xref: /openbmc/linux/include/linux/sched/mm.h (revision 54a611b6)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_MM_H
3 #define _LINUX_SCHED_MM_H
4 
5 #include <linux/kernel.h>
6 #include <linux/atomic.h>
7 #include <linux/sched.h>
8 #include <linux/mm_types.h>
9 #include <linux/gfp.h>
10 #include <linux/sync_core.h>
11 #include <linux/ioasid.h>
12 
13 /*
14  * Routines for handling mm_structs
15  */
16 extern struct mm_struct *mm_alloc(void);
17 
18 /**
19  * mmgrab() - Pin a &struct mm_struct.
20  * @mm: The &struct mm_struct to pin.
21  *
22  * Make sure that @mm will not get freed even after the owning task
23  * exits. This doesn't guarantee that the associated address space
24  * will still exist later on and mmget_not_zero() has to be used before
25  * accessing it.
26  *
27  * This is a preferred way to pin @mm for a longer/unbounded amount
28  * of time.
29  *
30  * Use mmdrop() to release the reference acquired by mmgrab().
31  *
32  * See also <Documentation/mm/active_mm.rst> for an in-depth explanation
33  * of &mm_struct.mm_count vs &mm_struct.mm_users.
34  */
35 static inline void mmgrab(struct mm_struct *mm)
36 {
37 	atomic_inc(&mm->mm_count);
38 }
39 
40 extern void __mmdrop(struct mm_struct *mm);
41 
42 static inline void mmdrop(struct mm_struct *mm)
43 {
44 	/*
45 	 * The implicit full barrier implied by atomic_dec_and_test() is
46 	 * required by the membarrier system call before returning to
47 	 * user-space, after storing to rq->curr.
48 	 */
49 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
50 		__mmdrop(mm);
51 }
52 
53 #ifdef CONFIG_PREEMPT_RT
54 /*
55  * RCU callback for delayed mm drop. Not strictly RCU, but call_rcu() is
56  * by far the least expensive way to do that.
57  */
58 static inline void __mmdrop_delayed(struct rcu_head *rhp)
59 {
60 	struct mm_struct *mm = container_of(rhp, struct mm_struct, delayed_drop);
61 
62 	__mmdrop(mm);
63 }
64 
65 /*
66  * Invoked from finish_task_switch(). Delegates the heavy lifting on RT
67  * kernels via RCU.
68  */
69 static inline void mmdrop_sched(struct mm_struct *mm)
70 {
71 	/* Provides a full memory barrier. See mmdrop() */
72 	if (atomic_dec_and_test(&mm->mm_count))
73 		call_rcu(&mm->delayed_drop, __mmdrop_delayed);
74 }
75 #else
76 static inline void mmdrop_sched(struct mm_struct *mm)
77 {
78 	mmdrop(mm);
79 }
80 #endif
81 
82 /**
83  * mmget() - Pin the address space associated with a &struct mm_struct.
84  * @mm: The address space to pin.
85  *
86  * Make sure that the address space of the given &struct mm_struct doesn't
87  * go away. This does not protect against parts of the address space being
88  * modified or freed, however.
89  *
90  * Never use this function to pin this address space for an
91  * unbounded/indefinite amount of time.
92  *
93  * Use mmput() to release the reference acquired by mmget().
94  *
95  * See also <Documentation/mm/active_mm.rst> for an in-depth explanation
96  * of &mm_struct.mm_count vs &mm_struct.mm_users.
97  */
98 static inline void mmget(struct mm_struct *mm)
99 {
100 	atomic_inc(&mm->mm_users);
101 }
102 
103 static inline bool mmget_not_zero(struct mm_struct *mm)
104 {
105 	return atomic_inc_not_zero(&mm->mm_users);
106 }
107 
108 /* mmput gets rid of the mappings and all user-space */
109 extern void mmput(struct mm_struct *);
110 #ifdef CONFIG_MMU
111 /* same as above but performs the slow path from the async context. Can
112  * be called from the atomic context as well
113  */
114 void mmput_async(struct mm_struct *);
115 #endif
116 
117 /* Grab a reference to a task's mm, if it is not already going away */
118 extern struct mm_struct *get_task_mm(struct task_struct *task);
119 /*
120  * Grab a reference to a task's mm, if it is not already going away
121  * and ptrace_may_access with the mode parameter passed to it
122  * succeeds.
123  */
124 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
125 /* Remove the current tasks stale references to the old mm_struct on exit() */
126 extern void exit_mm_release(struct task_struct *, struct mm_struct *);
127 /* Remove the current tasks stale references to the old mm_struct on exec() */
128 extern void exec_mm_release(struct task_struct *, struct mm_struct *);
129 
130 #ifdef CONFIG_MEMCG
131 extern void mm_update_next_owner(struct mm_struct *mm);
132 #else
133 static inline void mm_update_next_owner(struct mm_struct *mm)
134 {
135 }
136 #endif /* CONFIG_MEMCG */
137 
138 #ifdef CONFIG_MMU
139 #ifndef arch_get_mmap_end
140 #define arch_get_mmap_end(addr, len, flags)	(TASK_SIZE)
141 #endif
142 
143 #ifndef arch_get_mmap_base
144 #define arch_get_mmap_base(addr, base) (base)
145 #endif
146 
147 extern void arch_pick_mmap_layout(struct mm_struct *mm,
148 				  struct rlimit *rlim_stack);
149 extern unsigned long
150 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
151 		       unsigned long, unsigned long);
152 extern unsigned long
153 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
154 			  unsigned long len, unsigned long pgoff,
155 			  unsigned long flags);
156 
157 unsigned long
158 generic_get_unmapped_area(struct file *filp, unsigned long addr,
159 			  unsigned long len, unsigned long pgoff,
160 			  unsigned long flags);
161 unsigned long
162 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
163 				  unsigned long len, unsigned long pgoff,
164 				  unsigned long flags);
165 #else
166 static inline void arch_pick_mmap_layout(struct mm_struct *mm,
167 					 struct rlimit *rlim_stack) {}
168 #endif
169 
170 static inline bool in_vfork(struct task_struct *tsk)
171 {
172 	bool ret;
173 
174 	/*
175 	 * need RCU to access ->real_parent if CLONE_VM was used along with
176 	 * CLONE_PARENT.
177 	 *
178 	 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
179 	 * imply CLONE_VM
180 	 *
181 	 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
182 	 * ->real_parent is not necessarily the task doing vfork(), so in
183 	 * theory we can't rely on task_lock() if we want to dereference it.
184 	 *
185 	 * And in this case we can't trust the real_parent->mm == tsk->mm
186 	 * check, it can be false negative. But we do not care, if init or
187 	 * another oom-unkillable task does this it should blame itself.
188 	 */
189 	rcu_read_lock();
190 	ret = tsk->vfork_done &&
191 			rcu_dereference(tsk->real_parent)->mm == tsk->mm;
192 	rcu_read_unlock();
193 
194 	return ret;
195 }
196 
197 /*
198  * Applies per-task gfp context to the given allocation flags.
199  * PF_MEMALLOC_NOIO implies GFP_NOIO
200  * PF_MEMALLOC_NOFS implies GFP_NOFS
201  * PF_MEMALLOC_PIN  implies !GFP_MOVABLE
202  */
203 static inline gfp_t current_gfp_context(gfp_t flags)
204 {
205 	unsigned int pflags = READ_ONCE(current->flags);
206 
207 	if (unlikely(pflags & (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_PIN))) {
208 		/*
209 		 * NOIO implies both NOIO and NOFS and it is a weaker context
210 		 * so always make sure it makes precedence
211 		 */
212 		if (pflags & PF_MEMALLOC_NOIO)
213 			flags &= ~(__GFP_IO | __GFP_FS);
214 		else if (pflags & PF_MEMALLOC_NOFS)
215 			flags &= ~__GFP_FS;
216 
217 		if (pflags & PF_MEMALLOC_PIN)
218 			flags &= ~__GFP_MOVABLE;
219 	}
220 	return flags;
221 }
222 
223 #ifdef CONFIG_LOCKDEP
224 extern void __fs_reclaim_acquire(unsigned long ip);
225 extern void __fs_reclaim_release(unsigned long ip);
226 extern void fs_reclaim_acquire(gfp_t gfp_mask);
227 extern void fs_reclaim_release(gfp_t gfp_mask);
228 #else
229 static inline void __fs_reclaim_acquire(unsigned long ip) { }
230 static inline void __fs_reclaim_release(unsigned long ip) { }
231 static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
232 static inline void fs_reclaim_release(gfp_t gfp_mask) { }
233 #endif
234 
235 /* Any memory-allocation retry loop should use
236  * memalloc_retry_wait(), and pass the flags for the most
237  * constrained allocation attempt that might have failed.
238  * This provides useful documentation of where loops are,
239  * and a central place to fine tune the waiting as the MM
240  * implementation changes.
241  */
242 static inline void memalloc_retry_wait(gfp_t gfp_flags)
243 {
244 	/* We use io_schedule_timeout because waiting for memory
245 	 * typically included waiting for dirty pages to be
246 	 * written out, which requires IO.
247 	 */
248 	__set_current_state(TASK_UNINTERRUPTIBLE);
249 	gfp_flags = current_gfp_context(gfp_flags);
250 	if (gfpflags_allow_blocking(gfp_flags) &&
251 	    !(gfp_flags & __GFP_NORETRY))
252 		/* Probably waited already, no need for much more */
253 		io_schedule_timeout(1);
254 	else
255 		/* Probably didn't wait, and has now released a lock,
256 		 * so now is a good time to wait
257 		 */
258 		io_schedule_timeout(HZ/50);
259 }
260 
261 /**
262  * might_alloc - Mark possible allocation sites
263  * @gfp_mask: gfp_t flags that would be used to allocate
264  *
265  * Similar to might_sleep() and other annotations, this can be used in functions
266  * that might allocate, but often don't. Compiles to nothing without
267  * CONFIG_LOCKDEP. Includes a conditional might_sleep() if @gfp allows blocking.
268  */
269 static inline void might_alloc(gfp_t gfp_mask)
270 {
271 	fs_reclaim_acquire(gfp_mask);
272 	fs_reclaim_release(gfp_mask);
273 
274 	might_sleep_if(gfpflags_allow_blocking(gfp_mask));
275 }
276 
277 /**
278  * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope.
279  *
280  * This functions marks the beginning of the GFP_NOIO allocation scope.
281  * All further allocations will implicitly drop __GFP_IO flag and so
282  * they are safe for the IO critical section from the allocation recursion
283  * point of view. Use memalloc_noio_restore to end the scope with flags
284  * returned by this function.
285  *
286  * This function is safe to be used from any context.
287  */
288 static inline unsigned int memalloc_noio_save(void)
289 {
290 	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
291 	current->flags |= PF_MEMALLOC_NOIO;
292 	return flags;
293 }
294 
295 /**
296  * memalloc_noio_restore - Ends the implicit GFP_NOIO scope.
297  * @flags: Flags to restore.
298  *
299  * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function.
300  * Always make sure that the given flags is the return value from the
301  * pairing memalloc_noio_save call.
302  */
303 static inline void memalloc_noio_restore(unsigned int flags)
304 {
305 	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
306 }
307 
308 /**
309  * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope.
310  *
311  * This functions marks the beginning of the GFP_NOFS allocation scope.
312  * All further allocations will implicitly drop __GFP_FS flag and so
313  * they are safe for the FS critical section from the allocation recursion
314  * point of view. Use memalloc_nofs_restore to end the scope with flags
315  * returned by this function.
316  *
317  * This function is safe to be used from any context.
318  */
319 static inline unsigned int memalloc_nofs_save(void)
320 {
321 	unsigned int flags = current->flags & PF_MEMALLOC_NOFS;
322 	current->flags |= PF_MEMALLOC_NOFS;
323 	return flags;
324 }
325 
326 /**
327  * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope.
328  * @flags: Flags to restore.
329  *
330  * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function.
331  * Always make sure that the given flags is the return value from the
332  * pairing memalloc_nofs_save call.
333  */
334 static inline void memalloc_nofs_restore(unsigned int flags)
335 {
336 	current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags;
337 }
338 
339 static inline unsigned int memalloc_noreclaim_save(void)
340 {
341 	unsigned int flags = current->flags & PF_MEMALLOC;
342 	current->flags |= PF_MEMALLOC;
343 	return flags;
344 }
345 
346 static inline void memalloc_noreclaim_restore(unsigned int flags)
347 {
348 	current->flags = (current->flags & ~PF_MEMALLOC) | flags;
349 }
350 
351 static inline unsigned int memalloc_pin_save(void)
352 {
353 	unsigned int flags = current->flags & PF_MEMALLOC_PIN;
354 
355 	current->flags |= PF_MEMALLOC_PIN;
356 	return flags;
357 }
358 
359 static inline void memalloc_pin_restore(unsigned int flags)
360 {
361 	current->flags = (current->flags & ~PF_MEMALLOC_PIN) | flags;
362 }
363 
364 #ifdef CONFIG_MEMCG
365 DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg);
366 /**
367  * set_active_memcg - Starts the remote memcg charging scope.
368  * @memcg: memcg to charge.
369  *
370  * This function marks the beginning of the remote memcg charging scope. All the
371  * __GFP_ACCOUNT allocations till the end of the scope will be charged to the
372  * given memcg.
373  *
374  * NOTE: This function can nest. Users must save the return value and
375  * reset the previous value after their own charging scope is over.
376  */
377 static inline struct mem_cgroup *
378 set_active_memcg(struct mem_cgroup *memcg)
379 {
380 	struct mem_cgroup *old;
381 
382 	if (!in_task()) {
383 		old = this_cpu_read(int_active_memcg);
384 		this_cpu_write(int_active_memcg, memcg);
385 	} else {
386 		old = current->active_memcg;
387 		current->active_memcg = memcg;
388 	}
389 
390 	return old;
391 }
392 #else
393 static inline struct mem_cgroup *
394 set_active_memcg(struct mem_cgroup *memcg)
395 {
396 	return NULL;
397 }
398 #endif
399 
400 #ifdef CONFIG_MEMBARRIER
401 enum {
402 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY		= (1U << 0),
403 	MEMBARRIER_STATE_PRIVATE_EXPEDITED			= (1U << 1),
404 	MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY			= (1U << 2),
405 	MEMBARRIER_STATE_GLOBAL_EXPEDITED			= (1U << 3),
406 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY	= (1U << 4),
407 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE		= (1U << 5),
408 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY		= (1U << 6),
409 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ			= (1U << 7),
410 };
411 
412 enum {
413 	MEMBARRIER_FLAG_SYNC_CORE	= (1U << 0),
414 	MEMBARRIER_FLAG_RSEQ		= (1U << 1),
415 };
416 
417 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
418 #include <asm/membarrier.h>
419 #endif
420 
421 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
422 {
423 	if (current->mm != mm)
424 		return;
425 	if (likely(!(atomic_read(&mm->membarrier_state) &
426 		     MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
427 		return;
428 	sync_core_before_usermode();
429 }
430 
431 extern void membarrier_exec_mmap(struct mm_struct *mm);
432 
433 extern void membarrier_update_current_mm(struct mm_struct *next_mm);
434 
435 #else
436 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
437 static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
438 					     struct mm_struct *next,
439 					     struct task_struct *tsk)
440 {
441 }
442 #endif
443 static inline void membarrier_exec_mmap(struct mm_struct *mm)
444 {
445 }
446 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
447 {
448 }
449 static inline void membarrier_update_current_mm(struct mm_struct *next_mm)
450 {
451 }
452 #endif
453 
454 #ifdef CONFIG_IOMMU_SVA
455 static inline void mm_pasid_init(struct mm_struct *mm)
456 {
457 	mm->pasid = INVALID_IOASID;
458 }
459 
460 /* Associate a PASID with an mm_struct: */
461 static inline void mm_pasid_set(struct mm_struct *mm, u32 pasid)
462 {
463 	mm->pasid = pasid;
464 }
465 
466 static inline void mm_pasid_drop(struct mm_struct *mm)
467 {
468 	if (pasid_valid(mm->pasid)) {
469 		ioasid_free(mm->pasid);
470 		mm->pasid = INVALID_IOASID;
471 	}
472 }
473 #else
474 static inline void mm_pasid_init(struct mm_struct *mm) {}
475 static inline void mm_pasid_set(struct mm_struct *mm, u32 pasid) {}
476 static inline void mm_pasid_drop(struct mm_struct *mm) {}
477 #endif
478 
479 #endif /* _LINUX_SCHED_MM_H */
480