xref: /openbmc/linux/include/linux/skbuff.h (revision f21e49be)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
7  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #include <net/page_pool.h>
41 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
42 #include <linux/netfilter/nf_conntrack_common.h>
43 #endif
44 
45 /* The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * A. IP checksum related features
49  *
50  * Drivers advertise checksum offload capabilities in the features of a device.
51  * From the stack's point of view these are capabilities offered by the driver.
52  * A driver typically only advertises features that it is capable of offloading
53  * to its device.
54  *
55  * The checksum related features are:
56  *
57  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
58  *			  IP (one's complement) checksum for any combination
59  *			  of protocols or protocol layering. The checksum is
60  *			  computed and set in a packet per the CHECKSUM_PARTIAL
61  *			  interface (see below).
62  *
63  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
64  *			  TCP or UDP packets over IPv4. These are specifically
65  *			  unencapsulated packets of the form IPv4|TCP or
66  *			  IPv4|UDP where the Protocol field in the IPv4 header
67  *			  is TCP or UDP. The IPv4 header may contain IP options.
68  *			  This feature cannot be set in features for a device
69  *			  with NETIF_F_HW_CSUM also set. This feature is being
70  *			  DEPRECATED (see below).
71  *
72  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
73  *			  TCP or UDP packets over IPv6. These are specifically
74  *			  unencapsulated packets of the form IPv6|TCP or
75  *			  IPv6|UDP where the Next Header field in the IPv6
76  *			  header is either TCP or UDP. IPv6 extension headers
77  *			  are not supported with this feature. This feature
78  *			  cannot be set in features for a device with
79  *			  NETIF_F_HW_CSUM also set. This feature is being
80  *			  DEPRECATED (see below).
81  *
82  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
83  *			 This flag is only used to disable the RX checksum
84  *			 feature for a device. The stack will accept receive
85  *			 checksum indication in packets received on a device
86  *			 regardless of whether NETIF_F_RXCSUM is set.
87  *
88  * B. Checksumming of received packets by device. Indication of checksum
89  *    verification is set in skb->ip_summed. Possible values are:
90  *
91  * CHECKSUM_NONE:
92  *
93  *   Device did not checksum this packet e.g. due to lack of capabilities.
94  *   The packet contains full (though not verified) checksum in packet but
95  *   not in skb->csum. Thus, skb->csum is undefined in this case.
96  *
97  * CHECKSUM_UNNECESSARY:
98  *
99  *   The hardware you're dealing with doesn't calculate the full checksum
100  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
101  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
102  *   if their checksums are okay. skb->csum is still undefined in this case
103  *   though. A driver or device must never modify the checksum field in the
104  *   packet even if checksum is verified.
105  *
106  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
107  *     TCP: IPv6 and IPv4.
108  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
109  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
110  *       may perform further validation in this case.
111  *     GRE: only if the checksum is present in the header.
112  *     SCTP: indicates the CRC in SCTP header has been validated.
113  *     FCOE: indicates the CRC in FC frame has been validated.
114  *
115  *   skb->csum_level indicates the number of consecutive checksums found in
116  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
117  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
118  *   and a device is able to verify the checksums for UDP (possibly zero),
119  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
120  *   two. If the device were only able to verify the UDP checksum and not
121  *   GRE, either because it doesn't support GRE checksum or because GRE
122  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
123  *   not considered in this case).
124  *
125  * CHECKSUM_COMPLETE:
126  *
127  *   This is the most generic way. The device supplied checksum of the _whole_
128  *   packet as seen by netif_rx() and fills in skb->csum. This means the
129  *   hardware doesn't need to parse L3/L4 headers to implement this.
130  *
131  *   Notes:
132  *   - Even if device supports only some protocols, but is able to produce
133  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
134  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
135  *
136  * CHECKSUM_PARTIAL:
137  *
138  *   A checksum is set up to be offloaded to a device as described in the
139  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
140  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
141  *   on the same host, or it may be set in the input path in GRO or remote
142  *   checksum offload. For the purposes of checksum verification, the checksum
143  *   referred to by skb->csum_start + skb->csum_offset and any preceding
144  *   checksums in the packet are considered verified. Any checksums in the
145  *   packet that are after the checksum being offloaded are not considered to
146  *   be verified.
147  *
148  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
149  *    in the skb->ip_summed for a packet. Values are:
150  *
151  * CHECKSUM_PARTIAL:
152  *
153  *   The driver is required to checksum the packet as seen by hard_start_xmit()
154  *   from skb->csum_start up to the end, and to record/write the checksum at
155  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
156  *   csum_start and csum_offset values are valid values given the length and
157  *   offset of the packet, but it should not attempt to validate that the
158  *   checksum refers to a legitimate transport layer checksum -- it is the
159  *   purview of the stack to validate that csum_start and csum_offset are set
160  *   correctly.
161  *
162  *   When the stack requests checksum offload for a packet, the driver MUST
163  *   ensure that the checksum is set correctly. A driver can either offload the
164  *   checksum calculation to the device, or call skb_checksum_help (in the case
165  *   that the device does not support offload for a particular checksum).
166  *
167  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
168  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
169  *   checksum offload capability.
170  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
171  *   on network device checksumming capabilities: if a packet does not match
172  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
173  *   csum_not_inet, see item D.) is called to resolve the checksum.
174  *
175  * CHECKSUM_NONE:
176  *
177  *   The skb was already checksummed by the protocol, or a checksum is not
178  *   required.
179  *
180  * CHECKSUM_UNNECESSARY:
181  *
182  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
183  *   output.
184  *
185  * CHECKSUM_COMPLETE:
186  *   Not used in checksum output. If a driver observes a packet with this value
187  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
188  *
189  * D. Non-IP checksum (CRC) offloads
190  *
191  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
192  *     offloading the SCTP CRC in a packet. To perform this offload the stack
193  *     will set csum_start and csum_offset accordingly, set ip_summed to
194  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
195  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
196  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
197  *     must verify which offload is configured for a packet by testing the
198  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
199  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
200  *
201  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
202  *     offloading the FCOE CRC in a packet. To perform this offload the stack
203  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
204  *     accordingly. Note that there is no indication in the skbuff that the
205  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
206  *     both IP checksum offload and FCOE CRC offload must verify which offload
207  *     is configured for a packet, presumably by inspecting packet headers.
208  *
209  * E. Checksumming on output with GSO.
210  *
211  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
212  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
213  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
214  * part of the GSO operation is implied. If a checksum is being offloaded
215  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
216  * csum_offset are set to refer to the outermost checksum being offloaded
217  * (two offloaded checksums are possible with UDP encapsulation).
218  */
219 
220 /* Don't change this without changing skb_csum_unnecessary! */
221 #define CHECKSUM_NONE		0
222 #define CHECKSUM_UNNECESSARY	1
223 #define CHECKSUM_COMPLETE	2
224 #define CHECKSUM_PARTIAL	3
225 
226 /* Maximum value in skb->csum_level */
227 #define SKB_MAX_CSUM_LEVEL	3
228 
229 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
230 #define SKB_WITH_OVERHEAD(X)	\
231 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
232 #define SKB_MAX_ORDER(X, ORDER) \
233 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
234 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
235 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
236 
237 /* return minimum truesize of one skb containing X bytes of data */
238 #define SKB_TRUESIZE(X) ((X) +						\
239 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
240 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
241 
242 struct ahash_request;
243 struct net_device;
244 struct scatterlist;
245 struct pipe_inode_info;
246 struct iov_iter;
247 struct napi_struct;
248 struct bpf_prog;
249 union bpf_attr;
250 struct skb_ext;
251 
252 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
253 struct nf_bridge_info {
254 	enum {
255 		BRNF_PROTO_UNCHANGED,
256 		BRNF_PROTO_8021Q,
257 		BRNF_PROTO_PPPOE
258 	} orig_proto:8;
259 	u8			pkt_otherhost:1;
260 	u8			in_prerouting:1;
261 	u8			bridged_dnat:1;
262 	__u16			frag_max_size;
263 	struct net_device	*physindev;
264 
265 	/* always valid & non-NULL from FORWARD on, for physdev match */
266 	struct net_device	*physoutdev;
267 	union {
268 		/* prerouting: detect dnat in orig/reply direction */
269 		__be32          ipv4_daddr;
270 		struct in6_addr ipv6_daddr;
271 
272 		/* after prerouting + nat detected: store original source
273 		 * mac since neigh resolution overwrites it, only used while
274 		 * skb is out in neigh layer.
275 		 */
276 		char neigh_header[8];
277 	};
278 };
279 #endif
280 
281 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
282 /* Chain in tc_skb_ext will be used to share the tc chain with
283  * ovs recirc_id. It will be set to the current chain by tc
284  * and read by ovs to recirc_id.
285  */
286 struct tc_skb_ext {
287 	__u32 chain;
288 	__u16 mru;
289 	bool post_ct;
290 };
291 #endif
292 
293 struct sk_buff_head {
294 	/* These two members must be first. */
295 	struct sk_buff	*next;
296 	struct sk_buff	*prev;
297 
298 	__u32		qlen;
299 	spinlock_t	lock;
300 };
301 
302 struct sk_buff;
303 
304 /* To allow 64K frame to be packed as single skb without frag_list we
305  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
306  * buffers which do not start on a page boundary.
307  *
308  * Since GRO uses frags we allocate at least 16 regardless of page
309  * size.
310  */
311 #if (65536/PAGE_SIZE + 1) < 16
312 #define MAX_SKB_FRAGS 16UL
313 #else
314 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
315 #endif
316 extern int sysctl_max_skb_frags;
317 
318 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
319  * segment using its current segmentation instead.
320  */
321 #define GSO_BY_FRAGS	0xFFFF
322 
323 typedef struct bio_vec skb_frag_t;
324 
325 /**
326  * skb_frag_size() - Returns the size of a skb fragment
327  * @frag: skb fragment
328  */
329 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
330 {
331 	return frag->bv_len;
332 }
333 
334 /**
335  * skb_frag_size_set() - Sets the size of a skb fragment
336  * @frag: skb fragment
337  * @size: size of fragment
338  */
339 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
340 {
341 	frag->bv_len = size;
342 }
343 
344 /**
345  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
346  * @frag: skb fragment
347  * @delta: value to add
348  */
349 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
350 {
351 	frag->bv_len += delta;
352 }
353 
354 /**
355  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
356  * @frag: skb fragment
357  * @delta: value to subtract
358  */
359 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
360 {
361 	frag->bv_len -= delta;
362 }
363 
364 /**
365  * skb_frag_must_loop - Test if %p is a high memory page
366  * @p: fragment's page
367  */
368 static inline bool skb_frag_must_loop(struct page *p)
369 {
370 #if defined(CONFIG_HIGHMEM)
371 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
372 		return true;
373 #endif
374 	return false;
375 }
376 
377 /**
378  *	skb_frag_foreach_page - loop over pages in a fragment
379  *
380  *	@f:		skb frag to operate on
381  *	@f_off:		offset from start of f->bv_page
382  *	@f_len:		length from f_off to loop over
383  *	@p:		(temp var) current page
384  *	@p_off:		(temp var) offset from start of current page,
385  *	                           non-zero only on first page.
386  *	@p_len:		(temp var) length in current page,
387  *				   < PAGE_SIZE only on first and last page.
388  *	@copied:	(temp var) length so far, excluding current p_len.
389  *
390  *	A fragment can hold a compound page, in which case per-page
391  *	operations, notably kmap_atomic, must be called for each
392  *	regular page.
393  */
394 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
395 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
396 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
397 	     p_len = skb_frag_must_loop(p) ?				\
398 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
399 	     copied = 0;						\
400 	     copied < f_len;						\
401 	     copied += p_len, p++, p_off = 0,				\
402 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
403 
404 #define HAVE_HW_TIME_STAMP
405 
406 /**
407  * struct skb_shared_hwtstamps - hardware time stamps
408  * @hwtstamp:	hardware time stamp transformed into duration
409  *		since arbitrary point in time
410  *
411  * Software time stamps generated by ktime_get_real() are stored in
412  * skb->tstamp.
413  *
414  * hwtstamps can only be compared against other hwtstamps from
415  * the same device.
416  *
417  * This structure is attached to packets as part of the
418  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
419  */
420 struct skb_shared_hwtstamps {
421 	ktime_t	hwtstamp;
422 };
423 
424 /* Definitions for tx_flags in struct skb_shared_info */
425 enum {
426 	/* generate hardware time stamp */
427 	SKBTX_HW_TSTAMP = 1 << 0,
428 
429 	/* generate software time stamp when queueing packet to NIC */
430 	SKBTX_SW_TSTAMP = 1 << 1,
431 
432 	/* device driver is going to provide hardware time stamp */
433 	SKBTX_IN_PROGRESS = 1 << 2,
434 
435 	/* generate wifi status information (where possible) */
436 	SKBTX_WIFI_STATUS = 1 << 4,
437 
438 	/* generate software time stamp when entering packet scheduling */
439 	SKBTX_SCHED_TSTAMP = 1 << 6,
440 };
441 
442 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
443 				 SKBTX_SCHED_TSTAMP)
444 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
445 
446 /* Definitions for flags in struct skb_shared_info */
447 enum {
448 	/* use zcopy routines */
449 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
450 
451 	/* This indicates at least one fragment might be overwritten
452 	 * (as in vmsplice(), sendfile() ...)
453 	 * If we need to compute a TX checksum, we'll need to copy
454 	 * all frags to avoid possible bad checksum
455 	 */
456 	SKBFL_SHARED_FRAG = BIT(1),
457 
458 	/* segment contains only zerocopy data and should not be
459 	 * charged to the kernel memory.
460 	 */
461 	SKBFL_PURE_ZEROCOPY = BIT(2),
462 };
463 
464 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
465 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY)
466 
467 /*
468  * The callback notifies userspace to release buffers when skb DMA is done in
469  * lower device, the skb last reference should be 0 when calling this.
470  * The zerocopy_success argument is true if zero copy transmit occurred,
471  * false on data copy or out of memory error caused by data copy attempt.
472  * The ctx field is used to track device context.
473  * The desc field is used to track userspace buffer index.
474  */
475 struct ubuf_info {
476 	void (*callback)(struct sk_buff *, struct ubuf_info *,
477 			 bool zerocopy_success);
478 	union {
479 		struct {
480 			unsigned long desc;
481 			void *ctx;
482 		};
483 		struct {
484 			u32 id;
485 			u16 len;
486 			u16 zerocopy:1;
487 			u32 bytelen;
488 		};
489 	};
490 	refcount_t refcnt;
491 	u8 flags;
492 
493 	struct mmpin {
494 		struct user_struct *user;
495 		unsigned int num_pg;
496 	} mmp;
497 };
498 
499 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
500 
501 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
502 void mm_unaccount_pinned_pages(struct mmpin *mmp);
503 
504 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size);
505 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
506 				       struct ubuf_info *uarg);
507 
508 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
509 
510 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
511 			   bool success);
512 
513 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
514 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
515 			     struct msghdr *msg, int len,
516 			     struct ubuf_info *uarg);
517 
518 /* This data is invariant across clones and lives at
519  * the end of the header data, ie. at skb->end.
520  */
521 struct skb_shared_info {
522 	__u8		flags;
523 	__u8		meta_len;
524 	__u8		nr_frags;
525 	__u8		tx_flags;
526 	unsigned short	gso_size;
527 	/* Warning: this field is not always filled in (UFO)! */
528 	unsigned short	gso_segs;
529 	struct sk_buff	*frag_list;
530 	struct skb_shared_hwtstamps hwtstamps;
531 	unsigned int	gso_type;
532 	u32		tskey;
533 
534 	/*
535 	 * Warning : all fields before dataref are cleared in __alloc_skb()
536 	 */
537 	atomic_t	dataref;
538 
539 	/* Intermediate layers must ensure that destructor_arg
540 	 * remains valid until skb destructor */
541 	void *		destructor_arg;
542 
543 	/* must be last field, see pskb_expand_head() */
544 	skb_frag_t	frags[MAX_SKB_FRAGS];
545 };
546 
547 /* We divide dataref into two halves.  The higher 16 bits hold references
548  * to the payload part of skb->data.  The lower 16 bits hold references to
549  * the entire skb->data.  A clone of a headerless skb holds the length of
550  * the header in skb->hdr_len.
551  *
552  * All users must obey the rule that the skb->data reference count must be
553  * greater than or equal to the payload reference count.
554  *
555  * Holding a reference to the payload part means that the user does not
556  * care about modifications to the header part of skb->data.
557  */
558 #define SKB_DATAREF_SHIFT 16
559 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
560 
561 
562 enum {
563 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
564 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
565 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
566 };
567 
568 enum {
569 	SKB_GSO_TCPV4 = 1 << 0,
570 
571 	/* This indicates the skb is from an untrusted source. */
572 	SKB_GSO_DODGY = 1 << 1,
573 
574 	/* This indicates the tcp segment has CWR set. */
575 	SKB_GSO_TCP_ECN = 1 << 2,
576 
577 	SKB_GSO_TCP_FIXEDID = 1 << 3,
578 
579 	SKB_GSO_TCPV6 = 1 << 4,
580 
581 	SKB_GSO_FCOE = 1 << 5,
582 
583 	SKB_GSO_GRE = 1 << 6,
584 
585 	SKB_GSO_GRE_CSUM = 1 << 7,
586 
587 	SKB_GSO_IPXIP4 = 1 << 8,
588 
589 	SKB_GSO_IPXIP6 = 1 << 9,
590 
591 	SKB_GSO_UDP_TUNNEL = 1 << 10,
592 
593 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
594 
595 	SKB_GSO_PARTIAL = 1 << 12,
596 
597 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
598 
599 	SKB_GSO_SCTP = 1 << 14,
600 
601 	SKB_GSO_ESP = 1 << 15,
602 
603 	SKB_GSO_UDP = 1 << 16,
604 
605 	SKB_GSO_UDP_L4 = 1 << 17,
606 
607 	SKB_GSO_FRAGLIST = 1 << 18,
608 };
609 
610 #if BITS_PER_LONG > 32
611 #define NET_SKBUFF_DATA_USES_OFFSET 1
612 #endif
613 
614 #ifdef NET_SKBUFF_DATA_USES_OFFSET
615 typedef unsigned int sk_buff_data_t;
616 #else
617 typedef unsigned char *sk_buff_data_t;
618 #endif
619 
620 /**
621  *	struct sk_buff - socket buffer
622  *	@next: Next buffer in list
623  *	@prev: Previous buffer in list
624  *	@tstamp: Time we arrived/left
625  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
626  *		for retransmit timer
627  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
628  *	@list: queue head
629  *	@sk: Socket we are owned by
630  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
631  *		fragmentation management
632  *	@dev: Device we arrived on/are leaving by
633  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
634  *	@cb: Control buffer. Free for use by every layer. Put private vars here
635  *	@_skb_refdst: destination entry (with norefcount bit)
636  *	@sp: the security path, used for xfrm
637  *	@len: Length of actual data
638  *	@data_len: Data length
639  *	@mac_len: Length of link layer header
640  *	@hdr_len: writable header length of cloned skb
641  *	@csum: Checksum (must include start/offset pair)
642  *	@csum_start: Offset from skb->head where checksumming should start
643  *	@csum_offset: Offset from csum_start where checksum should be stored
644  *	@priority: Packet queueing priority
645  *	@ignore_df: allow local fragmentation
646  *	@cloned: Head may be cloned (check refcnt to be sure)
647  *	@ip_summed: Driver fed us an IP checksum
648  *	@nohdr: Payload reference only, must not modify header
649  *	@pkt_type: Packet class
650  *	@fclone: skbuff clone status
651  *	@ipvs_property: skbuff is owned by ipvs
652  *	@inner_protocol_type: whether the inner protocol is
653  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
654  *	@remcsum_offload: remote checksum offload is enabled
655  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
656  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
657  *	@tc_skip_classify: do not classify packet. set by IFB device
658  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
659  *	@redirected: packet was redirected by packet classifier
660  *	@from_ingress: packet was redirected from the ingress path
661  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
662  *	@peeked: this packet has been seen already, so stats have been
663  *		done for it, don't do them again
664  *	@nf_trace: netfilter packet trace flag
665  *	@protocol: Packet protocol from driver
666  *	@destructor: Destruct function
667  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
668  *	@_sk_redir: socket redirection information for skmsg
669  *	@_nfct: Associated connection, if any (with nfctinfo bits)
670  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
671  *	@skb_iif: ifindex of device we arrived on
672  *	@tc_index: Traffic control index
673  *	@hash: the packet hash
674  *	@queue_mapping: Queue mapping for multiqueue devices
675  *	@head_frag: skb was allocated from page fragments,
676  *		not allocated by kmalloc() or vmalloc().
677  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
678  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
679  *		page_pool support on driver)
680  *	@active_extensions: active extensions (skb_ext_id types)
681  *	@ndisc_nodetype: router type (from link layer)
682  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
683  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
684  *		ports.
685  *	@sw_hash: indicates hash was computed in software stack
686  *	@wifi_acked_valid: wifi_acked was set
687  *	@wifi_acked: whether frame was acked on wifi or not
688  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
689  *	@encapsulation: indicates the inner headers in the skbuff are valid
690  *	@encap_hdr_csum: software checksum is needed
691  *	@csum_valid: checksum is already valid
692  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
693  *	@csum_complete_sw: checksum was completed by software
694  *	@csum_level: indicates the number of consecutive checksums found in
695  *		the packet minus one that have been verified as
696  *		CHECKSUM_UNNECESSARY (max 3)
697  *	@dst_pending_confirm: need to confirm neighbour
698  *	@decrypted: Decrypted SKB
699  *	@slow_gro: state present at GRO time, slower prepare step required
700  *	@napi_id: id of the NAPI struct this skb came from
701  *	@sender_cpu: (aka @napi_id) source CPU in XPS
702  *	@secmark: security marking
703  *	@mark: Generic packet mark
704  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
705  *		at the tail of an sk_buff
706  *	@vlan_present: VLAN tag is present
707  *	@vlan_proto: vlan encapsulation protocol
708  *	@vlan_tci: vlan tag control information
709  *	@inner_protocol: Protocol (encapsulation)
710  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
711  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
712  *	@inner_transport_header: Inner transport layer header (encapsulation)
713  *	@inner_network_header: Network layer header (encapsulation)
714  *	@inner_mac_header: Link layer header (encapsulation)
715  *	@transport_header: Transport layer header
716  *	@network_header: Network layer header
717  *	@mac_header: Link layer header
718  *	@kcov_handle: KCOV remote handle for remote coverage collection
719  *	@tail: Tail pointer
720  *	@end: End pointer
721  *	@head: Head of buffer
722  *	@data: Data head pointer
723  *	@truesize: Buffer size
724  *	@users: User count - see {datagram,tcp}.c
725  *	@extensions: allocated extensions, valid if active_extensions is nonzero
726  */
727 
728 struct sk_buff {
729 	union {
730 		struct {
731 			/* These two members must be first. */
732 			struct sk_buff		*next;
733 			struct sk_buff		*prev;
734 
735 			union {
736 				struct net_device	*dev;
737 				/* Some protocols might use this space to store information,
738 				 * while device pointer would be NULL.
739 				 * UDP receive path is one user.
740 				 */
741 				unsigned long		dev_scratch;
742 			};
743 		};
744 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
745 		struct list_head	list;
746 	};
747 
748 	union {
749 		struct sock		*sk;
750 		int			ip_defrag_offset;
751 	};
752 
753 	union {
754 		ktime_t		tstamp;
755 		u64		skb_mstamp_ns; /* earliest departure time */
756 	};
757 	/*
758 	 * This is the control buffer. It is free to use for every
759 	 * layer. Please put your private variables there. If you
760 	 * want to keep them across layers you have to do a skb_clone()
761 	 * first. This is owned by whoever has the skb queued ATM.
762 	 */
763 	char			cb[48] __aligned(8);
764 
765 	union {
766 		struct {
767 			unsigned long	_skb_refdst;
768 			void		(*destructor)(struct sk_buff *skb);
769 		};
770 		struct list_head	tcp_tsorted_anchor;
771 #ifdef CONFIG_NET_SOCK_MSG
772 		unsigned long		_sk_redir;
773 #endif
774 	};
775 
776 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
777 	unsigned long		 _nfct;
778 #endif
779 	unsigned int		len,
780 				data_len;
781 	__u16			mac_len,
782 				hdr_len;
783 
784 	/* Following fields are _not_ copied in __copy_skb_header()
785 	 * Note that queue_mapping is here mostly to fill a hole.
786 	 */
787 	__u16			queue_mapping;
788 
789 /* if you move cloned around you also must adapt those constants */
790 #ifdef __BIG_ENDIAN_BITFIELD
791 #define CLONED_MASK	(1 << 7)
792 #else
793 #define CLONED_MASK	1
794 #endif
795 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
796 
797 	/* private: */
798 	__u8			__cloned_offset[0];
799 	/* public: */
800 	__u8			cloned:1,
801 				nohdr:1,
802 				fclone:2,
803 				peeked:1,
804 				head_frag:1,
805 				pfmemalloc:1,
806 				pp_recycle:1; /* page_pool recycle indicator */
807 #ifdef CONFIG_SKB_EXTENSIONS
808 	__u8			active_extensions;
809 #endif
810 
811 	/* fields enclosed in headers_start/headers_end are copied
812 	 * using a single memcpy() in __copy_skb_header()
813 	 */
814 	/* private: */
815 	__u32			headers_start[0];
816 	/* public: */
817 
818 /* if you move pkt_type around you also must adapt those constants */
819 #ifdef __BIG_ENDIAN_BITFIELD
820 #define PKT_TYPE_MAX	(7 << 5)
821 #else
822 #define PKT_TYPE_MAX	7
823 #endif
824 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
825 
826 	/* private: */
827 	__u8			__pkt_type_offset[0];
828 	/* public: */
829 	__u8			pkt_type:3;
830 	__u8			ignore_df:1;
831 	__u8			nf_trace:1;
832 	__u8			ip_summed:2;
833 	__u8			ooo_okay:1;
834 
835 	__u8			l4_hash:1;
836 	__u8			sw_hash:1;
837 	__u8			wifi_acked_valid:1;
838 	__u8			wifi_acked:1;
839 	__u8			no_fcs:1;
840 	/* Indicates the inner headers are valid in the skbuff. */
841 	__u8			encapsulation:1;
842 	__u8			encap_hdr_csum:1;
843 	__u8			csum_valid:1;
844 
845 #ifdef __BIG_ENDIAN_BITFIELD
846 #define PKT_VLAN_PRESENT_BIT	7
847 #else
848 #define PKT_VLAN_PRESENT_BIT	0
849 #endif
850 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
851 	/* private: */
852 	__u8			__pkt_vlan_present_offset[0];
853 	/* public: */
854 	__u8			vlan_present:1;
855 	__u8			csum_complete_sw:1;
856 	__u8			csum_level:2;
857 	__u8			csum_not_inet:1;
858 	__u8			dst_pending_confirm:1;
859 #ifdef CONFIG_IPV6_NDISC_NODETYPE
860 	__u8			ndisc_nodetype:2;
861 #endif
862 
863 	__u8			ipvs_property:1;
864 	__u8			inner_protocol_type:1;
865 	__u8			remcsum_offload:1;
866 #ifdef CONFIG_NET_SWITCHDEV
867 	__u8			offload_fwd_mark:1;
868 	__u8			offload_l3_fwd_mark:1;
869 #endif
870 #ifdef CONFIG_NET_CLS_ACT
871 	__u8			tc_skip_classify:1;
872 	__u8			tc_at_ingress:1;
873 #endif
874 	__u8			redirected:1;
875 #ifdef CONFIG_NET_REDIRECT
876 	__u8			from_ingress:1;
877 #endif
878 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
879 	__u8			nf_skip_egress:1;
880 #endif
881 #ifdef CONFIG_TLS_DEVICE
882 	__u8			decrypted:1;
883 #endif
884 	__u8			slow_gro:1;
885 
886 #ifdef CONFIG_NET_SCHED
887 	__u16			tc_index;	/* traffic control index */
888 #endif
889 
890 	union {
891 		__wsum		csum;
892 		struct {
893 			__u16	csum_start;
894 			__u16	csum_offset;
895 		};
896 	};
897 	__u32			priority;
898 	int			skb_iif;
899 	__u32			hash;
900 	__be16			vlan_proto;
901 	__u16			vlan_tci;
902 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
903 	union {
904 		unsigned int	napi_id;
905 		unsigned int	sender_cpu;
906 	};
907 #endif
908 #ifdef CONFIG_NETWORK_SECMARK
909 	__u32		secmark;
910 #endif
911 
912 	union {
913 		__u32		mark;
914 		__u32		reserved_tailroom;
915 	};
916 
917 	union {
918 		__be16		inner_protocol;
919 		__u8		inner_ipproto;
920 	};
921 
922 	__u16			inner_transport_header;
923 	__u16			inner_network_header;
924 	__u16			inner_mac_header;
925 
926 	__be16			protocol;
927 	__u16			transport_header;
928 	__u16			network_header;
929 	__u16			mac_header;
930 
931 #ifdef CONFIG_KCOV
932 	u64			kcov_handle;
933 #endif
934 
935 	/* private: */
936 	__u32			headers_end[0];
937 	/* public: */
938 
939 	/* These elements must be at the end, see alloc_skb() for details.  */
940 	sk_buff_data_t		tail;
941 	sk_buff_data_t		end;
942 	unsigned char		*head,
943 				*data;
944 	unsigned int		truesize;
945 	refcount_t		users;
946 
947 #ifdef CONFIG_SKB_EXTENSIONS
948 	/* only useable after checking ->active_extensions != 0 */
949 	struct skb_ext		*extensions;
950 #endif
951 };
952 
953 #ifdef __KERNEL__
954 /*
955  *	Handling routines are only of interest to the kernel
956  */
957 
958 #define SKB_ALLOC_FCLONE	0x01
959 #define SKB_ALLOC_RX		0x02
960 #define SKB_ALLOC_NAPI		0x04
961 
962 /**
963  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
964  * @skb: buffer
965  */
966 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
967 {
968 	return unlikely(skb->pfmemalloc);
969 }
970 
971 /*
972  * skb might have a dst pointer attached, refcounted or not.
973  * _skb_refdst low order bit is set if refcount was _not_ taken
974  */
975 #define SKB_DST_NOREF	1UL
976 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
977 
978 /**
979  * skb_dst - returns skb dst_entry
980  * @skb: buffer
981  *
982  * Returns skb dst_entry, regardless of reference taken or not.
983  */
984 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
985 {
986 	/* If refdst was not refcounted, check we still are in a
987 	 * rcu_read_lock section
988 	 */
989 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
990 		!rcu_read_lock_held() &&
991 		!rcu_read_lock_bh_held());
992 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
993 }
994 
995 /**
996  * skb_dst_set - sets skb dst
997  * @skb: buffer
998  * @dst: dst entry
999  *
1000  * Sets skb dst, assuming a reference was taken on dst and should
1001  * be released by skb_dst_drop()
1002  */
1003 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1004 {
1005 	skb->slow_gro |= !!dst;
1006 	skb->_skb_refdst = (unsigned long)dst;
1007 }
1008 
1009 /**
1010  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1011  * @skb: buffer
1012  * @dst: dst entry
1013  *
1014  * Sets skb dst, assuming a reference was not taken on dst.
1015  * If dst entry is cached, we do not take reference and dst_release
1016  * will be avoided by refdst_drop. If dst entry is not cached, we take
1017  * reference, so that last dst_release can destroy the dst immediately.
1018  */
1019 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1020 {
1021 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1022 	skb->slow_gro |= !!dst;
1023 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1024 }
1025 
1026 /**
1027  * skb_dst_is_noref - Test if skb dst isn't refcounted
1028  * @skb: buffer
1029  */
1030 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1031 {
1032 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1033 }
1034 
1035 /**
1036  * skb_rtable - Returns the skb &rtable
1037  * @skb: buffer
1038  */
1039 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1040 {
1041 	return (struct rtable *)skb_dst(skb);
1042 }
1043 
1044 /* For mangling skb->pkt_type from user space side from applications
1045  * such as nft, tc, etc, we only allow a conservative subset of
1046  * possible pkt_types to be set.
1047 */
1048 static inline bool skb_pkt_type_ok(u32 ptype)
1049 {
1050 	return ptype <= PACKET_OTHERHOST;
1051 }
1052 
1053 /**
1054  * skb_napi_id - Returns the skb's NAPI id
1055  * @skb: buffer
1056  */
1057 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1058 {
1059 #ifdef CONFIG_NET_RX_BUSY_POLL
1060 	return skb->napi_id;
1061 #else
1062 	return 0;
1063 #endif
1064 }
1065 
1066 /**
1067  * skb_unref - decrement the skb's reference count
1068  * @skb: buffer
1069  *
1070  * Returns true if we can free the skb.
1071  */
1072 static inline bool skb_unref(struct sk_buff *skb)
1073 {
1074 	if (unlikely(!skb))
1075 		return false;
1076 	if (likely(refcount_read(&skb->users) == 1))
1077 		smp_rmb();
1078 	else if (likely(!refcount_dec_and_test(&skb->users)))
1079 		return false;
1080 
1081 	return true;
1082 }
1083 
1084 void skb_release_head_state(struct sk_buff *skb);
1085 void kfree_skb(struct sk_buff *skb);
1086 void kfree_skb_list(struct sk_buff *segs);
1087 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1088 void skb_tx_error(struct sk_buff *skb);
1089 
1090 #ifdef CONFIG_TRACEPOINTS
1091 void consume_skb(struct sk_buff *skb);
1092 #else
1093 static inline void consume_skb(struct sk_buff *skb)
1094 {
1095 	return kfree_skb(skb);
1096 }
1097 #endif
1098 
1099 void __consume_stateless_skb(struct sk_buff *skb);
1100 void  __kfree_skb(struct sk_buff *skb);
1101 extern struct kmem_cache *skbuff_head_cache;
1102 
1103 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1104 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1105 		      bool *fragstolen, int *delta_truesize);
1106 
1107 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1108 			    int node);
1109 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1110 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1111 struct sk_buff *build_skb_around(struct sk_buff *skb,
1112 				 void *data, unsigned int frag_size);
1113 
1114 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1115 
1116 /**
1117  * alloc_skb - allocate a network buffer
1118  * @size: size to allocate
1119  * @priority: allocation mask
1120  *
1121  * This function is a convenient wrapper around __alloc_skb().
1122  */
1123 static inline struct sk_buff *alloc_skb(unsigned int size,
1124 					gfp_t priority)
1125 {
1126 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1127 }
1128 
1129 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1130 				     unsigned long data_len,
1131 				     int max_page_order,
1132 				     int *errcode,
1133 				     gfp_t gfp_mask);
1134 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1135 
1136 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1137 struct sk_buff_fclones {
1138 	struct sk_buff	skb1;
1139 
1140 	struct sk_buff	skb2;
1141 
1142 	refcount_t	fclone_ref;
1143 };
1144 
1145 /**
1146  *	skb_fclone_busy - check if fclone is busy
1147  *	@sk: socket
1148  *	@skb: buffer
1149  *
1150  * Returns true if skb is a fast clone, and its clone is not freed.
1151  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1152  * so we also check that this didnt happen.
1153  */
1154 static inline bool skb_fclone_busy(const struct sock *sk,
1155 				   const struct sk_buff *skb)
1156 {
1157 	const struct sk_buff_fclones *fclones;
1158 
1159 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1160 
1161 	return skb->fclone == SKB_FCLONE_ORIG &&
1162 	       refcount_read(&fclones->fclone_ref) > 1 &&
1163 	       READ_ONCE(fclones->skb2.sk) == sk;
1164 }
1165 
1166 /**
1167  * alloc_skb_fclone - allocate a network buffer from fclone cache
1168  * @size: size to allocate
1169  * @priority: allocation mask
1170  *
1171  * This function is a convenient wrapper around __alloc_skb().
1172  */
1173 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1174 					       gfp_t priority)
1175 {
1176 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1177 }
1178 
1179 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1180 void skb_headers_offset_update(struct sk_buff *skb, int off);
1181 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1182 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1183 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1184 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1185 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1186 				   gfp_t gfp_mask, bool fclone);
1187 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1188 					  gfp_t gfp_mask)
1189 {
1190 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1191 }
1192 
1193 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1194 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1195 				     unsigned int headroom);
1196 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1197 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1198 				int newtailroom, gfp_t priority);
1199 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1200 				     int offset, int len);
1201 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1202 			      int offset, int len);
1203 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1204 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1205 
1206 /**
1207  *	skb_pad			-	zero pad the tail of an skb
1208  *	@skb: buffer to pad
1209  *	@pad: space to pad
1210  *
1211  *	Ensure that a buffer is followed by a padding area that is zero
1212  *	filled. Used by network drivers which may DMA or transfer data
1213  *	beyond the buffer end onto the wire.
1214  *
1215  *	May return error in out of memory cases. The skb is freed on error.
1216  */
1217 static inline int skb_pad(struct sk_buff *skb, int pad)
1218 {
1219 	return __skb_pad(skb, pad, true);
1220 }
1221 #define dev_kfree_skb(a)	consume_skb(a)
1222 
1223 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1224 			 int offset, size_t size);
1225 
1226 struct skb_seq_state {
1227 	__u32		lower_offset;
1228 	__u32		upper_offset;
1229 	__u32		frag_idx;
1230 	__u32		stepped_offset;
1231 	struct sk_buff	*root_skb;
1232 	struct sk_buff	*cur_skb;
1233 	__u8		*frag_data;
1234 	__u32		frag_off;
1235 };
1236 
1237 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1238 			  unsigned int to, struct skb_seq_state *st);
1239 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1240 			  struct skb_seq_state *st);
1241 void skb_abort_seq_read(struct skb_seq_state *st);
1242 
1243 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1244 			   unsigned int to, struct ts_config *config);
1245 
1246 /*
1247  * Packet hash types specify the type of hash in skb_set_hash.
1248  *
1249  * Hash types refer to the protocol layer addresses which are used to
1250  * construct a packet's hash. The hashes are used to differentiate or identify
1251  * flows of the protocol layer for the hash type. Hash types are either
1252  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1253  *
1254  * Properties of hashes:
1255  *
1256  * 1) Two packets in different flows have different hash values
1257  * 2) Two packets in the same flow should have the same hash value
1258  *
1259  * A hash at a higher layer is considered to be more specific. A driver should
1260  * set the most specific hash possible.
1261  *
1262  * A driver cannot indicate a more specific hash than the layer at which a hash
1263  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1264  *
1265  * A driver may indicate a hash level which is less specific than the
1266  * actual layer the hash was computed on. For instance, a hash computed
1267  * at L4 may be considered an L3 hash. This should only be done if the
1268  * driver can't unambiguously determine that the HW computed the hash at
1269  * the higher layer. Note that the "should" in the second property above
1270  * permits this.
1271  */
1272 enum pkt_hash_types {
1273 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1274 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1275 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1276 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1277 };
1278 
1279 static inline void skb_clear_hash(struct sk_buff *skb)
1280 {
1281 	skb->hash = 0;
1282 	skb->sw_hash = 0;
1283 	skb->l4_hash = 0;
1284 }
1285 
1286 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1287 {
1288 	if (!skb->l4_hash)
1289 		skb_clear_hash(skb);
1290 }
1291 
1292 static inline void
1293 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1294 {
1295 	skb->l4_hash = is_l4;
1296 	skb->sw_hash = is_sw;
1297 	skb->hash = hash;
1298 }
1299 
1300 static inline void
1301 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1302 {
1303 	/* Used by drivers to set hash from HW */
1304 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1305 }
1306 
1307 static inline void
1308 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1309 {
1310 	__skb_set_hash(skb, hash, true, is_l4);
1311 }
1312 
1313 void __skb_get_hash(struct sk_buff *skb);
1314 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1315 u32 skb_get_poff(const struct sk_buff *skb);
1316 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1317 		   const struct flow_keys_basic *keys, int hlen);
1318 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1319 			    const void *data, int hlen_proto);
1320 
1321 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1322 					int thoff, u8 ip_proto)
1323 {
1324 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1325 }
1326 
1327 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1328 			     const struct flow_dissector_key *key,
1329 			     unsigned int key_count);
1330 
1331 struct bpf_flow_dissector;
1332 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1333 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1334 
1335 bool __skb_flow_dissect(const struct net *net,
1336 			const struct sk_buff *skb,
1337 			struct flow_dissector *flow_dissector,
1338 			void *target_container, const void *data,
1339 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1340 
1341 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1342 				    struct flow_dissector *flow_dissector,
1343 				    void *target_container, unsigned int flags)
1344 {
1345 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1346 				  target_container, NULL, 0, 0, 0, flags);
1347 }
1348 
1349 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1350 					      struct flow_keys *flow,
1351 					      unsigned int flags)
1352 {
1353 	memset(flow, 0, sizeof(*flow));
1354 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1355 				  flow, NULL, 0, 0, 0, flags);
1356 }
1357 
1358 static inline bool
1359 skb_flow_dissect_flow_keys_basic(const struct net *net,
1360 				 const struct sk_buff *skb,
1361 				 struct flow_keys_basic *flow,
1362 				 const void *data, __be16 proto,
1363 				 int nhoff, int hlen, unsigned int flags)
1364 {
1365 	memset(flow, 0, sizeof(*flow));
1366 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1367 				  data, proto, nhoff, hlen, flags);
1368 }
1369 
1370 void skb_flow_dissect_meta(const struct sk_buff *skb,
1371 			   struct flow_dissector *flow_dissector,
1372 			   void *target_container);
1373 
1374 /* Gets a skb connection tracking info, ctinfo map should be a
1375  * map of mapsize to translate enum ip_conntrack_info states
1376  * to user states.
1377  */
1378 void
1379 skb_flow_dissect_ct(const struct sk_buff *skb,
1380 		    struct flow_dissector *flow_dissector,
1381 		    void *target_container,
1382 		    u16 *ctinfo_map, size_t mapsize,
1383 		    bool post_ct);
1384 void
1385 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1386 			     struct flow_dissector *flow_dissector,
1387 			     void *target_container);
1388 
1389 void skb_flow_dissect_hash(const struct sk_buff *skb,
1390 			   struct flow_dissector *flow_dissector,
1391 			   void *target_container);
1392 
1393 static inline __u32 skb_get_hash(struct sk_buff *skb)
1394 {
1395 	if (!skb->l4_hash && !skb->sw_hash)
1396 		__skb_get_hash(skb);
1397 
1398 	return skb->hash;
1399 }
1400 
1401 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1402 {
1403 	if (!skb->l4_hash && !skb->sw_hash) {
1404 		struct flow_keys keys;
1405 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1406 
1407 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1408 	}
1409 
1410 	return skb->hash;
1411 }
1412 
1413 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1414 			   const siphash_key_t *perturb);
1415 
1416 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1417 {
1418 	return skb->hash;
1419 }
1420 
1421 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1422 {
1423 	to->hash = from->hash;
1424 	to->sw_hash = from->sw_hash;
1425 	to->l4_hash = from->l4_hash;
1426 };
1427 
1428 static inline void skb_copy_decrypted(struct sk_buff *to,
1429 				      const struct sk_buff *from)
1430 {
1431 #ifdef CONFIG_TLS_DEVICE
1432 	to->decrypted = from->decrypted;
1433 #endif
1434 }
1435 
1436 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1437 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1438 {
1439 	return skb->head + skb->end;
1440 }
1441 
1442 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1443 {
1444 	return skb->end;
1445 }
1446 #else
1447 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1448 {
1449 	return skb->end;
1450 }
1451 
1452 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1453 {
1454 	return skb->end - skb->head;
1455 }
1456 #endif
1457 
1458 /* Internal */
1459 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1460 
1461 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1462 {
1463 	return &skb_shinfo(skb)->hwtstamps;
1464 }
1465 
1466 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1467 {
1468 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1469 
1470 	return is_zcopy ? skb_uarg(skb) : NULL;
1471 }
1472 
1473 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1474 {
1475 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1476 }
1477 
1478 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1479 				       const struct sk_buff *skb2)
1480 {
1481 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1482 }
1483 
1484 static inline void net_zcopy_get(struct ubuf_info *uarg)
1485 {
1486 	refcount_inc(&uarg->refcnt);
1487 }
1488 
1489 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1490 {
1491 	skb_shinfo(skb)->destructor_arg = uarg;
1492 	skb_shinfo(skb)->flags |= uarg->flags;
1493 }
1494 
1495 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1496 				 bool *have_ref)
1497 {
1498 	if (skb && uarg && !skb_zcopy(skb)) {
1499 		if (unlikely(have_ref && *have_ref))
1500 			*have_ref = false;
1501 		else
1502 			net_zcopy_get(uarg);
1503 		skb_zcopy_init(skb, uarg);
1504 	}
1505 }
1506 
1507 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1508 {
1509 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1510 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1511 }
1512 
1513 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1514 {
1515 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1516 }
1517 
1518 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1519 {
1520 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1521 }
1522 
1523 static inline void net_zcopy_put(struct ubuf_info *uarg)
1524 {
1525 	if (uarg)
1526 		uarg->callback(NULL, uarg, true);
1527 }
1528 
1529 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1530 {
1531 	if (uarg) {
1532 		if (uarg->callback == msg_zerocopy_callback)
1533 			msg_zerocopy_put_abort(uarg, have_uref);
1534 		else if (have_uref)
1535 			net_zcopy_put(uarg);
1536 	}
1537 }
1538 
1539 /* Release a reference on a zerocopy structure */
1540 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1541 {
1542 	struct ubuf_info *uarg = skb_zcopy(skb);
1543 
1544 	if (uarg) {
1545 		if (!skb_zcopy_is_nouarg(skb))
1546 			uarg->callback(skb, uarg, zerocopy_success);
1547 
1548 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1549 	}
1550 }
1551 
1552 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1553 {
1554 	skb->next = NULL;
1555 }
1556 
1557 /* Iterate through singly-linked GSO fragments of an skb. */
1558 #define skb_list_walk_safe(first, skb, next_skb)                               \
1559 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1560 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1561 
1562 static inline void skb_list_del_init(struct sk_buff *skb)
1563 {
1564 	__list_del_entry(&skb->list);
1565 	skb_mark_not_on_list(skb);
1566 }
1567 
1568 /**
1569  *	skb_queue_empty - check if a queue is empty
1570  *	@list: queue head
1571  *
1572  *	Returns true if the queue is empty, false otherwise.
1573  */
1574 static inline int skb_queue_empty(const struct sk_buff_head *list)
1575 {
1576 	return list->next == (const struct sk_buff *) list;
1577 }
1578 
1579 /**
1580  *	skb_queue_empty_lockless - check if a queue is empty
1581  *	@list: queue head
1582  *
1583  *	Returns true if the queue is empty, false otherwise.
1584  *	This variant can be used in lockless contexts.
1585  */
1586 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1587 {
1588 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1589 }
1590 
1591 
1592 /**
1593  *	skb_queue_is_last - check if skb is the last entry in the queue
1594  *	@list: queue head
1595  *	@skb: buffer
1596  *
1597  *	Returns true if @skb is the last buffer on the list.
1598  */
1599 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1600 				     const struct sk_buff *skb)
1601 {
1602 	return skb->next == (const struct sk_buff *) list;
1603 }
1604 
1605 /**
1606  *	skb_queue_is_first - check if skb is the first entry in the queue
1607  *	@list: queue head
1608  *	@skb: buffer
1609  *
1610  *	Returns true if @skb is the first buffer on the list.
1611  */
1612 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1613 				      const struct sk_buff *skb)
1614 {
1615 	return skb->prev == (const struct sk_buff *) list;
1616 }
1617 
1618 /**
1619  *	skb_queue_next - return the next packet in the queue
1620  *	@list: queue head
1621  *	@skb: current buffer
1622  *
1623  *	Return the next packet in @list after @skb.  It is only valid to
1624  *	call this if skb_queue_is_last() evaluates to false.
1625  */
1626 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1627 					     const struct sk_buff *skb)
1628 {
1629 	/* This BUG_ON may seem severe, but if we just return then we
1630 	 * are going to dereference garbage.
1631 	 */
1632 	BUG_ON(skb_queue_is_last(list, skb));
1633 	return skb->next;
1634 }
1635 
1636 /**
1637  *	skb_queue_prev - return the prev packet in the queue
1638  *	@list: queue head
1639  *	@skb: current buffer
1640  *
1641  *	Return the prev packet in @list before @skb.  It is only valid to
1642  *	call this if skb_queue_is_first() evaluates to false.
1643  */
1644 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1645 					     const struct sk_buff *skb)
1646 {
1647 	/* This BUG_ON may seem severe, but if we just return then we
1648 	 * are going to dereference garbage.
1649 	 */
1650 	BUG_ON(skb_queue_is_first(list, skb));
1651 	return skb->prev;
1652 }
1653 
1654 /**
1655  *	skb_get - reference buffer
1656  *	@skb: buffer to reference
1657  *
1658  *	Makes another reference to a socket buffer and returns a pointer
1659  *	to the buffer.
1660  */
1661 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1662 {
1663 	refcount_inc(&skb->users);
1664 	return skb;
1665 }
1666 
1667 /*
1668  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1669  */
1670 
1671 /**
1672  *	skb_cloned - is the buffer a clone
1673  *	@skb: buffer to check
1674  *
1675  *	Returns true if the buffer was generated with skb_clone() and is
1676  *	one of multiple shared copies of the buffer. Cloned buffers are
1677  *	shared data so must not be written to under normal circumstances.
1678  */
1679 static inline int skb_cloned(const struct sk_buff *skb)
1680 {
1681 	return skb->cloned &&
1682 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1683 }
1684 
1685 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1686 {
1687 	might_sleep_if(gfpflags_allow_blocking(pri));
1688 
1689 	if (skb_cloned(skb))
1690 		return pskb_expand_head(skb, 0, 0, pri);
1691 
1692 	return 0;
1693 }
1694 
1695 /* This variant of skb_unclone() makes sure skb->truesize is not changed */
1696 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1697 {
1698 	might_sleep_if(gfpflags_allow_blocking(pri));
1699 
1700 	if (skb_cloned(skb)) {
1701 		unsigned int save = skb->truesize;
1702 		int res;
1703 
1704 		res = pskb_expand_head(skb, 0, 0, pri);
1705 		skb->truesize = save;
1706 		return res;
1707 	}
1708 	return 0;
1709 }
1710 
1711 /**
1712  *	skb_header_cloned - is the header a clone
1713  *	@skb: buffer to check
1714  *
1715  *	Returns true if modifying the header part of the buffer requires
1716  *	the data to be copied.
1717  */
1718 static inline int skb_header_cloned(const struct sk_buff *skb)
1719 {
1720 	int dataref;
1721 
1722 	if (!skb->cloned)
1723 		return 0;
1724 
1725 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1726 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1727 	return dataref != 1;
1728 }
1729 
1730 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1731 {
1732 	might_sleep_if(gfpflags_allow_blocking(pri));
1733 
1734 	if (skb_header_cloned(skb))
1735 		return pskb_expand_head(skb, 0, 0, pri);
1736 
1737 	return 0;
1738 }
1739 
1740 /**
1741  *	__skb_header_release - release reference to header
1742  *	@skb: buffer to operate on
1743  */
1744 static inline void __skb_header_release(struct sk_buff *skb)
1745 {
1746 	skb->nohdr = 1;
1747 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1748 }
1749 
1750 
1751 /**
1752  *	skb_shared - is the buffer shared
1753  *	@skb: buffer to check
1754  *
1755  *	Returns true if more than one person has a reference to this
1756  *	buffer.
1757  */
1758 static inline int skb_shared(const struct sk_buff *skb)
1759 {
1760 	return refcount_read(&skb->users) != 1;
1761 }
1762 
1763 /**
1764  *	skb_share_check - check if buffer is shared and if so clone it
1765  *	@skb: buffer to check
1766  *	@pri: priority for memory allocation
1767  *
1768  *	If the buffer is shared the buffer is cloned and the old copy
1769  *	drops a reference. A new clone with a single reference is returned.
1770  *	If the buffer is not shared the original buffer is returned. When
1771  *	being called from interrupt status or with spinlocks held pri must
1772  *	be GFP_ATOMIC.
1773  *
1774  *	NULL is returned on a memory allocation failure.
1775  */
1776 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1777 {
1778 	might_sleep_if(gfpflags_allow_blocking(pri));
1779 	if (skb_shared(skb)) {
1780 		struct sk_buff *nskb = skb_clone(skb, pri);
1781 
1782 		if (likely(nskb))
1783 			consume_skb(skb);
1784 		else
1785 			kfree_skb(skb);
1786 		skb = nskb;
1787 	}
1788 	return skb;
1789 }
1790 
1791 /*
1792  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1793  *	packets to handle cases where we have a local reader and forward
1794  *	and a couple of other messy ones. The normal one is tcpdumping
1795  *	a packet thats being forwarded.
1796  */
1797 
1798 /**
1799  *	skb_unshare - make a copy of a shared buffer
1800  *	@skb: buffer to check
1801  *	@pri: priority for memory allocation
1802  *
1803  *	If the socket buffer is a clone then this function creates a new
1804  *	copy of the data, drops a reference count on the old copy and returns
1805  *	the new copy with the reference count at 1. If the buffer is not a clone
1806  *	the original buffer is returned. When called with a spinlock held or
1807  *	from interrupt state @pri must be %GFP_ATOMIC
1808  *
1809  *	%NULL is returned on a memory allocation failure.
1810  */
1811 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1812 					  gfp_t pri)
1813 {
1814 	might_sleep_if(gfpflags_allow_blocking(pri));
1815 	if (skb_cloned(skb)) {
1816 		struct sk_buff *nskb = skb_copy(skb, pri);
1817 
1818 		/* Free our shared copy */
1819 		if (likely(nskb))
1820 			consume_skb(skb);
1821 		else
1822 			kfree_skb(skb);
1823 		skb = nskb;
1824 	}
1825 	return skb;
1826 }
1827 
1828 /**
1829  *	skb_peek - peek at the head of an &sk_buff_head
1830  *	@list_: list to peek at
1831  *
1832  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1833  *	be careful with this one. A peek leaves the buffer on the
1834  *	list and someone else may run off with it. You must hold
1835  *	the appropriate locks or have a private queue to do this.
1836  *
1837  *	Returns %NULL for an empty list or a pointer to the head element.
1838  *	The reference count is not incremented and the reference is therefore
1839  *	volatile. Use with caution.
1840  */
1841 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1842 {
1843 	struct sk_buff *skb = list_->next;
1844 
1845 	if (skb == (struct sk_buff *)list_)
1846 		skb = NULL;
1847 	return skb;
1848 }
1849 
1850 /**
1851  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1852  *	@list_: list to peek at
1853  *
1854  *	Like skb_peek(), but the caller knows that the list is not empty.
1855  */
1856 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1857 {
1858 	return list_->next;
1859 }
1860 
1861 /**
1862  *	skb_peek_next - peek skb following the given one from a queue
1863  *	@skb: skb to start from
1864  *	@list_: list to peek at
1865  *
1866  *	Returns %NULL when the end of the list is met or a pointer to the
1867  *	next element. The reference count is not incremented and the
1868  *	reference is therefore volatile. Use with caution.
1869  */
1870 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1871 		const struct sk_buff_head *list_)
1872 {
1873 	struct sk_buff *next = skb->next;
1874 
1875 	if (next == (struct sk_buff *)list_)
1876 		next = NULL;
1877 	return next;
1878 }
1879 
1880 /**
1881  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1882  *	@list_: list to peek at
1883  *
1884  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1885  *	be careful with this one. A peek leaves the buffer on the
1886  *	list and someone else may run off with it. You must hold
1887  *	the appropriate locks or have a private queue to do this.
1888  *
1889  *	Returns %NULL for an empty list or a pointer to the tail element.
1890  *	The reference count is not incremented and the reference is therefore
1891  *	volatile. Use with caution.
1892  */
1893 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1894 {
1895 	struct sk_buff *skb = READ_ONCE(list_->prev);
1896 
1897 	if (skb == (struct sk_buff *)list_)
1898 		skb = NULL;
1899 	return skb;
1900 
1901 }
1902 
1903 /**
1904  *	skb_queue_len	- get queue length
1905  *	@list_: list to measure
1906  *
1907  *	Return the length of an &sk_buff queue.
1908  */
1909 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1910 {
1911 	return list_->qlen;
1912 }
1913 
1914 /**
1915  *	skb_queue_len_lockless	- get queue length
1916  *	@list_: list to measure
1917  *
1918  *	Return the length of an &sk_buff queue.
1919  *	This variant can be used in lockless contexts.
1920  */
1921 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1922 {
1923 	return READ_ONCE(list_->qlen);
1924 }
1925 
1926 /**
1927  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1928  *	@list: queue to initialize
1929  *
1930  *	This initializes only the list and queue length aspects of
1931  *	an sk_buff_head object.  This allows to initialize the list
1932  *	aspects of an sk_buff_head without reinitializing things like
1933  *	the spinlock.  It can also be used for on-stack sk_buff_head
1934  *	objects where the spinlock is known to not be used.
1935  */
1936 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1937 {
1938 	list->prev = list->next = (struct sk_buff *)list;
1939 	list->qlen = 0;
1940 }
1941 
1942 /*
1943  * This function creates a split out lock class for each invocation;
1944  * this is needed for now since a whole lot of users of the skb-queue
1945  * infrastructure in drivers have different locking usage (in hardirq)
1946  * than the networking core (in softirq only). In the long run either the
1947  * network layer or drivers should need annotation to consolidate the
1948  * main types of usage into 3 classes.
1949  */
1950 static inline void skb_queue_head_init(struct sk_buff_head *list)
1951 {
1952 	spin_lock_init(&list->lock);
1953 	__skb_queue_head_init(list);
1954 }
1955 
1956 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1957 		struct lock_class_key *class)
1958 {
1959 	skb_queue_head_init(list);
1960 	lockdep_set_class(&list->lock, class);
1961 }
1962 
1963 /*
1964  *	Insert an sk_buff on a list.
1965  *
1966  *	The "__skb_xxxx()" functions are the non-atomic ones that
1967  *	can only be called with interrupts disabled.
1968  */
1969 static inline void __skb_insert(struct sk_buff *newsk,
1970 				struct sk_buff *prev, struct sk_buff *next,
1971 				struct sk_buff_head *list)
1972 {
1973 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1974 	 * for the opposite READ_ONCE()
1975 	 */
1976 	WRITE_ONCE(newsk->next, next);
1977 	WRITE_ONCE(newsk->prev, prev);
1978 	WRITE_ONCE(next->prev, newsk);
1979 	WRITE_ONCE(prev->next, newsk);
1980 	WRITE_ONCE(list->qlen, list->qlen + 1);
1981 }
1982 
1983 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1984 				      struct sk_buff *prev,
1985 				      struct sk_buff *next)
1986 {
1987 	struct sk_buff *first = list->next;
1988 	struct sk_buff *last = list->prev;
1989 
1990 	WRITE_ONCE(first->prev, prev);
1991 	WRITE_ONCE(prev->next, first);
1992 
1993 	WRITE_ONCE(last->next, next);
1994 	WRITE_ONCE(next->prev, last);
1995 }
1996 
1997 /**
1998  *	skb_queue_splice - join two skb lists, this is designed for stacks
1999  *	@list: the new list to add
2000  *	@head: the place to add it in the first list
2001  */
2002 static inline void skb_queue_splice(const struct sk_buff_head *list,
2003 				    struct sk_buff_head *head)
2004 {
2005 	if (!skb_queue_empty(list)) {
2006 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2007 		head->qlen += list->qlen;
2008 	}
2009 }
2010 
2011 /**
2012  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2013  *	@list: the new list to add
2014  *	@head: the place to add it in the first list
2015  *
2016  *	The list at @list is reinitialised
2017  */
2018 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2019 					 struct sk_buff_head *head)
2020 {
2021 	if (!skb_queue_empty(list)) {
2022 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2023 		head->qlen += list->qlen;
2024 		__skb_queue_head_init(list);
2025 	}
2026 }
2027 
2028 /**
2029  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2030  *	@list: the new list to add
2031  *	@head: the place to add it in the first list
2032  */
2033 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2034 					 struct sk_buff_head *head)
2035 {
2036 	if (!skb_queue_empty(list)) {
2037 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2038 		head->qlen += list->qlen;
2039 	}
2040 }
2041 
2042 /**
2043  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2044  *	@list: the new list to add
2045  *	@head: the place to add it in the first list
2046  *
2047  *	Each of the lists is a queue.
2048  *	The list at @list is reinitialised
2049  */
2050 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2051 					      struct sk_buff_head *head)
2052 {
2053 	if (!skb_queue_empty(list)) {
2054 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2055 		head->qlen += list->qlen;
2056 		__skb_queue_head_init(list);
2057 	}
2058 }
2059 
2060 /**
2061  *	__skb_queue_after - queue a buffer at the list head
2062  *	@list: list to use
2063  *	@prev: place after this buffer
2064  *	@newsk: buffer to queue
2065  *
2066  *	Queue a buffer int the middle of a list. This function takes no locks
2067  *	and you must therefore hold required locks before calling it.
2068  *
2069  *	A buffer cannot be placed on two lists at the same time.
2070  */
2071 static inline void __skb_queue_after(struct sk_buff_head *list,
2072 				     struct sk_buff *prev,
2073 				     struct sk_buff *newsk)
2074 {
2075 	__skb_insert(newsk, prev, prev->next, list);
2076 }
2077 
2078 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2079 		struct sk_buff_head *list);
2080 
2081 static inline void __skb_queue_before(struct sk_buff_head *list,
2082 				      struct sk_buff *next,
2083 				      struct sk_buff *newsk)
2084 {
2085 	__skb_insert(newsk, next->prev, next, list);
2086 }
2087 
2088 /**
2089  *	__skb_queue_head - queue a buffer at the list head
2090  *	@list: list to use
2091  *	@newsk: buffer to queue
2092  *
2093  *	Queue a buffer at the start of a list. This function takes no locks
2094  *	and you must therefore hold required locks before calling it.
2095  *
2096  *	A buffer cannot be placed on two lists at the same time.
2097  */
2098 static inline void __skb_queue_head(struct sk_buff_head *list,
2099 				    struct sk_buff *newsk)
2100 {
2101 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2102 }
2103 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2104 
2105 /**
2106  *	__skb_queue_tail - queue a buffer at the list tail
2107  *	@list: list to use
2108  *	@newsk: buffer to queue
2109  *
2110  *	Queue a buffer at the end of a list. This function takes no locks
2111  *	and you must therefore hold required locks before calling it.
2112  *
2113  *	A buffer cannot be placed on two lists at the same time.
2114  */
2115 static inline void __skb_queue_tail(struct sk_buff_head *list,
2116 				   struct sk_buff *newsk)
2117 {
2118 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2119 }
2120 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2121 
2122 /*
2123  * remove sk_buff from list. _Must_ be called atomically, and with
2124  * the list known..
2125  */
2126 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2127 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2128 {
2129 	struct sk_buff *next, *prev;
2130 
2131 	WRITE_ONCE(list->qlen, list->qlen - 1);
2132 	next	   = skb->next;
2133 	prev	   = skb->prev;
2134 	skb->next  = skb->prev = NULL;
2135 	WRITE_ONCE(next->prev, prev);
2136 	WRITE_ONCE(prev->next, next);
2137 }
2138 
2139 /**
2140  *	__skb_dequeue - remove from the head of the queue
2141  *	@list: list to dequeue from
2142  *
2143  *	Remove the head of the list. This function does not take any locks
2144  *	so must be used with appropriate locks held only. The head item is
2145  *	returned or %NULL if the list is empty.
2146  */
2147 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2148 {
2149 	struct sk_buff *skb = skb_peek(list);
2150 	if (skb)
2151 		__skb_unlink(skb, list);
2152 	return skb;
2153 }
2154 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2155 
2156 /**
2157  *	__skb_dequeue_tail - remove from the tail of the queue
2158  *	@list: list to dequeue from
2159  *
2160  *	Remove the tail of the list. This function does not take any locks
2161  *	so must be used with appropriate locks held only. The tail item is
2162  *	returned or %NULL if the list is empty.
2163  */
2164 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2165 {
2166 	struct sk_buff *skb = skb_peek_tail(list);
2167 	if (skb)
2168 		__skb_unlink(skb, list);
2169 	return skb;
2170 }
2171 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2172 
2173 
2174 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2175 {
2176 	return skb->data_len;
2177 }
2178 
2179 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2180 {
2181 	return skb->len - skb->data_len;
2182 }
2183 
2184 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2185 {
2186 	unsigned int i, len = 0;
2187 
2188 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2189 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2190 	return len;
2191 }
2192 
2193 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2194 {
2195 	return skb_headlen(skb) + __skb_pagelen(skb);
2196 }
2197 
2198 /**
2199  * __skb_fill_page_desc - initialise a paged fragment in an skb
2200  * @skb: buffer containing fragment to be initialised
2201  * @i: paged fragment index to initialise
2202  * @page: the page to use for this fragment
2203  * @off: the offset to the data with @page
2204  * @size: the length of the data
2205  *
2206  * Initialises the @i'th fragment of @skb to point to &size bytes at
2207  * offset @off within @page.
2208  *
2209  * Does not take any additional reference on the fragment.
2210  */
2211 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2212 					struct page *page, int off, int size)
2213 {
2214 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2215 
2216 	/*
2217 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2218 	 * that not all callers have unique ownership of the page but rely
2219 	 * on page_is_pfmemalloc doing the right thing(tm).
2220 	 */
2221 	frag->bv_page		  = page;
2222 	frag->bv_offset		  = off;
2223 	skb_frag_size_set(frag, size);
2224 
2225 	page = compound_head(page);
2226 	if (page_is_pfmemalloc(page))
2227 		skb->pfmemalloc	= true;
2228 }
2229 
2230 /**
2231  * skb_fill_page_desc - initialise a paged fragment in an skb
2232  * @skb: buffer containing fragment to be initialised
2233  * @i: paged fragment index to initialise
2234  * @page: the page to use for this fragment
2235  * @off: the offset to the data with @page
2236  * @size: the length of the data
2237  *
2238  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2239  * @skb to point to @size bytes at offset @off within @page. In
2240  * addition updates @skb such that @i is the last fragment.
2241  *
2242  * Does not take any additional reference on the fragment.
2243  */
2244 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2245 				      struct page *page, int off, int size)
2246 {
2247 	__skb_fill_page_desc(skb, i, page, off, size);
2248 	skb_shinfo(skb)->nr_frags = i + 1;
2249 }
2250 
2251 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2252 		     int size, unsigned int truesize);
2253 
2254 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2255 			  unsigned int truesize);
2256 
2257 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2258 
2259 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2260 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2261 {
2262 	return skb->head + skb->tail;
2263 }
2264 
2265 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2266 {
2267 	skb->tail = skb->data - skb->head;
2268 }
2269 
2270 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2271 {
2272 	skb_reset_tail_pointer(skb);
2273 	skb->tail += offset;
2274 }
2275 
2276 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2277 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2278 {
2279 	return skb->tail;
2280 }
2281 
2282 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2283 {
2284 	skb->tail = skb->data;
2285 }
2286 
2287 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2288 {
2289 	skb->tail = skb->data + offset;
2290 }
2291 
2292 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2293 
2294 /*
2295  *	Add data to an sk_buff
2296  */
2297 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2298 void *skb_put(struct sk_buff *skb, unsigned int len);
2299 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2300 {
2301 	void *tmp = skb_tail_pointer(skb);
2302 	SKB_LINEAR_ASSERT(skb);
2303 	skb->tail += len;
2304 	skb->len  += len;
2305 	return tmp;
2306 }
2307 
2308 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2309 {
2310 	void *tmp = __skb_put(skb, len);
2311 
2312 	memset(tmp, 0, len);
2313 	return tmp;
2314 }
2315 
2316 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2317 				   unsigned int len)
2318 {
2319 	void *tmp = __skb_put(skb, len);
2320 
2321 	memcpy(tmp, data, len);
2322 	return tmp;
2323 }
2324 
2325 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2326 {
2327 	*(u8 *)__skb_put(skb, 1) = val;
2328 }
2329 
2330 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2331 {
2332 	void *tmp = skb_put(skb, len);
2333 
2334 	memset(tmp, 0, len);
2335 
2336 	return tmp;
2337 }
2338 
2339 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2340 				 unsigned int len)
2341 {
2342 	void *tmp = skb_put(skb, len);
2343 
2344 	memcpy(tmp, data, len);
2345 
2346 	return tmp;
2347 }
2348 
2349 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2350 {
2351 	*(u8 *)skb_put(skb, 1) = val;
2352 }
2353 
2354 void *skb_push(struct sk_buff *skb, unsigned int len);
2355 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2356 {
2357 	skb->data -= len;
2358 	skb->len  += len;
2359 	return skb->data;
2360 }
2361 
2362 void *skb_pull(struct sk_buff *skb, unsigned int len);
2363 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2364 {
2365 	skb->len -= len;
2366 	BUG_ON(skb->len < skb->data_len);
2367 	return skb->data += len;
2368 }
2369 
2370 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2371 {
2372 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2373 }
2374 
2375 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2376 
2377 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2378 {
2379 	if (len > skb_headlen(skb) &&
2380 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2381 		return NULL;
2382 	skb->len -= len;
2383 	return skb->data += len;
2384 }
2385 
2386 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2387 {
2388 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2389 }
2390 
2391 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2392 {
2393 	if (likely(len <= skb_headlen(skb)))
2394 		return true;
2395 	if (unlikely(len > skb->len))
2396 		return false;
2397 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2398 }
2399 
2400 void skb_condense(struct sk_buff *skb);
2401 
2402 /**
2403  *	skb_headroom - bytes at buffer head
2404  *	@skb: buffer to check
2405  *
2406  *	Return the number of bytes of free space at the head of an &sk_buff.
2407  */
2408 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2409 {
2410 	return skb->data - skb->head;
2411 }
2412 
2413 /**
2414  *	skb_tailroom - bytes at buffer end
2415  *	@skb: buffer to check
2416  *
2417  *	Return the number of bytes of free space at the tail of an sk_buff
2418  */
2419 static inline int skb_tailroom(const struct sk_buff *skb)
2420 {
2421 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2422 }
2423 
2424 /**
2425  *	skb_availroom - bytes at buffer end
2426  *	@skb: buffer to check
2427  *
2428  *	Return the number of bytes of free space at the tail of an sk_buff
2429  *	allocated by sk_stream_alloc()
2430  */
2431 static inline int skb_availroom(const struct sk_buff *skb)
2432 {
2433 	if (skb_is_nonlinear(skb))
2434 		return 0;
2435 
2436 	return skb->end - skb->tail - skb->reserved_tailroom;
2437 }
2438 
2439 /**
2440  *	skb_reserve - adjust headroom
2441  *	@skb: buffer to alter
2442  *	@len: bytes to move
2443  *
2444  *	Increase the headroom of an empty &sk_buff by reducing the tail
2445  *	room. This is only allowed for an empty buffer.
2446  */
2447 static inline void skb_reserve(struct sk_buff *skb, int len)
2448 {
2449 	skb->data += len;
2450 	skb->tail += len;
2451 }
2452 
2453 /**
2454  *	skb_tailroom_reserve - adjust reserved_tailroom
2455  *	@skb: buffer to alter
2456  *	@mtu: maximum amount of headlen permitted
2457  *	@needed_tailroom: minimum amount of reserved_tailroom
2458  *
2459  *	Set reserved_tailroom so that headlen can be as large as possible but
2460  *	not larger than mtu and tailroom cannot be smaller than
2461  *	needed_tailroom.
2462  *	The required headroom should already have been reserved before using
2463  *	this function.
2464  */
2465 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2466 					unsigned int needed_tailroom)
2467 {
2468 	SKB_LINEAR_ASSERT(skb);
2469 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2470 		/* use at most mtu */
2471 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2472 	else
2473 		/* use up to all available space */
2474 		skb->reserved_tailroom = needed_tailroom;
2475 }
2476 
2477 #define ENCAP_TYPE_ETHER	0
2478 #define ENCAP_TYPE_IPPROTO	1
2479 
2480 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2481 					  __be16 protocol)
2482 {
2483 	skb->inner_protocol = protocol;
2484 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2485 }
2486 
2487 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2488 					 __u8 ipproto)
2489 {
2490 	skb->inner_ipproto = ipproto;
2491 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2492 }
2493 
2494 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2495 {
2496 	skb->inner_mac_header = skb->mac_header;
2497 	skb->inner_network_header = skb->network_header;
2498 	skb->inner_transport_header = skb->transport_header;
2499 }
2500 
2501 static inline void skb_reset_mac_len(struct sk_buff *skb)
2502 {
2503 	skb->mac_len = skb->network_header - skb->mac_header;
2504 }
2505 
2506 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2507 							*skb)
2508 {
2509 	return skb->head + skb->inner_transport_header;
2510 }
2511 
2512 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2513 {
2514 	return skb_inner_transport_header(skb) - skb->data;
2515 }
2516 
2517 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2518 {
2519 	skb->inner_transport_header = skb->data - skb->head;
2520 }
2521 
2522 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2523 						   const int offset)
2524 {
2525 	skb_reset_inner_transport_header(skb);
2526 	skb->inner_transport_header += offset;
2527 }
2528 
2529 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2530 {
2531 	return skb->head + skb->inner_network_header;
2532 }
2533 
2534 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2535 {
2536 	skb->inner_network_header = skb->data - skb->head;
2537 }
2538 
2539 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2540 						const int offset)
2541 {
2542 	skb_reset_inner_network_header(skb);
2543 	skb->inner_network_header += offset;
2544 }
2545 
2546 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2547 {
2548 	return skb->head + skb->inner_mac_header;
2549 }
2550 
2551 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2552 {
2553 	skb->inner_mac_header = skb->data - skb->head;
2554 }
2555 
2556 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2557 					    const int offset)
2558 {
2559 	skb_reset_inner_mac_header(skb);
2560 	skb->inner_mac_header += offset;
2561 }
2562 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2563 {
2564 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2565 }
2566 
2567 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2568 {
2569 	return skb->head + skb->transport_header;
2570 }
2571 
2572 static inline void skb_reset_transport_header(struct sk_buff *skb)
2573 {
2574 	skb->transport_header = skb->data - skb->head;
2575 }
2576 
2577 static inline void skb_set_transport_header(struct sk_buff *skb,
2578 					    const int offset)
2579 {
2580 	skb_reset_transport_header(skb);
2581 	skb->transport_header += offset;
2582 }
2583 
2584 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2585 {
2586 	return skb->head + skb->network_header;
2587 }
2588 
2589 static inline void skb_reset_network_header(struct sk_buff *skb)
2590 {
2591 	skb->network_header = skb->data - skb->head;
2592 }
2593 
2594 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2595 {
2596 	skb_reset_network_header(skb);
2597 	skb->network_header += offset;
2598 }
2599 
2600 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2601 {
2602 	return skb->head + skb->mac_header;
2603 }
2604 
2605 static inline int skb_mac_offset(const struct sk_buff *skb)
2606 {
2607 	return skb_mac_header(skb) - skb->data;
2608 }
2609 
2610 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2611 {
2612 	return skb->network_header - skb->mac_header;
2613 }
2614 
2615 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2616 {
2617 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2618 }
2619 
2620 static inline void skb_unset_mac_header(struct sk_buff *skb)
2621 {
2622 	skb->mac_header = (typeof(skb->mac_header))~0U;
2623 }
2624 
2625 static inline void skb_reset_mac_header(struct sk_buff *skb)
2626 {
2627 	skb->mac_header = skb->data - skb->head;
2628 }
2629 
2630 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2631 {
2632 	skb_reset_mac_header(skb);
2633 	skb->mac_header += offset;
2634 }
2635 
2636 static inline void skb_pop_mac_header(struct sk_buff *skb)
2637 {
2638 	skb->mac_header = skb->network_header;
2639 }
2640 
2641 static inline void skb_probe_transport_header(struct sk_buff *skb)
2642 {
2643 	struct flow_keys_basic keys;
2644 
2645 	if (skb_transport_header_was_set(skb))
2646 		return;
2647 
2648 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2649 					     NULL, 0, 0, 0, 0))
2650 		skb_set_transport_header(skb, keys.control.thoff);
2651 }
2652 
2653 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2654 {
2655 	if (skb_mac_header_was_set(skb)) {
2656 		const unsigned char *old_mac = skb_mac_header(skb);
2657 
2658 		skb_set_mac_header(skb, -skb->mac_len);
2659 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2660 	}
2661 }
2662 
2663 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2664 {
2665 	return skb->csum_start - skb_headroom(skb);
2666 }
2667 
2668 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2669 {
2670 	return skb->head + skb->csum_start;
2671 }
2672 
2673 static inline int skb_transport_offset(const struct sk_buff *skb)
2674 {
2675 	return skb_transport_header(skb) - skb->data;
2676 }
2677 
2678 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2679 {
2680 	return skb->transport_header - skb->network_header;
2681 }
2682 
2683 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2684 {
2685 	return skb->inner_transport_header - skb->inner_network_header;
2686 }
2687 
2688 static inline int skb_network_offset(const struct sk_buff *skb)
2689 {
2690 	return skb_network_header(skb) - skb->data;
2691 }
2692 
2693 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2694 {
2695 	return skb_inner_network_header(skb) - skb->data;
2696 }
2697 
2698 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2699 {
2700 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2701 }
2702 
2703 /*
2704  * CPUs often take a performance hit when accessing unaligned memory
2705  * locations. The actual performance hit varies, it can be small if the
2706  * hardware handles it or large if we have to take an exception and fix it
2707  * in software.
2708  *
2709  * Since an ethernet header is 14 bytes network drivers often end up with
2710  * the IP header at an unaligned offset. The IP header can be aligned by
2711  * shifting the start of the packet by 2 bytes. Drivers should do this
2712  * with:
2713  *
2714  * skb_reserve(skb, NET_IP_ALIGN);
2715  *
2716  * The downside to this alignment of the IP header is that the DMA is now
2717  * unaligned. On some architectures the cost of an unaligned DMA is high
2718  * and this cost outweighs the gains made by aligning the IP header.
2719  *
2720  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2721  * to be overridden.
2722  */
2723 #ifndef NET_IP_ALIGN
2724 #define NET_IP_ALIGN	2
2725 #endif
2726 
2727 /*
2728  * The networking layer reserves some headroom in skb data (via
2729  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2730  * the header has to grow. In the default case, if the header has to grow
2731  * 32 bytes or less we avoid the reallocation.
2732  *
2733  * Unfortunately this headroom changes the DMA alignment of the resulting
2734  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2735  * on some architectures. An architecture can override this value,
2736  * perhaps setting it to a cacheline in size (since that will maintain
2737  * cacheline alignment of the DMA). It must be a power of 2.
2738  *
2739  * Various parts of the networking layer expect at least 32 bytes of
2740  * headroom, you should not reduce this.
2741  *
2742  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2743  * to reduce average number of cache lines per packet.
2744  * get_rps_cpu() for example only access one 64 bytes aligned block :
2745  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2746  */
2747 #ifndef NET_SKB_PAD
2748 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2749 #endif
2750 
2751 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2752 
2753 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2754 {
2755 	if (WARN_ON(skb_is_nonlinear(skb)))
2756 		return;
2757 	skb->len = len;
2758 	skb_set_tail_pointer(skb, len);
2759 }
2760 
2761 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2762 {
2763 	__skb_set_length(skb, len);
2764 }
2765 
2766 void skb_trim(struct sk_buff *skb, unsigned int len);
2767 
2768 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2769 {
2770 	if (skb->data_len)
2771 		return ___pskb_trim(skb, len);
2772 	__skb_trim(skb, len);
2773 	return 0;
2774 }
2775 
2776 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2777 {
2778 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2779 }
2780 
2781 /**
2782  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2783  *	@skb: buffer to alter
2784  *	@len: new length
2785  *
2786  *	This is identical to pskb_trim except that the caller knows that
2787  *	the skb is not cloned so we should never get an error due to out-
2788  *	of-memory.
2789  */
2790 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2791 {
2792 	int err = pskb_trim(skb, len);
2793 	BUG_ON(err);
2794 }
2795 
2796 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2797 {
2798 	unsigned int diff = len - skb->len;
2799 
2800 	if (skb_tailroom(skb) < diff) {
2801 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2802 					   GFP_ATOMIC);
2803 		if (ret)
2804 			return ret;
2805 	}
2806 	__skb_set_length(skb, len);
2807 	return 0;
2808 }
2809 
2810 /**
2811  *	skb_orphan - orphan a buffer
2812  *	@skb: buffer to orphan
2813  *
2814  *	If a buffer currently has an owner then we call the owner's
2815  *	destructor function and make the @skb unowned. The buffer continues
2816  *	to exist but is no longer charged to its former owner.
2817  */
2818 static inline void skb_orphan(struct sk_buff *skb)
2819 {
2820 	if (skb->destructor) {
2821 		skb->destructor(skb);
2822 		skb->destructor = NULL;
2823 		skb->sk		= NULL;
2824 	} else {
2825 		BUG_ON(skb->sk);
2826 	}
2827 }
2828 
2829 /**
2830  *	skb_orphan_frags - orphan the frags contained in a buffer
2831  *	@skb: buffer to orphan frags from
2832  *	@gfp_mask: allocation mask for replacement pages
2833  *
2834  *	For each frag in the SKB which needs a destructor (i.e. has an
2835  *	owner) create a copy of that frag and release the original
2836  *	page by calling the destructor.
2837  */
2838 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2839 {
2840 	if (likely(!skb_zcopy(skb)))
2841 		return 0;
2842 	if (!skb_zcopy_is_nouarg(skb) &&
2843 	    skb_uarg(skb)->callback == msg_zerocopy_callback)
2844 		return 0;
2845 	return skb_copy_ubufs(skb, gfp_mask);
2846 }
2847 
2848 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2849 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2850 {
2851 	if (likely(!skb_zcopy(skb)))
2852 		return 0;
2853 	return skb_copy_ubufs(skb, gfp_mask);
2854 }
2855 
2856 /**
2857  *	__skb_queue_purge - empty a list
2858  *	@list: list to empty
2859  *
2860  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2861  *	the list and one reference dropped. This function does not take the
2862  *	list lock and the caller must hold the relevant locks to use it.
2863  */
2864 static inline void __skb_queue_purge(struct sk_buff_head *list)
2865 {
2866 	struct sk_buff *skb;
2867 	while ((skb = __skb_dequeue(list)) != NULL)
2868 		kfree_skb(skb);
2869 }
2870 void skb_queue_purge(struct sk_buff_head *list);
2871 
2872 unsigned int skb_rbtree_purge(struct rb_root *root);
2873 
2874 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2875 
2876 /**
2877  * netdev_alloc_frag - allocate a page fragment
2878  * @fragsz: fragment size
2879  *
2880  * Allocates a frag from a page for receive buffer.
2881  * Uses GFP_ATOMIC allocations.
2882  */
2883 static inline void *netdev_alloc_frag(unsigned int fragsz)
2884 {
2885 	return __netdev_alloc_frag_align(fragsz, ~0u);
2886 }
2887 
2888 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
2889 					    unsigned int align)
2890 {
2891 	WARN_ON_ONCE(!is_power_of_2(align));
2892 	return __netdev_alloc_frag_align(fragsz, -align);
2893 }
2894 
2895 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2896 				   gfp_t gfp_mask);
2897 
2898 /**
2899  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2900  *	@dev: network device to receive on
2901  *	@length: length to allocate
2902  *
2903  *	Allocate a new &sk_buff and assign it a usage count of one. The
2904  *	buffer has unspecified headroom built in. Users should allocate
2905  *	the headroom they think they need without accounting for the
2906  *	built in space. The built in space is used for optimisations.
2907  *
2908  *	%NULL is returned if there is no free memory. Although this function
2909  *	allocates memory it can be called from an interrupt.
2910  */
2911 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2912 					       unsigned int length)
2913 {
2914 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2915 }
2916 
2917 /* legacy helper around __netdev_alloc_skb() */
2918 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2919 					      gfp_t gfp_mask)
2920 {
2921 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2922 }
2923 
2924 /* legacy helper around netdev_alloc_skb() */
2925 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2926 {
2927 	return netdev_alloc_skb(NULL, length);
2928 }
2929 
2930 
2931 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2932 		unsigned int length, gfp_t gfp)
2933 {
2934 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2935 
2936 	if (NET_IP_ALIGN && skb)
2937 		skb_reserve(skb, NET_IP_ALIGN);
2938 	return skb;
2939 }
2940 
2941 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2942 		unsigned int length)
2943 {
2944 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2945 }
2946 
2947 static inline void skb_free_frag(void *addr)
2948 {
2949 	page_frag_free(addr);
2950 }
2951 
2952 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2953 
2954 static inline void *napi_alloc_frag(unsigned int fragsz)
2955 {
2956 	return __napi_alloc_frag_align(fragsz, ~0u);
2957 }
2958 
2959 static inline void *napi_alloc_frag_align(unsigned int fragsz,
2960 					  unsigned int align)
2961 {
2962 	WARN_ON_ONCE(!is_power_of_2(align));
2963 	return __napi_alloc_frag_align(fragsz, -align);
2964 }
2965 
2966 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2967 				 unsigned int length, gfp_t gfp_mask);
2968 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2969 					     unsigned int length)
2970 {
2971 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2972 }
2973 void napi_consume_skb(struct sk_buff *skb, int budget);
2974 
2975 void napi_skb_free_stolen_head(struct sk_buff *skb);
2976 void __kfree_skb_defer(struct sk_buff *skb);
2977 
2978 /**
2979  * __dev_alloc_pages - allocate page for network Rx
2980  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2981  * @order: size of the allocation
2982  *
2983  * Allocate a new page.
2984  *
2985  * %NULL is returned if there is no free memory.
2986 */
2987 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2988 					     unsigned int order)
2989 {
2990 	/* This piece of code contains several assumptions.
2991 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2992 	 * 2.  The expectation is the user wants a compound page.
2993 	 * 3.  If requesting a order 0 page it will not be compound
2994 	 *     due to the check to see if order has a value in prep_new_page
2995 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2996 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2997 	 */
2998 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2999 
3000 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3001 }
3002 
3003 static inline struct page *dev_alloc_pages(unsigned int order)
3004 {
3005 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3006 }
3007 
3008 /**
3009  * __dev_alloc_page - allocate a page for network Rx
3010  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3011  *
3012  * Allocate a new page.
3013  *
3014  * %NULL is returned if there is no free memory.
3015  */
3016 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3017 {
3018 	return __dev_alloc_pages(gfp_mask, 0);
3019 }
3020 
3021 static inline struct page *dev_alloc_page(void)
3022 {
3023 	return dev_alloc_pages(0);
3024 }
3025 
3026 /**
3027  * dev_page_is_reusable - check whether a page can be reused for network Rx
3028  * @page: the page to test
3029  *
3030  * A page shouldn't be considered for reusing/recycling if it was allocated
3031  * under memory pressure or at a distant memory node.
3032  *
3033  * Returns false if this page should be returned to page allocator, true
3034  * otherwise.
3035  */
3036 static inline bool dev_page_is_reusable(const struct page *page)
3037 {
3038 	return likely(page_to_nid(page) == numa_mem_id() &&
3039 		      !page_is_pfmemalloc(page));
3040 }
3041 
3042 /**
3043  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3044  *	@page: The page that was allocated from skb_alloc_page
3045  *	@skb: The skb that may need pfmemalloc set
3046  */
3047 static inline void skb_propagate_pfmemalloc(const struct page *page,
3048 					    struct sk_buff *skb)
3049 {
3050 	if (page_is_pfmemalloc(page))
3051 		skb->pfmemalloc = true;
3052 }
3053 
3054 /**
3055  * skb_frag_off() - Returns the offset of a skb fragment
3056  * @frag: the paged fragment
3057  */
3058 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3059 {
3060 	return frag->bv_offset;
3061 }
3062 
3063 /**
3064  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3065  * @frag: skb fragment
3066  * @delta: value to add
3067  */
3068 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3069 {
3070 	frag->bv_offset += delta;
3071 }
3072 
3073 /**
3074  * skb_frag_off_set() - Sets the offset of a skb fragment
3075  * @frag: skb fragment
3076  * @offset: offset of fragment
3077  */
3078 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3079 {
3080 	frag->bv_offset = offset;
3081 }
3082 
3083 /**
3084  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3085  * @fragto: skb fragment where offset is set
3086  * @fragfrom: skb fragment offset is copied from
3087  */
3088 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3089 				     const skb_frag_t *fragfrom)
3090 {
3091 	fragto->bv_offset = fragfrom->bv_offset;
3092 }
3093 
3094 /**
3095  * skb_frag_page - retrieve the page referred to by a paged fragment
3096  * @frag: the paged fragment
3097  *
3098  * Returns the &struct page associated with @frag.
3099  */
3100 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3101 {
3102 	return frag->bv_page;
3103 }
3104 
3105 /**
3106  * __skb_frag_ref - take an addition reference on a paged fragment.
3107  * @frag: the paged fragment
3108  *
3109  * Takes an additional reference on the paged fragment @frag.
3110  */
3111 static inline void __skb_frag_ref(skb_frag_t *frag)
3112 {
3113 	get_page(skb_frag_page(frag));
3114 }
3115 
3116 /**
3117  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3118  * @skb: the buffer
3119  * @f: the fragment offset.
3120  *
3121  * Takes an additional reference on the @f'th paged fragment of @skb.
3122  */
3123 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3124 {
3125 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3126 }
3127 
3128 /**
3129  * __skb_frag_unref - release a reference on a paged fragment.
3130  * @frag: the paged fragment
3131  * @recycle: recycle the page if allocated via page_pool
3132  *
3133  * Releases a reference on the paged fragment @frag
3134  * or recycles the page via the page_pool API.
3135  */
3136 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3137 {
3138 	struct page *page = skb_frag_page(frag);
3139 
3140 #ifdef CONFIG_PAGE_POOL
3141 	if (recycle && page_pool_return_skb_page(page))
3142 		return;
3143 #endif
3144 	put_page(page);
3145 }
3146 
3147 /**
3148  * skb_frag_unref - release a reference on a paged fragment of an skb.
3149  * @skb: the buffer
3150  * @f: the fragment offset
3151  *
3152  * Releases a reference on the @f'th paged fragment of @skb.
3153  */
3154 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3155 {
3156 	__skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
3157 }
3158 
3159 /**
3160  * skb_frag_address - gets the address of the data contained in a paged fragment
3161  * @frag: the paged fragment buffer
3162  *
3163  * Returns the address of the data within @frag. The page must already
3164  * be mapped.
3165  */
3166 static inline void *skb_frag_address(const skb_frag_t *frag)
3167 {
3168 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3169 }
3170 
3171 /**
3172  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3173  * @frag: the paged fragment buffer
3174  *
3175  * Returns the address of the data within @frag. Checks that the page
3176  * is mapped and returns %NULL otherwise.
3177  */
3178 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3179 {
3180 	void *ptr = page_address(skb_frag_page(frag));
3181 	if (unlikely(!ptr))
3182 		return NULL;
3183 
3184 	return ptr + skb_frag_off(frag);
3185 }
3186 
3187 /**
3188  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3189  * @fragto: skb fragment where page is set
3190  * @fragfrom: skb fragment page is copied from
3191  */
3192 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3193 				      const skb_frag_t *fragfrom)
3194 {
3195 	fragto->bv_page = fragfrom->bv_page;
3196 }
3197 
3198 /**
3199  * __skb_frag_set_page - sets the page contained in a paged fragment
3200  * @frag: the paged fragment
3201  * @page: the page to set
3202  *
3203  * Sets the fragment @frag to contain @page.
3204  */
3205 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3206 {
3207 	frag->bv_page = page;
3208 }
3209 
3210 /**
3211  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3212  * @skb: the buffer
3213  * @f: the fragment offset
3214  * @page: the page to set
3215  *
3216  * Sets the @f'th fragment of @skb to contain @page.
3217  */
3218 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3219 				     struct page *page)
3220 {
3221 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3222 }
3223 
3224 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3225 
3226 /**
3227  * skb_frag_dma_map - maps a paged fragment via the DMA API
3228  * @dev: the device to map the fragment to
3229  * @frag: the paged fragment to map
3230  * @offset: the offset within the fragment (starting at the
3231  *          fragment's own offset)
3232  * @size: the number of bytes to map
3233  * @dir: the direction of the mapping (``PCI_DMA_*``)
3234  *
3235  * Maps the page associated with @frag to @device.
3236  */
3237 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3238 					  const skb_frag_t *frag,
3239 					  size_t offset, size_t size,
3240 					  enum dma_data_direction dir)
3241 {
3242 	return dma_map_page(dev, skb_frag_page(frag),
3243 			    skb_frag_off(frag) + offset, size, dir);
3244 }
3245 
3246 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3247 					gfp_t gfp_mask)
3248 {
3249 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3250 }
3251 
3252 
3253 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3254 						  gfp_t gfp_mask)
3255 {
3256 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3257 }
3258 
3259 
3260 /**
3261  *	skb_clone_writable - is the header of a clone writable
3262  *	@skb: buffer to check
3263  *	@len: length up to which to write
3264  *
3265  *	Returns true if modifying the header part of the cloned buffer
3266  *	does not requires the data to be copied.
3267  */
3268 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3269 {
3270 	return !skb_header_cloned(skb) &&
3271 	       skb_headroom(skb) + len <= skb->hdr_len;
3272 }
3273 
3274 static inline int skb_try_make_writable(struct sk_buff *skb,
3275 					unsigned int write_len)
3276 {
3277 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3278 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3279 }
3280 
3281 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3282 			    int cloned)
3283 {
3284 	int delta = 0;
3285 
3286 	if (headroom > skb_headroom(skb))
3287 		delta = headroom - skb_headroom(skb);
3288 
3289 	if (delta || cloned)
3290 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3291 					GFP_ATOMIC);
3292 	return 0;
3293 }
3294 
3295 /**
3296  *	skb_cow - copy header of skb when it is required
3297  *	@skb: buffer to cow
3298  *	@headroom: needed headroom
3299  *
3300  *	If the skb passed lacks sufficient headroom or its data part
3301  *	is shared, data is reallocated. If reallocation fails, an error
3302  *	is returned and original skb is not changed.
3303  *
3304  *	The result is skb with writable area skb->head...skb->tail
3305  *	and at least @headroom of space at head.
3306  */
3307 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3308 {
3309 	return __skb_cow(skb, headroom, skb_cloned(skb));
3310 }
3311 
3312 /**
3313  *	skb_cow_head - skb_cow but only making the head writable
3314  *	@skb: buffer to cow
3315  *	@headroom: needed headroom
3316  *
3317  *	This function is identical to skb_cow except that we replace the
3318  *	skb_cloned check by skb_header_cloned.  It should be used when
3319  *	you only need to push on some header and do not need to modify
3320  *	the data.
3321  */
3322 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3323 {
3324 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3325 }
3326 
3327 /**
3328  *	skb_padto	- pad an skbuff up to a minimal size
3329  *	@skb: buffer to pad
3330  *	@len: minimal length
3331  *
3332  *	Pads up a buffer to ensure the trailing bytes exist and are
3333  *	blanked. If the buffer already contains sufficient data it
3334  *	is untouched. Otherwise it is extended. Returns zero on
3335  *	success. The skb is freed on error.
3336  */
3337 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3338 {
3339 	unsigned int size = skb->len;
3340 	if (likely(size >= len))
3341 		return 0;
3342 	return skb_pad(skb, len - size);
3343 }
3344 
3345 /**
3346  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3347  *	@skb: buffer to pad
3348  *	@len: minimal length
3349  *	@free_on_error: free buffer on error
3350  *
3351  *	Pads up a buffer to ensure the trailing bytes exist and are
3352  *	blanked. If the buffer already contains sufficient data it
3353  *	is untouched. Otherwise it is extended. Returns zero on
3354  *	success. The skb is freed on error if @free_on_error is true.
3355  */
3356 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3357 					       unsigned int len,
3358 					       bool free_on_error)
3359 {
3360 	unsigned int size = skb->len;
3361 
3362 	if (unlikely(size < len)) {
3363 		len -= size;
3364 		if (__skb_pad(skb, len, free_on_error))
3365 			return -ENOMEM;
3366 		__skb_put(skb, len);
3367 	}
3368 	return 0;
3369 }
3370 
3371 /**
3372  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3373  *	@skb: buffer to pad
3374  *	@len: minimal length
3375  *
3376  *	Pads up a buffer to ensure the trailing bytes exist and are
3377  *	blanked. If the buffer already contains sufficient data it
3378  *	is untouched. Otherwise it is extended. Returns zero on
3379  *	success. The skb is freed on error.
3380  */
3381 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3382 {
3383 	return __skb_put_padto(skb, len, true);
3384 }
3385 
3386 static inline int skb_add_data(struct sk_buff *skb,
3387 			       struct iov_iter *from, int copy)
3388 {
3389 	const int off = skb->len;
3390 
3391 	if (skb->ip_summed == CHECKSUM_NONE) {
3392 		__wsum csum = 0;
3393 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3394 					         &csum, from)) {
3395 			skb->csum = csum_block_add(skb->csum, csum, off);
3396 			return 0;
3397 		}
3398 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3399 		return 0;
3400 
3401 	__skb_trim(skb, off);
3402 	return -EFAULT;
3403 }
3404 
3405 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3406 				    const struct page *page, int off)
3407 {
3408 	if (skb_zcopy(skb))
3409 		return false;
3410 	if (i) {
3411 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3412 
3413 		return page == skb_frag_page(frag) &&
3414 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3415 	}
3416 	return false;
3417 }
3418 
3419 static inline int __skb_linearize(struct sk_buff *skb)
3420 {
3421 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3422 }
3423 
3424 /**
3425  *	skb_linearize - convert paged skb to linear one
3426  *	@skb: buffer to linarize
3427  *
3428  *	If there is no free memory -ENOMEM is returned, otherwise zero
3429  *	is returned and the old skb data released.
3430  */
3431 static inline int skb_linearize(struct sk_buff *skb)
3432 {
3433 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3434 }
3435 
3436 /**
3437  * skb_has_shared_frag - can any frag be overwritten
3438  * @skb: buffer to test
3439  *
3440  * Return true if the skb has at least one frag that might be modified
3441  * by an external entity (as in vmsplice()/sendfile())
3442  */
3443 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3444 {
3445 	return skb_is_nonlinear(skb) &&
3446 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3447 }
3448 
3449 /**
3450  *	skb_linearize_cow - make sure skb is linear and writable
3451  *	@skb: buffer to process
3452  *
3453  *	If there is no free memory -ENOMEM is returned, otherwise zero
3454  *	is returned and the old skb data released.
3455  */
3456 static inline int skb_linearize_cow(struct sk_buff *skb)
3457 {
3458 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3459 	       __skb_linearize(skb) : 0;
3460 }
3461 
3462 static __always_inline void
3463 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3464 		     unsigned int off)
3465 {
3466 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3467 		skb->csum = csum_block_sub(skb->csum,
3468 					   csum_partial(start, len, 0), off);
3469 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3470 		 skb_checksum_start_offset(skb) < 0)
3471 		skb->ip_summed = CHECKSUM_NONE;
3472 }
3473 
3474 /**
3475  *	skb_postpull_rcsum - update checksum for received skb after pull
3476  *	@skb: buffer to update
3477  *	@start: start of data before pull
3478  *	@len: length of data pulled
3479  *
3480  *	After doing a pull on a received packet, you need to call this to
3481  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3482  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3483  */
3484 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3485 				      const void *start, unsigned int len)
3486 {
3487 	__skb_postpull_rcsum(skb, start, len, 0);
3488 }
3489 
3490 static __always_inline void
3491 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3492 		     unsigned int off)
3493 {
3494 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3495 		skb->csum = csum_block_add(skb->csum,
3496 					   csum_partial(start, len, 0), off);
3497 }
3498 
3499 /**
3500  *	skb_postpush_rcsum - update checksum for received skb after push
3501  *	@skb: buffer to update
3502  *	@start: start of data after push
3503  *	@len: length of data pushed
3504  *
3505  *	After doing a push on a received packet, you need to call this to
3506  *	update the CHECKSUM_COMPLETE checksum.
3507  */
3508 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3509 				      const void *start, unsigned int len)
3510 {
3511 	__skb_postpush_rcsum(skb, start, len, 0);
3512 }
3513 
3514 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3515 
3516 /**
3517  *	skb_push_rcsum - push skb and update receive checksum
3518  *	@skb: buffer to update
3519  *	@len: length of data pulled
3520  *
3521  *	This function performs an skb_push on the packet and updates
3522  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3523  *	receive path processing instead of skb_push unless you know
3524  *	that the checksum difference is zero (e.g., a valid IP header)
3525  *	or you are setting ip_summed to CHECKSUM_NONE.
3526  */
3527 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3528 {
3529 	skb_push(skb, len);
3530 	skb_postpush_rcsum(skb, skb->data, len);
3531 	return skb->data;
3532 }
3533 
3534 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3535 /**
3536  *	pskb_trim_rcsum - trim received skb and update checksum
3537  *	@skb: buffer to trim
3538  *	@len: new length
3539  *
3540  *	This is exactly the same as pskb_trim except that it ensures the
3541  *	checksum of received packets are still valid after the operation.
3542  *	It can change skb pointers.
3543  */
3544 
3545 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3546 {
3547 	if (likely(len >= skb->len))
3548 		return 0;
3549 	return pskb_trim_rcsum_slow(skb, len);
3550 }
3551 
3552 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3553 {
3554 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3555 		skb->ip_summed = CHECKSUM_NONE;
3556 	__skb_trim(skb, len);
3557 	return 0;
3558 }
3559 
3560 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3561 {
3562 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3563 		skb->ip_summed = CHECKSUM_NONE;
3564 	return __skb_grow(skb, len);
3565 }
3566 
3567 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3568 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3569 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3570 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3571 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3572 
3573 #define skb_queue_walk(queue, skb) \
3574 		for (skb = (queue)->next;					\
3575 		     skb != (struct sk_buff *)(queue);				\
3576 		     skb = skb->next)
3577 
3578 #define skb_queue_walk_safe(queue, skb, tmp)					\
3579 		for (skb = (queue)->next, tmp = skb->next;			\
3580 		     skb != (struct sk_buff *)(queue);				\
3581 		     skb = tmp, tmp = skb->next)
3582 
3583 #define skb_queue_walk_from(queue, skb)						\
3584 		for (; skb != (struct sk_buff *)(queue);			\
3585 		     skb = skb->next)
3586 
3587 #define skb_rbtree_walk(skb, root)						\
3588 		for (skb = skb_rb_first(root); skb != NULL;			\
3589 		     skb = skb_rb_next(skb))
3590 
3591 #define skb_rbtree_walk_from(skb)						\
3592 		for (; skb != NULL;						\
3593 		     skb = skb_rb_next(skb))
3594 
3595 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3596 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3597 		     skb = tmp)
3598 
3599 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3600 		for (tmp = skb->next;						\
3601 		     skb != (struct sk_buff *)(queue);				\
3602 		     skb = tmp, tmp = skb->next)
3603 
3604 #define skb_queue_reverse_walk(queue, skb) \
3605 		for (skb = (queue)->prev;					\
3606 		     skb != (struct sk_buff *)(queue);				\
3607 		     skb = skb->prev)
3608 
3609 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3610 		for (skb = (queue)->prev, tmp = skb->prev;			\
3611 		     skb != (struct sk_buff *)(queue);				\
3612 		     skb = tmp, tmp = skb->prev)
3613 
3614 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3615 		for (tmp = skb->prev;						\
3616 		     skb != (struct sk_buff *)(queue);				\
3617 		     skb = tmp, tmp = skb->prev)
3618 
3619 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3620 {
3621 	return skb_shinfo(skb)->frag_list != NULL;
3622 }
3623 
3624 static inline void skb_frag_list_init(struct sk_buff *skb)
3625 {
3626 	skb_shinfo(skb)->frag_list = NULL;
3627 }
3628 
3629 #define skb_walk_frags(skb, iter)	\
3630 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3631 
3632 
3633 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3634 				int *err, long *timeo_p,
3635 				const struct sk_buff *skb);
3636 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3637 					  struct sk_buff_head *queue,
3638 					  unsigned int flags,
3639 					  int *off, int *err,
3640 					  struct sk_buff **last);
3641 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3642 					struct sk_buff_head *queue,
3643 					unsigned int flags, int *off, int *err,
3644 					struct sk_buff **last);
3645 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3646 				    struct sk_buff_head *sk_queue,
3647 				    unsigned int flags, int *off, int *err);
3648 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3649 				  int *err);
3650 __poll_t datagram_poll(struct file *file, struct socket *sock,
3651 			   struct poll_table_struct *wait);
3652 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3653 			   struct iov_iter *to, int size);
3654 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3655 					struct msghdr *msg, int size)
3656 {
3657 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3658 }
3659 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3660 				   struct msghdr *msg);
3661 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3662 			   struct iov_iter *to, int len,
3663 			   struct ahash_request *hash);
3664 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3665 				 struct iov_iter *from, int len);
3666 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3667 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3668 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3669 static inline void skb_free_datagram_locked(struct sock *sk,
3670 					    struct sk_buff *skb)
3671 {
3672 	__skb_free_datagram_locked(sk, skb, 0);
3673 }
3674 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3675 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3676 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3677 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3678 			      int len);
3679 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3680 		    struct pipe_inode_info *pipe, unsigned int len,
3681 		    unsigned int flags);
3682 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3683 			 int len);
3684 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3685 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3686 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3687 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3688 		 int len, int hlen);
3689 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3690 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3691 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3692 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3693 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3694 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3695 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3696 				 unsigned int offset);
3697 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3698 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3699 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3700 int skb_vlan_pop(struct sk_buff *skb);
3701 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3702 int skb_eth_pop(struct sk_buff *skb);
3703 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3704 		 const unsigned char *src);
3705 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3706 		  int mac_len, bool ethernet);
3707 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3708 		 bool ethernet);
3709 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3710 int skb_mpls_dec_ttl(struct sk_buff *skb);
3711 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3712 			     gfp_t gfp);
3713 
3714 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3715 {
3716 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3717 }
3718 
3719 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3720 {
3721 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3722 }
3723 
3724 struct skb_checksum_ops {
3725 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3726 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3727 };
3728 
3729 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3730 
3731 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3732 		      __wsum csum, const struct skb_checksum_ops *ops);
3733 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3734 		    __wsum csum);
3735 
3736 static inline void * __must_check
3737 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3738 		     const void *data, int hlen, void *buffer)
3739 {
3740 	if (likely(hlen - offset >= len))
3741 		return (void *)data + offset;
3742 
3743 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3744 		return NULL;
3745 
3746 	return buffer;
3747 }
3748 
3749 static inline void * __must_check
3750 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3751 {
3752 	return __skb_header_pointer(skb, offset, len, skb->data,
3753 				    skb_headlen(skb), buffer);
3754 }
3755 
3756 /**
3757  *	skb_needs_linearize - check if we need to linearize a given skb
3758  *			      depending on the given device features.
3759  *	@skb: socket buffer to check
3760  *	@features: net device features
3761  *
3762  *	Returns true if either:
3763  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3764  *	2. skb is fragmented and the device does not support SG.
3765  */
3766 static inline bool skb_needs_linearize(struct sk_buff *skb,
3767 				       netdev_features_t features)
3768 {
3769 	return skb_is_nonlinear(skb) &&
3770 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3771 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3772 }
3773 
3774 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3775 					     void *to,
3776 					     const unsigned int len)
3777 {
3778 	memcpy(to, skb->data, len);
3779 }
3780 
3781 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3782 						    const int offset, void *to,
3783 						    const unsigned int len)
3784 {
3785 	memcpy(to, skb->data + offset, len);
3786 }
3787 
3788 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3789 					   const void *from,
3790 					   const unsigned int len)
3791 {
3792 	memcpy(skb->data, from, len);
3793 }
3794 
3795 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3796 						  const int offset,
3797 						  const void *from,
3798 						  const unsigned int len)
3799 {
3800 	memcpy(skb->data + offset, from, len);
3801 }
3802 
3803 void skb_init(void);
3804 
3805 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3806 {
3807 	return skb->tstamp;
3808 }
3809 
3810 /**
3811  *	skb_get_timestamp - get timestamp from a skb
3812  *	@skb: skb to get stamp from
3813  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3814  *
3815  *	Timestamps are stored in the skb as offsets to a base timestamp.
3816  *	This function converts the offset back to a struct timeval and stores
3817  *	it in stamp.
3818  */
3819 static inline void skb_get_timestamp(const struct sk_buff *skb,
3820 				     struct __kernel_old_timeval *stamp)
3821 {
3822 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3823 }
3824 
3825 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3826 					 struct __kernel_sock_timeval *stamp)
3827 {
3828 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3829 
3830 	stamp->tv_sec = ts.tv_sec;
3831 	stamp->tv_usec = ts.tv_nsec / 1000;
3832 }
3833 
3834 static inline void skb_get_timestampns(const struct sk_buff *skb,
3835 				       struct __kernel_old_timespec *stamp)
3836 {
3837 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3838 
3839 	stamp->tv_sec = ts.tv_sec;
3840 	stamp->tv_nsec = ts.tv_nsec;
3841 }
3842 
3843 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3844 					   struct __kernel_timespec *stamp)
3845 {
3846 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3847 
3848 	stamp->tv_sec = ts.tv_sec;
3849 	stamp->tv_nsec = ts.tv_nsec;
3850 }
3851 
3852 static inline void __net_timestamp(struct sk_buff *skb)
3853 {
3854 	skb->tstamp = ktime_get_real();
3855 }
3856 
3857 static inline ktime_t net_timedelta(ktime_t t)
3858 {
3859 	return ktime_sub(ktime_get_real(), t);
3860 }
3861 
3862 static inline ktime_t net_invalid_timestamp(void)
3863 {
3864 	return 0;
3865 }
3866 
3867 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3868 {
3869 	return skb_shinfo(skb)->meta_len;
3870 }
3871 
3872 static inline void *skb_metadata_end(const struct sk_buff *skb)
3873 {
3874 	return skb_mac_header(skb);
3875 }
3876 
3877 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3878 					  const struct sk_buff *skb_b,
3879 					  u8 meta_len)
3880 {
3881 	const void *a = skb_metadata_end(skb_a);
3882 	const void *b = skb_metadata_end(skb_b);
3883 	/* Using more efficient varaiant than plain call to memcmp(). */
3884 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3885 	u64 diffs = 0;
3886 
3887 	switch (meta_len) {
3888 #define __it(x, op) (x -= sizeof(u##op))
3889 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3890 	case 32: diffs |= __it_diff(a, b, 64);
3891 		fallthrough;
3892 	case 24: diffs |= __it_diff(a, b, 64);
3893 		fallthrough;
3894 	case 16: diffs |= __it_diff(a, b, 64);
3895 		fallthrough;
3896 	case  8: diffs |= __it_diff(a, b, 64);
3897 		break;
3898 	case 28: diffs |= __it_diff(a, b, 64);
3899 		fallthrough;
3900 	case 20: diffs |= __it_diff(a, b, 64);
3901 		fallthrough;
3902 	case 12: diffs |= __it_diff(a, b, 64);
3903 		fallthrough;
3904 	case  4: diffs |= __it_diff(a, b, 32);
3905 		break;
3906 	}
3907 	return diffs;
3908 #else
3909 	return memcmp(a - meta_len, b - meta_len, meta_len);
3910 #endif
3911 }
3912 
3913 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3914 					const struct sk_buff *skb_b)
3915 {
3916 	u8 len_a = skb_metadata_len(skb_a);
3917 	u8 len_b = skb_metadata_len(skb_b);
3918 
3919 	if (!(len_a | len_b))
3920 		return false;
3921 
3922 	return len_a != len_b ?
3923 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3924 }
3925 
3926 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3927 {
3928 	skb_shinfo(skb)->meta_len = meta_len;
3929 }
3930 
3931 static inline void skb_metadata_clear(struct sk_buff *skb)
3932 {
3933 	skb_metadata_set(skb, 0);
3934 }
3935 
3936 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3937 
3938 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3939 
3940 void skb_clone_tx_timestamp(struct sk_buff *skb);
3941 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3942 
3943 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3944 
3945 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3946 {
3947 }
3948 
3949 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3950 {
3951 	return false;
3952 }
3953 
3954 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3955 
3956 /**
3957  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3958  *
3959  * PHY drivers may accept clones of transmitted packets for
3960  * timestamping via their phy_driver.txtstamp method. These drivers
3961  * must call this function to return the skb back to the stack with a
3962  * timestamp.
3963  *
3964  * @skb: clone of the original outgoing packet
3965  * @hwtstamps: hardware time stamps
3966  *
3967  */
3968 void skb_complete_tx_timestamp(struct sk_buff *skb,
3969 			       struct skb_shared_hwtstamps *hwtstamps);
3970 
3971 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
3972 		     struct skb_shared_hwtstamps *hwtstamps,
3973 		     struct sock *sk, int tstype);
3974 
3975 /**
3976  * skb_tstamp_tx - queue clone of skb with send time stamps
3977  * @orig_skb:	the original outgoing packet
3978  * @hwtstamps:	hardware time stamps, may be NULL if not available
3979  *
3980  * If the skb has a socket associated, then this function clones the
3981  * skb (thus sharing the actual data and optional structures), stores
3982  * the optional hardware time stamping information (if non NULL) or
3983  * generates a software time stamp (otherwise), then queues the clone
3984  * to the error queue of the socket.  Errors are silently ignored.
3985  */
3986 void skb_tstamp_tx(struct sk_buff *orig_skb,
3987 		   struct skb_shared_hwtstamps *hwtstamps);
3988 
3989 /**
3990  * skb_tx_timestamp() - Driver hook for transmit timestamping
3991  *
3992  * Ethernet MAC Drivers should call this function in their hard_xmit()
3993  * function immediately before giving the sk_buff to the MAC hardware.
3994  *
3995  * Specifically, one should make absolutely sure that this function is
3996  * called before TX completion of this packet can trigger.  Otherwise
3997  * the packet could potentially already be freed.
3998  *
3999  * @skb: A socket buffer.
4000  */
4001 static inline void skb_tx_timestamp(struct sk_buff *skb)
4002 {
4003 	skb_clone_tx_timestamp(skb);
4004 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4005 		skb_tstamp_tx(skb, NULL);
4006 }
4007 
4008 /**
4009  * skb_complete_wifi_ack - deliver skb with wifi status
4010  *
4011  * @skb: the original outgoing packet
4012  * @acked: ack status
4013  *
4014  */
4015 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4016 
4017 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4018 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4019 
4020 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4021 {
4022 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4023 		skb->csum_valid ||
4024 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4025 		 skb_checksum_start_offset(skb) >= 0));
4026 }
4027 
4028 /**
4029  *	skb_checksum_complete - Calculate checksum of an entire packet
4030  *	@skb: packet to process
4031  *
4032  *	This function calculates the checksum over the entire packet plus
4033  *	the value of skb->csum.  The latter can be used to supply the
4034  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4035  *	checksum.
4036  *
4037  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4038  *	this function can be used to verify that checksum on received
4039  *	packets.  In that case the function should return zero if the
4040  *	checksum is correct.  In particular, this function will return zero
4041  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4042  *	hardware has already verified the correctness of the checksum.
4043  */
4044 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4045 {
4046 	return skb_csum_unnecessary(skb) ?
4047 	       0 : __skb_checksum_complete(skb);
4048 }
4049 
4050 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4051 {
4052 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4053 		if (skb->csum_level == 0)
4054 			skb->ip_summed = CHECKSUM_NONE;
4055 		else
4056 			skb->csum_level--;
4057 	}
4058 }
4059 
4060 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4061 {
4062 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4063 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4064 			skb->csum_level++;
4065 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4066 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4067 		skb->csum_level = 0;
4068 	}
4069 }
4070 
4071 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4072 {
4073 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4074 		skb->ip_summed = CHECKSUM_NONE;
4075 		skb->csum_level = 0;
4076 	}
4077 }
4078 
4079 /* Check if we need to perform checksum complete validation.
4080  *
4081  * Returns true if checksum complete is needed, false otherwise
4082  * (either checksum is unnecessary or zero checksum is allowed).
4083  */
4084 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4085 						  bool zero_okay,
4086 						  __sum16 check)
4087 {
4088 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4089 		skb->csum_valid = 1;
4090 		__skb_decr_checksum_unnecessary(skb);
4091 		return false;
4092 	}
4093 
4094 	return true;
4095 }
4096 
4097 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4098  * in checksum_init.
4099  */
4100 #define CHECKSUM_BREAK 76
4101 
4102 /* Unset checksum-complete
4103  *
4104  * Unset checksum complete can be done when packet is being modified
4105  * (uncompressed for instance) and checksum-complete value is
4106  * invalidated.
4107  */
4108 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4109 {
4110 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4111 		skb->ip_summed = CHECKSUM_NONE;
4112 }
4113 
4114 /* Validate (init) checksum based on checksum complete.
4115  *
4116  * Return values:
4117  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4118  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4119  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4120  *   non-zero: value of invalid checksum
4121  *
4122  */
4123 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4124 						       bool complete,
4125 						       __wsum psum)
4126 {
4127 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4128 		if (!csum_fold(csum_add(psum, skb->csum))) {
4129 			skb->csum_valid = 1;
4130 			return 0;
4131 		}
4132 	}
4133 
4134 	skb->csum = psum;
4135 
4136 	if (complete || skb->len <= CHECKSUM_BREAK) {
4137 		__sum16 csum;
4138 
4139 		csum = __skb_checksum_complete(skb);
4140 		skb->csum_valid = !csum;
4141 		return csum;
4142 	}
4143 
4144 	return 0;
4145 }
4146 
4147 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4148 {
4149 	return 0;
4150 }
4151 
4152 /* Perform checksum validate (init). Note that this is a macro since we only
4153  * want to calculate the pseudo header which is an input function if necessary.
4154  * First we try to validate without any computation (checksum unnecessary) and
4155  * then calculate based on checksum complete calling the function to compute
4156  * pseudo header.
4157  *
4158  * Return values:
4159  *   0: checksum is validated or try to in skb_checksum_complete
4160  *   non-zero: value of invalid checksum
4161  */
4162 #define __skb_checksum_validate(skb, proto, complete,			\
4163 				zero_okay, check, compute_pseudo)	\
4164 ({									\
4165 	__sum16 __ret = 0;						\
4166 	skb->csum_valid = 0;						\
4167 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4168 		__ret = __skb_checksum_validate_complete(skb,		\
4169 				complete, compute_pseudo(skb, proto));	\
4170 	__ret;								\
4171 })
4172 
4173 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4174 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4175 
4176 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4177 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4178 
4179 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4180 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4181 
4182 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4183 					 compute_pseudo)		\
4184 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4185 
4186 #define skb_checksum_simple_validate(skb)				\
4187 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4188 
4189 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4190 {
4191 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4192 }
4193 
4194 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4195 {
4196 	skb->csum = ~pseudo;
4197 	skb->ip_summed = CHECKSUM_COMPLETE;
4198 }
4199 
4200 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4201 do {									\
4202 	if (__skb_checksum_convert_check(skb))				\
4203 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4204 } while (0)
4205 
4206 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4207 					      u16 start, u16 offset)
4208 {
4209 	skb->ip_summed = CHECKSUM_PARTIAL;
4210 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4211 	skb->csum_offset = offset - start;
4212 }
4213 
4214 /* Update skbuf and packet to reflect the remote checksum offload operation.
4215  * When called, ptr indicates the starting point for skb->csum when
4216  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4217  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4218  */
4219 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4220 				       int start, int offset, bool nopartial)
4221 {
4222 	__wsum delta;
4223 
4224 	if (!nopartial) {
4225 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4226 		return;
4227 	}
4228 
4229 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4230 		__skb_checksum_complete(skb);
4231 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4232 	}
4233 
4234 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4235 
4236 	/* Adjust skb->csum since we changed the packet */
4237 	skb->csum = csum_add(skb->csum, delta);
4238 }
4239 
4240 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4241 {
4242 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4243 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4244 #else
4245 	return NULL;
4246 #endif
4247 }
4248 
4249 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4250 {
4251 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4252 	return skb->_nfct;
4253 #else
4254 	return 0UL;
4255 #endif
4256 }
4257 
4258 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4259 {
4260 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4261 	skb->slow_gro |= !!nfct;
4262 	skb->_nfct = nfct;
4263 #endif
4264 }
4265 
4266 #ifdef CONFIG_SKB_EXTENSIONS
4267 enum skb_ext_id {
4268 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4269 	SKB_EXT_BRIDGE_NF,
4270 #endif
4271 #ifdef CONFIG_XFRM
4272 	SKB_EXT_SEC_PATH,
4273 #endif
4274 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4275 	TC_SKB_EXT,
4276 #endif
4277 #if IS_ENABLED(CONFIG_MPTCP)
4278 	SKB_EXT_MPTCP,
4279 #endif
4280 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4281 	SKB_EXT_MCTP,
4282 #endif
4283 	SKB_EXT_NUM, /* must be last */
4284 };
4285 
4286 /**
4287  *	struct skb_ext - sk_buff extensions
4288  *	@refcnt: 1 on allocation, deallocated on 0
4289  *	@offset: offset to add to @data to obtain extension address
4290  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4291  *	@data: start of extension data, variable sized
4292  *
4293  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4294  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4295  */
4296 struct skb_ext {
4297 	refcount_t refcnt;
4298 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4299 	u8 chunks;		/* same */
4300 	char data[] __aligned(8);
4301 };
4302 
4303 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4304 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4305 		    struct skb_ext *ext);
4306 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4307 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4308 void __skb_ext_put(struct skb_ext *ext);
4309 
4310 static inline void skb_ext_put(struct sk_buff *skb)
4311 {
4312 	if (skb->active_extensions)
4313 		__skb_ext_put(skb->extensions);
4314 }
4315 
4316 static inline void __skb_ext_copy(struct sk_buff *dst,
4317 				  const struct sk_buff *src)
4318 {
4319 	dst->active_extensions = src->active_extensions;
4320 
4321 	if (src->active_extensions) {
4322 		struct skb_ext *ext = src->extensions;
4323 
4324 		refcount_inc(&ext->refcnt);
4325 		dst->extensions = ext;
4326 	}
4327 }
4328 
4329 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4330 {
4331 	skb_ext_put(dst);
4332 	__skb_ext_copy(dst, src);
4333 }
4334 
4335 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4336 {
4337 	return !!ext->offset[i];
4338 }
4339 
4340 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4341 {
4342 	return skb->active_extensions & (1 << id);
4343 }
4344 
4345 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4346 {
4347 	if (skb_ext_exist(skb, id))
4348 		__skb_ext_del(skb, id);
4349 }
4350 
4351 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4352 {
4353 	if (skb_ext_exist(skb, id)) {
4354 		struct skb_ext *ext = skb->extensions;
4355 
4356 		return (void *)ext + (ext->offset[id] << 3);
4357 	}
4358 
4359 	return NULL;
4360 }
4361 
4362 static inline void skb_ext_reset(struct sk_buff *skb)
4363 {
4364 	if (unlikely(skb->active_extensions)) {
4365 		__skb_ext_put(skb->extensions);
4366 		skb->active_extensions = 0;
4367 	}
4368 }
4369 
4370 static inline bool skb_has_extensions(struct sk_buff *skb)
4371 {
4372 	return unlikely(skb->active_extensions);
4373 }
4374 #else
4375 static inline void skb_ext_put(struct sk_buff *skb) {}
4376 static inline void skb_ext_reset(struct sk_buff *skb) {}
4377 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4378 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4379 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4380 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4381 #endif /* CONFIG_SKB_EXTENSIONS */
4382 
4383 static inline void nf_reset_ct(struct sk_buff *skb)
4384 {
4385 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4386 	nf_conntrack_put(skb_nfct(skb));
4387 	skb->_nfct = 0;
4388 #endif
4389 }
4390 
4391 static inline void nf_reset_trace(struct sk_buff *skb)
4392 {
4393 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4394 	skb->nf_trace = 0;
4395 #endif
4396 }
4397 
4398 static inline void ipvs_reset(struct sk_buff *skb)
4399 {
4400 #if IS_ENABLED(CONFIG_IP_VS)
4401 	skb->ipvs_property = 0;
4402 #endif
4403 }
4404 
4405 /* Note: This doesn't put any conntrack info in dst. */
4406 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4407 			     bool copy)
4408 {
4409 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4410 	dst->_nfct = src->_nfct;
4411 	nf_conntrack_get(skb_nfct(src));
4412 #endif
4413 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4414 	if (copy)
4415 		dst->nf_trace = src->nf_trace;
4416 #endif
4417 }
4418 
4419 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4420 {
4421 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4422 	nf_conntrack_put(skb_nfct(dst));
4423 #endif
4424 	dst->slow_gro = src->slow_gro;
4425 	__nf_copy(dst, src, true);
4426 }
4427 
4428 #ifdef CONFIG_NETWORK_SECMARK
4429 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4430 {
4431 	to->secmark = from->secmark;
4432 }
4433 
4434 static inline void skb_init_secmark(struct sk_buff *skb)
4435 {
4436 	skb->secmark = 0;
4437 }
4438 #else
4439 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4440 { }
4441 
4442 static inline void skb_init_secmark(struct sk_buff *skb)
4443 { }
4444 #endif
4445 
4446 static inline int secpath_exists(const struct sk_buff *skb)
4447 {
4448 #ifdef CONFIG_XFRM
4449 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4450 #else
4451 	return 0;
4452 #endif
4453 }
4454 
4455 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4456 {
4457 	return !skb->destructor &&
4458 		!secpath_exists(skb) &&
4459 		!skb_nfct(skb) &&
4460 		!skb->_skb_refdst &&
4461 		!skb_has_frag_list(skb);
4462 }
4463 
4464 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4465 {
4466 	skb->queue_mapping = queue_mapping;
4467 }
4468 
4469 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4470 {
4471 	return skb->queue_mapping;
4472 }
4473 
4474 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4475 {
4476 	to->queue_mapping = from->queue_mapping;
4477 }
4478 
4479 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4480 {
4481 	skb->queue_mapping = rx_queue + 1;
4482 }
4483 
4484 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4485 {
4486 	return skb->queue_mapping - 1;
4487 }
4488 
4489 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4490 {
4491 	return skb->queue_mapping != 0;
4492 }
4493 
4494 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4495 {
4496 	skb->dst_pending_confirm = val;
4497 }
4498 
4499 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4500 {
4501 	return skb->dst_pending_confirm != 0;
4502 }
4503 
4504 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4505 {
4506 #ifdef CONFIG_XFRM
4507 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4508 #else
4509 	return NULL;
4510 #endif
4511 }
4512 
4513 /* Keeps track of mac header offset relative to skb->head.
4514  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4515  * For non-tunnel skb it points to skb_mac_header() and for
4516  * tunnel skb it points to outer mac header.
4517  * Keeps track of level of encapsulation of network headers.
4518  */
4519 struct skb_gso_cb {
4520 	union {
4521 		int	mac_offset;
4522 		int	data_offset;
4523 	};
4524 	int	encap_level;
4525 	__wsum	csum;
4526 	__u16	csum_start;
4527 };
4528 #define SKB_GSO_CB_OFFSET	32
4529 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4530 
4531 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4532 {
4533 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4534 		SKB_GSO_CB(inner_skb)->mac_offset;
4535 }
4536 
4537 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4538 {
4539 	int new_headroom, headroom;
4540 	int ret;
4541 
4542 	headroom = skb_headroom(skb);
4543 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4544 	if (ret)
4545 		return ret;
4546 
4547 	new_headroom = skb_headroom(skb);
4548 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4549 	return 0;
4550 }
4551 
4552 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4553 {
4554 	/* Do not update partial checksums if remote checksum is enabled. */
4555 	if (skb->remcsum_offload)
4556 		return;
4557 
4558 	SKB_GSO_CB(skb)->csum = res;
4559 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4560 }
4561 
4562 /* Compute the checksum for a gso segment. First compute the checksum value
4563  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4564  * then add in skb->csum (checksum from csum_start to end of packet).
4565  * skb->csum and csum_start are then updated to reflect the checksum of the
4566  * resultant packet starting from the transport header-- the resultant checksum
4567  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4568  * header.
4569  */
4570 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4571 {
4572 	unsigned char *csum_start = skb_transport_header(skb);
4573 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4574 	__wsum partial = SKB_GSO_CB(skb)->csum;
4575 
4576 	SKB_GSO_CB(skb)->csum = res;
4577 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4578 
4579 	return csum_fold(csum_partial(csum_start, plen, partial));
4580 }
4581 
4582 static inline bool skb_is_gso(const struct sk_buff *skb)
4583 {
4584 	return skb_shinfo(skb)->gso_size;
4585 }
4586 
4587 /* Note: Should be called only if skb_is_gso(skb) is true */
4588 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4589 {
4590 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4591 }
4592 
4593 /* Note: Should be called only if skb_is_gso(skb) is true */
4594 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4595 {
4596 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4597 }
4598 
4599 /* Note: Should be called only if skb_is_gso(skb) is true */
4600 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4601 {
4602 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4603 }
4604 
4605 static inline void skb_gso_reset(struct sk_buff *skb)
4606 {
4607 	skb_shinfo(skb)->gso_size = 0;
4608 	skb_shinfo(skb)->gso_segs = 0;
4609 	skb_shinfo(skb)->gso_type = 0;
4610 }
4611 
4612 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4613 					 u16 increment)
4614 {
4615 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4616 		return;
4617 	shinfo->gso_size += increment;
4618 }
4619 
4620 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4621 					 u16 decrement)
4622 {
4623 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4624 		return;
4625 	shinfo->gso_size -= decrement;
4626 }
4627 
4628 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4629 
4630 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4631 {
4632 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4633 	 * wanted then gso_type will be set. */
4634 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4635 
4636 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4637 	    unlikely(shinfo->gso_type == 0)) {
4638 		__skb_warn_lro_forwarding(skb);
4639 		return true;
4640 	}
4641 	return false;
4642 }
4643 
4644 static inline void skb_forward_csum(struct sk_buff *skb)
4645 {
4646 	/* Unfortunately we don't support this one.  Any brave souls? */
4647 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4648 		skb->ip_summed = CHECKSUM_NONE;
4649 }
4650 
4651 /**
4652  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4653  * @skb: skb to check
4654  *
4655  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4656  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4657  * use this helper, to document places where we make this assertion.
4658  */
4659 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4660 {
4661 #ifdef DEBUG
4662 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4663 #endif
4664 }
4665 
4666 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4667 
4668 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4669 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4670 				     unsigned int transport_len,
4671 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4672 
4673 /**
4674  * skb_head_is_locked - Determine if the skb->head is locked down
4675  * @skb: skb to check
4676  *
4677  * The head on skbs build around a head frag can be removed if they are
4678  * not cloned.  This function returns true if the skb head is locked down
4679  * due to either being allocated via kmalloc, or by being a clone with
4680  * multiple references to the head.
4681  */
4682 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4683 {
4684 	return !skb->head_frag || skb_cloned(skb);
4685 }
4686 
4687 /* Local Checksum Offload.
4688  * Compute outer checksum based on the assumption that the
4689  * inner checksum will be offloaded later.
4690  * See Documentation/networking/checksum-offloads.rst for
4691  * explanation of how this works.
4692  * Fill in outer checksum adjustment (e.g. with sum of outer
4693  * pseudo-header) before calling.
4694  * Also ensure that inner checksum is in linear data area.
4695  */
4696 static inline __wsum lco_csum(struct sk_buff *skb)
4697 {
4698 	unsigned char *csum_start = skb_checksum_start(skb);
4699 	unsigned char *l4_hdr = skb_transport_header(skb);
4700 	__wsum partial;
4701 
4702 	/* Start with complement of inner checksum adjustment */
4703 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4704 						    skb->csum_offset));
4705 
4706 	/* Add in checksum of our headers (incl. outer checksum
4707 	 * adjustment filled in by caller) and return result.
4708 	 */
4709 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4710 }
4711 
4712 static inline bool skb_is_redirected(const struct sk_buff *skb)
4713 {
4714 	return skb->redirected;
4715 }
4716 
4717 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4718 {
4719 	skb->redirected = 1;
4720 #ifdef CONFIG_NET_REDIRECT
4721 	skb->from_ingress = from_ingress;
4722 	if (skb->from_ingress)
4723 		skb->tstamp = 0;
4724 #endif
4725 }
4726 
4727 static inline void skb_reset_redirect(struct sk_buff *skb)
4728 {
4729 	skb->redirected = 0;
4730 }
4731 
4732 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4733 {
4734 	return skb->csum_not_inet;
4735 }
4736 
4737 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4738 				       const u64 kcov_handle)
4739 {
4740 #ifdef CONFIG_KCOV
4741 	skb->kcov_handle = kcov_handle;
4742 #endif
4743 }
4744 
4745 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4746 {
4747 #ifdef CONFIG_KCOV
4748 	return skb->kcov_handle;
4749 #else
4750 	return 0;
4751 #endif
4752 }
4753 
4754 #ifdef CONFIG_PAGE_POOL
4755 static inline void skb_mark_for_recycle(struct sk_buff *skb)
4756 {
4757 	skb->pp_recycle = 1;
4758 }
4759 #endif
4760 
4761 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
4762 {
4763 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
4764 		return false;
4765 	return page_pool_return_skb_page(virt_to_page(data));
4766 }
4767 
4768 #endif	/* __KERNEL__ */
4769 #endif	/* _LINUX_SKBUFF_H */
4770