xref: /openbmc/linux/include/linux/sched.h (revision 929e2a61)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/irqflags.h>
22 #include <linux/seccomp.h>
23 #include <linux/nodemask.h>
24 #include <linux/rcupdate.h>
25 #include <linux/refcount.h>
26 #include <linux/resource.h>
27 #include <linux/latencytop.h>
28 #include <linux/sched/prio.h>
29 #include <linux/sched/types.h>
30 #include <linux/signal_types.h>
31 #include <linux/mm_types_task.h>
32 #include <linux/task_io_accounting.h>
33 #include <linux/posix-timers.h>
34 #include <linux/rseq.h>
35 #include <linux/seqlock.h>
36 #include <linux/kcsan.h>
37 
38 /* task_struct member predeclarations (sorted alphabetically): */
39 struct audit_context;
40 struct backing_dev_info;
41 struct bio_list;
42 struct blk_plug;
43 struct capture_control;
44 struct cfs_rq;
45 struct fs_struct;
46 struct futex_pi_state;
47 struct io_context;
48 struct mempolicy;
49 struct nameidata;
50 struct nsproxy;
51 struct perf_event_context;
52 struct pid_namespace;
53 struct pipe_inode_info;
54 struct rcu_node;
55 struct reclaim_state;
56 struct robust_list_head;
57 struct root_domain;
58 struct rq;
59 struct sched_attr;
60 struct sched_param;
61 struct seq_file;
62 struct sighand_struct;
63 struct signal_struct;
64 struct task_delay_info;
65 struct task_group;
66 
67 /*
68  * Task state bitmask. NOTE! These bits are also
69  * encoded in fs/proc/array.c: get_task_state().
70  *
71  * We have two separate sets of flags: task->state
72  * is about runnability, while task->exit_state are
73  * about the task exiting. Confusing, but this way
74  * modifying one set can't modify the other one by
75  * mistake.
76  */
77 
78 /* Used in tsk->state: */
79 #define TASK_RUNNING			0x0000
80 #define TASK_INTERRUPTIBLE		0x0001
81 #define TASK_UNINTERRUPTIBLE		0x0002
82 #define __TASK_STOPPED			0x0004
83 #define __TASK_TRACED			0x0008
84 /* Used in tsk->exit_state: */
85 #define EXIT_DEAD			0x0010
86 #define EXIT_ZOMBIE			0x0020
87 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
88 /* Used in tsk->state again: */
89 #define TASK_PARKED			0x0040
90 #define TASK_DEAD			0x0080
91 #define TASK_WAKEKILL			0x0100
92 #define TASK_WAKING			0x0200
93 #define TASK_NOLOAD			0x0400
94 #define TASK_NEW			0x0800
95 #define TASK_STATE_MAX			0x1000
96 
97 /* Convenience macros for the sake of set_current_state: */
98 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
99 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
100 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
101 
102 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
103 
104 /* Convenience macros for the sake of wake_up(): */
105 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
106 
107 /* get_task_state(): */
108 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
109 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
110 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
111 					 TASK_PARKED)
112 
113 #define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)
114 
115 #define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)
116 
117 #define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
118 
119 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
120 
121 /*
122  * Special states are those that do not use the normal wait-loop pattern. See
123  * the comment with set_special_state().
124  */
125 #define is_special_task_state(state)				\
126 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
127 
128 #define __set_current_state(state_value)			\
129 	do {							\
130 		WARN_ON_ONCE(is_special_task_state(state_value));\
131 		current->task_state_change = _THIS_IP_;		\
132 		current->state = (state_value);			\
133 	} while (0)
134 
135 #define set_current_state(state_value)				\
136 	do {							\
137 		WARN_ON_ONCE(is_special_task_state(state_value));\
138 		current->task_state_change = _THIS_IP_;		\
139 		smp_store_mb(current->state, (state_value));	\
140 	} while (0)
141 
142 #define set_special_state(state_value)					\
143 	do {								\
144 		unsigned long flags; /* may shadow */			\
145 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
146 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
147 		current->task_state_change = _THIS_IP_;			\
148 		current->state = (state_value);				\
149 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
150 	} while (0)
151 #else
152 /*
153  * set_current_state() includes a barrier so that the write of current->state
154  * is correctly serialised wrt the caller's subsequent test of whether to
155  * actually sleep:
156  *
157  *   for (;;) {
158  *	set_current_state(TASK_UNINTERRUPTIBLE);
159  *	if (CONDITION)
160  *	   break;
161  *
162  *	schedule();
163  *   }
164  *   __set_current_state(TASK_RUNNING);
165  *
166  * If the caller does not need such serialisation (because, for instance, the
167  * CONDITION test and condition change and wakeup are under the same lock) then
168  * use __set_current_state().
169  *
170  * The above is typically ordered against the wakeup, which does:
171  *
172  *   CONDITION = 1;
173  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
174  *
175  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
176  * accessing p->state.
177  *
178  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
179  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
180  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
181  *
182  * However, with slightly different timing the wakeup TASK_RUNNING store can
183  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
184  * a problem either because that will result in one extra go around the loop
185  * and our @cond test will save the day.
186  *
187  * Also see the comments of try_to_wake_up().
188  */
189 #define __set_current_state(state_value)				\
190 	current->state = (state_value)
191 
192 #define set_current_state(state_value)					\
193 	smp_store_mb(current->state, (state_value))
194 
195 /*
196  * set_special_state() should be used for those states when the blocking task
197  * can not use the regular condition based wait-loop. In that case we must
198  * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
199  * will not collide with our state change.
200  */
201 #define set_special_state(state_value)					\
202 	do {								\
203 		unsigned long flags; /* may shadow */			\
204 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
205 		current->state = (state_value);				\
206 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
207 	} while (0)
208 
209 #endif
210 
211 /* Task command name length: */
212 #define TASK_COMM_LEN			16
213 
214 extern void scheduler_tick(void);
215 
216 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
217 
218 extern long schedule_timeout(long timeout);
219 extern long schedule_timeout_interruptible(long timeout);
220 extern long schedule_timeout_killable(long timeout);
221 extern long schedule_timeout_uninterruptible(long timeout);
222 extern long schedule_timeout_idle(long timeout);
223 asmlinkage void schedule(void);
224 extern void schedule_preempt_disabled(void);
225 asmlinkage void preempt_schedule_irq(void);
226 
227 extern int __must_check io_schedule_prepare(void);
228 extern void io_schedule_finish(int token);
229 extern long io_schedule_timeout(long timeout);
230 extern void io_schedule(void);
231 
232 /**
233  * struct prev_cputime - snapshot of system and user cputime
234  * @utime: time spent in user mode
235  * @stime: time spent in system mode
236  * @lock: protects the above two fields
237  *
238  * Stores previous user/system time values such that we can guarantee
239  * monotonicity.
240  */
241 struct prev_cputime {
242 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
243 	u64				utime;
244 	u64				stime;
245 	raw_spinlock_t			lock;
246 #endif
247 };
248 
249 enum vtime_state {
250 	/* Task is sleeping or running in a CPU with VTIME inactive: */
251 	VTIME_INACTIVE = 0,
252 	/* Task is idle */
253 	VTIME_IDLE,
254 	/* Task runs in kernelspace in a CPU with VTIME active: */
255 	VTIME_SYS,
256 	/* Task runs in userspace in a CPU with VTIME active: */
257 	VTIME_USER,
258 	/* Task runs as guests in a CPU with VTIME active: */
259 	VTIME_GUEST,
260 };
261 
262 struct vtime {
263 	seqcount_t		seqcount;
264 	unsigned long long	starttime;
265 	enum vtime_state	state;
266 	unsigned int		cpu;
267 	u64			utime;
268 	u64			stime;
269 	u64			gtime;
270 };
271 
272 /*
273  * Utilization clamp constraints.
274  * @UCLAMP_MIN:	Minimum utilization
275  * @UCLAMP_MAX:	Maximum utilization
276  * @UCLAMP_CNT:	Utilization clamp constraints count
277  */
278 enum uclamp_id {
279 	UCLAMP_MIN = 0,
280 	UCLAMP_MAX,
281 	UCLAMP_CNT
282 };
283 
284 #ifdef CONFIG_SMP
285 extern struct root_domain def_root_domain;
286 extern struct mutex sched_domains_mutex;
287 #endif
288 
289 struct sched_info {
290 #ifdef CONFIG_SCHED_INFO
291 	/* Cumulative counters: */
292 
293 	/* # of times we have run on this CPU: */
294 	unsigned long			pcount;
295 
296 	/* Time spent waiting on a runqueue: */
297 	unsigned long long		run_delay;
298 
299 	/* Timestamps: */
300 
301 	/* When did we last run on a CPU? */
302 	unsigned long long		last_arrival;
303 
304 	/* When were we last queued to run? */
305 	unsigned long long		last_queued;
306 
307 #endif /* CONFIG_SCHED_INFO */
308 };
309 
310 /*
311  * Integer metrics need fixed point arithmetic, e.g., sched/fair
312  * has a few: load, load_avg, util_avg, freq, and capacity.
313  *
314  * We define a basic fixed point arithmetic range, and then formalize
315  * all these metrics based on that basic range.
316  */
317 # define SCHED_FIXEDPOINT_SHIFT		10
318 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
319 
320 /* Increase resolution of cpu_capacity calculations */
321 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
322 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
323 
324 struct load_weight {
325 	unsigned long			weight;
326 	u32				inv_weight;
327 };
328 
329 /**
330  * struct util_est - Estimation utilization of FAIR tasks
331  * @enqueued: instantaneous estimated utilization of a task/cpu
332  * @ewma:     the Exponential Weighted Moving Average (EWMA)
333  *            utilization of a task
334  *
335  * Support data structure to track an Exponential Weighted Moving Average
336  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
337  * average each time a task completes an activation. Sample's weight is chosen
338  * so that the EWMA will be relatively insensitive to transient changes to the
339  * task's workload.
340  *
341  * The enqueued attribute has a slightly different meaning for tasks and cpus:
342  * - task:   the task's util_avg at last task dequeue time
343  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
344  * Thus, the util_est.enqueued of a task represents the contribution on the
345  * estimated utilization of the CPU where that task is currently enqueued.
346  *
347  * Only for tasks we track a moving average of the past instantaneous
348  * estimated utilization. This allows to absorb sporadic drops in utilization
349  * of an otherwise almost periodic task.
350  */
351 struct util_est {
352 	unsigned int			enqueued;
353 	unsigned int			ewma;
354 #define UTIL_EST_WEIGHT_SHIFT		2
355 } __attribute__((__aligned__(sizeof(u64))));
356 
357 /*
358  * The load/runnable/util_avg accumulates an infinite geometric series
359  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
360  *
361  * [load_avg definition]
362  *
363  *   load_avg = runnable% * scale_load_down(load)
364  *
365  * [runnable_avg definition]
366  *
367  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
368  *
369  * [util_avg definition]
370  *
371  *   util_avg = running% * SCHED_CAPACITY_SCALE
372  *
373  * where runnable% is the time ratio that a sched_entity is runnable and
374  * running% the time ratio that a sched_entity is running.
375  *
376  * For cfs_rq, they are the aggregated values of all runnable and blocked
377  * sched_entities.
378  *
379  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
380  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
381  * for computing those signals (see update_rq_clock_pelt())
382  *
383  * N.B., the above ratios (runnable% and running%) themselves are in the
384  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
385  * to as large a range as necessary. This is for example reflected by
386  * util_avg's SCHED_CAPACITY_SCALE.
387  *
388  * [Overflow issue]
389  *
390  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
391  * with the highest load (=88761), always runnable on a single cfs_rq,
392  * and should not overflow as the number already hits PID_MAX_LIMIT.
393  *
394  * For all other cases (including 32-bit kernels), struct load_weight's
395  * weight will overflow first before we do, because:
396  *
397  *    Max(load_avg) <= Max(load.weight)
398  *
399  * Then it is the load_weight's responsibility to consider overflow
400  * issues.
401  */
402 struct sched_avg {
403 	u64				last_update_time;
404 	u64				load_sum;
405 	u64				runnable_sum;
406 	u32				util_sum;
407 	u32				period_contrib;
408 	unsigned long			load_avg;
409 	unsigned long			runnable_avg;
410 	unsigned long			util_avg;
411 	struct util_est			util_est;
412 } ____cacheline_aligned;
413 
414 struct sched_statistics {
415 #ifdef CONFIG_SCHEDSTATS
416 	u64				wait_start;
417 	u64				wait_max;
418 	u64				wait_count;
419 	u64				wait_sum;
420 	u64				iowait_count;
421 	u64				iowait_sum;
422 
423 	u64				sleep_start;
424 	u64				sleep_max;
425 	s64				sum_sleep_runtime;
426 
427 	u64				block_start;
428 	u64				block_max;
429 	u64				exec_max;
430 	u64				slice_max;
431 
432 	u64				nr_migrations_cold;
433 	u64				nr_failed_migrations_affine;
434 	u64				nr_failed_migrations_running;
435 	u64				nr_failed_migrations_hot;
436 	u64				nr_forced_migrations;
437 
438 	u64				nr_wakeups;
439 	u64				nr_wakeups_sync;
440 	u64				nr_wakeups_migrate;
441 	u64				nr_wakeups_local;
442 	u64				nr_wakeups_remote;
443 	u64				nr_wakeups_affine;
444 	u64				nr_wakeups_affine_attempts;
445 	u64				nr_wakeups_passive;
446 	u64				nr_wakeups_idle;
447 #endif
448 };
449 
450 struct sched_entity {
451 	/* For load-balancing: */
452 	struct load_weight		load;
453 	struct rb_node			run_node;
454 	struct list_head		group_node;
455 	unsigned int			on_rq;
456 
457 	u64				exec_start;
458 	u64				sum_exec_runtime;
459 	u64				vruntime;
460 	u64				prev_sum_exec_runtime;
461 
462 	u64				nr_migrations;
463 
464 	struct sched_statistics		statistics;
465 
466 #ifdef CONFIG_FAIR_GROUP_SCHED
467 	int				depth;
468 	struct sched_entity		*parent;
469 	/* rq on which this entity is (to be) queued: */
470 	struct cfs_rq			*cfs_rq;
471 	/* rq "owned" by this entity/group: */
472 	struct cfs_rq			*my_q;
473 	/* cached value of my_q->h_nr_running */
474 	unsigned long			runnable_weight;
475 #endif
476 
477 #ifdef CONFIG_SMP
478 	/*
479 	 * Per entity load average tracking.
480 	 *
481 	 * Put into separate cache line so it does not
482 	 * collide with read-mostly values above.
483 	 */
484 	struct sched_avg		avg;
485 #endif
486 };
487 
488 struct sched_rt_entity {
489 	struct list_head		run_list;
490 	unsigned long			timeout;
491 	unsigned long			watchdog_stamp;
492 	unsigned int			time_slice;
493 	unsigned short			on_rq;
494 	unsigned short			on_list;
495 
496 	struct sched_rt_entity		*back;
497 #ifdef CONFIG_RT_GROUP_SCHED
498 	struct sched_rt_entity		*parent;
499 	/* rq on which this entity is (to be) queued: */
500 	struct rt_rq			*rt_rq;
501 	/* rq "owned" by this entity/group: */
502 	struct rt_rq			*my_q;
503 #endif
504 } __randomize_layout;
505 
506 struct sched_dl_entity {
507 	struct rb_node			rb_node;
508 
509 	/*
510 	 * Original scheduling parameters. Copied here from sched_attr
511 	 * during sched_setattr(), they will remain the same until
512 	 * the next sched_setattr().
513 	 */
514 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
515 	u64				dl_deadline;	/* Relative deadline of each instance	*/
516 	u64				dl_period;	/* Separation of two instances (period) */
517 	u64				dl_bw;		/* dl_runtime / dl_period		*/
518 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
519 
520 	/*
521 	 * Actual scheduling parameters. Initialized with the values above,
522 	 * they are continuously updated during task execution. Note that
523 	 * the remaining runtime could be < 0 in case we are in overrun.
524 	 */
525 	s64				runtime;	/* Remaining runtime for this instance	*/
526 	u64				deadline;	/* Absolute deadline for this instance	*/
527 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
528 
529 	/*
530 	 * Some bool flags:
531 	 *
532 	 * @dl_throttled tells if we exhausted the runtime. If so, the
533 	 * task has to wait for a replenishment to be performed at the
534 	 * next firing of dl_timer.
535 	 *
536 	 * @dl_boosted tells if we are boosted due to DI. If so we are
537 	 * outside bandwidth enforcement mechanism (but only until we
538 	 * exit the critical section);
539 	 *
540 	 * @dl_yielded tells if task gave up the CPU before consuming
541 	 * all its available runtime during the last job.
542 	 *
543 	 * @dl_non_contending tells if the task is inactive while still
544 	 * contributing to the active utilization. In other words, it
545 	 * indicates if the inactive timer has been armed and its handler
546 	 * has not been executed yet. This flag is useful to avoid race
547 	 * conditions between the inactive timer handler and the wakeup
548 	 * code.
549 	 *
550 	 * @dl_overrun tells if the task asked to be informed about runtime
551 	 * overruns.
552 	 */
553 	unsigned int			dl_throttled      : 1;
554 	unsigned int			dl_boosted        : 1;
555 	unsigned int			dl_yielded        : 1;
556 	unsigned int			dl_non_contending : 1;
557 	unsigned int			dl_overrun	  : 1;
558 
559 	/*
560 	 * Bandwidth enforcement timer. Each -deadline task has its
561 	 * own bandwidth to be enforced, thus we need one timer per task.
562 	 */
563 	struct hrtimer			dl_timer;
564 
565 	/*
566 	 * Inactive timer, responsible for decreasing the active utilization
567 	 * at the "0-lag time". When a -deadline task blocks, it contributes
568 	 * to GRUB's active utilization until the "0-lag time", hence a
569 	 * timer is needed to decrease the active utilization at the correct
570 	 * time.
571 	 */
572 	struct hrtimer inactive_timer;
573 };
574 
575 #ifdef CONFIG_UCLAMP_TASK
576 /* Number of utilization clamp buckets (shorter alias) */
577 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
578 
579 /*
580  * Utilization clamp for a scheduling entity
581  * @value:		clamp value "assigned" to a se
582  * @bucket_id:		bucket index corresponding to the "assigned" value
583  * @active:		the se is currently refcounted in a rq's bucket
584  * @user_defined:	the requested clamp value comes from user-space
585  *
586  * The bucket_id is the index of the clamp bucket matching the clamp value
587  * which is pre-computed and stored to avoid expensive integer divisions from
588  * the fast path.
589  *
590  * The active bit is set whenever a task has got an "effective" value assigned,
591  * which can be different from the clamp value "requested" from user-space.
592  * This allows to know a task is refcounted in the rq's bucket corresponding
593  * to the "effective" bucket_id.
594  *
595  * The user_defined bit is set whenever a task has got a task-specific clamp
596  * value requested from userspace, i.e. the system defaults apply to this task
597  * just as a restriction. This allows to relax default clamps when a less
598  * restrictive task-specific value has been requested, thus allowing to
599  * implement a "nice" semantic. For example, a task running with a 20%
600  * default boost can still drop its own boosting to 0%.
601  */
602 struct uclamp_se {
603 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
604 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
605 	unsigned int active		: 1;
606 	unsigned int user_defined	: 1;
607 };
608 #endif /* CONFIG_UCLAMP_TASK */
609 
610 union rcu_special {
611 	struct {
612 		u8			blocked;
613 		u8			need_qs;
614 		u8			exp_hint; /* Hint for performance. */
615 		u8			need_mb; /* Readers need smp_mb(). */
616 	} b; /* Bits. */
617 	u32 s; /* Set of bits. */
618 };
619 
620 enum perf_event_task_context {
621 	perf_invalid_context = -1,
622 	perf_hw_context = 0,
623 	perf_sw_context,
624 	perf_nr_task_contexts,
625 };
626 
627 struct wake_q_node {
628 	struct wake_q_node *next;
629 };
630 
631 struct task_struct {
632 #ifdef CONFIG_THREAD_INFO_IN_TASK
633 	/*
634 	 * For reasons of header soup (see current_thread_info()), this
635 	 * must be the first element of task_struct.
636 	 */
637 	struct thread_info		thread_info;
638 #endif
639 	/* -1 unrunnable, 0 runnable, >0 stopped: */
640 	volatile long			state;
641 
642 	/*
643 	 * This begins the randomizable portion of task_struct. Only
644 	 * scheduling-critical items should be added above here.
645 	 */
646 	randomized_struct_fields_start
647 
648 	void				*stack;
649 	refcount_t			usage;
650 	/* Per task flags (PF_*), defined further below: */
651 	unsigned int			flags;
652 	unsigned int			ptrace;
653 
654 #ifdef CONFIG_SMP
655 	int				on_cpu;
656 	struct __call_single_node	wake_entry;
657 #ifdef CONFIG_THREAD_INFO_IN_TASK
658 	/* Current CPU: */
659 	unsigned int			cpu;
660 #endif
661 	unsigned int			wakee_flips;
662 	unsigned long			wakee_flip_decay_ts;
663 	struct task_struct		*last_wakee;
664 
665 	/*
666 	 * recent_used_cpu is initially set as the last CPU used by a task
667 	 * that wakes affine another task. Waker/wakee relationships can
668 	 * push tasks around a CPU where each wakeup moves to the next one.
669 	 * Tracking a recently used CPU allows a quick search for a recently
670 	 * used CPU that may be idle.
671 	 */
672 	int				recent_used_cpu;
673 	int				wake_cpu;
674 #endif
675 	int				on_rq;
676 
677 	int				prio;
678 	int				static_prio;
679 	int				normal_prio;
680 	unsigned int			rt_priority;
681 
682 	const struct sched_class	*sched_class;
683 	struct sched_entity		se;
684 	struct sched_rt_entity		rt;
685 #ifdef CONFIG_CGROUP_SCHED
686 	struct task_group		*sched_task_group;
687 #endif
688 	struct sched_dl_entity		dl;
689 
690 #ifdef CONFIG_UCLAMP_TASK
691 	/*
692 	 * Clamp values requested for a scheduling entity.
693 	 * Must be updated with task_rq_lock() held.
694 	 */
695 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
696 	/*
697 	 * Effective clamp values used for a scheduling entity.
698 	 * Must be updated with task_rq_lock() held.
699 	 */
700 	struct uclamp_se		uclamp[UCLAMP_CNT];
701 #endif
702 
703 #ifdef CONFIG_PREEMPT_NOTIFIERS
704 	/* List of struct preempt_notifier: */
705 	struct hlist_head		preempt_notifiers;
706 #endif
707 
708 #ifdef CONFIG_BLK_DEV_IO_TRACE
709 	unsigned int			btrace_seq;
710 #endif
711 
712 	unsigned int			policy;
713 	int				nr_cpus_allowed;
714 	const cpumask_t			*cpus_ptr;
715 	cpumask_t			cpus_mask;
716 
717 #ifdef CONFIG_PREEMPT_RCU
718 	int				rcu_read_lock_nesting;
719 	union rcu_special		rcu_read_unlock_special;
720 	struct list_head		rcu_node_entry;
721 	struct rcu_node			*rcu_blocked_node;
722 #endif /* #ifdef CONFIG_PREEMPT_RCU */
723 
724 #ifdef CONFIG_TASKS_RCU
725 	unsigned long			rcu_tasks_nvcsw;
726 	u8				rcu_tasks_holdout;
727 	u8				rcu_tasks_idx;
728 	int				rcu_tasks_idle_cpu;
729 	struct list_head		rcu_tasks_holdout_list;
730 #endif /* #ifdef CONFIG_TASKS_RCU */
731 
732 #ifdef CONFIG_TASKS_TRACE_RCU
733 	int				trc_reader_nesting;
734 	int				trc_ipi_to_cpu;
735 	union rcu_special		trc_reader_special;
736 	bool				trc_reader_checked;
737 	struct list_head		trc_holdout_list;
738 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
739 
740 	struct sched_info		sched_info;
741 
742 	struct list_head		tasks;
743 #ifdef CONFIG_SMP
744 	struct plist_node		pushable_tasks;
745 	struct rb_node			pushable_dl_tasks;
746 #endif
747 
748 	struct mm_struct		*mm;
749 	struct mm_struct		*active_mm;
750 
751 	/* Per-thread vma caching: */
752 	struct vmacache			vmacache;
753 
754 #ifdef SPLIT_RSS_COUNTING
755 	struct task_rss_stat		rss_stat;
756 #endif
757 	int				exit_state;
758 	int				exit_code;
759 	int				exit_signal;
760 	/* The signal sent when the parent dies: */
761 	int				pdeath_signal;
762 	/* JOBCTL_*, siglock protected: */
763 	unsigned long			jobctl;
764 
765 	/* Used for emulating ABI behavior of previous Linux versions: */
766 	unsigned int			personality;
767 
768 	/* Scheduler bits, serialized by scheduler locks: */
769 	unsigned			sched_reset_on_fork:1;
770 	unsigned			sched_contributes_to_load:1;
771 	unsigned			sched_migrated:1;
772 	unsigned			sched_remote_wakeup:1;
773 #ifdef CONFIG_PSI
774 	unsigned			sched_psi_wake_requeue:1;
775 #endif
776 
777 	/* Force alignment to the next boundary: */
778 	unsigned			:0;
779 
780 	/* Unserialized, strictly 'current' */
781 
782 	/* Bit to tell LSMs we're in execve(): */
783 	unsigned			in_execve:1;
784 	unsigned			in_iowait:1;
785 #ifndef TIF_RESTORE_SIGMASK
786 	unsigned			restore_sigmask:1;
787 #endif
788 #ifdef CONFIG_MEMCG
789 	unsigned			in_user_fault:1;
790 #endif
791 #ifdef CONFIG_COMPAT_BRK
792 	unsigned			brk_randomized:1;
793 #endif
794 #ifdef CONFIG_CGROUPS
795 	/* disallow userland-initiated cgroup migration */
796 	unsigned			no_cgroup_migration:1;
797 	/* task is frozen/stopped (used by the cgroup freezer) */
798 	unsigned			frozen:1;
799 #endif
800 #ifdef CONFIG_BLK_CGROUP
801 	unsigned			use_memdelay:1;
802 #endif
803 #ifdef CONFIG_PSI
804 	/* Stalled due to lack of memory */
805 	unsigned			in_memstall:1;
806 #endif
807 
808 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
809 
810 	struct restart_block		restart_block;
811 
812 	pid_t				pid;
813 	pid_t				tgid;
814 
815 #ifdef CONFIG_STACKPROTECTOR
816 	/* Canary value for the -fstack-protector GCC feature: */
817 	unsigned long			stack_canary;
818 #endif
819 	/*
820 	 * Pointers to the (original) parent process, youngest child, younger sibling,
821 	 * older sibling, respectively.  (p->father can be replaced with
822 	 * p->real_parent->pid)
823 	 */
824 
825 	/* Real parent process: */
826 	struct task_struct __rcu	*real_parent;
827 
828 	/* Recipient of SIGCHLD, wait4() reports: */
829 	struct task_struct __rcu	*parent;
830 
831 	/*
832 	 * Children/sibling form the list of natural children:
833 	 */
834 	struct list_head		children;
835 	struct list_head		sibling;
836 	struct task_struct		*group_leader;
837 
838 	/*
839 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
840 	 *
841 	 * This includes both natural children and PTRACE_ATTACH targets.
842 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
843 	 */
844 	struct list_head		ptraced;
845 	struct list_head		ptrace_entry;
846 
847 	/* PID/PID hash table linkage. */
848 	struct pid			*thread_pid;
849 	struct hlist_node		pid_links[PIDTYPE_MAX];
850 	struct list_head		thread_group;
851 	struct list_head		thread_node;
852 
853 	struct completion		*vfork_done;
854 
855 	/* CLONE_CHILD_SETTID: */
856 	int __user			*set_child_tid;
857 
858 	/* CLONE_CHILD_CLEARTID: */
859 	int __user			*clear_child_tid;
860 
861 	u64				utime;
862 	u64				stime;
863 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
864 	u64				utimescaled;
865 	u64				stimescaled;
866 #endif
867 	u64				gtime;
868 	struct prev_cputime		prev_cputime;
869 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
870 	struct vtime			vtime;
871 #endif
872 
873 #ifdef CONFIG_NO_HZ_FULL
874 	atomic_t			tick_dep_mask;
875 #endif
876 	/* Context switch counts: */
877 	unsigned long			nvcsw;
878 	unsigned long			nivcsw;
879 
880 	/* Monotonic time in nsecs: */
881 	u64				start_time;
882 
883 	/* Boot based time in nsecs: */
884 	u64				start_boottime;
885 
886 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
887 	unsigned long			min_flt;
888 	unsigned long			maj_flt;
889 
890 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
891 	struct posix_cputimers		posix_cputimers;
892 
893 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
894 	struct posix_cputimers_work	posix_cputimers_work;
895 #endif
896 
897 	/* Process credentials: */
898 
899 	/* Tracer's credentials at attach: */
900 	const struct cred __rcu		*ptracer_cred;
901 
902 	/* Objective and real subjective task credentials (COW): */
903 	const struct cred __rcu		*real_cred;
904 
905 	/* Effective (overridable) subjective task credentials (COW): */
906 	const struct cred __rcu		*cred;
907 
908 #ifdef CONFIG_KEYS
909 	/* Cached requested key. */
910 	struct key			*cached_requested_key;
911 #endif
912 
913 	/*
914 	 * executable name, excluding path.
915 	 *
916 	 * - normally initialized setup_new_exec()
917 	 * - access it with [gs]et_task_comm()
918 	 * - lock it with task_lock()
919 	 */
920 	char				comm[TASK_COMM_LEN];
921 
922 	struct nameidata		*nameidata;
923 
924 #ifdef CONFIG_SYSVIPC
925 	struct sysv_sem			sysvsem;
926 	struct sysv_shm			sysvshm;
927 #endif
928 #ifdef CONFIG_DETECT_HUNG_TASK
929 	unsigned long			last_switch_count;
930 	unsigned long			last_switch_time;
931 #endif
932 	/* Filesystem information: */
933 	struct fs_struct		*fs;
934 
935 	/* Open file information: */
936 	struct files_struct		*files;
937 
938 	/* Namespaces: */
939 	struct nsproxy			*nsproxy;
940 
941 	/* Signal handlers: */
942 	struct signal_struct		*signal;
943 	struct sighand_struct __rcu		*sighand;
944 	sigset_t			blocked;
945 	sigset_t			real_blocked;
946 	/* Restored if set_restore_sigmask() was used: */
947 	sigset_t			saved_sigmask;
948 	struct sigpending		pending;
949 	unsigned long			sas_ss_sp;
950 	size_t				sas_ss_size;
951 	unsigned int			sas_ss_flags;
952 
953 	struct callback_head		*task_works;
954 
955 #ifdef CONFIG_AUDIT
956 #ifdef CONFIG_AUDITSYSCALL
957 	struct audit_context		*audit_context;
958 #endif
959 	kuid_t				loginuid;
960 	unsigned int			sessionid;
961 #endif
962 	struct seccomp			seccomp;
963 
964 	/* Thread group tracking: */
965 	u64				parent_exec_id;
966 	u64				self_exec_id;
967 
968 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
969 	spinlock_t			alloc_lock;
970 
971 	/* Protection of the PI data structures: */
972 	raw_spinlock_t			pi_lock;
973 
974 	struct wake_q_node		wake_q;
975 
976 #ifdef CONFIG_RT_MUTEXES
977 	/* PI waiters blocked on a rt_mutex held by this task: */
978 	struct rb_root_cached		pi_waiters;
979 	/* Updated under owner's pi_lock and rq lock */
980 	struct task_struct		*pi_top_task;
981 	/* Deadlock detection and priority inheritance handling: */
982 	struct rt_mutex_waiter		*pi_blocked_on;
983 #endif
984 
985 #ifdef CONFIG_DEBUG_MUTEXES
986 	/* Mutex deadlock detection: */
987 	struct mutex_waiter		*blocked_on;
988 #endif
989 
990 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
991 	int				non_block_count;
992 #endif
993 
994 #ifdef CONFIG_TRACE_IRQFLAGS
995 	struct irqtrace_events		irqtrace;
996 	unsigned int			hardirq_threaded;
997 	u64				hardirq_chain_key;
998 	int				softirqs_enabled;
999 	int				softirq_context;
1000 	int				irq_config;
1001 #endif
1002 
1003 #ifdef CONFIG_LOCKDEP
1004 # define MAX_LOCK_DEPTH			48UL
1005 	u64				curr_chain_key;
1006 	int				lockdep_depth;
1007 	unsigned int			lockdep_recursion;
1008 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1009 #endif
1010 
1011 #ifdef CONFIG_UBSAN
1012 	unsigned int			in_ubsan;
1013 #endif
1014 
1015 	/* Journalling filesystem info: */
1016 	void				*journal_info;
1017 
1018 	/* Stacked block device info: */
1019 	struct bio_list			*bio_list;
1020 
1021 #ifdef CONFIG_BLOCK
1022 	/* Stack plugging: */
1023 	struct blk_plug			*plug;
1024 #endif
1025 
1026 	/* VM state: */
1027 	struct reclaim_state		*reclaim_state;
1028 
1029 	struct backing_dev_info		*backing_dev_info;
1030 
1031 	struct io_context		*io_context;
1032 
1033 #ifdef CONFIG_COMPACTION
1034 	struct capture_control		*capture_control;
1035 #endif
1036 	/* Ptrace state: */
1037 	unsigned long			ptrace_message;
1038 	kernel_siginfo_t		*last_siginfo;
1039 
1040 	struct task_io_accounting	ioac;
1041 #ifdef CONFIG_PSI
1042 	/* Pressure stall state */
1043 	unsigned int			psi_flags;
1044 #endif
1045 #ifdef CONFIG_TASK_XACCT
1046 	/* Accumulated RSS usage: */
1047 	u64				acct_rss_mem1;
1048 	/* Accumulated virtual memory usage: */
1049 	u64				acct_vm_mem1;
1050 	/* stime + utime since last update: */
1051 	u64				acct_timexpd;
1052 #endif
1053 #ifdef CONFIG_CPUSETS
1054 	/* Protected by ->alloc_lock: */
1055 	nodemask_t			mems_allowed;
1056 	/* Seqence number to catch updates: */
1057 	seqcount_spinlock_t		mems_allowed_seq;
1058 	int				cpuset_mem_spread_rotor;
1059 	int				cpuset_slab_spread_rotor;
1060 #endif
1061 #ifdef CONFIG_CGROUPS
1062 	/* Control Group info protected by css_set_lock: */
1063 	struct css_set __rcu		*cgroups;
1064 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1065 	struct list_head		cg_list;
1066 #endif
1067 #ifdef CONFIG_X86_CPU_RESCTRL
1068 	u32				closid;
1069 	u32				rmid;
1070 #endif
1071 #ifdef CONFIG_FUTEX
1072 	struct robust_list_head __user	*robust_list;
1073 #ifdef CONFIG_COMPAT
1074 	struct compat_robust_list_head __user *compat_robust_list;
1075 #endif
1076 	struct list_head		pi_state_list;
1077 	struct futex_pi_state		*pi_state_cache;
1078 	struct mutex			futex_exit_mutex;
1079 	unsigned int			futex_state;
1080 #endif
1081 #ifdef CONFIG_PERF_EVENTS
1082 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
1083 	struct mutex			perf_event_mutex;
1084 	struct list_head		perf_event_list;
1085 #endif
1086 #ifdef CONFIG_DEBUG_PREEMPT
1087 	unsigned long			preempt_disable_ip;
1088 #endif
1089 #ifdef CONFIG_NUMA
1090 	/* Protected by alloc_lock: */
1091 	struct mempolicy		*mempolicy;
1092 	short				il_prev;
1093 	short				pref_node_fork;
1094 #endif
1095 #ifdef CONFIG_NUMA_BALANCING
1096 	int				numa_scan_seq;
1097 	unsigned int			numa_scan_period;
1098 	unsigned int			numa_scan_period_max;
1099 	int				numa_preferred_nid;
1100 	unsigned long			numa_migrate_retry;
1101 	/* Migration stamp: */
1102 	u64				node_stamp;
1103 	u64				last_task_numa_placement;
1104 	u64				last_sum_exec_runtime;
1105 	struct callback_head		numa_work;
1106 
1107 	/*
1108 	 * This pointer is only modified for current in syscall and
1109 	 * pagefault context (and for tasks being destroyed), so it can be read
1110 	 * from any of the following contexts:
1111 	 *  - RCU read-side critical section
1112 	 *  - current->numa_group from everywhere
1113 	 *  - task's runqueue locked, task not running
1114 	 */
1115 	struct numa_group __rcu		*numa_group;
1116 
1117 	/*
1118 	 * numa_faults is an array split into four regions:
1119 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1120 	 * in this precise order.
1121 	 *
1122 	 * faults_memory: Exponential decaying average of faults on a per-node
1123 	 * basis. Scheduling placement decisions are made based on these
1124 	 * counts. The values remain static for the duration of a PTE scan.
1125 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1126 	 * hinting fault was incurred.
1127 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1128 	 * during the current scan window. When the scan completes, the counts
1129 	 * in faults_memory and faults_cpu decay and these values are copied.
1130 	 */
1131 	unsigned long			*numa_faults;
1132 	unsigned long			total_numa_faults;
1133 
1134 	/*
1135 	 * numa_faults_locality tracks if faults recorded during the last
1136 	 * scan window were remote/local or failed to migrate. The task scan
1137 	 * period is adapted based on the locality of the faults with different
1138 	 * weights depending on whether they were shared or private faults
1139 	 */
1140 	unsigned long			numa_faults_locality[3];
1141 
1142 	unsigned long			numa_pages_migrated;
1143 #endif /* CONFIG_NUMA_BALANCING */
1144 
1145 #ifdef CONFIG_RSEQ
1146 	struct rseq __user *rseq;
1147 	u32 rseq_sig;
1148 	/*
1149 	 * RmW on rseq_event_mask must be performed atomically
1150 	 * with respect to preemption.
1151 	 */
1152 	unsigned long rseq_event_mask;
1153 #endif
1154 
1155 	struct tlbflush_unmap_batch	tlb_ubc;
1156 
1157 	union {
1158 		refcount_t		rcu_users;
1159 		struct rcu_head		rcu;
1160 	};
1161 
1162 	/* Cache last used pipe for splice(): */
1163 	struct pipe_inode_info		*splice_pipe;
1164 
1165 	struct page_frag		task_frag;
1166 
1167 #ifdef CONFIG_TASK_DELAY_ACCT
1168 	struct task_delay_info		*delays;
1169 #endif
1170 
1171 #ifdef CONFIG_FAULT_INJECTION
1172 	int				make_it_fail;
1173 	unsigned int			fail_nth;
1174 #endif
1175 	/*
1176 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1177 	 * balance_dirty_pages() for a dirty throttling pause:
1178 	 */
1179 	int				nr_dirtied;
1180 	int				nr_dirtied_pause;
1181 	/* Start of a write-and-pause period: */
1182 	unsigned long			dirty_paused_when;
1183 
1184 #ifdef CONFIG_LATENCYTOP
1185 	int				latency_record_count;
1186 	struct latency_record		latency_record[LT_SAVECOUNT];
1187 #endif
1188 	/*
1189 	 * Time slack values; these are used to round up poll() and
1190 	 * select() etc timeout values. These are in nanoseconds.
1191 	 */
1192 	u64				timer_slack_ns;
1193 	u64				default_timer_slack_ns;
1194 
1195 #ifdef CONFIG_KASAN
1196 	unsigned int			kasan_depth;
1197 #endif
1198 
1199 #ifdef CONFIG_KCSAN
1200 	struct kcsan_ctx		kcsan_ctx;
1201 #ifdef CONFIG_TRACE_IRQFLAGS
1202 	struct irqtrace_events		kcsan_save_irqtrace;
1203 #endif
1204 #endif
1205 
1206 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1207 	/* Index of current stored address in ret_stack: */
1208 	int				curr_ret_stack;
1209 	int				curr_ret_depth;
1210 
1211 	/* Stack of return addresses for return function tracing: */
1212 	struct ftrace_ret_stack		*ret_stack;
1213 
1214 	/* Timestamp for last schedule: */
1215 	unsigned long long		ftrace_timestamp;
1216 
1217 	/*
1218 	 * Number of functions that haven't been traced
1219 	 * because of depth overrun:
1220 	 */
1221 	atomic_t			trace_overrun;
1222 
1223 	/* Pause tracing: */
1224 	atomic_t			tracing_graph_pause;
1225 #endif
1226 
1227 #ifdef CONFIG_TRACING
1228 	/* State flags for use by tracers: */
1229 	unsigned long			trace;
1230 
1231 	/* Bitmask and counter of trace recursion: */
1232 	unsigned long			trace_recursion;
1233 #endif /* CONFIG_TRACING */
1234 
1235 #ifdef CONFIG_KCOV
1236 	/* See kernel/kcov.c for more details. */
1237 
1238 	/* Coverage collection mode enabled for this task (0 if disabled): */
1239 	unsigned int			kcov_mode;
1240 
1241 	/* Size of the kcov_area: */
1242 	unsigned int			kcov_size;
1243 
1244 	/* Buffer for coverage collection: */
1245 	void				*kcov_area;
1246 
1247 	/* KCOV descriptor wired with this task or NULL: */
1248 	struct kcov			*kcov;
1249 
1250 	/* KCOV common handle for remote coverage collection: */
1251 	u64				kcov_handle;
1252 
1253 	/* KCOV sequence number: */
1254 	int				kcov_sequence;
1255 
1256 	/* Collect coverage from softirq context: */
1257 	unsigned int			kcov_softirq;
1258 #endif
1259 
1260 #ifdef CONFIG_MEMCG
1261 	struct mem_cgroup		*memcg_in_oom;
1262 	gfp_t				memcg_oom_gfp_mask;
1263 	int				memcg_oom_order;
1264 
1265 	/* Number of pages to reclaim on returning to userland: */
1266 	unsigned int			memcg_nr_pages_over_high;
1267 
1268 	/* Used by memcontrol for targeted memcg charge: */
1269 	struct mem_cgroup		*active_memcg;
1270 #endif
1271 
1272 #ifdef CONFIG_BLK_CGROUP
1273 	struct request_queue		*throttle_queue;
1274 #endif
1275 
1276 #ifdef CONFIG_UPROBES
1277 	struct uprobe_task		*utask;
1278 #endif
1279 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1280 	unsigned int			sequential_io;
1281 	unsigned int			sequential_io_avg;
1282 #endif
1283 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1284 	unsigned long			task_state_change;
1285 #endif
1286 	int				pagefault_disabled;
1287 #ifdef CONFIG_MMU
1288 	struct task_struct		*oom_reaper_list;
1289 #endif
1290 #ifdef CONFIG_VMAP_STACK
1291 	struct vm_struct		*stack_vm_area;
1292 #endif
1293 #ifdef CONFIG_THREAD_INFO_IN_TASK
1294 	/* A live task holds one reference: */
1295 	refcount_t			stack_refcount;
1296 #endif
1297 #ifdef CONFIG_LIVEPATCH
1298 	int patch_state;
1299 #endif
1300 #ifdef CONFIG_SECURITY
1301 	/* Used by LSM modules for access restriction: */
1302 	void				*security;
1303 #endif
1304 
1305 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1306 	unsigned long			lowest_stack;
1307 	unsigned long			prev_lowest_stack;
1308 #endif
1309 
1310 #ifdef CONFIG_X86_MCE
1311 	u64				mce_addr;
1312 	__u64				mce_ripv : 1,
1313 					mce_whole_page : 1,
1314 					__mce_reserved : 62;
1315 	struct callback_head		mce_kill_me;
1316 #endif
1317 
1318 	/*
1319 	 * New fields for task_struct should be added above here, so that
1320 	 * they are included in the randomized portion of task_struct.
1321 	 */
1322 	randomized_struct_fields_end
1323 
1324 	/* CPU-specific state of this task: */
1325 	struct thread_struct		thread;
1326 
1327 	/*
1328 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1329 	 * structure.  It *MUST* be at the end of 'task_struct'.
1330 	 *
1331 	 * Do not put anything below here!
1332 	 */
1333 };
1334 
1335 static inline struct pid *task_pid(struct task_struct *task)
1336 {
1337 	return task->thread_pid;
1338 }
1339 
1340 /*
1341  * the helpers to get the task's different pids as they are seen
1342  * from various namespaces
1343  *
1344  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1345  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1346  *                     current.
1347  * task_xid_nr_ns()  : id seen from the ns specified;
1348  *
1349  * see also pid_nr() etc in include/linux/pid.h
1350  */
1351 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1352 
1353 static inline pid_t task_pid_nr(struct task_struct *tsk)
1354 {
1355 	return tsk->pid;
1356 }
1357 
1358 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1359 {
1360 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1361 }
1362 
1363 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1364 {
1365 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1366 }
1367 
1368 
1369 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1370 {
1371 	return tsk->tgid;
1372 }
1373 
1374 /**
1375  * pid_alive - check that a task structure is not stale
1376  * @p: Task structure to be checked.
1377  *
1378  * Test if a process is not yet dead (at most zombie state)
1379  * If pid_alive fails, then pointers within the task structure
1380  * can be stale and must not be dereferenced.
1381  *
1382  * Return: 1 if the process is alive. 0 otherwise.
1383  */
1384 static inline int pid_alive(const struct task_struct *p)
1385 {
1386 	return p->thread_pid != NULL;
1387 }
1388 
1389 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1390 {
1391 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1392 }
1393 
1394 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1395 {
1396 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1397 }
1398 
1399 
1400 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1401 {
1402 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1403 }
1404 
1405 static inline pid_t task_session_vnr(struct task_struct *tsk)
1406 {
1407 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1408 }
1409 
1410 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1411 {
1412 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1413 }
1414 
1415 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1416 {
1417 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1418 }
1419 
1420 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1421 {
1422 	pid_t pid = 0;
1423 
1424 	rcu_read_lock();
1425 	if (pid_alive(tsk))
1426 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1427 	rcu_read_unlock();
1428 
1429 	return pid;
1430 }
1431 
1432 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1433 {
1434 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1435 }
1436 
1437 /* Obsolete, do not use: */
1438 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1439 {
1440 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1441 }
1442 
1443 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1444 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1445 
1446 static inline unsigned int task_state_index(struct task_struct *tsk)
1447 {
1448 	unsigned int tsk_state = READ_ONCE(tsk->state);
1449 	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1450 
1451 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1452 
1453 	if (tsk_state == TASK_IDLE)
1454 		state = TASK_REPORT_IDLE;
1455 
1456 	return fls(state);
1457 }
1458 
1459 static inline char task_index_to_char(unsigned int state)
1460 {
1461 	static const char state_char[] = "RSDTtXZPI";
1462 
1463 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1464 
1465 	return state_char[state];
1466 }
1467 
1468 static inline char task_state_to_char(struct task_struct *tsk)
1469 {
1470 	return task_index_to_char(task_state_index(tsk));
1471 }
1472 
1473 /**
1474  * is_global_init - check if a task structure is init. Since init
1475  * is free to have sub-threads we need to check tgid.
1476  * @tsk: Task structure to be checked.
1477  *
1478  * Check if a task structure is the first user space task the kernel created.
1479  *
1480  * Return: 1 if the task structure is init. 0 otherwise.
1481  */
1482 static inline int is_global_init(struct task_struct *tsk)
1483 {
1484 	return task_tgid_nr(tsk) == 1;
1485 }
1486 
1487 extern struct pid *cad_pid;
1488 
1489 /*
1490  * Per process flags
1491  */
1492 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1493 #define PF_EXITING		0x00000004	/* Getting shut down */
1494 #define PF_VCPU			0x00000010	/* I'm a virtual CPU */
1495 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1496 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1497 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1498 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1499 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1500 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1501 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1502 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1503 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1504 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1505 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1506 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1507 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1508 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1509 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1510 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1511 						 * I am cleaning dirty pages from some other bdi. */
1512 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1513 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1514 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1515 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1516 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1517 #define PF_MEMALLOC_NOCMA	0x10000000	/* All allocation request will have _GFP_MOVABLE cleared */
1518 #define PF_IO_WORKER		0x20000000	/* Task is an IO worker */
1519 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1520 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1521 
1522 /*
1523  * Only the _current_ task can read/write to tsk->flags, but other
1524  * tasks can access tsk->flags in readonly mode for example
1525  * with tsk_used_math (like during threaded core dumping).
1526  * There is however an exception to this rule during ptrace
1527  * or during fork: the ptracer task is allowed to write to the
1528  * child->flags of its traced child (same goes for fork, the parent
1529  * can write to the child->flags), because we're guaranteed the
1530  * child is not running and in turn not changing child->flags
1531  * at the same time the parent does it.
1532  */
1533 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1534 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1535 #define clear_used_math()			clear_stopped_child_used_math(current)
1536 #define set_used_math()				set_stopped_child_used_math(current)
1537 
1538 #define conditional_stopped_child_used_math(condition, child) \
1539 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1540 
1541 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1542 
1543 #define copy_to_stopped_child_used_math(child) \
1544 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1545 
1546 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1547 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1548 #define used_math()				tsk_used_math(current)
1549 
1550 static inline bool is_percpu_thread(void)
1551 {
1552 #ifdef CONFIG_SMP
1553 	return (current->flags & PF_NO_SETAFFINITY) &&
1554 		(current->nr_cpus_allowed  == 1);
1555 #else
1556 	return true;
1557 #endif
1558 }
1559 
1560 /* Per-process atomic flags. */
1561 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1562 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1563 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1564 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1565 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1566 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1567 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1568 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1569 
1570 #define TASK_PFA_TEST(name, func)					\
1571 	static inline bool task_##func(struct task_struct *p)		\
1572 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1573 
1574 #define TASK_PFA_SET(name, func)					\
1575 	static inline void task_set_##func(struct task_struct *p)	\
1576 	{ set_bit(PFA_##name, &p->atomic_flags); }
1577 
1578 #define TASK_PFA_CLEAR(name, func)					\
1579 	static inline void task_clear_##func(struct task_struct *p)	\
1580 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1581 
1582 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1583 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1584 
1585 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1586 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1587 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1588 
1589 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1590 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1591 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1592 
1593 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1594 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1595 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1596 
1597 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1598 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1599 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1600 
1601 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1602 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1603 
1604 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1605 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1606 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1607 
1608 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1609 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1610 
1611 static inline void
1612 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1613 {
1614 	current->flags &= ~flags;
1615 	current->flags |= orig_flags & flags;
1616 }
1617 
1618 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1619 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1620 #ifdef CONFIG_SMP
1621 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1622 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1623 #else
1624 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1625 {
1626 }
1627 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1628 {
1629 	if (!cpumask_test_cpu(0, new_mask))
1630 		return -EINVAL;
1631 	return 0;
1632 }
1633 #endif
1634 
1635 extern int yield_to(struct task_struct *p, bool preempt);
1636 extern void set_user_nice(struct task_struct *p, long nice);
1637 extern int task_prio(const struct task_struct *p);
1638 
1639 /**
1640  * task_nice - return the nice value of a given task.
1641  * @p: the task in question.
1642  *
1643  * Return: The nice value [ -20 ... 0 ... 19 ].
1644  */
1645 static inline int task_nice(const struct task_struct *p)
1646 {
1647 	return PRIO_TO_NICE((p)->static_prio);
1648 }
1649 
1650 extern int can_nice(const struct task_struct *p, const int nice);
1651 extern int task_curr(const struct task_struct *p);
1652 extern int idle_cpu(int cpu);
1653 extern int available_idle_cpu(int cpu);
1654 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1655 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1656 extern void sched_set_fifo(struct task_struct *p);
1657 extern void sched_set_fifo_low(struct task_struct *p);
1658 extern void sched_set_normal(struct task_struct *p, int nice);
1659 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1660 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1661 extern struct task_struct *idle_task(int cpu);
1662 
1663 /**
1664  * is_idle_task - is the specified task an idle task?
1665  * @p: the task in question.
1666  *
1667  * Return: 1 if @p is an idle task. 0 otherwise.
1668  */
1669 static inline bool is_idle_task(const struct task_struct *p)
1670 {
1671 	return !!(p->flags & PF_IDLE);
1672 }
1673 
1674 extern struct task_struct *curr_task(int cpu);
1675 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1676 
1677 void yield(void);
1678 
1679 union thread_union {
1680 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1681 	struct task_struct task;
1682 #endif
1683 #ifndef CONFIG_THREAD_INFO_IN_TASK
1684 	struct thread_info thread_info;
1685 #endif
1686 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1687 };
1688 
1689 #ifndef CONFIG_THREAD_INFO_IN_TASK
1690 extern struct thread_info init_thread_info;
1691 #endif
1692 
1693 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1694 
1695 #ifdef CONFIG_THREAD_INFO_IN_TASK
1696 static inline struct thread_info *task_thread_info(struct task_struct *task)
1697 {
1698 	return &task->thread_info;
1699 }
1700 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1701 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1702 #endif
1703 
1704 /*
1705  * find a task by one of its numerical ids
1706  *
1707  * find_task_by_pid_ns():
1708  *      finds a task by its pid in the specified namespace
1709  * find_task_by_vpid():
1710  *      finds a task by its virtual pid
1711  *
1712  * see also find_vpid() etc in include/linux/pid.h
1713  */
1714 
1715 extern struct task_struct *find_task_by_vpid(pid_t nr);
1716 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1717 
1718 /*
1719  * find a task by its virtual pid and get the task struct
1720  */
1721 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1722 
1723 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1724 extern int wake_up_process(struct task_struct *tsk);
1725 extern void wake_up_new_task(struct task_struct *tsk);
1726 
1727 #ifdef CONFIG_SMP
1728 extern void kick_process(struct task_struct *tsk);
1729 #else
1730 static inline void kick_process(struct task_struct *tsk) { }
1731 #endif
1732 
1733 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1734 
1735 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1736 {
1737 	__set_task_comm(tsk, from, false);
1738 }
1739 
1740 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1741 #define get_task_comm(buf, tsk) ({			\
1742 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1743 	__get_task_comm(buf, sizeof(buf), tsk);		\
1744 })
1745 
1746 #ifdef CONFIG_SMP
1747 static __always_inline void scheduler_ipi(void)
1748 {
1749 	/*
1750 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1751 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1752 	 * this IPI.
1753 	 */
1754 	preempt_fold_need_resched();
1755 }
1756 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1757 #else
1758 static inline void scheduler_ipi(void) { }
1759 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1760 {
1761 	return 1;
1762 }
1763 #endif
1764 
1765 /*
1766  * Set thread flags in other task's structures.
1767  * See asm/thread_info.h for TIF_xxxx flags available:
1768  */
1769 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1770 {
1771 	set_ti_thread_flag(task_thread_info(tsk), flag);
1772 }
1773 
1774 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1775 {
1776 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1777 }
1778 
1779 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1780 					  bool value)
1781 {
1782 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
1783 }
1784 
1785 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1786 {
1787 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1788 }
1789 
1790 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1791 {
1792 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1793 }
1794 
1795 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1796 {
1797 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1798 }
1799 
1800 static inline void set_tsk_need_resched(struct task_struct *tsk)
1801 {
1802 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1803 }
1804 
1805 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1806 {
1807 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1808 }
1809 
1810 static inline int test_tsk_need_resched(struct task_struct *tsk)
1811 {
1812 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1813 }
1814 
1815 /*
1816  * cond_resched() and cond_resched_lock(): latency reduction via
1817  * explicit rescheduling in places that are safe. The return
1818  * value indicates whether a reschedule was done in fact.
1819  * cond_resched_lock() will drop the spinlock before scheduling,
1820  */
1821 #ifndef CONFIG_PREEMPTION
1822 extern int _cond_resched(void);
1823 #else
1824 static inline int _cond_resched(void) { return 0; }
1825 #endif
1826 
1827 #define cond_resched() ({			\
1828 	___might_sleep(__FILE__, __LINE__, 0);	\
1829 	_cond_resched();			\
1830 })
1831 
1832 extern int __cond_resched_lock(spinlock_t *lock);
1833 
1834 #define cond_resched_lock(lock) ({				\
1835 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1836 	__cond_resched_lock(lock);				\
1837 })
1838 
1839 static inline void cond_resched_rcu(void)
1840 {
1841 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1842 	rcu_read_unlock();
1843 	cond_resched();
1844 	rcu_read_lock();
1845 #endif
1846 }
1847 
1848 /*
1849  * Does a critical section need to be broken due to another
1850  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1851  * but a general need for low latency)
1852  */
1853 static inline int spin_needbreak(spinlock_t *lock)
1854 {
1855 #ifdef CONFIG_PREEMPTION
1856 	return spin_is_contended(lock);
1857 #else
1858 	return 0;
1859 #endif
1860 }
1861 
1862 static __always_inline bool need_resched(void)
1863 {
1864 	return unlikely(tif_need_resched());
1865 }
1866 
1867 /*
1868  * Wrappers for p->thread_info->cpu access. No-op on UP.
1869  */
1870 #ifdef CONFIG_SMP
1871 
1872 static inline unsigned int task_cpu(const struct task_struct *p)
1873 {
1874 #ifdef CONFIG_THREAD_INFO_IN_TASK
1875 	return READ_ONCE(p->cpu);
1876 #else
1877 	return READ_ONCE(task_thread_info(p)->cpu);
1878 #endif
1879 }
1880 
1881 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1882 
1883 #else
1884 
1885 static inline unsigned int task_cpu(const struct task_struct *p)
1886 {
1887 	return 0;
1888 }
1889 
1890 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1891 {
1892 }
1893 
1894 #endif /* CONFIG_SMP */
1895 
1896 /*
1897  * In order to reduce various lock holder preemption latencies provide an
1898  * interface to see if a vCPU is currently running or not.
1899  *
1900  * This allows us to terminate optimistic spin loops and block, analogous to
1901  * the native optimistic spin heuristic of testing if the lock owner task is
1902  * running or not.
1903  */
1904 #ifndef vcpu_is_preempted
1905 static inline bool vcpu_is_preempted(int cpu)
1906 {
1907 	return false;
1908 }
1909 #endif
1910 
1911 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1912 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1913 
1914 #ifndef TASK_SIZE_OF
1915 #define TASK_SIZE_OF(tsk)	TASK_SIZE
1916 #endif
1917 
1918 #ifdef CONFIG_RSEQ
1919 
1920 /*
1921  * Map the event mask on the user-space ABI enum rseq_cs_flags
1922  * for direct mask checks.
1923  */
1924 enum rseq_event_mask_bits {
1925 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1926 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1927 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1928 };
1929 
1930 enum rseq_event_mask {
1931 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
1932 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
1933 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
1934 };
1935 
1936 static inline void rseq_set_notify_resume(struct task_struct *t)
1937 {
1938 	if (t->rseq)
1939 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1940 }
1941 
1942 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1943 
1944 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1945 					     struct pt_regs *regs)
1946 {
1947 	if (current->rseq)
1948 		__rseq_handle_notify_resume(ksig, regs);
1949 }
1950 
1951 static inline void rseq_signal_deliver(struct ksignal *ksig,
1952 				       struct pt_regs *regs)
1953 {
1954 	preempt_disable();
1955 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1956 	preempt_enable();
1957 	rseq_handle_notify_resume(ksig, regs);
1958 }
1959 
1960 /* rseq_preempt() requires preemption to be disabled. */
1961 static inline void rseq_preempt(struct task_struct *t)
1962 {
1963 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1964 	rseq_set_notify_resume(t);
1965 }
1966 
1967 /* rseq_migrate() requires preemption to be disabled. */
1968 static inline void rseq_migrate(struct task_struct *t)
1969 {
1970 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1971 	rseq_set_notify_resume(t);
1972 }
1973 
1974 /*
1975  * If parent process has a registered restartable sequences area, the
1976  * child inherits. Unregister rseq for a clone with CLONE_VM set.
1977  */
1978 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1979 {
1980 	if (clone_flags & CLONE_VM) {
1981 		t->rseq = NULL;
1982 		t->rseq_sig = 0;
1983 		t->rseq_event_mask = 0;
1984 	} else {
1985 		t->rseq = current->rseq;
1986 		t->rseq_sig = current->rseq_sig;
1987 		t->rseq_event_mask = current->rseq_event_mask;
1988 	}
1989 }
1990 
1991 static inline void rseq_execve(struct task_struct *t)
1992 {
1993 	t->rseq = NULL;
1994 	t->rseq_sig = 0;
1995 	t->rseq_event_mask = 0;
1996 }
1997 
1998 #else
1999 
2000 static inline void rseq_set_notify_resume(struct task_struct *t)
2001 {
2002 }
2003 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2004 					     struct pt_regs *regs)
2005 {
2006 }
2007 static inline void rseq_signal_deliver(struct ksignal *ksig,
2008 				       struct pt_regs *regs)
2009 {
2010 }
2011 static inline void rseq_preempt(struct task_struct *t)
2012 {
2013 }
2014 static inline void rseq_migrate(struct task_struct *t)
2015 {
2016 }
2017 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2018 {
2019 }
2020 static inline void rseq_execve(struct task_struct *t)
2021 {
2022 }
2023 
2024 #endif
2025 
2026 #ifdef CONFIG_DEBUG_RSEQ
2027 
2028 void rseq_syscall(struct pt_regs *regs);
2029 
2030 #else
2031 
2032 static inline void rseq_syscall(struct pt_regs *regs)
2033 {
2034 }
2035 
2036 #endif
2037 
2038 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2039 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2040 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2041 
2042 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2043 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2044 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2045 
2046 int sched_trace_rq_cpu(struct rq *rq);
2047 int sched_trace_rq_nr_running(struct rq *rq);
2048 
2049 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2050 
2051 #endif
2052