xref: /openbmc/linux/include/linux/slab.h (revision f9900dd0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4  *
5  * (C) SGI 2006, Christoph Lameter
6  * 	Cleaned up and restructured to ease the addition of alternative
7  * 	implementations of SLAB allocators.
8  * (C) Linux Foundation 2008-2013
9  *      Unified interface for all slab allocators
10  */
11 
12 #ifndef _LINUX_SLAB_H
13 #define	_LINUX_SLAB_H
14 
15 #include <linux/gfp.h>
16 #include <linux/overflow.h>
17 #include <linux/types.h>
18 #include <linux/workqueue.h>
19 #include <linux/percpu-refcount.h>
20 
21 
22 /*
23  * Flags to pass to kmem_cache_create().
24  * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
25  */
26 /* DEBUG: Perform (expensive) checks on alloc/free */
27 #define SLAB_CONSISTENCY_CHECKS	((slab_flags_t __force)0x00000100U)
28 /* DEBUG: Red zone objs in a cache */
29 #define SLAB_RED_ZONE		((slab_flags_t __force)0x00000400U)
30 /* DEBUG: Poison objects */
31 #define SLAB_POISON		((slab_flags_t __force)0x00000800U)
32 /* Align objs on cache lines */
33 #define SLAB_HWCACHE_ALIGN	((slab_flags_t __force)0x00002000U)
34 /* Use GFP_DMA memory */
35 #define SLAB_CACHE_DMA		((slab_flags_t __force)0x00004000U)
36 /* Use GFP_DMA32 memory */
37 #define SLAB_CACHE_DMA32	((slab_flags_t __force)0x00008000U)
38 /* DEBUG: Store the last owner for bug hunting */
39 #define SLAB_STORE_USER		((slab_flags_t __force)0x00010000U)
40 /* Panic if kmem_cache_create() fails */
41 #define SLAB_PANIC		((slab_flags_t __force)0x00040000U)
42 /*
43  * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
44  *
45  * This delays freeing the SLAB page by a grace period, it does _NOT_
46  * delay object freeing. This means that if you do kmem_cache_free()
47  * that memory location is free to be reused at any time. Thus it may
48  * be possible to see another object there in the same RCU grace period.
49  *
50  * This feature only ensures the memory location backing the object
51  * stays valid, the trick to using this is relying on an independent
52  * object validation pass. Something like:
53  *
54  *  rcu_read_lock()
55  * again:
56  *  obj = lockless_lookup(key);
57  *  if (obj) {
58  *    if (!try_get_ref(obj)) // might fail for free objects
59  *      goto again;
60  *
61  *    if (obj->key != key) { // not the object we expected
62  *      put_ref(obj);
63  *      goto again;
64  *    }
65  *  }
66  *  rcu_read_unlock();
67  *
68  * This is useful if we need to approach a kernel structure obliquely,
69  * from its address obtained without the usual locking. We can lock
70  * the structure to stabilize it and check it's still at the given address,
71  * only if we can be sure that the memory has not been meanwhile reused
72  * for some other kind of object (which our subsystem's lock might corrupt).
73  *
74  * rcu_read_lock before reading the address, then rcu_read_unlock after
75  * taking the spinlock within the structure expected at that address.
76  *
77  * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
78  */
79 /* Defer freeing slabs to RCU */
80 #define SLAB_TYPESAFE_BY_RCU	((slab_flags_t __force)0x00080000U)
81 /* Spread some memory over cpuset */
82 #define SLAB_MEM_SPREAD		((slab_flags_t __force)0x00100000U)
83 /* Trace allocations and frees */
84 #define SLAB_TRACE		((slab_flags_t __force)0x00200000U)
85 
86 /* Flag to prevent checks on free */
87 #ifdef CONFIG_DEBUG_OBJECTS
88 # define SLAB_DEBUG_OBJECTS	((slab_flags_t __force)0x00400000U)
89 #else
90 # define SLAB_DEBUG_OBJECTS	0
91 #endif
92 
93 /* Avoid kmemleak tracing */
94 #define SLAB_NOLEAKTRACE	((slab_flags_t __force)0x00800000U)
95 
96 /* Fault injection mark */
97 #ifdef CONFIG_FAILSLAB
98 # define SLAB_FAILSLAB		((slab_flags_t __force)0x02000000U)
99 #else
100 # define SLAB_FAILSLAB		0
101 #endif
102 /* Account to memcg */
103 #ifdef CONFIG_MEMCG_KMEM
104 # define SLAB_ACCOUNT		((slab_flags_t __force)0x04000000U)
105 #else
106 # define SLAB_ACCOUNT		0
107 #endif
108 
109 #ifdef CONFIG_KASAN
110 #define SLAB_KASAN		((slab_flags_t __force)0x08000000U)
111 #else
112 #define SLAB_KASAN		0
113 #endif
114 
115 /* The following flags affect the page allocator grouping pages by mobility */
116 /* Objects are reclaimable */
117 #define SLAB_RECLAIM_ACCOUNT	((slab_flags_t __force)0x00020000U)
118 #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
119 
120 /* Slab deactivation flag */
121 #define SLAB_DEACTIVATED	((slab_flags_t __force)0x10000000U)
122 
123 /*
124  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
125  *
126  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
127  *
128  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
129  * Both make kfree a no-op.
130  */
131 #define ZERO_SIZE_PTR ((void *)16)
132 
133 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
134 				(unsigned long)ZERO_SIZE_PTR)
135 
136 #include <linux/kasan.h>
137 
138 struct mem_cgroup;
139 /*
140  * struct kmem_cache related prototypes
141  */
142 void __init kmem_cache_init(void);
143 bool slab_is_available(void);
144 
145 struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
146 			unsigned int align, slab_flags_t flags,
147 			void (*ctor)(void *));
148 struct kmem_cache *kmem_cache_create_usercopy(const char *name,
149 			unsigned int size, unsigned int align,
150 			slab_flags_t flags,
151 			unsigned int useroffset, unsigned int usersize,
152 			void (*ctor)(void *));
153 void kmem_cache_destroy(struct kmem_cache *s);
154 int kmem_cache_shrink(struct kmem_cache *s);
155 
156 /*
157  * Please use this macro to create slab caches. Simply specify the
158  * name of the structure and maybe some flags that are listed above.
159  *
160  * The alignment of the struct determines object alignment. If you
161  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
162  * then the objects will be properly aligned in SMP configurations.
163  */
164 #define KMEM_CACHE(__struct, __flags)					\
165 		kmem_cache_create(#__struct, sizeof(struct __struct),	\
166 			__alignof__(struct __struct), (__flags), NULL)
167 
168 /*
169  * To whitelist a single field for copying to/from usercopy, use this
170  * macro instead for KMEM_CACHE() above.
171  */
172 #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)			\
173 		kmem_cache_create_usercopy(#__struct,			\
174 			sizeof(struct __struct),			\
175 			__alignof__(struct __struct), (__flags),	\
176 			offsetof(struct __struct, __field),		\
177 			sizeof_field(struct __struct, __field), NULL)
178 
179 /*
180  * Common kmalloc functions provided by all allocators
181  */
182 void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __alloc_size(2);
183 void kfree(const void *objp);
184 void kfree_sensitive(const void *objp);
185 size_t __ksize(const void *objp);
186 size_t ksize(const void *objp);
187 #ifdef CONFIG_PRINTK
188 bool kmem_valid_obj(void *object);
189 void kmem_dump_obj(void *object);
190 #endif
191 
192 /*
193  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
194  * alignment larger than the alignment of a 64-bit integer.
195  * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
196  */
197 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
198 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
199 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
200 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
201 #else
202 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
203 #endif
204 
205 /*
206  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
207  * Intended for arches that get misalignment faults even for 64 bit integer
208  * aligned buffers.
209  */
210 #ifndef ARCH_SLAB_MINALIGN
211 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
212 #endif
213 
214 /*
215  * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
216  * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
217  * aligned pointers.
218  */
219 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
220 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
221 #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
222 
223 /*
224  * Kmalloc array related definitions
225  */
226 
227 #ifdef CONFIG_SLAB
228 /*
229  * The largest kmalloc size supported by the SLAB allocators is
230  * 32 megabyte (2^25) or the maximum allocatable page order if that is
231  * less than 32 MB.
232  *
233  * WARNING: Its not easy to increase this value since the allocators have
234  * to do various tricks to work around compiler limitations in order to
235  * ensure proper constant folding.
236  */
237 #define KMALLOC_SHIFT_HIGH	((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
238 				(MAX_ORDER + PAGE_SHIFT - 1) : 25)
239 #define KMALLOC_SHIFT_MAX	KMALLOC_SHIFT_HIGH
240 #ifndef KMALLOC_SHIFT_LOW
241 #define KMALLOC_SHIFT_LOW	5
242 #endif
243 #endif
244 
245 #ifdef CONFIG_SLUB
246 /*
247  * SLUB directly allocates requests fitting in to an order-1 page
248  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
249  */
250 #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
251 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
252 #ifndef KMALLOC_SHIFT_LOW
253 #define KMALLOC_SHIFT_LOW	3
254 #endif
255 #endif
256 
257 #ifdef CONFIG_SLOB
258 /*
259  * SLOB passes all requests larger than one page to the page allocator.
260  * No kmalloc array is necessary since objects of different sizes can
261  * be allocated from the same page.
262  */
263 #define KMALLOC_SHIFT_HIGH	PAGE_SHIFT
264 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
265 #ifndef KMALLOC_SHIFT_LOW
266 #define KMALLOC_SHIFT_LOW	3
267 #endif
268 #endif
269 
270 /* Maximum allocatable size */
271 #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
272 /* Maximum size for which we actually use a slab cache */
273 #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
274 /* Maximum order allocatable via the slab allocator */
275 #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
276 
277 /*
278  * Kmalloc subsystem.
279  */
280 #ifndef KMALLOC_MIN_SIZE
281 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
282 #endif
283 
284 /*
285  * This restriction comes from byte sized index implementation.
286  * Page size is normally 2^12 bytes and, in this case, if we want to use
287  * byte sized index which can represent 2^8 entries, the size of the object
288  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
289  * If minimum size of kmalloc is less than 16, we use it as minimum object
290  * size and give up to use byte sized index.
291  */
292 #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
293                                (KMALLOC_MIN_SIZE) : 16)
294 
295 /*
296  * Whenever changing this, take care of that kmalloc_type() and
297  * create_kmalloc_caches() still work as intended.
298  *
299  * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
300  * is for accounted but unreclaimable and non-dma objects. All the other
301  * kmem caches can have both accounted and unaccounted objects.
302  */
303 enum kmalloc_cache_type {
304 	KMALLOC_NORMAL = 0,
305 #ifndef CONFIG_ZONE_DMA
306 	KMALLOC_DMA = KMALLOC_NORMAL,
307 #endif
308 #ifndef CONFIG_MEMCG_KMEM
309 	KMALLOC_CGROUP = KMALLOC_NORMAL,
310 #else
311 	KMALLOC_CGROUP,
312 #endif
313 	KMALLOC_RECLAIM,
314 #ifdef CONFIG_ZONE_DMA
315 	KMALLOC_DMA,
316 #endif
317 	NR_KMALLOC_TYPES
318 };
319 
320 #ifndef CONFIG_SLOB
321 extern struct kmem_cache *
322 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
323 
324 /*
325  * Define gfp bits that should not be set for KMALLOC_NORMAL.
326  */
327 #define KMALLOC_NOT_NORMAL_BITS					\
328 	(__GFP_RECLAIMABLE |					\
329 	(IS_ENABLED(CONFIG_ZONE_DMA)   ? __GFP_DMA : 0) |	\
330 	(IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0))
331 
332 static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
333 {
334 	/*
335 	 * The most common case is KMALLOC_NORMAL, so test for it
336 	 * with a single branch for all the relevant flags.
337 	 */
338 	if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
339 		return KMALLOC_NORMAL;
340 
341 	/*
342 	 * At least one of the flags has to be set. Their priorities in
343 	 * decreasing order are:
344 	 *  1) __GFP_DMA
345 	 *  2) __GFP_RECLAIMABLE
346 	 *  3) __GFP_ACCOUNT
347 	 */
348 	if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
349 		return KMALLOC_DMA;
350 	if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE))
351 		return KMALLOC_RECLAIM;
352 	else
353 		return KMALLOC_CGROUP;
354 }
355 
356 /*
357  * Figure out which kmalloc slab an allocation of a certain size
358  * belongs to.
359  * 0 = zero alloc
360  * 1 =  65 .. 96 bytes
361  * 2 = 129 .. 192 bytes
362  * n = 2^(n-1)+1 .. 2^n
363  *
364  * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
365  * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
366  * Callers where !size_is_constant should only be test modules, where runtime
367  * overheads of __kmalloc_index() can be tolerated.  Also see kmalloc_slab().
368  */
369 static __always_inline unsigned int __kmalloc_index(size_t size,
370 						    bool size_is_constant)
371 {
372 	if (!size)
373 		return 0;
374 
375 	if (size <= KMALLOC_MIN_SIZE)
376 		return KMALLOC_SHIFT_LOW;
377 
378 	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
379 		return 1;
380 	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
381 		return 2;
382 	if (size <=          8) return 3;
383 	if (size <=         16) return 4;
384 	if (size <=         32) return 5;
385 	if (size <=         64) return 6;
386 	if (size <=        128) return 7;
387 	if (size <=        256) return 8;
388 	if (size <=        512) return 9;
389 	if (size <=       1024) return 10;
390 	if (size <=   2 * 1024) return 11;
391 	if (size <=   4 * 1024) return 12;
392 	if (size <=   8 * 1024) return 13;
393 	if (size <=  16 * 1024) return 14;
394 	if (size <=  32 * 1024) return 15;
395 	if (size <=  64 * 1024) return 16;
396 	if (size <= 128 * 1024) return 17;
397 	if (size <= 256 * 1024) return 18;
398 	if (size <= 512 * 1024) return 19;
399 	if (size <= 1024 * 1024) return 20;
400 	if (size <=  2 * 1024 * 1024) return 21;
401 	if (size <=  4 * 1024 * 1024) return 22;
402 	if (size <=  8 * 1024 * 1024) return 23;
403 	if (size <=  16 * 1024 * 1024) return 24;
404 	if (size <=  32 * 1024 * 1024) return 25;
405 
406 	if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
407 		BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
408 	else
409 		BUG();
410 
411 	/* Will never be reached. Needed because the compiler may complain */
412 	return -1;
413 }
414 #define kmalloc_index(s) __kmalloc_index(s, true)
415 #endif /* !CONFIG_SLOB */
416 
417 void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1);
418 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t flags) __assume_slab_alignment __malloc;
419 void kmem_cache_free(struct kmem_cache *s, void *objp);
420 
421 /*
422  * Bulk allocation and freeing operations. These are accelerated in an
423  * allocator specific way to avoid taking locks repeatedly or building
424  * metadata structures unnecessarily.
425  *
426  * Note that interrupts must be enabled when calling these functions.
427  */
428 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
429 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
430 
431 /*
432  * Caller must not use kfree_bulk() on memory not originally allocated
433  * by kmalloc(), because the SLOB allocator cannot handle this.
434  */
435 static __always_inline void kfree_bulk(size_t size, void **p)
436 {
437 	kmem_cache_free_bulk(NULL, size, p);
438 }
439 
440 #ifdef CONFIG_NUMA
441 void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment
442 							 __alloc_size(1);
443 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment
444 									 __malloc;
445 #else
446 static __always_inline __alloc_size(1) void *__kmalloc_node(size_t size, gfp_t flags, int node)
447 {
448 	return __kmalloc(size, flags);
449 }
450 
451 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
452 {
453 	return kmem_cache_alloc(s, flags);
454 }
455 #endif
456 
457 #ifdef CONFIG_TRACING
458 extern void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t flags, size_t size)
459 				   __assume_slab_alignment __alloc_size(3);
460 
461 #ifdef CONFIG_NUMA
462 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
463 					 int node, size_t size) __assume_slab_alignment
464 								__alloc_size(4);
465 #else
466 static __always_inline __alloc_size(4) void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
467 						 gfp_t gfpflags, int node, size_t size)
468 {
469 	return kmem_cache_alloc_trace(s, gfpflags, size);
470 }
471 #endif /* CONFIG_NUMA */
472 
473 #else /* CONFIG_TRACING */
474 static __always_inline __alloc_size(3) void *kmem_cache_alloc_trace(struct kmem_cache *s,
475 								    gfp_t flags, size_t size)
476 {
477 	void *ret = kmem_cache_alloc(s, flags);
478 
479 	ret = kasan_kmalloc(s, ret, size, flags);
480 	return ret;
481 }
482 
483 static __always_inline void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
484 							 int node, size_t size)
485 {
486 	void *ret = kmem_cache_alloc_node(s, gfpflags, node);
487 
488 	ret = kasan_kmalloc(s, ret, size, gfpflags);
489 	return ret;
490 }
491 #endif /* CONFIG_TRACING */
492 
493 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment
494 									 __alloc_size(1);
495 
496 #ifdef CONFIG_TRACING
497 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
498 				__assume_page_alignment __alloc_size(1);
499 #else
500 static __always_inline __alloc_size(1) void *kmalloc_order_trace(size_t size, gfp_t flags,
501 								 unsigned int order)
502 {
503 	return kmalloc_order(size, flags, order);
504 }
505 #endif
506 
507 static __always_inline __alloc_size(1) void *kmalloc_large(size_t size, gfp_t flags)
508 {
509 	unsigned int order = get_order(size);
510 	return kmalloc_order_trace(size, flags, order);
511 }
512 
513 /**
514  * kmalloc - allocate memory
515  * @size: how many bytes of memory are required.
516  * @flags: the type of memory to allocate.
517  *
518  * kmalloc is the normal method of allocating memory
519  * for objects smaller than page size in the kernel.
520  *
521  * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
522  * bytes. For @size of power of two bytes, the alignment is also guaranteed
523  * to be at least to the size.
524  *
525  * The @flags argument may be one of the GFP flags defined at
526  * include/linux/gfp.h and described at
527  * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
528  *
529  * The recommended usage of the @flags is described at
530  * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
531  *
532  * Below is a brief outline of the most useful GFP flags
533  *
534  * %GFP_KERNEL
535  *	Allocate normal kernel ram. May sleep.
536  *
537  * %GFP_NOWAIT
538  *	Allocation will not sleep.
539  *
540  * %GFP_ATOMIC
541  *	Allocation will not sleep.  May use emergency pools.
542  *
543  * %GFP_HIGHUSER
544  *	Allocate memory from high memory on behalf of user.
545  *
546  * Also it is possible to set different flags by OR'ing
547  * in one or more of the following additional @flags:
548  *
549  * %__GFP_HIGH
550  *	This allocation has high priority and may use emergency pools.
551  *
552  * %__GFP_NOFAIL
553  *	Indicate that this allocation is in no way allowed to fail
554  *	(think twice before using).
555  *
556  * %__GFP_NORETRY
557  *	If memory is not immediately available,
558  *	then give up at once.
559  *
560  * %__GFP_NOWARN
561  *	If allocation fails, don't issue any warnings.
562  *
563  * %__GFP_RETRY_MAYFAIL
564  *	Try really hard to succeed the allocation but fail
565  *	eventually.
566  */
567 static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags)
568 {
569 	if (__builtin_constant_p(size)) {
570 #ifndef CONFIG_SLOB
571 		unsigned int index;
572 #endif
573 		if (size > KMALLOC_MAX_CACHE_SIZE)
574 			return kmalloc_large(size, flags);
575 #ifndef CONFIG_SLOB
576 		index = kmalloc_index(size);
577 
578 		if (!index)
579 			return ZERO_SIZE_PTR;
580 
581 		return kmem_cache_alloc_trace(
582 				kmalloc_caches[kmalloc_type(flags)][index],
583 				flags, size);
584 #endif
585 	}
586 	return __kmalloc(size, flags);
587 }
588 
589 static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node)
590 {
591 #ifndef CONFIG_SLOB
592 	if (__builtin_constant_p(size) &&
593 		size <= KMALLOC_MAX_CACHE_SIZE) {
594 		unsigned int i = kmalloc_index(size);
595 
596 		if (!i)
597 			return ZERO_SIZE_PTR;
598 
599 		return kmem_cache_alloc_node_trace(
600 				kmalloc_caches[kmalloc_type(flags)][i],
601 						flags, node, size);
602 	}
603 #endif
604 	return __kmalloc_node(size, flags, node);
605 }
606 
607 /**
608  * kmalloc_array - allocate memory for an array.
609  * @n: number of elements.
610  * @size: element size.
611  * @flags: the type of memory to allocate (see kmalloc).
612  */
613 static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags)
614 {
615 	size_t bytes;
616 
617 	if (unlikely(check_mul_overflow(n, size, &bytes)))
618 		return NULL;
619 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
620 		return kmalloc(bytes, flags);
621 	return __kmalloc(bytes, flags);
622 }
623 
624 /**
625  * krealloc_array - reallocate memory for an array.
626  * @p: pointer to the memory chunk to reallocate
627  * @new_n: new number of elements to alloc
628  * @new_size: new size of a single member of the array
629  * @flags: the type of memory to allocate (see kmalloc)
630  */
631 static inline __alloc_size(2, 3) void * __must_check krealloc_array(void *p,
632 								    size_t new_n,
633 								    size_t new_size,
634 								    gfp_t flags)
635 {
636 	size_t bytes;
637 
638 	if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
639 		return NULL;
640 
641 	return krealloc(p, bytes, flags);
642 }
643 
644 /**
645  * kcalloc - allocate memory for an array. The memory is set to zero.
646  * @n: number of elements.
647  * @size: element size.
648  * @flags: the type of memory to allocate (see kmalloc).
649  */
650 static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags)
651 {
652 	return kmalloc_array(n, size, flags | __GFP_ZERO);
653 }
654 
655 /*
656  * kmalloc_track_caller is a special version of kmalloc that records the
657  * calling function of the routine calling it for slab leak tracking instead
658  * of just the calling function (confusing, eh?).
659  * It's useful when the call to kmalloc comes from a widely-used standard
660  * allocator where we care about the real place the memory allocation
661  * request comes from.
662  */
663 extern void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
664 				   __alloc_size(1);
665 #define kmalloc_track_caller(size, flags) \
666 	__kmalloc_track_caller(size, flags, _RET_IP_)
667 
668 static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
669 							  int node)
670 {
671 	size_t bytes;
672 
673 	if (unlikely(check_mul_overflow(n, size, &bytes)))
674 		return NULL;
675 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
676 		return kmalloc_node(bytes, flags, node);
677 	return __kmalloc_node(bytes, flags, node);
678 }
679 
680 static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
681 {
682 	return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
683 }
684 
685 
686 #ifdef CONFIG_NUMA
687 extern void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node,
688 					 unsigned long caller) __alloc_size(1);
689 #define kmalloc_node_track_caller(size, flags, node) \
690 	__kmalloc_node_track_caller(size, flags, node, \
691 			_RET_IP_)
692 
693 #else /* CONFIG_NUMA */
694 
695 #define kmalloc_node_track_caller(size, flags, node) \
696 	kmalloc_track_caller(size, flags)
697 
698 #endif /* CONFIG_NUMA */
699 
700 /*
701  * Shortcuts
702  */
703 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
704 {
705 	return kmem_cache_alloc(k, flags | __GFP_ZERO);
706 }
707 
708 /**
709  * kzalloc - allocate memory. The memory is set to zero.
710  * @size: how many bytes of memory are required.
711  * @flags: the type of memory to allocate (see kmalloc).
712  */
713 static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags)
714 {
715 	return kmalloc(size, flags | __GFP_ZERO);
716 }
717 
718 /**
719  * kzalloc_node - allocate zeroed memory from a particular memory node.
720  * @size: how many bytes of memory are required.
721  * @flags: the type of memory to allocate (see kmalloc).
722  * @node: memory node from which to allocate
723  */
724 static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node)
725 {
726 	return kmalloc_node(size, flags | __GFP_ZERO, node);
727 }
728 
729 extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1);
730 static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags)
731 {
732 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
733 }
734 static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node)
735 {
736 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
737 }
738 static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags)
739 {
740 	return kvmalloc(size, flags | __GFP_ZERO);
741 }
742 
743 static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
744 {
745 	size_t bytes;
746 
747 	if (unlikely(check_mul_overflow(n, size, &bytes)))
748 		return NULL;
749 
750 	return kvmalloc(bytes, flags);
751 }
752 
753 static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags)
754 {
755 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
756 }
757 
758 extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
759 		      __alloc_size(3);
760 extern void kvfree(const void *addr);
761 extern void kvfree_sensitive(const void *addr, size_t len);
762 
763 unsigned int kmem_cache_size(struct kmem_cache *s);
764 void __init kmem_cache_init_late(void);
765 
766 #if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
767 int slab_prepare_cpu(unsigned int cpu);
768 int slab_dead_cpu(unsigned int cpu);
769 #else
770 #define slab_prepare_cpu	NULL
771 #define slab_dead_cpu		NULL
772 #endif
773 
774 #endif	/* _LINUX_SLAB_H */
775