xref: /openbmc/linux/include/linux/spi/spi.h (revision 077e5f4f)
1 /* SPDX-License-Identifier: GPL-2.0-or-later
2  *
3  * Copyright (C) 2005 David Brownell
4  */
5 
6 #ifndef __LINUX_SPI_H
7 #define __LINUX_SPI_H
8 
9 #include <linux/bits.h>
10 #include <linux/device.h>
11 #include <linux/mod_devicetable.h>
12 #include <linux/slab.h>
13 #include <linux/kthread.h>
14 #include <linux/completion.h>
15 #include <linux/scatterlist.h>
16 #include <linux/gpio/consumer.h>
17 
18 #include <uapi/linux/spi/spi.h>
19 #include <linux/acpi.h>
20 #include <linux/u64_stats_sync.h>
21 
22 struct dma_chan;
23 struct software_node;
24 struct ptp_system_timestamp;
25 struct spi_controller;
26 struct spi_transfer;
27 struct spi_controller_mem_ops;
28 struct spi_controller_mem_caps;
29 
30 /*
31  * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
32  * and SPI infrastructure.
33  */
34 extern struct bus_type spi_bus_type;
35 
36 /**
37  * struct spi_statistics - statistics for spi transfers
38  * @syncp:         seqcount to protect members in this struct for per-cpu udate
39  *                 on 32-bit systems
40  *
41  * @messages:      number of spi-messages handled
42  * @transfers:     number of spi_transfers handled
43  * @errors:        number of errors during spi_transfer
44  * @timedout:      number of timeouts during spi_transfer
45  *
46  * @spi_sync:      number of times spi_sync is used
47  * @spi_sync_immediate:
48  *                 number of times spi_sync is executed immediately
49  *                 in calling context without queuing and scheduling
50  * @spi_async:     number of times spi_async is used
51  *
52  * @bytes:         number of bytes transferred to/from device
53  * @bytes_tx:      number of bytes sent to device
54  * @bytes_rx:      number of bytes received from device
55  *
56  * @transfer_bytes_histo:
57  *                 transfer bytes histogramm
58  *
59  * @transfers_split_maxsize:
60  *                 number of transfers that have been split because of
61  *                 maxsize limit
62  */
63 struct spi_statistics {
64 	struct u64_stats_sync	syncp;
65 
66 	u64_stats_t		messages;
67 	u64_stats_t		transfers;
68 	u64_stats_t		errors;
69 	u64_stats_t		timedout;
70 
71 	u64_stats_t		spi_sync;
72 	u64_stats_t		spi_sync_immediate;
73 	u64_stats_t		spi_async;
74 
75 	u64_stats_t		bytes;
76 	u64_stats_t		bytes_rx;
77 	u64_stats_t		bytes_tx;
78 
79 #define SPI_STATISTICS_HISTO_SIZE 17
80 	u64_stats_t	transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
81 
82 	u64_stats_t	transfers_split_maxsize;
83 };
84 
85 #define SPI_STATISTICS_ADD_TO_FIELD(pcpu_stats, field, count)		\
86 	do {								\
87 		struct spi_statistics *__lstats;			\
88 		get_cpu();						\
89 		__lstats = this_cpu_ptr(pcpu_stats);			\
90 		u64_stats_update_begin(&__lstats->syncp);		\
91 		u64_stats_add(&__lstats->field, count);			\
92 		u64_stats_update_end(&__lstats->syncp);			\
93 		put_cpu();						\
94 	} while (0)
95 
96 #define SPI_STATISTICS_INCREMENT_FIELD(pcpu_stats, field)		\
97 	do {								\
98 		struct spi_statistics *__lstats;			\
99 		get_cpu();						\
100 		__lstats = this_cpu_ptr(pcpu_stats);			\
101 		u64_stats_update_begin(&__lstats->syncp);		\
102 		u64_stats_inc(&__lstats->field);			\
103 		u64_stats_update_end(&__lstats->syncp);			\
104 		put_cpu();						\
105 	} while (0)
106 
107 /**
108  * struct spi_delay - SPI delay information
109  * @value: Value for the delay
110  * @unit: Unit for the delay
111  */
112 struct spi_delay {
113 #define SPI_DELAY_UNIT_USECS	0
114 #define SPI_DELAY_UNIT_NSECS	1
115 #define SPI_DELAY_UNIT_SCK	2
116 	u16	value;
117 	u8	unit;
118 };
119 
120 extern int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer);
121 extern int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer);
122 
123 /**
124  * struct spi_device - Controller side proxy for an SPI slave device
125  * @dev: Driver model representation of the device.
126  * @controller: SPI controller used with the device.
127  * @master: Copy of controller, for backwards compatibility.
128  * @max_speed_hz: Maximum clock rate to be used with this chip
129  *	(on this board); may be changed by the device's driver.
130  *	The spi_transfer.speed_hz can override this for each transfer.
131  * @chip_select: Chipselect, distinguishing chips handled by @controller.
132  * @mode: The spi mode defines how data is clocked out and in.
133  *	This may be changed by the device's driver.
134  *	The "active low" default for chipselect mode can be overridden
135  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
136  *	each word in a transfer (by specifying SPI_LSB_FIRST).
137  * @bits_per_word: Data transfers involve one or more words; word sizes
138  *	like eight or 12 bits are common.  In-memory wordsizes are
139  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
140  *	This may be changed by the device's driver, or left at the
141  *	default (0) indicating protocol words are eight bit bytes.
142  *	The spi_transfer.bits_per_word can override this for each transfer.
143  * @rt: Make the pump thread real time priority.
144  * @irq: Negative, or the number passed to request_irq() to receive
145  *	interrupts from this device.
146  * @controller_state: Controller's runtime state
147  * @controller_data: Board-specific definitions for controller, such as
148  *	FIFO initialization parameters; from board_info.controller_data
149  * @modalias: Name of the driver to use with this device, or an alias
150  *	for that name.  This appears in the sysfs "modalias" attribute
151  *	for driver coldplugging, and in uevents used for hotplugging
152  * @driver_override: If the name of a driver is written to this attribute, then
153  *	the device will bind to the named driver and only the named driver.
154  *	Do not set directly, because core frees it; use driver_set_override() to
155  *	set or clear it.
156  * @cs_gpiod: gpio descriptor of the chipselect line (optional, NULL when
157  *	not using a GPIO line)
158  * @word_delay: delay to be inserted between consecutive
159  *	words of a transfer
160  * @cs_setup: delay to be introduced by the controller after CS is asserted
161  * @cs_hold: delay to be introduced by the controller before CS is deasserted
162  * @cs_inactive: delay to be introduced by the controller after CS is
163  *	deasserted. If @cs_change_delay is used from @spi_transfer, then the
164  *	two delays will be added up.
165  * @pcpu_statistics: statistics for the spi_device
166  *
167  * A @spi_device is used to interchange data between an SPI slave
168  * (usually a discrete chip) and CPU memory.
169  *
170  * In @dev, the platform_data is used to hold information about this
171  * device that's meaningful to the device's protocol driver, but not
172  * to its controller.  One example might be an identifier for a chip
173  * variant with slightly different functionality; another might be
174  * information about how this particular board wires the chip's pins.
175  */
176 struct spi_device {
177 	struct device		dev;
178 	struct spi_controller	*controller;
179 	struct spi_controller	*master;	/* Compatibility layer */
180 	u32			max_speed_hz;
181 	u8			chip_select;
182 	u8			bits_per_word;
183 	bool			rt;
184 #define SPI_NO_TX	BIT(31)		/* No transmit wire */
185 #define SPI_NO_RX	BIT(30)		/* No receive wire */
186 	/*
187 	 * All bits defined above should be covered by SPI_MODE_KERNEL_MASK.
188 	 * The SPI_MODE_KERNEL_MASK has the SPI_MODE_USER_MASK counterpart,
189 	 * which is defined in 'include/uapi/linux/spi/spi.h'.
190 	 * The bits defined here are from bit 31 downwards, while in
191 	 * SPI_MODE_USER_MASK are from 0 upwards.
192 	 * These bits must not overlap. A static assert check should make sure of that.
193 	 * If adding extra bits, make sure to decrease the bit index below as well.
194 	 */
195 #define SPI_MODE_KERNEL_MASK	(~(BIT(30) - 1))
196 	u32			mode;
197 	int			irq;
198 	void			*controller_state;
199 	void			*controller_data;
200 	char			modalias[SPI_NAME_SIZE];
201 	const char		*driver_override;
202 	struct gpio_desc	*cs_gpiod;	/* Chip select gpio desc */
203 	struct spi_delay	word_delay; /* Inter-word delay */
204 	/* CS delays */
205 	struct spi_delay	cs_setup;
206 	struct spi_delay	cs_hold;
207 	struct spi_delay	cs_inactive;
208 
209 	/* The statistics */
210 	struct spi_statistics __percpu	*pcpu_statistics;
211 
212 	/*
213 	 * likely need more hooks for more protocol options affecting how
214 	 * the controller talks to each chip, like:
215 	 *  - memory packing (12 bit samples into low bits, others zeroed)
216 	 *  - priority
217 	 *  - chipselect delays
218 	 *  - ...
219 	 */
220 };
221 
222 /* Make sure that SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK don't overlap */
223 static_assert((SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK) == 0,
224 	      "SPI_MODE_USER_MASK & SPI_MODE_KERNEL_MASK must not overlap");
225 
226 static inline struct spi_device *to_spi_device(struct device *dev)
227 {
228 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
229 }
230 
231 /* Most drivers won't need to care about device refcounting */
232 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
233 {
234 	return (spi && get_device(&spi->dev)) ? spi : NULL;
235 }
236 
237 static inline void spi_dev_put(struct spi_device *spi)
238 {
239 	if (spi)
240 		put_device(&spi->dev);
241 }
242 
243 /* ctldata is for the bus_controller driver's runtime state */
244 static inline void *spi_get_ctldata(struct spi_device *spi)
245 {
246 	return spi->controller_state;
247 }
248 
249 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
250 {
251 	spi->controller_state = state;
252 }
253 
254 /* Device driver data */
255 
256 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
257 {
258 	dev_set_drvdata(&spi->dev, data);
259 }
260 
261 static inline void *spi_get_drvdata(struct spi_device *spi)
262 {
263 	return dev_get_drvdata(&spi->dev);
264 }
265 
266 struct spi_message;
267 
268 /**
269  * struct spi_driver - Host side "protocol" driver
270  * @id_table: List of SPI devices supported by this driver
271  * @probe: Binds this driver to the spi device.  Drivers can verify
272  *	that the device is actually present, and may need to configure
273  *	characteristics (such as bits_per_word) which weren't needed for
274  *	the initial configuration done during system setup.
275  * @remove: Unbinds this driver from the spi device
276  * @shutdown: Standard shutdown callback used during system state
277  *	transitions such as powerdown/halt and kexec
278  * @driver: SPI device drivers should initialize the name and owner
279  *	field of this structure.
280  *
281  * This represents the kind of device driver that uses SPI messages to
282  * interact with the hardware at the other end of a SPI link.  It's called
283  * a "protocol" driver because it works through messages rather than talking
284  * directly to SPI hardware (which is what the underlying SPI controller
285  * driver does to pass those messages).  These protocols are defined in the
286  * specification for the device(s) supported by the driver.
287  *
288  * As a rule, those device protocols represent the lowest level interface
289  * supported by a driver, and it will support upper level interfaces too.
290  * Examples of such upper levels include frameworks like MTD, networking,
291  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
292  */
293 struct spi_driver {
294 	const struct spi_device_id *id_table;
295 	int			(*probe)(struct spi_device *spi);
296 	void			(*remove)(struct spi_device *spi);
297 	void			(*shutdown)(struct spi_device *spi);
298 	struct device_driver	driver;
299 };
300 
301 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
302 {
303 	return drv ? container_of(drv, struct spi_driver, driver) : NULL;
304 }
305 
306 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
307 
308 /**
309  * spi_unregister_driver - reverse effect of spi_register_driver
310  * @sdrv: the driver to unregister
311  * Context: can sleep
312  */
313 static inline void spi_unregister_driver(struct spi_driver *sdrv)
314 {
315 	if (sdrv)
316 		driver_unregister(&sdrv->driver);
317 }
318 
319 extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 chip_select);
320 
321 /* Use a define to avoid include chaining to get THIS_MODULE */
322 #define spi_register_driver(driver) \
323 	__spi_register_driver(THIS_MODULE, driver)
324 
325 /**
326  * module_spi_driver() - Helper macro for registering a SPI driver
327  * @__spi_driver: spi_driver struct
328  *
329  * Helper macro for SPI drivers which do not do anything special in module
330  * init/exit. This eliminates a lot of boilerplate. Each module may only
331  * use this macro once, and calling it replaces module_init() and module_exit()
332  */
333 #define module_spi_driver(__spi_driver) \
334 	module_driver(__spi_driver, spi_register_driver, \
335 			spi_unregister_driver)
336 
337 /**
338  * struct spi_controller - interface to SPI master or slave controller
339  * @dev: device interface to this driver
340  * @list: link with the global spi_controller list
341  * @bus_num: board-specific (and often SOC-specific) identifier for a
342  *	given SPI controller.
343  * @num_chipselect: chipselects are used to distinguish individual
344  *	SPI slaves, and are numbered from zero to num_chipselects.
345  *	each slave has a chipselect signal, but it's common that not
346  *	every chipselect is connected to a slave.
347  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
348  * @mode_bits: flags understood by this controller driver
349  * @buswidth_override_bits: flags to override for this controller driver
350  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
351  *	supported by the driver. Bit n indicates that a bits_per_word n+1 is
352  *	supported. If set, the SPI core will reject any transfer with an
353  *	unsupported bits_per_word. If not set, this value is simply ignored,
354  *	and it's up to the individual driver to perform any validation.
355  * @min_speed_hz: Lowest supported transfer speed
356  * @max_speed_hz: Highest supported transfer speed
357  * @flags: other constraints relevant to this driver
358  * @slave: indicates that this is an SPI slave controller
359  * @target: indicates that this is an SPI target controller
360  * @devm_allocated: whether the allocation of this struct is devres-managed
361  * @max_transfer_size: function that returns the max transfer size for
362  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
363  * @max_message_size: function that returns the max message size for
364  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
365  * @io_mutex: mutex for physical bus access
366  * @add_lock: mutex to avoid adding devices to the same chipselect
367  * @bus_lock_spinlock: spinlock for SPI bus locking
368  * @bus_lock_mutex: mutex for exclusion of multiple callers
369  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
370  * @setup: updates the device mode and clocking records used by a
371  *	device's SPI controller; protocol code may call this.  This
372  *	must fail if an unrecognized or unsupported mode is requested.
373  *	It's always safe to call this unless transfers are pending on
374  *	the device whose settings are being modified.
375  * @set_cs_timing: optional hook for SPI devices to request SPI master
376  * controller for configuring specific CS setup time, hold time and inactive
377  * delay interms of clock counts
378  * @transfer: adds a message to the controller's transfer queue.
379  * @cleanup: frees controller-specific state
380  * @can_dma: determine whether this controller supports DMA
381  * @dma_map_dev: device which can be used for DMA mapping
382  * @cur_rx_dma_dev: device which is currently used for RX DMA mapping
383  * @cur_tx_dma_dev: device which is currently used for TX DMA mapping
384  * @queued: whether this controller is providing an internal message queue
385  * @kworker: pointer to thread struct for message pump
386  * @pump_messages: work struct for scheduling work to the message pump
387  * @queue_lock: spinlock to syncronise access to message queue
388  * @queue: message queue
389  * @cur_msg: the currently in-flight message
390  * @cur_msg_completion: a completion for the current in-flight message
391  * @cur_msg_incomplete: Flag used internally to opportunistically skip
392  *	the @cur_msg_completion. This flag is used to check if the driver has
393  *	already called spi_finalize_current_message().
394  * @cur_msg_need_completion: Flag used internally to opportunistically skip
395  *	the @cur_msg_completion. This flag is used to signal the context that
396  *	is running spi_finalize_current_message() that it needs to complete()
397  * @cur_msg_mapped: message has been mapped for DMA
398  * @last_cs: the last chip_select that is recorded by set_cs, -1 on non chip
399  *           selected
400  * @last_cs_mode_high: was (mode & SPI_CS_HIGH) true on the last call to set_cs.
401  * @xfer_completion: used by core transfer_one_message()
402  * @busy: message pump is busy
403  * @running: message pump is running
404  * @rt: whether this queue is set to run as a realtime task
405  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
406  *                   while the hardware is prepared, using the parent
407  *                   device for the spidev
408  * @max_dma_len: Maximum length of a DMA transfer for the device.
409  * @prepare_transfer_hardware: a message will soon arrive from the queue
410  *	so the subsystem requests the driver to prepare the transfer hardware
411  *	by issuing this call
412  * @transfer_one_message: the subsystem calls the driver to transfer a single
413  *	message while queuing transfers that arrive in the meantime. When the
414  *	driver is finished with this message, it must call
415  *	spi_finalize_current_message() so the subsystem can issue the next
416  *	message
417  * @unprepare_transfer_hardware: there are currently no more messages on the
418  *	queue so the subsystem notifies the driver that it may relax the
419  *	hardware by issuing this call
420  *
421  * @set_cs: set the logic level of the chip select line.  May be called
422  *          from interrupt context.
423  * @prepare_message: set up the controller to transfer a single message,
424  *                   for example doing DMA mapping.  Called from threaded
425  *                   context.
426  * @transfer_one: transfer a single spi_transfer.
427  *
428  *                  - return 0 if the transfer is finished,
429  *                  - return 1 if the transfer is still in progress. When
430  *                    the driver is finished with this transfer it must
431  *                    call spi_finalize_current_transfer() so the subsystem
432  *                    can issue the next transfer. Note: transfer_one and
433  *                    transfer_one_message are mutually exclusive; when both
434  *                    are set, the generic subsystem does not call your
435  *                    transfer_one callback.
436  * @handle_err: the subsystem calls the driver to handle an error that occurs
437  *		in the generic implementation of transfer_one_message().
438  * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
439  *	     This field is optional and should only be implemented if the
440  *	     controller has native support for memory like operations.
441  * @mem_caps: controller capabilities for the handling of memory operations.
442  * @unprepare_message: undo any work done by prepare_message().
443  * @slave_abort: abort the ongoing transfer request on an SPI slave controller
444  * @target_abort: abort the ongoing transfer request on an SPI target controller
445  * @cs_gpiods: Array of GPIO descs to use as chip select lines; one per CS
446  *	number. Any individual value may be NULL for CS lines that
447  *	are not GPIOs (driven by the SPI controller itself).
448  * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
449  *	GPIO descriptors. This will fill in @cs_gpiods and SPI devices will have
450  *	the cs_gpiod assigned if a GPIO line is found for the chipselect.
451  * @unused_native_cs: When cs_gpiods is used, spi_register_controller() will
452  *	fill in this field with the first unused native CS, to be used by SPI
453  *	controller drivers that need to drive a native CS when using GPIO CS.
454  * @max_native_cs: When cs_gpiods is used, and this field is filled in,
455  *	spi_register_controller() will validate all native CS (including the
456  *	unused native CS) against this value.
457  * @pcpu_statistics: statistics for the spi_controller
458  * @dma_tx: DMA transmit channel
459  * @dma_rx: DMA receive channel
460  * @dummy_rx: dummy receive buffer for full-duplex devices
461  * @dummy_tx: dummy transmit buffer for full-duplex devices
462  * @fw_translate_cs: If the boot firmware uses different numbering scheme
463  *	what Linux expects, this optional hook can be used to translate
464  *	between the two.
465  * @ptp_sts_supported: If the driver sets this to true, it must provide a
466  *	time snapshot in @spi_transfer->ptp_sts as close as possible to the
467  *	moment in time when @spi_transfer->ptp_sts_word_pre and
468  *	@spi_transfer->ptp_sts_word_post were transmitted.
469  *	If the driver does not set this, the SPI core takes the snapshot as
470  *	close to the driver hand-over as possible.
471  * @irq_flags: Interrupt enable state during PTP system timestamping
472  * @fallback: fallback to pio if dma transfer return failure with
473  *	SPI_TRANS_FAIL_NO_START.
474  * @queue_empty: signal green light for opportunistically skipping the queue
475  *	for spi_sync transfers.
476  * @must_async: disable all fast paths in the core
477  *
478  * Each SPI controller can communicate with one or more @spi_device
479  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
480  * but not chip select signals.  Each device may be configured to use a
481  * different clock rate, since those shared signals are ignored unless
482  * the chip is selected.
483  *
484  * The driver for an SPI controller manages access to those devices through
485  * a queue of spi_message transactions, copying data between CPU memory and
486  * an SPI slave device.  For each such message it queues, it calls the
487  * message's completion function when the transaction completes.
488  */
489 struct spi_controller {
490 	struct device	dev;
491 
492 	struct list_head list;
493 
494 	/* Other than negative (== assign one dynamically), bus_num is fully
495 	 * board-specific.  usually that simplifies to being SOC-specific.
496 	 * example:  one SOC has three SPI controllers, numbered 0..2,
497 	 * and one board's schematics might show it using SPI-2.  software
498 	 * would normally use bus_num=2 for that controller.
499 	 */
500 	s16			bus_num;
501 
502 	/* chipselects will be integral to many controllers; some others
503 	 * might use board-specific GPIOs.
504 	 */
505 	u16			num_chipselect;
506 
507 	/* Some SPI controllers pose alignment requirements on DMAable
508 	 * buffers; let protocol drivers know about these requirements.
509 	 */
510 	u16			dma_alignment;
511 
512 	/* spi_device.mode flags understood by this controller driver */
513 	u32			mode_bits;
514 
515 	/* spi_device.mode flags override flags for this controller */
516 	u32			buswidth_override_bits;
517 
518 	/* Bitmask of supported bits_per_word for transfers */
519 	u32			bits_per_word_mask;
520 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
521 #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1)
522 
523 	/* Limits on transfer speed */
524 	u32			min_speed_hz;
525 	u32			max_speed_hz;
526 
527 	/* Other constraints relevant to this driver */
528 	u16			flags;
529 #define SPI_CONTROLLER_HALF_DUPLEX	BIT(0)	/* Can't do full duplex */
530 #define SPI_CONTROLLER_NO_RX		BIT(1)	/* Can't do buffer read */
531 #define SPI_CONTROLLER_NO_TX		BIT(2)	/* Can't do buffer write */
532 #define SPI_CONTROLLER_MUST_RX		BIT(3)	/* Requires rx */
533 #define SPI_CONTROLLER_MUST_TX		BIT(4)	/* Requires tx */
534 
535 #define SPI_MASTER_GPIO_SS		BIT(5)	/* GPIO CS must select slave */
536 
537 	/* Flag indicating if the allocation of this struct is devres-managed */
538 	bool			devm_allocated;
539 
540 	union {
541 		/* Flag indicating this is an SPI slave controller */
542 		bool			slave;
543 		/* Flag indicating this is an SPI target controller */
544 		bool			target;
545 	};
546 
547 	/*
548 	 * on some hardware transfer / message size may be constrained
549 	 * the limit may depend on device transfer settings
550 	 */
551 	size_t (*max_transfer_size)(struct spi_device *spi);
552 	size_t (*max_message_size)(struct spi_device *spi);
553 
554 	/* I/O mutex */
555 	struct mutex		io_mutex;
556 
557 	/* Used to avoid adding the same CS twice */
558 	struct mutex		add_lock;
559 
560 	/* Lock and mutex for SPI bus locking */
561 	spinlock_t		bus_lock_spinlock;
562 	struct mutex		bus_lock_mutex;
563 
564 	/* Flag indicating that the SPI bus is locked for exclusive use */
565 	bool			bus_lock_flag;
566 
567 	/* Setup mode and clock, etc (spi driver may call many times).
568 	 *
569 	 * IMPORTANT:  this may be called when transfers to another
570 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
571 	 * which could break those transfers.
572 	 */
573 	int			(*setup)(struct spi_device *spi);
574 
575 	/*
576 	 * set_cs_timing() method is for SPI controllers that supports
577 	 * configuring CS timing.
578 	 *
579 	 * This hook allows SPI client drivers to request SPI controllers
580 	 * to configure specific CS timing through spi_set_cs_timing() after
581 	 * spi_setup().
582 	 */
583 	int (*set_cs_timing)(struct spi_device *spi);
584 
585 	/* Bidirectional bulk transfers
586 	 *
587 	 * + The transfer() method may not sleep; its main role is
588 	 *   just to add the message to the queue.
589 	 * + For now there's no remove-from-queue operation, or
590 	 *   any other request management
591 	 * + To a given spi_device, message queueing is pure fifo
592 	 *
593 	 * + The controller's main job is to process its message queue,
594 	 *   selecting a chip (for masters), then transferring data
595 	 * + If there are multiple spi_device children, the i/o queue
596 	 *   arbitration algorithm is unspecified (round robin, fifo,
597 	 *   priority, reservations, preemption, etc)
598 	 *
599 	 * + Chipselect stays active during the entire message
600 	 *   (unless modified by spi_transfer.cs_change != 0).
601 	 * + The message transfers use clock and SPI mode parameters
602 	 *   previously established by setup() for this device
603 	 */
604 	int			(*transfer)(struct spi_device *spi,
605 						struct spi_message *mesg);
606 
607 	/* Called on release() to free memory provided by spi_controller */
608 	void			(*cleanup)(struct spi_device *spi);
609 
610 	/*
611 	 * Used to enable core support for DMA handling, if can_dma()
612 	 * exists and returns true then the transfer will be mapped
613 	 * prior to transfer_one() being called.  The driver should
614 	 * not modify or store xfer and dma_tx and dma_rx must be set
615 	 * while the device is prepared.
616 	 */
617 	bool			(*can_dma)(struct spi_controller *ctlr,
618 					   struct spi_device *spi,
619 					   struct spi_transfer *xfer);
620 	struct device *dma_map_dev;
621 	struct device *cur_rx_dma_dev;
622 	struct device *cur_tx_dma_dev;
623 
624 	/*
625 	 * These hooks are for drivers that want to use the generic
626 	 * controller transfer queueing mechanism. If these are used, the
627 	 * transfer() function above must NOT be specified by the driver.
628 	 * Over time we expect SPI drivers to be phased over to this API.
629 	 */
630 	bool				queued;
631 	struct kthread_worker		*kworker;
632 	struct kthread_work		pump_messages;
633 	spinlock_t			queue_lock;
634 	struct list_head		queue;
635 	struct spi_message		*cur_msg;
636 	struct completion               cur_msg_completion;
637 	bool				cur_msg_incomplete;
638 	bool				cur_msg_need_completion;
639 	bool				busy;
640 	bool				running;
641 	bool				rt;
642 	bool				auto_runtime_pm;
643 	bool				cur_msg_mapped;
644 	char				last_cs;
645 	bool				last_cs_mode_high;
646 	bool                            fallback;
647 	struct completion               xfer_completion;
648 	size_t				max_dma_len;
649 
650 	int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
651 	int (*transfer_one_message)(struct spi_controller *ctlr,
652 				    struct spi_message *mesg);
653 	int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
654 	int (*prepare_message)(struct spi_controller *ctlr,
655 			       struct spi_message *message);
656 	int (*unprepare_message)(struct spi_controller *ctlr,
657 				 struct spi_message *message);
658 	union {
659 		int (*slave_abort)(struct spi_controller *ctlr);
660 		int (*target_abort)(struct spi_controller *ctlr);
661 	};
662 
663 	/*
664 	 * These hooks are for drivers that use a generic implementation
665 	 * of transfer_one_message() provided by the core.
666 	 */
667 	void (*set_cs)(struct spi_device *spi, bool enable);
668 	int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
669 			    struct spi_transfer *transfer);
670 	void (*handle_err)(struct spi_controller *ctlr,
671 			   struct spi_message *message);
672 
673 	/* Optimized handlers for SPI memory-like operations. */
674 	const struct spi_controller_mem_ops *mem_ops;
675 	const struct spi_controller_mem_caps *mem_caps;
676 
677 	/* gpio chip select */
678 	struct gpio_desc	**cs_gpiods;
679 	bool			use_gpio_descriptors;
680 	s8			unused_native_cs;
681 	s8			max_native_cs;
682 
683 	/* Statistics */
684 	struct spi_statistics __percpu	*pcpu_statistics;
685 
686 	/* DMA channels for use with core dmaengine helpers */
687 	struct dma_chan		*dma_tx;
688 	struct dma_chan		*dma_rx;
689 
690 	/* Dummy data for full duplex devices */
691 	void			*dummy_rx;
692 	void			*dummy_tx;
693 
694 	int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
695 
696 	/*
697 	 * Driver sets this field to indicate it is able to snapshot SPI
698 	 * transfers (needed e.g. for reading the time of POSIX clocks)
699 	 */
700 	bool			ptp_sts_supported;
701 
702 	/* Interrupt enable state during PTP system timestamping */
703 	unsigned long		irq_flags;
704 
705 	/* Flag for enabling opportunistic skipping of the queue in spi_sync */
706 	bool			queue_empty;
707 	bool			must_async;
708 };
709 
710 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
711 {
712 	return dev_get_drvdata(&ctlr->dev);
713 }
714 
715 static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
716 					      void *data)
717 {
718 	dev_set_drvdata(&ctlr->dev, data);
719 }
720 
721 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
722 {
723 	if (!ctlr || !get_device(&ctlr->dev))
724 		return NULL;
725 	return ctlr;
726 }
727 
728 static inline void spi_controller_put(struct spi_controller *ctlr)
729 {
730 	if (ctlr)
731 		put_device(&ctlr->dev);
732 }
733 
734 static inline bool spi_controller_is_slave(struct spi_controller *ctlr)
735 {
736 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave;
737 }
738 
739 static inline bool spi_controller_is_target(struct spi_controller *ctlr)
740 {
741 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->target;
742 }
743 
744 /* PM calls that need to be issued by the driver */
745 extern int spi_controller_suspend(struct spi_controller *ctlr);
746 extern int spi_controller_resume(struct spi_controller *ctlr);
747 
748 /* Calls the driver make to interact with the message queue */
749 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
750 extern void spi_finalize_current_message(struct spi_controller *ctlr);
751 extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
752 
753 /* Helper calls for driver to timestamp transfer */
754 void spi_take_timestamp_pre(struct spi_controller *ctlr,
755 			    struct spi_transfer *xfer,
756 			    size_t progress, bool irqs_off);
757 void spi_take_timestamp_post(struct spi_controller *ctlr,
758 			     struct spi_transfer *xfer,
759 			     size_t progress, bool irqs_off);
760 
761 /* The spi driver core manages memory for the spi_controller classdev */
762 extern struct spi_controller *__spi_alloc_controller(struct device *host,
763 						unsigned int size, bool slave);
764 
765 static inline struct spi_controller *spi_alloc_master(struct device *host,
766 						      unsigned int size)
767 {
768 	return __spi_alloc_controller(host, size, false);
769 }
770 
771 static inline struct spi_controller *spi_alloc_slave(struct device *host,
772 						     unsigned int size)
773 {
774 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
775 		return NULL;
776 
777 	return __spi_alloc_controller(host, size, true);
778 }
779 
780 static inline struct spi_controller *spi_alloc_host(struct device *dev,
781 						    unsigned int size)
782 {
783 	return __spi_alloc_controller(dev, size, false);
784 }
785 
786 static inline struct spi_controller *spi_alloc_target(struct device *dev,
787 						      unsigned int size)
788 {
789 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
790 		return NULL;
791 
792 	return __spi_alloc_controller(dev, size, true);
793 }
794 
795 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
796 						   unsigned int size,
797 						   bool slave);
798 
799 static inline struct spi_controller *devm_spi_alloc_master(struct device *dev,
800 							   unsigned int size)
801 {
802 	return __devm_spi_alloc_controller(dev, size, false);
803 }
804 
805 static inline struct spi_controller *devm_spi_alloc_slave(struct device *dev,
806 							  unsigned int size)
807 {
808 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
809 		return NULL;
810 
811 	return __devm_spi_alloc_controller(dev, size, true);
812 }
813 
814 static inline struct spi_controller *devm_spi_alloc_host(struct device *dev,
815 							 unsigned int size)
816 {
817 	return __devm_spi_alloc_controller(dev, size, false);
818 }
819 
820 static inline struct spi_controller *devm_spi_alloc_target(struct device *dev,
821 							   unsigned int size)
822 {
823 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
824 		return NULL;
825 
826 	return __devm_spi_alloc_controller(dev, size, true);
827 }
828 
829 extern int spi_register_controller(struct spi_controller *ctlr);
830 extern int devm_spi_register_controller(struct device *dev,
831 					struct spi_controller *ctlr);
832 extern void spi_unregister_controller(struct spi_controller *ctlr);
833 
834 #if IS_ENABLED(CONFIG_ACPI)
835 extern struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
836 						struct acpi_device *adev,
837 						int index);
838 int acpi_spi_count_resources(struct acpi_device *adev);
839 #endif
840 
841 /*
842  * SPI resource management while processing a SPI message
843  */
844 
845 typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
846 				  struct spi_message *msg,
847 				  void *res);
848 
849 /**
850  * struct spi_res - spi resource management structure
851  * @entry:   list entry
852  * @release: release code called prior to freeing this resource
853  * @data:    extra data allocated for the specific use-case
854  *
855  * this is based on ideas from devres, but focused on life-cycle
856  * management during spi_message processing
857  */
858 struct spi_res {
859 	struct list_head        entry;
860 	spi_res_release_t       release;
861 	unsigned long long      data[]; /* Guarantee ull alignment */
862 };
863 
864 /*---------------------------------------------------------------------------*/
865 
866 /*
867  * I/O INTERFACE between SPI controller and protocol drivers
868  *
869  * Protocol drivers use a queue of spi_messages, each transferring data
870  * between the controller and memory buffers.
871  *
872  * The spi_messages themselves consist of a series of read+write transfer
873  * segments.  Those segments always read the same number of bits as they
874  * write; but one or the other is easily ignored by passing a null buffer
875  * pointer.  (This is unlike most types of I/O API, because SPI hardware
876  * is full duplex.)
877  *
878  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
879  * up to the protocol driver, which guarantees the integrity of both (as
880  * well as the data buffers) for as long as the message is queued.
881  */
882 
883 /**
884  * struct spi_transfer - a read/write buffer pair
885  * @tx_buf: data to be written (dma-safe memory), or NULL
886  * @rx_buf: data to be read (dma-safe memory), or NULL
887  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
888  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
889  * @tx_nbits: number of bits used for writing. If 0 the default
890  *      (SPI_NBITS_SINGLE) is used.
891  * @rx_nbits: number of bits used for reading. If 0 the default
892  *      (SPI_NBITS_SINGLE) is used.
893  * @len: size of rx and tx buffers (in bytes)
894  * @speed_hz: Select a speed other than the device default for this
895  *      transfer. If 0 the default (from @spi_device) is used.
896  * @bits_per_word: select a bits_per_word other than the device default
897  *      for this transfer. If 0 the default (from @spi_device) is used.
898  * @dummy_data: indicates transfer is dummy bytes transfer.
899  * @cs_off: performs the transfer with chipselect off.
900  * @cs_change: affects chipselect after this transfer completes
901  * @cs_change_delay: delay between cs deassert and assert when
902  *      @cs_change is set and @spi_transfer is not the last in @spi_message
903  * @delay: delay to be introduced after this transfer before
904  *	(optionally) changing the chipselect status, then starting
905  *	the next transfer or completing this @spi_message.
906  * @word_delay: inter word delay to be introduced after each word size
907  *	(set by bits_per_word) transmission.
908  * @effective_speed_hz: the effective SCK-speed that was used to
909  *      transfer this transfer. Set to 0 if the spi bus driver does
910  *      not support it.
911  * @transfer_list: transfers are sequenced through @spi_message.transfers
912  * @tx_sg: Scatterlist for transmit, currently not for client use
913  * @rx_sg: Scatterlist for receive, currently not for client use
914  * @ptp_sts_word_pre: The word (subject to bits_per_word semantics) offset
915  *	within @tx_buf for which the SPI device is requesting that the time
916  *	snapshot for this transfer begins. Upon completing the SPI transfer,
917  *	this value may have changed compared to what was requested, depending
918  *	on the available snapshotting resolution (DMA transfer,
919  *	@ptp_sts_supported is false, etc).
920  * @ptp_sts_word_post: See @ptp_sts_word_post. The two can be equal (meaning
921  *	that a single byte should be snapshotted).
922  *	If the core takes care of the timestamp (if @ptp_sts_supported is false
923  *	for this controller), it will set @ptp_sts_word_pre to 0, and
924  *	@ptp_sts_word_post to the length of the transfer. This is done
925  *	purposefully (instead of setting to spi_transfer->len - 1) to denote
926  *	that a transfer-level snapshot taken from within the driver may still
927  *	be of higher quality.
928  * @ptp_sts: Pointer to a memory location held by the SPI slave device where a
929  *	PTP system timestamp structure may lie. If drivers use PIO or their
930  *	hardware has some sort of assist for retrieving exact transfer timing,
931  *	they can (and should) assert @ptp_sts_supported and populate this
932  *	structure using the ptp_read_system_*ts helper functions.
933  *	The timestamp must represent the time at which the SPI slave device has
934  *	processed the word, i.e. the "pre" timestamp should be taken before
935  *	transmitting the "pre" word, and the "post" timestamp after receiving
936  *	transmit confirmation from the controller for the "post" word.
937  * @timestamped: true if the transfer has been timestamped
938  * @error: Error status logged by spi controller driver.
939  *
940  * SPI transfers always write the same number of bytes as they read.
941  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
942  * In some cases, they may also want to provide DMA addresses for
943  * the data being transferred; that may reduce overhead, when the
944  * underlying driver uses dma.
945  *
946  * If the transmit buffer is null, zeroes will be shifted out
947  * while filling @rx_buf.  If the receive buffer is null, the data
948  * shifted in will be discarded.  Only "len" bytes shift out (or in).
949  * It's an error to try to shift out a partial word.  (For example, by
950  * shifting out three bytes with word size of sixteen or twenty bits;
951  * the former uses two bytes per word, the latter uses four bytes.)
952  *
953  * In-memory data values are always in native CPU byte order, translated
954  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
955  * for example when bits_per_word is sixteen, buffers are 2N bytes long
956  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
957  *
958  * When the word size of the SPI transfer is not a power-of-two multiple
959  * of eight bits, those in-memory words include extra bits.  In-memory
960  * words are always seen by protocol drivers as right-justified, so the
961  * undefined (rx) or unused (tx) bits are always the most significant bits.
962  *
963  * All SPI transfers start with the relevant chipselect active.  Normally
964  * it stays selected until after the last transfer in a message.  Drivers
965  * can affect the chipselect signal using cs_change.
966  *
967  * (i) If the transfer isn't the last one in the message, this flag is
968  * used to make the chipselect briefly go inactive in the middle of the
969  * message.  Toggling chipselect in this way may be needed to terminate
970  * a chip command, letting a single spi_message perform all of group of
971  * chip transactions together.
972  *
973  * (ii) When the transfer is the last one in the message, the chip may
974  * stay selected until the next transfer.  On multi-device SPI busses
975  * with nothing blocking messages going to other devices, this is just
976  * a performance hint; starting a message to another device deselects
977  * this one.  But in other cases, this can be used to ensure correctness.
978  * Some devices need protocol transactions to be built from a series of
979  * spi_message submissions, where the content of one message is determined
980  * by the results of previous messages and where the whole transaction
981  * ends when the chipselect goes intactive.
982  *
983  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
984  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
985  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
986  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
987  *
988  * The code that submits an spi_message (and its spi_transfers)
989  * to the lower layers is responsible for managing its memory.
990  * Zero-initialize every field you don't set up explicitly, to
991  * insulate against future API updates.  After you submit a message
992  * and its transfers, ignore them until its completion callback.
993  */
994 struct spi_transfer {
995 	/* It's ok if tx_buf == rx_buf (right?)
996 	 * for MicroWire, one buffer must be null
997 	 * buffers must work with dma_*map_single() calls, unless
998 	 *   spi_message.is_dma_mapped reports a pre-existing mapping
999 	 */
1000 	const void	*tx_buf;
1001 	void		*rx_buf;
1002 	unsigned	len;
1003 
1004 	dma_addr_t	tx_dma;
1005 	dma_addr_t	rx_dma;
1006 	struct sg_table tx_sg;
1007 	struct sg_table rx_sg;
1008 
1009 	unsigned	dummy_data:1;
1010 	unsigned	cs_off:1;
1011 	unsigned	cs_change:1;
1012 	unsigned	tx_nbits:3;
1013 	unsigned	rx_nbits:3;
1014 #define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
1015 #define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
1016 #define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
1017 	u8		bits_per_word;
1018 	struct spi_delay	delay;
1019 	struct spi_delay	cs_change_delay;
1020 	struct spi_delay	word_delay;
1021 	u32		speed_hz;
1022 
1023 	u32		effective_speed_hz;
1024 
1025 	unsigned int	ptp_sts_word_pre;
1026 	unsigned int	ptp_sts_word_post;
1027 
1028 	struct ptp_system_timestamp *ptp_sts;
1029 
1030 	bool		timestamped;
1031 
1032 	struct list_head transfer_list;
1033 
1034 #define SPI_TRANS_FAIL_NO_START	BIT(0)
1035 	u16		error;
1036 };
1037 
1038 /**
1039  * struct spi_message - one multi-segment SPI transaction
1040  * @transfers: list of transfer segments in this transaction
1041  * @spi: SPI device to which the transaction is queued
1042  * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
1043  *	addresses for each transfer buffer
1044  * @complete: called to report transaction completions
1045  * @context: the argument to complete() when it's called
1046  * @frame_length: the total number of bytes in the message
1047  * @actual_length: the total number of bytes that were transferred in all
1048  *	successful segments
1049  * @status: zero for success, else negative errno
1050  * @queue: for use by whichever driver currently owns the message
1051  * @state: for use by whichever driver currently owns the message
1052  * @resources: for resource management when the spi message is processed
1053  * @prepared: spi_prepare_message was called for the this message
1054  *
1055  * A @spi_message is used to execute an atomic sequence of data transfers,
1056  * each represented by a struct spi_transfer.  The sequence is "atomic"
1057  * in the sense that no other spi_message may use that SPI bus until that
1058  * sequence completes.  On some systems, many such sequences can execute as
1059  * a single programmed DMA transfer.  On all systems, these messages are
1060  * queued, and might complete after transactions to other devices.  Messages
1061  * sent to a given spi_device are always executed in FIFO order.
1062  *
1063  * The code that submits an spi_message (and its spi_transfers)
1064  * to the lower layers is responsible for managing its memory.
1065  * Zero-initialize every field you don't set up explicitly, to
1066  * insulate against future API updates.  After you submit a message
1067  * and its transfers, ignore them until its completion callback.
1068  */
1069 struct spi_message {
1070 	struct list_head	transfers;
1071 
1072 	struct spi_device	*spi;
1073 
1074 	unsigned		is_dma_mapped:1;
1075 
1076 	/* REVISIT:  we might want a flag affecting the behavior of the
1077 	 * last transfer ... allowing things like "read 16 bit length L"
1078 	 * immediately followed by "read L bytes".  Basically imposing
1079 	 * a specific message scheduling algorithm.
1080 	 *
1081 	 * Some controller drivers (message-at-a-time queue processing)
1082 	 * could provide that as their default scheduling algorithm.  But
1083 	 * others (with multi-message pipelines) could need a flag to
1084 	 * tell them about such special cases.
1085 	 */
1086 
1087 	/* Completion is reported through a callback */
1088 	void			(*complete)(void *context);
1089 	void			*context;
1090 	unsigned		frame_length;
1091 	unsigned		actual_length;
1092 	int			status;
1093 
1094 	/* For optional use by whatever driver currently owns the
1095 	 * spi_message ...  between calls to spi_async and then later
1096 	 * complete(), that's the spi_controller controller driver.
1097 	 */
1098 	struct list_head	queue;
1099 	void			*state;
1100 
1101 	/* List of spi_res reources when the spi message is processed */
1102 	struct list_head        resources;
1103 
1104 	/* spi_prepare_message() was called for this message */
1105 	bool			prepared;
1106 };
1107 
1108 static inline void spi_message_init_no_memset(struct spi_message *m)
1109 {
1110 	INIT_LIST_HEAD(&m->transfers);
1111 	INIT_LIST_HEAD(&m->resources);
1112 }
1113 
1114 static inline void spi_message_init(struct spi_message *m)
1115 {
1116 	memset(m, 0, sizeof *m);
1117 	spi_message_init_no_memset(m);
1118 }
1119 
1120 static inline void
1121 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
1122 {
1123 	list_add_tail(&t->transfer_list, &m->transfers);
1124 }
1125 
1126 static inline void
1127 spi_transfer_del(struct spi_transfer *t)
1128 {
1129 	list_del(&t->transfer_list);
1130 }
1131 
1132 static inline int
1133 spi_transfer_delay_exec(struct spi_transfer *t)
1134 {
1135 	return spi_delay_exec(&t->delay, t);
1136 }
1137 
1138 /**
1139  * spi_message_init_with_transfers - Initialize spi_message and append transfers
1140  * @m: spi_message to be initialized
1141  * @xfers: An array of spi transfers
1142  * @num_xfers: Number of items in the xfer array
1143  *
1144  * This function initializes the given spi_message and adds each spi_transfer in
1145  * the given array to the message.
1146  */
1147 static inline void
1148 spi_message_init_with_transfers(struct spi_message *m,
1149 struct spi_transfer *xfers, unsigned int num_xfers)
1150 {
1151 	unsigned int i;
1152 
1153 	spi_message_init(m);
1154 	for (i = 0; i < num_xfers; ++i)
1155 		spi_message_add_tail(&xfers[i], m);
1156 }
1157 
1158 /* It's fine to embed message and transaction structures in other data
1159  * structures so long as you don't free them while they're in use.
1160  */
1161 
1162 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
1163 {
1164 	struct spi_message *m;
1165 
1166 	m = kzalloc(sizeof(struct spi_message)
1167 			+ ntrans * sizeof(struct spi_transfer),
1168 			flags);
1169 	if (m) {
1170 		unsigned i;
1171 		struct spi_transfer *t = (struct spi_transfer *)(m + 1);
1172 
1173 		spi_message_init_no_memset(m);
1174 		for (i = 0; i < ntrans; i++, t++)
1175 			spi_message_add_tail(t, m);
1176 	}
1177 	return m;
1178 }
1179 
1180 static inline void spi_message_free(struct spi_message *m)
1181 {
1182 	kfree(m);
1183 }
1184 
1185 extern int spi_setup(struct spi_device *spi);
1186 extern int spi_async(struct spi_device *spi, struct spi_message *message);
1187 extern int spi_slave_abort(struct spi_device *spi);
1188 extern int spi_target_abort(struct spi_device *spi);
1189 
1190 static inline size_t
1191 spi_max_message_size(struct spi_device *spi)
1192 {
1193 	struct spi_controller *ctlr = spi->controller;
1194 
1195 	if (!ctlr->max_message_size)
1196 		return SIZE_MAX;
1197 	return ctlr->max_message_size(spi);
1198 }
1199 
1200 static inline size_t
1201 spi_max_transfer_size(struct spi_device *spi)
1202 {
1203 	struct spi_controller *ctlr = spi->controller;
1204 	size_t tr_max = SIZE_MAX;
1205 	size_t msg_max = spi_max_message_size(spi);
1206 
1207 	if (ctlr->max_transfer_size)
1208 		tr_max = ctlr->max_transfer_size(spi);
1209 
1210 	/* Transfer size limit must not be greater than message size limit */
1211 	return min(tr_max, msg_max);
1212 }
1213 
1214 /**
1215  * spi_is_bpw_supported - Check if bits per word is supported
1216  * @spi: SPI device
1217  * @bpw: Bits per word
1218  *
1219  * This function checks to see if the SPI controller supports @bpw.
1220  *
1221  * Returns:
1222  * True if @bpw is supported, false otherwise.
1223  */
1224 static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw)
1225 {
1226 	u32 bpw_mask = spi->master->bits_per_word_mask;
1227 
1228 	if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw)))
1229 		return true;
1230 
1231 	return false;
1232 }
1233 
1234 /*---------------------------------------------------------------------------*/
1235 
1236 /* SPI transfer replacement methods which make use of spi_res */
1237 
1238 struct spi_replaced_transfers;
1239 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
1240 				       struct spi_message *msg,
1241 				       struct spi_replaced_transfers *res);
1242 /**
1243  * struct spi_replaced_transfers - structure describing the spi_transfer
1244  *                                 replacements that have occurred
1245  *                                 so that they can get reverted
1246  * @release:            some extra release code to get executed prior to
1247  *                      relasing this structure
1248  * @extradata:          pointer to some extra data if requested or NULL
1249  * @replaced_transfers: transfers that have been replaced and which need
1250  *                      to get restored
1251  * @replaced_after:     the transfer after which the @replaced_transfers
1252  *                      are to get re-inserted
1253  * @inserted:           number of transfers inserted
1254  * @inserted_transfers: array of spi_transfers of array-size @inserted,
1255  *                      that have been replacing replaced_transfers
1256  *
1257  * note: that @extradata will point to @inserted_transfers[@inserted]
1258  * if some extra allocation is requested, so alignment will be the same
1259  * as for spi_transfers
1260  */
1261 struct spi_replaced_transfers {
1262 	spi_replaced_release_t release;
1263 	void *extradata;
1264 	struct list_head replaced_transfers;
1265 	struct list_head *replaced_after;
1266 	size_t inserted;
1267 	struct spi_transfer inserted_transfers[];
1268 };
1269 
1270 /*---------------------------------------------------------------------------*/
1271 
1272 /* SPI transfer transformation methods */
1273 
1274 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1275 				       struct spi_message *msg,
1276 				       size_t maxsize,
1277 				       gfp_t gfp);
1278 
1279 /*---------------------------------------------------------------------------*/
1280 
1281 /* All these synchronous SPI transfer routines are utilities layered
1282  * over the core async transfer primitive.  Here, "synchronous" means
1283  * they will sleep uninterruptibly until the async transfer completes.
1284  */
1285 
1286 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1287 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1288 extern int spi_bus_lock(struct spi_controller *ctlr);
1289 extern int spi_bus_unlock(struct spi_controller *ctlr);
1290 
1291 /**
1292  * spi_sync_transfer - synchronous SPI data transfer
1293  * @spi: device with which data will be exchanged
1294  * @xfers: An array of spi_transfers
1295  * @num_xfers: Number of items in the xfer array
1296  * Context: can sleep
1297  *
1298  * Does a synchronous SPI data transfer of the given spi_transfer array.
1299  *
1300  * For more specific semantics see spi_sync().
1301  *
1302  * Return: zero on success, else a negative error code.
1303  */
1304 static inline int
1305 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1306 	unsigned int num_xfers)
1307 {
1308 	struct spi_message msg;
1309 
1310 	spi_message_init_with_transfers(&msg, xfers, num_xfers);
1311 
1312 	return spi_sync(spi, &msg);
1313 }
1314 
1315 /**
1316  * spi_write - SPI synchronous write
1317  * @spi: device to which data will be written
1318  * @buf: data buffer
1319  * @len: data buffer size
1320  * Context: can sleep
1321  *
1322  * This function writes the buffer @buf.
1323  * Callable only from contexts that can sleep.
1324  *
1325  * Return: zero on success, else a negative error code.
1326  */
1327 static inline int
1328 spi_write(struct spi_device *spi, const void *buf, size_t len)
1329 {
1330 	struct spi_transfer	t = {
1331 			.tx_buf		= buf,
1332 			.len		= len,
1333 		};
1334 
1335 	return spi_sync_transfer(spi, &t, 1);
1336 }
1337 
1338 /**
1339  * spi_read - SPI synchronous read
1340  * @spi: device from which data will be read
1341  * @buf: data buffer
1342  * @len: data buffer size
1343  * Context: can sleep
1344  *
1345  * This function reads the buffer @buf.
1346  * Callable only from contexts that can sleep.
1347  *
1348  * Return: zero on success, else a negative error code.
1349  */
1350 static inline int
1351 spi_read(struct spi_device *spi, void *buf, size_t len)
1352 {
1353 	struct spi_transfer	t = {
1354 			.rx_buf		= buf,
1355 			.len		= len,
1356 		};
1357 
1358 	return spi_sync_transfer(spi, &t, 1);
1359 }
1360 
1361 /* This copies txbuf and rxbuf data; for small transfers only! */
1362 extern int spi_write_then_read(struct spi_device *spi,
1363 		const void *txbuf, unsigned n_tx,
1364 		void *rxbuf, unsigned n_rx);
1365 
1366 /**
1367  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1368  * @spi: device with which data will be exchanged
1369  * @cmd: command to be written before data is read back
1370  * Context: can sleep
1371  *
1372  * Callable only from contexts that can sleep.
1373  *
1374  * Return: the (unsigned) eight bit number returned by the
1375  * device, or else a negative error code.
1376  */
1377 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1378 {
1379 	ssize_t			status;
1380 	u8			result;
1381 
1382 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1383 
1384 	/* Return negative errno or unsigned value */
1385 	return (status < 0) ? status : result;
1386 }
1387 
1388 /**
1389  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1390  * @spi: device with which data will be exchanged
1391  * @cmd: command to be written before data is read back
1392  * Context: can sleep
1393  *
1394  * The number is returned in wire-order, which is at least sometimes
1395  * big-endian.
1396  *
1397  * Callable only from contexts that can sleep.
1398  *
1399  * Return: the (unsigned) sixteen bit number returned by the
1400  * device, or else a negative error code.
1401  */
1402 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1403 {
1404 	ssize_t			status;
1405 	u16			result;
1406 
1407 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1408 
1409 	/* Return negative errno or unsigned value */
1410 	return (status < 0) ? status : result;
1411 }
1412 
1413 /**
1414  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1415  * @spi: device with which data will be exchanged
1416  * @cmd: command to be written before data is read back
1417  * Context: can sleep
1418  *
1419  * This function is similar to spi_w8r16, with the exception that it will
1420  * convert the read 16 bit data word from big-endian to native endianness.
1421  *
1422  * Callable only from contexts that can sleep.
1423  *
1424  * Return: the (unsigned) sixteen bit number returned by the device in cpu
1425  * endianness, or else a negative error code.
1426  */
1427 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1428 
1429 {
1430 	ssize_t status;
1431 	__be16 result;
1432 
1433 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1434 	if (status < 0)
1435 		return status;
1436 
1437 	return be16_to_cpu(result);
1438 }
1439 
1440 /*---------------------------------------------------------------------------*/
1441 
1442 /*
1443  * INTERFACE between board init code and SPI infrastructure.
1444  *
1445  * No SPI driver ever sees these SPI device table segments, but
1446  * it's how the SPI core (or adapters that get hotplugged) grows
1447  * the driver model tree.
1448  *
1449  * As a rule, SPI devices can't be probed.  Instead, board init code
1450  * provides a table listing the devices which are present, with enough
1451  * information to bind and set up the device's driver.  There's basic
1452  * support for nonstatic configurations too; enough to handle adding
1453  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1454  */
1455 
1456 /**
1457  * struct spi_board_info - board-specific template for a SPI device
1458  * @modalias: Initializes spi_device.modalias; identifies the driver.
1459  * @platform_data: Initializes spi_device.platform_data; the particular
1460  *	data stored there is driver-specific.
1461  * @swnode: Software node for the device.
1462  * @controller_data: Initializes spi_device.controller_data; some
1463  *	controllers need hints about hardware setup, e.g. for DMA.
1464  * @irq: Initializes spi_device.irq; depends on how the board is wired.
1465  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1466  *	from the chip datasheet and board-specific signal quality issues.
1467  * @bus_num: Identifies which spi_controller parents the spi_device; unused
1468  *	by spi_new_device(), and otherwise depends on board wiring.
1469  * @chip_select: Initializes spi_device.chip_select; depends on how
1470  *	the board is wired.
1471  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1472  *	wiring (some devices support both 3WIRE and standard modes), and
1473  *	possibly presence of an inverter in the chipselect path.
1474  *
1475  * When adding new SPI devices to the device tree, these structures serve
1476  * as a partial device template.  They hold information which can't always
1477  * be determined by drivers.  Information that probe() can establish (such
1478  * as the default transfer wordsize) is not included here.
1479  *
1480  * These structures are used in two places.  Their primary role is to
1481  * be stored in tables of board-specific device descriptors, which are
1482  * declared early in board initialization and then used (much later) to
1483  * populate a controller's device tree after the that controller's driver
1484  * initializes.  A secondary (and atypical) role is as a parameter to
1485  * spi_new_device() call, which happens after those controller drivers
1486  * are active in some dynamic board configuration models.
1487  */
1488 struct spi_board_info {
1489 	/* The device name and module name are coupled, like platform_bus;
1490 	 * "modalias" is normally the driver name.
1491 	 *
1492 	 * platform_data goes to spi_device.dev.platform_data,
1493 	 * controller_data goes to spi_device.controller_data,
1494 	 * irq is copied too
1495 	 */
1496 	char		modalias[SPI_NAME_SIZE];
1497 	const void	*platform_data;
1498 	const struct software_node *swnode;
1499 	void		*controller_data;
1500 	int		irq;
1501 
1502 	/* Slower signaling on noisy or low voltage boards */
1503 	u32		max_speed_hz;
1504 
1505 
1506 	/* bus_num is board specific and matches the bus_num of some
1507 	 * spi_controller that will probably be registered later.
1508 	 *
1509 	 * chip_select reflects how this chip is wired to that master;
1510 	 * it's less than num_chipselect.
1511 	 */
1512 	u16		bus_num;
1513 	u16		chip_select;
1514 
1515 	/* mode becomes spi_device.mode, and is essential for chips
1516 	 * where the default of SPI_CS_HIGH = 0 is wrong.
1517 	 */
1518 	u32		mode;
1519 
1520 	/* ... may need additional spi_device chip config data here.
1521 	 * avoid stuff protocol drivers can set; but include stuff
1522 	 * needed to behave without being bound to a driver:
1523 	 *  - quirks like clock rate mattering when not selected
1524 	 */
1525 };
1526 
1527 #ifdef	CONFIG_SPI
1528 extern int
1529 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1530 #else
1531 /* Board init code may ignore whether SPI is configured or not */
1532 static inline int
1533 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1534 	{ return 0; }
1535 #endif
1536 
1537 /* If you're hotplugging an adapter with devices (parport, usb, etc)
1538  * use spi_new_device() to describe each device.  You can also call
1539  * spi_unregister_device() to start making that device vanish, but
1540  * normally that would be handled by spi_unregister_controller().
1541  *
1542  * You can also use spi_alloc_device() and spi_add_device() to use a two
1543  * stage registration sequence for each spi_device. This gives the caller
1544  * some more control over the spi_device structure before it is registered,
1545  * but requires that caller to initialize fields that would otherwise
1546  * be defined using the board info.
1547  */
1548 extern struct spi_device *
1549 spi_alloc_device(struct spi_controller *ctlr);
1550 
1551 extern int
1552 spi_add_device(struct spi_device *spi);
1553 
1554 extern struct spi_device *
1555 spi_new_device(struct spi_controller *, struct spi_board_info *);
1556 
1557 extern void spi_unregister_device(struct spi_device *spi);
1558 
1559 extern const struct spi_device_id *
1560 spi_get_device_id(const struct spi_device *sdev);
1561 
1562 extern const void *
1563 spi_get_device_match_data(const struct spi_device *sdev);
1564 
1565 static inline bool
1566 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1567 {
1568 	return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1569 }
1570 
1571 /* Compatibility layer */
1572 #define spi_master			spi_controller
1573 
1574 #define SPI_MASTER_HALF_DUPLEX		SPI_CONTROLLER_HALF_DUPLEX
1575 #define SPI_MASTER_NO_RX		SPI_CONTROLLER_NO_RX
1576 #define SPI_MASTER_NO_TX		SPI_CONTROLLER_NO_TX
1577 #define SPI_MASTER_MUST_RX		SPI_CONTROLLER_MUST_RX
1578 #define SPI_MASTER_MUST_TX		SPI_CONTROLLER_MUST_TX
1579 
1580 #define spi_master_get_devdata(_ctlr)	spi_controller_get_devdata(_ctlr)
1581 #define spi_master_set_devdata(_ctlr, _data)	\
1582 	spi_controller_set_devdata(_ctlr, _data)
1583 #define spi_master_get(_ctlr)		spi_controller_get(_ctlr)
1584 #define spi_master_put(_ctlr)		spi_controller_put(_ctlr)
1585 #define spi_master_suspend(_ctlr)	spi_controller_suspend(_ctlr)
1586 #define spi_master_resume(_ctlr)	spi_controller_resume(_ctlr)
1587 
1588 #define spi_register_master(_ctlr)	spi_register_controller(_ctlr)
1589 #define devm_spi_register_master(_dev, _ctlr) \
1590 	devm_spi_register_controller(_dev, _ctlr)
1591 #define spi_unregister_master(_ctlr)	spi_unregister_controller(_ctlr)
1592 
1593 #endif /* __LINUX_SPI_H */
1594