xref: /openbmc/linux/include/linux/sched.h (revision efe4a1ac)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 /*
5  * Define 'struct task_struct' and provide the main scheduler
6  * APIs (schedule(), wakeup variants, etc.)
7  */
8 
9 #include <uapi/linux/sched.h>
10 
11 #include <asm/current.h>
12 
13 #include <linux/pid.h>
14 #include <linux/sem.h>
15 #include <linux/shm.h>
16 #include <linux/kcov.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/seccomp.h>
21 #include <linux/nodemask.h>
22 #include <linux/rcupdate.h>
23 #include <linux/resource.h>
24 #include <linux/latencytop.h>
25 #include <linux/sched/prio.h>
26 #include <linux/signal_types.h>
27 #include <linux/mm_types_task.h>
28 #include <linux/task_io_accounting.h>
29 
30 /* task_struct member predeclarations (sorted alphabetically): */
31 struct audit_context;
32 struct backing_dev_info;
33 struct bio_list;
34 struct blk_plug;
35 struct cfs_rq;
36 struct fs_struct;
37 struct futex_pi_state;
38 struct io_context;
39 struct mempolicy;
40 struct nameidata;
41 struct nsproxy;
42 struct perf_event_context;
43 struct pid_namespace;
44 struct pipe_inode_info;
45 struct rcu_node;
46 struct reclaim_state;
47 struct robust_list_head;
48 struct sched_attr;
49 struct sched_param;
50 struct seq_file;
51 struct sighand_struct;
52 struct signal_struct;
53 struct task_delay_info;
54 struct task_group;
55 
56 /*
57  * Task state bitmask. NOTE! These bits are also
58  * encoded in fs/proc/array.c: get_task_state().
59  *
60  * We have two separate sets of flags: task->state
61  * is about runnability, while task->exit_state are
62  * about the task exiting. Confusing, but this way
63  * modifying one set can't modify the other one by
64  * mistake.
65  */
66 
67 /* Used in tsk->state: */
68 #define TASK_RUNNING			0
69 #define TASK_INTERRUPTIBLE		1
70 #define TASK_UNINTERRUPTIBLE		2
71 #define __TASK_STOPPED			4
72 #define __TASK_TRACED			8
73 /* Used in tsk->exit_state: */
74 #define EXIT_DEAD			16
75 #define EXIT_ZOMBIE			32
76 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
77 /* Used in tsk->state again: */
78 #define TASK_DEAD			64
79 #define TASK_WAKEKILL			128
80 #define TASK_WAKING			256
81 #define TASK_PARKED			512
82 #define TASK_NOLOAD			1024
83 #define TASK_NEW			2048
84 #define TASK_STATE_MAX			4096
85 
86 #define TASK_STATE_TO_CHAR_STR		"RSDTtXZxKWPNn"
87 
88 /* Convenience macros for the sake of set_current_state: */
89 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
90 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
91 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
92 
93 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
94 
95 /* Convenience macros for the sake of wake_up(): */
96 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
97 #define TASK_ALL			(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
98 
99 /* get_task_state(): */
100 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
101 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
102 					 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
103 
104 #define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)
105 
106 #define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)
107 
108 #define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109 
110 #define task_contributes_to_load(task)	((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 					 (task->flags & PF_FROZEN) == 0 && \
112 					 (task->state & TASK_NOLOAD) == 0)
113 
114 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115 
116 #define __set_current_state(state_value)			\
117 	do {							\
118 		current->task_state_change = _THIS_IP_;		\
119 		current->state = (state_value);			\
120 	} while (0)
121 #define set_current_state(state_value)				\
122 	do {							\
123 		current->task_state_change = _THIS_IP_;		\
124 		smp_store_mb(current->state, (state_value));	\
125 	} while (0)
126 
127 #else
128 /*
129  * set_current_state() includes a barrier so that the write of current->state
130  * is correctly serialised wrt the caller's subsequent test of whether to
131  * actually sleep:
132  *
133  *   for (;;) {
134  *	set_current_state(TASK_UNINTERRUPTIBLE);
135  *	if (!need_sleep)
136  *		break;
137  *
138  *	schedule();
139  *   }
140  *   __set_current_state(TASK_RUNNING);
141  *
142  * If the caller does not need such serialisation (because, for instance, the
143  * condition test and condition change and wakeup are under the same lock) then
144  * use __set_current_state().
145  *
146  * The above is typically ordered against the wakeup, which does:
147  *
148  *	need_sleep = false;
149  *	wake_up_state(p, TASK_UNINTERRUPTIBLE);
150  *
151  * Where wake_up_state() (and all other wakeup primitives) imply enough
152  * barriers to order the store of the variable against wakeup.
153  *
154  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
155  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
156  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
157  *
158  * This is obviously fine, since they both store the exact same value.
159  *
160  * Also see the comments of try_to_wake_up().
161  */
162 #define __set_current_state(state_value) do { current->state = (state_value); } while (0)
163 #define set_current_state(state_value)	 smp_store_mb(current->state, (state_value))
164 #endif
165 
166 /* Task command name length: */
167 #define TASK_COMM_LEN			16
168 
169 extern cpumask_var_t			cpu_isolated_map;
170 
171 extern void scheduler_tick(void);
172 
173 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
174 
175 extern long schedule_timeout(long timeout);
176 extern long schedule_timeout_interruptible(long timeout);
177 extern long schedule_timeout_killable(long timeout);
178 extern long schedule_timeout_uninterruptible(long timeout);
179 extern long schedule_timeout_idle(long timeout);
180 asmlinkage void schedule(void);
181 extern void schedule_preempt_disabled(void);
182 
183 extern int __must_check io_schedule_prepare(void);
184 extern void io_schedule_finish(int token);
185 extern long io_schedule_timeout(long timeout);
186 extern void io_schedule(void);
187 
188 /**
189  * struct prev_cputime - snapshot of system and user cputime
190  * @utime: time spent in user mode
191  * @stime: time spent in system mode
192  * @lock: protects the above two fields
193  *
194  * Stores previous user/system time values such that we can guarantee
195  * monotonicity.
196  */
197 struct prev_cputime {
198 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
199 	u64				utime;
200 	u64				stime;
201 	raw_spinlock_t			lock;
202 #endif
203 };
204 
205 /**
206  * struct task_cputime - collected CPU time counts
207  * @utime:		time spent in user mode, in nanoseconds
208  * @stime:		time spent in kernel mode, in nanoseconds
209  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
210  *
211  * This structure groups together three kinds of CPU time that are tracked for
212  * threads and thread groups.  Most things considering CPU time want to group
213  * these counts together and treat all three of them in parallel.
214  */
215 struct task_cputime {
216 	u64				utime;
217 	u64				stime;
218 	unsigned long long		sum_exec_runtime;
219 };
220 
221 /* Alternate field names when used on cache expirations: */
222 #define virt_exp			utime
223 #define prof_exp			stime
224 #define sched_exp			sum_exec_runtime
225 
226 struct sched_info {
227 #ifdef CONFIG_SCHED_INFO
228 	/* Cumulative counters: */
229 
230 	/* # of times we have run on this CPU: */
231 	unsigned long			pcount;
232 
233 	/* Time spent waiting on a runqueue: */
234 	unsigned long long		run_delay;
235 
236 	/* Timestamps: */
237 
238 	/* When did we last run on a CPU? */
239 	unsigned long long		last_arrival;
240 
241 	/* When were we last queued to run? */
242 	unsigned long long		last_queued;
243 
244 #endif /* CONFIG_SCHED_INFO */
245 };
246 
247 /*
248  * Integer metrics need fixed point arithmetic, e.g., sched/fair
249  * has a few: load, load_avg, util_avg, freq, and capacity.
250  *
251  * We define a basic fixed point arithmetic range, and then formalize
252  * all these metrics based on that basic range.
253  */
254 # define SCHED_FIXEDPOINT_SHIFT		10
255 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
256 
257 struct load_weight {
258 	unsigned long			weight;
259 	u32				inv_weight;
260 };
261 
262 /*
263  * The load_avg/util_avg accumulates an infinite geometric series
264  * (see __update_load_avg() in kernel/sched/fair.c).
265  *
266  * [load_avg definition]
267  *
268  *   load_avg = runnable% * scale_load_down(load)
269  *
270  * where runnable% is the time ratio that a sched_entity is runnable.
271  * For cfs_rq, it is the aggregated load_avg of all runnable and
272  * blocked sched_entities.
273  *
274  * load_avg may also take frequency scaling into account:
275  *
276  *   load_avg = runnable% * scale_load_down(load) * freq%
277  *
278  * where freq% is the CPU frequency normalized to the highest frequency.
279  *
280  * [util_avg definition]
281  *
282  *   util_avg = running% * SCHED_CAPACITY_SCALE
283  *
284  * where running% is the time ratio that a sched_entity is running on
285  * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
286  * and blocked sched_entities.
287  *
288  * util_avg may also factor frequency scaling and CPU capacity scaling:
289  *
290  *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
291  *
292  * where freq% is the same as above, and capacity% is the CPU capacity
293  * normalized to the greatest capacity (due to uarch differences, etc).
294  *
295  * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
296  * themselves are in the range of [0, 1]. To do fixed point arithmetics,
297  * we therefore scale them to as large a range as necessary. This is for
298  * example reflected by util_avg's SCHED_CAPACITY_SCALE.
299  *
300  * [Overflow issue]
301  *
302  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
303  * with the highest load (=88761), always runnable on a single cfs_rq,
304  * and should not overflow as the number already hits PID_MAX_LIMIT.
305  *
306  * For all other cases (including 32-bit kernels), struct load_weight's
307  * weight will overflow first before we do, because:
308  *
309  *    Max(load_avg) <= Max(load.weight)
310  *
311  * Then it is the load_weight's responsibility to consider overflow
312  * issues.
313  */
314 struct sched_avg {
315 	u64				last_update_time;
316 	u64				load_sum;
317 	u32				util_sum;
318 	u32				period_contrib;
319 	unsigned long			load_avg;
320 	unsigned long			util_avg;
321 };
322 
323 struct sched_statistics {
324 #ifdef CONFIG_SCHEDSTATS
325 	u64				wait_start;
326 	u64				wait_max;
327 	u64				wait_count;
328 	u64				wait_sum;
329 	u64				iowait_count;
330 	u64				iowait_sum;
331 
332 	u64				sleep_start;
333 	u64				sleep_max;
334 	s64				sum_sleep_runtime;
335 
336 	u64				block_start;
337 	u64				block_max;
338 	u64				exec_max;
339 	u64				slice_max;
340 
341 	u64				nr_migrations_cold;
342 	u64				nr_failed_migrations_affine;
343 	u64				nr_failed_migrations_running;
344 	u64				nr_failed_migrations_hot;
345 	u64				nr_forced_migrations;
346 
347 	u64				nr_wakeups;
348 	u64				nr_wakeups_sync;
349 	u64				nr_wakeups_migrate;
350 	u64				nr_wakeups_local;
351 	u64				nr_wakeups_remote;
352 	u64				nr_wakeups_affine;
353 	u64				nr_wakeups_affine_attempts;
354 	u64				nr_wakeups_passive;
355 	u64				nr_wakeups_idle;
356 #endif
357 };
358 
359 struct sched_entity {
360 	/* For load-balancing: */
361 	struct load_weight		load;
362 	struct rb_node			run_node;
363 	struct list_head		group_node;
364 	unsigned int			on_rq;
365 
366 	u64				exec_start;
367 	u64				sum_exec_runtime;
368 	u64				vruntime;
369 	u64				prev_sum_exec_runtime;
370 
371 	u64				nr_migrations;
372 
373 	struct sched_statistics		statistics;
374 
375 #ifdef CONFIG_FAIR_GROUP_SCHED
376 	int				depth;
377 	struct sched_entity		*parent;
378 	/* rq on which this entity is (to be) queued: */
379 	struct cfs_rq			*cfs_rq;
380 	/* rq "owned" by this entity/group: */
381 	struct cfs_rq			*my_q;
382 #endif
383 
384 #ifdef CONFIG_SMP
385 	/*
386 	 * Per entity load average tracking.
387 	 *
388 	 * Put into separate cache line so it does not
389 	 * collide with read-mostly values above.
390 	 */
391 	struct sched_avg		avg ____cacheline_aligned_in_smp;
392 #endif
393 };
394 
395 struct sched_rt_entity {
396 	struct list_head		run_list;
397 	unsigned long			timeout;
398 	unsigned long			watchdog_stamp;
399 	unsigned int			time_slice;
400 	unsigned short			on_rq;
401 	unsigned short			on_list;
402 
403 	struct sched_rt_entity		*back;
404 #ifdef CONFIG_RT_GROUP_SCHED
405 	struct sched_rt_entity		*parent;
406 	/* rq on which this entity is (to be) queued: */
407 	struct rt_rq			*rt_rq;
408 	/* rq "owned" by this entity/group: */
409 	struct rt_rq			*my_q;
410 #endif
411 };
412 
413 struct sched_dl_entity {
414 	struct rb_node			rb_node;
415 
416 	/*
417 	 * Original scheduling parameters. Copied here from sched_attr
418 	 * during sched_setattr(), they will remain the same until
419 	 * the next sched_setattr().
420 	 */
421 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
422 	u64				dl_deadline;	/* Relative deadline of each instance	*/
423 	u64				dl_period;	/* Separation of two instances (period) */
424 	u64				dl_bw;		/* dl_runtime / dl_deadline		*/
425 
426 	/*
427 	 * Actual scheduling parameters. Initialized with the values above,
428 	 * they are continously updated during task execution. Note that
429 	 * the remaining runtime could be < 0 in case we are in overrun.
430 	 */
431 	s64				runtime;	/* Remaining runtime for this instance	*/
432 	u64				deadline;	/* Absolute deadline for this instance	*/
433 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
434 
435 	/*
436 	 * Some bool flags:
437 	 *
438 	 * @dl_throttled tells if we exhausted the runtime. If so, the
439 	 * task has to wait for a replenishment to be performed at the
440 	 * next firing of dl_timer.
441 	 *
442 	 * @dl_boosted tells if we are boosted due to DI. If so we are
443 	 * outside bandwidth enforcement mechanism (but only until we
444 	 * exit the critical section);
445 	 *
446 	 * @dl_yielded tells if task gave up the CPU before consuming
447 	 * all its available runtime during the last job.
448 	 */
449 	int				dl_throttled;
450 	int				dl_boosted;
451 	int				dl_yielded;
452 
453 	/*
454 	 * Bandwidth enforcement timer. Each -deadline task has its
455 	 * own bandwidth to be enforced, thus we need one timer per task.
456 	 */
457 	struct hrtimer			dl_timer;
458 };
459 
460 union rcu_special {
461 	struct {
462 		u8			blocked;
463 		u8			need_qs;
464 		u8			exp_need_qs;
465 
466 		/* Otherwise the compiler can store garbage here: */
467 		u8			pad;
468 	} b; /* Bits. */
469 	u32 s; /* Set of bits. */
470 };
471 
472 enum perf_event_task_context {
473 	perf_invalid_context = -1,
474 	perf_hw_context = 0,
475 	perf_sw_context,
476 	perf_nr_task_contexts,
477 };
478 
479 struct wake_q_node {
480 	struct wake_q_node *next;
481 };
482 
483 struct task_struct {
484 #ifdef CONFIG_THREAD_INFO_IN_TASK
485 	/*
486 	 * For reasons of header soup (see current_thread_info()), this
487 	 * must be the first element of task_struct.
488 	 */
489 	struct thread_info		thread_info;
490 #endif
491 	/* -1 unrunnable, 0 runnable, >0 stopped: */
492 	volatile long			state;
493 	void				*stack;
494 	atomic_t			usage;
495 	/* Per task flags (PF_*), defined further below: */
496 	unsigned int			flags;
497 	unsigned int			ptrace;
498 
499 #ifdef CONFIG_SMP
500 	struct llist_node		wake_entry;
501 	int				on_cpu;
502 #ifdef CONFIG_THREAD_INFO_IN_TASK
503 	/* Current CPU: */
504 	unsigned int			cpu;
505 #endif
506 	unsigned int			wakee_flips;
507 	unsigned long			wakee_flip_decay_ts;
508 	struct task_struct		*last_wakee;
509 
510 	int				wake_cpu;
511 #endif
512 	int				on_rq;
513 
514 	int				prio;
515 	int				static_prio;
516 	int				normal_prio;
517 	unsigned int			rt_priority;
518 
519 	const struct sched_class	*sched_class;
520 	struct sched_entity		se;
521 	struct sched_rt_entity		rt;
522 #ifdef CONFIG_CGROUP_SCHED
523 	struct task_group		*sched_task_group;
524 #endif
525 	struct sched_dl_entity		dl;
526 
527 #ifdef CONFIG_PREEMPT_NOTIFIERS
528 	/* List of struct preempt_notifier: */
529 	struct hlist_head		preempt_notifiers;
530 #endif
531 
532 #ifdef CONFIG_BLK_DEV_IO_TRACE
533 	unsigned int			btrace_seq;
534 #endif
535 
536 	unsigned int			policy;
537 	int				nr_cpus_allowed;
538 	cpumask_t			cpus_allowed;
539 
540 #ifdef CONFIG_PREEMPT_RCU
541 	int				rcu_read_lock_nesting;
542 	union rcu_special		rcu_read_unlock_special;
543 	struct list_head		rcu_node_entry;
544 	struct rcu_node			*rcu_blocked_node;
545 #endif /* #ifdef CONFIG_PREEMPT_RCU */
546 
547 #ifdef CONFIG_TASKS_RCU
548 	unsigned long			rcu_tasks_nvcsw;
549 	bool				rcu_tasks_holdout;
550 	struct list_head		rcu_tasks_holdout_list;
551 	int				rcu_tasks_idle_cpu;
552 #endif /* #ifdef CONFIG_TASKS_RCU */
553 
554 	struct sched_info		sched_info;
555 
556 	struct list_head		tasks;
557 #ifdef CONFIG_SMP
558 	struct plist_node		pushable_tasks;
559 	struct rb_node			pushable_dl_tasks;
560 #endif
561 
562 	struct mm_struct		*mm;
563 	struct mm_struct		*active_mm;
564 
565 	/* Per-thread vma caching: */
566 	struct vmacache			vmacache;
567 
568 #ifdef SPLIT_RSS_COUNTING
569 	struct task_rss_stat		rss_stat;
570 #endif
571 	int				exit_state;
572 	int				exit_code;
573 	int				exit_signal;
574 	/* The signal sent when the parent dies: */
575 	int				pdeath_signal;
576 	/* JOBCTL_*, siglock protected: */
577 	unsigned long			jobctl;
578 
579 	/* Used for emulating ABI behavior of previous Linux versions: */
580 	unsigned int			personality;
581 
582 	/* Scheduler bits, serialized by scheduler locks: */
583 	unsigned			sched_reset_on_fork:1;
584 	unsigned			sched_contributes_to_load:1;
585 	unsigned			sched_migrated:1;
586 	unsigned			sched_remote_wakeup:1;
587 	/* Force alignment to the next boundary: */
588 	unsigned			:0;
589 
590 	/* Unserialized, strictly 'current' */
591 
592 	/* Bit to tell LSMs we're in execve(): */
593 	unsigned			in_execve:1;
594 	unsigned			in_iowait:1;
595 #ifndef TIF_RESTORE_SIGMASK
596 	unsigned			restore_sigmask:1;
597 #endif
598 #ifdef CONFIG_MEMCG
599 	unsigned			memcg_may_oom:1;
600 #ifndef CONFIG_SLOB
601 	unsigned			memcg_kmem_skip_account:1;
602 #endif
603 #endif
604 #ifdef CONFIG_COMPAT_BRK
605 	unsigned			brk_randomized:1;
606 #endif
607 #ifdef CONFIG_CGROUPS
608 	/* disallow userland-initiated cgroup migration */
609 	unsigned			no_cgroup_migration:1;
610 #endif
611 
612 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
613 
614 	struct restart_block		restart_block;
615 
616 	pid_t				pid;
617 	pid_t				tgid;
618 
619 #ifdef CONFIG_CC_STACKPROTECTOR
620 	/* Canary value for the -fstack-protector GCC feature: */
621 	unsigned long			stack_canary;
622 #endif
623 	/*
624 	 * Pointers to the (original) parent process, youngest child, younger sibling,
625 	 * older sibling, respectively.  (p->father can be replaced with
626 	 * p->real_parent->pid)
627 	 */
628 
629 	/* Real parent process: */
630 	struct task_struct __rcu	*real_parent;
631 
632 	/* Recipient of SIGCHLD, wait4() reports: */
633 	struct task_struct __rcu	*parent;
634 
635 	/*
636 	 * Children/sibling form the list of natural children:
637 	 */
638 	struct list_head		children;
639 	struct list_head		sibling;
640 	struct task_struct		*group_leader;
641 
642 	/*
643 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
644 	 *
645 	 * This includes both natural children and PTRACE_ATTACH targets.
646 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
647 	 */
648 	struct list_head		ptraced;
649 	struct list_head		ptrace_entry;
650 
651 	/* PID/PID hash table linkage. */
652 	struct pid_link			pids[PIDTYPE_MAX];
653 	struct list_head		thread_group;
654 	struct list_head		thread_node;
655 
656 	struct completion		*vfork_done;
657 
658 	/* CLONE_CHILD_SETTID: */
659 	int __user			*set_child_tid;
660 
661 	/* CLONE_CHILD_CLEARTID: */
662 	int __user			*clear_child_tid;
663 
664 	u64				utime;
665 	u64				stime;
666 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
667 	u64				utimescaled;
668 	u64				stimescaled;
669 #endif
670 	u64				gtime;
671 	struct prev_cputime		prev_cputime;
672 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
673 	seqcount_t			vtime_seqcount;
674 	unsigned long long		vtime_snap;
675 	enum {
676 		/* Task is sleeping or running in a CPU with VTIME inactive: */
677 		VTIME_INACTIVE = 0,
678 		/* Task runs in userspace in a CPU with VTIME active: */
679 		VTIME_USER,
680 		/* Task runs in kernelspace in a CPU with VTIME active: */
681 		VTIME_SYS,
682 	} vtime_snap_whence;
683 #endif
684 
685 #ifdef CONFIG_NO_HZ_FULL
686 	atomic_t			tick_dep_mask;
687 #endif
688 	/* Context switch counts: */
689 	unsigned long			nvcsw;
690 	unsigned long			nivcsw;
691 
692 	/* Monotonic time in nsecs: */
693 	u64				start_time;
694 
695 	/* Boot based time in nsecs: */
696 	u64				real_start_time;
697 
698 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
699 	unsigned long			min_flt;
700 	unsigned long			maj_flt;
701 
702 #ifdef CONFIG_POSIX_TIMERS
703 	struct task_cputime		cputime_expires;
704 	struct list_head		cpu_timers[3];
705 #endif
706 
707 	/* Process credentials: */
708 
709 	/* Tracer's credentials at attach: */
710 	const struct cred __rcu		*ptracer_cred;
711 
712 	/* Objective and real subjective task credentials (COW): */
713 	const struct cred __rcu		*real_cred;
714 
715 	/* Effective (overridable) subjective task credentials (COW): */
716 	const struct cred __rcu		*cred;
717 
718 	/*
719 	 * executable name, excluding path.
720 	 *
721 	 * - normally initialized setup_new_exec()
722 	 * - access it with [gs]et_task_comm()
723 	 * - lock it with task_lock()
724 	 */
725 	char				comm[TASK_COMM_LEN];
726 
727 	struct nameidata		*nameidata;
728 
729 #ifdef CONFIG_SYSVIPC
730 	struct sysv_sem			sysvsem;
731 	struct sysv_shm			sysvshm;
732 #endif
733 #ifdef CONFIG_DETECT_HUNG_TASK
734 	unsigned long			last_switch_count;
735 #endif
736 	/* Filesystem information: */
737 	struct fs_struct		*fs;
738 
739 	/* Open file information: */
740 	struct files_struct		*files;
741 
742 	/* Namespaces: */
743 	struct nsproxy			*nsproxy;
744 
745 	/* Signal handlers: */
746 	struct signal_struct		*signal;
747 	struct sighand_struct		*sighand;
748 	sigset_t			blocked;
749 	sigset_t			real_blocked;
750 	/* Restored if set_restore_sigmask() was used: */
751 	sigset_t			saved_sigmask;
752 	struct sigpending		pending;
753 	unsigned long			sas_ss_sp;
754 	size_t				sas_ss_size;
755 	unsigned int			sas_ss_flags;
756 
757 	struct callback_head		*task_works;
758 
759 	struct audit_context		*audit_context;
760 #ifdef CONFIG_AUDITSYSCALL
761 	kuid_t				loginuid;
762 	unsigned int			sessionid;
763 #endif
764 	struct seccomp			seccomp;
765 
766 	/* Thread group tracking: */
767 	u32				parent_exec_id;
768 	u32				self_exec_id;
769 
770 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
771 	spinlock_t			alloc_lock;
772 
773 	/* Protection of the PI data structures: */
774 	raw_spinlock_t			pi_lock;
775 
776 	struct wake_q_node		wake_q;
777 
778 #ifdef CONFIG_RT_MUTEXES
779 	/* PI waiters blocked on a rt_mutex held by this task: */
780 	struct rb_root			pi_waiters;
781 	struct rb_node			*pi_waiters_leftmost;
782 	/* Updated under owner's pi_lock and rq lock */
783 	struct task_struct		*pi_top_task;
784 	/* Deadlock detection and priority inheritance handling: */
785 	struct rt_mutex_waiter		*pi_blocked_on;
786 #endif
787 
788 #ifdef CONFIG_DEBUG_MUTEXES
789 	/* Mutex deadlock detection: */
790 	struct mutex_waiter		*blocked_on;
791 #endif
792 
793 #ifdef CONFIG_TRACE_IRQFLAGS
794 	unsigned int			irq_events;
795 	unsigned long			hardirq_enable_ip;
796 	unsigned long			hardirq_disable_ip;
797 	unsigned int			hardirq_enable_event;
798 	unsigned int			hardirq_disable_event;
799 	int				hardirqs_enabled;
800 	int				hardirq_context;
801 	unsigned long			softirq_disable_ip;
802 	unsigned long			softirq_enable_ip;
803 	unsigned int			softirq_disable_event;
804 	unsigned int			softirq_enable_event;
805 	int				softirqs_enabled;
806 	int				softirq_context;
807 #endif
808 
809 #ifdef CONFIG_LOCKDEP
810 # define MAX_LOCK_DEPTH			48UL
811 	u64				curr_chain_key;
812 	int				lockdep_depth;
813 	unsigned int			lockdep_recursion;
814 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
815 	gfp_t				lockdep_reclaim_gfp;
816 #endif
817 
818 #ifdef CONFIG_UBSAN
819 	unsigned int			in_ubsan;
820 #endif
821 
822 	/* Journalling filesystem info: */
823 	void				*journal_info;
824 
825 	/* Stacked block device info: */
826 	struct bio_list			*bio_list;
827 
828 #ifdef CONFIG_BLOCK
829 	/* Stack plugging: */
830 	struct blk_plug			*plug;
831 #endif
832 
833 	/* VM state: */
834 	struct reclaim_state		*reclaim_state;
835 
836 	struct backing_dev_info		*backing_dev_info;
837 
838 	struct io_context		*io_context;
839 
840 	/* Ptrace state: */
841 	unsigned long			ptrace_message;
842 	siginfo_t			*last_siginfo;
843 
844 	struct task_io_accounting	ioac;
845 #ifdef CONFIG_TASK_XACCT
846 	/* Accumulated RSS usage: */
847 	u64				acct_rss_mem1;
848 	/* Accumulated virtual memory usage: */
849 	u64				acct_vm_mem1;
850 	/* stime + utime since last update: */
851 	u64				acct_timexpd;
852 #endif
853 #ifdef CONFIG_CPUSETS
854 	/* Protected by ->alloc_lock: */
855 	nodemask_t			mems_allowed;
856 	/* Seqence number to catch updates: */
857 	seqcount_t			mems_allowed_seq;
858 	int				cpuset_mem_spread_rotor;
859 	int				cpuset_slab_spread_rotor;
860 #endif
861 #ifdef CONFIG_CGROUPS
862 	/* Control Group info protected by css_set_lock: */
863 	struct css_set __rcu		*cgroups;
864 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
865 	struct list_head		cg_list;
866 #endif
867 #ifdef CONFIG_INTEL_RDT_A
868 	int				closid;
869 #endif
870 #ifdef CONFIG_FUTEX
871 	struct robust_list_head __user	*robust_list;
872 #ifdef CONFIG_COMPAT
873 	struct compat_robust_list_head __user *compat_robust_list;
874 #endif
875 	struct list_head		pi_state_list;
876 	struct futex_pi_state		*pi_state_cache;
877 #endif
878 #ifdef CONFIG_PERF_EVENTS
879 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
880 	struct mutex			perf_event_mutex;
881 	struct list_head		perf_event_list;
882 #endif
883 #ifdef CONFIG_DEBUG_PREEMPT
884 	unsigned long			preempt_disable_ip;
885 #endif
886 #ifdef CONFIG_NUMA
887 	/* Protected by alloc_lock: */
888 	struct mempolicy		*mempolicy;
889 	short				il_next;
890 	short				pref_node_fork;
891 #endif
892 #ifdef CONFIG_NUMA_BALANCING
893 	int				numa_scan_seq;
894 	unsigned int			numa_scan_period;
895 	unsigned int			numa_scan_period_max;
896 	int				numa_preferred_nid;
897 	unsigned long			numa_migrate_retry;
898 	/* Migration stamp: */
899 	u64				node_stamp;
900 	u64				last_task_numa_placement;
901 	u64				last_sum_exec_runtime;
902 	struct callback_head		numa_work;
903 
904 	struct list_head		numa_entry;
905 	struct numa_group		*numa_group;
906 
907 	/*
908 	 * numa_faults is an array split into four regions:
909 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
910 	 * in this precise order.
911 	 *
912 	 * faults_memory: Exponential decaying average of faults on a per-node
913 	 * basis. Scheduling placement decisions are made based on these
914 	 * counts. The values remain static for the duration of a PTE scan.
915 	 * faults_cpu: Track the nodes the process was running on when a NUMA
916 	 * hinting fault was incurred.
917 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
918 	 * during the current scan window. When the scan completes, the counts
919 	 * in faults_memory and faults_cpu decay and these values are copied.
920 	 */
921 	unsigned long			*numa_faults;
922 	unsigned long			total_numa_faults;
923 
924 	/*
925 	 * numa_faults_locality tracks if faults recorded during the last
926 	 * scan window were remote/local or failed to migrate. The task scan
927 	 * period is adapted based on the locality of the faults with different
928 	 * weights depending on whether they were shared or private faults
929 	 */
930 	unsigned long			numa_faults_locality[3];
931 
932 	unsigned long			numa_pages_migrated;
933 #endif /* CONFIG_NUMA_BALANCING */
934 
935 	struct tlbflush_unmap_batch	tlb_ubc;
936 
937 	struct rcu_head			rcu;
938 
939 	/* Cache last used pipe for splice(): */
940 	struct pipe_inode_info		*splice_pipe;
941 
942 	struct page_frag		task_frag;
943 
944 #ifdef CONFIG_TASK_DELAY_ACCT
945 	struct task_delay_info		*delays;
946 #endif
947 
948 #ifdef CONFIG_FAULT_INJECTION
949 	int				make_it_fail;
950 #endif
951 	/*
952 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
953 	 * balance_dirty_pages() for a dirty throttling pause:
954 	 */
955 	int				nr_dirtied;
956 	int				nr_dirtied_pause;
957 	/* Start of a write-and-pause period: */
958 	unsigned long			dirty_paused_when;
959 
960 #ifdef CONFIG_LATENCYTOP
961 	int				latency_record_count;
962 	struct latency_record		latency_record[LT_SAVECOUNT];
963 #endif
964 	/*
965 	 * Time slack values; these are used to round up poll() and
966 	 * select() etc timeout values. These are in nanoseconds.
967 	 */
968 	u64				timer_slack_ns;
969 	u64				default_timer_slack_ns;
970 
971 #ifdef CONFIG_KASAN
972 	unsigned int			kasan_depth;
973 #endif
974 
975 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
976 	/* Index of current stored address in ret_stack: */
977 	int				curr_ret_stack;
978 
979 	/* Stack of return addresses for return function tracing: */
980 	struct ftrace_ret_stack		*ret_stack;
981 
982 	/* Timestamp for last schedule: */
983 	unsigned long long		ftrace_timestamp;
984 
985 	/*
986 	 * Number of functions that haven't been traced
987 	 * because of depth overrun:
988 	 */
989 	atomic_t			trace_overrun;
990 
991 	/* Pause tracing: */
992 	atomic_t			tracing_graph_pause;
993 #endif
994 
995 #ifdef CONFIG_TRACING
996 	/* State flags for use by tracers: */
997 	unsigned long			trace;
998 
999 	/* Bitmask and counter of trace recursion: */
1000 	unsigned long			trace_recursion;
1001 #endif /* CONFIG_TRACING */
1002 
1003 #ifdef CONFIG_KCOV
1004 	/* Coverage collection mode enabled for this task (0 if disabled): */
1005 	enum kcov_mode			kcov_mode;
1006 
1007 	/* Size of the kcov_area: */
1008 	unsigned int			kcov_size;
1009 
1010 	/* Buffer for coverage collection: */
1011 	void				*kcov_area;
1012 
1013 	/* KCOV descriptor wired with this task or NULL: */
1014 	struct kcov			*kcov;
1015 #endif
1016 
1017 #ifdef CONFIG_MEMCG
1018 	struct mem_cgroup		*memcg_in_oom;
1019 	gfp_t				memcg_oom_gfp_mask;
1020 	int				memcg_oom_order;
1021 
1022 	/* Number of pages to reclaim on returning to userland: */
1023 	unsigned int			memcg_nr_pages_over_high;
1024 #endif
1025 
1026 #ifdef CONFIG_UPROBES
1027 	struct uprobe_task		*utask;
1028 #endif
1029 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1030 	unsigned int			sequential_io;
1031 	unsigned int			sequential_io_avg;
1032 #endif
1033 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1034 	unsigned long			task_state_change;
1035 #endif
1036 	int				pagefault_disabled;
1037 #ifdef CONFIG_MMU
1038 	struct task_struct		*oom_reaper_list;
1039 #endif
1040 #ifdef CONFIG_VMAP_STACK
1041 	struct vm_struct		*stack_vm_area;
1042 #endif
1043 #ifdef CONFIG_THREAD_INFO_IN_TASK
1044 	/* A live task holds one reference: */
1045 	atomic_t			stack_refcount;
1046 #endif
1047 #ifdef CONFIG_LIVEPATCH
1048 	int patch_state;
1049 #endif
1050 #ifdef CONFIG_SECURITY
1051 	/* Used by LSM modules for access restriction: */
1052 	void				*security;
1053 #endif
1054 	/* CPU-specific state of this task: */
1055 	struct thread_struct		thread;
1056 
1057 	/*
1058 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1059 	 * structure.  It *MUST* be at the end of 'task_struct'.
1060 	 *
1061 	 * Do not put anything below here!
1062 	 */
1063 };
1064 
1065 static inline struct pid *task_pid(struct task_struct *task)
1066 {
1067 	return task->pids[PIDTYPE_PID].pid;
1068 }
1069 
1070 static inline struct pid *task_tgid(struct task_struct *task)
1071 {
1072 	return task->group_leader->pids[PIDTYPE_PID].pid;
1073 }
1074 
1075 /*
1076  * Without tasklist or RCU lock it is not safe to dereference
1077  * the result of task_pgrp/task_session even if task == current,
1078  * we can race with another thread doing sys_setsid/sys_setpgid.
1079  */
1080 static inline struct pid *task_pgrp(struct task_struct *task)
1081 {
1082 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1083 }
1084 
1085 static inline struct pid *task_session(struct task_struct *task)
1086 {
1087 	return task->group_leader->pids[PIDTYPE_SID].pid;
1088 }
1089 
1090 /*
1091  * the helpers to get the task's different pids as they are seen
1092  * from various namespaces
1093  *
1094  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1095  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1096  *                     current.
1097  * task_xid_nr_ns()  : id seen from the ns specified;
1098  *
1099  * set_task_vxid()   : assigns a virtual id to a task;
1100  *
1101  * see also pid_nr() etc in include/linux/pid.h
1102  */
1103 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1104 
1105 static inline pid_t task_pid_nr(struct task_struct *tsk)
1106 {
1107 	return tsk->pid;
1108 }
1109 
1110 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1111 {
1112 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1113 }
1114 
1115 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1116 {
1117 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1118 }
1119 
1120 
1121 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1122 {
1123 	return tsk->tgid;
1124 }
1125 
1126 extern pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1127 
1128 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1129 {
1130 	return pid_vnr(task_tgid(tsk));
1131 }
1132 
1133 /**
1134  * pid_alive - check that a task structure is not stale
1135  * @p: Task structure to be checked.
1136  *
1137  * Test if a process is not yet dead (at most zombie state)
1138  * If pid_alive fails, then pointers within the task structure
1139  * can be stale and must not be dereferenced.
1140  *
1141  * Return: 1 if the process is alive. 0 otherwise.
1142  */
1143 static inline int pid_alive(const struct task_struct *p)
1144 {
1145 	return p->pids[PIDTYPE_PID].pid != NULL;
1146 }
1147 
1148 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1149 {
1150 	pid_t pid = 0;
1151 
1152 	rcu_read_lock();
1153 	if (pid_alive(tsk))
1154 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1155 	rcu_read_unlock();
1156 
1157 	return pid;
1158 }
1159 
1160 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1161 {
1162 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1163 }
1164 
1165 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1166 {
1167 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1168 }
1169 
1170 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1171 {
1172 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1173 }
1174 
1175 
1176 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1177 {
1178 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1179 }
1180 
1181 static inline pid_t task_session_vnr(struct task_struct *tsk)
1182 {
1183 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1184 }
1185 
1186 /* Obsolete, do not use: */
1187 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1188 {
1189 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1190 }
1191 
1192 /**
1193  * is_global_init - check if a task structure is init. Since init
1194  * is free to have sub-threads we need to check tgid.
1195  * @tsk: Task structure to be checked.
1196  *
1197  * Check if a task structure is the first user space task the kernel created.
1198  *
1199  * Return: 1 if the task structure is init. 0 otherwise.
1200  */
1201 static inline int is_global_init(struct task_struct *tsk)
1202 {
1203 	return task_tgid_nr(tsk) == 1;
1204 }
1205 
1206 extern struct pid *cad_pid;
1207 
1208 /*
1209  * Per process flags
1210  */
1211 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1212 #define PF_EXITING		0x00000004	/* Getting shut down */
1213 #define PF_EXITPIDONE		0x00000008	/* PI exit done on shut down */
1214 #define PF_VCPU			0x00000010	/* I'm a virtual CPU */
1215 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1216 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1217 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1218 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1219 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1220 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1221 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1222 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1223 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1224 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1225 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1226 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1227 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1228 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1229 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1230 #define PF_LESS_THROTTLE	0x00100000	/* Throttle me less: I clean memory */
1231 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1232 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1233 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1234 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1235 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1236 #define PF_MUTEX_TESTER		0x20000000	/* Thread belongs to the rt mutex tester */
1237 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1238 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1239 
1240 /*
1241  * Only the _current_ task can read/write to tsk->flags, but other
1242  * tasks can access tsk->flags in readonly mode for example
1243  * with tsk_used_math (like during threaded core dumping).
1244  * There is however an exception to this rule during ptrace
1245  * or during fork: the ptracer task is allowed to write to the
1246  * child->flags of its traced child (same goes for fork, the parent
1247  * can write to the child->flags), because we're guaranteed the
1248  * child is not running and in turn not changing child->flags
1249  * at the same time the parent does it.
1250  */
1251 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1252 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1253 #define clear_used_math()			clear_stopped_child_used_math(current)
1254 #define set_used_math()				set_stopped_child_used_math(current)
1255 
1256 #define conditional_stopped_child_used_math(condition, child) \
1257 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1258 
1259 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1260 
1261 #define copy_to_stopped_child_used_math(child) \
1262 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1263 
1264 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1265 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1266 #define used_math()				tsk_used_math(current)
1267 
1268 /* Per-process atomic flags. */
1269 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1270 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1271 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1272 
1273 
1274 #define TASK_PFA_TEST(name, func)					\
1275 	static inline bool task_##func(struct task_struct *p)		\
1276 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1277 
1278 #define TASK_PFA_SET(name, func)					\
1279 	static inline void task_set_##func(struct task_struct *p)	\
1280 	{ set_bit(PFA_##name, &p->atomic_flags); }
1281 
1282 #define TASK_PFA_CLEAR(name, func)					\
1283 	static inline void task_clear_##func(struct task_struct *p)	\
1284 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1285 
1286 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1287 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1288 
1289 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1290 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1291 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1292 
1293 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1294 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1295 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1296 
1297 static inline void
1298 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1299 {
1300 	current->flags &= ~flags;
1301 	current->flags |= orig_flags & flags;
1302 }
1303 
1304 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1305 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1306 #ifdef CONFIG_SMP
1307 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1308 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1309 #else
1310 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1311 {
1312 }
1313 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1314 {
1315 	if (!cpumask_test_cpu(0, new_mask))
1316 		return -EINVAL;
1317 	return 0;
1318 }
1319 #endif
1320 
1321 #ifndef cpu_relax_yield
1322 #define cpu_relax_yield() cpu_relax()
1323 #endif
1324 
1325 extern int yield_to(struct task_struct *p, bool preempt);
1326 extern void set_user_nice(struct task_struct *p, long nice);
1327 extern int task_prio(const struct task_struct *p);
1328 
1329 /**
1330  * task_nice - return the nice value of a given task.
1331  * @p: the task in question.
1332  *
1333  * Return: The nice value [ -20 ... 0 ... 19 ].
1334  */
1335 static inline int task_nice(const struct task_struct *p)
1336 {
1337 	return PRIO_TO_NICE((p)->static_prio);
1338 }
1339 
1340 extern int can_nice(const struct task_struct *p, const int nice);
1341 extern int task_curr(const struct task_struct *p);
1342 extern int idle_cpu(int cpu);
1343 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1344 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1345 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1346 extern struct task_struct *idle_task(int cpu);
1347 
1348 /**
1349  * is_idle_task - is the specified task an idle task?
1350  * @p: the task in question.
1351  *
1352  * Return: 1 if @p is an idle task. 0 otherwise.
1353  */
1354 static inline bool is_idle_task(const struct task_struct *p)
1355 {
1356 	return !!(p->flags & PF_IDLE);
1357 }
1358 
1359 extern struct task_struct *curr_task(int cpu);
1360 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1361 
1362 void yield(void);
1363 
1364 union thread_union {
1365 #ifndef CONFIG_THREAD_INFO_IN_TASK
1366 	struct thread_info thread_info;
1367 #endif
1368 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1369 };
1370 
1371 #ifdef CONFIG_THREAD_INFO_IN_TASK
1372 static inline struct thread_info *task_thread_info(struct task_struct *task)
1373 {
1374 	return &task->thread_info;
1375 }
1376 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1377 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1378 #endif
1379 
1380 /*
1381  * find a task by one of its numerical ids
1382  *
1383  * find_task_by_pid_ns():
1384  *      finds a task by its pid in the specified namespace
1385  * find_task_by_vpid():
1386  *      finds a task by its virtual pid
1387  *
1388  * see also find_vpid() etc in include/linux/pid.h
1389  */
1390 
1391 extern struct task_struct *find_task_by_vpid(pid_t nr);
1392 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1393 
1394 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1395 extern int wake_up_process(struct task_struct *tsk);
1396 extern void wake_up_new_task(struct task_struct *tsk);
1397 
1398 #ifdef CONFIG_SMP
1399 extern void kick_process(struct task_struct *tsk);
1400 #else
1401 static inline void kick_process(struct task_struct *tsk) { }
1402 #endif
1403 
1404 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1405 
1406 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1407 {
1408 	__set_task_comm(tsk, from, false);
1409 }
1410 
1411 extern char *get_task_comm(char *to, struct task_struct *tsk);
1412 
1413 #ifdef CONFIG_SMP
1414 void scheduler_ipi(void);
1415 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1416 #else
1417 static inline void scheduler_ipi(void) { }
1418 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1419 {
1420 	return 1;
1421 }
1422 #endif
1423 
1424 /*
1425  * Set thread flags in other task's structures.
1426  * See asm/thread_info.h for TIF_xxxx flags available:
1427  */
1428 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1429 {
1430 	set_ti_thread_flag(task_thread_info(tsk), flag);
1431 }
1432 
1433 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1434 {
1435 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1436 }
1437 
1438 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1439 {
1440 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1441 }
1442 
1443 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1444 {
1445 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1446 }
1447 
1448 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1449 {
1450 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1451 }
1452 
1453 static inline void set_tsk_need_resched(struct task_struct *tsk)
1454 {
1455 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1456 }
1457 
1458 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1459 {
1460 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1461 }
1462 
1463 static inline int test_tsk_need_resched(struct task_struct *tsk)
1464 {
1465 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1466 }
1467 
1468 /*
1469  * cond_resched() and cond_resched_lock(): latency reduction via
1470  * explicit rescheduling in places that are safe. The return
1471  * value indicates whether a reschedule was done in fact.
1472  * cond_resched_lock() will drop the spinlock before scheduling,
1473  * cond_resched_softirq() will enable bhs before scheduling.
1474  */
1475 #ifndef CONFIG_PREEMPT
1476 extern int _cond_resched(void);
1477 #else
1478 static inline int _cond_resched(void) { return 0; }
1479 #endif
1480 
1481 #define cond_resched() ({			\
1482 	___might_sleep(__FILE__, __LINE__, 0);	\
1483 	_cond_resched();			\
1484 })
1485 
1486 extern int __cond_resched_lock(spinlock_t *lock);
1487 
1488 #define cond_resched_lock(lock) ({				\
1489 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1490 	__cond_resched_lock(lock);				\
1491 })
1492 
1493 extern int __cond_resched_softirq(void);
1494 
1495 #define cond_resched_softirq() ({					\
1496 	___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
1497 	__cond_resched_softirq();					\
1498 })
1499 
1500 static inline void cond_resched_rcu(void)
1501 {
1502 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1503 	rcu_read_unlock();
1504 	cond_resched();
1505 	rcu_read_lock();
1506 #endif
1507 }
1508 
1509 /*
1510  * Does a critical section need to be broken due to another
1511  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1512  * but a general need for low latency)
1513  */
1514 static inline int spin_needbreak(spinlock_t *lock)
1515 {
1516 #ifdef CONFIG_PREEMPT
1517 	return spin_is_contended(lock);
1518 #else
1519 	return 0;
1520 #endif
1521 }
1522 
1523 static __always_inline bool need_resched(void)
1524 {
1525 	return unlikely(tif_need_resched());
1526 }
1527 
1528 /*
1529  * Wrappers for p->thread_info->cpu access. No-op on UP.
1530  */
1531 #ifdef CONFIG_SMP
1532 
1533 static inline unsigned int task_cpu(const struct task_struct *p)
1534 {
1535 #ifdef CONFIG_THREAD_INFO_IN_TASK
1536 	return p->cpu;
1537 #else
1538 	return task_thread_info(p)->cpu;
1539 #endif
1540 }
1541 
1542 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1543 
1544 #else
1545 
1546 static inline unsigned int task_cpu(const struct task_struct *p)
1547 {
1548 	return 0;
1549 }
1550 
1551 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1552 {
1553 }
1554 
1555 #endif /* CONFIG_SMP */
1556 
1557 /*
1558  * In order to reduce various lock holder preemption latencies provide an
1559  * interface to see if a vCPU is currently running or not.
1560  *
1561  * This allows us to terminate optimistic spin loops and block, analogous to
1562  * the native optimistic spin heuristic of testing if the lock owner task is
1563  * running or not.
1564  */
1565 #ifndef vcpu_is_preempted
1566 # define vcpu_is_preempted(cpu)	false
1567 #endif
1568 
1569 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1570 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1571 
1572 #ifndef TASK_SIZE_OF
1573 #define TASK_SIZE_OF(tsk)	TASK_SIZE
1574 #endif
1575 
1576 #endif
1577