xref: /openbmc/linux/include/linux/skbuff.h (revision ed1666f6)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
6  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 struct bpf_prog;
247 union bpf_attr;
248 struct skb_ext;
249 
250 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
251 struct nf_conntrack {
252 	atomic_t use;
253 };
254 #endif
255 
256 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
257 struct nf_bridge_info {
258 	enum {
259 		BRNF_PROTO_UNCHANGED,
260 		BRNF_PROTO_8021Q,
261 		BRNF_PROTO_PPPOE
262 	} orig_proto:8;
263 	u8			pkt_otherhost:1;
264 	u8			in_prerouting:1;
265 	u8			bridged_dnat:1;
266 	__u16			frag_max_size;
267 	struct net_device	*physindev;
268 
269 	/* always valid & non-NULL from FORWARD on, for physdev match */
270 	struct net_device	*physoutdev;
271 	union {
272 		/* prerouting: detect dnat in orig/reply direction */
273 		__be32          ipv4_daddr;
274 		struct in6_addr ipv6_daddr;
275 
276 		/* after prerouting + nat detected: store original source
277 		 * mac since neigh resolution overwrites it, only used while
278 		 * skb is out in neigh layer.
279 		 */
280 		char neigh_header[8];
281 	};
282 };
283 #endif
284 
285 struct sk_buff_head {
286 	/* These two members must be first. */
287 	struct sk_buff	*next;
288 	struct sk_buff	*prev;
289 
290 	__u32		qlen;
291 	spinlock_t	lock;
292 };
293 
294 struct sk_buff;
295 
296 /* To allow 64K frame to be packed as single skb without frag_list we
297  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
298  * buffers which do not start on a page boundary.
299  *
300  * Since GRO uses frags we allocate at least 16 regardless of page
301  * size.
302  */
303 #if (65536/PAGE_SIZE + 1) < 16
304 #define MAX_SKB_FRAGS 16UL
305 #else
306 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
307 #endif
308 extern int sysctl_max_skb_frags;
309 
310 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
311  * segment using its current segmentation instead.
312  */
313 #define GSO_BY_FRAGS	0xFFFF
314 
315 typedef struct skb_frag_struct skb_frag_t;
316 
317 struct skb_frag_struct {
318 	struct {
319 		struct page *p;
320 	} page;
321 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
322 	__u32 page_offset;
323 	__u32 size;
324 #else
325 	__u16 page_offset;
326 	__u16 size;
327 #endif
328 };
329 
330 /**
331  * skb_frag_size - Returns the size of a skb fragment
332  * @frag: skb fragment
333  */
334 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
335 {
336 	return frag->size;
337 }
338 
339 /**
340  * skb_frag_size_set - Sets the size of a skb fragment
341  * @frag: skb fragment
342  * @size: size of fragment
343  */
344 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
345 {
346 	frag->size = size;
347 }
348 
349 /**
350  * skb_frag_size_add - Incrementes the size of a skb fragment by %delta
351  * @frag: skb fragment
352  * @delta: value to add
353  */
354 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
355 {
356 	frag->size += delta;
357 }
358 
359 /**
360  * skb_frag_size_sub - Decrements the size of a skb fragment by %delta
361  * @frag: skb fragment
362  * @delta: value to subtract
363  */
364 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
365 {
366 	frag->size -= delta;
367 }
368 
369 /**
370  * skb_frag_must_loop - Test if %p is a high memory page
371  * @p: fragment's page
372  */
373 static inline bool skb_frag_must_loop(struct page *p)
374 {
375 #if defined(CONFIG_HIGHMEM)
376 	if (PageHighMem(p))
377 		return true;
378 #endif
379 	return false;
380 }
381 
382 /**
383  *	skb_frag_foreach_page - loop over pages in a fragment
384  *
385  *	@f:		skb frag to operate on
386  *	@f_off:		offset from start of f->page.p
387  *	@f_len:		length from f_off to loop over
388  *	@p:		(temp var) current page
389  *	@p_off:		(temp var) offset from start of current page,
390  *	                           non-zero only on first page.
391  *	@p_len:		(temp var) length in current page,
392  *				   < PAGE_SIZE only on first and last page.
393  *	@copied:	(temp var) length so far, excluding current p_len.
394  *
395  *	A fragment can hold a compound page, in which case per-page
396  *	operations, notably kmap_atomic, must be called for each
397  *	regular page.
398  */
399 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
400 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
401 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
402 	     p_len = skb_frag_must_loop(p) ?				\
403 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
404 	     copied = 0;						\
405 	     copied < f_len;						\
406 	     copied += p_len, p++, p_off = 0,				\
407 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
408 
409 #define HAVE_HW_TIME_STAMP
410 
411 /**
412  * struct skb_shared_hwtstamps - hardware time stamps
413  * @hwtstamp:	hardware time stamp transformed into duration
414  *		since arbitrary point in time
415  *
416  * Software time stamps generated by ktime_get_real() are stored in
417  * skb->tstamp.
418  *
419  * hwtstamps can only be compared against other hwtstamps from
420  * the same device.
421  *
422  * This structure is attached to packets as part of the
423  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
424  */
425 struct skb_shared_hwtstamps {
426 	ktime_t	hwtstamp;
427 };
428 
429 /* Definitions for tx_flags in struct skb_shared_info */
430 enum {
431 	/* generate hardware time stamp */
432 	SKBTX_HW_TSTAMP = 1 << 0,
433 
434 	/* generate software time stamp when queueing packet to NIC */
435 	SKBTX_SW_TSTAMP = 1 << 1,
436 
437 	/* device driver is going to provide hardware time stamp */
438 	SKBTX_IN_PROGRESS = 1 << 2,
439 
440 	/* device driver supports TX zero-copy buffers */
441 	SKBTX_DEV_ZEROCOPY = 1 << 3,
442 
443 	/* generate wifi status information (where possible) */
444 	SKBTX_WIFI_STATUS = 1 << 4,
445 
446 	/* This indicates at least one fragment might be overwritten
447 	 * (as in vmsplice(), sendfile() ...)
448 	 * If we need to compute a TX checksum, we'll need to copy
449 	 * all frags to avoid possible bad checksum
450 	 */
451 	SKBTX_SHARED_FRAG = 1 << 5,
452 
453 	/* generate software time stamp when entering packet scheduling */
454 	SKBTX_SCHED_TSTAMP = 1 << 6,
455 };
456 
457 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
458 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
459 				 SKBTX_SCHED_TSTAMP)
460 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
461 
462 /*
463  * The callback notifies userspace to release buffers when skb DMA is done in
464  * lower device, the skb last reference should be 0 when calling this.
465  * The zerocopy_success argument is true if zero copy transmit occurred,
466  * false on data copy or out of memory error caused by data copy attempt.
467  * The ctx field is used to track device context.
468  * The desc field is used to track userspace buffer index.
469  */
470 struct ubuf_info {
471 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
472 	union {
473 		struct {
474 			unsigned long desc;
475 			void *ctx;
476 		};
477 		struct {
478 			u32 id;
479 			u16 len;
480 			u16 zerocopy:1;
481 			u32 bytelen;
482 		};
483 	};
484 	refcount_t refcnt;
485 
486 	struct mmpin {
487 		struct user_struct *user;
488 		unsigned int num_pg;
489 	} mmp;
490 };
491 
492 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
493 
494 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
495 void mm_unaccount_pinned_pages(struct mmpin *mmp);
496 
497 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
498 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
499 					struct ubuf_info *uarg);
500 
501 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
502 {
503 	refcount_inc(&uarg->refcnt);
504 }
505 
506 void sock_zerocopy_put(struct ubuf_info *uarg);
507 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
508 
509 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
510 
511 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
512 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
513 			     struct msghdr *msg, int len,
514 			     struct ubuf_info *uarg);
515 
516 /* This data is invariant across clones and lives at
517  * the end of the header data, ie. at skb->end.
518  */
519 struct skb_shared_info {
520 	__u8		__unused;
521 	__u8		meta_len;
522 	__u8		nr_frags;
523 	__u8		tx_flags;
524 	unsigned short	gso_size;
525 	/* Warning: this field is not always filled in (UFO)! */
526 	unsigned short	gso_segs;
527 	struct sk_buff	*frag_list;
528 	struct skb_shared_hwtstamps hwtstamps;
529 	unsigned int	gso_type;
530 	u32		tskey;
531 
532 	/*
533 	 * Warning : all fields before dataref are cleared in __alloc_skb()
534 	 */
535 	atomic_t	dataref;
536 
537 	/* Intermediate layers must ensure that destructor_arg
538 	 * remains valid until skb destructor */
539 	void *		destructor_arg;
540 
541 	/* must be last field, see pskb_expand_head() */
542 	skb_frag_t	frags[MAX_SKB_FRAGS];
543 };
544 
545 /* We divide dataref into two halves.  The higher 16 bits hold references
546  * to the payload part of skb->data.  The lower 16 bits hold references to
547  * the entire skb->data.  A clone of a headerless skb holds the length of
548  * the header in skb->hdr_len.
549  *
550  * All users must obey the rule that the skb->data reference count must be
551  * greater than or equal to the payload reference count.
552  *
553  * Holding a reference to the payload part means that the user does not
554  * care about modifications to the header part of skb->data.
555  */
556 #define SKB_DATAREF_SHIFT 16
557 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
558 
559 
560 enum {
561 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
562 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
563 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
564 };
565 
566 enum {
567 	SKB_GSO_TCPV4 = 1 << 0,
568 
569 	/* This indicates the skb is from an untrusted source. */
570 	SKB_GSO_DODGY = 1 << 1,
571 
572 	/* This indicates the tcp segment has CWR set. */
573 	SKB_GSO_TCP_ECN = 1 << 2,
574 
575 	SKB_GSO_TCP_FIXEDID = 1 << 3,
576 
577 	SKB_GSO_TCPV6 = 1 << 4,
578 
579 	SKB_GSO_FCOE = 1 << 5,
580 
581 	SKB_GSO_GRE = 1 << 6,
582 
583 	SKB_GSO_GRE_CSUM = 1 << 7,
584 
585 	SKB_GSO_IPXIP4 = 1 << 8,
586 
587 	SKB_GSO_IPXIP6 = 1 << 9,
588 
589 	SKB_GSO_UDP_TUNNEL = 1 << 10,
590 
591 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
592 
593 	SKB_GSO_PARTIAL = 1 << 12,
594 
595 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
596 
597 	SKB_GSO_SCTP = 1 << 14,
598 
599 	SKB_GSO_ESP = 1 << 15,
600 
601 	SKB_GSO_UDP = 1 << 16,
602 
603 	SKB_GSO_UDP_L4 = 1 << 17,
604 };
605 
606 #if BITS_PER_LONG > 32
607 #define NET_SKBUFF_DATA_USES_OFFSET 1
608 #endif
609 
610 #ifdef NET_SKBUFF_DATA_USES_OFFSET
611 typedef unsigned int sk_buff_data_t;
612 #else
613 typedef unsigned char *sk_buff_data_t;
614 #endif
615 
616 /**
617  *	struct sk_buff - socket buffer
618  *	@next: Next buffer in list
619  *	@prev: Previous buffer in list
620  *	@tstamp: Time we arrived/left
621  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
622  *	@sk: Socket we are owned by
623  *	@dev: Device we arrived on/are leaving by
624  *	@cb: Control buffer. Free for use by every layer. Put private vars here
625  *	@_skb_refdst: destination entry (with norefcount bit)
626  *	@sp: the security path, used for xfrm
627  *	@len: Length of actual data
628  *	@data_len: Data length
629  *	@mac_len: Length of link layer header
630  *	@hdr_len: writable header length of cloned skb
631  *	@csum: Checksum (must include start/offset pair)
632  *	@csum_start: Offset from skb->head where checksumming should start
633  *	@csum_offset: Offset from csum_start where checksum should be stored
634  *	@priority: Packet queueing priority
635  *	@ignore_df: allow local fragmentation
636  *	@cloned: Head may be cloned (check refcnt to be sure)
637  *	@ip_summed: Driver fed us an IP checksum
638  *	@nohdr: Payload reference only, must not modify header
639  *	@pkt_type: Packet class
640  *	@fclone: skbuff clone status
641  *	@ipvs_property: skbuff is owned by ipvs
642  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
643  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
644  *	@tc_skip_classify: do not classify packet. set by IFB device
645  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
646  *	@tc_redirected: packet was redirected by a tc action
647  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
648  *	@peeked: this packet has been seen already, so stats have been
649  *		done for it, don't do them again
650  *	@nf_trace: netfilter packet trace flag
651  *	@protocol: Packet protocol from driver
652  *	@destructor: Destruct function
653  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
654  *	@_nfct: Associated connection, if any (with nfctinfo bits)
655  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
656  *	@skb_iif: ifindex of device we arrived on
657  *	@tc_index: Traffic control index
658  *	@hash: the packet hash
659  *	@queue_mapping: Queue mapping for multiqueue devices
660  *	@xmit_more: More SKBs are pending for this queue
661  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
662  *	@active_extensions: active extensions (skb_ext_id types)
663  *	@ndisc_nodetype: router type (from link layer)
664  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
665  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
666  *		ports.
667  *	@sw_hash: indicates hash was computed in software stack
668  *	@wifi_acked_valid: wifi_acked was set
669  *	@wifi_acked: whether frame was acked on wifi or not
670  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
671  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
672  *	@dst_pending_confirm: need to confirm neighbour
673  *	@decrypted: Decrypted SKB
674  *	@napi_id: id of the NAPI struct this skb came from
675  *	@secmark: security marking
676  *	@mark: Generic packet mark
677  *	@vlan_proto: vlan encapsulation protocol
678  *	@vlan_tci: vlan tag control information
679  *	@inner_protocol: Protocol (encapsulation)
680  *	@inner_transport_header: Inner transport layer header (encapsulation)
681  *	@inner_network_header: Network layer header (encapsulation)
682  *	@inner_mac_header: Link layer header (encapsulation)
683  *	@transport_header: Transport layer header
684  *	@network_header: Network layer header
685  *	@mac_header: Link layer header
686  *	@tail: Tail pointer
687  *	@end: End pointer
688  *	@head: Head of buffer
689  *	@data: Data head pointer
690  *	@truesize: Buffer size
691  *	@users: User count - see {datagram,tcp}.c
692  *	@extensions: allocated extensions, valid if active_extensions is nonzero
693  */
694 
695 struct sk_buff {
696 	union {
697 		struct {
698 			/* These two members must be first. */
699 			struct sk_buff		*next;
700 			struct sk_buff		*prev;
701 
702 			union {
703 				struct net_device	*dev;
704 				/* Some protocols might use this space to store information,
705 				 * while device pointer would be NULL.
706 				 * UDP receive path is one user.
707 				 */
708 				unsigned long		dev_scratch;
709 			};
710 		};
711 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
712 		struct list_head	list;
713 	};
714 
715 	union {
716 		struct sock		*sk;
717 		int			ip_defrag_offset;
718 	};
719 
720 	union {
721 		ktime_t		tstamp;
722 		u64		skb_mstamp_ns; /* earliest departure time */
723 	};
724 	/*
725 	 * This is the control buffer. It is free to use for every
726 	 * layer. Please put your private variables there. If you
727 	 * want to keep them across layers you have to do a skb_clone()
728 	 * first. This is owned by whoever has the skb queued ATM.
729 	 */
730 	char			cb[48] __aligned(8);
731 
732 	union {
733 		struct {
734 			unsigned long	_skb_refdst;
735 			void		(*destructor)(struct sk_buff *skb);
736 		};
737 		struct list_head	tcp_tsorted_anchor;
738 	};
739 
740 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
741 	unsigned long		 _nfct;
742 #endif
743 	unsigned int		len,
744 				data_len;
745 	__u16			mac_len,
746 				hdr_len;
747 
748 	/* Following fields are _not_ copied in __copy_skb_header()
749 	 * Note that queue_mapping is here mostly to fill a hole.
750 	 */
751 	__u16			queue_mapping;
752 
753 /* if you move cloned around you also must adapt those constants */
754 #ifdef __BIG_ENDIAN_BITFIELD
755 #define CLONED_MASK	(1 << 7)
756 #else
757 #define CLONED_MASK	1
758 #endif
759 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
760 
761 	__u8			__cloned_offset[0];
762 	__u8			cloned:1,
763 				nohdr:1,
764 				fclone:2,
765 				peeked:1,
766 				head_frag:1,
767 				xmit_more:1,
768 				pfmemalloc:1;
769 #ifdef CONFIG_SKB_EXTENSIONS
770 	__u8			active_extensions;
771 #endif
772 	/* fields enclosed in headers_start/headers_end are copied
773 	 * using a single memcpy() in __copy_skb_header()
774 	 */
775 	/* private: */
776 	__u32			headers_start[0];
777 	/* public: */
778 
779 /* if you move pkt_type around you also must adapt those constants */
780 #ifdef __BIG_ENDIAN_BITFIELD
781 #define PKT_TYPE_MAX	(7 << 5)
782 #else
783 #define PKT_TYPE_MAX	7
784 #endif
785 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
786 
787 	__u8			__pkt_type_offset[0];
788 	__u8			pkt_type:3;
789 	__u8			ignore_df:1;
790 	__u8			nf_trace:1;
791 	__u8			ip_summed:2;
792 	__u8			ooo_okay:1;
793 
794 	__u8			l4_hash:1;
795 	__u8			sw_hash:1;
796 	__u8			wifi_acked_valid:1;
797 	__u8			wifi_acked:1;
798 	__u8			no_fcs:1;
799 	/* Indicates the inner headers are valid in the skbuff. */
800 	__u8			encapsulation:1;
801 	__u8			encap_hdr_csum:1;
802 	__u8			csum_valid:1;
803 
804 #ifdef __BIG_ENDIAN_BITFIELD
805 #define PKT_VLAN_PRESENT_BIT	7
806 #else
807 #define PKT_VLAN_PRESENT_BIT	0
808 #endif
809 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
810 	__u8			__pkt_vlan_present_offset[0];
811 	__u8			vlan_present:1;
812 	__u8			csum_complete_sw:1;
813 	__u8			csum_level:2;
814 	__u8			csum_not_inet:1;
815 	__u8			dst_pending_confirm:1;
816 #ifdef CONFIG_IPV6_NDISC_NODETYPE
817 	__u8			ndisc_nodetype:2;
818 #endif
819 
820 	__u8			ipvs_property:1;
821 	__u8			inner_protocol_type:1;
822 	__u8			remcsum_offload:1;
823 #ifdef CONFIG_NET_SWITCHDEV
824 	__u8			offload_fwd_mark:1;
825 	__u8			offload_l3_fwd_mark:1;
826 #endif
827 #ifdef CONFIG_NET_CLS_ACT
828 	__u8			tc_skip_classify:1;
829 	__u8			tc_at_ingress:1;
830 	__u8			tc_redirected:1;
831 	__u8			tc_from_ingress:1;
832 #endif
833 #ifdef CONFIG_TLS_DEVICE
834 	__u8			decrypted:1;
835 #endif
836 
837 #ifdef CONFIG_NET_SCHED
838 	__u16			tc_index;	/* traffic control index */
839 #endif
840 
841 	union {
842 		__wsum		csum;
843 		struct {
844 			__u16	csum_start;
845 			__u16	csum_offset;
846 		};
847 	};
848 	__u32			priority;
849 	int			skb_iif;
850 	__u32			hash;
851 	__be16			vlan_proto;
852 	__u16			vlan_tci;
853 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
854 	union {
855 		unsigned int	napi_id;
856 		unsigned int	sender_cpu;
857 	};
858 #endif
859 #ifdef CONFIG_NETWORK_SECMARK
860 	__u32		secmark;
861 #endif
862 
863 	union {
864 		__u32		mark;
865 		__u32		reserved_tailroom;
866 	};
867 
868 	union {
869 		__be16		inner_protocol;
870 		__u8		inner_ipproto;
871 	};
872 
873 	__u16			inner_transport_header;
874 	__u16			inner_network_header;
875 	__u16			inner_mac_header;
876 
877 	__be16			protocol;
878 	__u16			transport_header;
879 	__u16			network_header;
880 	__u16			mac_header;
881 
882 	/* private: */
883 	__u32			headers_end[0];
884 	/* public: */
885 
886 	/* These elements must be at the end, see alloc_skb() for details.  */
887 	sk_buff_data_t		tail;
888 	sk_buff_data_t		end;
889 	unsigned char		*head,
890 				*data;
891 	unsigned int		truesize;
892 	refcount_t		users;
893 
894 #ifdef CONFIG_SKB_EXTENSIONS
895 	/* only useable after checking ->active_extensions != 0 */
896 	struct skb_ext		*extensions;
897 #endif
898 };
899 
900 #ifdef __KERNEL__
901 /*
902  *	Handling routines are only of interest to the kernel
903  */
904 
905 #define SKB_ALLOC_FCLONE	0x01
906 #define SKB_ALLOC_RX		0x02
907 #define SKB_ALLOC_NAPI		0x04
908 
909 /**
910  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
911  * @skb: buffer
912  */
913 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
914 {
915 	return unlikely(skb->pfmemalloc);
916 }
917 
918 /*
919  * skb might have a dst pointer attached, refcounted or not.
920  * _skb_refdst low order bit is set if refcount was _not_ taken
921  */
922 #define SKB_DST_NOREF	1UL
923 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
924 
925 #define SKB_NFCT_PTRMASK	~(7UL)
926 /**
927  * skb_dst - returns skb dst_entry
928  * @skb: buffer
929  *
930  * Returns skb dst_entry, regardless of reference taken or not.
931  */
932 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
933 {
934 	/* If refdst was not refcounted, check we still are in a
935 	 * rcu_read_lock section
936 	 */
937 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
938 		!rcu_read_lock_held() &&
939 		!rcu_read_lock_bh_held());
940 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
941 }
942 
943 /**
944  * skb_dst_set - sets skb dst
945  * @skb: buffer
946  * @dst: dst entry
947  *
948  * Sets skb dst, assuming a reference was taken on dst and should
949  * be released by skb_dst_drop()
950  */
951 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
952 {
953 	skb->_skb_refdst = (unsigned long)dst;
954 }
955 
956 /**
957  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
958  * @skb: buffer
959  * @dst: dst entry
960  *
961  * Sets skb dst, assuming a reference was not taken on dst.
962  * If dst entry is cached, we do not take reference and dst_release
963  * will be avoided by refdst_drop. If dst entry is not cached, we take
964  * reference, so that last dst_release can destroy the dst immediately.
965  */
966 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
967 {
968 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
969 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
970 }
971 
972 /**
973  * skb_dst_is_noref - Test if skb dst isn't refcounted
974  * @skb: buffer
975  */
976 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
977 {
978 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
979 }
980 
981 /**
982  * skb_rtable - Returns the skb &rtable
983  * @skb: buffer
984  */
985 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
986 {
987 	return (struct rtable *)skb_dst(skb);
988 }
989 
990 /* For mangling skb->pkt_type from user space side from applications
991  * such as nft, tc, etc, we only allow a conservative subset of
992  * possible pkt_types to be set.
993 */
994 static inline bool skb_pkt_type_ok(u32 ptype)
995 {
996 	return ptype <= PACKET_OTHERHOST;
997 }
998 
999 /**
1000  * skb_napi_id - Returns the skb's NAPI id
1001  * @skb: buffer
1002  */
1003 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1004 {
1005 #ifdef CONFIG_NET_RX_BUSY_POLL
1006 	return skb->napi_id;
1007 #else
1008 	return 0;
1009 #endif
1010 }
1011 
1012 /**
1013  * skb_unref - decrement the skb's reference count
1014  * @skb: buffer
1015  *
1016  * Returns true if we can free the skb.
1017  */
1018 static inline bool skb_unref(struct sk_buff *skb)
1019 {
1020 	if (unlikely(!skb))
1021 		return false;
1022 	if (likely(refcount_read(&skb->users) == 1))
1023 		smp_rmb();
1024 	else if (likely(!refcount_dec_and_test(&skb->users)))
1025 		return false;
1026 
1027 	return true;
1028 }
1029 
1030 void skb_release_head_state(struct sk_buff *skb);
1031 void kfree_skb(struct sk_buff *skb);
1032 void kfree_skb_list(struct sk_buff *segs);
1033 void skb_tx_error(struct sk_buff *skb);
1034 void consume_skb(struct sk_buff *skb);
1035 void __consume_stateless_skb(struct sk_buff *skb);
1036 void  __kfree_skb(struct sk_buff *skb);
1037 extern struct kmem_cache *skbuff_head_cache;
1038 
1039 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1040 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1041 		      bool *fragstolen, int *delta_truesize);
1042 
1043 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1044 			    int node);
1045 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1046 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1047 
1048 /**
1049  * alloc_skb - allocate a network buffer
1050  * @size: size to allocate
1051  * @priority: allocation mask
1052  *
1053  * This function is a convenient wrapper around __alloc_skb().
1054  */
1055 static inline struct sk_buff *alloc_skb(unsigned int size,
1056 					gfp_t priority)
1057 {
1058 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1059 }
1060 
1061 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1062 				     unsigned long data_len,
1063 				     int max_page_order,
1064 				     int *errcode,
1065 				     gfp_t gfp_mask);
1066 
1067 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1068 struct sk_buff_fclones {
1069 	struct sk_buff	skb1;
1070 
1071 	struct sk_buff	skb2;
1072 
1073 	refcount_t	fclone_ref;
1074 };
1075 
1076 /**
1077  *	skb_fclone_busy - check if fclone is busy
1078  *	@sk: socket
1079  *	@skb: buffer
1080  *
1081  * Returns true if skb is a fast clone, and its clone is not freed.
1082  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1083  * so we also check that this didnt happen.
1084  */
1085 static inline bool skb_fclone_busy(const struct sock *sk,
1086 				   const struct sk_buff *skb)
1087 {
1088 	const struct sk_buff_fclones *fclones;
1089 
1090 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1091 
1092 	return skb->fclone == SKB_FCLONE_ORIG &&
1093 	       refcount_read(&fclones->fclone_ref) > 1 &&
1094 	       fclones->skb2.sk == sk;
1095 }
1096 
1097 /**
1098  * alloc_skb_fclone - allocate a network buffer from fclone cache
1099  * @size: size to allocate
1100  * @priority: allocation mask
1101  *
1102  * This function is a convenient wrapper around __alloc_skb().
1103  */
1104 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1105 					       gfp_t priority)
1106 {
1107 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1108 }
1109 
1110 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1111 void skb_headers_offset_update(struct sk_buff *skb, int off);
1112 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1113 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1114 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1115 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1116 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1117 				   gfp_t gfp_mask, bool fclone);
1118 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1119 					  gfp_t gfp_mask)
1120 {
1121 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1122 }
1123 
1124 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1125 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1126 				     unsigned int headroom);
1127 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1128 				int newtailroom, gfp_t priority);
1129 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1130 				     int offset, int len);
1131 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1132 			      int offset, int len);
1133 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1134 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1135 
1136 /**
1137  *	skb_pad			-	zero pad the tail of an skb
1138  *	@skb: buffer to pad
1139  *	@pad: space to pad
1140  *
1141  *	Ensure that a buffer is followed by a padding area that is zero
1142  *	filled. Used by network drivers which may DMA or transfer data
1143  *	beyond the buffer end onto the wire.
1144  *
1145  *	May return error in out of memory cases. The skb is freed on error.
1146  */
1147 static inline int skb_pad(struct sk_buff *skb, int pad)
1148 {
1149 	return __skb_pad(skb, pad, true);
1150 }
1151 #define dev_kfree_skb(a)	consume_skb(a)
1152 
1153 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1154 			 int offset, size_t size);
1155 
1156 struct skb_seq_state {
1157 	__u32		lower_offset;
1158 	__u32		upper_offset;
1159 	__u32		frag_idx;
1160 	__u32		stepped_offset;
1161 	struct sk_buff	*root_skb;
1162 	struct sk_buff	*cur_skb;
1163 	__u8		*frag_data;
1164 };
1165 
1166 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1167 			  unsigned int to, struct skb_seq_state *st);
1168 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1169 			  struct skb_seq_state *st);
1170 void skb_abort_seq_read(struct skb_seq_state *st);
1171 
1172 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1173 			   unsigned int to, struct ts_config *config);
1174 
1175 /*
1176  * Packet hash types specify the type of hash in skb_set_hash.
1177  *
1178  * Hash types refer to the protocol layer addresses which are used to
1179  * construct a packet's hash. The hashes are used to differentiate or identify
1180  * flows of the protocol layer for the hash type. Hash types are either
1181  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1182  *
1183  * Properties of hashes:
1184  *
1185  * 1) Two packets in different flows have different hash values
1186  * 2) Two packets in the same flow should have the same hash value
1187  *
1188  * A hash at a higher layer is considered to be more specific. A driver should
1189  * set the most specific hash possible.
1190  *
1191  * A driver cannot indicate a more specific hash than the layer at which a hash
1192  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1193  *
1194  * A driver may indicate a hash level which is less specific than the
1195  * actual layer the hash was computed on. For instance, a hash computed
1196  * at L4 may be considered an L3 hash. This should only be done if the
1197  * driver can't unambiguously determine that the HW computed the hash at
1198  * the higher layer. Note that the "should" in the second property above
1199  * permits this.
1200  */
1201 enum pkt_hash_types {
1202 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1203 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1204 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1205 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1206 };
1207 
1208 static inline void skb_clear_hash(struct sk_buff *skb)
1209 {
1210 	skb->hash = 0;
1211 	skb->sw_hash = 0;
1212 	skb->l4_hash = 0;
1213 }
1214 
1215 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1216 {
1217 	if (!skb->l4_hash)
1218 		skb_clear_hash(skb);
1219 }
1220 
1221 static inline void
1222 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1223 {
1224 	skb->l4_hash = is_l4;
1225 	skb->sw_hash = is_sw;
1226 	skb->hash = hash;
1227 }
1228 
1229 static inline void
1230 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1231 {
1232 	/* Used by drivers to set hash from HW */
1233 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1234 }
1235 
1236 static inline void
1237 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1238 {
1239 	__skb_set_hash(skb, hash, true, is_l4);
1240 }
1241 
1242 void __skb_get_hash(struct sk_buff *skb);
1243 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1244 u32 skb_get_poff(const struct sk_buff *skb);
1245 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1246 		   const struct flow_keys_basic *keys, int hlen);
1247 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1248 			    void *data, int hlen_proto);
1249 
1250 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1251 					int thoff, u8 ip_proto)
1252 {
1253 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1254 }
1255 
1256 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1257 			     const struct flow_dissector_key *key,
1258 			     unsigned int key_count);
1259 
1260 #ifdef CONFIG_NET
1261 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1262 				       struct bpf_prog *prog);
1263 
1264 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1265 #else
1266 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1267 						     struct bpf_prog *prog)
1268 {
1269 	return -EOPNOTSUPP;
1270 }
1271 
1272 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1273 {
1274 	return -EOPNOTSUPP;
1275 }
1276 #endif
1277 
1278 struct bpf_flow_keys;
1279 bool __skb_flow_bpf_dissect(struct bpf_prog *prog,
1280 			    const struct sk_buff *skb,
1281 			    struct flow_dissector *flow_dissector,
1282 			    struct bpf_flow_keys *flow_keys);
1283 bool __skb_flow_dissect(const struct sk_buff *skb,
1284 			struct flow_dissector *flow_dissector,
1285 			void *target_container,
1286 			void *data, __be16 proto, int nhoff, int hlen,
1287 			unsigned int flags);
1288 
1289 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1290 				    struct flow_dissector *flow_dissector,
1291 				    void *target_container, unsigned int flags)
1292 {
1293 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1294 				  NULL, 0, 0, 0, flags);
1295 }
1296 
1297 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1298 					      struct flow_keys *flow,
1299 					      unsigned int flags)
1300 {
1301 	memset(flow, 0, sizeof(*flow));
1302 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1303 				  NULL, 0, 0, 0, flags);
1304 }
1305 
1306 static inline bool
1307 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1308 				 struct flow_keys_basic *flow, void *data,
1309 				 __be16 proto, int nhoff, int hlen,
1310 				 unsigned int flags)
1311 {
1312 	memset(flow, 0, sizeof(*flow));
1313 	return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
1314 				  data, proto, nhoff, hlen, flags);
1315 }
1316 
1317 void
1318 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1319 			     struct flow_dissector *flow_dissector,
1320 			     void *target_container);
1321 
1322 static inline __u32 skb_get_hash(struct sk_buff *skb)
1323 {
1324 	if (!skb->l4_hash && !skb->sw_hash)
1325 		__skb_get_hash(skb);
1326 
1327 	return skb->hash;
1328 }
1329 
1330 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1331 {
1332 	if (!skb->l4_hash && !skb->sw_hash) {
1333 		struct flow_keys keys;
1334 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1335 
1336 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1337 	}
1338 
1339 	return skb->hash;
1340 }
1341 
1342 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1343 
1344 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1345 {
1346 	return skb->hash;
1347 }
1348 
1349 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1350 {
1351 	to->hash = from->hash;
1352 	to->sw_hash = from->sw_hash;
1353 	to->l4_hash = from->l4_hash;
1354 };
1355 
1356 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1357 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1358 {
1359 	return skb->head + skb->end;
1360 }
1361 
1362 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1363 {
1364 	return skb->end;
1365 }
1366 #else
1367 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1368 {
1369 	return skb->end;
1370 }
1371 
1372 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1373 {
1374 	return skb->end - skb->head;
1375 }
1376 #endif
1377 
1378 /* Internal */
1379 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1380 
1381 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1382 {
1383 	return &skb_shinfo(skb)->hwtstamps;
1384 }
1385 
1386 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1387 {
1388 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1389 
1390 	return is_zcopy ? skb_uarg(skb) : NULL;
1391 }
1392 
1393 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1394 				 bool *have_ref)
1395 {
1396 	if (skb && uarg && !skb_zcopy(skb)) {
1397 		if (unlikely(have_ref && *have_ref))
1398 			*have_ref = false;
1399 		else
1400 			sock_zerocopy_get(uarg);
1401 		skb_shinfo(skb)->destructor_arg = uarg;
1402 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1403 	}
1404 }
1405 
1406 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1407 {
1408 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1409 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1410 }
1411 
1412 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1413 {
1414 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1415 }
1416 
1417 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1418 {
1419 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1420 }
1421 
1422 /* Release a reference on a zerocopy structure */
1423 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1424 {
1425 	struct ubuf_info *uarg = skb_zcopy(skb);
1426 
1427 	if (uarg) {
1428 		if (uarg->callback == sock_zerocopy_callback) {
1429 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1430 			sock_zerocopy_put(uarg);
1431 		} else if (!skb_zcopy_is_nouarg(skb)) {
1432 			uarg->callback(uarg, zerocopy);
1433 		}
1434 
1435 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1436 	}
1437 }
1438 
1439 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1440 static inline void skb_zcopy_abort(struct sk_buff *skb)
1441 {
1442 	struct ubuf_info *uarg = skb_zcopy(skb);
1443 
1444 	if (uarg) {
1445 		sock_zerocopy_put_abort(uarg, false);
1446 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1447 	}
1448 }
1449 
1450 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1451 {
1452 	skb->next = NULL;
1453 }
1454 
1455 static inline void skb_list_del_init(struct sk_buff *skb)
1456 {
1457 	__list_del_entry(&skb->list);
1458 	skb_mark_not_on_list(skb);
1459 }
1460 
1461 /**
1462  *	skb_queue_empty - check if a queue is empty
1463  *	@list: queue head
1464  *
1465  *	Returns true if the queue is empty, false otherwise.
1466  */
1467 static inline int skb_queue_empty(const struct sk_buff_head *list)
1468 {
1469 	return list->next == (const struct sk_buff *) list;
1470 }
1471 
1472 /**
1473  *	skb_queue_is_last - check if skb is the last entry in the queue
1474  *	@list: queue head
1475  *	@skb: buffer
1476  *
1477  *	Returns true if @skb is the last buffer on the list.
1478  */
1479 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1480 				     const struct sk_buff *skb)
1481 {
1482 	return skb->next == (const struct sk_buff *) list;
1483 }
1484 
1485 /**
1486  *	skb_queue_is_first - check if skb is the first entry in the queue
1487  *	@list: queue head
1488  *	@skb: buffer
1489  *
1490  *	Returns true if @skb is the first buffer on the list.
1491  */
1492 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1493 				      const struct sk_buff *skb)
1494 {
1495 	return skb->prev == (const struct sk_buff *) list;
1496 }
1497 
1498 /**
1499  *	skb_queue_next - return the next packet in the queue
1500  *	@list: queue head
1501  *	@skb: current buffer
1502  *
1503  *	Return the next packet in @list after @skb.  It is only valid to
1504  *	call this if skb_queue_is_last() evaluates to false.
1505  */
1506 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1507 					     const struct sk_buff *skb)
1508 {
1509 	/* This BUG_ON may seem severe, but if we just return then we
1510 	 * are going to dereference garbage.
1511 	 */
1512 	BUG_ON(skb_queue_is_last(list, skb));
1513 	return skb->next;
1514 }
1515 
1516 /**
1517  *	skb_queue_prev - return the prev packet in the queue
1518  *	@list: queue head
1519  *	@skb: current buffer
1520  *
1521  *	Return the prev packet in @list before @skb.  It is only valid to
1522  *	call this if skb_queue_is_first() evaluates to false.
1523  */
1524 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1525 					     const struct sk_buff *skb)
1526 {
1527 	/* This BUG_ON may seem severe, but if we just return then we
1528 	 * are going to dereference garbage.
1529 	 */
1530 	BUG_ON(skb_queue_is_first(list, skb));
1531 	return skb->prev;
1532 }
1533 
1534 /**
1535  *	skb_get - reference buffer
1536  *	@skb: buffer to reference
1537  *
1538  *	Makes another reference to a socket buffer and returns a pointer
1539  *	to the buffer.
1540  */
1541 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1542 {
1543 	refcount_inc(&skb->users);
1544 	return skb;
1545 }
1546 
1547 /*
1548  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1549  */
1550 
1551 /**
1552  *	skb_cloned - is the buffer a clone
1553  *	@skb: buffer to check
1554  *
1555  *	Returns true if the buffer was generated with skb_clone() and is
1556  *	one of multiple shared copies of the buffer. Cloned buffers are
1557  *	shared data so must not be written to under normal circumstances.
1558  */
1559 static inline int skb_cloned(const struct sk_buff *skb)
1560 {
1561 	return skb->cloned &&
1562 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1563 }
1564 
1565 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1566 {
1567 	might_sleep_if(gfpflags_allow_blocking(pri));
1568 
1569 	if (skb_cloned(skb))
1570 		return pskb_expand_head(skb, 0, 0, pri);
1571 
1572 	return 0;
1573 }
1574 
1575 /**
1576  *	skb_header_cloned - is the header a clone
1577  *	@skb: buffer to check
1578  *
1579  *	Returns true if modifying the header part of the buffer requires
1580  *	the data to be copied.
1581  */
1582 static inline int skb_header_cloned(const struct sk_buff *skb)
1583 {
1584 	int dataref;
1585 
1586 	if (!skb->cloned)
1587 		return 0;
1588 
1589 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1590 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1591 	return dataref != 1;
1592 }
1593 
1594 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1595 {
1596 	might_sleep_if(gfpflags_allow_blocking(pri));
1597 
1598 	if (skb_header_cloned(skb))
1599 		return pskb_expand_head(skb, 0, 0, pri);
1600 
1601 	return 0;
1602 }
1603 
1604 /**
1605  *	__skb_header_release - release reference to header
1606  *	@skb: buffer to operate on
1607  */
1608 static inline void __skb_header_release(struct sk_buff *skb)
1609 {
1610 	skb->nohdr = 1;
1611 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1612 }
1613 
1614 
1615 /**
1616  *	skb_shared - is the buffer shared
1617  *	@skb: buffer to check
1618  *
1619  *	Returns true if more than one person has a reference to this
1620  *	buffer.
1621  */
1622 static inline int skb_shared(const struct sk_buff *skb)
1623 {
1624 	return refcount_read(&skb->users) != 1;
1625 }
1626 
1627 /**
1628  *	skb_share_check - check if buffer is shared and if so clone it
1629  *	@skb: buffer to check
1630  *	@pri: priority for memory allocation
1631  *
1632  *	If the buffer is shared the buffer is cloned and the old copy
1633  *	drops a reference. A new clone with a single reference is returned.
1634  *	If the buffer is not shared the original buffer is returned. When
1635  *	being called from interrupt status or with spinlocks held pri must
1636  *	be GFP_ATOMIC.
1637  *
1638  *	NULL is returned on a memory allocation failure.
1639  */
1640 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1641 {
1642 	might_sleep_if(gfpflags_allow_blocking(pri));
1643 	if (skb_shared(skb)) {
1644 		struct sk_buff *nskb = skb_clone(skb, pri);
1645 
1646 		if (likely(nskb))
1647 			consume_skb(skb);
1648 		else
1649 			kfree_skb(skb);
1650 		skb = nskb;
1651 	}
1652 	return skb;
1653 }
1654 
1655 /*
1656  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1657  *	packets to handle cases where we have a local reader and forward
1658  *	and a couple of other messy ones. The normal one is tcpdumping
1659  *	a packet thats being forwarded.
1660  */
1661 
1662 /**
1663  *	skb_unshare - make a copy of a shared buffer
1664  *	@skb: buffer to check
1665  *	@pri: priority for memory allocation
1666  *
1667  *	If the socket buffer is a clone then this function creates a new
1668  *	copy of the data, drops a reference count on the old copy and returns
1669  *	the new copy with the reference count at 1. If the buffer is not a clone
1670  *	the original buffer is returned. When called with a spinlock held or
1671  *	from interrupt state @pri must be %GFP_ATOMIC
1672  *
1673  *	%NULL is returned on a memory allocation failure.
1674  */
1675 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1676 					  gfp_t pri)
1677 {
1678 	might_sleep_if(gfpflags_allow_blocking(pri));
1679 	if (skb_cloned(skb)) {
1680 		struct sk_buff *nskb = skb_copy(skb, pri);
1681 
1682 		/* Free our shared copy */
1683 		if (likely(nskb))
1684 			consume_skb(skb);
1685 		else
1686 			kfree_skb(skb);
1687 		skb = nskb;
1688 	}
1689 	return skb;
1690 }
1691 
1692 /**
1693  *	skb_peek - peek at the head of an &sk_buff_head
1694  *	@list_: list to peek at
1695  *
1696  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1697  *	be careful with this one. A peek leaves the buffer on the
1698  *	list and someone else may run off with it. You must hold
1699  *	the appropriate locks or have a private queue to do this.
1700  *
1701  *	Returns %NULL for an empty list or a pointer to the head element.
1702  *	The reference count is not incremented and the reference is therefore
1703  *	volatile. Use with caution.
1704  */
1705 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1706 {
1707 	struct sk_buff *skb = list_->next;
1708 
1709 	if (skb == (struct sk_buff *)list_)
1710 		skb = NULL;
1711 	return skb;
1712 }
1713 
1714 /**
1715  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1716  *	@list_: list to peek at
1717  *
1718  *	Like skb_peek(), but the caller knows that the list is not empty.
1719  */
1720 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1721 {
1722 	return list_->next;
1723 }
1724 
1725 /**
1726  *	skb_peek_next - peek skb following the given one from a queue
1727  *	@skb: skb to start from
1728  *	@list_: list to peek at
1729  *
1730  *	Returns %NULL when the end of the list is met or a pointer to the
1731  *	next element. The reference count is not incremented and the
1732  *	reference is therefore volatile. Use with caution.
1733  */
1734 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1735 		const struct sk_buff_head *list_)
1736 {
1737 	struct sk_buff *next = skb->next;
1738 
1739 	if (next == (struct sk_buff *)list_)
1740 		next = NULL;
1741 	return next;
1742 }
1743 
1744 /**
1745  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1746  *	@list_: list to peek at
1747  *
1748  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1749  *	be careful with this one. A peek leaves the buffer on the
1750  *	list and someone else may run off with it. You must hold
1751  *	the appropriate locks or have a private queue to do this.
1752  *
1753  *	Returns %NULL for an empty list or a pointer to the tail element.
1754  *	The reference count is not incremented and the reference is therefore
1755  *	volatile. Use with caution.
1756  */
1757 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1758 {
1759 	struct sk_buff *skb = list_->prev;
1760 
1761 	if (skb == (struct sk_buff *)list_)
1762 		skb = NULL;
1763 	return skb;
1764 
1765 }
1766 
1767 /**
1768  *	skb_queue_len	- get queue length
1769  *	@list_: list to measure
1770  *
1771  *	Return the length of an &sk_buff queue.
1772  */
1773 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1774 {
1775 	return list_->qlen;
1776 }
1777 
1778 /**
1779  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1780  *	@list: queue to initialize
1781  *
1782  *	This initializes only the list and queue length aspects of
1783  *	an sk_buff_head object.  This allows to initialize the list
1784  *	aspects of an sk_buff_head without reinitializing things like
1785  *	the spinlock.  It can also be used for on-stack sk_buff_head
1786  *	objects where the spinlock is known to not be used.
1787  */
1788 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1789 {
1790 	list->prev = list->next = (struct sk_buff *)list;
1791 	list->qlen = 0;
1792 }
1793 
1794 /*
1795  * This function creates a split out lock class for each invocation;
1796  * this is needed for now since a whole lot of users of the skb-queue
1797  * infrastructure in drivers have different locking usage (in hardirq)
1798  * than the networking core (in softirq only). In the long run either the
1799  * network layer or drivers should need annotation to consolidate the
1800  * main types of usage into 3 classes.
1801  */
1802 static inline void skb_queue_head_init(struct sk_buff_head *list)
1803 {
1804 	spin_lock_init(&list->lock);
1805 	__skb_queue_head_init(list);
1806 }
1807 
1808 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1809 		struct lock_class_key *class)
1810 {
1811 	skb_queue_head_init(list);
1812 	lockdep_set_class(&list->lock, class);
1813 }
1814 
1815 /*
1816  *	Insert an sk_buff on a list.
1817  *
1818  *	The "__skb_xxxx()" functions are the non-atomic ones that
1819  *	can only be called with interrupts disabled.
1820  */
1821 static inline void __skb_insert(struct sk_buff *newsk,
1822 				struct sk_buff *prev, struct sk_buff *next,
1823 				struct sk_buff_head *list)
1824 {
1825 	newsk->next = next;
1826 	newsk->prev = prev;
1827 	next->prev  = prev->next = newsk;
1828 	list->qlen++;
1829 }
1830 
1831 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1832 				      struct sk_buff *prev,
1833 				      struct sk_buff *next)
1834 {
1835 	struct sk_buff *first = list->next;
1836 	struct sk_buff *last = list->prev;
1837 
1838 	first->prev = prev;
1839 	prev->next = first;
1840 
1841 	last->next = next;
1842 	next->prev = last;
1843 }
1844 
1845 /**
1846  *	skb_queue_splice - join two skb lists, this is designed for stacks
1847  *	@list: the new list to add
1848  *	@head: the place to add it in the first list
1849  */
1850 static inline void skb_queue_splice(const struct sk_buff_head *list,
1851 				    struct sk_buff_head *head)
1852 {
1853 	if (!skb_queue_empty(list)) {
1854 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1855 		head->qlen += list->qlen;
1856 	}
1857 }
1858 
1859 /**
1860  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1861  *	@list: the new list to add
1862  *	@head: the place to add it in the first list
1863  *
1864  *	The list at @list is reinitialised
1865  */
1866 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1867 					 struct sk_buff_head *head)
1868 {
1869 	if (!skb_queue_empty(list)) {
1870 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1871 		head->qlen += list->qlen;
1872 		__skb_queue_head_init(list);
1873 	}
1874 }
1875 
1876 /**
1877  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1878  *	@list: the new list to add
1879  *	@head: the place to add it in the first list
1880  */
1881 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1882 					 struct sk_buff_head *head)
1883 {
1884 	if (!skb_queue_empty(list)) {
1885 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1886 		head->qlen += list->qlen;
1887 	}
1888 }
1889 
1890 /**
1891  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1892  *	@list: the new list to add
1893  *	@head: the place to add it in the first list
1894  *
1895  *	Each of the lists is a queue.
1896  *	The list at @list is reinitialised
1897  */
1898 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1899 					      struct sk_buff_head *head)
1900 {
1901 	if (!skb_queue_empty(list)) {
1902 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1903 		head->qlen += list->qlen;
1904 		__skb_queue_head_init(list);
1905 	}
1906 }
1907 
1908 /**
1909  *	__skb_queue_after - queue a buffer at the list head
1910  *	@list: list to use
1911  *	@prev: place after this buffer
1912  *	@newsk: buffer to queue
1913  *
1914  *	Queue a buffer int the middle of a list. This function takes no locks
1915  *	and you must therefore hold required locks before calling it.
1916  *
1917  *	A buffer cannot be placed on two lists at the same time.
1918  */
1919 static inline void __skb_queue_after(struct sk_buff_head *list,
1920 				     struct sk_buff *prev,
1921 				     struct sk_buff *newsk)
1922 {
1923 	__skb_insert(newsk, prev, prev->next, list);
1924 }
1925 
1926 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1927 		struct sk_buff_head *list);
1928 
1929 static inline void __skb_queue_before(struct sk_buff_head *list,
1930 				      struct sk_buff *next,
1931 				      struct sk_buff *newsk)
1932 {
1933 	__skb_insert(newsk, next->prev, next, list);
1934 }
1935 
1936 /**
1937  *	__skb_queue_head - queue a buffer at the list head
1938  *	@list: list to use
1939  *	@newsk: buffer to queue
1940  *
1941  *	Queue a buffer at the start of a list. This function takes no locks
1942  *	and you must therefore hold required locks before calling it.
1943  *
1944  *	A buffer cannot be placed on two lists at the same time.
1945  */
1946 static inline void __skb_queue_head(struct sk_buff_head *list,
1947 				    struct sk_buff *newsk)
1948 {
1949 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1950 }
1951 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1952 
1953 /**
1954  *	__skb_queue_tail - queue a buffer at the list tail
1955  *	@list: list to use
1956  *	@newsk: buffer to queue
1957  *
1958  *	Queue a buffer at the end of a list. This function takes no locks
1959  *	and you must therefore hold required locks before calling it.
1960  *
1961  *	A buffer cannot be placed on two lists at the same time.
1962  */
1963 static inline void __skb_queue_tail(struct sk_buff_head *list,
1964 				   struct sk_buff *newsk)
1965 {
1966 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1967 }
1968 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1969 
1970 /*
1971  * remove sk_buff from list. _Must_ be called atomically, and with
1972  * the list known..
1973  */
1974 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1975 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1976 {
1977 	struct sk_buff *next, *prev;
1978 
1979 	list->qlen--;
1980 	next	   = skb->next;
1981 	prev	   = skb->prev;
1982 	skb->next  = skb->prev = NULL;
1983 	next->prev = prev;
1984 	prev->next = next;
1985 }
1986 
1987 /**
1988  *	__skb_dequeue - remove from the head of the queue
1989  *	@list: list to dequeue from
1990  *
1991  *	Remove the head of the list. This function does not take any locks
1992  *	so must be used with appropriate locks held only. The head item is
1993  *	returned or %NULL if the list is empty.
1994  */
1995 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1996 {
1997 	struct sk_buff *skb = skb_peek(list);
1998 	if (skb)
1999 		__skb_unlink(skb, list);
2000 	return skb;
2001 }
2002 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2003 
2004 /**
2005  *	__skb_dequeue_tail - remove from the tail of the queue
2006  *	@list: list to dequeue from
2007  *
2008  *	Remove the tail of the list. This function does not take any locks
2009  *	so must be used with appropriate locks held only. The tail item is
2010  *	returned or %NULL if the list is empty.
2011  */
2012 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2013 {
2014 	struct sk_buff *skb = skb_peek_tail(list);
2015 	if (skb)
2016 		__skb_unlink(skb, list);
2017 	return skb;
2018 }
2019 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2020 
2021 
2022 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2023 {
2024 	return skb->data_len;
2025 }
2026 
2027 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2028 {
2029 	return skb->len - skb->data_len;
2030 }
2031 
2032 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2033 {
2034 	unsigned int i, len = 0;
2035 
2036 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2037 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2038 	return len;
2039 }
2040 
2041 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2042 {
2043 	return skb_headlen(skb) + __skb_pagelen(skb);
2044 }
2045 
2046 /**
2047  * __skb_fill_page_desc - initialise a paged fragment in an skb
2048  * @skb: buffer containing fragment to be initialised
2049  * @i: paged fragment index to initialise
2050  * @page: the page to use for this fragment
2051  * @off: the offset to the data with @page
2052  * @size: the length of the data
2053  *
2054  * Initialises the @i'th fragment of @skb to point to &size bytes at
2055  * offset @off within @page.
2056  *
2057  * Does not take any additional reference on the fragment.
2058  */
2059 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2060 					struct page *page, int off, int size)
2061 {
2062 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2063 
2064 	/*
2065 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2066 	 * that not all callers have unique ownership of the page but rely
2067 	 * on page_is_pfmemalloc doing the right thing(tm).
2068 	 */
2069 	frag->page.p		  = page;
2070 	frag->page_offset	  = off;
2071 	skb_frag_size_set(frag, size);
2072 
2073 	page = compound_head(page);
2074 	if (page_is_pfmemalloc(page))
2075 		skb->pfmemalloc	= true;
2076 }
2077 
2078 /**
2079  * skb_fill_page_desc - initialise a paged fragment in an skb
2080  * @skb: buffer containing fragment to be initialised
2081  * @i: paged fragment index to initialise
2082  * @page: the page to use for this fragment
2083  * @off: the offset to the data with @page
2084  * @size: the length of the data
2085  *
2086  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2087  * @skb to point to @size bytes at offset @off within @page. In
2088  * addition updates @skb such that @i is the last fragment.
2089  *
2090  * Does not take any additional reference on the fragment.
2091  */
2092 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2093 				      struct page *page, int off, int size)
2094 {
2095 	__skb_fill_page_desc(skb, i, page, off, size);
2096 	skb_shinfo(skb)->nr_frags = i + 1;
2097 }
2098 
2099 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2100 		     int size, unsigned int truesize);
2101 
2102 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2103 			  unsigned int truesize);
2104 
2105 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
2106 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
2107 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2108 
2109 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2110 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2111 {
2112 	return skb->head + skb->tail;
2113 }
2114 
2115 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2116 {
2117 	skb->tail = skb->data - skb->head;
2118 }
2119 
2120 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2121 {
2122 	skb_reset_tail_pointer(skb);
2123 	skb->tail += offset;
2124 }
2125 
2126 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2127 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2128 {
2129 	return skb->tail;
2130 }
2131 
2132 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2133 {
2134 	skb->tail = skb->data;
2135 }
2136 
2137 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2138 {
2139 	skb->tail = skb->data + offset;
2140 }
2141 
2142 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2143 
2144 /*
2145  *	Add data to an sk_buff
2146  */
2147 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2148 void *skb_put(struct sk_buff *skb, unsigned int len);
2149 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2150 {
2151 	void *tmp = skb_tail_pointer(skb);
2152 	SKB_LINEAR_ASSERT(skb);
2153 	skb->tail += len;
2154 	skb->len  += len;
2155 	return tmp;
2156 }
2157 
2158 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2159 {
2160 	void *tmp = __skb_put(skb, len);
2161 
2162 	memset(tmp, 0, len);
2163 	return tmp;
2164 }
2165 
2166 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2167 				   unsigned int len)
2168 {
2169 	void *tmp = __skb_put(skb, len);
2170 
2171 	memcpy(tmp, data, len);
2172 	return tmp;
2173 }
2174 
2175 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2176 {
2177 	*(u8 *)__skb_put(skb, 1) = val;
2178 }
2179 
2180 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2181 {
2182 	void *tmp = skb_put(skb, len);
2183 
2184 	memset(tmp, 0, len);
2185 
2186 	return tmp;
2187 }
2188 
2189 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2190 				 unsigned int len)
2191 {
2192 	void *tmp = skb_put(skb, len);
2193 
2194 	memcpy(tmp, data, len);
2195 
2196 	return tmp;
2197 }
2198 
2199 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2200 {
2201 	*(u8 *)skb_put(skb, 1) = val;
2202 }
2203 
2204 void *skb_push(struct sk_buff *skb, unsigned int len);
2205 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2206 {
2207 	skb->data -= len;
2208 	skb->len  += len;
2209 	return skb->data;
2210 }
2211 
2212 void *skb_pull(struct sk_buff *skb, unsigned int len);
2213 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2214 {
2215 	skb->len -= len;
2216 	BUG_ON(skb->len < skb->data_len);
2217 	return skb->data += len;
2218 }
2219 
2220 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2221 {
2222 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2223 }
2224 
2225 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2226 
2227 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2228 {
2229 	if (len > skb_headlen(skb) &&
2230 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2231 		return NULL;
2232 	skb->len -= len;
2233 	return skb->data += len;
2234 }
2235 
2236 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2237 {
2238 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2239 }
2240 
2241 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2242 {
2243 	if (likely(len <= skb_headlen(skb)))
2244 		return 1;
2245 	if (unlikely(len > skb->len))
2246 		return 0;
2247 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2248 }
2249 
2250 void skb_condense(struct sk_buff *skb);
2251 
2252 /**
2253  *	skb_headroom - bytes at buffer head
2254  *	@skb: buffer to check
2255  *
2256  *	Return the number of bytes of free space at the head of an &sk_buff.
2257  */
2258 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2259 {
2260 	return skb->data - skb->head;
2261 }
2262 
2263 /**
2264  *	skb_tailroom - bytes at buffer end
2265  *	@skb: buffer to check
2266  *
2267  *	Return the number of bytes of free space at the tail of an sk_buff
2268  */
2269 static inline int skb_tailroom(const struct sk_buff *skb)
2270 {
2271 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2272 }
2273 
2274 /**
2275  *	skb_availroom - bytes at buffer end
2276  *	@skb: buffer to check
2277  *
2278  *	Return the number of bytes of free space at the tail of an sk_buff
2279  *	allocated by sk_stream_alloc()
2280  */
2281 static inline int skb_availroom(const struct sk_buff *skb)
2282 {
2283 	if (skb_is_nonlinear(skb))
2284 		return 0;
2285 
2286 	return skb->end - skb->tail - skb->reserved_tailroom;
2287 }
2288 
2289 /**
2290  *	skb_reserve - adjust headroom
2291  *	@skb: buffer to alter
2292  *	@len: bytes to move
2293  *
2294  *	Increase the headroom of an empty &sk_buff by reducing the tail
2295  *	room. This is only allowed for an empty buffer.
2296  */
2297 static inline void skb_reserve(struct sk_buff *skb, int len)
2298 {
2299 	skb->data += len;
2300 	skb->tail += len;
2301 }
2302 
2303 /**
2304  *	skb_tailroom_reserve - adjust reserved_tailroom
2305  *	@skb: buffer to alter
2306  *	@mtu: maximum amount of headlen permitted
2307  *	@needed_tailroom: minimum amount of reserved_tailroom
2308  *
2309  *	Set reserved_tailroom so that headlen can be as large as possible but
2310  *	not larger than mtu and tailroom cannot be smaller than
2311  *	needed_tailroom.
2312  *	The required headroom should already have been reserved before using
2313  *	this function.
2314  */
2315 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2316 					unsigned int needed_tailroom)
2317 {
2318 	SKB_LINEAR_ASSERT(skb);
2319 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2320 		/* use at most mtu */
2321 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2322 	else
2323 		/* use up to all available space */
2324 		skb->reserved_tailroom = needed_tailroom;
2325 }
2326 
2327 #define ENCAP_TYPE_ETHER	0
2328 #define ENCAP_TYPE_IPPROTO	1
2329 
2330 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2331 					  __be16 protocol)
2332 {
2333 	skb->inner_protocol = protocol;
2334 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2335 }
2336 
2337 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2338 					 __u8 ipproto)
2339 {
2340 	skb->inner_ipproto = ipproto;
2341 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2342 }
2343 
2344 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2345 {
2346 	skb->inner_mac_header = skb->mac_header;
2347 	skb->inner_network_header = skb->network_header;
2348 	skb->inner_transport_header = skb->transport_header;
2349 }
2350 
2351 static inline void skb_reset_mac_len(struct sk_buff *skb)
2352 {
2353 	skb->mac_len = skb->network_header - skb->mac_header;
2354 }
2355 
2356 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2357 							*skb)
2358 {
2359 	return skb->head + skb->inner_transport_header;
2360 }
2361 
2362 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2363 {
2364 	return skb_inner_transport_header(skb) - skb->data;
2365 }
2366 
2367 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2368 {
2369 	skb->inner_transport_header = skb->data - skb->head;
2370 }
2371 
2372 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2373 						   const int offset)
2374 {
2375 	skb_reset_inner_transport_header(skb);
2376 	skb->inner_transport_header += offset;
2377 }
2378 
2379 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2380 {
2381 	return skb->head + skb->inner_network_header;
2382 }
2383 
2384 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2385 {
2386 	skb->inner_network_header = skb->data - skb->head;
2387 }
2388 
2389 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2390 						const int offset)
2391 {
2392 	skb_reset_inner_network_header(skb);
2393 	skb->inner_network_header += offset;
2394 }
2395 
2396 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2397 {
2398 	return skb->head + skb->inner_mac_header;
2399 }
2400 
2401 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2402 {
2403 	skb->inner_mac_header = skb->data - skb->head;
2404 }
2405 
2406 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2407 					    const int offset)
2408 {
2409 	skb_reset_inner_mac_header(skb);
2410 	skb->inner_mac_header += offset;
2411 }
2412 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2413 {
2414 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2415 }
2416 
2417 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2418 {
2419 	return skb->head + skb->transport_header;
2420 }
2421 
2422 static inline void skb_reset_transport_header(struct sk_buff *skb)
2423 {
2424 	skb->transport_header = skb->data - skb->head;
2425 }
2426 
2427 static inline void skb_set_transport_header(struct sk_buff *skb,
2428 					    const int offset)
2429 {
2430 	skb_reset_transport_header(skb);
2431 	skb->transport_header += offset;
2432 }
2433 
2434 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2435 {
2436 	return skb->head + skb->network_header;
2437 }
2438 
2439 static inline void skb_reset_network_header(struct sk_buff *skb)
2440 {
2441 	skb->network_header = skb->data - skb->head;
2442 }
2443 
2444 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2445 {
2446 	skb_reset_network_header(skb);
2447 	skb->network_header += offset;
2448 }
2449 
2450 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2451 {
2452 	return skb->head + skb->mac_header;
2453 }
2454 
2455 static inline int skb_mac_offset(const struct sk_buff *skb)
2456 {
2457 	return skb_mac_header(skb) - skb->data;
2458 }
2459 
2460 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2461 {
2462 	return skb->network_header - skb->mac_header;
2463 }
2464 
2465 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2466 {
2467 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2468 }
2469 
2470 static inline void skb_reset_mac_header(struct sk_buff *skb)
2471 {
2472 	skb->mac_header = skb->data - skb->head;
2473 }
2474 
2475 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2476 {
2477 	skb_reset_mac_header(skb);
2478 	skb->mac_header += offset;
2479 }
2480 
2481 static inline void skb_pop_mac_header(struct sk_buff *skb)
2482 {
2483 	skb->mac_header = skb->network_header;
2484 }
2485 
2486 static inline void skb_probe_transport_header(struct sk_buff *skb)
2487 {
2488 	struct flow_keys_basic keys;
2489 
2490 	if (skb_transport_header_was_set(skb))
2491 		return;
2492 
2493 	if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
2494 		skb_set_transport_header(skb, keys.control.thoff);
2495 }
2496 
2497 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2498 {
2499 	if (skb_mac_header_was_set(skb)) {
2500 		const unsigned char *old_mac = skb_mac_header(skb);
2501 
2502 		skb_set_mac_header(skb, -skb->mac_len);
2503 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2504 	}
2505 }
2506 
2507 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2508 {
2509 	return skb->csum_start - skb_headroom(skb);
2510 }
2511 
2512 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2513 {
2514 	return skb->head + skb->csum_start;
2515 }
2516 
2517 static inline int skb_transport_offset(const struct sk_buff *skb)
2518 {
2519 	return skb_transport_header(skb) - skb->data;
2520 }
2521 
2522 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2523 {
2524 	return skb->transport_header - skb->network_header;
2525 }
2526 
2527 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2528 {
2529 	return skb->inner_transport_header - skb->inner_network_header;
2530 }
2531 
2532 static inline int skb_network_offset(const struct sk_buff *skb)
2533 {
2534 	return skb_network_header(skb) - skb->data;
2535 }
2536 
2537 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2538 {
2539 	return skb_inner_network_header(skb) - skb->data;
2540 }
2541 
2542 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2543 {
2544 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2545 }
2546 
2547 /*
2548  * CPUs often take a performance hit when accessing unaligned memory
2549  * locations. The actual performance hit varies, it can be small if the
2550  * hardware handles it or large if we have to take an exception and fix it
2551  * in software.
2552  *
2553  * Since an ethernet header is 14 bytes network drivers often end up with
2554  * the IP header at an unaligned offset. The IP header can be aligned by
2555  * shifting the start of the packet by 2 bytes. Drivers should do this
2556  * with:
2557  *
2558  * skb_reserve(skb, NET_IP_ALIGN);
2559  *
2560  * The downside to this alignment of the IP header is that the DMA is now
2561  * unaligned. On some architectures the cost of an unaligned DMA is high
2562  * and this cost outweighs the gains made by aligning the IP header.
2563  *
2564  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2565  * to be overridden.
2566  */
2567 #ifndef NET_IP_ALIGN
2568 #define NET_IP_ALIGN	2
2569 #endif
2570 
2571 /*
2572  * The networking layer reserves some headroom in skb data (via
2573  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2574  * the header has to grow. In the default case, if the header has to grow
2575  * 32 bytes or less we avoid the reallocation.
2576  *
2577  * Unfortunately this headroom changes the DMA alignment of the resulting
2578  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2579  * on some architectures. An architecture can override this value,
2580  * perhaps setting it to a cacheline in size (since that will maintain
2581  * cacheline alignment of the DMA). It must be a power of 2.
2582  *
2583  * Various parts of the networking layer expect at least 32 bytes of
2584  * headroom, you should not reduce this.
2585  *
2586  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2587  * to reduce average number of cache lines per packet.
2588  * get_rps_cpus() for example only access one 64 bytes aligned block :
2589  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2590  */
2591 #ifndef NET_SKB_PAD
2592 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2593 #endif
2594 
2595 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2596 
2597 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2598 {
2599 	if (WARN_ON(skb_is_nonlinear(skb)))
2600 		return;
2601 	skb->len = len;
2602 	skb_set_tail_pointer(skb, len);
2603 }
2604 
2605 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2606 {
2607 	__skb_set_length(skb, len);
2608 }
2609 
2610 void skb_trim(struct sk_buff *skb, unsigned int len);
2611 
2612 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2613 {
2614 	if (skb->data_len)
2615 		return ___pskb_trim(skb, len);
2616 	__skb_trim(skb, len);
2617 	return 0;
2618 }
2619 
2620 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2621 {
2622 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2623 }
2624 
2625 /**
2626  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2627  *	@skb: buffer to alter
2628  *	@len: new length
2629  *
2630  *	This is identical to pskb_trim except that the caller knows that
2631  *	the skb is not cloned so we should never get an error due to out-
2632  *	of-memory.
2633  */
2634 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2635 {
2636 	int err = pskb_trim(skb, len);
2637 	BUG_ON(err);
2638 }
2639 
2640 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2641 {
2642 	unsigned int diff = len - skb->len;
2643 
2644 	if (skb_tailroom(skb) < diff) {
2645 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2646 					   GFP_ATOMIC);
2647 		if (ret)
2648 			return ret;
2649 	}
2650 	__skb_set_length(skb, len);
2651 	return 0;
2652 }
2653 
2654 /**
2655  *	skb_orphan - orphan a buffer
2656  *	@skb: buffer to orphan
2657  *
2658  *	If a buffer currently has an owner then we call the owner's
2659  *	destructor function and make the @skb unowned. The buffer continues
2660  *	to exist but is no longer charged to its former owner.
2661  */
2662 static inline void skb_orphan(struct sk_buff *skb)
2663 {
2664 	if (skb->destructor) {
2665 		skb->destructor(skb);
2666 		skb->destructor = NULL;
2667 		skb->sk		= NULL;
2668 	} else {
2669 		BUG_ON(skb->sk);
2670 	}
2671 }
2672 
2673 /**
2674  *	skb_orphan_frags - orphan the frags contained in a buffer
2675  *	@skb: buffer to orphan frags from
2676  *	@gfp_mask: allocation mask for replacement pages
2677  *
2678  *	For each frag in the SKB which needs a destructor (i.e. has an
2679  *	owner) create a copy of that frag and release the original
2680  *	page by calling the destructor.
2681  */
2682 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2683 {
2684 	if (likely(!skb_zcopy(skb)))
2685 		return 0;
2686 	if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2687 		return 0;
2688 	return skb_copy_ubufs(skb, gfp_mask);
2689 }
2690 
2691 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2692 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2693 {
2694 	if (likely(!skb_zcopy(skb)))
2695 		return 0;
2696 	return skb_copy_ubufs(skb, gfp_mask);
2697 }
2698 
2699 /**
2700  *	__skb_queue_purge - empty a list
2701  *	@list: list to empty
2702  *
2703  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2704  *	the list and one reference dropped. This function does not take the
2705  *	list lock and the caller must hold the relevant locks to use it.
2706  */
2707 static inline void __skb_queue_purge(struct sk_buff_head *list)
2708 {
2709 	struct sk_buff *skb;
2710 	while ((skb = __skb_dequeue(list)) != NULL)
2711 		kfree_skb(skb);
2712 }
2713 void skb_queue_purge(struct sk_buff_head *list);
2714 
2715 unsigned int skb_rbtree_purge(struct rb_root *root);
2716 
2717 void *netdev_alloc_frag(unsigned int fragsz);
2718 
2719 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2720 				   gfp_t gfp_mask);
2721 
2722 /**
2723  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2724  *	@dev: network device to receive on
2725  *	@length: length to allocate
2726  *
2727  *	Allocate a new &sk_buff and assign it a usage count of one. The
2728  *	buffer has unspecified headroom built in. Users should allocate
2729  *	the headroom they think they need without accounting for the
2730  *	built in space. The built in space is used for optimisations.
2731  *
2732  *	%NULL is returned if there is no free memory. Although this function
2733  *	allocates memory it can be called from an interrupt.
2734  */
2735 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2736 					       unsigned int length)
2737 {
2738 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2739 }
2740 
2741 /* legacy helper around __netdev_alloc_skb() */
2742 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2743 					      gfp_t gfp_mask)
2744 {
2745 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2746 }
2747 
2748 /* legacy helper around netdev_alloc_skb() */
2749 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2750 {
2751 	return netdev_alloc_skb(NULL, length);
2752 }
2753 
2754 
2755 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2756 		unsigned int length, gfp_t gfp)
2757 {
2758 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2759 
2760 	if (NET_IP_ALIGN && skb)
2761 		skb_reserve(skb, NET_IP_ALIGN);
2762 	return skb;
2763 }
2764 
2765 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2766 		unsigned int length)
2767 {
2768 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2769 }
2770 
2771 static inline void skb_free_frag(void *addr)
2772 {
2773 	page_frag_free(addr);
2774 }
2775 
2776 void *napi_alloc_frag(unsigned int fragsz);
2777 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2778 				 unsigned int length, gfp_t gfp_mask);
2779 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2780 					     unsigned int length)
2781 {
2782 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2783 }
2784 void napi_consume_skb(struct sk_buff *skb, int budget);
2785 
2786 void __kfree_skb_flush(void);
2787 void __kfree_skb_defer(struct sk_buff *skb);
2788 
2789 /**
2790  * __dev_alloc_pages - allocate page for network Rx
2791  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2792  * @order: size of the allocation
2793  *
2794  * Allocate a new page.
2795  *
2796  * %NULL is returned if there is no free memory.
2797 */
2798 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2799 					     unsigned int order)
2800 {
2801 	/* This piece of code contains several assumptions.
2802 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2803 	 * 2.  The expectation is the user wants a compound page.
2804 	 * 3.  If requesting a order 0 page it will not be compound
2805 	 *     due to the check to see if order has a value in prep_new_page
2806 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2807 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2808 	 */
2809 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2810 
2811 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2812 }
2813 
2814 static inline struct page *dev_alloc_pages(unsigned int order)
2815 {
2816 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2817 }
2818 
2819 /**
2820  * __dev_alloc_page - allocate a page for network Rx
2821  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2822  *
2823  * Allocate a new page.
2824  *
2825  * %NULL is returned if there is no free memory.
2826  */
2827 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2828 {
2829 	return __dev_alloc_pages(gfp_mask, 0);
2830 }
2831 
2832 static inline struct page *dev_alloc_page(void)
2833 {
2834 	return dev_alloc_pages(0);
2835 }
2836 
2837 /**
2838  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2839  *	@page: The page that was allocated from skb_alloc_page
2840  *	@skb: The skb that may need pfmemalloc set
2841  */
2842 static inline void skb_propagate_pfmemalloc(struct page *page,
2843 					     struct sk_buff *skb)
2844 {
2845 	if (page_is_pfmemalloc(page))
2846 		skb->pfmemalloc = true;
2847 }
2848 
2849 /**
2850  * skb_frag_page - retrieve the page referred to by a paged fragment
2851  * @frag: the paged fragment
2852  *
2853  * Returns the &struct page associated with @frag.
2854  */
2855 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2856 {
2857 	return frag->page.p;
2858 }
2859 
2860 /**
2861  * __skb_frag_ref - take an addition reference on a paged fragment.
2862  * @frag: the paged fragment
2863  *
2864  * Takes an additional reference on the paged fragment @frag.
2865  */
2866 static inline void __skb_frag_ref(skb_frag_t *frag)
2867 {
2868 	get_page(skb_frag_page(frag));
2869 }
2870 
2871 /**
2872  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2873  * @skb: the buffer
2874  * @f: the fragment offset.
2875  *
2876  * Takes an additional reference on the @f'th paged fragment of @skb.
2877  */
2878 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2879 {
2880 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2881 }
2882 
2883 /**
2884  * __skb_frag_unref - release a reference on a paged fragment.
2885  * @frag: the paged fragment
2886  *
2887  * Releases a reference on the paged fragment @frag.
2888  */
2889 static inline void __skb_frag_unref(skb_frag_t *frag)
2890 {
2891 	put_page(skb_frag_page(frag));
2892 }
2893 
2894 /**
2895  * skb_frag_unref - release a reference on a paged fragment of an skb.
2896  * @skb: the buffer
2897  * @f: the fragment offset
2898  *
2899  * Releases a reference on the @f'th paged fragment of @skb.
2900  */
2901 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2902 {
2903 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2904 }
2905 
2906 /**
2907  * skb_frag_address - gets the address of the data contained in a paged fragment
2908  * @frag: the paged fragment buffer
2909  *
2910  * Returns the address of the data within @frag. The page must already
2911  * be mapped.
2912  */
2913 static inline void *skb_frag_address(const skb_frag_t *frag)
2914 {
2915 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2916 }
2917 
2918 /**
2919  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2920  * @frag: the paged fragment buffer
2921  *
2922  * Returns the address of the data within @frag. Checks that the page
2923  * is mapped and returns %NULL otherwise.
2924  */
2925 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2926 {
2927 	void *ptr = page_address(skb_frag_page(frag));
2928 	if (unlikely(!ptr))
2929 		return NULL;
2930 
2931 	return ptr + frag->page_offset;
2932 }
2933 
2934 /**
2935  * __skb_frag_set_page - sets the page contained in a paged fragment
2936  * @frag: the paged fragment
2937  * @page: the page to set
2938  *
2939  * Sets the fragment @frag to contain @page.
2940  */
2941 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2942 {
2943 	frag->page.p = page;
2944 }
2945 
2946 /**
2947  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2948  * @skb: the buffer
2949  * @f: the fragment offset
2950  * @page: the page to set
2951  *
2952  * Sets the @f'th fragment of @skb to contain @page.
2953  */
2954 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2955 				     struct page *page)
2956 {
2957 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2958 }
2959 
2960 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2961 
2962 /**
2963  * skb_frag_dma_map - maps a paged fragment via the DMA API
2964  * @dev: the device to map the fragment to
2965  * @frag: the paged fragment to map
2966  * @offset: the offset within the fragment (starting at the
2967  *          fragment's own offset)
2968  * @size: the number of bytes to map
2969  * @dir: the direction of the mapping (``PCI_DMA_*``)
2970  *
2971  * Maps the page associated with @frag to @device.
2972  */
2973 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2974 					  const skb_frag_t *frag,
2975 					  size_t offset, size_t size,
2976 					  enum dma_data_direction dir)
2977 {
2978 	return dma_map_page(dev, skb_frag_page(frag),
2979 			    frag->page_offset + offset, size, dir);
2980 }
2981 
2982 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2983 					gfp_t gfp_mask)
2984 {
2985 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2986 }
2987 
2988 
2989 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2990 						  gfp_t gfp_mask)
2991 {
2992 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2993 }
2994 
2995 
2996 /**
2997  *	skb_clone_writable - is the header of a clone writable
2998  *	@skb: buffer to check
2999  *	@len: length up to which to write
3000  *
3001  *	Returns true if modifying the header part of the cloned buffer
3002  *	does not requires the data to be copied.
3003  */
3004 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3005 {
3006 	return !skb_header_cloned(skb) &&
3007 	       skb_headroom(skb) + len <= skb->hdr_len;
3008 }
3009 
3010 static inline int skb_try_make_writable(struct sk_buff *skb,
3011 					unsigned int write_len)
3012 {
3013 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3014 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3015 }
3016 
3017 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3018 			    int cloned)
3019 {
3020 	int delta = 0;
3021 
3022 	if (headroom > skb_headroom(skb))
3023 		delta = headroom - skb_headroom(skb);
3024 
3025 	if (delta || cloned)
3026 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3027 					GFP_ATOMIC);
3028 	return 0;
3029 }
3030 
3031 /**
3032  *	skb_cow - copy header of skb when it is required
3033  *	@skb: buffer to cow
3034  *	@headroom: needed headroom
3035  *
3036  *	If the skb passed lacks sufficient headroom or its data part
3037  *	is shared, data is reallocated. If reallocation fails, an error
3038  *	is returned and original skb is not changed.
3039  *
3040  *	The result is skb with writable area skb->head...skb->tail
3041  *	and at least @headroom of space at head.
3042  */
3043 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3044 {
3045 	return __skb_cow(skb, headroom, skb_cloned(skb));
3046 }
3047 
3048 /**
3049  *	skb_cow_head - skb_cow but only making the head writable
3050  *	@skb: buffer to cow
3051  *	@headroom: needed headroom
3052  *
3053  *	This function is identical to skb_cow except that we replace the
3054  *	skb_cloned check by skb_header_cloned.  It should be used when
3055  *	you only need to push on some header and do not need to modify
3056  *	the data.
3057  */
3058 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3059 {
3060 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3061 }
3062 
3063 /**
3064  *	skb_padto	- pad an skbuff up to a minimal size
3065  *	@skb: buffer to pad
3066  *	@len: minimal length
3067  *
3068  *	Pads up a buffer to ensure the trailing bytes exist and are
3069  *	blanked. If the buffer already contains sufficient data it
3070  *	is untouched. Otherwise it is extended. Returns zero on
3071  *	success. The skb is freed on error.
3072  */
3073 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3074 {
3075 	unsigned int size = skb->len;
3076 	if (likely(size >= len))
3077 		return 0;
3078 	return skb_pad(skb, len - size);
3079 }
3080 
3081 /**
3082  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3083  *	@skb: buffer to pad
3084  *	@len: minimal length
3085  *	@free_on_error: free buffer on error
3086  *
3087  *	Pads up a buffer to ensure the trailing bytes exist and are
3088  *	blanked. If the buffer already contains sufficient data it
3089  *	is untouched. Otherwise it is extended. Returns zero on
3090  *	success. The skb is freed on error if @free_on_error is true.
3091  */
3092 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3093 				  bool free_on_error)
3094 {
3095 	unsigned int size = skb->len;
3096 
3097 	if (unlikely(size < len)) {
3098 		len -= size;
3099 		if (__skb_pad(skb, len, free_on_error))
3100 			return -ENOMEM;
3101 		__skb_put(skb, len);
3102 	}
3103 	return 0;
3104 }
3105 
3106 /**
3107  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3108  *	@skb: buffer to pad
3109  *	@len: minimal length
3110  *
3111  *	Pads up a buffer to ensure the trailing bytes exist and are
3112  *	blanked. If the buffer already contains sufficient data it
3113  *	is untouched. Otherwise it is extended. Returns zero on
3114  *	success. The skb is freed on error.
3115  */
3116 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3117 {
3118 	return __skb_put_padto(skb, len, true);
3119 }
3120 
3121 static inline int skb_add_data(struct sk_buff *skb,
3122 			       struct iov_iter *from, int copy)
3123 {
3124 	const int off = skb->len;
3125 
3126 	if (skb->ip_summed == CHECKSUM_NONE) {
3127 		__wsum csum = 0;
3128 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3129 					         &csum, from)) {
3130 			skb->csum = csum_block_add(skb->csum, csum, off);
3131 			return 0;
3132 		}
3133 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3134 		return 0;
3135 
3136 	__skb_trim(skb, off);
3137 	return -EFAULT;
3138 }
3139 
3140 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3141 				    const struct page *page, int off)
3142 {
3143 	if (skb_zcopy(skb))
3144 		return false;
3145 	if (i) {
3146 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3147 
3148 		return page == skb_frag_page(frag) &&
3149 		       off == frag->page_offset + skb_frag_size(frag);
3150 	}
3151 	return false;
3152 }
3153 
3154 static inline int __skb_linearize(struct sk_buff *skb)
3155 {
3156 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3157 }
3158 
3159 /**
3160  *	skb_linearize - convert paged skb to linear one
3161  *	@skb: buffer to linarize
3162  *
3163  *	If there is no free memory -ENOMEM is returned, otherwise zero
3164  *	is returned and the old skb data released.
3165  */
3166 static inline int skb_linearize(struct sk_buff *skb)
3167 {
3168 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3169 }
3170 
3171 /**
3172  * skb_has_shared_frag - can any frag be overwritten
3173  * @skb: buffer to test
3174  *
3175  * Return true if the skb has at least one frag that might be modified
3176  * by an external entity (as in vmsplice()/sendfile())
3177  */
3178 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3179 {
3180 	return skb_is_nonlinear(skb) &&
3181 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3182 }
3183 
3184 /**
3185  *	skb_linearize_cow - make sure skb is linear and writable
3186  *	@skb: buffer to process
3187  *
3188  *	If there is no free memory -ENOMEM is returned, otherwise zero
3189  *	is returned and the old skb data released.
3190  */
3191 static inline int skb_linearize_cow(struct sk_buff *skb)
3192 {
3193 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3194 	       __skb_linearize(skb) : 0;
3195 }
3196 
3197 static __always_inline void
3198 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3199 		     unsigned int off)
3200 {
3201 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3202 		skb->csum = csum_block_sub(skb->csum,
3203 					   csum_partial(start, len, 0), off);
3204 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3205 		 skb_checksum_start_offset(skb) < 0)
3206 		skb->ip_summed = CHECKSUM_NONE;
3207 }
3208 
3209 /**
3210  *	skb_postpull_rcsum - update checksum for received skb after pull
3211  *	@skb: buffer to update
3212  *	@start: start of data before pull
3213  *	@len: length of data pulled
3214  *
3215  *	After doing a pull on a received packet, you need to call this to
3216  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3217  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3218  */
3219 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3220 				      const void *start, unsigned int len)
3221 {
3222 	__skb_postpull_rcsum(skb, start, len, 0);
3223 }
3224 
3225 static __always_inline void
3226 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3227 		     unsigned int off)
3228 {
3229 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3230 		skb->csum = csum_block_add(skb->csum,
3231 					   csum_partial(start, len, 0), off);
3232 }
3233 
3234 /**
3235  *	skb_postpush_rcsum - update checksum for received skb after push
3236  *	@skb: buffer to update
3237  *	@start: start of data after push
3238  *	@len: length of data pushed
3239  *
3240  *	After doing a push on a received packet, you need to call this to
3241  *	update the CHECKSUM_COMPLETE checksum.
3242  */
3243 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3244 				      const void *start, unsigned int len)
3245 {
3246 	__skb_postpush_rcsum(skb, start, len, 0);
3247 }
3248 
3249 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3250 
3251 /**
3252  *	skb_push_rcsum - push skb and update receive checksum
3253  *	@skb: buffer to update
3254  *	@len: length of data pulled
3255  *
3256  *	This function performs an skb_push on the packet and updates
3257  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3258  *	receive path processing instead of skb_push unless you know
3259  *	that the checksum difference is zero (e.g., a valid IP header)
3260  *	or you are setting ip_summed to CHECKSUM_NONE.
3261  */
3262 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3263 {
3264 	skb_push(skb, len);
3265 	skb_postpush_rcsum(skb, skb->data, len);
3266 	return skb->data;
3267 }
3268 
3269 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3270 /**
3271  *	pskb_trim_rcsum - trim received skb and update checksum
3272  *	@skb: buffer to trim
3273  *	@len: new length
3274  *
3275  *	This is exactly the same as pskb_trim except that it ensures the
3276  *	checksum of received packets are still valid after the operation.
3277  *	It can change skb pointers.
3278  */
3279 
3280 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3281 {
3282 	if (likely(len >= skb->len))
3283 		return 0;
3284 	return pskb_trim_rcsum_slow(skb, len);
3285 }
3286 
3287 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3288 {
3289 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3290 		skb->ip_summed = CHECKSUM_NONE;
3291 	__skb_trim(skb, len);
3292 	return 0;
3293 }
3294 
3295 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3296 {
3297 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3298 		skb->ip_summed = CHECKSUM_NONE;
3299 	return __skb_grow(skb, len);
3300 }
3301 
3302 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3303 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3304 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3305 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3306 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3307 
3308 #define skb_queue_walk(queue, skb) \
3309 		for (skb = (queue)->next;					\
3310 		     skb != (struct sk_buff *)(queue);				\
3311 		     skb = skb->next)
3312 
3313 #define skb_queue_walk_safe(queue, skb, tmp)					\
3314 		for (skb = (queue)->next, tmp = skb->next;			\
3315 		     skb != (struct sk_buff *)(queue);				\
3316 		     skb = tmp, tmp = skb->next)
3317 
3318 #define skb_queue_walk_from(queue, skb)						\
3319 		for (; skb != (struct sk_buff *)(queue);			\
3320 		     skb = skb->next)
3321 
3322 #define skb_rbtree_walk(skb, root)						\
3323 		for (skb = skb_rb_first(root); skb != NULL;			\
3324 		     skb = skb_rb_next(skb))
3325 
3326 #define skb_rbtree_walk_from(skb)						\
3327 		for (; skb != NULL;						\
3328 		     skb = skb_rb_next(skb))
3329 
3330 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3331 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3332 		     skb = tmp)
3333 
3334 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3335 		for (tmp = skb->next;						\
3336 		     skb != (struct sk_buff *)(queue);				\
3337 		     skb = tmp, tmp = skb->next)
3338 
3339 #define skb_queue_reverse_walk(queue, skb) \
3340 		for (skb = (queue)->prev;					\
3341 		     skb != (struct sk_buff *)(queue);				\
3342 		     skb = skb->prev)
3343 
3344 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3345 		for (skb = (queue)->prev, tmp = skb->prev;			\
3346 		     skb != (struct sk_buff *)(queue);				\
3347 		     skb = tmp, tmp = skb->prev)
3348 
3349 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3350 		for (tmp = skb->prev;						\
3351 		     skb != (struct sk_buff *)(queue);				\
3352 		     skb = tmp, tmp = skb->prev)
3353 
3354 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3355 {
3356 	return skb_shinfo(skb)->frag_list != NULL;
3357 }
3358 
3359 static inline void skb_frag_list_init(struct sk_buff *skb)
3360 {
3361 	skb_shinfo(skb)->frag_list = NULL;
3362 }
3363 
3364 #define skb_walk_frags(skb, iter)	\
3365 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3366 
3367 
3368 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3369 				const struct sk_buff *skb);
3370 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3371 					  struct sk_buff_head *queue,
3372 					  unsigned int flags,
3373 					  void (*destructor)(struct sock *sk,
3374 							   struct sk_buff *skb),
3375 					  int *peeked, int *off, int *err,
3376 					  struct sk_buff **last);
3377 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3378 					void (*destructor)(struct sock *sk,
3379 							   struct sk_buff *skb),
3380 					int *peeked, int *off, int *err,
3381 					struct sk_buff **last);
3382 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3383 				    void (*destructor)(struct sock *sk,
3384 						       struct sk_buff *skb),
3385 				    int *peeked, int *off, int *err);
3386 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3387 				  int *err);
3388 __poll_t datagram_poll(struct file *file, struct socket *sock,
3389 			   struct poll_table_struct *wait);
3390 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3391 			   struct iov_iter *to, int size);
3392 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3393 					struct msghdr *msg, int size)
3394 {
3395 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3396 }
3397 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3398 				   struct msghdr *msg);
3399 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3400 			   struct iov_iter *to, int len,
3401 			   struct ahash_request *hash);
3402 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3403 				 struct iov_iter *from, int len);
3404 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3405 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3406 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3407 static inline void skb_free_datagram_locked(struct sock *sk,
3408 					    struct sk_buff *skb)
3409 {
3410 	__skb_free_datagram_locked(sk, skb, 0);
3411 }
3412 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3413 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3414 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3415 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3416 			      int len, __wsum csum);
3417 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3418 		    struct pipe_inode_info *pipe, unsigned int len,
3419 		    unsigned int flags);
3420 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3421 			 int len);
3422 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3423 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3424 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3425 		 int len, int hlen);
3426 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3427 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3428 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3429 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3430 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3431 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3432 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3433 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3434 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3435 int skb_vlan_pop(struct sk_buff *skb);
3436 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3437 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3438 			     gfp_t gfp);
3439 
3440 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3441 {
3442 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3443 }
3444 
3445 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3446 {
3447 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3448 }
3449 
3450 struct skb_checksum_ops {
3451 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3452 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3453 };
3454 
3455 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3456 
3457 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3458 		      __wsum csum, const struct skb_checksum_ops *ops);
3459 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3460 		    __wsum csum);
3461 
3462 static inline void * __must_check
3463 __skb_header_pointer(const struct sk_buff *skb, int offset,
3464 		     int len, void *data, int hlen, void *buffer)
3465 {
3466 	if (hlen - offset >= len)
3467 		return data + offset;
3468 
3469 	if (!skb ||
3470 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3471 		return NULL;
3472 
3473 	return buffer;
3474 }
3475 
3476 static inline void * __must_check
3477 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3478 {
3479 	return __skb_header_pointer(skb, offset, len, skb->data,
3480 				    skb_headlen(skb), buffer);
3481 }
3482 
3483 /**
3484  *	skb_needs_linearize - check if we need to linearize a given skb
3485  *			      depending on the given device features.
3486  *	@skb: socket buffer to check
3487  *	@features: net device features
3488  *
3489  *	Returns true if either:
3490  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3491  *	2. skb is fragmented and the device does not support SG.
3492  */
3493 static inline bool skb_needs_linearize(struct sk_buff *skb,
3494 				       netdev_features_t features)
3495 {
3496 	return skb_is_nonlinear(skb) &&
3497 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3498 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3499 }
3500 
3501 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3502 					     void *to,
3503 					     const unsigned int len)
3504 {
3505 	memcpy(to, skb->data, len);
3506 }
3507 
3508 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3509 						    const int offset, void *to,
3510 						    const unsigned int len)
3511 {
3512 	memcpy(to, skb->data + offset, len);
3513 }
3514 
3515 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3516 					   const void *from,
3517 					   const unsigned int len)
3518 {
3519 	memcpy(skb->data, from, len);
3520 }
3521 
3522 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3523 						  const int offset,
3524 						  const void *from,
3525 						  const unsigned int len)
3526 {
3527 	memcpy(skb->data + offset, from, len);
3528 }
3529 
3530 void skb_init(void);
3531 
3532 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3533 {
3534 	return skb->tstamp;
3535 }
3536 
3537 /**
3538  *	skb_get_timestamp - get timestamp from a skb
3539  *	@skb: skb to get stamp from
3540  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3541  *
3542  *	Timestamps are stored in the skb as offsets to a base timestamp.
3543  *	This function converts the offset back to a struct timeval and stores
3544  *	it in stamp.
3545  */
3546 static inline void skb_get_timestamp(const struct sk_buff *skb,
3547 				     struct __kernel_old_timeval *stamp)
3548 {
3549 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3550 }
3551 
3552 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3553 					 struct __kernel_sock_timeval *stamp)
3554 {
3555 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3556 
3557 	stamp->tv_sec = ts.tv_sec;
3558 	stamp->tv_usec = ts.tv_nsec / 1000;
3559 }
3560 
3561 static inline void skb_get_timestampns(const struct sk_buff *skb,
3562 				       struct timespec *stamp)
3563 {
3564 	*stamp = ktime_to_timespec(skb->tstamp);
3565 }
3566 
3567 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3568 					   struct __kernel_timespec *stamp)
3569 {
3570 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3571 
3572 	stamp->tv_sec = ts.tv_sec;
3573 	stamp->tv_nsec = ts.tv_nsec;
3574 }
3575 
3576 static inline void __net_timestamp(struct sk_buff *skb)
3577 {
3578 	skb->tstamp = ktime_get_real();
3579 }
3580 
3581 static inline ktime_t net_timedelta(ktime_t t)
3582 {
3583 	return ktime_sub(ktime_get_real(), t);
3584 }
3585 
3586 static inline ktime_t net_invalid_timestamp(void)
3587 {
3588 	return 0;
3589 }
3590 
3591 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3592 {
3593 	return skb_shinfo(skb)->meta_len;
3594 }
3595 
3596 static inline void *skb_metadata_end(const struct sk_buff *skb)
3597 {
3598 	return skb_mac_header(skb);
3599 }
3600 
3601 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3602 					  const struct sk_buff *skb_b,
3603 					  u8 meta_len)
3604 {
3605 	const void *a = skb_metadata_end(skb_a);
3606 	const void *b = skb_metadata_end(skb_b);
3607 	/* Using more efficient varaiant than plain call to memcmp(). */
3608 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3609 	u64 diffs = 0;
3610 
3611 	switch (meta_len) {
3612 #define __it(x, op) (x -= sizeof(u##op))
3613 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3614 	case 32: diffs |= __it_diff(a, b, 64);
3615 		 /* fall through */
3616 	case 24: diffs |= __it_diff(a, b, 64);
3617 		 /* fall through */
3618 	case 16: diffs |= __it_diff(a, b, 64);
3619 		 /* fall through */
3620 	case  8: diffs |= __it_diff(a, b, 64);
3621 		break;
3622 	case 28: diffs |= __it_diff(a, b, 64);
3623 		 /* fall through */
3624 	case 20: diffs |= __it_diff(a, b, 64);
3625 		 /* fall through */
3626 	case 12: diffs |= __it_diff(a, b, 64);
3627 		 /* fall through */
3628 	case  4: diffs |= __it_diff(a, b, 32);
3629 		break;
3630 	}
3631 	return diffs;
3632 #else
3633 	return memcmp(a - meta_len, b - meta_len, meta_len);
3634 #endif
3635 }
3636 
3637 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3638 					const struct sk_buff *skb_b)
3639 {
3640 	u8 len_a = skb_metadata_len(skb_a);
3641 	u8 len_b = skb_metadata_len(skb_b);
3642 
3643 	if (!(len_a | len_b))
3644 		return false;
3645 
3646 	return len_a != len_b ?
3647 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3648 }
3649 
3650 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3651 {
3652 	skb_shinfo(skb)->meta_len = meta_len;
3653 }
3654 
3655 static inline void skb_metadata_clear(struct sk_buff *skb)
3656 {
3657 	skb_metadata_set(skb, 0);
3658 }
3659 
3660 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3661 
3662 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3663 
3664 void skb_clone_tx_timestamp(struct sk_buff *skb);
3665 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3666 
3667 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3668 
3669 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3670 {
3671 }
3672 
3673 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3674 {
3675 	return false;
3676 }
3677 
3678 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3679 
3680 /**
3681  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3682  *
3683  * PHY drivers may accept clones of transmitted packets for
3684  * timestamping via their phy_driver.txtstamp method. These drivers
3685  * must call this function to return the skb back to the stack with a
3686  * timestamp.
3687  *
3688  * @skb: clone of the the original outgoing packet
3689  * @hwtstamps: hardware time stamps
3690  *
3691  */
3692 void skb_complete_tx_timestamp(struct sk_buff *skb,
3693 			       struct skb_shared_hwtstamps *hwtstamps);
3694 
3695 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3696 		     struct skb_shared_hwtstamps *hwtstamps,
3697 		     struct sock *sk, int tstype);
3698 
3699 /**
3700  * skb_tstamp_tx - queue clone of skb with send time stamps
3701  * @orig_skb:	the original outgoing packet
3702  * @hwtstamps:	hardware time stamps, may be NULL if not available
3703  *
3704  * If the skb has a socket associated, then this function clones the
3705  * skb (thus sharing the actual data and optional structures), stores
3706  * the optional hardware time stamping information (if non NULL) or
3707  * generates a software time stamp (otherwise), then queues the clone
3708  * to the error queue of the socket.  Errors are silently ignored.
3709  */
3710 void skb_tstamp_tx(struct sk_buff *orig_skb,
3711 		   struct skb_shared_hwtstamps *hwtstamps);
3712 
3713 /**
3714  * skb_tx_timestamp() - Driver hook for transmit timestamping
3715  *
3716  * Ethernet MAC Drivers should call this function in their hard_xmit()
3717  * function immediately before giving the sk_buff to the MAC hardware.
3718  *
3719  * Specifically, one should make absolutely sure that this function is
3720  * called before TX completion of this packet can trigger.  Otherwise
3721  * the packet could potentially already be freed.
3722  *
3723  * @skb: A socket buffer.
3724  */
3725 static inline void skb_tx_timestamp(struct sk_buff *skb)
3726 {
3727 	skb_clone_tx_timestamp(skb);
3728 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3729 		skb_tstamp_tx(skb, NULL);
3730 }
3731 
3732 /**
3733  * skb_complete_wifi_ack - deliver skb with wifi status
3734  *
3735  * @skb: the original outgoing packet
3736  * @acked: ack status
3737  *
3738  */
3739 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3740 
3741 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3742 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3743 
3744 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3745 {
3746 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3747 		skb->csum_valid ||
3748 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3749 		 skb_checksum_start_offset(skb) >= 0));
3750 }
3751 
3752 /**
3753  *	skb_checksum_complete - Calculate checksum of an entire packet
3754  *	@skb: packet to process
3755  *
3756  *	This function calculates the checksum over the entire packet plus
3757  *	the value of skb->csum.  The latter can be used to supply the
3758  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3759  *	checksum.
3760  *
3761  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3762  *	this function can be used to verify that checksum on received
3763  *	packets.  In that case the function should return zero if the
3764  *	checksum is correct.  In particular, this function will return zero
3765  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3766  *	hardware has already verified the correctness of the checksum.
3767  */
3768 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3769 {
3770 	return skb_csum_unnecessary(skb) ?
3771 	       0 : __skb_checksum_complete(skb);
3772 }
3773 
3774 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3775 {
3776 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3777 		if (skb->csum_level == 0)
3778 			skb->ip_summed = CHECKSUM_NONE;
3779 		else
3780 			skb->csum_level--;
3781 	}
3782 }
3783 
3784 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3785 {
3786 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3787 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3788 			skb->csum_level++;
3789 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3790 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3791 		skb->csum_level = 0;
3792 	}
3793 }
3794 
3795 /* Check if we need to perform checksum complete validation.
3796  *
3797  * Returns true if checksum complete is needed, false otherwise
3798  * (either checksum is unnecessary or zero checksum is allowed).
3799  */
3800 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3801 						  bool zero_okay,
3802 						  __sum16 check)
3803 {
3804 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3805 		skb->csum_valid = 1;
3806 		__skb_decr_checksum_unnecessary(skb);
3807 		return false;
3808 	}
3809 
3810 	return true;
3811 }
3812 
3813 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3814  * in checksum_init.
3815  */
3816 #define CHECKSUM_BREAK 76
3817 
3818 /* Unset checksum-complete
3819  *
3820  * Unset checksum complete can be done when packet is being modified
3821  * (uncompressed for instance) and checksum-complete value is
3822  * invalidated.
3823  */
3824 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3825 {
3826 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3827 		skb->ip_summed = CHECKSUM_NONE;
3828 }
3829 
3830 /* Validate (init) checksum based on checksum complete.
3831  *
3832  * Return values:
3833  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3834  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3835  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3836  *   non-zero: value of invalid checksum
3837  *
3838  */
3839 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3840 						       bool complete,
3841 						       __wsum psum)
3842 {
3843 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3844 		if (!csum_fold(csum_add(psum, skb->csum))) {
3845 			skb->csum_valid = 1;
3846 			return 0;
3847 		}
3848 	}
3849 
3850 	skb->csum = psum;
3851 
3852 	if (complete || skb->len <= CHECKSUM_BREAK) {
3853 		__sum16 csum;
3854 
3855 		csum = __skb_checksum_complete(skb);
3856 		skb->csum_valid = !csum;
3857 		return csum;
3858 	}
3859 
3860 	return 0;
3861 }
3862 
3863 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3864 {
3865 	return 0;
3866 }
3867 
3868 /* Perform checksum validate (init). Note that this is a macro since we only
3869  * want to calculate the pseudo header which is an input function if necessary.
3870  * First we try to validate without any computation (checksum unnecessary) and
3871  * then calculate based on checksum complete calling the function to compute
3872  * pseudo header.
3873  *
3874  * Return values:
3875  *   0: checksum is validated or try to in skb_checksum_complete
3876  *   non-zero: value of invalid checksum
3877  */
3878 #define __skb_checksum_validate(skb, proto, complete,			\
3879 				zero_okay, check, compute_pseudo)	\
3880 ({									\
3881 	__sum16 __ret = 0;						\
3882 	skb->csum_valid = 0;						\
3883 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3884 		__ret = __skb_checksum_validate_complete(skb,		\
3885 				complete, compute_pseudo(skb, proto));	\
3886 	__ret;								\
3887 })
3888 
3889 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3890 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3891 
3892 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3893 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3894 
3895 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3896 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3897 
3898 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3899 					 compute_pseudo)		\
3900 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3901 
3902 #define skb_checksum_simple_validate(skb)				\
3903 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3904 
3905 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3906 {
3907 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3908 }
3909 
3910 static inline void __skb_checksum_convert(struct sk_buff *skb,
3911 					  __sum16 check, __wsum pseudo)
3912 {
3913 	skb->csum = ~pseudo;
3914 	skb->ip_summed = CHECKSUM_COMPLETE;
3915 }
3916 
3917 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3918 do {									\
3919 	if (__skb_checksum_convert_check(skb))				\
3920 		__skb_checksum_convert(skb, check,			\
3921 				       compute_pseudo(skb, proto));	\
3922 } while (0)
3923 
3924 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3925 					      u16 start, u16 offset)
3926 {
3927 	skb->ip_summed = CHECKSUM_PARTIAL;
3928 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3929 	skb->csum_offset = offset - start;
3930 }
3931 
3932 /* Update skbuf and packet to reflect the remote checksum offload operation.
3933  * When called, ptr indicates the starting point for skb->csum when
3934  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3935  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3936  */
3937 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3938 				       int start, int offset, bool nopartial)
3939 {
3940 	__wsum delta;
3941 
3942 	if (!nopartial) {
3943 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3944 		return;
3945 	}
3946 
3947 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3948 		__skb_checksum_complete(skb);
3949 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3950 	}
3951 
3952 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3953 
3954 	/* Adjust skb->csum since we changed the packet */
3955 	skb->csum = csum_add(skb->csum, delta);
3956 }
3957 
3958 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3959 {
3960 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3961 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3962 #else
3963 	return NULL;
3964 #endif
3965 }
3966 
3967 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3968 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3969 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3970 {
3971 	if (nfct && atomic_dec_and_test(&nfct->use))
3972 		nf_conntrack_destroy(nfct);
3973 }
3974 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3975 {
3976 	if (nfct)
3977 		atomic_inc(&nfct->use);
3978 }
3979 #endif
3980 
3981 #ifdef CONFIG_SKB_EXTENSIONS
3982 enum skb_ext_id {
3983 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3984 	SKB_EXT_BRIDGE_NF,
3985 #endif
3986 #ifdef CONFIG_XFRM
3987 	SKB_EXT_SEC_PATH,
3988 #endif
3989 	SKB_EXT_NUM, /* must be last */
3990 };
3991 
3992 /**
3993  *	struct skb_ext - sk_buff extensions
3994  *	@refcnt: 1 on allocation, deallocated on 0
3995  *	@offset: offset to add to @data to obtain extension address
3996  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
3997  *	@data: start of extension data, variable sized
3998  *
3999  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4000  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4001  */
4002 struct skb_ext {
4003 	refcount_t refcnt;
4004 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4005 	u8 chunks;		/* same */
4006 	char data[0] __aligned(8);
4007 };
4008 
4009 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4010 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4011 void __skb_ext_put(struct skb_ext *ext);
4012 
4013 static inline void skb_ext_put(struct sk_buff *skb)
4014 {
4015 	if (skb->active_extensions)
4016 		__skb_ext_put(skb->extensions);
4017 }
4018 
4019 static inline void __skb_ext_copy(struct sk_buff *dst,
4020 				  const struct sk_buff *src)
4021 {
4022 	dst->active_extensions = src->active_extensions;
4023 
4024 	if (src->active_extensions) {
4025 		struct skb_ext *ext = src->extensions;
4026 
4027 		refcount_inc(&ext->refcnt);
4028 		dst->extensions = ext;
4029 	}
4030 }
4031 
4032 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4033 {
4034 	skb_ext_put(dst);
4035 	__skb_ext_copy(dst, src);
4036 }
4037 
4038 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4039 {
4040 	return !!ext->offset[i];
4041 }
4042 
4043 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4044 {
4045 	return skb->active_extensions & (1 << id);
4046 }
4047 
4048 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4049 {
4050 	if (skb_ext_exist(skb, id))
4051 		__skb_ext_del(skb, id);
4052 }
4053 
4054 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4055 {
4056 	if (skb_ext_exist(skb, id)) {
4057 		struct skb_ext *ext = skb->extensions;
4058 
4059 		return (void *)ext + (ext->offset[id] << 3);
4060 	}
4061 
4062 	return NULL;
4063 }
4064 #else
4065 static inline void skb_ext_put(struct sk_buff *skb) {}
4066 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4067 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4068 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4069 #endif /* CONFIG_SKB_EXTENSIONS */
4070 
4071 static inline void nf_reset(struct sk_buff *skb)
4072 {
4073 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4074 	nf_conntrack_put(skb_nfct(skb));
4075 	skb->_nfct = 0;
4076 #endif
4077 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4078 	skb_ext_del(skb, SKB_EXT_BRIDGE_NF);
4079 #endif
4080 }
4081 
4082 static inline void nf_reset_trace(struct sk_buff *skb)
4083 {
4084 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4085 	skb->nf_trace = 0;
4086 #endif
4087 }
4088 
4089 static inline void ipvs_reset(struct sk_buff *skb)
4090 {
4091 #if IS_ENABLED(CONFIG_IP_VS)
4092 	skb->ipvs_property = 0;
4093 #endif
4094 }
4095 
4096 /* Note: This doesn't put any conntrack info in dst. */
4097 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4098 			     bool copy)
4099 {
4100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4101 	dst->_nfct = src->_nfct;
4102 	nf_conntrack_get(skb_nfct(src));
4103 #endif
4104 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4105 	if (copy)
4106 		dst->nf_trace = src->nf_trace;
4107 #endif
4108 }
4109 
4110 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4111 {
4112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4113 	nf_conntrack_put(skb_nfct(dst));
4114 #endif
4115 	__nf_copy(dst, src, true);
4116 }
4117 
4118 #ifdef CONFIG_NETWORK_SECMARK
4119 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4120 {
4121 	to->secmark = from->secmark;
4122 }
4123 
4124 static inline void skb_init_secmark(struct sk_buff *skb)
4125 {
4126 	skb->secmark = 0;
4127 }
4128 #else
4129 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4130 { }
4131 
4132 static inline void skb_init_secmark(struct sk_buff *skb)
4133 { }
4134 #endif
4135 
4136 static inline int secpath_exists(const struct sk_buff *skb)
4137 {
4138 #ifdef CONFIG_XFRM
4139 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4140 #else
4141 	return 0;
4142 #endif
4143 }
4144 
4145 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4146 {
4147 	return !skb->destructor &&
4148 		!secpath_exists(skb) &&
4149 		!skb_nfct(skb) &&
4150 		!skb->_skb_refdst &&
4151 		!skb_has_frag_list(skb);
4152 }
4153 
4154 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4155 {
4156 	skb->queue_mapping = queue_mapping;
4157 }
4158 
4159 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4160 {
4161 	return skb->queue_mapping;
4162 }
4163 
4164 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4165 {
4166 	to->queue_mapping = from->queue_mapping;
4167 }
4168 
4169 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4170 {
4171 	skb->queue_mapping = rx_queue + 1;
4172 }
4173 
4174 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4175 {
4176 	return skb->queue_mapping - 1;
4177 }
4178 
4179 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4180 {
4181 	return skb->queue_mapping != 0;
4182 }
4183 
4184 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4185 {
4186 	skb->dst_pending_confirm = val;
4187 }
4188 
4189 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4190 {
4191 	return skb->dst_pending_confirm != 0;
4192 }
4193 
4194 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4195 {
4196 #ifdef CONFIG_XFRM
4197 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4198 #else
4199 	return NULL;
4200 #endif
4201 }
4202 
4203 /* Keeps track of mac header offset relative to skb->head.
4204  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4205  * For non-tunnel skb it points to skb_mac_header() and for
4206  * tunnel skb it points to outer mac header.
4207  * Keeps track of level of encapsulation of network headers.
4208  */
4209 struct skb_gso_cb {
4210 	union {
4211 		int	mac_offset;
4212 		int	data_offset;
4213 	};
4214 	int	encap_level;
4215 	__wsum	csum;
4216 	__u16	csum_start;
4217 };
4218 #define SKB_SGO_CB_OFFSET	32
4219 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4220 
4221 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4222 {
4223 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4224 		SKB_GSO_CB(inner_skb)->mac_offset;
4225 }
4226 
4227 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4228 {
4229 	int new_headroom, headroom;
4230 	int ret;
4231 
4232 	headroom = skb_headroom(skb);
4233 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4234 	if (ret)
4235 		return ret;
4236 
4237 	new_headroom = skb_headroom(skb);
4238 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4239 	return 0;
4240 }
4241 
4242 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4243 {
4244 	/* Do not update partial checksums if remote checksum is enabled. */
4245 	if (skb->remcsum_offload)
4246 		return;
4247 
4248 	SKB_GSO_CB(skb)->csum = res;
4249 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4250 }
4251 
4252 /* Compute the checksum for a gso segment. First compute the checksum value
4253  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4254  * then add in skb->csum (checksum from csum_start to end of packet).
4255  * skb->csum and csum_start are then updated to reflect the checksum of the
4256  * resultant packet starting from the transport header-- the resultant checksum
4257  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4258  * header.
4259  */
4260 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4261 {
4262 	unsigned char *csum_start = skb_transport_header(skb);
4263 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4264 	__wsum partial = SKB_GSO_CB(skb)->csum;
4265 
4266 	SKB_GSO_CB(skb)->csum = res;
4267 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4268 
4269 	return csum_fold(csum_partial(csum_start, plen, partial));
4270 }
4271 
4272 static inline bool skb_is_gso(const struct sk_buff *skb)
4273 {
4274 	return skb_shinfo(skb)->gso_size;
4275 }
4276 
4277 /* Note: Should be called only if skb_is_gso(skb) is true */
4278 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4279 {
4280 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4281 }
4282 
4283 /* Note: Should be called only if skb_is_gso(skb) is true */
4284 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4285 {
4286 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4287 }
4288 
4289 /* Note: Should be called only if skb_is_gso(skb) is true */
4290 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4291 {
4292 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4293 }
4294 
4295 static inline void skb_gso_reset(struct sk_buff *skb)
4296 {
4297 	skb_shinfo(skb)->gso_size = 0;
4298 	skb_shinfo(skb)->gso_segs = 0;
4299 	skb_shinfo(skb)->gso_type = 0;
4300 }
4301 
4302 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4303 					 u16 increment)
4304 {
4305 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4306 		return;
4307 	shinfo->gso_size += increment;
4308 }
4309 
4310 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4311 					 u16 decrement)
4312 {
4313 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4314 		return;
4315 	shinfo->gso_size -= decrement;
4316 }
4317 
4318 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4319 
4320 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4321 {
4322 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4323 	 * wanted then gso_type will be set. */
4324 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4325 
4326 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4327 	    unlikely(shinfo->gso_type == 0)) {
4328 		__skb_warn_lro_forwarding(skb);
4329 		return true;
4330 	}
4331 	return false;
4332 }
4333 
4334 static inline void skb_forward_csum(struct sk_buff *skb)
4335 {
4336 	/* Unfortunately we don't support this one.  Any brave souls? */
4337 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4338 		skb->ip_summed = CHECKSUM_NONE;
4339 }
4340 
4341 /**
4342  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4343  * @skb: skb to check
4344  *
4345  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4346  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4347  * use this helper, to document places where we make this assertion.
4348  */
4349 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4350 {
4351 #ifdef DEBUG
4352 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4353 #endif
4354 }
4355 
4356 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4357 
4358 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4359 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4360 				     unsigned int transport_len,
4361 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4362 
4363 /**
4364  * skb_head_is_locked - Determine if the skb->head is locked down
4365  * @skb: skb to check
4366  *
4367  * The head on skbs build around a head frag can be removed if they are
4368  * not cloned.  This function returns true if the skb head is locked down
4369  * due to either being allocated via kmalloc, or by being a clone with
4370  * multiple references to the head.
4371  */
4372 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4373 {
4374 	return !skb->head_frag || skb_cloned(skb);
4375 }
4376 
4377 /* Local Checksum Offload.
4378  * Compute outer checksum based on the assumption that the
4379  * inner checksum will be offloaded later.
4380  * See Documentation/networking/checksum-offloads.rst for
4381  * explanation of how this works.
4382  * Fill in outer checksum adjustment (e.g. with sum of outer
4383  * pseudo-header) before calling.
4384  * Also ensure that inner checksum is in linear data area.
4385  */
4386 static inline __wsum lco_csum(struct sk_buff *skb)
4387 {
4388 	unsigned char *csum_start = skb_checksum_start(skb);
4389 	unsigned char *l4_hdr = skb_transport_header(skb);
4390 	__wsum partial;
4391 
4392 	/* Start with complement of inner checksum adjustment */
4393 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4394 						    skb->csum_offset));
4395 
4396 	/* Add in checksum of our headers (incl. outer checksum
4397 	 * adjustment filled in by caller) and return result.
4398 	 */
4399 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4400 }
4401 
4402 #endif	/* __KERNEL__ */
4403 #endif	/* _LINUX_SKBUFF_H */
4404