xref: /openbmc/linux/include/linux/skbuff.h (revision ba61bb17)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
6  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 
247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
248 struct nf_conntrack {
249 	atomic_t use;
250 };
251 #endif
252 
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 	refcount_t		use;
256 	enum {
257 		BRNF_PROTO_UNCHANGED,
258 		BRNF_PROTO_8021Q,
259 		BRNF_PROTO_PPPOE
260 	} orig_proto:8;
261 	u8			pkt_otherhost:1;
262 	u8			in_prerouting:1;
263 	u8			bridged_dnat:1;
264 	__u16			frag_max_size;
265 	struct net_device	*physindev;
266 
267 	/* always valid & non-NULL from FORWARD on, for physdev match */
268 	struct net_device	*physoutdev;
269 	union {
270 		/* prerouting: detect dnat in orig/reply direction */
271 		__be32          ipv4_daddr;
272 		struct in6_addr ipv6_daddr;
273 
274 		/* after prerouting + nat detected: store original source
275 		 * mac since neigh resolution overwrites it, only used while
276 		 * skb is out in neigh layer.
277 		 */
278 		char neigh_header[8];
279 	};
280 };
281 #endif
282 
283 struct sk_buff_head {
284 	/* These two members must be first. */
285 	struct sk_buff	*next;
286 	struct sk_buff	*prev;
287 
288 	__u32		qlen;
289 	spinlock_t	lock;
290 };
291 
292 struct sk_buff;
293 
294 /* To allow 64K frame to be packed as single skb without frag_list we
295  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296  * buffers which do not start on a page boundary.
297  *
298  * Since GRO uses frags we allocate at least 16 regardless of page
299  * size.
300  */
301 #if (65536/PAGE_SIZE + 1) < 16
302 #define MAX_SKB_FRAGS 16UL
303 #else
304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
305 #endif
306 extern int sysctl_max_skb_frags;
307 
308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309  * segment using its current segmentation instead.
310  */
311 #define GSO_BY_FRAGS	0xFFFF
312 
313 typedef struct skb_frag_struct skb_frag_t;
314 
315 struct skb_frag_struct {
316 	struct {
317 		struct page *p;
318 	} page;
319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
320 	__u32 page_offset;
321 	__u32 size;
322 #else
323 	__u16 page_offset;
324 	__u16 size;
325 #endif
326 };
327 
328 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329 {
330 	return frag->size;
331 }
332 
333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334 {
335 	frag->size = size;
336 }
337 
338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339 {
340 	frag->size += delta;
341 }
342 
343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344 {
345 	frag->size -= delta;
346 }
347 
348 static inline bool skb_frag_must_loop(struct page *p)
349 {
350 #if defined(CONFIG_HIGHMEM)
351 	if (PageHighMem(p))
352 		return true;
353 #endif
354 	return false;
355 }
356 
357 /**
358  *	skb_frag_foreach_page - loop over pages in a fragment
359  *
360  *	@f:		skb frag to operate on
361  *	@f_off:		offset from start of f->page.p
362  *	@f_len:		length from f_off to loop over
363  *	@p:		(temp var) current page
364  *	@p_off:		(temp var) offset from start of current page,
365  *	                           non-zero only on first page.
366  *	@p_len:		(temp var) length in current page,
367  *				   < PAGE_SIZE only on first and last page.
368  *	@copied:	(temp var) length so far, excluding current p_len.
369  *
370  *	A fragment can hold a compound page, in which case per-page
371  *	operations, notably kmap_atomic, must be called for each
372  *	regular page.
373  */
374 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
375 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
376 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
377 	     p_len = skb_frag_must_loop(p) ?				\
378 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
379 	     copied = 0;						\
380 	     copied < f_len;						\
381 	     copied += p_len, p++, p_off = 0,				\
382 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
383 
384 #define HAVE_HW_TIME_STAMP
385 
386 /**
387  * struct skb_shared_hwtstamps - hardware time stamps
388  * @hwtstamp:	hardware time stamp transformed into duration
389  *		since arbitrary point in time
390  *
391  * Software time stamps generated by ktime_get_real() are stored in
392  * skb->tstamp.
393  *
394  * hwtstamps can only be compared against other hwtstamps from
395  * the same device.
396  *
397  * This structure is attached to packets as part of the
398  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399  */
400 struct skb_shared_hwtstamps {
401 	ktime_t	hwtstamp;
402 };
403 
404 /* Definitions for tx_flags in struct skb_shared_info */
405 enum {
406 	/* generate hardware time stamp */
407 	SKBTX_HW_TSTAMP = 1 << 0,
408 
409 	/* generate software time stamp when queueing packet to NIC */
410 	SKBTX_SW_TSTAMP = 1 << 1,
411 
412 	/* device driver is going to provide hardware time stamp */
413 	SKBTX_IN_PROGRESS = 1 << 2,
414 
415 	/* device driver supports TX zero-copy buffers */
416 	SKBTX_DEV_ZEROCOPY = 1 << 3,
417 
418 	/* generate wifi status information (where possible) */
419 	SKBTX_WIFI_STATUS = 1 << 4,
420 
421 	/* This indicates at least one fragment might be overwritten
422 	 * (as in vmsplice(), sendfile() ...)
423 	 * If we need to compute a TX checksum, we'll need to copy
424 	 * all frags to avoid possible bad checksum
425 	 */
426 	SKBTX_SHARED_FRAG = 1 << 5,
427 
428 	/* generate software time stamp when entering packet scheduling */
429 	SKBTX_SCHED_TSTAMP = 1 << 6,
430 };
431 
432 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
433 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
434 				 SKBTX_SCHED_TSTAMP)
435 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436 
437 /*
438  * The callback notifies userspace to release buffers when skb DMA is done in
439  * lower device, the skb last reference should be 0 when calling this.
440  * The zerocopy_success argument is true if zero copy transmit occurred,
441  * false on data copy or out of memory error caused by data copy attempt.
442  * The ctx field is used to track device context.
443  * The desc field is used to track userspace buffer index.
444  */
445 struct ubuf_info {
446 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
447 	union {
448 		struct {
449 			unsigned long desc;
450 			void *ctx;
451 		};
452 		struct {
453 			u32 id;
454 			u16 len;
455 			u16 zerocopy:1;
456 			u32 bytelen;
457 		};
458 	};
459 	refcount_t refcnt;
460 
461 	struct mmpin {
462 		struct user_struct *user;
463 		unsigned int num_pg;
464 	} mmp;
465 };
466 
467 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468 
469 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
470 void mm_unaccount_pinned_pages(struct mmpin *mmp);
471 
472 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
473 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
474 					struct ubuf_info *uarg);
475 
476 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
477 {
478 	refcount_inc(&uarg->refcnt);
479 }
480 
481 void sock_zerocopy_put(struct ubuf_info *uarg);
482 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
483 
484 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
485 
486 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
487 			     struct msghdr *msg, int len,
488 			     struct ubuf_info *uarg);
489 
490 /* This data is invariant across clones and lives at
491  * the end of the header data, ie. at skb->end.
492  */
493 struct skb_shared_info {
494 	__u8		__unused;
495 	__u8		meta_len;
496 	__u8		nr_frags;
497 	__u8		tx_flags;
498 	unsigned short	gso_size;
499 	/* Warning: this field is not always filled in (UFO)! */
500 	unsigned short	gso_segs;
501 	struct sk_buff	*frag_list;
502 	struct skb_shared_hwtstamps hwtstamps;
503 	unsigned int	gso_type;
504 	u32		tskey;
505 
506 	/*
507 	 * Warning : all fields before dataref are cleared in __alloc_skb()
508 	 */
509 	atomic_t	dataref;
510 
511 	/* Intermediate layers must ensure that destructor_arg
512 	 * remains valid until skb destructor */
513 	void *		destructor_arg;
514 
515 	/* must be last field, see pskb_expand_head() */
516 	skb_frag_t	frags[MAX_SKB_FRAGS];
517 };
518 
519 /* We divide dataref into two halves.  The higher 16 bits hold references
520  * to the payload part of skb->data.  The lower 16 bits hold references to
521  * the entire skb->data.  A clone of a headerless skb holds the length of
522  * the header in skb->hdr_len.
523  *
524  * All users must obey the rule that the skb->data reference count must be
525  * greater than or equal to the payload reference count.
526  *
527  * Holding a reference to the payload part means that the user does not
528  * care about modifications to the header part of skb->data.
529  */
530 #define SKB_DATAREF_SHIFT 16
531 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
532 
533 
534 enum {
535 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
536 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
537 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
538 };
539 
540 enum {
541 	SKB_GSO_TCPV4 = 1 << 0,
542 
543 	/* This indicates the skb is from an untrusted source. */
544 	SKB_GSO_DODGY = 1 << 1,
545 
546 	/* This indicates the tcp segment has CWR set. */
547 	SKB_GSO_TCP_ECN = 1 << 2,
548 
549 	SKB_GSO_TCP_FIXEDID = 1 << 3,
550 
551 	SKB_GSO_TCPV6 = 1 << 4,
552 
553 	SKB_GSO_FCOE = 1 << 5,
554 
555 	SKB_GSO_GRE = 1 << 6,
556 
557 	SKB_GSO_GRE_CSUM = 1 << 7,
558 
559 	SKB_GSO_IPXIP4 = 1 << 8,
560 
561 	SKB_GSO_IPXIP6 = 1 << 9,
562 
563 	SKB_GSO_UDP_TUNNEL = 1 << 10,
564 
565 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
566 
567 	SKB_GSO_PARTIAL = 1 << 12,
568 
569 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
570 
571 	SKB_GSO_SCTP = 1 << 14,
572 
573 	SKB_GSO_ESP = 1 << 15,
574 
575 	SKB_GSO_UDP = 1 << 16,
576 
577 	SKB_GSO_UDP_L4 = 1 << 17,
578 };
579 
580 #if BITS_PER_LONG > 32
581 #define NET_SKBUFF_DATA_USES_OFFSET 1
582 #endif
583 
584 #ifdef NET_SKBUFF_DATA_USES_OFFSET
585 typedef unsigned int sk_buff_data_t;
586 #else
587 typedef unsigned char *sk_buff_data_t;
588 #endif
589 
590 /**
591  *	struct sk_buff - socket buffer
592  *	@next: Next buffer in list
593  *	@prev: Previous buffer in list
594  *	@tstamp: Time we arrived/left
595  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
596  *	@sk: Socket we are owned by
597  *	@dev: Device we arrived on/are leaving by
598  *	@cb: Control buffer. Free for use by every layer. Put private vars here
599  *	@_skb_refdst: destination entry (with norefcount bit)
600  *	@sp: the security path, used for xfrm
601  *	@len: Length of actual data
602  *	@data_len: Data length
603  *	@mac_len: Length of link layer header
604  *	@hdr_len: writable header length of cloned skb
605  *	@csum: Checksum (must include start/offset pair)
606  *	@csum_start: Offset from skb->head where checksumming should start
607  *	@csum_offset: Offset from csum_start where checksum should be stored
608  *	@priority: Packet queueing priority
609  *	@ignore_df: allow local fragmentation
610  *	@cloned: Head may be cloned (check refcnt to be sure)
611  *	@ip_summed: Driver fed us an IP checksum
612  *	@nohdr: Payload reference only, must not modify header
613  *	@pkt_type: Packet class
614  *	@fclone: skbuff clone status
615  *	@ipvs_property: skbuff is owned by ipvs
616  *	@tc_skip_classify: do not classify packet. set by IFB device
617  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
618  *	@tc_redirected: packet was redirected by a tc action
619  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
620  *	@peeked: this packet has been seen already, so stats have been
621  *		done for it, don't do them again
622  *	@nf_trace: netfilter packet trace flag
623  *	@protocol: Packet protocol from driver
624  *	@destructor: Destruct function
625  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
626  *	@_nfct: Associated connection, if any (with nfctinfo bits)
627  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
628  *	@skb_iif: ifindex of device we arrived on
629  *	@tc_index: Traffic control index
630  *	@hash: the packet hash
631  *	@queue_mapping: Queue mapping for multiqueue devices
632  *	@xmit_more: More SKBs are pending for this queue
633  *	@ndisc_nodetype: router type (from link layer)
634  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
635  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
636  *		ports.
637  *	@sw_hash: indicates hash was computed in software stack
638  *	@wifi_acked_valid: wifi_acked was set
639  *	@wifi_acked: whether frame was acked on wifi or not
640  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
641  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
642  *	@dst_pending_confirm: need to confirm neighbour
643   *	@napi_id: id of the NAPI struct this skb came from
644  *	@secmark: security marking
645  *	@mark: Generic packet mark
646  *	@vlan_proto: vlan encapsulation protocol
647  *	@vlan_tci: vlan tag control information
648  *	@inner_protocol: Protocol (encapsulation)
649  *	@inner_transport_header: Inner transport layer header (encapsulation)
650  *	@inner_network_header: Network layer header (encapsulation)
651  *	@inner_mac_header: Link layer header (encapsulation)
652  *	@transport_header: Transport layer header
653  *	@network_header: Network layer header
654  *	@mac_header: Link layer header
655  *	@tail: Tail pointer
656  *	@end: End pointer
657  *	@head: Head of buffer
658  *	@data: Data head pointer
659  *	@truesize: Buffer size
660  *	@users: User count - see {datagram,tcp}.c
661  */
662 
663 struct sk_buff {
664 	union {
665 		struct {
666 			/* These two members must be first. */
667 			struct sk_buff		*next;
668 			struct sk_buff		*prev;
669 
670 			union {
671 				struct net_device	*dev;
672 				/* Some protocols might use this space to store information,
673 				 * while device pointer would be NULL.
674 				 * UDP receive path is one user.
675 				 */
676 				unsigned long		dev_scratch;
677 				int			ip_defrag_offset;
678 			};
679 		};
680 		struct rb_node	rbnode; /* used in netem & tcp stack */
681 	};
682 	struct sock		*sk;
683 
684 	union {
685 		ktime_t		tstamp;
686 		u64		skb_mstamp;
687 	};
688 	/*
689 	 * This is the control buffer. It is free to use for every
690 	 * layer. Please put your private variables there. If you
691 	 * want to keep them across layers you have to do a skb_clone()
692 	 * first. This is owned by whoever has the skb queued ATM.
693 	 */
694 	char			cb[48] __aligned(8);
695 
696 	union {
697 		struct {
698 			unsigned long	_skb_refdst;
699 			void		(*destructor)(struct sk_buff *skb);
700 		};
701 		struct list_head	tcp_tsorted_anchor;
702 	};
703 
704 #ifdef CONFIG_XFRM
705 	struct	sec_path	*sp;
706 #endif
707 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
708 	unsigned long		 _nfct;
709 #endif
710 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
711 	struct nf_bridge_info	*nf_bridge;
712 #endif
713 	unsigned int		len,
714 				data_len;
715 	__u16			mac_len,
716 				hdr_len;
717 
718 	/* Following fields are _not_ copied in __copy_skb_header()
719 	 * Note that queue_mapping is here mostly to fill a hole.
720 	 */
721 	__u16			queue_mapping;
722 
723 /* if you move cloned around you also must adapt those constants */
724 #ifdef __BIG_ENDIAN_BITFIELD
725 #define CLONED_MASK	(1 << 7)
726 #else
727 #define CLONED_MASK	1
728 #endif
729 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
730 
731 	__u8			__cloned_offset[0];
732 	__u8			cloned:1,
733 				nohdr:1,
734 				fclone:2,
735 				peeked:1,
736 				head_frag:1,
737 				xmit_more:1,
738 				__unused:1; /* one bit hole */
739 
740 	/* fields enclosed in headers_start/headers_end are copied
741 	 * using a single memcpy() in __copy_skb_header()
742 	 */
743 	/* private: */
744 	__u32			headers_start[0];
745 	/* public: */
746 
747 /* if you move pkt_type around you also must adapt those constants */
748 #ifdef __BIG_ENDIAN_BITFIELD
749 #define PKT_TYPE_MAX	(7 << 5)
750 #else
751 #define PKT_TYPE_MAX	7
752 #endif
753 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
754 
755 	__u8			__pkt_type_offset[0];
756 	__u8			pkt_type:3;
757 	__u8			pfmemalloc:1;
758 	__u8			ignore_df:1;
759 
760 	__u8			nf_trace:1;
761 	__u8			ip_summed:2;
762 	__u8			ooo_okay:1;
763 	__u8			l4_hash:1;
764 	__u8			sw_hash:1;
765 	__u8			wifi_acked_valid:1;
766 	__u8			wifi_acked:1;
767 
768 	__u8			no_fcs:1;
769 	/* Indicates the inner headers are valid in the skbuff. */
770 	__u8			encapsulation:1;
771 	__u8			encap_hdr_csum:1;
772 	__u8			csum_valid:1;
773 	__u8			csum_complete_sw:1;
774 	__u8			csum_level:2;
775 	__u8			csum_not_inet:1;
776 
777 	__u8			dst_pending_confirm:1;
778 #ifdef CONFIG_IPV6_NDISC_NODETYPE
779 	__u8			ndisc_nodetype:2;
780 #endif
781 	__u8			ipvs_property:1;
782 	__u8			inner_protocol_type:1;
783 	__u8			remcsum_offload:1;
784 #ifdef CONFIG_NET_SWITCHDEV
785 	__u8			offload_fwd_mark:1;
786 	__u8			offload_mr_fwd_mark:1;
787 #endif
788 #ifdef CONFIG_NET_CLS_ACT
789 	__u8			tc_skip_classify:1;
790 	__u8			tc_at_ingress:1;
791 	__u8			tc_redirected:1;
792 	__u8			tc_from_ingress:1;
793 #endif
794 
795 #ifdef CONFIG_NET_SCHED
796 	__u16			tc_index;	/* traffic control index */
797 #endif
798 
799 	union {
800 		__wsum		csum;
801 		struct {
802 			__u16	csum_start;
803 			__u16	csum_offset;
804 		};
805 	};
806 	__u32			priority;
807 	int			skb_iif;
808 	__u32			hash;
809 	__be16			vlan_proto;
810 	__u16			vlan_tci;
811 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
812 	union {
813 		unsigned int	napi_id;
814 		unsigned int	sender_cpu;
815 	};
816 #endif
817 #ifdef CONFIG_NETWORK_SECMARK
818 	__u32		secmark;
819 #endif
820 
821 	union {
822 		__u32		mark;
823 		__u32		reserved_tailroom;
824 	};
825 
826 	union {
827 		__be16		inner_protocol;
828 		__u8		inner_ipproto;
829 	};
830 
831 	__u16			inner_transport_header;
832 	__u16			inner_network_header;
833 	__u16			inner_mac_header;
834 
835 	__be16			protocol;
836 	__u16			transport_header;
837 	__u16			network_header;
838 	__u16			mac_header;
839 
840 	/* private: */
841 	__u32			headers_end[0];
842 	/* public: */
843 
844 	/* These elements must be at the end, see alloc_skb() for details.  */
845 	sk_buff_data_t		tail;
846 	sk_buff_data_t		end;
847 	unsigned char		*head,
848 				*data;
849 	unsigned int		truesize;
850 	refcount_t		users;
851 };
852 
853 #ifdef __KERNEL__
854 /*
855  *	Handling routines are only of interest to the kernel
856  */
857 
858 #define SKB_ALLOC_FCLONE	0x01
859 #define SKB_ALLOC_RX		0x02
860 #define SKB_ALLOC_NAPI		0x04
861 
862 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
863 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
864 {
865 	return unlikely(skb->pfmemalloc);
866 }
867 
868 /*
869  * skb might have a dst pointer attached, refcounted or not.
870  * _skb_refdst low order bit is set if refcount was _not_ taken
871  */
872 #define SKB_DST_NOREF	1UL
873 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
874 
875 #define SKB_NFCT_PTRMASK	~(7UL)
876 /**
877  * skb_dst - returns skb dst_entry
878  * @skb: buffer
879  *
880  * Returns skb dst_entry, regardless of reference taken or not.
881  */
882 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
883 {
884 	/* If refdst was not refcounted, check we still are in a
885 	 * rcu_read_lock section
886 	 */
887 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
888 		!rcu_read_lock_held() &&
889 		!rcu_read_lock_bh_held());
890 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
891 }
892 
893 /**
894  * skb_dst_set - sets skb dst
895  * @skb: buffer
896  * @dst: dst entry
897  *
898  * Sets skb dst, assuming a reference was taken on dst and should
899  * be released by skb_dst_drop()
900  */
901 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
902 {
903 	skb->_skb_refdst = (unsigned long)dst;
904 }
905 
906 /**
907  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
908  * @skb: buffer
909  * @dst: dst entry
910  *
911  * Sets skb dst, assuming a reference was not taken on dst.
912  * If dst entry is cached, we do not take reference and dst_release
913  * will be avoided by refdst_drop. If dst entry is not cached, we take
914  * reference, so that last dst_release can destroy the dst immediately.
915  */
916 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
917 {
918 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
919 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
920 }
921 
922 /**
923  * skb_dst_is_noref - Test if skb dst isn't refcounted
924  * @skb: buffer
925  */
926 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
927 {
928 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
929 }
930 
931 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
932 {
933 	return (struct rtable *)skb_dst(skb);
934 }
935 
936 /* For mangling skb->pkt_type from user space side from applications
937  * such as nft, tc, etc, we only allow a conservative subset of
938  * possible pkt_types to be set.
939 */
940 static inline bool skb_pkt_type_ok(u32 ptype)
941 {
942 	return ptype <= PACKET_OTHERHOST;
943 }
944 
945 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
946 {
947 #ifdef CONFIG_NET_RX_BUSY_POLL
948 	return skb->napi_id;
949 #else
950 	return 0;
951 #endif
952 }
953 
954 /* decrement the reference count and return true if we can free the skb */
955 static inline bool skb_unref(struct sk_buff *skb)
956 {
957 	if (unlikely(!skb))
958 		return false;
959 	if (likely(refcount_read(&skb->users) == 1))
960 		smp_rmb();
961 	else if (likely(!refcount_dec_and_test(&skb->users)))
962 		return false;
963 
964 	return true;
965 }
966 
967 void skb_release_head_state(struct sk_buff *skb);
968 void kfree_skb(struct sk_buff *skb);
969 void kfree_skb_list(struct sk_buff *segs);
970 void skb_tx_error(struct sk_buff *skb);
971 void consume_skb(struct sk_buff *skb);
972 void __consume_stateless_skb(struct sk_buff *skb);
973 void  __kfree_skb(struct sk_buff *skb);
974 extern struct kmem_cache *skbuff_head_cache;
975 
976 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
977 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
978 		      bool *fragstolen, int *delta_truesize);
979 
980 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
981 			    int node);
982 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
983 struct sk_buff *build_skb(void *data, unsigned int frag_size);
984 static inline struct sk_buff *alloc_skb(unsigned int size,
985 					gfp_t priority)
986 {
987 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
988 }
989 
990 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
991 				     unsigned long data_len,
992 				     int max_page_order,
993 				     int *errcode,
994 				     gfp_t gfp_mask);
995 
996 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
997 struct sk_buff_fclones {
998 	struct sk_buff	skb1;
999 
1000 	struct sk_buff	skb2;
1001 
1002 	refcount_t	fclone_ref;
1003 };
1004 
1005 /**
1006  *	skb_fclone_busy - check if fclone is busy
1007  *	@sk: socket
1008  *	@skb: buffer
1009  *
1010  * Returns true if skb is a fast clone, and its clone is not freed.
1011  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1012  * so we also check that this didnt happen.
1013  */
1014 static inline bool skb_fclone_busy(const struct sock *sk,
1015 				   const struct sk_buff *skb)
1016 {
1017 	const struct sk_buff_fclones *fclones;
1018 
1019 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1020 
1021 	return skb->fclone == SKB_FCLONE_ORIG &&
1022 	       refcount_read(&fclones->fclone_ref) > 1 &&
1023 	       fclones->skb2.sk == sk;
1024 }
1025 
1026 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1027 					       gfp_t priority)
1028 {
1029 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1030 }
1031 
1032 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1033 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1034 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1035 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1036 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1037 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1038 				   gfp_t gfp_mask, bool fclone);
1039 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1040 					  gfp_t gfp_mask)
1041 {
1042 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1043 }
1044 
1045 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1046 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1047 				     unsigned int headroom);
1048 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1049 				int newtailroom, gfp_t priority);
1050 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1051 				     int offset, int len);
1052 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1053 			      int offset, int len);
1054 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1055 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1056 
1057 /**
1058  *	skb_pad			-	zero pad the tail of an skb
1059  *	@skb: buffer to pad
1060  *	@pad: space to pad
1061  *
1062  *	Ensure that a buffer is followed by a padding area that is zero
1063  *	filled. Used by network drivers which may DMA or transfer data
1064  *	beyond the buffer end onto the wire.
1065  *
1066  *	May return error in out of memory cases. The skb is freed on error.
1067  */
1068 static inline int skb_pad(struct sk_buff *skb, int pad)
1069 {
1070 	return __skb_pad(skb, pad, true);
1071 }
1072 #define dev_kfree_skb(a)	consume_skb(a)
1073 
1074 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1075 			    int getfrag(void *from, char *to, int offset,
1076 					int len, int odd, struct sk_buff *skb),
1077 			    void *from, int length);
1078 
1079 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1080 			 int offset, size_t size);
1081 
1082 struct skb_seq_state {
1083 	__u32		lower_offset;
1084 	__u32		upper_offset;
1085 	__u32		frag_idx;
1086 	__u32		stepped_offset;
1087 	struct sk_buff	*root_skb;
1088 	struct sk_buff	*cur_skb;
1089 	__u8		*frag_data;
1090 };
1091 
1092 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1093 			  unsigned int to, struct skb_seq_state *st);
1094 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1095 			  struct skb_seq_state *st);
1096 void skb_abort_seq_read(struct skb_seq_state *st);
1097 
1098 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1099 			   unsigned int to, struct ts_config *config);
1100 
1101 /*
1102  * Packet hash types specify the type of hash in skb_set_hash.
1103  *
1104  * Hash types refer to the protocol layer addresses which are used to
1105  * construct a packet's hash. The hashes are used to differentiate or identify
1106  * flows of the protocol layer for the hash type. Hash types are either
1107  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1108  *
1109  * Properties of hashes:
1110  *
1111  * 1) Two packets in different flows have different hash values
1112  * 2) Two packets in the same flow should have the same hash value
1113  *
1114  * A hash at a higher layer is considered to be more specific. A driver should
1115  * set the most specific hash possible.
1116  *
1117  * A driver cannot indicate a more specific hash than the layer at which a hash
1118  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1119  *
1120  * A driver may indicate a hash level which is less specific than the
1121  * actual layer the hash was computed on. For instance, a hash computed
1122  * at L4 may be considered an L3 hash. This should only be done if the
1123  * driver can't unambiguously determine that the HW computed the hash at
1124  * the higher layer. Note that the "should" in the second property above
1125  * permits this.
1126  */
1127 enum pkt_hash_types {
1128 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1129 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1130 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1131 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1132 };
1133 
1134 static inline void skb_clear_hash(struct sk_buff *skb)
1135 {
1136 	skb->hash = 0;
1137 	skb->sw_hash = 0;
1138 	skb->l4_hash = 0;
1139 }
1140 
1141 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1142 {
1143 	if (!skb->l4_hash)
1144 		skb_clear_hash(skb);
1145 }
1146 
1147 static inline void
1148 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1149 {
1150 	skb->l4_hash = is_l4;
1151 	skb->sw_hash = is_sw;
1152 	skb->hash = hash;
1153 }
1154 
1155 static inline void
1156 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1157 {
1158 	/* Used by drivers to set hash from HW */
1159 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1160 }
1161 
1162 static inline void
1163 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1164 {
1165 	__skb_set_hash(skb, hash, true, is_l4);
1166 }
1167 
1168 void __skb_get_hash(struct sk_buff *skb);
1169 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1170 u32 skb_get_poff(const struct sk_buff *skb);
1171 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1172 		   const struct flow_keys_basic *keys, int hlen);
1173 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1174 			    void *data, int hlen_proto);
1175 
1176 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1177 					int thoff, u8 ip_proto)
1178 {
1179 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1180 }
1181 
1182 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1183 			     const struct flow_dissector_key *key,
1184 			     unsigned int key_count);
1185 
1186 bool __skb_flow_dissect(const struct sk_buff *skb,
1187 			struct flow_dissector *flow_dissector,
1188 			void *target_container,
1189 			void *data, __be16 proto, int nhoff, int hlen,
1190 			unsigned int flags);
1191 
1192 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1193 				    struct flow_dissector *flow_dissector,
1194 				    void *target_container, unsigned int flags)
1195 {
1196 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1197 				  NULL, 0, 0, 0, flags);
1198 }
1199 
1200 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1201 					      struct flow_keys *flow,
1202 					      unsigned int flags)
1203 {
1204 	memset(flow, 0, sizeof(*flow));
1205 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1206 				  NULL, 0, 0, 0, flags);
1207 }
1208 
1209 static inline bool
1210 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1211 				 struct flow_keys_basic *flow, void *data,
1212 				 __be16 proto, int nhoff, int hlen,
1213 				 unsigned int flags)
1214 {
1215 	memset(flow, 0, sizeof(*flow));
1216 	return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
1217 				  data, proto, nhoff, hlen, flags);
1218 }
1219 
1220 void
1221 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1222 			     struct flow_dissector *flow_dissector,
1223 			     void *target_container);
1224 
1225 static inline __u32 skb_get_hash(struct sk_buff *skb)
1226 {
1227 	if (!skb->l4_hash && !skb->sw_hash)
1228 		__skb_get_hash(skb);
1229 
1230 	return skb->hash;
1231 }
1232 
1233 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1234 {
1235 	if (!skb->l4_hash && !skb->sw_hash) {
1236 		struct flow_keys keys;
1237 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1238 
1239 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1240 	}
1241 
1242 	return skb->hash;
1243 }
1244 
1245 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1246 
1247 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1248 {
1249 	return skb->hash;
1250 }
1251 
1252 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1253 {
1254 	to->hash = from->hash;
1255 	to->sw_hash = from->sw_hash;
1256 	to->l4_hash = from->l4_hash;
1257 };
1258 
1259 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1260 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1261 {
1262 	return skb->head + skb->end;
1263 }
1264 
1265 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1266 {
1267 	return skb->end;
1268 }
1269 #else
1270 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1271 {
1272 	return skb->end;
1273 }
1274 
1275 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1276 {
1277 	return skb->end - skb->head;
1278 }
1279 #endif
1280 
1281 /* Internal */
1282 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1283 
1284 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1285 {
1286 	return &skb_shinfo(skb)->hwtstamps;
1287 }
1288 
1289 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1290 {
1291 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1292 
1293 	return is_zcopy ? skb_uarg(skb) : NULL;
1294 }
1295 
1296 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1297 {
1298 	if (skb && uarg && !skb_zcopy(skb)) {
1299 		sock_zerocopy_get(uarg);
1300 		skb_shinfo(skb)->destructor_arg = uarg;
1301 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1302 	}
1303 }
1304 
1305 /* Release a reference on a zerocopy structure */
1306 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1307 {
1308 	struct ubuf_info *uarg = skb_zcopy(skb);
1309 
1310 	if (uarg) {
1311 		if (uarg->callback == sock_zerocopy_callback) {
1312 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1313 			sock_zerocopy_put(uarg);
1314 		} else {
1315 			uarg->callback(uarg, zerocopy);
1316 		}
1317 
1318 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1319 	}
1320 }
1321 
1322 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1323 static inline void skb_zcopy_abort(struct sk_buff *skb)
1324 {
1325 	struct ubuf_info *uarg = skb_zcopy(skb);
1326 
1327 	if (uarg) {
1328 		sock_zerocopy_put_abort(uarg);
1329 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1330 	}
1331 }
1332 
1333 /**
1334  *	skb_queue_empty - check if a queue is empty
1335  *	@list: queue head
1336  *
1337  *	Returns true if the queue is empty, false otherwise.
1338  */
1339 static inline int skb_queue_empty(const struct sk_buff_head *list)
1340 {
1341 	return list->next == (const struct sk_buff *) list;
1342 }
1343 
1344 /**
1345  *	skb_queue_is_last - check if skb is the last entry in the queue
1346  *	@list: queue head
1347  *	@skb: buffer
1348  *
1349  *	Returns true if @skb is the last buffer on the list.
1350  */
1351 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1352 				     const struct sk_buff *skb)
1353 {
1354 	return skb->next == (const struct sk_buff *) list;
1355 }
1356 
1357 /**
1358  *	skb_queue_is_first - check if skb is the first entry in the queue
1359  *	@list: queue head
1360  *	@skb: buffer
1361  *
1362  *	Returns true if @skb is the first buffer on the list.
1363  */
1364 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1365 				      const struct sk_buff *skb)
1366 {
1367 	return skb->prev == (const struct sk_buff *) list;
1368 }
1369 
1370 /**
1371  *	skb_queue_next - return the next packet in the queue
1372  *	@list: queue head
1373  *	@skb: current buffer
1374  *
1375  *	Return the next packet in @list after @skb.  It is only valid to
1376  *	call this if skb_queue_is_last() evaluates to false.
1377  */
1378 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1379 					     const struct sk_buff *skb)
1380 {
1381 	/* This BUG_ON may seem severe, but if we just return then we
1382 	 * are going to dereference garbage.
1383 	 */
1384 	BUG_ON(skb_queue_is_last(list, skb));
1385 	return skb->next;
1386 }
1387 
1388 /**
1389  *	skb_queue_prev - return the prev packet in the queue
1390  *	@list: queue head
1391  *	@skb: current buffer
1392  *
1393  *	Return the prev packet in @list before @skb.  It is only valid to
1394  *	call this if skb_queue_is_first() evaluates to false.
1395  */
1396 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1397 					     const struct sk_buff *skb)
1398 {
1399 	/* This BUG_ON may seem severe, but if we just return then we
1400 	 * are going to dereference garbage.
1401 	 */
1402 	BUG_ON(skb_queue_is_first(list, skb));
1403 	return skb->prev;
1404 }
1405 
1406 /**
1407  *	skb_get - reference buffer
1408  *	@skb: buffer to reference
1409  *
1410  *	Makes another reference to a socket buffer and returns a pointer
1411  *	to the buffer.
1412  */
1413 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1414 {
1415 	refcount_inc(&skb->users);
1416 	return skb;
1417 }
1418 
1419 /*
1420  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1421  */
1422 
1423 /**
1424  *	skb_cloned - is the buffer a clone
1425  *	@skb: buffer to check
1426  *
1427  *	Returns true if the buffer was generated with skb_clone() and is
1428  *	one of multiple shared copies of the buffer. Cloned buffers are
1429  *	shared data so must not be written to under normal circumstances.
1430  */
1431 static inline int skb_cloned(const struct sk_buff *skb)
1432 {
1433 	return skb->cloned &&
1434 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1435 }
1436 
1437 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1438 {
1439 	might_sleep_if(gfpflags_allow_blocking(pri));
1440 
1441 	if (skb_cloned(skb))
1442 		return pskb_expand_head(skb, 0, 0, pri);
1443 
1444 	return 0;
1445 }
1446 
1447 /**
1448  *	skb_header_cloned - is the header a clone
1449  *	@skb: buffer to check
1450  *
1451  *	Returns true if modifying the header part of the buffer requires
1452  *	the data to be copied.
1453  */
1454 static inline int skb_header_cloned(const struct sk_buff *skb)
1455 {
1456 	int dataref;
1457 
1458 	if (!skb->cloned)
1459 		return 0;
1460 
1461 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1462 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1463 	return dataref != 1;
1464 }
1465 
1466 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1467 {
1468 	might_sleep_if(gfpflags_allow_blocking(pri));
1469 
1470 	if (skb_header_cloned(skb))
1471 		return pskb_expand_head(skb, 0, 0, pri);
1472 
1473 	return 0;
1474 }
1475 
1476 /**
1477  *	__skb_header_release - release reference to header
1478  *	@skb: buffer to operate on
1479  */
1480 static inline void __skb_header_release(struct sk_buff *skb)
1481 {
1482 	skb->nohdr = 1;
1483 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1484 }
1485 
1486 
1487 /**
1488  *	skb_shared - is the buffer shared
1489  *	@skb: buffer to check
1490  *
1491  *	Returns true if more than one person has a reference to this
1492  *	buffer.
1493  */
1494 static inline int skb_shared(const struct sk_buff *skb)
1495 {
1496 	return refcount_read(&skb->users) != 1;
1497 }
1498 
1499 /**
1500  *	skb_share_check - check if buffer is shared and if so clone it
1501  *	@skb: buffer to check
1502  *	@pri: priority for memory allocation
1503  *
1504  *	If the buffer is shared the buffer is cloned and the old copy
1505  *	drops a reference. A new clone with a single reference is returned.
1506  *	If the buffer is not shared the original buffer is returned. When
1507  *	being called from interrupt status or with spinlocks held pri must
1508  *	be GFP_ATOMIC.
1509  *
1510  *	NULL is returned on a memory allocation failure.
1511  */
1512 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1513 {
1514 	might_sleep_if(gfpflags_allow_blocking(pri));
1515 	if (skb_shared(skb)) {
1516 		struct sk_buff *nskb = skb_clone(skb, pri);
1517 
1518 		if (likely(nskb))
1519 			consume_skb(skb);
1520 		else
1521 			kfree_skb(skb);
1522 		skb = nskb;
1523 	}
1524 	return skb;
1525 }
1526 
1527 /*
1528  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1529  *	packets to handle cases where we have a local reader and forward
1530  *	and a couple of other messy ones. The normal one is tcpdumping
1531  *	a packet thats being forwarded.
1532  */
1533 
1534 /**
1535  *	skb_unshare - make a copy of a shared buffer
1536  *	@skb: buffer to check
1537  *	@pri: priority for memory allocation
1538  *
1539  *	If the socket buffer is a clone then this function creates a new
1540  *	copy of the data, drops a reference count on the old copy and returns
1541  *	the new copy with the reference count at 1. If the buffer is not a clone
1542  *	the original buffer is returned. When called with a spinlock held or
1543  *	from interrupt state @pri must be %GFP_ATOMIC
1544  *
1545  *	%NULL is returned on a memory allocation failure.
1546  */
1547 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1548 					  gfp_t pri)
1549 {
1550 	might_sleep_if(gfpflags_allow_blocking(pri));
1551 	if (skb_cloned(skb)) {
1552 		struct sk_buff *nskb = skb_copy(skb, pri);
1553 
1554 		/* Free our shared copy */
1555 		if (likely(nskb))
1556 			consume_skb(skb);
1557 		else
1558 			kfree_skb(skb);
1559 		skb = nskb;
1560 	}
1561 	return skb;
1562 }
1563 
1564 /**
1565  *	skb_peek - peek at the head of an &sk_buff_head
1566  *	@list_: list to peek at
1567  *
1568  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1569  *	be careful with this one. A peek leaves the buffer on the
1570  *	list and someone else may run off with it. You must hold
1571  *	the appropriate locks or have a private queue to do this.
1572  *
1573  *	Returns %NULL for an empty list or a pointer to the head element.
1574  *	The reference count is not incremented and the reference is therefore
1575  *	volatile. Use with caution.
1576  */
1577 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1578 {
1579 	struct sk_buff *skb = list_->next;
1580 
1581 	if (skb == (struct sk_buff *)list_)
1582 		skb = NULL;
1583 	return skb;
1584 }
1585 
1586 /**
1587  *	skb_peek_next - peek skb following the given one from a queue
1588  *	@skb: skb to start from
1589  *	@list_: list to peek at
1590  *
1591  *	Returns %NULL when the end of the list is met or a pointer to the
1592  *	next element. The reference count is not incremented and the
1593  *	reference is therefore volatile. Use with caution.
1594  */
1595 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1596 		const struct sk_buff_head *list_)
1597 {
1598 	struct sk_buff *next = skb->next;
1599 
1600 	if (next == (struct sk_buff *)list_)
1601 		next = NULL;
1602 	return next;
1603 }
1604 
1605 /**
1606  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1607  *	@list_: list to peek at
1608  *
1609  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1610  *	be careful with this one. A peek leaves the buffer on the
1611  *	list and someone else may run off with it. You must hold
1612  *	the appropriate locks or have a private queue to do this.
1613  *
1614  *	Returns %NULL for an empty list or a pointer to the tail element.
1615  *	The reference count is not incremented and the reference is therefore
1616  *	volatile. Use with caution.
1617  */
1618 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1619 {
1620 	struct sk_buff *skb = list_->prev;
1621 
1622 	if (skb == (struct sk_buff *)list_)
1623 		skb = NULL;
1624 	return skb;
1625 
1626 }
1627 
1628 /**
1629  *	skb_queue_len	- get queue length
1630  *	@list_: list to measure
1631  *
1632  *	Return the length of an &sk_buff queue.
1633  */
1634 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1635 {
1636 	return list_->qlen;
1637 }
1638 
1639 /**
1640  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1641  *	@list: queue to initialize
1642  *
1643  *	This initializes only the list and queue length aspects of
1644  *	an sk_buff_head object.  This allows to initialize the list
1645  *	aspects of an sk_buff_head without reinitializing things like
1646  *	the spinlock.  It can also be used for on-stack sk_buff_head
1647  *	objects where the spinlock is known to not be used.
1648  */
1649 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1650 {
1651 	list->prev = list->next = (struct sk_buff *)list;
1652 	list->qlen = 0;
1653 }
1654 
1655 /*
1656  * This function creates a split out lock class for each invocation;
1657  * this is needed for now since a whole lot of users of the skb-queue
1658  * infrastructure in drivers have different locking usage (in hardirq)
1659  * than the networking core (in softirq only). In the long run either the
1660  * network layer or drivers should need annotation to consolidate the
1661  * main types of usage into 3 classes.
1662  */
1663 static inline void skb_queue_head_init(struct sk_buff_head *list)
1664 {
1665 	spin_lock_init(&list->lock);
1666 	__skb_queue_head_init(list);
1667 }
1668 
1669 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1670 		struct lock_class_key *class)
1671 {
1672 	skb_queue_head_init(list);
1673 	lockdep_set_class(&list->lock, class);
1674 }
1675 
1676 /*
1677  *	Insert an sk_buff on a list.
1678  *
1679  *	The "__skb_xxxx()" functions are the non-atomic ones that
1680  *	can only be called with interrupts disabled.
1681  */
1682 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1683 		struct sk_buff_head *list);
1684 static inline void __skb_insert(struct sk_buff *newsk,
1685 				struct sk_buff *prev, struct sk_buff *next,
1686 				struct sk_buff_head *list)
1687 {
1688 	newsk->next = next;
1689 	newsk->prev = prev;
1690 	next->prev  = prev->next = newsk;
1691 	list->qlen++;
1692 }
1693 
1694 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1695 				      struct sk_buff *prev,
1696 				      struct sk_buff *next)
1697 {
1698 	struct sk_buff *first = list->next;
1699 	struct sk_buff *last = list->prev;
1700 
1701 	first->prev = prev;
1702 	prev->next = first;
1703 
1704 	last->next = next;
1705 	next->prev = last;
1706 }
1707 
1708 /**
1709  *	skb_queue_splice - join two skb lists, this is designed for stacks
1710  *	@list: the new list to add
1711  *	@head: the place to add it in the first list
1712  */
1713 static inline void skb_queue_splice(const struct sk_buff_head *list,
1714 				    struct sk_buff_head *head)
1715 {
1716 	if (!skb_queue_empty(list)) {
1717 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1718 		head->qlen += list->qlen;
1719 	}
1720 }
1721 
1722 /**
1723  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1724  *	@list: the new list to add
1725  *	@head: the place to add it in the first list
1726  *
1727  *	The list at @list is reinitialised
1728  */
1729 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1730 					 struct sk_buff_head *head)
1731 {
1732 	if (!skb_queue_empty(list)) {
1733 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1734 		head->qlen += list->qlen;
1735 		__skb_queue_head_init(list);
1736 	}
1737 }
1738 
1739 /**
1740  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1741  *	@list: the new list to add
1742  *	@head: the place to add it in the first list
1743  */
1744 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1745 					 struct sk_buff_head *head)
1746 {
1747 	if (!skb_queue_empty(list)) {
1748 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1749 		head->qlen += list->qlen;
1750 	}
1751 }
1752 
1753 /**
1754  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1755  *	@list: the new list to add
1756  *	@head: the place to add it in the first list
1757  *
1758  *	Each of the lists is a queue.
1759  *	The list at @list is reinitialised
1760  */
1761 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1762 					      struct sk_buff_head *head)
1763 {
1764 	if (!skb_queue_empty(list)) {
1765 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1766 		head->qlen += list->qlen;
1767 		__skb_queue_head_init(list);
1768 	}
1769 }
1770 
1771 /**
1772  *	__skb_queue_after - queue a buffer at the list head
1773  *	@list: list to use
1774  *	@prev: place after this buffer
1775  *	@newsk: buffer to queue
1776  *
1777  *	Queue a buffer int the middle of a list. This function takes no locks
1778  *	and you must therefore hold required locks before calling it.
1779  *
1780  *	A buffer cannot be placed on two lists at the same time.
1781  */
1782 static inline void __skb_queue_after(struct sk_buff_head *list,
1783 				     struct sk_buff *prev,
1784 				     struct sk_buff *newsk)
1785 {
1786 	__skb_insert(newsk, prev, prev->next, list);
1787 }
1788 
1789 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1790 		struct sk_buff_head *list);
1791 
1792 static inline void __skb_queue_before(struct sk_buff_head *list,
1793 				      struct sk_buff *next,
1794 				      struct sk_buff *newsk)
1795 {
1796 	__skb_insert(newsk, next->prev, next, list);
1797 }
1798 
1799 /**
1800  *	__skb_queue_head - queue a buffer at the list head
1801  *	@list: list to use
1802  *	@newsk: buffer to queue
1803  *
1804  *	Queue a buffer at the start of a list. This function takes no locks
1805  *	and you must therefore hold required locks before calling it.
1806  *
1807  *	A buffer cannot be placed on two lists at the same time.
1808  */
1809 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1810 static inline void __skb_queue_head(struct sk_buff_head *list,
1811 				    struct sk_buff *newsk)
1812 {
1813 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1814 }
1815 
1816 /**
1817  *	__skb_queue_tail - queue a buffer at the list tail
1818  *	@list: list to use
1819  *	@newsk: buffer to queue
1820  *
1821  *	Queue a buffer at the end of a list. This function takes no locks
1822  *	and you must therefore hold required locks before calling it.
1823  *
1824  *	A buffer cannot be placed on two lists at the same time.
1825  */
1826 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1827 static inline void __skb_queue_tail(struct sk_buff_head *list,
1828 				   struct sk_buff *newsk)
1829 {
1830 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1831 }
1832 
1833 /*
1834  * remove sk_buff from list. _Must_ be called atomically, and with
1835  * the list known..
1836  */
1837 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1838 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1839 {
1840 	struct sk_buff *next, *prev;
1841 
1842 	list->qlen--;
1843 	next	   = skb->next;
1844 	prev	   = skb->prev;
1845 	skb->next  = skb->prev = NULL;
1846 	next->prev = prev;
1847 	prev->next = next;
1848 }
1849 
1850 /**
1851  *	__skb_dequeue - remove from the head of the queue
1852  *	@list: list to dequeue from
1853  *
1854  *	Remove the head of the list. This function does not take any locks
1855  *	so must be used with appropriate locks held only. The head item is
1856  *	returned or %NULL if the list is empty.
1857  */
1858 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1859 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1860 {
1861 	struct sk_buff *skb = skb_peek(list);
1862 	if (skb)
1863 		__skb_unlink(skb, list);
1864 	return skb;
1865 }
1866 
1867 /**
1868  *	__skb_dequeue_tail - remove from the tail of the queue
1869  *	@list: list to dequeue from
1870  *
1871  *	Remove the tail of the list. This function does not take any locks
1872  *	so must be used with appropriate locks held only. The tail item is
1873  *	returned or %NULL if the list is empty.
1874  */
1875 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1876 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1877 {
1878 	struct sk_buff *skb = skb_peek_tail(list);
1879 	if (skb)
1880 		__skb_unlink(skb, list);
1881 	return skb;
1882 }
1883 
1884 
1885 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1886 {
1887 	return skb->data_len;
1888 }
1889 
1890 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1891 {
1892 	return skb->len - skb->data_len;
1893 }
1894 
1895 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1896 {
1897 	unsigned int i, len = 0;
1898 
1899 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1900 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1901 	return len;
1902 }
1903 
1904 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1905 {
1906 	return skb_headlen(skb) + __skb_pagelen(skb);
1907 }
1908 
1909 /**
1910  * __skb_fill_page_desc - initialise a paged fragment in an skb
1911  * @skb: buffer containing fragment to be initialised
1912  * @i: paged fragment index to initialise
1913  * @page: the page to use for this fragment
1914  * @off: the offset to the data with @page
1915  * @size: the length of the data
1916  *
1917  * Initialises the @i'th fragment of @skb to point to &size bytes at
1918  * offset @off within @page.
1919  *
1920  * Does not take any additional reference on the fragment.
1921  */
1922 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1923 					struct page *page, int off, int size)
1924 {
1925 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1926 
1927 	/*
1928 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1929 	 * that not all callers have unique ownership of the page but rely
1930 	 * on page_is_pfmemalloc doing the right thing(tm).
1931 	 */
1932 	frag->page.p		  = page;
1933 	frag->page_offset	  = off;
1934 	skb_frag_size_set(frag, size);
1935 
1936 	page = compound_head(page);
1937 	if (page_is_pfmemalloc(page))
1938 		skb->pfmemalloc	= true;
1939 }
1940 
1941 /**
1942  * skb_fill_page_desc - initialise a paged fragment in an skb
1943  * @skb: buffer containing fragment to be initialised
1944  * @i: paged fragment index to initialise
1945  * @page: the page to use for this fragment
1946  * @off: the offset to the data with @page
1947  * @size: the length of the data
1948  *
1949  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1950  * @skb to point to @size bytes at offset @off within @page. In
1951  * addition updates @skb such that @i is the last fragment.
1952  *
1953  * Does not take any additional reference on the fragment.
1954  */
1955 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1956 				      struct page *page, int off, int size)
1957 {
1958 	__skb_fill_page_desc(skb, i, page, off, size);
1959 	skb_shinfo(skb)->nr_frags = i + 1;
1960 }
1961 
1962 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1963 		     int size, unsigned int truesize);
1964 
1965 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1966 			  unsigned int truesize);
1967 
1968 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1969 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1970 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1971 
1972 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1973 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1974 {
1975 	return skb->head + skb->tail;
1976 }
1977 
1978 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1979 {
1980 	skb->tail = skb->data - skb->head;
1981 }
1982 
1983 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1984 {
1985 	skb_reset_tail_pointer(skb);
1986 	skb->tail += offset;
1987 }
1988 
1989 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1990 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1991 {
1992 	return skb->tail;
1993 }
1994 
1995 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1996 {
1997 	skb->tail = skb->data;
1998 }
1999 
2000 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2001 {
2002 	skb->tail = skb->data + offset;
2003 }
2004 
2005 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2006 
2007 /*
2008  *	Add data to an sk_buff
2009  */
2010 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2011 void *skb_put(struct sk_buff *skb, unsigned int len);
2012 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2013 {
2014 	void *tmp = skb_tail_pointer(skb);
2015 	SKB_LINEAR_ASSERT(skb);
2016 	skb->tail += len;
2017 	skb->len  += len;
2018 	return tmp;
2019 }
2020 
2021 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2022 {
2023 	void *tmp = __skb_put(skb, len);
2024 
2025 	memset(tmp, 0, len);
2026 	return tmp;
2027 }
2028 
2029 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2030 				   unsigned int len)
2031 {
2032 	void *tmp = __skb_put(skb, len);
2033 
2034 	memcpy(tmp, data, len);
2035 	return tmp;
2036 }
2037 
2038 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2039 {
2040 	*(u8 *)__skb_put(skb, 1) = val;
2041 }
2042 
2043 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2044 {
2045 	void *tmp = skb_put(skb, len);
2046 
2047 	memset(tmp, 0, len);
2048 
2049 	return tmp;
2050 }
2051 
2052 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2053 				 unsigned int len)
2054 {
2055 	void *tmp = skb_put(skb, len);
2056 
2057 	memcpy(tmp, data, len);
2058 
2059 	return tmp;
2060 }
2061 
2062 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2063 {
2064 	*(u8 *)skb_put(skb, 1) = val;
2065 }
2066 
2067 void *skb_push(struct sk_buff *skb, unsigned int len);
2068 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2069 {
2070 	skb->data -= len;
2071 	skb->len  += len;
2072 	return skb->data;
2073 }
2074 
2075 void *skb_pull(struct sk_buff *skb, unsigned int len);
2076 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2077 {
2078 	skb->len -= len;
2079 	BUG_ON(skb->len < skb->data_len);
2080 	return skb->data += len;
2081 }
2082 
2083 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2084 {
2085 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2086 }
2087 
2088 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2089 
2090 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2091 {
2092 	if (len > skb_headlen(skb) &&
2093 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2094 		return NULL;
2095 	skb->len -= len;
2096 	return skb->data += len;
2097 }
2098 
2099 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2100 {
2101 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2102 }
2103 
2104 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2105 {
2106 	if (likely(len <= skb_headlen(skb)))
2107 		return 1;
2108 	if (unlikely(len > skb->len))
2109 		return 0;
2110 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2111 }
2112 
2113 void skb_condense(struct sk_buff *skb);
2114 
2115 /**
2116  *	skb_headroom - bytes at buffer head
2117  *	@skb: buffer to check
2118  *
2119  *	Return the number of bytes of free space at the head of an &sk_buff.
2120  */
2121 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2122 {
2123 	return skb->data - skb->head;
2124 }
2125 
2126 /**
2127  *	skb_tailroom - bytes at buffer end
2128  *	@skb: buffer to check
2129  *
2130  *	Return the number of bytes of free space at the tail of an sk_buff
2131  */
2132 static inline int skb_tailroom(const struct sk_buff *skb)
2133 {
2134 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2135 }
2136 
2137 /**
2138  *	skb_availroom - bytes at buffer end
2139  *	@skb: buffer to check
2140  *
2141  *	Return the number of bytes of free space at the tail of an sk_buff
2142  *	allocated by sk_stream_alloc()
2143  */
2144 static inline int skb_availroom(const struct sk_buff *skb)
2145 {
2146 	if (skb_is_nonlinear(skb))
2147 		return 0;
2148 
2149 	return skb->end - skb->tail - skb->reserved_tailroom;
2150 }
2151 
2152 /**
2153  *	skb_reserve - adjust headroom
2154  *	@skb: buffer to alter
2155  *	@len: bytes to move
2156  *
2157  *	Increase the headroom of an empty &sk_buff by reducing the tail
2158  *	room. This is only allowed for an empty buffer.
2159  */
2160 static inline void skb_reserve(struct sk_buff *skb, int len)
2161 {
2162 	skb->data += len;
2163 	skb->tail += len;
2164 }
2165 
2166 /**
2167  *	skb_tailroom_reserve - adjust reserved_tailroom
2168  *	@skb: buffer to alter
2169  *	@mtu: maximum amount of headlen permitted
2170  *	@needed_tailroom: minimum amount of reserved_tailroom
2171  *
2172  *	Set reserved_tailroom so that headlen can be as large as possible but
2173  *	not larger than mtu and tailroom cannot be smaller than
2174  *	needed_tailroom.
2175  *	The required headroom should already have been reserved before using
2176  *	this function.
2177  */
2178 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2179 					unsigned int needed_tailroom)
2180 {
2181 	SKB_LINEAR_ASSERT(skb);
2182 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2183 		/* use at most mtu */
2184 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2185 	else
2186 		/* use up to all available space */
2187 		skb->reserved_tailroom = needed_tailroom;
2188 }
2189 
2190 #define ENCAP_TYPE_ETHER	0
2191 #define ENCAP_TYPE_IPPROTO	1
2192 
2193 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2194 					  __be16 protocol)
2195 {
2196 	skb->inner_protocol = protocol;
2197 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2198 }
2199 
2200 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2201 					 __u8 ipproto)
2202 {
2203 	skb->inner_ipproto = ipproto;
2204 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2205 }
2206 
2207 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2208 {
2209 	skb->inner_mac_header = skb->mac_header;
2210 	skb->inner_network_header = skb->network_header;
2211 	skb->inner_transport_header = skb->transport_header;
2212 }
2213 
2214 static inline void skb_reset_mac_len(struct sk_buff *skb)
2215 {
2216 	skb->mac_len = skb->network_header - skb->mac_header;
2217 }
2218 
2219 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2220 							*skb)
2221 {
2222 	return skb->head + skb->inner_transport_header;
2223 }
2224 
2225 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2226 {
2227 	return skb_inner_transport_header(skb) - skb->data;
2228 }
2229 
2230 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2231 {
2232 	skb->inner_transport_header = skb->data - skb->head;
2233 }
2234 
2235 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2236 						   const int offset)
2237 {
2238 	skb_reset_inner_transport_header(skb);
2239 	skb->inner_transport_header += offset;
2240 }
2241 
2242 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2243 {
2244 	return skb->head + skb->inner_network_header;
2245 }
2246 
2247 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2248 {
2249 	skb->inner_network_header = skb->data - skb->head;
2250 }
2251 
2252 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2253 						const int offset)
2254 {
2255 	skb_reset_inner_network_header(skb);
2256 	skb->inner_network_header += offset;
2257 }
2258 
2259 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2260 {
2261 	return skb->head + skb->inner_mac_header;
2262 }
2263 
2264 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2265 {
2266 	skb->inner_mac_header = skb->data - skb->head;
2267 }
2268 
2269 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2270 					    const int offset)
2271 {
2272 	skb_reset_inner_mac_header(skb);
2273 	skb->inner_mac_header += offset;
2274 }
2275 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2276 {
2277 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2278 }
2279 
2280 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2281 {
2282 	return skb->head + skb->transport_header;
2283 }
2284 
2285 static inline void skb_reset_transport_header(struct sk_buff *skb)
2286 {
2287 	skb->transport_header = skb->data - skb->head;
2288 }
2289 
2290 static inline void skb_set_transport_header(struct sk_buff *skb,
2291 					    const int offset)
2292 {
2293 	skb_reset_transport_header(skb);
2294 	skb->transport_header += offset;
2295 }
2296 
2297 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2298 {
2299 	return skb->head + skb->network_header;
2300 }
2301 
2302 static inline void skb_reset_network_header(struct sk_buff *skb)
2303 {
2304 	skb->network_header = skb->data - skb->head;
2305 }
2306 
2307 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2308 {
2309 	skb_reset_network_header(skb);
2310 	skb->network_header += offset;
2311 }
2312 
2313 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2314 {
2315 	return skb->head + skb->mac_header;
2316 }
2317 
2318 static inline int skb_mac_offset(const struct sk_buff *skb)
2319 {
2320 	return skb_mac_header(skb) - skb->data;
2321 }
2322 
2323 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2324 {
2325 	return skb->network_header - skb->mac_header;
2326 }
2327 
2328 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2329 {
2330 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2331 }
2332 
2333 static inline void skb_reset_mac_header(struct sk_buff *skb)
2334 {
2335 	skb->mac_header = skb->data - skb->head;
2336 }
2337 
2338 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2339 {
2340 	skb_reset_mac_header(skb);
2341 	skb->mac_header += offset;
2342 }
2343 
2344 static inline void skb_pop_mac_header(struct sk_buff *skb)
2345 {
2346 	skb->mac_header = skb->network_header;
2347 }
2348 
2349 static inline void skb_probe_transport_header(struct sk_buff *skb,
2350 					      const int offset_hint)
2351 {
2352 	struct flow_keys_basic keys;
2353 
2354 	if (skb_transport_header_was_set(skb))
2355 		return;
2356 
2357 	if (skb_flow_dissect_flow_keys_basic(skb, &keys, 0, 0, 0, 0, 0))
2358 		skb_set_transport_header(skb, keys.control.thoff);
2359 	else
2360 		skb_set_transport_header(skb, offset_hint);
2361 }
2362 
2363 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2364 {
2365 	if (skb_mac_header_was_set(skb)) {
2366 		const unsigned char *old_mac = skb_mac_header(skb);
2367 
2368 		skb_set_mac_header(skb, -skb->mac_len);
2369 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2370 	}
2371 }
2372 
2373 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2374 {
2375 	return skb->csum_start - skb_headroom(skb);
2376 }
2377 
2378 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2379 {
2380 	return skb->head + skb->csum_start;
2381 }
2382 
2383 static inline int skb_transport_offset(const struct sk_buff *skb)
2384 {
2385 	return skb_transport_header(skb) - skb->data;
2386 }
2387 
2388 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2389 {
2390 	return skb->transport_header - skb->network_header;
2391 }
2392 
2393 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2394 {
2395 	return skb->inner_transport_header - skb->inner_network_header;
2396 }
2397 
2398 static inline int skb_network_offset(const struct sk_buff *skb)
2399 {
2400 	return skb_network_header(skb) - skb->data;
2401 }
2402 
2403 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2404 {
2405 	return skb_inner_network_header(skb) - skb->data;
2406 }
2407 
2408 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2409 {
2410 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2411 }
2412 
2413 /*
2414  * CPUs often take a performance hit when accessing unaligned memory
2415  * locations. The actual performance hit varies, it can be small if the
2416  * hardware handles it or large if we have to take an exception and fix it
2417  * in software.
2418  *
2419  * Since an ethernet header is 14 bytes network drivers often end up with
2420  * the IP header at an unaligned offset. The IP header can be aligned by
2421  * shifting the start of the packet by 2 bytes. Drivers should do this
2422  * with:
2423  *
2424  * skb_reserve(skb, NET_IP_ALIGN);
2425  *
2426  * The downside to this alignment of the IP header is that the DMA is now
2427  * unaligned. On some architectures the cost of an unaligned DMA is high
2428  * and this cost outweighs the gains made by aligning the IP header.
2429  *
2430  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2431  * to be overridden.
2432  */
2433 #ifndef NET_IP_ALIGN
2434 #define NET_IP_ALIGN	2
2435 #endif
2436 
2437 /*
2438  * The networking layer reserves some headroom in skb data (via
2439  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2440  * the header has to grow. In the default case, if the header has to grow
2441  * 32 bytes or less we avoid the reallocation.
2442  *
2443  * Unfortunately this headroom changes the DMA alignment of the resulting
2444  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2445  * on some architectures. An architecture can override this value,
2446  * perhaps setting it to a cacheline in size (since that will maintain
2447  * cacheline alignment of the DMA). It must be a power of 2.
2448  *
2449  * Various parts of the networking layer expect at least 32 bytes of
2450  * headroom, you should not reduce this.
2451  *
2452  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2453  * to reduce average number of cache lines per packet.
2454  * get_rps_cpus() for example only access one 64 bytes aligned block :
2455  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2456  */
2457 #ifndef NET_SKB_PAD
2458 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2459 #endif
2460 
2461 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2462 
2463 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2464 {
2465 	if (unlikely(skb_is_nonlinear(skb))) {
2466 		WARN_ON(1);
2467 		return;
2468 	}
2469 	skb->len = len;
2470 	skb_set_tail_pointer(skb, len);
2471 }
2472 
2473 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2474 {
2475 	__skb_set_length(skb, len);
2476 }
2477 
2478 void skb_trim(struct sk_buff *skb, unsigned int len);
2479 
2480 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2481 {
2482 	if (skb->data_len)
2483 		return ___pskb_trim(skb, len);
2484 	__skb_trim(skb, len);
2485 	return 0;
2486 }
2487 
2488 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2489 {
2490 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2491 }
2492 
2493 /**
2494  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2495  *	@skb: buffer to alter
2496  *	@len: new length
2497  *
2498  *	This is identical to pskb_trim except that the caller knows that
2499  *	the skb is not cloned so we should never get an error due to out-
2500  *	of-memory.
2501  */
2502 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2503 {
2504 	int err = pskb_trim(skb, len);
2505 	BUG_ON(err);
2506 }
2507 
2508 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2509 {
2510 	unsigned int diff = len - skb->len;
2511 
2512 	if (skb_tailroom(skb) < diff) {
2513 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2514 					   GFP_ATOMIC);
2515 		if (ret)
2516 			return ret;
2517 	}
2518 	__skb_set_length(skb, len);
2519 	return 0;
2520 }
2521 
2522 /**
2523  *	skb_orphan - orphan a buffer
2524  *	@skb: buffer to orphan
2525  *
2526  *	If a buffer currently has an owner then we call the owner's
2527  *	destructor function and make the @skb unowned. The buffer continues
2528  *	to exist but is no longer charged to its former owner.
2529  */
2530 static inline void skb_orphan(struct sk_buff *skb)
2531 {
2532 	if (skb->destructor) {
2533 		skb->destructor(skb);
2534 		skb->destructor = NULL;
2535 		skb->sk		= NULL;
2536 	} else {
2537 		BUG_ON(skb->sk);
2538 	}
2539 }
2540 
2541 /**
2542  *	skb_orphan_frags - orphan the frags contained in a buffer
2543  *	@skb: buffer to orphan frags from
2544  *	@gfp_mask: allocation mask for replacement pages
2545  *
2546  *	For each frag in the SKB which needs a destructor (i.e. has an
2547  *	owner) create a copy of that frag and release the original
2548  *	page by calling the destructor.
2549  */
2550 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2551 {
2552 	if (likely(!skb_zcopy(skb)))
2553 		return 0;
2554 	if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2555 		return 0;
2556 	return skb_copy_ubufs(skb, gfp_mask);
2557 }
2558 
2559 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2560 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2561 {
2562 	if (likely(!skb_zcopy(skb)))
2563 		return 0;
2564 	return skb_copy_ubufs(skb, gfp_mask);
2565 }
2566 
2567 /**
2568  *	__skb_queue_purge - empty a list
2569  *	@list: list to empty
2570  *
2571  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2572  *	the list and one reference dropped. This function does not take the
2573  *	list lock and the caller must hold the relevant locks to use it.
2574  */
2575 void skb_queue_purge(struct sk_buff_head *list);
2576 static inline void __skb_queue_purge(struct sk_buff_head *list)
2577 {
2578 	struct sk_buff *skb;
2579 	while ((skb = __skb_dequeue(list)) != NULL)
2580 		kfree_skb(skb);
2581 }
2582 
2583 void skb_rbtree_purge(struct rb_root *root);
2584 
2585 void *netdev_alloc_frag(unsigned int fragsz);
2586 
2587 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2588 				   gfp_t gfp_mask);
2589 
2590 /**
2591  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2592  *	@dev: network device to receive on
2593  *	@length: length to allocate
2594  *
2595  *	Allocate a new &sk_buff and assign it a usage count of one. The
2596  *	buffer has unspecified headroom built in. Users should allocate
2597  *	the headroom they think they need without accounting for the
2598  *	built in space. The built in space is used for optimisations.
2599  *
2600  *	%NULL is returned if there is no free memory. Although this function
2601  *	allocates memory it can be called from an interrupt.
2602  */
2603 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2604 					       unsigned int length)
2605 {
2606 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2607 }
2608 
2609 /* legacy helper around __netdev_alloc_skb() */
2610 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2611 					      gfp_t gfp_mask)
2612 {
2613 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2614 }
2615 
2616 /* legacy helper around netdev_alloc_skb() */
2617 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2618 {
2619 	return netdev_alloc_skb(NULL, length);
2620 }
2621 
2622 
2623 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2624 		unsigned int length, gfp_t gfp)
2625 {
2626 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2627 
2628 	if (NET_IP_ALIGN && skb)
2629 		skb_reserve(skb, NET_IP_ALIGN);
2630 	return skb;
2631 }
2632 
2633 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2634 		unsigned int length)
2635 {
2636 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2637 }
2638 
2639 static inline void skb_free_frag(void *addr)
2640 {
2641 	page_frag_free(addr);
2642 }
2643 
2644 void *napi_alloc_frag(unsigned int fragsz);
2645 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2646 				 unsigned int length, gfp_t gfp_mask);
2647 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2648 					     unsigned int length)
2649 {
2650 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2651 }
2652 void napi_consume_skb(struct sk_buff *skb, int budget);
2653 
2654 void __kfree_skb_flush(void);
2655 void __kfree_skb_defer(struct sk_buff *skb);
2656 
2657 /**
2658  * __dev_alloc_pages - allocate page for network Rx
2659  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2660  * @order: size of the allocation
2661  *
2662  * Allocate a new page.
2663  *
2664  * %NULL is returned if there is no free memory.
2665 */
2666 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2667 					     unsigned int order)
2668 {
2669 	/* This piece of code contains several assumptions.
2670 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2671 	 * 2.  The expectation is the user wants a compound page.
2672 	 * 3.  If requesting a order 0 page it will not be compound
2673 	 *     due to the check to see if order has a value in prep_new_page
2674 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2675 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2676 	 */
2677 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2678 
2679 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2680 }
2681 
2682 static inline struct page *dev_alloc_pages(unsigned int order)
2683 {
2684 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2685 }
2686 
2687 /**
2688  * __dev_alloc_page - allocate a page for network Rx
2689  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2690  *
2691  * Allocate a new page.
2692  *
2693  * %NULL is returned if there is no free memory.
2694  */
2695 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2696 {
2697 	return __dev_alloc_pages(gfp_mask, 0);
2698 }
2699 
2700 static inline struct page *dev_alloc_page(void)
2701 {
2702 	return dev_alloc_pages(0);
2703 }
2704 
2705 /**
2706  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2707  *	@page: The page that was allocated from skb_alloc_page
2708  *	@skb: The skb that may need pfmemalloc set
2709  */
2710 static inline void skb_propagate_pfmemalloc(struct page *page,
2711 					     struct sk_buff *skb)
2712 {
2713 	if (page_is_pfmemalloc(page))
2714 		skb->pfmemalloc = true;
2715 }
2716 
2717 /**
2718  * skb_frag_page - retrieve the page referred to by a paged fragment
2719  * @frag: the paged fragment
2720  *
2721  * Returns the &struct page associated with @frag.
2722  */
2723 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2724 {
2725 	return frag->page.p;
2726 }
2727 
2728 /**
2729  * __skb_frag_ref - take an addition reference on a paged fragment.
2730  * @frag: the paged fragment
2731  *
2732  * Takes an additional reference on the paged fragment @frag.
2733  */
2734 static inline void __skb_frag_ref(skb_frag_t *frag)
2735 {
2736 	get_page(skb_frag_page(frag));
2737 }
2738 
2739 /**
2740  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2741  * @skb: the buffer
2742  * @f: the fragment offset.
2743  *
2744  * Takes an additional reference on the @f'th paged fragment of @skb.
2745  */
2746 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2747 {
2748 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2749 }
2750 
2751 /**
2752  * __skb_frag_unref - release a reference on a paged fragment.
2753  * @frag: the paged fragment
2754  *
2755  * Releases a reference on the paged fragment @frag.
2756  */
2757 static inline void __skb_frag_unref(skb_frag_t *frag)
2758 {
2759 	put_page(skb_frag_page(frag));
2760 }
2761 
2762 /**
2763  * skb_frag_unref - release a reference on a paged fragment of an skb.
2764  * @skb: the buffer
2765  * @f: the fragment offset
2766  *
2767  * Releases a reference on the @f'th paged fragment of @skb.
2768  */
2769 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2770 {
2771 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2772 }
2773 
2774 /**
2775  * skb_frag_address - gets the address of the data contained in a paged fragment
2776  * @frag: the paged fragment buffer
2777  *
2778  * Returns the address of the data within @frag. The page must already
2779  * be mapped.
2780  */
2781 static inline void *skb_frag_address(const skb_frag_t *frag)
2782 {
2783 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2784 }
2785 
2786 /**
2787  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2788  * @frag: the paged fragment buffer
2789  *
2790  * Returns the address of the data within @frag. Checks that the page
2791  * is mapped and returns %NULL otherwise.
2792  */
2793 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2794 {
2795 	void *ptr = page_address(skb_frag_page(frag));
2796 	if (unlikely(!ptr))
2797 		return NULL;
2798 
2799 	return ptr + frag->page_offset;
2800 }
2801 
2802 /**
2803  * __skb_frag_set_page - sets the page contained in a paged fragment
2804  * @frag: the paged fragment
2805  * @page: the page to set
2806  *
2807  * Sets the fragment @frag to contain @page.
2808  */
2809 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2810 {
2811 	frag->page.p = page;
2812 }
2813 
2814 /**
2815  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2816  * @skb: the buffer
2817  * @f: the fragment offset
2818  * @page: the page to set
2819  *
2820  * Sets the @f'th fragment of @skb to contain @page.
2821  */
2822 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2823 				     struct page *page)
2824 {
2825 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2826 }
2827 
2828 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2829 
2830 /**
2831  * skb_frag_dma_map - maps a paged fragment via the DMA API
2832  * @dev: the device to map the fragment to
2833  * @frag: the paged fragment to map
2834  * @offset: the offset within the fragment (starting at the
2835  *          fragment's own offset)
2836  * @size: the number of bytes to map
2837  * @dir: the direction of the mapping (``PCI_DMA_*``)
2838  *
2839  * Maps the page associated with @frag to @device.
2840  */
2841 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2842 					  const skb_frag_t *frag,
2843 					  size_t offset, size_t size,
2844 					  enum dma_data_direction dir)
2845 {
2846 	return dma_map_page(dev, skb_frag_page(frag),
2847 			    frag->page_offset + offset, size, dir);
2848 }
2849 
2850 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2851 					gfp_t gfp_mask)
2852 {
2853 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2854 }
2855 
2856 
2857 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2858 						  gfp_t gfp_mask)
2859 {
2860 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2861 }
2862 
2863 
2864 /**
2865  *	skb_clone_writable - is the header of a clone writable
2866  *	@skb: buffer to check
2867  *	@len: length up to which to write
2868  *
2869  *	Returns true if modifying the header part of the cloned buffer
2870  *	does not requires the data to be copied.
2871  */
2872 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2873 {
2874 	return !skb_header_cloned(skb) &&
2875 	       skb_headroom(skb) + len <= skb->hdr_len;
2876 }
2877 
2878 static inline int skb_try_make_writable(struct sk_buff *skb,
2879 					unsigned int write_len)
2880 {
2881 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2882 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2883 }
2884 
2885 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2886 			    int cloned)
2887 {
2888 	int delta = 0;
2889 
2890 	if (headroom > skb_headroom(skb))
2891 		delta = headroom - skb_headroom(skb);
2892 
2893 	if (delta || cloned)
2894 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2895 					GFP_ATOMIC);
2896 	return 0;
2897 }
2898 
2899 /**
2900  *	skb_cow - copy header of skb when it is required
2901  *	@skb: buffer to cow
2902  *	@headroom: needed headroom
2903  *
2904  *	If the skb passed lacks sufficient headroom or its data part
2905  *	is shared, data is reallocated. If reallocation fails, an error
2906  *	is returned and original skb is not changed.
2907  *
2908  *	The result is skb with writable area skb->head...skb->tail
2909  *	and at least @headroom of space at head.
2910  */
2911 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2912 {
2913 	return __skb_cow(skb, headroom, skb_cloned(skb));
2914 }
2915 
2916 /**
2917  *	skb_cow_head - skb_cow but only making the head writable
2918  *	@skb: buffer to cow
2919  *	@headroom: needed headroom
2920  *
2921  *	This function is identical to skb_cow except that we replace the
2922  *	skb_cloned check by skb_header_cloned.  It should be used when
2923  *	you only need to push on some header and do not need to modify
2924  *	the data.
2925  */
2926 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2927 {
2928 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2929 }
2930 
2931 /**
2932  *	skb_padto	- pad an skbuff up to a minimal size
2933  *	@skb: buffer to pad
2934  *	@len: minimal length
2935  *
2936  *	Pads up a buffer to ensure the trailing bytes exist and are
2937  *	blanked. If the buffer already contains sufficient data it
2938  *	is untouched. Otherwise it is extended. Returns zero on
2939  *	success. The skb is freed on error.
2940  */
2941 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2942 {
2943 	unsigned int size = skb->len;
2944 	if (likely(size >= len))
2945 		return 0;
2946 	return skb_pad(skb, len - size);
2947 }
2948 
2949 /**
2950  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2951  *	@skb: buffer to pad
2952  *	@len: minimal length
2953  *	@free_on_error: free buffer on error
2954  *
2955  *	Pads up a buffer to ensure the trailing bytes exist and are
2956  *	blanked. If the buffer already contains sufficient data it
2957  *	is untouched. Otherwise it is extended. Returns zero on
2958  *	success. The skb is freed on error if @free_on_error is true.
2959  */
2960 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2961 				  bool free_on_error)
2962 {
2963 	unsigned int size = skb->len;
2964 
2965 	if (unlikely(size < len)) {
2966 		len -= size;
2967 		if (__skb_pad(skb, len, free_on_error))
2968 			return -ENOMEM;
2969 		__skb_put(skb, len);
2970 	}
2971 	return 0;
2972 }
2973 
2974 /**
2975  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2976  *	@skb: buffer to pad
2977  *	@len: minimal length
2978  *
2979  *	Pads up a buffer to ensure the trailing bytes exist and are
2980  *	blanked. If the buffer already contains sufficient data it
2981  *	is untouched. Otherwise it is extended. Returns zero on
2982  *	success. The skb is freed on error.
2983  */
2984 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2985 {
2986 	return __skb_put_padto(skb, len, true);
2987 }
2988 
2989 static inline int skb_add_data(struct sk_buff *skb,
2990 			       struct iov_iter *from, int copy)
2991 {
2992 	const int off = skb->len;
2993 
2994 	if (skb->ip_summed == CHECKSUM_NONE) {
2995 		__wsum csum = 0;
2996 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2997 					         &csum, from)) {
2998 			skb->csum = csum_block_add(skb->csum, csum, off);
2999 			return 0;
3000 		}
3001 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3002 		return 0;
3003 
3004 	__skb_trim(skb, off);
3005 	return -EFAULT;
3006 }
3007 
3008 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3009 				    const struct page *page, int off)
3010 {
3011 	if (skb_zcopy(skb))
3012 		return false;
3013 	if (i) {
3014 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3015 
3016 		return page == skb_frag_page(frag) &&
3017 		       off == frag->page_offset + skb_frag_size(frag);
3018 	}
3019 	return false;
3020 }
3021 
3022 static inline int __skb_linearize(struct sk_buff *skb)
3023 {
3024 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3025 }
3026 
3027 /**
3028  *	skb_linearize - convert paged skb to linear one
3029  *	@skb: buffer to linarize
3030  *
3031  *	If there is no free memory -ENOMEM is returned, otherwise zero
3032  *	is returned and the old skb data released.
3033  */
3034 static inline int skb_linearize(struct sk_buff *skb)
3035 {
3036 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3037 }
3038 
3039 /**
3040  * skb_has_shared_frag - can any frag be overwritten
3041  * @skb: buffer to test
3042  *
3043  * Return true if the skb has at least one frag that might be modified
3044  * by an external entity (as in vmsplice()/sendfile())
3045  */
3046 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3047 {
3048 	return skb_is_nonlinear(skb) &&
3049 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3050 }
3051 
3052 /**
3053  *	skb_linearize_cow - make sure skb is linear and writable
3054  *	@skb: buffer to process
3055  *
3056  *	If there is no free memory -ENOMEM is returned, otherwise zero
3057  *	is returned and the old skb data released.
3058  */
3059 static inline int skb_linearize_cow(struct sk_buff *skb)
3060 {
3061 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3062 	       __skb_linearize(skb) : 0;
3063 }
3064 
3065 static __always_inline void
3066 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3067 		     unsigned int off)
3068 {
3069 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3070 		skb->csum = csum_block_sub(skb->csum,
3071 					   csum_partial(start, len, 0), off);
3072 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3073 		 skb_checksum_start_offset(skb) < 0)
3074 		skb->ip_summed = CHECKSUM_NONE;
3075 }
3076 
3077 /**
3078  *	skb_postpull_rcsum - update checksum for received skb after pull
3079  *	@skb: buffer to update
3080  *	@start: start of data before pull
3081  *	@len: length of data pulled
3082  *
3083  *	After doing a pull on a received packet, you need to call this to
3084  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3085  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3086  */
3087 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3088 				      const void *start, unsigned int len)
3089 {
3090 	__skb_postpull_rcsum(skb, start, len, 0);
3091 }
3092 
3093 static __always_inline void
3094 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3095 		     unsigned int off)
3096 {
3097 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3098 		skb->csum = csum_block_add(skb->csum,
3099 					   csum_partial(start, len, 0), off);
3100 }
3101 
3102 /**
3103  *	skb_postpush_rcsum - update checksum for received skb after push
3104  *	@skb: buffer to update
3105  *	@start: start of data after push
3106  *	@len: length of data pushed
3107  *
3108  *	After doing a push on a received packet, you need to call this to
3109  *	update the CHECKSUM_COMPLETE checksum.
3110  */
3111 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3112 				      const void *start, unsigned int len)
3113 {
3114 	__skb_postpush_rcsum(skb, start, len, 0);
3115 }
3116 
3117 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3118 
3119 /**
3120  *	skb_push_rcsum - push skb and update receive checksum
3121  *	@skb: buffer to update
3122  *	@len: length of data pulled
3123  *
3124  *	This function performs an skb_push on the packet and updates
3125  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3126  *	receive path processing instead of skb_push unless you know
3127  *	that the checksum difference is zero (e.g., a valid IP header)
3128  *	or you are setting ip_summed to CHECKSUM_NONE.
3129  */
3130 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3131 {
3132 	skb_push(skb, len);
3133 	skb_postpush_rcsum(skb, skb->data, len);
3134 	return skb->data;
3135 }
3136 
3137 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3138 /**
3139  *	pskb_trim_rcsum - trim received skb and update checksum
3140  *	@skb: buffer to trim
3141  *	@len: new length
3142  *
3143  *	This is exactly the same as pskb_trim except that it ensures the
3144  *	checksum of received packets are still valid after the operation.
3145  */
3146 
3147 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3148 {
3149 	if (likely(len >= skb->len))
3150 		return 0;
3151 	return pskb_trim_rcsum_slow(skb, len);
3152 }
3153 
3154 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3155 {
3156 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3157 		skb->ip_summed = CHECKSUM_NONE;
3158 	__skb_trim(skb, len);
3159 	return 0;
3160 }
3161 
3162 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3163 {
3164 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3165 		skb->ip_summed = CHECKSUM_NONE;
3166 	return __skb_grow(skb, len);
3167 }
3168 
3169 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3170 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3171 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3172 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3173 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3174 
3175 #define skb_queue_walk(queue, skb) \
3176 		for (skb = (queue)->next;					\
3177 		     skb != (struct sk_buff *)(queue);				\
3178 		     skb = skb->next)
3179 
3180 #define skb_queue_walk_safe(queue, skb, tmp)					\
3181 		for (skb = (queue)->next, tmp = skb->next;			\
3182 		     skb != (struct sk_buff *)(queue);				\
3183 		     skb = tmp, tmp = skb->next)
3184 
3185 #define skb_queue_walk_from(queue, skb)						\
3186 		for (; skb != (struct sk_buff *)(queue);			\
3187 		     skb = skb->next)
3188 
3189 #define skb_rbtree_walk(skb, root)						\
3190 		for (skb = skb_rb_first(root); skb != NULL;			\
3191 		     skb = skb_rb_next(skb))
3192 
3193 #define skb_rbtree_walk_from(skb)						\
3194 		for (; skb != NULL;						\
3195 		     skb = skb_rb_next(skb))
3196 
3197 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3198 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3199 		     skb = tmp)
3200 
3201 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3202 		for (tmp = skb->next;						\
3203 		     skb != (struct sk_buff *)(queue);				\
3204 		     skb = tmp, tmp = skb->next)
3205 
3206 #define skb_queue_reverse_walk(queue, skb) \
3207 		for (skb = (queue)->prev;					\
3208 		     skb != (struct sk_buff *)(queue);				\
3209 		     skb = skb->prev)
3210 
3211 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3212 		for (skb = (queue)->prev, tmp = skb->prev;			\
3213 		     skb != (struct sk_buff *)(queue);				\
3214 		     skb = tmp, tmp = skb->prev)
3215 
3216 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3217 		for (tmp = skb->prev;						\
3218 		     skb != (struct sk_buff *)(queue);				\
3219 		     skb = tmp, tmp = skb->prev)
3220 
3221 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3222 {
3223 	return skb_shinfo(skb)->frag_list != NULL;
3224 }
3225 
3226 static inline void skb_frag_list_init(struct sk_buff *skb)
3227 {
3228 	skb_shinfo(skb)->frag_list = NULL;
3229 }
3230 
3231 #define skb_walk_frags(skb, iter)	\
3232 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3233 
3234 
3235 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3236 				const struct sk_buff *skb);
3237 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3238 					  struct sk_buff_head *queue,
3239 					  unsigned int flags,
3240 					  void (*destructor)(struct sock *sk,
3241 							   struct sk_buff *skb),
3242 					  int *peeked, int *off, int *err,
3243 					  struct sk_buff **last);
3244 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3245 					void (*destructor)(struct sock *sk,
3246 							   struct sk_buff *skb),
3247 					int *peeked, int *off, int *err,
3248 					struct sk_buff **last);
3249 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3250 				    void (*destructor)(struct sock *sk,
3251 						       struct sk_buff *skb),
3252 				    int *peeked, int *off, int *err);
3253 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3254 				  int *err);
3255 __poll_t datagram_poll(struct file *file, struct socket *sock,
3256 			   struct poll_table_struct *wait);
3257 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3258 			   struct iov_iter *to, int size);
3259 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3260 					struct msghdr *msg, int size)
3261 {
3262 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3263 }
3264 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3265 				   struct msghdr *msg);
3266 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3267 				 struct iov_iter *from, int len);
3268 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3269 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3270 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3271 static inline void skb_free_datagram_locked(struct sock *sk,
3272 					    struct sk_buff *skb)
3273 {
3274 	__skb_free_datagram_locked(sk, skb, 0);
3275 }
3276 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3277 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3278 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3279 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3280 			      int len, __wsum csum);
3281 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3282 		    struct pipe_inode_info *pipe, unsigned int len,
3283 		    unsigned int flags);
3284 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3285 			 int len);
3286 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3287 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3288 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3289 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3290 		 int len, int hlen);
3291 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3292 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3293 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3294 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3295 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3296 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3297 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3298 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3299 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3300 int skb_vlan_pop(struct sk_buff *skb);
3301 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3302 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3303 			     gfp_t gfp);
3304 
3305 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3306 {
3307 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3308 }
3309 
3310 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3311 {
3312 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3313 }
3314 
3315 struct skb_checksum_ops {
3316 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3317 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3318 };
3319 
3320 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3321 
3322 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3323 		      __wsum csum, const struct skb_checksum_ops *ops);
3324 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3325 		    __wsum csum);
3326 
3327 static inline void * __must_check
3328 __skb_header_pointer(const struct sk_buff *skb, int offset,
3329 		     int len, void *data, int hlen, void *buffer)
3330 {
3331 	if (hlen - offset >= len)
3332 		return data + offset;
3333 
3334 	if (!skb ||
3335 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3336 		return NULL;
3337 
3338 	return buffer;
3339 }
3340 
3341 static inline void * __must_check
3342 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3343 {
3344 	return __skb_header_pointer(skb, offset, len, skb->data,
3345 				    skb_headlen(skb), buffer);
3346 }
3347 
3348 /**
3349  *	skb_needs_linearize - check if we need to linearize a given skb
3350  *			      depending on the given device features.
3351  *	@skb: socket buffer to check
3352  *	@features: net device features
3353  *
3354  *	Returns true if either:
3355  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3356  *	2. skb is fragmented and the device does not support SG.
3357  */
3358 static inline bool skb_needs_linearize(struct sk_buff *skb,
3359 				       netdev_features_t features)
3360 {
3361 	return skb_is_nonlinear(skb) &&
3362 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3363 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3364 }
3365 
3366 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3367 					     void *to,
3368 					     const unsigned int len)
3369 {
3370 	memcpy(to, skb->data, len);
3371 }
3372 
3373 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3374 						    const int offset, void *to,
3375 						    const unsigned int len)
3376 {
3377 	memcpy(to, skb->data + offset, len);
3378 }
3379 
3380 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3381 					   const void *from,
3382 					   const unsigned int len)
3383 {
3384 	memcpy(skb->data, from, len);
3385 }
3386 
3387 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3388 						  const int offset,
3389 						  const void *from,
3390 						  const unsigned int len)
3391 {
3392 	memcpy(skb->data + offset, from, len);
3393 }
3394 
3395 void skb_init(void);
3396 
3397 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3398 {
3399 	return skb->tstamp;
3400 }
3401 
3402 /**
3403  *	skb_get_timestamp - get timestamp from a skb
3404  *	@skb: skb to get stamp from
3405  *	@stamp: pointer to struct timeval to store stamp in
3406  *
3407  *	Timestamps are stored in the skb as offsets to a base timestamp.
3408  *	This function converts the offset back to a struct timeval and stores
3409  *	it in stamp.
3410  */
3411 static inline void skb_get_timestamp(const struct sk_buff *skb,
3412 				     struct timeval *stamp)
3413 {
3414 	*stamp = ktime_to_timeval(skb->tstamp);
3415 }
3416 
3417 static inline void skb_get_timestampns(const struct sk_buff *skb,
3418 				       struct timespec *stamp)
3419 {
3420 	*stamp = ktime_to_timespec(skb->tstamp);
3421 }
3422 
3423 static inline void __net_timestamp(struct sk_buff *skb)
3424 {
3425 	skb->tstamp = ktime_get_real();
3426 }
3427 
3428 static inline ktime_t net_timedelta(ktime_t t)
3429 {
3430 	return ktime_sub(ktime_get_real(), t);
3431 }
3432 
3433 static inline ktime_t net_invalid_timestamp(void)
3434 {
3435 	return 0;
3436 }
3437 
3438 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3439 {
3440 	return skb_shinfo(skb)->meta_len;
3441 }
3442 
3443 static inline void *skb_metadata_end(const struct sk_buff *skb)
3444 {
3445 	return skb_mac_header(skb);
3446 }
3447 
3448 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3449 					  const struct sk_buff *skb_b,
3450 					  u8 meta_len)
3451 {
3452 	const void *a = skb_metadata_end(skb_a);
3453 	const void *b = skb_metadata_end(skb_b);
3454 	/* Using more efficient varaiant than plain call to memcmp(). */
3455 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3456 	u64 diffs = 0;
3457 
3458 	switch (meta_len) {
3459 #define __it(x, op) (x -= sizeof(u##op))
3460 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3461 	case 32: diffs |= __it_diff(a, b, 64);
3462 	case 24: diffs |= __it_diff(a, b, 64);
3463 	case 16: diffs |= __it_diff(a, b, 64);
3464 	case  8: diffs |= __it_diff(a, b, 64);
3465 		break;
3466 	case 28: diffs |= __it_diff(a, b, 64);
3467 	case 20: diffs |= __it_diff(a, b, 64);
3468 	case 12: diffs |= __it_diff(a, b, 64);
3469 	case  4: diffs |= __it_diff(a, b, 32);
3470 		break;
3471 	}
3472 	return diffs;
3473 #else
3474 	return memcmp(a - meta_len, b - meta_len, meta_len);
3475 #endif
3476 }
3477 
3478 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3479 					const struct sk_buff *skb_b)
3480 {
3481 	u8 len_a = skb_metadata_len(skb_a);
3482 	u8 len_b = skb_metadata_len(skb_b);
3483 
3484 	if (!(len_a | len_b))
3485 		return false;
3486 
3487 	return len_a != len_b ?
3488 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3489 }
3490 
3491 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3492 {
3493 	skb_shinfo(skb)->meta_len = meta_len;
3494 }
3495 
3496 static inline void skb_metadata_clear(struct sk_buff *skb)
3497 {
3498 	skb_metadata_set(skb, 0);
3499 }
3500 
3501 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3502 
3503 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3504 
3505 void skb_clone_tx_timestamp(struct sk_buff *skb);
3506 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3507 
3508 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3509 
3510 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3511 {
3512 }
3513 
3514 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3515 {
3516 	return false;
3517 }
3518 
3519 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3520 
3521 /**
3522  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3523  *
3524  * PHY drivers may accept clones of transmitted packets for
3525  * timestamping via their phy_driver.txtstamp method. These drivers
3526  * must call this function to return the skb back to the stack with a
3527  * timestamp.
3528  *
3529  * @skb: clone of the the original outgoing packet
3530  * @hwtstamps: hardware time stamps
3531  *
3532  */
3533 void skb_complete_tx_timestamp(struct sk_buff *skb,
3534 			       struct skb_shared_hwtstamps *hwtstamps);
3535 
3536 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3537 		     struct skb_shared_hwtstamps *hwtstamps,
3538 		     struct sock *sk, int tstype);
3539 
3540 /**
3541  * skb_tstamp_tx - queue clone of skb with send time stamps
3542  * @orig_skb:	the original outgoing packet
3543  * @hwtstamps:	hardware time stamps, may be NULL if not available
3544  *
3545  * If the skb has a socket associated, then this function clones the
3546  * skb (thus sharing the actual data and optional structures), stores
3547  * the optional hardware time stamping information (if non NULL) or
3548  * generates a software time stamp (otherwise), then queues the clone
3549  * to the error queue of the socket.  Errors are silently ignored.
3550  */
3551 void skb_tstamp_tx(struct sk_buff *orig_skb,
3552 		   struct skb_shared_hwtstamps *hwtstamps);
3553 
3554 /**
3555  * skb_tx_timestamp() - Driver hook for transmit timestamping
3556  *
3557  * Ethernet MAC Drivers should call this function in their hard_xmit()
3558  * function immediately before giving the sk_buff to the MAC hardware.
3559  *
3560  * Specifically, one should make absolutely sure that this function is
3561  * called before TX completion of this packet can trigger.  Otherwise
3562  * the packet could potentially already be freed.
3563  *
3564  * @skb: A socket buffer.
3565  */
3566 static inline void skb_tx_timestamp(struct sk_buff *skb)
3567 {
3568 	skb_clone_tx_timestamp(skb);
3569 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3570 		skb_tstamp_tx(skb, NULL);
3571 }
3572 
3573 /**
3574  * skb_complete_wifi_ack - deliver skb with wifi status
3575  *
3576  * @skb: the original outgoing packet
3577  * @acked: ack status
3578  *
3579  */
3580 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3581 
3582 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3583 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3584 
3585 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3586 {
3587 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3588 		skb->csum_valid ||
3589 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3590 		 skb_checksum_start_offset(skb) >= 0));
3591 }
3592 
3593 /**
3594  *	skb_checksum_complete - Calculate checksum of an entire packet
3595  *	@skb: packet to process
3596  *
3597  *	This function calculates the checksum over the entire packet plus
3598  *	the value of skb->csum.  The latter can be used to supply the
3599  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3600  *	checksum.
3601  *
3602  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3603  *	this function can be used to verify that checksum on received
3604  *	packets.  In that case the function should return zero if the
3605  *	checksum is correct.  In particular, this function will return zero
3606  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3607  *	hardware has already verified the correctness of the checksum.
3608  */
3609 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3610 {
3611 	return skb_csum_unnecessary(skb) ?
3612 	       0 : __skb_checksum_complete(skb);
3613 }
3614 
3615 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3616 {
3617 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3618 		if (skb->csum_level == 0)
3619 			skb->ip_summed = CHECKSUM_NONE;
3620 		else
3621 			skb->csum_level--;
3622 	}
3623 }
3624 
3625 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3626 {
3627 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3628 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3629 			skb->csum_level++;
3630 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3631 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3632 		skb->csum_level = 0;
3633 	}
3634 }
3635 
3636 /* Check if we need to perform checksum complete validation.
3637  *
3638  * Returns true if checksum complete is needed, false otherwise
3639  * (either checksum is unnecessary or zero checksum is allowed).
3640  */
3641 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3642 						  bool zero_okay,
3643 						  __sum16 check)
3644 {
3645 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3646 		skb->csum_valid = 1;
3647 		__skb_decr_checksum_unnecessary(skb);
3648 		return false;
3649 	}
3650 
3651 	return true;
3652 }
3653 
3654 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3655  * in checksum_init.
3656  */
3657 #define CHECKSUM_BREAK 76
3658 
3659 /* Unset checksum-complete
3660  *
3661  * Unset checksum complete can be done when packet is being modified
3662  * (uncompressed for instance) and checksum-complete value is
3663  * invalidated.
3664  */
3665 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3666 {
3667 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3668 		skb->ip_summed = CHECKSUM_NONE;
3669 }
3670 
3671 /* Validate (init) checksum based on checksum complete.
3672  *
3673  * Return values:
3674  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3675  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3676  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3677  *   non-zero: value of invalid checksum
3678  *
3679  */
3680 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3681 						       bool complete,
3682 						       __wsum psum)
3683 {
3684 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3685 		if (!csum_fold(csum_add(psum, skb->csum))) {
3686 			skb->csum_valid = 1;
3687 			return 0;
3688 		}
3689 	}
3690 
3691 	skb->csum = psum;
3692 
3693 	if (complete || skb->len <= CHECKSUM_BREAK) {
3694 		__sum16 csum;
3695 
3696 		csum = __skb_checksum_complete(skb);
3697 		skb->csum_valid = !csum;
3698 		return csum;
3699 	}
3700 
3701 	return 0;
3702 }
3703 
3704 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3705 {
3706 	return 0;
3707 }
3708 
3709 /* Perform checksum validate (init). Note that this is a macro since we only
3710  * want to calculate the pseudo header which is an input function if necessary.
3711  * First we try to validate without any computation (checksum unnecessary) and
3712  * then calculate based on checksum complete calling the function to compute
3713  * pseudo header.
3714  *
3715  * Return values:
3716  *   0: checksum is validated or try to in skb_checksum_complete
3717  *   non-zero: value of invalid checksum
3718  */
3719 #define __skb_checksum_validate(skb, proto, complete,			\
3720 				zero_okay, check, compute_pseudo)	\
3721 ({									\
3722 	__sum16 __ret = 0;						\
3723 	skb->csum_valid = 0;						\
3724 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3725 		__ret = __skb_checksum_validate_complete(skb,		\
3726 				complete, compute_pseudo(skb, proto));	\
3727 	__ret;								\
3728 })
3729 
3730 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3731 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3732 
3733 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3734 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3735 
3736 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3737 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3738 
3739 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3740 					 compute_pseudo)		\
3741 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3742 
3743 #define skb_checksum_simple_validate(skb)				\
3744 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3745 
3746 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3747 {
3748 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3749 }
3750 
3751 static inline void __skb_checksum_convert(struct sk_buff *skb,
3752 					  __sum16 check, __wsum pseudo)
3753 {
3754 	skb->csum = ~pseudo;
3755 	skb->ip_summed = CHECKSUM_COMPLETE;
3756 }
3757 
3758 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3759 do {									\
3760 	if (__skb_checksum_convert_check(skb))				\
3761 		__skb_checksum_convert(skb, check,			\
3762 				       compute_pseudo(skb, proto));	\
3763 } while (0)
3764 
3765 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3766 					      u16 start, u16 offset)
3767 {
3768 	skb->ip_summed = CHECKSUM_PARTIAL;
3769 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3770 	skb->csum_offset = offset - start;
3771 }
3772 
3773 /* Update skbuf and packet to reflect the remote checksum offload operation.
3774  * When called, ptr indicates the starting point for skb->csum when
3775  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3776  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3777  */
3778 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3779 				       int start, int offset, bool nopartial)
3780 {
3781 	__wsum delta;
3782 
3783 	if (!nopartial) {
3784 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3785 		return;
3786 	}
3787 
3788 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3789 		__skb_checksum_complete(skb);
3790 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3791 	}
3792 
3793 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3794 
3795 	/* Adjust skb->csum since we changed the packet */
3796 	skb->csum = csum_add(skb->csum, delta);
3797 }
3798 
3799 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3800 {
3801 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3802 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3803 #else
3804 	return NULL;
3805 #endif
3806 }
3807 
3808 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3809 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3810 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3811 {
3812 	if (nfct && atomic_dec_and_test(&nfct->use))
3813 		nf_conntrack_destroy(nfct);
3814 }
3815 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3816 {
3817 	if (nfct)
3818 		atomic_inc(&nfct->use);
3819 }
3820 #endif
3821 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3822 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3823 {
3824 	if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3825 		kfree(nf_bridge);
3826 }
3827 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3828 {
3829 	if (nf_bridge)
3830 		refcount_inc(&nf_bridge->use);
3831 }
3832 #endif /* CONFIG_BRIDGE_NETFILTER */
3833 static inline void nf_reset(struct sk_buff *skb)
3834 {
3835 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3836 	nf_conntrack_put(skb_nfct(skb));
3837 	skb->_nfct = 0;
3838 #endif
3839 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3840 	nf_bridge_put(skb->nf_bridge);
3841 	skb->nf_bridge = NULL;
3842 #endif
3843 }
3844 
3845 static inline void nf_reset_trace(struct sk_buff *skb)
3846 {
3847 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3848 	skb->nf_trace = 0;
3849 #endif
3850 }
3851 
3852 static inline void ipvs_reset(struct sk_buff *skb)
3853 {
3854 #if IS_ENABLED(CONFIG_IP_VS)
3855 	skb->ipvs_property = 0;
3856 #endif
3857 }
3858 
3859 /* Note: This doesn't put any conntrack and bridge info in dst. */
3860 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3861 			     bool copy)
3862 {
3863 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3864 	dst->_nfct = src->_nfct;
3865 	nf_conntrack_get(skb_nfct(src));
3866 #endif
3867 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3868 	dst->nf_bridge  = src->nf_bridge;
3869 	nf_bridge_get(src->nf_bridge);
3870 #endif
3871 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3872 	if (copy)
3873 		dst->nf_trace = src->nf_trace;
3874 #endif
3875 }
3876 
3877 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3878 {
3879 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3880 	nf_conntrack_put(skb_nfct(dst));
3881 #endif
3882 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3883 	nf_bridge_put(dst->nf_bridge);
3884 #endif
3885 	__nf_copy(dst, src, true);
3886 }
3887 
3888 #ifdef CONFIG_NETWORK_SECMARK
3889 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3890 {
3891 	to->secmark = from->secmark;
3892 }
3893 
3894 static inline void skb_init_secmark(struct sk_buff *skb)
3895 {
3896 	skb->secmark = 0;
3897 }
3898 #else
3899 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3900 { }
3901 
3902 static inline void skb_init_secmark(struct sk_buff *skb)
3903 { }
3904 #endif
3905 
3906 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3907 {
3908 	return !skb->destructor &&
3909 #if IS_ENABLED(CONFIG_XFRM)
3910 		!skb->sp &&
3911 #endif
3912 		!skb_nfct(skb) &&
3913 		!skb->_skb_refdst &&
3914 		!skb_has_frag_list(skb);
3915 }
3916 
3917 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3918 {
3919 	skb->queue_mapping = queue_mapping;
3920 }
3921 
3922 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3923 {
3924 	return skb->queue_mapping;
3925 }
3926 
3927 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3928 {
3929 	to->queue_mapping = from->queue_mapping;
3930 }
3931 
3932 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3933 {
3934 	skb->queue_mapping = rx_queue + 1;
3935 }
3936 
3937 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3938 {
3939 	return skb->queue_mapping - 1;
3940 }
3941 
3942 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3943 {
3944 	return skb->queue_mapping != 0;
3945 }
3946 
3947 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3948 {
3949 	skb->dst_pending_confirm = val;
3950 }
3951 
3952 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3953 {
3954 	return skb->dst_pending_confirm != 0;
3955 }
3956 
3957 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3958 {
3959 #ifdef CONFIG_XFRM
3960 	return skb->sp;
3961 #else
3962 	return NULL;
3963 #endif
3964 }
3965 
3966 /* Keeps track of mac header offset relative to skb->head.
3967  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3968  * For non-tunnel skb it points to skb_mac_header() and for
3969  * tunnel skb it points to outer mac header.
3970  * Keeps track of level of encapsulation of network headers.
3971  */
3972 struct skb_gso_cb {
3973 	union {
3974 		int	mac_offset;
3975 		int	data_offset;
3976 	};
3977 	int	encap_level;
3978 	__wsum	csum;
3979 	__u16	csum_start;
3980 };
3981 #define SKB_SGO_CB_OFFSET	32
3982 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3983 
3984 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3985 {
3986 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3987 		SKB_GSO_CB(inner_skb)->mac_offset;
3988 }
3989 
3990 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3991 {
3992 	int new_headroom, headroom;
3993 	int ret;
3994 
3995 	headroom = skb_headroom(skb);
3996 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3997 	if (ret)
3998 		return ret;
3999 
4000 	new_headroom = skb_headroom(skb);
4001 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4002 	return 0;
4003 }
4004 
4005 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4006 {
4007 	/* Do not update partial checksums if remote checksum is enabled. */
4008 	if (skb->remcsum_offload)
4009 		return;
4010 
4011 	SKB_GSO_CB(skb)->csum = res;
4012 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4013 }
4014 
4015 /* Compute the checksum for a gso segment. First compute the checksum value
4016  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4017  * then add in skb->csum (checksum from csum_start to end of packet).
4018  * skb->csum and csum_start are then updated to reflect the checksum of the
4019  * resultant packet starting from the transport header-- the resultant checksum
4020  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4021  * header.
4022  */
4023 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4024 {
4025 	unsigned char *csum_start = skb_transport_header(skb);
4026 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4027 	__wsum partial = SKB_GSO_CB(skb)->csum;
4028 
4029 	SKB_GSO_CB(skb)->csum = res;
4030 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4031 
4032 	return csum_fold(csum_partial(csum_start, plen, partial));
4033 }
4034 
4035 static inline bool skb_is_gso(const struct sk_buff *skb)
4036 {
4037 	return skb_shinfo(skb)->gso_size;
4038 }
4039 
4040 /* Note: Should be called only if skb_is_gso(skb) is true */
4041 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4042 {
4043 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4044 }
4045 
4046 /* Note: Should be called only if skb_is_gso(skb) is true */
4047 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4048 {
4049 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4050 }
4051 
4052 static inline void skb_gso_reset(struct sk_buff *skb)
4053 {
4054 	skb_shinfo(skb)->gso_size = 0;
4055 	skb_shinfo(skb)->gso_segs = 0;
4056 	skb_shinfo(skb)->gso_type = 0;
4057 }
4058 
4059 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4060 					 u16 increment)
4061 {
4062 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4063 		return;
4064 	shinfo->gso_size += increment;
4065 }
4066 
4067 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4068 					 u16 decrement)
4069 {
4070 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4071 		return;
4072 	shinfo->gso_size -= decrement;
4073 }
4074 
4075 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4076 
4077 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4078 {
4079 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4080 	 * wanted then gso_type will be set. */
4081 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4082 
4083 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4084 	    unlikely(shinfo->gso_type == 0)) {
4085 		__skb_warn_lro_forwarding(skb);
4086 		return true;
4087 	}
4088 	return false;
4089 }
4090 
4091 static inline void skb_forward_csum(struct sk_buff *skb)
4092 {
4093 	/* Unfortunately we don't support this one.  Any brave souls? */
4094 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4095 		skb->ip_summed = CHECKSUM_NONE;
4096 }
4097 
4098 /**
4099  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4100  * @skb: skb to check
4101  *
4102  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4103  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4104  * use this helper, to document places where we make this assertion.
4105  */
4106 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4107 {
4108 #ifdef DEBUG
4109 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4110 #endif
4111 }
4112 
4113 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4114 
4115 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4116 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4117 				     unsigned int transport_len,
4118 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4119 
4120 /**
4121  * skb_head_is_locked - Determine if the skb->head is locked down
4122  * @skb: skb to check
4123  *
4124  * The head on skbs build around a head frag can be removed if they are
4125  * not cloned.  This function returns true if the skb head is locked down
4126  * due to either being allocated via kmalloc, or by being a clone with
4127  * multiple references to the head.
4128  */
4129 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4130 {
4131 	return !skb->head_frag || skb_cloned(skb);
4132 }
4133 
4134 /* Local Checksum Offload.
4135  * Compute outer checksum based on the assumption that the
4136  * inner checksum will be offloaded later.
4137  * See Documentation/networking/checksum-offloads.txt for
4138  * explanation of how this works.
4139  * Fill in outer checksum adjustment (e.g. with sum of outer
4140  * pseudo-header) before calling.
4141  * Also ensure that inner checksum is in linear data area.
4142  */
4143 static inline __wsum lco_csum(struct sk_buff *skb)
4144 {
4145 	unsigned char *csum_start = skb_checksum_start(skb);
4146 	unsigned char *l4_hdr = skb_transport_header(skb);
4147 	__wsum partial;
4148 
4149 	/* Start with complement of inner checksum adjustment */
4150 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4151 						    skb->csum_offset));
4152 
4153 	/* Add in checksum of our headers (incl. outer checksum
4154 	 * adjustment filled in by caller) and return result.
4155 	 */
4156 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4157 }
4158 
4159 #endif	/* __KERNEL__ */
4160 #endif	/* _LINUX_SKBUFF_H */
4161