xref: /openbmc/linux/include/linux/sched.h (revision 54a611b6)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/irqflags.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/syscall_user_dispatch.h>
31 #include <linux/mm_types_task.h>
32 #include <linux/task_io_accounting.h>
33 #include <linux/posix-timers.h>
34 #include <linux/rseq.h>
35 #include <linux/seqlock.h>
36 #include <linux/kcsan.h>
37 #include <linux/rv.h>
38 #include <asm/kmap_size.h>
39 
40 /* task_struct member predeclarations (sorted alphabetically): */
41 struct audit_context;
42 struct backing_dev_info;
43 struct bio_list;
44 struct blk_plug;
45 struct bpf_local_storage;
46 struct bpf_run_ctx;
47 struct capture_control;
48 struct cfs_rq;
49 struct fs_struct;
50 struct futex_pi_state;
51 struct io_context;
52 struct io_uring_task;
53 struct mempolicy;
54 struct nameidata;
55 struct nsproxy;
56 struct perf_event_context;
57 struct pid_namespace;
58 struct pipe_inode_info;
59 struct rcu_node;
60 struct reclaim_state;
61 struct robust_list_head;
62 struct root_domain;
63 struct rq;
64 struct sched_attr;
65 struct sched_param;
66 struct seq_file;
67 struct sighand_struct;
68 struct signal_struct;
69 struct task_delay_info;
70 struct task_group;
71 
72 /*
73  * Task state bitmask. NOTE! These bits are also
74  * encoded in fs/proc/array.c: get_task_state().
75  *
76  * We have two separate sets of flags: task->state
77  * is about runnability, while task->exit_state are
78  * about the task exiting. Confusing, but this way
79  * modifying one set can't modify the other one by
80  * mistake.
81  */
82 
83 /* Used in tsk->state: */
84 #define TASK_RUNNING			0x0000
85 #define TASK_INTERRUPTIBLE		0x0001
86 #define TASK_UNINTERRUPTIBLE		0x0002
87 #define __TASK_STOPPED			0x0004
88 #define __TASK_TRACED			0x0008
89 /* Used in tsk->exit_state: */
90 #define EXIT_DEAD			0x0010
91 #define EXIT_ZOMBIE			0x0020
92 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
93 /* Used in tsk->state again: */
94 #define TASK_PARKED			0x0040
95 #define TASK_DEAD			0x0080
96 #define TASK_WAKEKILL			0x0100
97 #define TASK_WAKING			0x0200
98 #define TASK_NOLOAD			0x0400
99 #define TASK_NEW			0x0800
100 /* RT specific auxilliary flag to mark RT lock waiters */
101 #define TASK_RTLOCK_WAIT		0x1000
102 #define TASK_STATE_MAX			0x2000
103 
104 /* Convenience macros for the sake of set_current_state: */
105 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
106 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
107 #define TASK_TRACED			__TASK_TRACED
108 
109 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
110 
111 /* Convenience macros for the sake of wake_up(): */
112 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
113 
114 /* get_task_state(): */
115 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
116 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
117 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
118 					 TASK_PARKED)
119 
120 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
121 
122 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
123 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
124 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
125 
126 /*
127  * Special states are those that do not use the normal wait-loop pattern. See
128  * the comment with set_special_state().
129  */
130 #define is_special_task_state(state)				\
131 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
132 
133 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
134 # define debug_normal_state_change(state_value)				\
135 	do {								\
136 		WARN_ON_ONCE(is_special_task_state(state_value));	\
137 		current->task_state_change = _THIS_IP_;			\
138 	} while (0)
139 
140 # define debug_special_state_change(state_value)			\
141 	do {								\
142 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
143 		current->task_state_change = _THIS_IP_;			\
144 	} while (0)
145 
146 # define debug_rtlock_wait_set_state()					\
147 	do {								 \
148 		current->saved_state_change = current->task_state_change;\
149 		current->task_state_change = _THIS_IP_;			 \
150 	} while (0)
151 
152 # define debug_rtlock_wait_restore_state()				\
153 	do {								 \
154 		current->task_state_change = current->saved_state_change;\
155 	} while (0)
156 
157 #else
158 # define debug_normal_state_change(cond)	do { } while (0)
159 # define debug_special_state_change(cond)	do { } while (0)
160 # define debug_rtlock_wait_set_state()		do { } while (0)
161 # define debug_rtlock_wait_restore_state()	do { } while (0)
162 #endif
163 
164 /*
165  * set_current_state() includes a barrier so that the write of current->state
166  * is correctly serialised wrt the caller's subsequent test of whether to
167  * actually sleep:
168  *
169  *   for (;;) {
170  *	set_current_state(TASK_UNINTERRUPTIBLE);
171  *	if (CONDITION)
172  *	   break;
173  *
174  *	schedule();
175  *   }
176  *   __set_current_state(TASK_RUNNING);
177  *
178  * If the caller does not need such serialisation (because, for instance, the
179  * CONDITION test and condition change and wakeup are under the same lock) then
180  * use __set_current_state().
181  *
182  * The above is typically ordered against the wakeup, which does:
183  *
184  *   CONDITION = 1;
185  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
186  *
187  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
188  * accessing p->state.
189  *
190  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
191  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
192  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
193  *
194  * However, with slightly different timing the wakeup TASK_RUNNING store can
195  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
196  * a problem either because that will result in one extra go around the loop
197  * and our @cond test will save the day.
198  *
199  * Also see the comments of try_to_wake_up().
200  */
201 #define __set_current_state(state_value)				\
202 	do {								\
203 		debug_normal_state_change((state_value));		\
204 		WRITE_ONCE(current->__state, (state_value));		\
205 	} while (0)
206 
207 #define set_current_state(state_value)					\
208 	do {								\
209 		debug_normal_state_change((state_value));		\
210 		smp_store_mb(current->__state, (state_value));		\
211 	} while (0)
212 
213 /*
214  * set_special_state() should be used for those states when the blocking task
215  * can not use the regular condition based wait-loop. In that case we must
216  * serialize against wakeups such that any possible in-flight TASK_RUNNING
217  * stores will not collide with our state change.
218  */
219 #define set_special_state(state_value)					\
220 	do {								\
221 		unsigned long flags; /* may shadow */			\
222 									\
223 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
224 		debug_special_state_change((state_value));		\
225 		WRITE_ONCE(current->__state, (state_value));		\
226 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
227 	} while (0)
228 
229 /*
230  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
231  *
232  * RT's spin/rwlock substitutions are state preserving. The state of the
233  * task when blocking on the lock is saved in task_struct::saved_state and
234  * restored after the lock has been acquired.  These operations are
235  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
236  * lock related wakeups while the task is blocked on the lock are
237  * redirected to operate on task_struct::saved_state to ensure that these
238  * are not dropped. On restore task_struct::saved_state is set to
239  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
240  *
241  * The lock operation looks like this:
242  *
243  *	current_save_and_set_rtlock_wait_state();
244  *	for (;;) {
245  *		if (try_lock())
246  *			break;
247  *		raw_spin_unlock_irq(&lock->wait_lock);
248  *		schedule_rtlock();
249  *		raw_spin_lock_irq(&lock->wait_lock);
250  *		set_current_state(TASK_RTLOCK_WAIT);
251  *	}
252  *	current_restore_rtlock_saved_state();
253  */
254 #define current_save_and_set_rtlock_wait_state()			\
255 	do {								\
256 		lockdep_assert_irqs_disabled();				\
257 		raw_spin_lock(&current->pi_lock);			\
258 		current->saved_state = current->__state;		\
259 		debug_rtlock_wait_set_state();				\
260 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
261 		raw_spin_unlock(&current->pi_lock);			\
262 	} while (0);
263 
264 #define current_restore_rtlock_saved_state()				\
265 	do {								\
266 		lockdep_assert_irqs_disabled();				\
267 		raw_spin_lock(&current->pi_lock);			\
268 		debug_rtlock_wait_restore_state();			\
269 		WRITE_ONCE(current->__state, current->saved_state);	\
270 		current->saved_state = TASK_RUNNING;			\
271 		raw_spin_unlock(&current->pi_lock);			\
272 	} while (0);
273 
274 #define get_current_state()	READ_ONCE(current->__state)
275 
276 /*
277  * Define the task command name length as enum, then it can be visible to
278  * BPF programs.
279  */
280 enum {
281 	TASK_COMM_LEN = 16,
282 };
283 
284 extern void scheduler_tick(void);
285 
286 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
287 
288 extern long schedule_timeout(long timeout);
289 extern long schedule_timeout_interruptible(long timeout);
290 extern long schedule_timeout_killable(long timeout);
291 extern long schedule_timeout_uninterruptible(long timeout);
292 extern long schedule_timeout_idle(long timeout);
293 asmlinkage void schedule(void);
294 extern void schedule_preempt_disabled(void);
295 asmlinkage void preempt_schedule_irq(void);
296 #ifdef CONFIG_PREEMPT_RT
297  extern void schedule_rtlock(void);
298 #endif
299 
300 extern int __must_check io_schedule_prepare(void);
301 extern void io_schedule_finish(int token);
302 extern long io_schedule_timeout(long timeout);
303 extern void io_schedule(void);
304 
305 /**
306  * struct prev_cputime - snapshot of system and user cputime
307  * @utime: time spent in user mode
308  * @stime: time spent in system mode
309  * @lock: protects the above two fields
310  *
311  * Stores previous user/system time values such that we can guarantee
312  * monotonicity.
313  */
314 struct prev_cputime {
315 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
316 	u64				utime;
317 	u64				stime;
318 	raw_spinlock_t			lock;
319 #endif
320 };
321 
322 enum vtime_state {
323 	/* Task is sleeping or running in a CPU with VTIME inactive: */
324 	VTIME_INACTIVE = 0,
325 	/* Task is idle */
326 	VTIME_IDLE,
327 	/* Task runs in kernelspace in a CPU with VTIME active: */
328 	VTIME_SYS,
329 	/* Task runs in userspace in a CPU with VTIME active: */
330 	VTIME_USER,
331 	/* Task runs as guests in a CPU with VTIME active: */
332 	VTIME_GUEST,
333 };
334 
335 struct vtime {
336 	seqcount_t		seqcount;
337 	unsigned long long	starttime;
338 	enum vtime_state	state;
339 	unsigned int		cpu;
340 	u64			utime;
341 	u64			stime;
342 	u64			gtime;
343 };
344 
345 /*
346  * Utilization clamp constraints.
347  * @UCLAMP_MIN:	Minimum utilization
348  * @UCLAMP_MAX:	Maximum utilization
349  * @UCLAMP_CNT:	Utilization clamp constraints count
350  */
351 enum uclamp_id {
352 	UCLAMP_MIN = 0,
353 	UCLAMP_MAX,
354 	UCLAMP_CNT
355 };
356 
357 #ifdef CONFIG_SMP
358 extern struct root_domain def_root_domain;
359 extern struct mutex sched_domains_mutex;
360 #endif
361 
362 struct sched_info {
363 #ifdef CONFIG_SCHED_INFO
364 	/* Cumulative counters: */
365 
366 	/* # of times we have run on this CPU: */
367 	unsigned long			pcount;
368 
369 	/* Time spent waiting on a runqueue: */
370 	unsigned long long		run_delay;
371 
372 	/* Timestamps: */
373 
374 	/* When did we last run on a CPU? */
375 	unsigned long long		last_arrival;
376 
377 	/* When were we last queued to run? */
378 	unsigned long long		last_queued;
379 
380 #endif /* CONFIG_SCHED_INFO */
381 };
382 
383 /*
384  * Integer metrics need fixed point arithmetic, e.g., sched/fair
385  * has a few: load, load_avg, util_avg, freq, and capacity.
386  *
387  * We define a basic fixed point arithmetic range, and then formalize
388  * all these metrics based on that basic range.
389  */
390 # define SCHED_FIXEDPOINT_SHIFT		10
391 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
392 
393 /* Increase resolution of cpu_capacity calculations */
394 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
395 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
396 
397 struct load_weight {
398 	unsigned long			weight;
399 	u32				inv_weight;
400 };
401 
402 /**
403  * struct util_est - Estimation utilization of FAIR tasks
404  * @enqueued: instantaneous estimated utilization of a task/cpu
405  * @ewma:     the Exponential Weighted Moving Average (EWMA)
406  *            utilization of a task
407  *
408  * Support data structure to track an Exponential Weighted Moving Average
409  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
410  * average each time a task completes an activation. Sample's weight is chosen
411  * so that the EWMA will be relatively insensitive to transient changes to the
412  * task's workload.
413  *
414  * The enqueued attribute has a slightly different meaning for tasks and cpus:
415  * - task:   the task's util_avg at last task dequeue time
416  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
417  * Thus, the util_est.enqueued of a task represents the contribution on the
418  * estimated utilization of the CPU where that task is currently enqueued.
419  *
420  * Only for tasks we track a moving average of the past instantaneous
421  * estimated utilization. This allows to absorb sporadic drops in utilization
422  * of an otherwise almost periodic task.
423  *
424  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
425  * updates. When a task is dequeued, its util_est should not be updated if its
426  * util_avg has not been updated in the meantime.
427  * This information is mapped into the MSB bit of util_est.enqueued at dequeue
428  * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
429  * for a task) it is safe to use MSB.
430  */
431 struct util_est {
432 	unsigned int			enqueued;
433 	unsigned int			ewma;
434 #define UTIL_EST_WEIGHT_SHIFT		2
435 #define UTIL_AVG_UNCHANGED		0x80000000
436 } __attribute__((__aligned__(sizeof(u64))));
437 
438 /*
439  * The load/runnable/util_avg accumulates an infinite geometric series
440  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
441  *
442  * [load_avg definition]
443  *
444  *   load_avg = runnable% * scale_load_down(load)
445  *
446  * [runnable_avg definition]
447  *
448  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
449  *
450  * [util_avg definition]
451  *
452  *   util_avg = running% * SCHED_CAPACITY_SCALE
453  *
454  * where runnable% is the time ratio that a sched_entity is runnable and
455  * running% the time ratio that a sched_entity is running.
456  *
457  * For cfs_rq, they are the aggregated values of all runnable and blocked
458  * sched_entities.
459  *
460  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
461  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
462  * for computing those signals (see update_rq_clock_pelt())
463  *
464  * N.B., the above ratios (runnable% and running%) themselves are in the
465  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
466  * to as large a range as necessary. This is for example reflected by
467  * util_avg's SCHED_CAPACITY_SCALE.
468  *
469  * [Overflow issue]
470  *
471  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
472  * with the highest load (=88761), always runnable on a single cfs_rq,
473  * and should not overflow as the number already hits PID_MAX_LIMIT.
474  *
475  * For all other cases (including 32-bit kernels), struct load_weight's
476  * weight will overflow first before we do, because:
477  *
478  *    Max(load_avg) <= Max(load.weight)
479  *
480  * Then it is the load_weight's responsibility to consider overflow
481  * issues.
482  */
483 struct sched_avg {
484 	u64				last_update_time;
485 	u64				load_sum;
486 	u64				runnable_sum;
487 	u32				util_sum;
488 	u32				period_contrib;
489 	unsigned long			load_avg;
490 	unsigned long			runnable_avg;
491 	unsigned long			util_avg;
492 	struct util_est			util_est;
493 } ____cacheline_aligned;
494 
495 struct sched_statistics {
496 #ifdef CONFIG_SCHEDSTATS
497 	u64				wait_start;
498 	u64				wait_max;
499 	u64				wait_count;
500 	u64				wait_sum;
501 	u64				iowait_count;
502 	u64				iowait_sum;
503 
504 	u64				sleep_start;
505 	u64				sleep_max;
506 	s64				sum_sleep_runtime;
507 
508 	u64				block_start;
509 	u64				block_max;
510 	s64				sum_block_runtime;
511 
512 	u64				exec_max;
513 	u64				slice_max;
514 
515 	u64				nr_migrations_cold;
516 	u64				nr_failed_migrations_affine;
517 	u64				nr_failed_migrations_running;
518 	u64				nr_failed_migrations_hot;
519 	u64				nr_forced_migrations;
520 
521 	u64				nr_wakeups;
522 	u64				nr_wakeups_sync;
523 	u64				nr_wakeups_migrate;
524 	u64				nr_wakeups_local;
525 	u64				nr_wakeups_remote;
526 	u64				nr_wakeups_affine;
527 	u64				nr_wakeups_affine_attempts;
528 	u64				nr_wakeups_passive;
529 	u64				nr_wakeups_idle;
530 
531 #ifdef CONFIG_SCHED_CORE
532 	u64				core_forceidle_sum;
533 #endif
534 #endif /* CONFIG_SCHEDSTATS */
535 } ____cacheline_aligned;
536 
537 struct sched_entity {
538 	/* For load-balancing: */
539 	struct load_weight		load;
540 	struct rb_node			run_node;
541 	struct list_head		group_node;
542 	unsigned int			on_rq;
543 
544 	u64				exec_start;
545 	u64				sum_exec_runtime;
546 	u64				vruntime;
547 	u64				prev_sum_exec_runtime;
548 
549 	u64				nr_migrations;
550 
551 #ifdef CONFIG_FAIR_GROUP_SCHED
552 	int				depth;
553 	struct sched_entity		*parent;
554 	/* rq on which this entity is (to be) queued: */
555 	struct cfs_rq			*cfs_rq;
556 	/* rq "owned" by this entity/group: */
557 	struct cfs_rq			*my_q;
558 	/* cached value of my_q->h_nr_running */
559 	unsigned long			runnable_weight;
560 #endif
561 
562 #ifdef CONFIG_SMP
563 	/*
564 	 * Per entity load average tracking.
565 	 *
566 	 * Put into separate cache line so it does not
567 	 * collide with read-mostly values above.
568 	 */
569 	struct sched_avg		avg;
570 #endif
571 };
572 
573 struct sched_rt_entity {
574 	struct list_head		run_list;
575 	unsigned long			timeout;
576 	unsigned long			watchdog_stamp;
577 	unsigned int			time_slice;
578 	unsigned short			on_rq;
579 	unsigned short			on_list;
580 
581 	struct sched_rt_entity		*back;
582 #ifdef CONFIG_RT_GROUP_SCHED
583 	struct sched_rt_entity		*parent;
584 	/* rq on which this entity is (to be) queued: */
585 	struct rt_rq			*rt_rq;
586 	/* rq "owned" by this entity/group: */
587 	struct rt_rq			*my_q;
588 #endif
589 } __randomize_layout;
590 
591 struct sched_dl_entity {
592 	struct rb_node			rb_node;
593 
594 	/*
595 	 * Original scheduling parameters. Copied here from sched_attr
596 	 * during sched_setattr(), they will remain the same until
597 	 * the next sched_setattr().
598 	 */
599 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
600 	u64				dl_deadline;	/* Relative deadline of each instance	*/
601 	u64				dl_period;	/* Separation of two instances (period) */
602 	u64				dl_bw;		/* dl_runtime / dl_period		*/
603 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
604 
605 	/*
606 	 * Actual scheduling parameters. Initialized with the values above,
607 	 * they are continuously updated during task execution. Note that
608 	 * the remaining runtime could be < 0 in case we are in overrun.
609 	 */
610 	s64				runtime;	/* Remaining runtime for this instance	*/
611 	u64				deadline;	/* Absolute deadline for this instance	*/
612 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
613 
614 	/*
615 	 * Some bool flags:
616 	 *
617 	 * @dl_throttled tells if we exhausted the runtime. If so, the
618 	 * task has to wait for a replenishment to be performed at the
619 	 * next firing of dl_timer.
620 	 *
621 	 * @dl_yielded tells if task gave up the CPU before consuming
622 	 * all its available runtime during the last job.
623 	 *
624 	 * @dl_non_contending tells if the task is inactive while still
625 	 * contributing to the active utilization. In other words, it
626 	 * indicates if the inactive timer has been armed and its handler
627 	 * has not been executed yet. This flag is useful to avoid race
628 	 * conditions between the inactive timer handler and the wakeup
629 	 * code.
630 	 *
631 	 * @dl_overrun tells if the task asked to be informed about runtime
632 	 * overruns.
633 	 */
634 	unsigned int			dl_throttled      : 1;
635 	unsigned int			dl_yielded        : 1;
636 	unsigned int			dl_non_contending : 1;
637 	unsigned int			dl_overrun	  : 1;
638 
639 	/*
640 	 * Bandwidth enforcement timer. Each -deadline task has its
641 	 * own bandwidth to be enforced, thus we need one timer per task.
642 	 */
643 	struct hrtimer			dl_timer;
644 
645 	/*
646 	 * Inactive timer, responsible for decreasing the active utilization
647 	 * at the "0-lag time". When a -deadline task blocks, it contributes
648 	 * to GRUB's active utilization until the "0-lag time", hence a
649 	 * timer is needed to decrease the active utilization at the correct
650 	 * time.
651 	 */
652 	struct hrtimer inactive_timer;
653 
654 #ifdef CONFIG_RT_MUTEXES
655 	/*
656 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
657 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
658 	 * to (the original one/itself).
659 	 */
660 	struct sched_dl_entity *pi_se;
661 #endif
662 };
663 
664 #ifdef CONFIG_UCLAMP_TASK
665 /* Number of utilization clamp buckets (shorter alias) */
666 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
667 
668 /*
669  * Utilization clamp for a scheduling entity
670  * @value:		clamp value "assigned" to a se
671  * @bucket_id:		bucket index corresponding to the "assigned" value
672  * @active:		the se is currently refcounted in a rq's bucket
673  * @user_defined:	the requested clamp value comes from user-space
674  *
675  * The bucket_id is the index of the clamp bucket matching the clamp value
676  * which is pre-computed and stored to avoid expensive integer divisions from
677  * the fast path.
678  *
679  * The active bit is set whenever a task has got an "effective" value assigned,
680  * which can be different from the clamp value "requested" from user-space.
681  * This allows to know a task is refcounted in the rq's bucket corresponding
682  * to the "effective" bucket_id.
683  *
684  * The user_defined bit is set whenever a task has got a task-specific clamp
685  * value requested from userspace, i.e. the system defaults apply to this task
686  * just as a restriction. This allows to relax default clamps when a less
687  * restrictive task-specific value has been requested, thus allowing to
688  * implement a "nice" semantic. For example, a task running with a 20%
689  * default boost can still drop its own boosting to 0%.
690  */
691 struct uclamp_se {
692 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
693 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
694 	unsigned int active		: 1;
695 	unsigned int user_defined	: 1;
696 };
697 #endif /* CONFIG_UCLAMP_TASK */
698 
699 union rcu_special {
700 	struct {
701 		u8			blocked;
702 		u8			need_qs;
703 		u8			exp_hint; /* Hint for performance. */
704 		u8			need_mb; /* Readers need smp_mb(). */
705 	} b; /* Bits. */
706 	u32 s; /* Set of bits. */
707 };
708 
709 enum perf_event_task_context {
710 	perf_invalid_context = -1,
711 	perf_hw_context = 0,
712 	perf_sw_context,
713 	perf_nr_task_contexts,
714 };
715 
716 struct wake_q_node {
717 	struct wake_q_node *next;
718 };
719 
720 struct kmap_ctrl {
721 #ifdef CONFIG_KMAP_LOCAL
722 	int				idx;
723 	pte_t				pteval[KM_MAX_IDX];
724 #endif
725 };
726 
727 struct task_struct {
728 #ifdef CONFIG_THREAD_INFO_IN_TASK
729 	/*
730 	 * For reasons of header soup (see current_thread_info()), this
731 	 * must be the first element of task_struct.
732 	 */
733 	struct thread_info		thread_info;
734 #endif
735 	unsigned int			__state;
736 
737 #ifdef CONFIG_PREEMPT_RT
738 	/* saved state for "spinlock sleepers" */
739 	unsigned int			saved_state;
740 #endif
741 
742 	/*
743 	 * This begins the randomizable portion of task_struct. Only
744 	 * scheduling-critical items should be added above here.
745 	 */
746 	randomized_struct_fields_start
747 
748 	void				*stack;
749 	refcount_t			usage;
750 	/* Per task flags (PF_*), defined further below: */
751 	unsigned int			flags;
752 	unsigned int			ptrace;
753 
754 #ifdef CONFIG_SMP
755 	int				on_cpu;
756 	struct __call_single_node	wake_entry;
757 	unsigned int			wakee_flips;
758 	unsigned long			wakee_flip_decay_ts;
759 	struct task_struct		*last_wakee;
760 
761 	/*
762 	 * recent_used_cpu is initially set as the last CPU used by a task
763 	 * that wakes affine another task. Waker/wakee relationships can
764 	 * push tasks around a CPU where each wakeup moves to the next one.
765 	 * Tracking a recently used CPU allows a quick search for a recently
766 	 * used CPU that may be idle.
767 	 */
768 	int				recent_used_cpu;
769 	int				wake_cpu;
770 #endif
771 	int				on_rq;
772 
773 	int				prio;
774 	int				static_prio;
775 	int				normal_prio;
776 	unsigned int			rt_priority;
777 
778 	struct sched_entity		se;
779 	struct sched_rt_entity		rt;
780 	struct sched_dl_entity		dl;
781 	const struct sched_class	*sched_class;
782 
783 #ifdef CONFIG_SCHED_CORE
784 	struct rb_node			core_node;
785 	unsigned long			core_cookie;
786 	unsigned int			core_occupation;
787 #endif
788 
789 #ifdef CONFIG_CGROUP_SCHED
790 	struct task_group		*sched_task_group;
791 #endif
792 
793 #ifdef CONFIG_UCLAMP_TASK
794 	/*
795 	 * Clamp values requested for a scheduling entity.
796 	 * Must be updated with task_rq_lock() held.
797 	 */
798 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
799 	/*
800 	 * Effective clamp values used for a scheduling entity.
801 	 * Must be updated with task_rq_lock() held.
802 	 */
803 	struct uclamp_se		uclamp[UCLAMP_CNT];
804 #endif
805 
806 	struct sched_statistics         stats;
807 
808 #ifdef CONFIG_PREEMPT_NOTIFIERS
809 	/* List of struct preempt_notifier: */
810 	struct hlist_head		preempt_notifiers;
811 #endif
812 
813 #ifdef CONFIG_BLK_DEV_IO_TRACE
814 	unsigned int			btrace_seq;
815 #endif
816 
817 	unsigned int			policy;
818 	int				nr_cpus_allowed;
819 	const cpumask_t			*cpus_ptr;
820 	cpumask_t			*user_cpus_ptr;
821 	cpumask_t			cpus_mask;
822 	void				*migration_pending;
823 #ifdef CONFIG_SMP
824 	unsigned short			migration_disabled;
825 #endif
826 	unsigned short			migration_flags;
827 
828 #ifdef CONFIG_PREEMPT_RCU
829 	int				rcu_read_lock_nesting;
830 	union rcu_special		rcu_read_unlock_special;
831 	struct list_head		rcu_node_entry;
832 	struct rcu_node			*rcu_blocked_node;
833 #endif /* #ifdef CONFIG_PREEMPT_RCU */
834 
835 #ifdef CONFIG_TASKS_RCU
836 	unsigned long			rcu_tasks_nvcsw;
837 	u8				rcu_tasks_holdout;
838 	u8				rcu_tasks_idx;
839 	int				rcu_tasks_idle_cpu;
840 	struct list_head		rcu_tasks_holdout_list;
841 #endif /* #ifdef CONFIG_TASKS_RCU */
842 
843 #ifdef CONFIG_TASKS_TRACE_RCU
844 	int				trc_reader_nesting;
845 	int				trc_ipi_to_cpu;
846 	union rcu_special		trc_reader_special;
847 	struct list_head		trc_holdout_list;
848 	struct list_head		trc_blkd_node;
849 	int				trc_blkd_cpu;
850 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
851 
852 	struct sched_info		sched_info;
853 
854 	struct list_head		tasks;
855 #ifdef CONFIG_SMP
856 	struct plist_node		pushable_tasks;
857 	struct rb_node			pushable_dl_tasks;
858 #endif
859 
860 	struct mm_struct		*mm;
861 	struct mm_struct		*active_mm;
862 
863 	/* Per-thread vma caching: */
864 	struct vmacache			vmacache;
865 
866 #ifdef SPLIT_RSS_COUNTING
867 	struct task_rss_stat		rss_stat;
868 #endif
869 	int				exit_state;
870 	int				exit_code;
871 	int				exit_signal;
872 	/* The signal sent when the parent dies: */
873 	int				pdeath_signal;
874 	/* JOBCTL_*, siglock protected: */
875 	unsigned long			jobctl;
876 
877 	/* Used for emulating ABI behavior of previous Linux versions: */
878 	unsigned int			personality;
879 
880 	/* Scheduler bits, serialized by scheduler locks: */
881 	unsigned			sched_reset_on_fork:1;
882 	unsigned			sched_contributes_to_load:1;
883 	unsigned			sched_migrated:1;
884 #ifdef CONFIG_PSI
885 	unsigned			sched_psi_wake_requeue:1;
886 #endif
887 
888 	/* Force alignment to the next boundary: */
889 	unsigned			:0;
890 
891 	/* Unserialized, strictly 'current' */
892 
893 	/*
894 	 * This field must not be in the scheduler word above due to wakelist
895 	 * queueing no longer being serialized by p->on_cpu. However:
896 	 *
897 	 * p->XXX = X;			ttwu()
898 	 * schedule()			  if (p->on_rq && ..) // false
899 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
900 	 *   deactivate_task()		      ttwu_queue_wakelist())
901 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
902 	 *
903 	 * guarantees all stores of 'current' are visible before
904 	 * ->sched_remote_wakeup gets used, so it can be in this word.
905 	 */
906 	unsigned			sched_remote_wakeup:1;
907 
908 	/* Bit to tell LSMs we're in execve(): */
909 	unsigned			in_execve:1;
910 	unsigned			in_iowait:1;
911 #ifndef TIF_RESTORE_SIGMASK
912 	unsigned			restore_sigmask:1;
913 #endif
914 #ifdef CONFIG_MEMCG
915 	unsigned			in_user_fault:1;
916 #endif
917 #ifdef CONFIG_LRU_GEN
918 	/* whether the LRU algorithm may apply to this access */
919 	unsigned			in_lru_fault:1;
920 #endif
921 #ifdef CONFIG_COMPAT_BRK
922 	unsigned			brk_randomized:1;
923 #endif
924 #ifdef CONFIG_CGROUPS
925 	/* disallow userland-initiated cgroup migration */
926 	unsigned			no_cgroup_migration:1;
927 	/* task is frozen/stopped (used by the cgroup freezer) */
928 	unsigned			frozen:1;
929 #endif
930 #ifdef CONFIG_BLK_CGROUP
931 	unsigned			use_memdelay:1;
932 #endif
933 #ifdef CONFIG_PSI
934 	/* Stalled due to lack of memory */
935 	unsigned			in_memstall:1;
936 #endif
937 #ifdef CONFIG_PAGE_OWNER
938 	/* Used by page_owner=on to detect recursion in page tracking. */
939 	unsigned			in_page_owner:1;
940 #endif
941 #ifdef CONFIG_EVENTFD
942 	/* Recursion prevention for eventfd_signal() */
943 	unsigned			in_eventfd_signal:1;
944 #endif
945 #ifdef CONFIG_IOMMU_SVA
946 	unsigned			pasid_activated:1;
947 #endif
948 #ifdef	CONFIG_CPU_SUP_INTEL
949 	unsigned			reported_split_lock:1;
950 #endif
951 #ifdef CONFIG_TASK_DELAY_ACCT
952 	/* delay due to memory thrashing */
953 	unsigned                        in_thrashing:1;
954 #endif
955 
956 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
957 
958 	struct restart_block		restart_block;
959 
960 	pid_t				pid;
961 	pid_t				tgid;
962 
963 #ifdef CONFIG_STACKPROTECTOR
964 	/* Canary value for the -fstack-protector GCC feature: */
965 	unsigned long			stack_canary;
966 #endif
967 	/*
968 	 * Pointers to the (original) parent process, youngest child, younger sibling,
969 	 * older sibling, respectively.  (p->father can be replaced with
970 	 * p->real_parent->pid)
971 	 */
972 
973 	/* Real parent process: */
974 	struct task_struct __rcu	*real_parent;
975 
976 	/* Recipient of SIGCHLD, wait4() reports: */
977 	struct task_struct __rcu	*parent;
978 
979 	/*
980 	 * Children/sibling form the list of natural children:
981 	 */
982 	struct list_head		children;
983 	struct list_head		sibling;
984 	struct task_struct		*group_leader;
985 
986 	/*
987 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
988 	 *
989 	 * This includes both natural children and PTRACE_ATTACH targets.
990 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
991 	 */
992 	struct list_head		ptraced;
993 	struct list_head		ptrace_entry;
994 
995 	/* PID/PID hash table linkage. */
996 	struct pid			*thread_pid;
997 	struct hlist_node		pid_links[PIDTYPE_MAX];
998 	struct list_head		thread_group;
999 	struct list_head		thread_node;
1000 
1001 	struct completion		*vfork_done;
1002 
1003 	/* CLONE_CHILD_SETTID: */
1004 	int __user			*set_child_tid;
1005 
1006 	/* CLONE_CHILD_CLEARTID: */
1007 	int __user			*clear_child_tid;
1008 
1009 	/* PF_KTHREAD | PF_IO_WORKER */
1010 	void				*worker_private;
1011 
1012 	u64				utime;
1013 	u64				stime;
1014 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1015 	u64				utimescaled;
1016 	u64				stimescaled;
1017 #endif
1018 	u64				gtime;
1019 	struct prev_cputime		prev_cputime;
1020 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1021 	struct vtime			vtime;
1022 #endif
1023 
1024 #ifdef CONFIG_NO_HZ_FULL
1025 	atomic_t			tick_dep_mask;
1026 #endif
1027 	/* Context switch counts: */
1028 	unsigned long			nvcsw;
1029 	unsigned long			nivcsw;
1030 
1031 	/* Monotonic time in nsecs: */
1032 	u64				start_time;
1033 
1034 	/* Boot based time in nsecs: */
1035 	u64				start_boottime;
1036 
1037 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1038 	unsigned long			min_flt;
1039 	unsigned long			maj_flt;
1040 
1041 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1042 	struct posix_cputimers		posix_cputimers;
1043 
1044 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1045 	struct posix_cputimers_work	posix_cputimers_work;
1046 #endif
1047 
1048 	/* Process credentials: */
1049 
1050 	/* Tracer's credentials at attach: */
1051 	const struct cred __rcu		*ptracer_cred;
1052 
1053 	/* Objective and real subjective task credentials (COW): */
1054 	const struct cred __rcu		*real_cred;
1055 
1056 	/* Effective (overridable) subjective task credentials (COW): */
1057 	const struct cred __rcu		*cred;
1058 
1059 #ifdef CONFIG_KEYS
1060 	/* Cached requested key. */
1061 	struct key			*cached_requested_key;
1062 #endif
1063 
1064 	/*
1065 	 * executable name, excluding path.
1066 	 *
1067 	 * - normally initialized setup_new_exec()
1068 	 * - access it with [gs]et_task_comm()
1069 	 * - lock it with task_lock()
1070 	 */
1071 	char				comm[TASK_COMM_LEN];
1072 
1073 	struct nameidata		*nameidata;
1074 
1075 #ifdef CONFIG_SYSVIPC
1076 	struct sysv_sem			sysvsem;
1077 	struct sysv_shm			sysvshm;
1078 #endif
1079 #ifdef CONFIG_DETECT_HUNG_TASK
1080 	unsigned long			last_switch_count;
1081 	unsigned long			last_switch_time;
1082 #endif
1083 	/* Filesystem information: */
1084 	struct fs_struct		*fs;
1085 
1086 	/* Open file information: */
1087 	struct files_struct		*files;
1088 
1089 #ifdef CONFIG_IO_URING
1090 	struct io_uring_task		*io_uring;
1091 #endif
1092 
1093 	/* Namespaces: */
1094 	struct nsproxy			*nsproxy;
1095 
1096 	/* Signal handlers: */
1097 	struct signal_struct		*signal;
1098 	struct sighand_struct __rcu		*sighand;
1099 	sigset_t			blocked;
1100 	sigset_t			real_blocked;
1101 	/* Restored if set_restore_sigmask() was used: */
1102 	sigset_t			saved_sigmask;
1103 	struct sigpending		pending;
1104 	unsigned long			sas_ss_sp;
1105 	size_t				sas_ss_size;
1106 	unsigned int			sas_ss_flags;
1107 
1108 	struct callback_head		*task_works;
1109 
1110 #ifdef CONFIG_AUDIT
1111 #ifdef CONFIG_AUDITSYSCALL
1112 	struct audit_context		*audit_context;
1113 #endif
1114 	kuid_t				loginuid;
1115 	unsigned int			sessionid;
1116 #endif
1117 	struct seccomp			seccomp;
1118 	struct syscall_user_dispatch	syscall_dispatch;
1119 
1120 	/* Thread group tracking: */
1121 	u64				parent_exec_id;
1122 	u64				self_exec_id;
1123 
1124 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1125 	spinlock_t			alloc_lock;
1126 
1127 	/* Protection of the PI data structures: */
1128 	raw_spinlock_t			pi_lock;
1129 
1130 	struct wake_q_node		wake_q;
1131 
1132 #ifdef CONFIG_RT_MUTEXES
1133 	/* PI waiters blocked on a rt_mutex held by this task: */
1134 	struct rb_root_cached		pi_waiters;
1135 	/* Updated under owner's pi_lock and rq lock */
1136 	struct task_struct		*pi_top_task;
1137 	/* Deadlock detection and priority inheritance handling: */
1138 	struct rt_mutex_waiter		*pi_blocked_on;
1139 #endif
1140 
1141 #ifdef CONFIG_DEBUG_MUTEXES
1142 	/* Mutex deadlock detection: */
1143 	struct mutex_waiter		*blocked_on;
1144 #endif
1145 
1146 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1147 	int				non_block_count;
1148 #endif
1149 
1150 #ifdef CONFIG_TRACE_IRQFLAGS
1151 	struct irqtrace_events		irqtrace;
1152 	unsigned int			hardirq_threaded;
1153 	u64				hardirq_chain_key;
1154 	int				softirqs_enabled;
1155 	int				softirq_context;
1156 	int				irq_config;
1157 #endif
1158 #ifdef CONFIG_PREEMPT_RT
1159 	int				softirq_disable_cnt;
1160 #endif
1161 
1162 #ifdef CONFIG_LOCKDEP
1163 # define MAX_LOCK_DEPTH			48UL
1164 	u64				curr_chain_key;
1165 	int				lockdep_depth;
1166 	unsigned int			lockdep_recursion;
1167 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1168 #endif
1169 
1170 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1171 	unsigned int			in_ubsan;
1172 #endif
1173 
1174 	/* Journalling filesystem info: */
1175 	void				*journal_info;
1176 
1177 	/* Stacked block device info: */
1178 	struct bio_list			*bio_list;
1179 
1180 	/* Stack plugging: */
1181 	struct blk_plug			*plug;
1182 
1183 	/* VM state: */
1184 	struct reclaim_state		*reclaim_state;
1185 
1186 	struct backing_dev_info		*backing_dev_info;
1187 
1188 	struct io_context		*io_context;
1189 
1190 #ifdef CONFIG_COMPACTION
1191 	struct capture_control		*capture_control;
1192 #endif
1193 	/* Ptrace state: */
1194 	unsigned long			ptrace_message;
1195 	kernel_siginfo_t		*last_siginfo;
1196 
1197 	struct task_io_accounting	ioac;
1198 #ifdef CONFIG_PSI
1199 	/* Pressure stall state */
1200 	unsigned int			psi_flags;
1201 #endif
1202 #ifdef CONFIG_TASK_XACCT
1203 	/* Accumulated RSS usage: */
1204 	u64				acct_rss_mem1;
1205 	/* Accumulated virtual memory usage: */
1206 	u64				acct_vm_mem1;
1207 	/* stime + utime since last update: */
1208 	u64				acct_timexpd;
1209 #endif
1210 #ifdef CONFIG_CPUSETS
1211 	/* Protected by ->alloc_lock: */
1212 	nodemask_t			mems_allowed;
1213 	/* Sequence number to catch updates: */
1214 	seqcount_spinlock_t		mems_allowed_seq;
1215 	int				cpuset_mem_spread_rotor;
1216 	int				cpuset_slab_spread_rotor;
1217 #endif
1218 #ifdef CONFIG_CGROUPS
1219 	/* Control Group info protected by css_set_lock: */
1220 	struct css_set __rcu		*cgroups;
1221 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1222 	struct list_head		cg_list;
1223 #endif
1224 #ifdef CONFIG_X86_CPU_RESCTRL
1225 	u32				closid;
1226 	u32				rmid;
1227 #endif
1228 #ifdef CONFIG_FUTEX
1229 	struct robust_list_head __user	*robust_list;
1230 #ifdef CONFIG_COMPAT
1231 	struct compat_robust_list_head __user *compat_robust_list;
1232 #endif
1233 	struct list_head		pi_state_list;
1234 	struct futex_pi_state		*pi_state_cache;
1235 	struct mutex			futex_exit_mutex;
1236 	unsigned int			futex_state;
1237 #endif
1238 #ifdef CONFIG_PERF_EVENTS
1239 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
1240 	struct mutex			perf_event_mutex;
1241 	struct list_head		perf_event_list;
1242 #endif
1243 #ifdef CONFIG_DEBUG_PREEMPT
1244 	unsigned long			preempt_disable_ip;
1245 #endif
1246 #ifdef CONFIG_NUMA
1247 	/* Protected by alloc_lock: */
1248 	struct mempolicy		*mempolicy;
1249 	short				il_prev;
1250 	short				pref_node_fork;
1251 #endif
1252 #ifdef CONFIG_NUMA_BALANCING
1253 	int				numa_scan_seq;
1254 	unsigned int			numa_scan_period;
1255 	unsigned int			numa_scan_period_max;
1256 	int				numa_preferred_nid;
1257 	unsigned long			numa_migrate_retry;
1258 	/* Migration stamp: */
1259 	u64				node_stamp;
1260 	u64				last_task_numa_placement;
1261 	u64				last_sum_exec_runtime;
1262 	struct callback_head		numa_work;
1263 
1264 	/*
1265 	 * This pointer is only modified for current in syscall and
1266 	 * pagefault context (and for tasks being destroyed), so it can be read
1267 	 * from any of the following contexts:
1268 	 *  - RCU read-side critical section
1269 	 *  - current->numa_group from everywhere
1270 	 *  - task's runqueue locked, task not running
1271 	 */
1272 	struct numa_group __rcu		*numa_group;
1273 
1274 	/*
1275 	 * numa_faults is an array split into four regions:
1276 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1277 	 * in this precise order.
1278 	 *
1279 	 * faults_memory: Exponential decaying average of faults on a per-node
1280 	 * basis. Scheduling placement decisions are made based on these
1281 	 * counts. The values remain static for the duration of a PTE scan.
1282 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1283 	 * hinting fault was incurred.
1284 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1285 	 * during the current scan window. When the scan completes, the counts
1286 	 * in faults_memory and faults_cpu decay and these values are copied.
1287 	 */
1288 	unsigned long			*numa_faults;
1289 	unsigned long			total_numa_faults;
1290 
1291 	/*
1292 	 * numa_faults_locality tracks if faults recorded during the last
1293 	 * scan window were remote/local or failed to migrate. The task scan
1294 	 * period is adapted based on the locality of the faults with different
1295 	 * weights depending on whether they were shared or private faults
1296 	 */
1297 	unsigned long			numa_faults_locality[3];
1298 
1299 	unsigned long			numa_pages_migrated;
1300 #endif /* CONFIG_NUMA_BALANCING */
1301 
1302 #ifdef CONFIG_RSEQ
1303 	struct rseq __user *rseq;
1304 	u32 rseq_sig;
1305 	/*
1306 	 * RmW on rseq_event_mask must be performed atomically
1307 	 * with respect to preemption.
1308 	 */
1309 	unsigned long rseq_event_mask;
1310 #endif
1311 
1312 	struct tlbflush_unmap_batch	tlb_ubc;
1313 
1314 	union {
1315 		refcount_t		rcu_users;
1316 		struct rcu_head		rcu;
1317 	};
1318 
1319 	/* Cache last used pipe for splice(): */
1320 	struct pipe_inode_info		*splice_pipe;
1321 
1322 	struct page_frag		task_frag;
1323 
1324 #ifdef CONFIG_TASK_DELAY_ACCT
1325 	struct task_delay_info		*delays;
1326 #endif
1327 
1328 #ifdef CONFIG_FAULT_INJECTION
1329 	int				make_it_fail;
1330 	unsigned int			fail_nth;
1331 #endif
1332 	/*
1333 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1334 	 * balance_dirty_pages() for a dirty throttling pause:
1335 	 */
1336 	int				nr_dirtied;
1337 	int				nr_dirtied_pause;
1338 	/* Start of a write-and-pause period: */
1339 	unsigned long			dirty_paused_when;
1340 
1341 #ifdef CONFIG_LATENCYTOP
1342 	int				latency_record_count;
1343 	struct latency_record		latency_record[LT_SAVECOUNT];
1344 #endif
1345 	/*
1346 	 * Time slack values; these are used to round up poll() and
1347 	 * select() etc timeout values. These are in nanoseconds.
1348 	 */
1349 	u64				timer_slack_ns;
1350 	u64				default_timer_slack_ns;
1351 
1352 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1353 	unsigned int			kasan_depth;
1354 #endif
1355 
1356 #ifdef CONFIG_KCSAN
1357 	struct kcsan_ctx		kcsan_ctx;
1358 #ifdef CONFIG_TRACE_IRQFLAGS
1359 	struct irqtrace_events		kcsan_save_irqtrace;
1360 #endif
1361 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1362 	int				kcsan_stack_depth;
1363 #endif
1364 #endif
1365 
1366 #if IS_ENABLED(CONFIG_KUNIT)
1367 	struct kunit			*kunit_test;
1368 #endif
1369 
1370 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1371 	/* Index of current stored address in ret_stack: */
1372 	int				curr_ret_stack;
1373 	int				curr_ret_depth;
1374 
1375 	/* Stack of return addresses for return function tracing: */
1376 	struct ftrace_ret_stack		*ret_stack;
1377 
1378 	/* Timestamp for last schedule: */
1379 	unsigned long long		ftrace_timestamp;
1380 
1381 	/*
1382 	 * Number of functions that haven't been traced
1383 	 * because of depth overrun:
1384 	 */
1385 	atomic_t			trace_overrun;
1386 
1387 	/* Pause tracing: */
1388 	atomic_t			tracing_graph_pause;
1389 #endif
1390 
1391 #ifdef CONFIG_TRACING
1392 	/* State flags for use by tracers: */
1393 	unsigned long			trace;
1394 
1395 	/* Bitmask and counter of trace recursion: */
1396 	unsigned long			trace_recursion;
1397 #endif /* CONFIG_TRACING */
1398 
1399 #ifdef CONFIG_KCOV
1400 	/* See kernel/kcov.c for more details. */
1401 
1402 	/* Coverage collection mode enabled for this task (0 if disabled): */
1403 	unsigned int			kcov_mode;
1404 
1405 	/* Size of the kcov_area: */
1406 	unsigned int			kcov_size;
1407 
1408 	/* Buffer for coverage collection: */
1409 	void				*kcov_area;
1410 
1411 	/* KCOV descriptor wired with this task or NULL: */
1412 	struct kcov			*kcov;
1413 
1414 	/* KCOV common handle for remote coverage collection: */
1415 	u64				kcov_handle;
1416 
1417 	/* KCOV sequence number: */
1418 	int				kcov_sequence;
1419 
1420 	/* Collect coverage from softirq context: */
1421 	unsigned int			kcov_softirq;
1422 #endif
1423 
1424 #ifdef CONFIG_MEMCG
1425 	struct mem_cgroup		*memcg_in_oom;
1426 	gfp_t				memcg_oom_gfp_mask;
1427 	int				memcg_oom_order;
1428 
1429 	/* Number of pages to reclaim on returning to userland: */
1430 	unsigned int			memcg_nr_pages_over_high;
1431 
1432 	/* Used by memcontrol for targeted memcg charge: */
1433 	struct mem_cgroup		*active_memcg;
1434 #endif
1435 
1436 #ifdef CONFIG_BLK_CGROUP
1437 	struct request_queue		*throttle_queue;
1438 #endif
1439 
1440 #ifdef CONFIG_UPROBES
1441 	struct uprobe_task		*utask;
1442 #endif
1443 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1444 	unsigned int			sequential_io;
1445 	unsigned int			sequential_io_avg;
1446 #endif
1447 	struct kmap_ctrl		kmap_ctrl;
1448 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1449 	unsigned long			task_state_change;
1450 # ifdef CONFIG_PREEMPT_RT
1451 	unsigned long			saved_state_change;
1452 # endif
1453 #endif
1454 	int				pagefault_disabled;
1455 #ifdef CONFIG_MMU
1456 	struct task_struct		*oom_reaper_list;
1457 	struct timer_list		oom_reaper_timer;
1458 #endif
1459 #ifdef CONFIG_VMAP_STACK
1460 	struct vm_struct		*stack_vm_area;
1461 #endif
1462 #ifdef CONFIG_THREAD_INFO_IN_TASK
1463 	/* A live task holds one reference: */
1464 	refcount_t			stack_refcount;
1465 #endif
1466 #ifdef CONFIG_LIVEPATCH
1467 	int patch_state;
1468 #endif
1469 #ifdef CONFIG_SECURITY
1470 	/* Used by LSM modules for access restriction: */
1471 	void				*security;
1472 #endif
1473 #ifdef CONFIG_BPF_SYSCALL
1474 	/* Used by BPF task local storage */
1475 	struct bpf_local_storage __rcu	*bpf_storage;
1476 	/* Used for BPF run context */
1477 	struct bpf_run_ctx		*bpf_ctx;
1478 #endif
1479 
1480 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1481 	unsigned long			lowest_stack;
1482 	unsigned long			prev_lowest_stack;
1483 #endif
1484 
1485 #ifdef CONFIG_X86_MCE
1486 	void __user			*mce_vaddr;
1487 	__u64				mce_kflags;
1488 	u64				mce_addr;
1489 	__u64				mce_ripv : 1,
1490 					mce_whole_page : 1,
1491 					__mce_reserved : 62;
1492 	struct callback_head		mce_kill_me;
1493 	int				mce_count;
1494 #endif
1495 
1496 #ifdef CONFIG_KRETPROBES
1497 	struct llist_head               kretprobe_instances;
1498 #endif
1499 #ifdef CONFIG_RETHOOK
1500 	struct llist_head               rethooks;
1501 #endif
1502 
1503 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1504 	/*
1505 	 * If L1D flush is supported on mm context switch
1506 	 * then we use this callback head to queue kill work
1507 	 * to kill tasks that are not running on SMT disabled
1508 	 * cores
1509 	 */
1510 	struct callback_head		l1d_flush_kill;
1511 #endif
1512 
1513 #ifdef CONFIG_RV
1514 	/*
1515 	 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1516 	 * If we find justification for more monitors, we can think
1517 	 * about adding more or developing a dynamic method. So far,
1518 	 * none of these are justified.
1519 	 */
1520 	union rv_task_monitor		rv[RV_PER_TASK_MONITORS];
1521 #endif
1522 
1523 	/*
1524 	 * New fields for task_struct should be added above here, so that
1525 	 * they are included in the randomized portion of task_struct.
1526 	 */
1527 	randomized_struct_fields_end
1528 
1529 	/* CPU-specific state of this task: */
1530 	struct thread_struct		thread;
1531 
1532 	/*
1533 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1534 	 * structure.  It *MUST* be at the end of 'task_struct'.
1535 	 *
1536 	 * Do not put anything below here!
1537 	 */
1538 };
1539 
1540 static inline struct pid *task_pid(struct task_struct *task)
1541 {
1542 	return task->thread_pid;
1543 }
1544 
1545 /*
1546  * the helpers to get the task's different pids as they are seen
1547  * from various namespaces
1548  *
1549  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1550  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1551  *                     current.
1552  * task_xid_nr_ns()  : id seen from the ns specified;
1553  *
1554  * see also pid_nr() etc in include/linux/pid.h
1555  */
1556 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1557 
1558 static inline pid_t task_pid_nr(struct task_struct *tsk)
1559 {
1560 	return tsk->pid;
1561 }
1562 
1563 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1564 {
1565 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1566 }
1567 
1568 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1569 {
1570 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1571 }
1572 
1573 
1574 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1575 {
1576 	return tsk->tgid;
1577 }
1578 
1579 /**
1580  * pid_alive - check that a task structure is not stale
1581  * @p: Task structure to be checked.
1582  *
1583  * Test if a process is not yet dead (at most zombie state)
1584  * If pid_alive fails, then pointers within the task structure
1585  * can be stale and must not be dereferenced.
1586  *
1587  * Return: 1 if the process is alive. 0 otherwise.
1588  */
1589 static inline int pid_alive(const struct task_struct *p)
1590 {
1591 	return p->thread_pid != NULL;
1592 }
1593 
1594 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1595 {
1596 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1597 }
1598 
1599 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1600 {
1601 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1602 }
1603 
1604 
1605 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1606 {
1607 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1608 }
1609 
1610 static inline pid_t task_session_vnr(struct task_struct *tsk)
1611 {
1612 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1613 }
1614 
1615 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1616 {
1617 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1618 }
1619 
1620 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1621 {
1622 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1623 }
1624 
1625 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1626 {
1627 	pid_t pid = 0;
1628 
1629 	rcu_read_lock();
1630 	if (pid_alive(tsk))
1631 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1632 	rcu_read_unlock();
1633 
1634 	return pid;
1635 }
1636 
1637 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1638 {
1639 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1640 }
1641 
1642 /* Obsolete, do not use: */
1643 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1644 {
1645 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1646 }
1647 
1648 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1649 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1650 
1651 static inline unsigned int __task_state_index(unsigned int tsk_state,
1652 					      unsigned int tsk_exit_state)
1653 {
1654 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1655 
1656 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1657 
1658 	if (tsk_state == TASK_IDLE)
1659 		state = TASK_REPORT_IDLE;
1660 
1661 	/*
1662 	 * We're lying here, but rather than expose a completely new task state
1663 	 * to userspace, we can make this appear as if the task has gone through
1664 	 * a regular rt_mutex_lock() call.
1665 	 */
1666 	if (tsk_state == TASK_RTLOCK_WAIT)
1667 		state = TASK_UNINTERRUPTIBLE;
1668 
1669 	return fls(state);
1670 }
1671 
1672 static inline unsigned int task_state_index(struct task_struct *tsk)
1673 {
1674 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1675 }
1676 
1677 static inline char task_index_to_char(unsigned int state)
1678 {
1679 	static const char state_char[] = "RSDTtXZPI";
1680 
1681 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1682 
1683 	return state_char[state];
1684 }
1685 
1686 static inline char task_state_to_char(struct task_struct *tsk)
1687 {
1688 	return task_index_to_char(task_state_index(tsk));
1689 }
1690 
1691 /**
1692  * is_global_init - check if a task structure is init. Since init
1693  * is free to have sub-threads we need to check tgid.
1694  * @tsk: Task structure to be checked.
1695  *
1696  * Check if a task structure is the first user space task the kernel created.
1697  *
1698  * Return: 1 if the task structure is init. 0 otherwise.
1699  */
1700 static inline int is_global_init(struct task_struct *tsk)
1701 {
1702 	return task_tgid_nr(tsk) == 1;
1703 }
1704 
1705 extern struct pid *cad_pid;
1706 
1707 /*
1708  * Per process flags
1709  */
1710 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1711 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1712 #define PF_EXITING		0x00000004	/* Getting shut down */
1713 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1714 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1715 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1716 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1717 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1718 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1719 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1720 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1721 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1722 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1723 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1724 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1725 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1726 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1727 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1728 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1729 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1730 						 * I am cleaning dirty pages from some other bdi. */
1731 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1732 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1733 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1734 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1735 #define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */
1736 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1737 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1738 
1739 /*
1740  * Only the _current_ task can read/write to tsk->flags, but other
1741  * tasks can access tsk->flags in readonly mode for example
1742  * with tsk_used_math (like during threaded core dumping).
1743  * There is however an exception to this rule during ptrace
1744  * or during fork: the ptracer task is allowed to write to the
1745  * child->flags of its traced child (same goes for fork, the parent
1746  * can write to the child->flags), because we're guaranteed the
1747  * child is not running and in turn not changing child->flags
1748  * at the same time the parent does it.
1749  */
1750 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1751 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1752 #define clear_used_math()			clear_stopped_child_used_math(current)
1753 #define set_used_math()				set_stopped_child_used_math(current)
1754 
1755 #define conditional_stopped_child_used_math(condition, child) \
1756 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1757 
1758 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1759 
1760 #define copy_to_stopped_child_used_math(child) \
1761 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1762 
1763 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1764 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1765 #define used_math()				tsk_used_math(current)
1766 
1767 static __always_inline bool is_percpu_thread(void)
1768 {
1769 #ifdef CONFIG_SMP
1770 	return (current->flags & PF_NO_SETAFFINITY) &&
1771 		(current->nr_cpus_allowed  == 1);
1772 #else
1773 	return true;
1774 #endif
1775 }
1776 
1777 /* Per-process atomic flags. */
1778 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1779 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1780 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1781 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1782 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1783 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1784 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1785 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1786 
1787 #define TASK_PFA_TEST(name, func)					\
1788 	static inline bool task_##func(struct task_struct *p)		\
1789 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1790 
1791 #define TASK_PFA_SET(name, func)					\
1792 	static inline void task_set_##func(struct task_struct *p)	\
1793 	{ set_bit(PFA_##name, &p->atomic_flags); }
1794 
1795 #define TASK_PFA_CLEAR(name, func)					\
1796 	static inline void task_clear_##func(struct task_struct *p)	\
1797 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1798 
1799 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1800 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1801 
1802 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1803 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1804 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1805 
1806 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1807 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1808 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1809 
1810 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1811 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1812 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1813 
1814 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1815 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1816 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1817 
1818 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1819 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1820 
1821 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1822 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1823 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1824 
1825 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1826 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1827 
1828 static inline void
1829 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1830 {
1831 	current->flags &= ~flags;
1832 	current->flags |= orig_flags & flags;
1833 }
1834 
1835 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1836 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_effective_cpus);
1837 #ifdef CONFIG_SMP
1838 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1839 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1840 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1841 extern void release_user_cpus_ptr(struct task_struct *p);
1842 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1843 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1844 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1845 #else
1846 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1847 {
1848 }
1849 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1850 {
1851 	if (!cpumask_test_cpu(0, new_mask))
1852 		return -EINVAL;
1853 	return 0;
1854 }
1855 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1856 {
1857 	if (src->user_cpus_ptr)
1858 		return -EINVAL;
1859 	return 0;
1860 }
1861 static inline void release_user_cpus_ptr(struct task_struct *p)
1862 {
1863 	WARN_ON(p->user_cpus_ptr);
1864 }
1865 
1866 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1867 {
1868 	return 0;
1869 }
1870 #endif
1871 
1872 extern int yield_to(struct task_struct *p, bool preempt);
1873 extern void set_user_nice(struct task_struct *p, long nice);
1874 extern int task_prio(const struct task_struct *p);
1875 
1876 /**
1877  * task_nice - return the nice value of a given task.
1878  * @p: the task in question.
1879  *
1880  * Return: The nice value [ -20 ... 0 ... 19 ].
1881  */
1882 static inline int task_nice(const struct task_struct *p)
1883 {
1884 	return PRIO_TO_NICE((p)->static_prio);
1885 }
1886 
1887 extern int can_nice(const struct task_struct *p, const int nice);
1888 extern int task_curr(const struct task_struct *p);
1889 extern int idle_cpu(int cpu);
1890 extern int available_idle_cpu(int cpu);
1891 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1892 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1893 extern void sched_set_fifo(struct task_struct *p);
1894 extern void sched_set_fifo_low(struct task_struct *p);
1895 extern void sched_set_normal(struct task_struct *p, int nice);
1896 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1897 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1898 extern struct task_struct *idle_task(int cpu);
1899 
1900 /**
1901  * is_idle_task - is the specified task an idle task?
1902  * @p: the task in question.
1903  *
1904  * Return: 1 if @p is an idle task. 0 otherwise.
1905  */
1906 static __always_inline bool is_idle_task(const struct task_struct *p)
1907 {
1908 	return !!(p->flags & PF_IDLE);
1909 }
1910 
1911 extern struct task_struct *curr_task(int cpu);
1912 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1913 
1914 void yield(void);
1915 
1916 union thread_union {
1917 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1918 	struct task_struct task;
1919 #endif
1920 #ifndef CONFIG_THREAD_INFO_IN_TASK
1921 	struct thread_info thread_info;
1922 #endif
1923 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1924 };
1925 
1926 #ifndef CONFIG_THREAD_INFO_IN_TASK
1927 extern struct thread_info init_thread_info;
1928 #endif
1929 
1930 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1931 
1932 #ifdef CONFIG_THREAD_INFO_IN_TASK
1933 # define task_thread_info(task)	(&(task)->thread_info)
1934 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1935 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1936 #endif
1937 
1938 /*
1939  * find a task by one of its numerical ids
1940  *
1941  * find_task_by_pid_ns():
1942  *      finds a task by its pid in the specified namespace
1943  * find_task_by_vpid():
1944  *      finds a task by its virtual pid
1945  *
1946  * see also find_vpid() etc in include/linux/pid.h
1947  */
1948 
1949 extern struct task_struct *find_task_by_vpid(pid_t nr);
1950 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1951 
1952 /*
1953  * find a task by its virtual pid and get the task struct
1954  */
1955 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1956 
1957 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1958 extern int wake_up_process(struct task_struct *tsk);
1959 extern void wake_up_new_task(struct task_struct *tsk);
1960 
1961 #ifdef CONFIG_SMP
1962 extern void kick_process(struct task_struct *tsk);
1963 #else
1964 static inline void kick_process(struct task_struct *tsk) { }
1965 #endif
1966 
1967 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1968 
1969 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1970 {
1971 	__set_task_comm(tsk, from, false);
1972 }
1973 
1974 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1975 #define get_task_comm(buf, tsk) ({			\
1976 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1977 	__get_task_comm(buf, sizeof(buf), tsk);		\
1978 })
1979 
1980 #ifdef CONFIG_SMP
1981 static __always_inline void scheduler_ipi(void)
1982 {
1983 	/*
1984 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1985 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1986 	 * this IPI.
1987 	 */
1988 	preempt_fold_need_resched();
1989 }
1990 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1991 #else
1992 static inline void scheduler_ipi(void) { }
1993 static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1994 {
1995 	return 1;
1996 }
1997 #endif
1998 
1999 /*
2000  * Set thread flags in other task's structures.
2001  * See asm/thread_info.h for TIF_xxxx flags available:
2002  */
2003 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2004 {
2005 	set_ti_thread_flag(task_thread_info(tsk), flag);
2006 }
2007 
2008 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2009 {
2010 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2011 }
2012 
2013 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2014 					  bool value)
2015 {
2016 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
2017 }
2018 
2019 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2020 {
2021 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2022 }
2023 
2024 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2025 {
2026 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2027 }
2028 
2029 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2030 {
2031 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2032 }
2033 
2034 static inline void set_tsk_need_resched(struct task_struct *tsk)
2035 {
2036 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2037 }
2038 
2039 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2040 {
2041 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2042 }
2043 
2044 static inline int test_tsk_need_resched(struct task_struct *tsk)
2045 {
2046 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2047 }
2048 
2049 /*
2050  * cond_resched() and cond_resched_lock(): latency reduction via
2051  * explicit rescheduling in places that are safe. The return
2052  * value indicates whether a reschedule was done in fact.
2053  * cond_resched_lock() will drop the spinlock before scheduling,
2054  */
2055 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2056 extern int __cond_resched(void);
2057 
2058 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2059 
2060 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2061 
2062 static __always_inline int _cond_resched(void)
2063 {
2064 	return static_call_mod(cond_resched)();
2065 }
2066 
2067 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2068 extern int dynamic_cond_resched(void);
2069 
2070 static __always_inline int _cond_resched(void)
2071 {
2072 	return dynamic_cond_resched();
2073 }
2074 
2075 #else
2076 
2077 static inline int _cond_resched(void)
2078 {
2079 	return __cond_resched();
2080 }
2081 
2082 #endif /* CONFIG_PREEMPT_DYNAMIC */
2083 
2084 #else
2085 
2086 static inline int _cond_resched(void) { return 0; }
2087 
2088 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2089 
2090 #define cond_resched() ({			\
2091 	__might_resched(__FILE__, __LINE__, 0);	\
2092 	_cond_resched();			\
2093 })
2094 
2095 extern int __cond_resched_lock(spinlock_t *lock);
2096 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2097 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2098 
2099 #define MIGHT_RESCHED_RCU_SHIFT		8
2100 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2101 
2102 #ifndef CONFIG_PREEMPT_RT
2103 /*
2104  * Non RT kernels have an elevated preempt count due to the held lock,
2105  * but are not allowed to be inside a RCU read side critical section
2106  */
2107 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2108 #else
2109 /*
2110  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2111  * cond_resched*lock() has to take that into account because it checks for
2112  * preempt_count() and rcu_preempt_depth().
2113  */
2114 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2115 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2116 #endif
2117 
2118 #define cond_resched_lock(lock) ({						\
2119 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2120 	__cond_resched_lock(lock);						\
2121 })
2122 
2123 #define cond_resched_rwlock_read(lock) ({					\
2124 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2125 	__cond_resched_rwlock_read(lock);					\
2126 })
2127 
2128 #define cond_resched_rwlock_write(lock) ({					\
2129 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2130 	__cond_resched_rwlock_write(lock);					\
2131 })
2132 
2133 static inline void cond_resched_rcu(void)
2134 {
2135 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2136 	rcu_read_unlock();
2137 	cond_resched();
2138 	rcu_read_lock();
2139 #endif
2140 }
2141 
2142 #ifdef CONFIG_PREEMPT_DYNAMIC
2143 
2144 extern bool preempt_model_none(void);
2145 extern bool preempt_model_voluntary(void);
2146 extern bool preempt_model_full(void);
2147 
2148 #else
2149 
2150 static inline bool preempt_model_none(void)
2151 {
2152 	return IS_ENABLED(CONFIG_PREEMPT_NONE);
2153 }
2154 static inline bool preempt_model_voluntary(void)
2155 {
2156 	return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2157 }
2158 static inline bool preempt_model_full(void)
2159 {
2160 	return IS_ENABLED(CONFIG_PREEMPT);
2161 }
2162 
2163 #endif
2164 
2165 static inline bool preempt_model_rt(void)
2166 {
2167 	return IS_ENABLED(CONFIG_PREEMPT_RT);
2168 }
2169 
2170 /*
2171  * Does the preemption model allow non-cooperative preemption?
2172  *
2173  * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2174  * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2175  * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2176  * PREEMPT_NONE model.
2177  */
2178 static inline bool preempt_model_preemptible(void)
2179 {
2180 	return preempt_model_full() || preempt_model_rt();
2181 }
2182 
2183 /*
2184  * Does a critical section need to be broken due to another
2185  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2186  * but a general need for low latency)
2187  */
2188 static inline int spin_needbreak(spinlock_t *lock)
2189 {
2190 #ifdef CONFIG_PREEMPTION
2191 	return spin_is_contended(lock);
2192 #else
2193 	return 0;
2194 #endif
2195 }
2196 
2197 /*
2198  * Check if a rwlock is contended.
2199  * Returns non-zero if there is another task waiting on the rwlock.
2200  * Returns zero if the lock is not contended or the system / underlying
2201  * rwlock implementation does not support contention detection.
2202  * Technically does not depend on CONFIG_PREEMPTION, but a general need
2203  * for low latency.
2204  */
2205 static inline int rwlock_needbreak(rwlock_t *lock)
2206 {
2207 #ifdef CONFIG_PREEMPTION
2208 	return rwlock_is_contended(lock);
2209 #else
2210 	return 0;
2211 #endif
2212 }
2213 
2214 static __always_inline bool need_resched(void)
2215 {
2216 	return unlikely(tif_need_resched());
2217 }
2218 
2219 /*
2220  * Wrappers for p->thread_info->cpu access. No-op on UP.
2221  */
2222 #ifdef CONFIG_SMP
2223 
2224 static inline unsigned int task_cpu(const struct task_struct *p)
2225 {
2226 	return READ_ONCE(task_thread_info(p)->cpu);
2227 }
2228 
2229 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2230 
2231 #else
2232 
2233 static inline unsigned int task_cpu(const struct task_struct *p)
2234 {
2235 	return 0;
2236 }
2237 
2238 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2239 {
2240 }
2241 
2242 #endif /* CONFIG_SMP */
2243 
2244 extern bool sched_task_on_rq(struct task_struct *p);
2245 extern unsigned long get_wchan(struct task_struct *p);
2246 extern struct task_struct *cpu_curr_snapshot(int cpu);
2247 
2248 /*
2249  * In order to reduce various lock holder preemption latencies provide an
2250  * interface to see if a vCPU is currently running or not.
2251  *
2252  * This allows us to terminate optimistic spin loops and block, analogous to
2253  * the native optimistic spin heuristic of testing if the lock owner task is
2254  * running or not.
2255  */
2256 #ifndef vcpu_is_preempted
2257 static inline bool vcpu_is_preempted(int cpu)
2258 {
2259 	return false;
2260 }
2261 #endif
2262 
2263 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2264 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2265 
2266 #ifndef TASK_SIZE_OF
2267 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2268 #endif
2269 
2270 #ifdef CONFIG_SMP
2271 static inline bool owner_on_cpu(struct task_struct *owner)
2272 {
2273 	/*
2274 	 * As lock holder preemption issue, we both skip spinning if
2275 	 * task is not on cpu or its cpu is preempted
2276 	 */
2277 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2278 }
2279 
2280 /* Returns effective CPU energy utilization, as seen by the scheduler */
2281 unsigned long sched_cpu_util(int cpu);
2282 #endif /* CONFIG_SMP */
2283 
2284 #ifdef CONFIG_RSEQ
2285 
2286 /*
2287  * Map the event mask on the user-space ABI enum rseq_cs_flags
2288  * for direct mask checks.
2289  */
2290 enum rseq_event_mask_bits {
2291 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2292 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2293 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2294 };
2295 
2296 enum rseq_event_mask {
2297 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
2298 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
2299 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
2300 };
2301 
2302 static inline void rseq_set_notify_resume(struct task_struct *t)
2303 {
2304 	if (t->rseq)
2305 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2306 }
2307 
2308 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2309 
2310 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2311 					     struct pt_regs *regs)
2312 {
2313 	if (current->rseq)
2314 		__rseq_handle_notify_resume(ksig, regs);
2315 }
2316 
2317 static inline void rseq_signal_deliver(struct ksignal *ksig,
2318 				       struct pt_regs *regs)
2319 {
2320 	preempt_disable();
2321 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2322 	preempt_enable();
2323 	rseq_handle_notify_resume(ksig, regs);
2324 }
2325 
2326 /* rseq_preempt() requires preemption to be disabled. */
2327 static inline void rseq_preempt(struct task_struct *t)
2328 {
2329 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2330 	rseq_set_notify_resume(t);
2331 }
2332 
2333 /* rseq_migrate() requires preemption to be disabled. */
2334 static inline void rseq_migrate(struct task_struct *t)
2335 {
2336 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2337 	rseq_set_notify_resume(t);
2338 }
2339 
2340 /*
2341  * If parent process has a registered restartable sequences area, the
2342  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2343  */
2344 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2345 {
2346 	if (clone_flags & CLONE_VM) {
2347 		t->rseq = NULL;
2348 		t->rseq_sig = 0;
2349 		t->rseq_event_mask = 0;
2350 	} else {
2351 		t->rseq = current->rseq;
2352 		t->rseq_sig = current->rseq_sig;
2353 		t->rseq_event_mask = current->rseq_event_mask;
2354 	}
2355 }
2356 
2357 static inline void rseq_execve(struct task_struct *t)
2358 {
2359 	t->rseq = NULL;
2360 	t->rseq_sig = 0;
2361 	t->rseq_event_mask = 0;
2362 }
2363 
2364 #else
2365 
2366 static inline void rseq_set_notify_resume(struct task_struct *t)
2367 {
2368 }
2369 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2370 					     struct pt_regs *regs)
2371 {
2372 }
2373 static inline void rseq_signal_deliver(struct ksignal *ksig,
2374 				       struct pt_regs *regs)
2375 {
2376 }
2377 static inline void rseq_preempt(struct task_struct *t)
2378 {
2379 }
2380 static inline void rseq_migrate(struct task_struct *t)
2381 {
2382 }
2383 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2384 {
2385 }
2386 static inline void rseq_execve(struct task_struct *t)
2387 {
2388 }
2389 
2390 #endif
2391 
2392 #ifdef CONFIG_DEBUG_RSEQ
2393 
2394 void rseq_syscall(struct pt_regs *regs);
2395 
2396 #else
2397 
2398 static inline void rseq_syscall(struct pt_regs *regs)
2399 {
2400 }
2401 
2402 #endif
2403 
2404 #ifdef CONFIG_SCHED_CORE
2405 extern void sched_core_free(struct task_struct *tsk);
2406 extern void sched_core_fork(struct task_struct *p);
2407 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2408 				unsigned long uaddr);
2409 #else
2410 static inline void sched_core_free(struct task_struct *tsk) { }
2411 static inline void sched_core_fork(struct task_struct *p) { }
2412 #endif
2413 
2414 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2415 
2416 #endif
2417