault_disabled != 0;
220 }
221 
222 /*
223  * The pagefault handler is in general disabled by pagefault_disable() or
224  * when in irq context (via in_atomic()).
225  *
226  * This function should only be used by the fault handlers. Other users should
227  * stick to pagefault_disabled().
228  * Please NEVER use preempt_disable() to disable the fault handler. With
229  * !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled.
230  * in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT.
231  */
232 #define faulthandler_disabled() (pagefault_disabled() || in_atomic())
233 
234 #ifndef ARCH_HAS_NOCACHE_UACCESS
235 
236 static inline __must_check unsigned long
237 __copy_from_user_inatomic_nocache(void *to, const void __user *from,
238 				  unsigned long n)
239 {
240 	return __copy_from_user_inatomic(to, from, n);
241 }
242 
243 #endif		/* ARCH_HAS_NOCACHE_UACCESS */
244 
245 extern __must_check int check_zeroed_user(const void __user *from, size_t size);
246 
247 /**
248  * copy_struct_from_user: copy a struct from userspace
249  * @dst:   Destination address, in kernel space. This buffer must be @ksize
250  *         bytes long.
251  * @ksize: Size of @dst struct.
252  * @src:   Source address, in userspace.
253  * @usize: (Alleged) size of @src struct.
254  *
255  * Copies a struct from userspace to kernel space, in a way that guarantees
256  * backwards-compatibility for struct syscall arguments (as long as future
257  * struct extensions are made such that all new fields are *appended* to the
258  * old struct, and zeroed-out new fields have the same meaning as the old
259  * struct).
260  *
261  * @ksize is just sizeof(*dst), and @usize should've been passed by userspace.
262  * The recommended usage is something like the following:
263  *
264  *   SYSCALL_DEFINE2(foobar, const struct foo __user *, uarg, size_t, usize)
265  *   {
266  *      int err;
267  *      struct foo karg = {};
268  *
269  *      if (usize > PAGE_SIZE)
270  *        return -E2BIG;
271  *      if (usize < FOO_SIZE_VER0)
272  *        return -EINVAL;
273  *
274  *      err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
275  *      if (err)
276  *        return err;
277  *
278  *      // ...
279  *   }
280  *
281  * There are three cases to consider:
282  *  * If @usize == @ksize, then it's copied verbatim.
283  *  * If @usize < @ksize, then the userspace has passed an old struct to a
284  *    newer kernel. The rest of the trailing bytes in @dst (@ksize - @usize)
285  *    are to be zero-filled.
286  *  * If @usize > @ksize, then the userspace has passed a new struct to an
287  *    older kernel. The trailing bytes unknown to the kernel (@usize - @ksize)
288  *    are checked to ensure they are zeroed, otherwise -E2BIG is returned.
289  *
290  * Returns (in all cases, some data may have been copied):
291  *  * -E2BIG:  (@usize > @ksize) and there are non-zero trailing bytes in @src.
292  *  * -EFAULT: access to userspace failed.
293  */
294 static __always_inline __must_check int
295 copy_struct_from_user(void *dst, size_t ksize, const void __user *src,
296 		      size_t usize)
297 {
298 	size_t size = min(ksize, usize);
299 	size_t rest = max(ksize, usize) - size;
300 
301 	/* Deal with trailing bytes. */
302 	if (usize < ksize) {
303 		memset(dst + size, 0, rest);
304 	} else if (usize > ksize) {
305 		int ret = check_zeroed_user(src + size, rest);
306 		if (ret <= 0)
307 			return ret ?: -E2BIG;
308 	}
309 	/* Copy the interoperable parts of the struct. */
310 	if (copy_from_user(dst, src, size))
311 		return -EFAULT;
312 	return 0;
313 }
314 
315 bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size);
316 
317 long copy_from_kernel_nofault(void *dst, const void *src, size_t size);
318 long notrace copy_to_kernel_nofault(void *dst, const void *src, size_t size);
319 
320 long copy_from_user_nofault(void *dst, const void __user *src, size_t size);
321 long notrace copy_to_user_nofault(void __user *dst, const void *src,
322 		size_t size);
323 
324 long strncpy_from_kernel_nofault(char *dst, const void *unsafe_addr,
325 		long count);
326 
327 long strncpy_from_user_nofault(char *dst, const void __user *unsafe_addr,
328 		long count);
329 long strnlen_user_nofault(const void __user *unsafe_addr, long count);
330 
331 #ifndef __get_kernel_nofault
332 #define __get_kernel_nofault(dst, src, type, label)	\
333 do {							\
334 	type __user *p = (type __force __user *)(src);	\
335 	type data;					\
336 	if (__get_user(data, p))			\
337 		goto label;				\
338 	*(type *)dst = data;				\
339 } while (0)
340 
341 #define __put_kernel_nofault(dst, src, type, label)	\
342 do {							\
343 	type __user *p = (type __force __user *)(dst);	\
344 	type data = *(type *)src;			\
345 	if (__put_user(data, p))			\
346 		goto label;				\
347 } while (0)
348 #endif
349 
350 /**
351  * get_kernel_nofault(): safely attempt to read from a location
352  * @val: read into this variable
353  * @ptr: address to read from
354  *
355  * Returns 0 on success, or -EFAULT.
356  */
357 #define get_kernel_nofault(val, ptr) ({				\
358 	const typeof(val) *__gk_ptr = (ptr);			\
359 	copy_from_kernel_nofault(&(val), __gk_ptr, sizeof(val));\
360 })
361 
362 #ifndef user_access_begin
363 #define user_access_begin(ptr,len) access_ok(ptr, len)
364 #define user_access_end() do { } while (0)
365 #define unsafe_op_wrap(op, err) do { if (unlikely(op)) goto err; } while (0)
366 #define unsafe_get_user(x,p,e) unsafe_op_wrap(__get_user(x,p),e)
367 #define unsafe_put_user(x,p,e) unsafe_op_wrap(__put_user(x,p),e)
368 #define unsafe_copy_to_user(d,s,l,e) unsafe_op_wrap(__copy_to_user(d,s,l),e)
369 #define unsafe_copy_from_user(d,s,l,e) unsafe_op_wrap(__copy_from_user(d,s,l),e)
370 static inline unsigned long user_access_save(void) { return 0UL; }
371 static inline void user_access_restore(unsigned long flags) { }
372 #endif
373 #ifndef user_write_access_begin
374 #define user_write_access_begin user_access_begin
375 #define user_write_access_end user_access_end
376 #endif
377 #ifndef user_read_access_begin
378 #define user_read_access_begin user_access_begin
379 #define user_read_access_end user_access_end
380 #endif
381 
382 #ifdef CONFIG_HARDENED_USERCOPY
383 void __noreturn usercopy_abort(const char *name, const char *detail,
384 			       bool to_user, unsigned long offset,
385 			       unsigned long len);
386 #endif
387 
388 #endif		/* __LINUX_UACCESS_H__ */
389