xref: /openbmc/linux/include/linux/spi/spi.h (revision 4b7ead03)
1 /* SPDX-License-Identifier: GPL-2.0-or-later
2  *
3  * Copyright (C) 2005 David Brownell
4  */
5 
6 #ifndef __LINUX_SPI_H
7 #define __LINUX_SPI_H
8 
9 #include <linux/device.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/slab.h>
12 #include <linux/kthread.h>
13 #include <linux/completion.h>
14 #include <linux/scatterlist.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/ptp_clock_kernel.h>
17 
18 struct dma_chan;
19 struct property_entry;
20 struct spi_controller;
21 struct spi_transfer;
22 struct spi_controller_mem_ops;
23 
24 /*
25  * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
26  * and SPI infrastructure.
27  */
28 extern struct bus_type spi_bus_type;
29 
30 /**
31  * struct spi_statistics - statistics for spi transfers
32  * @lock:          lock protecting this structure
33  *
34  * @messages:      number of spi-messages handled
35  * @transfers:     number of spi_transfers handled
36  * @errors:        number of errors during spi_transfer
37  * @timedout:      number of timeouts during spi_transfer
38  *
39  * @spi_sync:      number of times spi_sync is used
40  * @spi_sync_immediate:
41  *                 number of times spi_sync is executed immediately
42  *                 in calling context without queuing and scheduling
43  * @spi_async:     number of times spi_async is used
44  *
45  * @bytes:         number of bytes transferred to/from device
46  * @bytes_tx:      number of bytes sent to device
47  * @bytes_rx:      number of bytes received from device
48  *
49  * @transfer_bytes_histo:
50  *                 transfer bytes histogramm
51  *
52  * @transfers_split_maxsize:
53  *                 number of transfers that have been split because of
54  *                 maxsize limit
55  */
56 struct spi_statistics {
57 	spinlock_t		lock; /* lock for the whole structure */
58 
59 	unsigned long		messages;
60 	unsigned long		transfers;
61 	unsigned long		errors;
62 	unsigned long		timedout;
63 
64 	unsigned long		spi_sync;
65 	unsigned long		spi_sync_immediate;
66 	unsigned long		spi_async;
67 
68 	unsigned long long	bytes;
69 	unsigned long long	bytes_rx;
70 	unsigned long long	bytes_tx;
71 
72 #define SPI_STATISTICS_HISTO_SIZE 17
73 	unsigned long transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
74 
75 	unsigned long transfers_split_maxsize;
76 };
77 
78 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
79 				       struct spi_transfer *xfer,
80 				       struct spi_controller *ctlr);
81 
82 #define SPI_STATISTICS_ADD_TO_FIELD(stats, field, count)	\
83 	do {							\
84 		unsigned long flags;				\
85 		spin_lock_irqsave(&(stats)->lock, flags);	\
86 		(stats)->field += count;			\
87 		spin_unlock_irqrestore(&(stats)->lock, flags);	\
88 	} while (0)
89 
90 #define SPI_STATISTICS_INCREMENT_FIELD(stats, field)	\
91 	SPI_STATISTICS_ADD_TO_FIELD(stats, field, 1)
92 
93 /**
94  * struct spi_delay - SPI delay information
95  * @value: Value for the delay
96  * @unit: Unit for the delay
97  */
98 struct spi_delay {
99 #define SPI_DELAY_UNIT_USECS	0
100 #define SPI_DELAY_UNIT_NSECS	1
101 #define SPI_DELAY_UNIT_SCK	2
102 	u16	value;
103 	u8	unit;
104 };
105 
106 extern int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer);
107 extern int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer);
108 
109 /**
110  * struct spi_device - Controller side proxy for an SPI slave device
111  * @dev: Driver model representation of the device.
112  * @controller: SPI controller used with the device.
113  * @master: Copy of controller, for backwards compatibility.
114  * @max_speed_hz: Maximum clock rate to be used with this chip
115  *	(on this board); may be changed by the device's driver.
116  *	The spi_transfer.speed_hz can override this for each transfer.
117  * @chip_select: Chipselect, distinguishing chips handled by @controller.
118  * @mode: The spi mode defines how data is clocked out and in.
119  *	This may be changed by the device's driver.
120  *	The "active low" default for chipselect mode can be overridden
121  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
122  *	each word in a transfer (by specifying SPI_LSB_FIRST).
123  * @bits_per_word: Data transfers involve one or more words; word sizes
124  *	like eight or 12 bits are common.  In-memory wordsizes are
125  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
126  *	This may be changed by the device's driver, or left at the
127  *	default (0) indicating protocol words are eight bit bytes.
128  *	The spi_transfer.bits_per_word can override this for each transfer.
129  * @rt: Make the pump thread real time priority.
130  * @irq: Negative, or the number passed to request_irq() to receive
131  *	interrupts from this device.
132  * @controller_state: Controller's runtime state
133  * @controller_data: Board-specific definitions for controller, such as
134  *	FIFO initialization parameters; from board_info.controller_data
135  * @modalias: Name of the driver to use with this device, or an alias
136  *	for that name.  This appears in the sysfs "modalias" attribute
137  *	for driver coldplugging, and in uevents used for hotplugging
138  * @driver_override: If the name of a driver is written to this attribute, then
139  *	the device will bind to the named driver and only the named driver.
140  * @cs_gpio: LEGACY: gpio number of the chipselect line (optional, -ENOENT when
141  *	not using a GPIO line) use cs_gpiod in new drivers by opting in on
142  *	the spi_master.
143  * @cs_gpiod: gpio descriptor of the chipselect line (optional, NULL when
144  *	not using a GPIO line)
145  * @word_delay: delay to be inserted between consecutive
146  *	words of a transfer
147  *
148  * @statistics: statistics for the spi_device
149  *
150  * A @spi_device is used to interchange data between an SPI slave
151  * (usually a discrete chip) and CPU memory.
152  *
153  * In @dev, the platform_data is used to hold information about this
154  * device that's meaningful to the device's protocol driver, but not
155  * to its controller.  One example might be an identifier for a chip
156  * variant with slightly different functionality; another might be
157  * information about how this particular board wires the chip's pins.
158  */
159 struct spi_device {
160 	struct device		dev;
161 	struct spi_controller	*controller;
162 	struct spi_controller	*master;	/* compatibility layer */
163 	u32			max_speed_hz;
164 	u8			chip_select;
165 	u8			bits_per_word;
166 	bool			rt;
167 	u32			mode;
168 #define	SPI_CPHA	0x01			/* clock phase */
169 #define	SPI_CPOL	0x02			/* clock polarity */
170 #define	SPI_MODE_0	(0|0)			/* (original MicroWire) */
171 #define	SPI_MODE_1	(0|SPI_CPHA)
172 #define	SPI_MODE_2	(SPI_CPOL|0)
173 #define	SPI_MODE_3	(SPI_CPOL|SPI_CPHA)
174 #define	SPI_MODE_X_MASK	(SPI_CPOL|SPI_CPHA)
175 #define	SPI_CS_HIGH	0x04			/* chipselect active high? */
176 #define	SPI_LSB_FIRST	0x08			/* per-word bits-on-wire */
177 #define	SPI_3WIRE	0x10			/* SI/SO signals shared */
178 #define	SPI_LOOP	0x20			/* loopback mode */
179 #define	SPI_NO_CS	0x40			/* 1 dev/bus, no chipselect */
180 #define	SPI_READY	0x80			/* slave pulls low to pause */
181 #define	SPI_TX_DUAL	0x100			/* transmit with 2 wires */
182 #define	SPI_TX_QUAD	0x200			/* transmit with 4 wires */
183 #define	SPI_RX_DUAL	0x400			/* receive with 2 wires */
184 #define	SPI_RX_QUAD	0x800			/* receive with 4 wires */
185 #define	SPI_CS_WORD	0x1000			/* toggle cs after each word */
186 #define	SPI_TX_OCTAL	0x2000			/* transmit with 8 wires */
187 #define	SPI_RX_OCTAL	0x4000			/* receive with 8 wires */
188 #define	SPI_3WIRE_HIZ	0x8000			/* high impedance turnaround */
189 	int			irq;
190 	void			*controller_state;
191 	void			*controller_data;
192 	char			modalias[SPI_NAME_SIZE];
193 	const char		*driver_override;
194 	int			cs_gpio;	/* LEGACY: chip select gpio */
195 	struct gpio_desc	*cs_gpiod;	/* chip select gpio desc */
196 	struct spi_delay	word_delay; /* inter-word delay */
197 
198 	/* the statistics */
199 	struct spi_statistics	statistics;
200 
201 	/*
202 	 * likely need more hooks for more protocol options affecting how
203 	 * the controller talks to each chip, like:
204 	 *  - memory packing (12 bit samples into low bits, others zeroed)
205 	 *  - priority
206 	 *  - chipselect delays
207 	 *  - ...
208 	 */
209 };
210 
211 static inline struct spi_device *to_spi_device(struct device *dev)
212 {
213 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
214 }
215 
216 /* most drivers won't need to care about device refcounting */
217 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
218 {
219 	return (spi && get_device(&spi->dev)) ? spi : NULL;
220 }
221 
222 static inline void spi_dev_put(struct spi_device *spi)
223 {
224 	if (spi)
225 		put_device(&spi->dev);
226 }
227 
228 /* ctldata is for the bus_controller driver's runtime state */
229 static inline void *spi_get_ctldata(struct spi_device *spi)
230 {
231 	return spi->controller_state;
232 }
233 
234 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
235 {
236 	spi->controller_state = state;
237 }
238 
239 /* device driver data */
240 
241 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
242 {
243 	dev_set_drvdata(&spi->dev, data);
244 }
245 
246 static inline void *spi_get_drvdata(struct spi_device *spi)
247 {
248 	return dev_get_drvdata(&spi->dev);
249 }
250 
251 struct spi_message;
252 struct spi_transfer;
253 
254 /**
255  * struct spi_driver - Host side "protocol" driver
256  * @id_table: List of SPI devices supported by this driver
257  * @probe: Binds this driver to the spi device.  Drivers can verify
258  *	that the device is actually present, and may need to configure
259  *	characteristics (such as bits_per_word) which weren't needed for
260  *	the initial configuration done during system setup.
261  * @remove: Unbinds this driver from the spi device
262  * @shutdown: Standard shutdown callback used during system state
263  *	transitions such as powerdown/halt and kexec
264  * @driver: SPI device drivers should initialize the name and owner
265  *	field of this structure.
266  *
267  * This represents the kind of device driver that uses SPI messages to
268  * interact with the hardware at the other end of a SPI link.  It's called
269  * a "protocol" driver because it works through messages rather than talking
270  * directly to SPI hardware (which is what the underlying SPI controller
271  * driver does to pass those messages).  These protocols are defined in the
272  * specification for the device(s) supported by the driver.
273  *
274  * As a rule, those device protocols represent the lowest level interface
275  * supported by a driver, and it will support upper level interfaces too.
276  * Examples of such upper levels include frameworks like MTD, networking,
277  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
278  */
279 struct spi_driver {
280 	const struct spi_device_id *id_table;
281 	int			(*probe)(struct spi_device *spi);
282 	int			(*remove)(struct spi_device *spi);
283 	void			(*shutdown)(struct spi_device *spi);
284 	struct device_driver	driver;
285 };
286 
287 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
288 {
289 	return drv ? container_of(drv, struct spi_driver, driver) : NULL;
290 }
291 
292 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
293 
294 /**
295  * spi_unregister_driver - reverse effect of spi_register_driver
296  * @sdrv: the driver to unregister
297  * Context: can sleep
298  */
299 static inline void spi_unregister_driver(struct spi_driver *sdrv)
300 {
301 	if (sdrv)
302 		driver_unregister(&sdrv->driver);
303 }
304 
305 /* use a define to avoid include chaining to get THIS_MODULE */
306 #define spi_register_driver(driver) \
307 	__spi_register_driver(THIS_MODULE, driver)
308 
309 /**
310  * module_spi_driver() - Helper macro for registering a SPI driver
311  * @__spi_driver: spi_driver struct
312  *
313  * Helper macro for SPI drivers which do not do anything special in module
314  * init/exit. This eliminates a lot of boilerplate. Each module may only
315  * use this macro once, and calling it replaces module_init() and module_exit()
316  */
317 #define module_spi_driver(__spi_driver) \
318 	module_driver(__spi_driver, spi_register_driver, \
319 			spi_unregister_driver)
320 
321 /**
322  * struct spi_controller - interface to SPI master or slave controller
323  * @dev: device interface to this driver
324  * @list: link with the global spi_controller list
325  * @bus_num: board-specific (and often SOC-specific) identifier for a
326  *	given SPI controller.
327  * @num_chipselect: chipselects are used to distinguish individual
328  *	SPI slaves, and are numbered from zero to num_chipselects.
329  *	each slave has a chipselect signal, but it's common that not
330  *	every chipselect is connected to a slave.
331  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
332  * @mode_bits: flags understood by this controller driver
333  * @buswidth_override_bits: flags to override for this controller driver
334  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
335  *	supported by the driver. Bit n indicates that a bits_per_word n+1 is
336  *	supported. If set, the SPI core will reject any transfer with an
337  *	unsupported bits_per_word. If not set, this value is simply ignored,
338  *	and it's up to the individual driver to perform any validation.
339  * @min_speed_hz: Lowest supported transfer speed
340  * @max_speed_hz: Highest supported transfer speed
341  * @flags: other constraints relevant to this driver
342  * @slave: indicates that this is an SPI slave controller
343  * @max_transfer_size: function that returns the max transfer size for
344  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
345  * @max_message_size: function that returns the max message size for
346  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
347  * @io_mutex: mutex for physical bus access
348  * @bus_lock_spinlock: spinlock for SPI bus locking
349  * @bus_lock_mutex: mutex for exclusion of multiple callers
350  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
351  * @setup: updates the device mode and clocking records used by a
352  *	device's SPI controller; protocol code may call this.  This
353  *	must fail if an unrecognized or unsupported mode is requested.
354  *	It's always safe to call this unless transfers are pending on
355  *	the device whose settings are being modified.
356  * @set_cs_timing: optional hook for SPI devices to request SPI master
357  * controller for configuring specific CS setup time, hold time and inactive
358  * delay interms of clock counts
359  * @transfer: adds a message to the controller's transfer queue.
360  * @cleanup: frees controller-specific state
361  * @can_dma: determine whether this controller supports DMA
362  * @queued: whether this controller is providing an internal message queue
363  * @kworker: pointer to thread struct for message pump
364  * @pump_messages: work struct for scheduling work to the message pump
365  * @queue_lock: spinlock to syncronise access to message queue
366  * @queue: message queue
367  * @idling: the device is entering idle state
368  * @cur_msg: the currently in-flight message
369  * @cur_msg_prepared: spi_prepare_message was called for the currently
370  *                    in-flight message
371  * @cur_msg_mapped: message has been mapped for DMA
372  * @last_cs_enable: was enable true on the last call to set_cs.
373  * @last_cs_mode_high: was (mode & SPI_CS_HIGH) true on the last call to set_cs.
374  * @xfer_completion: used by core transfer_one_message()
375  * @busy: message pump is busy
376  * @running: message pump is running
377  * @rt: whether this queue is set to run as a realtime task
378  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
379  *                   while the hardware is prepared, using the parent
380  *                   device for the spidev
381  * @max_dma_len: Maximum length of a DMA transfer for the device.
382  * @prepare_transfer_hardware: a message will soon arrive from the queue
383  *	so the subsystem requests the driver to prepare the transfer hardware
384  *	by issuing this call
385  * @transfer_one_message: the subsystem calls the driver to transfer a single
386  *	message while queuing transfers that arrive in the meantime. When the
387  *	driver is finished with this message, it must call
388  *	spi_finalize_current_message() so the subsystem can issue the next
389  *	message
390  * @unprepare_transfer_hardware: there are currently no more messages on the
391  *	queue so the subsystem notifies the driver that it may relax the
392  *	hardware by issuing this call
393  *
394  * @set_cs: set the logic level of the chip select line.  May be called
395  *          from interrupt context.
396  * @prepare_message: set up the controller to transfer a single message,
397  *                   for example doing DMA mapping.  Called from threaded
398  *                   context.
399  * @transfer_one: transfer a single spi_transfer.
400  *
401  *                  - return 0 if the transfer is finished,
402  *                  - return 1 if the transfer is still in progress. When
403  *                    the driver is finished with this transfer it must
404  *                    call spi_finalize_current_transfer() so the subsystem
405  *                    can issue the next transfer. Note: transfer_one and
406  *                    transfer_one_message are mutually exclusive; when both
407  *                    are set, the generic subsystem does not call your
408  *                    transfer_one callback.
409  * @handle_err: the subsystem calls the driver to handle an error that occurs
410  *		in the generic implementation of transfer_one_message().
411  * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
412  *	     This field is optional and should only be implemented if the
413  *	     controller has native support for memory like operations.
414  * @unprepare_message: undo any work done by prepare_message().
415  * @slave_abort: abort the ongoing transfer request on an SPI slave controller
416  * @cs_setup: delay to be introduced by the controller after CS is asserted
417  * @cs_hold: delay to be introduced by the controller before CS is deasserted
418  * @cs_inactive: delay to be introduced by the controller after CS is
419  *	deasserted. If @cs_change_delay is used from @spi_transfer, then the
420  *	two delays will be added up.
421  * @cs_gpios: LEGACY: array of GPIO descs to use as chip select lines; one per
422  *	CS number. Any individual value may be -ENOENT for CS lines that
423  *	are not GPIOs (driven by the SPI controller itself). Use the cs_gpiods
424  *	in new drivers.
425  * @cs_gpiods: Array of GPIO descs to use as chip select lines; one per CS
426  *	number. Any individual value may be NULL for CS lines that
427  *	are not GPIOs (driven by the SPI controller itself).
428  * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
429  *	GPIO descriptors rather than using global GPIO numbers grabbed by the
430  *	driver. This will fill in @cs_gpiods and @cs_gpios should not be used,
431  *	and SPI devices will have the cs_gpiod assigned rather than cs_gpio.
432  * @unused_native_cs: When cs_gpiods is used, spi_register_controller() will
433  *	fill in this field with the first unused native CS, to be used by SPI
434  *	controller drivers that need to drive a native CS when using GPIO CS.
435  * @max_native_cs: When cs_gpiods is used, and this field is filled in,
436  *	spi_register_controller() will validate all native CS (including the
437  *	unused native CS) against this value.
438  * @statistics: statistics for the spi_controller
439  * @dma_tx: DMA transmit channel
440  * @dma_rx: DMA receive channel
441  * @dummy_rx: dummy receive buffer for full-duplex devices
442  * @dummy_tx: dummy transmit buffer for full-duplex devices
443  * @fw_translate_cs: If the boot firmware uses different numbering scheme
444  *	what Linux expects, this optional hook can be used to translate
445  *	between the two.
446  * @ptp_sts_supported: If the driver sets this to true, it must provide a
447  *	time snapshot in @spi_transfer->ptp_sts as close as possible to the
448  *	moment in time when @spi_transfer->ptp_sts_word_pre and
449  *	@spi_transfer->ptp_sts_word_post were transmitted.
450  *	If the driver does not set this, the SPI core takes the snapshot as
451  *	close to the driver hand-over as possible.
452  * @irq_flags: Interrupt enable state during PTP system timestamping
453  * @fallback: fallback to pio if dma transfer return failure with
454  *	SPI_TRANS_FAIL_NO_START.
455  *
456  * Each SPI controller can communicate with one or more @spi_device
457  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
458  * but not chip select signals.  Each device may be configured to use a
459  * different clock rate, since those shared signals are ignored unless
460  * the chip is selected.
461  *
462  * The driver for an SPI controller manages access to those devices through
463  * a queue of spi_message transactions, copying data between CPU memory and
464  * an SPI slave device.  For each such message it queues, it calls the
465  * message's completion function when the transaction completes.
466  */
467 struct spi_controller {
468 	struct device	dev;
469 
470 	struct list_head list;
471 
472 	/* other than negative (== assign one dynamically), bus_num is fully
473 	 * board-specific.  usually that simplifies to being SOC-specific.
474 	 * example:  one SOC has three SPI controllers, numbered 0..2,
475 	 * and one board's schematics might show it using SPI-2.  software
476 	 * would normally use bus_num=2 for that controller.
477 	 */
478 	s16			bus_num;
479 
480 	/* chipselects will be integral to many controllers; some others
481 	 * might use board-specific GPIOs.
482 	 */
483 	u16			num_chipselect;
484 
485 	/* some SPI controllers pose alignment requirements on DMAable
486 	 * buffers; let protocol drivers know about these requirements.
487 	 */
488 	u16			dma_alignment;
489 
490 	/* spi_device.mode flags understood by this controller driver */
491 	u32			mode_bits;
492 
493 	/* spi_device.mode flags override flags for this controller */
494 	u32			buswidth_override_bits;
495 
496 	/* bitmask of supported bits_per_word for transfers */
497 	u32			bits_per_word_mask;
498 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
499 #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1)
500 
501 	/* limits on transfer speed */
502 	u32			min_speed_hz;
503 	u32			max_speed_hz;
504 
505 	/* other constraints relevant to this driver */
506 	u16			flags;
507 #define SPI_CONTROLLER_HALF_DUPLEX	BIT(0)	/* can't do full duplex */
508 #define SPI_CONTROLLER_NO_RX		BIT(1)	/* can't do buffer read */
509 #define SPI_CONTROLLER_NO_TX		BIT(2)	/* can't do buffer write */
510 #define SPI_CONTROLLER_MUST_RX		BIT(3)	/* requires rx */
511 #define SPI_CONTROLLER_MUST_TX		BIT(4)	/* requires tx */
512 
513 #define SPI_MASTER_GPIO_SS		BIT(5)	/* GPIO CS must select slave */
514 
515 	/* flag indicating this is an SPI slave controller */
516 	bool			slave;
517 
518 	/*
519 	 * on some hardware transfer / message size may be constrained
520 	 * the limit may depend on device transfer settings
521 	 */
522 	size_t (*max_transfer_size)(struct spi_device *spi);
523 	size_t (*max_message_size)(struct spi_device *spi);
524 
525 	/* I/O mutex */
526 	struct mutex		io_mutex;
527 
528 	/* lock and mutex for SPI bus locking */
529 	spinlock_t		bus_lock_spinlock;
530 	struct mutex		bus_lock_mutex;
531 
532 	/* flag indicating that the SPI bus is locked for exclusive use */
533 	bool			bus_lock_flag;
534 
535 	/* Setup mode and clock, etc (spi driver may call many times).
536 	 *
537 	 * IMPORTANT:  this may be called when transfers to another
538 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
539 	 * which could break those transfers.
540 	 */
541 	int			(*setup)(struct spi_device *spi);
542 
543 	/*
544 	 * set_cs_timing() method is for SPI controllers that supports
545 	 * configuring CS timing.
546 	 *
547 	 * This hook allows SPI client drivers to request SPI controllers
548 	 * to configure specific CS timing through spi_set_cs_timing() after
549 	 * spi_setup().
550 	 */
551 	int (*set_cs_timing)(struct spi_device *spi, struct spi_delay *setup,
552 			     struct spi_delay *hold, struct spi_delay *inactive);
553 
554 	/* bidirectional bulk transfers
555 	 *
556 	 * + The transfer() method may not sleep; its main role is
557 	 *   just to add the message to the queue.
558 	 * + For now there's no remove-from-queue operation, or
559 	 *   any other request management
560 	 * + To a given spi_device, message queueing is pure fifo
561 	 *
562 	 * + The controller's main job is to process its message queue,
563 	 *   selecting a chip (for masters), then transferring data
564 	 * + If there are multiple spi_device children, the i/o queue
565 	 *   arbitration algorithm is unspecified (round robin, fifo,
566 	 *   priority, reservations, preemption, etc)
567 	 *
568 	 * + Chipselect stays active during the entire message
569 	 *   (unless modified by spi_transfer.cs_change != 0).
570 	 * + The message transfers use clock and SPI mode parameters
571 	 *   previously established by setup() for this device
572 	 */
573 	int			(*transfer)(struct spi_device *spi,
574 						struct spi_message *mesg);
575 
576 	/* called on release() to free memory provided by spi_controller */
577 	void			(*cleanup)(struct spi_device *spi);
578 
579 	/*
580 	 * Used to enable core support for DMA handling, if can_dma()
581 	 * exists and returns true then the transfer will be mapped
582 	 * prior to transfer_one() being called.  The driver should
583 	 * not modify or store xfer and dma_tx and dma_rx must be set
584 	 * while the device is prepared.
585 	 */
586 	bool			(*can_dma)(struct spi_controller *ctlr,
587 					   struct spi_device *spi,
588 					   struct spi_transfer *xfer);
589 
590 	/*
591 	 * These hooks are for drivers that want to use the generic
592 	 * controller transfer queueing mechanism. If these are used, the
593 	 * transfer() function above must NOT be specified by the driver.
594 	 * Over time we expect SPI drivers to be phased over to this API.
595 	 */
596 	bool				queued;
597 	struct kthread_worker		*kworker;
598 	struct kthread_work		pump_messages;
599 	spinlock_t			queue_lock;
600 	struct list_head		queue;
601 	struct spi_message		*cur_msg;
602 	bool				idling;
603 	bool				busy;
604 	bool				running;
605 	bool				rt;
606 	bool				auto_runtime_pm;
607 	bool                            cur_msg_prepared;
608 	bool				cur_msg_mapped;
609 	bool				last_cs_enable;
610 	bool				last_cs_mode_high;
611 	bool                            fallback;
612 	struct completion               xfer_completion;
613 	size_t				max_dma_len;
614 
615 	int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
616 	int (*transfer_one_message)(struct spi_controller *ctlr,
617 				    struct spi_message *mesg);
618 	int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
619 	int (*prepare_message)(struct spi_controller *ctlr,
620 			       struct spi_message *message);
621 	int (*unprepare_message)(struct spi_controller *ctlr,
622 				 struct spi_message *message);
623 	int (*slave_abort)(struct spi_controller *ctlr);
624 
625 	/*
626 	 * These hooks are for drivers that use a generic implementation
627 	 * of transfer_one_message() provied by the core.
628 	 */
629 	void (*set_cs)(struct spi_device *spi, bool enable);
630 	int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
631 			    struct spi_transfer *transfer);
632 	void (*handle_err)(struct spi_controller *ctlr,
633 			   struct spi_message *message);
634 
635 	/* Optimized handlers for SPI memory-like operations. */
636 	const struct spi_controller_mem_ops *mem_ops;
637 
638 	/* CS delays */
639 	struct spi_delay	cs_setup;
640 	struct spi_delay	cs_hold;
641 	struct spi_delay	cs_inactive;
642 
643 	/* gpio chip select */
644 	int			*cs_gpios;
645 	struct gpio_desc	**cs_gpiods;
646 	bool			use_gpio_descriptors;
647 	u8			unused_native_cs;
648 	u8			max_native_cs;
649 
650 	/* statistics */
651 	struct spi_statistics	statistics;
652 
653 	/* DMA channels for use with core dmaengine helpers */
654 	struct dma_chan		*dma_tx;
655 	struct dma_chan		*dma_rx;
656 
657 	/* dummy data for full duplex devices */
658 	void			*dummy_rx;
659 	void			*dummy_tx;
660 
661 	int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
662 
663 	/*
664 	 * Driver sets this field to indicate it is able to snapshot SPI
665 	 * transfers (needed e.g. for reading the time of POSIX clocks)
666 	 */
667 	bool			ptp_sts_supported;
668 
669 	/* Interrupt enable state during PTP system timestamping */
670 	unsigned long		irq_flags;
671 };
672 
673 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
674 {
675 	return dev_get_drvdata(&ctlr->dev);
676 }
677 
678 static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
679 					      void *data)
680 {
681 	dev_set_drvdata(&ctlr->dev, data);
682 }
683 
684 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
685 {
686 	if (!ctlr || !get_device(&ctlr->dev))
687 		return NULL;
688 	return ctlr;
689 }
690 
691 static inline void spi_controller_put(struct spi_controller *ctlr)
692 {
693 	if (ctlr)
694 		put_device(&ctlr->dev);
695 }
696 
697 static inline bool spi_controller_is_slave(struct spi_controller *ctlr)
698 {
699 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave;
700 }
701 
702 /* PM calls that need to be issued by the driver */
703 extern int spi_controller_suspend(struct spi_controller *ctlr);
704 extern int spi_controller_resume(struct spi_controller *ctlr);
705 
706 /* Calls the driver make to interact with the message queue */
707 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
708 extern void spi_finalize_current_message(struct spi_controller *ctlr);
709 extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
710 
711 /* Helper calls for driver to timestamp transfer */
712 void spi_take_timestamp_pre(struct spi_controller *ctlr,
713 			    struct spi_transfer *xfer,
714 			    size_t progress, bool irqs_off);
715 void spi_take_timestamp_post(struct spi_controller *ctlr,
716 			     struct spi_transfer *xfer,
717 			     size_t progress, bool irqs_off);
718 
719 /* the spi driver core manages memory for the spi_controller classdev */
720 extern struct spi_controller *__spi_alloc_controller(struct device *host,
721 						unsigned int size, bool slave);
722 
723 static inline struct spi_controller *spi_alloc_master(struct device *host,
724 						      unsigned int size)
725 {
726 	return __spi_alloc_controller(host, size, false);
727 }
728 
729 static inline struct spi_controller *spi_alloc_slave(struct device *host,
730 						     unsigned int size)
731 {
732 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
733 		return NULL;
734 
735 	return __spi_alloc_controller(host, size, true);
736 }
737 
738 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
739 						   unsigned int size,
740 						   bool slave);
741 
742 static inline struct spi_controller *devm_spi_alloc_master(struct device *dev,
743 							   unsigned int size)
744 {
745 	return __devm_spi_alloc_controller(dev, size, false);
746 }
747 
748 static inline struct spi_controller *devm_spi_alloc_slave(struct device *dev,
749 							  unsigned int size)
750 {
751 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
752 		return NULL;
753 
754 	return __devm_spi_alloc_controller(dev, size, true);
755 }
756 
757 extern int spi_register_controller(struct spi_controller *ctlr);
758 extern int devm_spi_register_controller(struct device *dev,
759 					struct spi_controller *ctlr);
760 extern void spi_unregister_controller(struct spi_controller *ctlr);
761 
762 extern struct spi_controller *spi_busnum_to_master(u16 busnum);
763 
764 /*
765  * SPI resource management while processing a SPI message
766  */
767 
768 typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
769 				  struct spi_message *msg,
770 				  void *res);
771 
772 /**
773  * struct spi_res - spi resource management structure
774  * @entry:   list entry
775  * @release: release code called prior to freeing this resource
776  * @data:    extra data allocated for the specific use-case
777  *
778  * this is based on ideas from devres, but focused on life-cycle
779  * management during spi_message processing
780  */
781 struct spi_res {
782 	struct list_head        entry;
783 	spi_res_release_t       release;
784 	unsigned long long      data[]; /* guarantee ull alignment */
785 };
786 
787 extern void *spi_res_alloc(struct spi_device *spi,
788 			   spi_res_release_t release,
789 			   size_t size, gfp_t gfp);
790 extern void spi_res_add(struct spi_message *message, void *res);
791 extern void spi_res_free(void *res);
792 
793 extern void spi_res_release(struct spi_controller *ctlr,
794 			    struct spi_message *message);
795 
796 /*---------------------------------------------------------------------------*/
797 
798 /*
799  * I/O INTERFACE between SPI controller and protocol drivers
800  *
801  * Protocol drivers use a queue of spi_messages, each transferring data
802  * between the controller and memory buffers.
803  *
804  * The spi_messages themselves consist of a series of read+write transfer
805  * segments.  Those segments always read the same number of bits as they
806  * write; but one or the other is easily ignored by passing a null buffer
807  * pointer.  (This is unlike most types of I/O API, because SPI hardware
808  * is full duplex.)
809  *
810  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
811  * up to the protocol driver, which guarantees the integrity of both (as
812  * well as the data buffers) for as long as the message is queued.
813  */
814 
815 /**
816  * struct spi_transfer - a read/write buffer pair
817  * @tx_buf: data to be written (dma-safe memory), or NULL
818  * @rx_buf: data to be read (dma-safe memory), or NULL
819  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
820  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
821  * @tx_nbits: number of bits used for writing. If 0 the default
822  *      (SPI_NBITS_SINGLE) is used.
823  * @rx_nbits: number of bits used for reading. If 0 the default
824  *      (SPI_NBITS_SINGLE) is used.
825  * @len: size of rx and tx buffers (in bytes)
826  * @speed_hz: Select a speed other than the device default for this
827  *      transfer. If 0 the default (from @spi_device) is used.
828  * @bits_per_word: select a bits_per_word other than the device default
829  *      for this transfer. If 0 the default (from @spi_device) is used.
830  * @cs_change: affects chipselect after this transfer completes
831  * @cs_change_delay: delay between cs deassert and assert when
832  *      @cs_change is set and @spi_transfer is not the last in @spi_message
833  * @delay: delay to be introduced after this transfer before
834  *	(optionally) changing the chipselect status, then starting
835  *	the next transfer or completing this @spi_message.
836  * @delay_usecs: microseconds to delay after this transfer before
837  *	(optionally) changing the chipselect status, then starting
838  *	the next transfer or completing this @spi_message.
839  * @word_delay: inter word delay to be introduced after each word size
840  *	(set by bits_per_word) transmission.
841  * @effective_speed_hz: the effective SCK-speed that was used to
842  *      transfer this transfer. Set to 0 if the spi bus driver does
843  *      not support it.
844  * @transfer_list: transfers are sequenced through @spi_message.transfers
845  * @tx_sg: Scatterlist for transmit, currently not for client use
846  * @rx_sg: Scatterlist for receive, currently not for client use
847  * @ptp_sts_word_pre: The word (subject to bits_per_word semantics) offset
848  *	within @tx_buf for which the SPI device is requesting that the time
849  *	snapshot for this transfer begins. Upon completing the SPI transfer,
850  *	this value may have changed compared to what was requested, depending
851  *	on the available snapshotting resolution (DMA transfer,
852  *	@ptp_sts_supported is false, etc).
853  * @ptp_sts_word_post: See @ptp_sts_word_post. The two can be equal (meaning
854  *	that a single byte should be snapshotted).
855  *	If the core takes care of the timestamp (if @ptp_sts_supported is false
856  *	for this controller), it will set @ptp_sts_word_pre to 0, and
857  *	@ptp_sts_word_post to the length of the transfer. This is done
858  *	purposefully (instead of setting to spi_transfer->len - 1) to denote
859  *	that a transfer-level snapshot taken from within the driver may still
860  *	be of higher quality.
861  * @ptp_sts: Pointer to a memory location held by the SPI slave device where a
862  *	PTP system timestamp structure may lie. If drivers use PIO or their
863  *	hardware has some sort of assist for retrieving exact transfer timing,
864  *	they can (and should) assert @ptp_sts_supported and populate this
865  *	structure using the ptp_read_system_*ts helper functions.
866  *	The timestamp must represent the time at which the SPI slave device has
867  *	processed the word, i.e. the "pre" timestamp should be taken before
868  *	transmitting the "pre" word, and the "post" timestamp after receiving
869  *	transmit confirmation from the controller for the "post" word.
870  * @timestamped: true if the transfer has been timestamped
871  * @error: Error status logged by spi controller driver.
872  *
873  * SPI transfers always write the same number of bytes as they read.
874  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
875  * In some cases, they may also want to provide DMA addresses for
876  * the data being transferred; that may reduce overhead, when the
877  * underlying driver uses dma.
878  *
879  * If the transmit buffer is null, zeroes will be shifted out
880  * while filling @rx_buf.  If the receive buffer is null, the data
881  * shifted in will be discarded.  Only "len" bytes shift out (or in).
882  * It's an error to try to shift out a partial word.  (For example, by
883  * shifting out three bytes with word size of sixteen or twenty bits;
884  * the former uses two bytes per word, the latter uses four bytes.)
885  *
886  * In-memory data values are always in native CPU byte order, translated
887  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
888  * for example when bits_per_word is sixteen, buffers are 2N bytes long
889  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
890  *
891  * When the word size of the SPI transfer is not a power-of-two multiple
892  * of eight bits, those in-memory words include extra bits.  In-memory
893  * words are always seen by protocol drivers as right-justified, so the
894  * undefined (rx) or unused (tx) bits are always the most significant bits.
895  *
896  * All SPI transfers start with the relevant chipselect active.  Normally
897  * it stays selected until after the last transfer in a message.  Drivers
898  * can affect the chipselect signal using cs_change.
899  *
900  * (i) If the transfer isn't the last one in the message, this flag is
901  * used to make the chipselect briefly go inactive in the middle of the
902  * message.  Toggling chipselect in this way may be needed to terminate
903  * a chip command, letting a single spi_message perform all of group of
904  * chip transactions together.
905  *
906  * (ii) When the transfer is the last one in the message, the chip may
907  * stay selected until the next transfer.  On multi-device SPI busses
908  * with nothing blocking messages going to other devices, this is just
909  * a performance hint; starting a message to another device deselects
910  * this one.  But in other cases, this can be used to ensure correctness.
911  * Some devices need protocol transactions to be built from a series of
912  * spi_message submissions, where the content of one message is determined
913  * by the results of previous messages and where the whole transaction
914  * ends when the chipselect goes intactive.
915  *
916  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
917  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
918  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
919  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
920  *
921  * The code that submits an spi_message (and its spi_transfers)
922  * to the lower layers is responsible for managing its memory.
923  * Zero-initialize every field you don't set up explicitly, to
924  * insulate against future API updates.  After you submit a message
925  * and its transfers, ignore them until its completion callback.
926  */
927 struct spi_transfer {
928 	/* it's ok if tx_buf == rx_buf (right?)
929 	 * for MicroWire, one buffer must be null
930 	 * buffers must work with dma_*map_single() calls, unless
931 	 *   spi_message.is_dma_mapped reports a pre-existing mapping
932 	 */
933 	const void	*tx_buf;
934 	void		*rx_buf;
935 	unsigned	len;
936 
937 	dma_addr_t	tx_dma;
938 	dma_addr_t	rx_dma;
939 	struct sg_table tx_sg;
940 	struct sg_table rx_sg;
941 
942 	unsigned	cs_change:1;
943 	unsigned	tx_nbits:3;
944 	unsigned	rx_nbits:3;
945 #define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
946 #define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
947 #define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
948 	u8		bits_per_word;
949 	u16		delay_usecs;
950 	struct spi_delay	delay;
951 	struct spi_delay	cs_change_delay;
952 	struct spi_delay	word_delay;
953 	u32		speed_hz;
954 
955 	u32		effective_speed_hz;
956 
957 	unsigned int	ptp_sts_word_pre;
958 	unsigned int	ptp_sts_word_post;
959 
960 	struct ptp_system_timestamp *ptp_sts;
961 
962 	bool		timestamped;
963 
964 	struct list_head transfer_list;
965 
966 #define SPI_TRANS_FAIL_NO_START	BIT(0)
967 	u16		error;
968 };
969 
970 /**
971  * struct spi_message - one multi-segment SPI transaction
972  * @transfers: list of transfer segments in this transaction
973  * @spi: SPI device to which the transaction is queued
974  * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
975  *	addresses for each transfer buffer
976  * @complete: called to report transaction completions
977  * @context: the argument to complete() when it's called
978  * @frame_length: the total number of bytes in the message
979  * @actual_length: the total number of bytes that were transferred in all
980  *	successful segments
981  * @status: zero for success, else negative errno
982  * @queue: for use by whichever driver currently owns the message
983  * @state: for use by whichever driver currently owns the message
984  * @resources: for resource management when the spi message is processed
985  *
986  * A @spi_message is used to execute an atomic sequence of data transfers,
987  * each represented by a struct spi_transfer.  The sequence is "atomic"
988  * in the sense that no other spi_message may use that SPI bus until that
989  * sequence completes.  On some systems, many such sequences can execute as
990  * a single programmed DMA transfer.  On all systems, these messages are
991  * queued, and might complete after transactions to other devices.  Messages
992  * sent to a given spi_device are always executed in FIFO order.
993  *
994  * The code that submits an spi_message (and its spi_transfers)
995  * to the lower layers is responsible for managing its memory.
996  * Zero-initialize every field you don't set up explicitly, to
997  * insulate against future API updates.  After you submit a message
998  * and its transfers, ignore them until its completion callback.
999  */
1000 struct spi_message {
1001 	struct list_head	transfers;
1002 
1003 	struct spi_device	*spi;
1004 
1005 	unsigned		is_dma_mapped:1;
1006 
1007 	/* REVISIT:  we might want a flag affecting the behavior of the
1008 	 * last transfer ... allowing things like "read 16 bit length L"
1009 	 * immediately followed by "read L bytes".  Basically imposing
1010 	 * a specific message scheduling algorithm.
1011 	 *
1012 	 * Some controller drivers (message-at-a-time queue processing)
1013 	 * could provide that as their default scheduling algorithm.  But
1014 	 * others (with multi-message pipelines) could need a flag to
1015 	 * tell them about such special cases.
1016 	 */
1017 
1018 	/* completion is reported through a callback */
1019 	void			(*complete)(void *context);
1020 	void			*context;
1021 	unsigned		frame_length;
1022 	unsigned		actual_length;
1023 	int			status;
1024 
1025 	/* for optional use by whatever driver currently owns the
1026 	 * spi_message ...  between calls to spi_async and then later
1027 	 * complete(), that's the spi_controller controller driver.
1028 	 */
1029 	struct list_head	queue;
1030 	void			*state;
1031 
1032 	/* list of spi_res reources when the spi message is processed */
1033 	struct list_head        resources;
1034 };
1035 
1036 static inline void spi_message_init_no_memset(struct spi_message *m)
1037 {
1038 	INIT_LIST_HEAD(&m->transfers);
1039 	INIT_LIST_HEAD(&m->resources);
1040 }
1041 
1042 static inline void spi_message_init(struct spi_message *m)
1043 {
1044 	memset(m, 0, sizeof *m);
1045 	spi_message_init_no_memset(m);
1046 }
1047 
1048 static inline void
1049 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
1050 {
1051 	list_add_tail(&t->transfer_list, &m->transfers);
1052 }
1053 
1054 static inline void
1055 spi_transfer_del(struct spi_transfer *t)
1056 {
1057 	list_del(&t->transfer_list);
1058 }
1059 
1060 static inline int
1061 spi_transfer_delay_exec(struct spi_transfer *t)
1062 {
1063 	struct spi_delay d;
1064 
1065 	if (t->delay_usecs) {
1066 		d.value = t->delay_usecs;
1067 		d.unit = SPI_DELAY_UNIT_USECS;
1068 		return spi_delay_exec(&d, NULL);
1069 	}
1070 
1071 	return spi_delay_exec(&t->delay, t);
1072 }
1073 
1074 /**
1075  * spi_message_init_with_transfers - Initialize spi_message and append transfers
1076  * @m: spi_message to be initialized
1077  * @xfers: An array of spi transfers
1078  * @num_xfers: Number of items in the xfer array
1079  *
1080  * This function initializes the given spi_message and adds each spi_transfer in
1081  * the given array to the message.
1082  */
1083 static inline void
1084 spi_message_init_with_transfers(struct spi_message *m,
1085 struct spi_transfer *xfers, unsigned int num_xfers)
1086 {
1087 	unsigned int i;
1088 
1089 	spi_message_init(m);
1090 	for (i = 0; i < num_xfers; ++i)
1091 		spi_message_add_tail(&xfers[i], m);
1092 }
1093 
1094 /* It's fine to embed message and transaction structures in other data
1095  * structures so long as you don't free them while they're in use.
1096  */
1097 
1098 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
1099 {
1100 	struct spi_message *m;
1101 
1102 	m = kzalloc(sizeof(struct spi_message)
1103 			+ ntrans * sizeof(struct spi_transfer),
1104 			flags);
1105 	if (m) {
1106 		unsigned i;
1107 		struct spi_transfer *t = (struct spi_transfer *)(m + 1);
1108 
1109 		spi_message_init_no_memset(m);
1110 		for (i = 0; i < ntrans; i++, t++)
1111 			spi_message_add_tail(t, m);
1112 	}
1113 	return m;
1114 }
1115 
1116 static inline void spi_message_free(struct spi_message *m)
1117 {
1118 	kfree(m);
1119 }
1120 
1121 extern int spi_set_cs_timing(struct spi_device *spi,
1122 			     struct spi_delay *setup,
1123 			     struct spi_delay *hold,
1124 			     struct spi_delay *inactive);
1125 
1126 extern int spi_setup(struct spi_device *spi);
1127 extern int spi_async(struct spi_device *spi, struct spi_message *message);
1128 extern int spi_async_locked(struct spi_device *spi,
1129 			    struct spi_message *message);
1130 extern int spi_slave_abort(struct spi_device *spi);
1131 
1132 static inline size_t
1133 spi_max_message_size(struct spi_device *spi)
1134 {
1135 	struct spi_controller *ctlr = spi->controller;
1136 
1137 	if (!ctlr->max_message_size)
1138 		return SIZE_MAX;
1139 	return ctlr->max_message_size(spi);
1140 }
1141 
1142 static inline size_t
1143 spi_max_transfer_size(struct spi_device *spi)
1144 {
1145 	struct spi_controller *ctlr = spi->controller;
1146 	size_t tr_max = SIZE_MAX;
1147 	size_t msg_max = spi_max_message_size(spi);
1148 
1149 	if (ctlr->max_transfer_size)
1150 		tr_max = ctlr->max_transfer_size(spi);
1151 
1152 	/* transfer size limit must not be greater than messsage size limit */
1153 	return min(tr_max, msg_max);
1154 }
1155 
1156 /**
1157  * spi_is_bpw_supported - Check if bits per word is supported
1158  * @spi: SPI device
1159  * @bpw: Bits per word
1160  *
1161  * This function checks to see if the SPI controller supports @bpw.
1162  *
1163  * Returns:
1164  * True if @bpw is supported, false otherwise.
1165  */
1166 static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw)
1167 {
1168 	u32 bpw_mask = spi->master->bits_per_word_mask;
1169 
1170 	if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw)))
1171 		return true;
1172 
1173 	return false;
1174 }
1175 
1176 /*---------------------------------------------------------------------------*/
1177 
1178 /* SPI transfer replacement methods which make use of spi_res */
1179 
1180 struct spi_replaced_transfers;
1181 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
1182 				       struct spi_message *msg,
1183 				       struct spi_replaced_transfers *res);
1184 /**
1185  * struct spi_replaced_transfers - structure describing the spi_transfer
1186  *                                 replacements that have occurred
1187  *                                 so that they can get reverted
1188  * @release:            some extra release code to get executed prior to
1189  *                      relasing this structure
1190  * @extradata:          pointer to some extra data if requested or NULL
1191  * @replaced_transfers: transfers that have been replaced and which need
1192  *                      to get restored
1193  * @replaced_after:     the transfer after which the @replaced_transfers
1194  *                      are to get re-inserted
1195  * @inserted:           number of transfers inserted
1196  * @inserted_transfers: array of spi_transfers of array-size @inserted,
1197  *                      that have been replacing replaced_transfers
1198  *
1199  * note: that @extradata will point to @inserted_transfers[@inserted]
1200  * if some extra allocation is requested, so alignment will be the same
1201  * as for spi_transfers
1202  */
1203 struct spi_replaced_transfers {
1204 	spi_replaced_release_t release;
1205 	void *extradata;
1206 	struct list_head replaced_transfers;
1207 	struct list_head *replaced_after;
1208 	size_t inserted;
1209 	struct spi_transfer inserted_transfers[];
1210 };
1211 
1212 extern struct spi_replaced_transfers *spi_replace_transfers(
1213 	struct spi_message *msg,
1214 	struct spi_transfer *xfer_first,
1215 	size_t remove,
1216 	size_t insert,
1217 	spi_replaced_release_t release,
1218 	size_t extradatasize,
1219 	gfp_t gfp);
1220 
1221 /*---------------------------------------------------------------------------*/
1222 
1223 /* SPI transfer transformation methods */
1224 
1225 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1226 				       struct spi_message *msg,
1227 				       size_t maxsize,
1228 				       gfp_t gfp);
1229 
1230 /*---------------------------------------------------------------------------*/
1231 
1232 /* All these synchronous SPI transfer routines are utilities layered
1233  * over the core async transfer primitive.  Here, "synchronous" means
1234  * they will sleep uninterruptibly until the async transfer completes.
1235  */
1236 
1237 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1238 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1239 extern int spi_bus_lock(struct spi_controller *ctlr);
1240 extern int spi_bus_unlock(struct spi_controller *ctlr);
1241 
1242 /**
1243  * spi_sync_transfer - synchronous SPI data transfer
1244  * @spi: device with which data will be exchanged
1245  * @xfers: An array of spi_transfers
1246  * @num_xfers: Number of items in the xfer array
1247  * Context: can sleep
1248  *
1249  * Does a synchronous SPI data transfer of the given spi_transfer array.
1250  *
1251  * For more specific semantics see spi_sync().
1252  *
1253  * Return: zero on success, else a negative error code.
1254  */
1255 static inline int
1256 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1257 	unsigned int num_xfers)
1258 {
1259 	struct spi_message msg;
1260 
1261 	spi_message_init_with_transfers(&msg, xfers, num_xfers);
1262 
1263 	return spi_sync(spi, &msg);
1264 }
1265 
1266 /**
1267  * spi_write - SPI synchronous write
1268  * @spi: device to which data will be written
1269  * @buf: data buffer
1270  * @len: data buffer size
1271  * Context: can sleep
1272  *
1273  * This function writes the buffer @buf.
1274  * Callable only from contexts that can sleep.
1275  *
1276  * Return: zero on success, else a negative error code.
1277  */
1278 static inline int
1279 spi_write(struct spi_device *spi, const void *buf, size_t len)
1280 {
1281 	struct spi_transfer	t = {
1282 			.tx_buf		= buf,
1283 			.len		= len,
1284 		};
1285 
1286 	return spi_sync_transfer(spi, &t, 1);
1287 }
1288 
1289 /**
1290  * spi_read - SPI synchronous read
1291  * @spi: device from which data will be read
1292  * @buf: data buffer
1293  * @len: data buffer size
1294  * Context: can sleep
1295  *
1296  * This function reads the buffer @buf.
1297  * Callable only from contexts that can sleep.
1298  *
1299  * Return: zero on success, else a negative error code.
1300  */
1301 static inline int
1302 spi_read(struct spi_device *spi, void *buf, size_t len)
1303 {
1304 	struct spi_transfer	t = {
1305 			.rx_buf		= buf,
1306 			.len		= len,
1307 		};
1308 
1309 	return spi_sync_transfer(spi, &t, 1);
1310 }
1311 
1312 /* this copies txbuf and rxbuf data; for small transfers only! */
1313 extern int spi_write_then_read(struct spi_device *spi,
1314 		const void *txbuf, unsigned n_tx,
1315 		void *rxbuf, unsigned n_rx);
1316 
1317 /**
1318  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1319  * @spi: device with which data will be exchanged
1320  * @cmd: command to be written before data is read back
1321  * Context: can sleep
1322  *
1323  * Callable only from contexts that can sleep.
1324  *
1325  * Return: the (unsigned) eight bit number returned by the
1326  * device, or else a negative error code.
1327  */
1328 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1329 {
1330 	ssize_t			status;
1331 	u8			result;
1332 
1333 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1334 
1335 	/* return negative errno or unsigned value */
1336 	return (status < 0) ? status : result;
1337 }
1338 
1339 /**
1340  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1341  * @spi: device with which data will be exchanged
1342  * @cmd: command to be written before data is read back
1343  * Context: can sleep
1344  *
1345  * The number is returned in wire-order, which is at least sometimes
1346  * big-endian.
1347  *
1348  * Callable only from contexts that can sleep.
1349  *
1350  * Return: the (unsigned) sixteen bit number returned by the
1351  * device, or else a negative error code.
1352  */
1353 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1354 {
1355 	ssize_t			status;
1356 	u16			result;
1357 
1358 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1359 
1360 	/* return negative errno or unsigned value */
1361 	return (status < 0) ? status : result;
1362 }
1363 
1364 /**
1365  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1366  * @spi: device with which data will be exchanged
1367  * @cmd: command to be written before data is read back
1368  * Context: can sleep
1369  *
1370  * This function is similar to spi_w8r16, with the exception that it will
1371  * convert the read 16 bit data word from big-endian to native endianness.
1372  *
1373  * Callable only from contexts that can sleep.
1374  *
1375  * Return: the (unsigned) sixteen bit number returned by the device in cpu
1376  * endianness, or else a negative error code.
1377  */
1378 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1379 
1380 {
1381 	ssize_t status;
1382 	__be16 result;
1383 
1384 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1385 	if (status < 0)
1386 		return status;
1387 
1388 	return be16_to_cpu(result);
1389 }
1390 
1391 /*---------------------------------------------------------------------------*/
1392 
1393 /*
1394  * INTERFACE between board init code and SPI infrastructure.
1395  *
1396  * No SPI driver ever sees these SPI device table segments, but
1397  * it's how the SPI core (or adapters that get hotplugged) grows
1398  * the driver model tree.
1399  *
1400  * As a rule, SPI devices can't be probed.  Instead, board init code
1401  * provides a table listing the devices which are present, with enough
1402  * information to bind and set up the device's driver.  There's basic
1403  * support for nonstatic configurations too; enough to handle adding
1404  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1405  */
1406 
1407 /**
1408  * struct spi_board_info - board-specific template for a SPI device
1409  * @modalias: Initializes spi_device.modalias; identifies the driver.
1410  * @platform_data: Initializes spi_device.platform_data; the particular
1411  *	data stored there is driver-specific.
1412  * @properties: Additional device properties for the device.
1413  * @controller_data: Initializes spi_device.controller_data; some
1414  *	controllers need hints about hardware setup, e.g. for DMA.
1415  * @irq: Initializes spi_device.irq; depends on how the board is wired.
1416  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1417  *	from the chip datasheet and board-specific signal quality issues.
1418  * @bus_num: Identifies which spi_controller parents the spi_device; unused
1419  *	by spi_new_device(), and otherwise depends on board wiring.
1420  * @chip_select: Initializes spi_device.chip_select; depends on how
1421  *	the board is wired.
1422  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1423  *	wiring (some devices support both 3WIRE and standard modes), and
1424  *	possibly presence of an inverter in the chipselect path.
1425  *
1426  * When adding new SPI devices to the device tree, these structures serve
1427  * as a partial device template.  They hold information which can't always
1428  * be determined by drivers.  Information that probe() can establish (such
1429  * as the default transfer wordsize) is not included here.
1430  *
1431  * These structures are used in two places.  Their primary role is to
1432  * be stored in tables of board-specific device descriptors, which are
1433  * declared early in board initialization and then used (much later) to
1434  * populate a controller's device tree after the that controller's driver
1435  * initializes.  A secondary (and atypical) role is as a parameter to
1436  * spi_new_device() call, which happens after those controller drivers
1437  * are active in some dynamic board configuration models.
1438  */
1439 struct spi_board_info {
1440 	/* the device name and module name are coupled, like platform_bus;
1441 	 * "modalias" is normally the driver name.
1442 	 *
1443 	 * platform_data goes to spi_device.dev.platform_data,
1444 	 * controller_data goes to spi_device.controller_data,
1445 	 * device properties are copied and attached to spi_device,
1446 	 * irq is copied too
1447 	 */
1448 	char		modalias[SPI_NAME_SIZE];
1449 	const void	*platform_data;
1450 	const struct property_entry *properties;
1451 	void		*controller_data;
1452 	int		irq;
1453 
1454 	/* slower signaling on noisy or low voltage boards */
1455 	u32		max_speed_hz;
1456 
1457 
1458 	/* bus_num is board specific and matches the bus_num of some
1459 	 * spi_controller that will probably be registered later.
1460 	 *
1461 	 * chip_select reflects how this chip is wired to that master;
1462 	 * it's less than num_chipselect.
1463 	 */
1464 	u16		bus_num;
1465 	u16		chip_select;
1466 
1467 	/* mode becomes spi_device.mode, and is essential for chips
1468 	 * where the default of SPI_CS_HIGH = 0 is wrong.
1469 	 */
1470 	u32		mode;
1471 
1472 	/* ... may need additional spi_device chip config data here.
1473 	 * avoid stuff protocol drivers can set; but include stuff
1474 	 * needed to behave without being bound to a driver:
1475 	 *  - quirks like clock rate mattering when not selected
1476 	 */
1477 };
1478 
1479 #ifdef	CONFIG_SPI
1480 extern int
1481 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1482 #else
1483 /* board init code may ignore whether SPI is configured or not */
1484 static inline int
1485 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1486 	{ return 0; }
1487 #endif
1488 
1489 /* If you're hotplugging an adapter with devices (parport, usb, etc)
1490  * use spi_new_device() to describe each device.  You can also call
1491  * spi_unregister_device() to start making that device vanish, but
1492  * normally that would be handled by spi_unregister_controller().
1493  *
1494  * You can also use spi_alloc_device() and spi_add_device() to use a two
1495  * stage registration sequence for each spi_device.  This gives the caller
1496  * some more control over the spi_device structure before it is registered,
1497  * but requires that caller to initialize fields that would otherwise
1498  * be defined using the board info.
1499  */
1500 extern struct spi_device *
1501 spi_alloc_device(struct spi_controller *ctlr);
1502 
1503 extern int
1504 spi_add_device(struct spi_device *spi);
1505 
1506 extern struct spi_device *
1507 spi_new_device(struct spi_controller *, struct spi_board_info *);
1508 
1509 extern void spi_unregister_device(struct spi_device *spi);
1510 
1511 extern const struct spi_device_id *
1512 spi_get_device_id(const struct spi_device *sdev);
1513 
1514 static inline bool
1515 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1516 {
1517 	return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1518 }
1519 
1520 /* OF support code */
1521 #if IS_ENABLED(CONFIG_OF)
1522 
1523 /* must call put_device() when done with returned spi_device device */
1524 extern struct spi_device *
1525 of_find_spi_device_by_node(struct device_node *node);
1526 
1527 #else
1528 
1529 static inline struct spi_device *
1530 of_find_spi_device_by_node(struct device_node *node)
1531 {
1532 	return NULL;
1533 }
1534 
1535 #endif /* IS_ENABLED(CONFIG_OF) */
1536 
1537 /* Compatibility layer */
1538 #define spi_master			spi_controller
1539 
1540 #define SPI_MASTER_HALF_DUPLEX		SPI_CONTROLLER_HALF_DUPLEX
1541 #define SPI_MASTER_NO_RX		SPI_CONTROLLER_NO_RX
1542 #define SPI_MASTER_NO_TX		SPI_CONTROLLER_NO_TX
1543 #define SPI_MASTER_MUST_RX		SPI_CONTROLLER_MUST_RX
1544 #define SPI_MASTER_MUST_TX		SPI_CONTROLLER_MUST_TX
1545 
1546 #define spi_master_get_devdata(_ctlr)	spi_controller_get_devdata(_ctlr)
1547 #define spi_master_set_devdata(_ctlr, _data)	\
1548 	spi_controller_set_devdata(_ctlr, _data)
1549 #define spi_master_get(_ctlr)		spi_controller_get(_ctlr)
1550 #define spi_master_put(_ctlr)		spi_controller_put(_ctlr)
1551 #define spi_master_suspend(_ctlr)	spi_controller_suspend(_ctlr)
1552 #define spi_master_resume(_ctlr)	spi_controller_resume(_ctlr)
1553 
1554 #define spi_register_master(_ctlr)	spi_register_controller(_ctlr)
1555 #define devm_spi_register_master(_dev, _ctlr) \
1556 	devm_spi_register_controller(_dev, _ctlr)
1557 #define spi_unregister_master(_ctlr)	spi_unregister_controller(_ctlr)
1558 
1559 #endif /* __LINUX_SPI_H */
1560