xref: /openbmc/linux/include/linux/sched.h (revision 163b0991)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/irqflags.h>
22 #include <linux/seccomp.h>
23 #include <linux/nodemask.h>
24 #include <linux/rcupdate.h>
25 #include <linux/refcount.h>
26 #include <linux/resource.h>
27 #include <linux/latencytop.h>
28 #include <linux/sched/prio.h>
29 #include <linux/sched/types.h>
30 #include <linux/signal_types.h>
31 #include <linux/syscall_user_dispatch.h>
32 #include <linux/mm_types_task.h>
33 #include <linux/task_io_accounting.h>
34 #include <linux/posix-timers.h>
35 #include <linux/rseq.h>
36 #include <linux/seqlock.h>
37 #include <linux/kcsan.h>
38 #include <asm/kmap_size.h>
39 
40 /* task_struct member predeclarations (sorted alphabetically): */
41 struct audit_context;
42 struct backing_dev_info;
43 struct bio_list;
44 struct blk_plug;
45 struct capture_control;
46 struct cfs_rq;
47 struct fs_struct;
48 struct futex_pi_state;
49 struct io_context;
50 struct io_uring_task;
51 struct mempolicy;
52 struct nameidata;
53 struct nsproxy;
54 struct perf_event_context;
55 struct pid_namespace;
56 struct pipe_inode_info;
57 struct rcu_node;
58 struct reclaim_state;
59 struct robust_list_head;
60 struct root_domain;
61 struct rq;
62 struct sched_attr;
63 struct sched_param;
64 struct seq_file;
65 struct sighand_struct;
66 struct signal_struct;
67 struct task_delay_info;
68 struct task_group;
69 
70 /*
71  * Task state bitmask. NOTE! These bits are also
72  * encoded in fs/proc/array.c: get_task_state().
73  *
74  * We have two separate sets of flags: task->state
75  * is about runnability, while task->exit_state are
76  * about the task exiting. Confusing, but this way
77  * modifying one set can't modify the other one by
78  * mistake.
79  */
80 
81 /* Used in tsk->state: */
82 #define TASK_RUNNING			0x0000
83 #define TASK_INTERRUPTIBLE		0x0001
84 #define TASK_UNINTERRUPTIBLE		0x0002
85 #define __TASK_STOPPED			0x0004
86 #define __TASK_TRACED			0x0008
87 /* Used in tsk->exit_state: */
88 #define EXIT_DEAD			0x0010
89 #define EXIT_ZOMBIE			0x0020
90 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
91 /* Used in tsk->state again: */
92 #define TASK_PARKED			0x0040
93 #define TASK_DEAD			0x0080
94 #define TASK_WAKEKILL			0x0100
95 #define TASK_WAKING			0x0200
96 #define TASK_NOLOAD			0x0400
97 #define TASK_NEW			0x0800
98 #define TASK_STATE_MAX			0x1000
99 
100 /* Convenience macros for the sake of set_current_state: */
101 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
102 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
103 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
104 
105 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
106 
107 /* Convenience macros for the sake of wake_up(): */
108 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
109 
110 /* get_task_state(): */
111 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
112 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
113 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
114 					 TASK_PARKED)
115 
116 #define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)
117 
118 #define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)
119 
120 #define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
121 
122 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
123 
124 /*
125  * Special states are those that do not use the normal wait-loop pattern. See
126  * the comment with set_special_state().
127  */
128 #define is_special_task_state(state)				\
129 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
130 
131 #define __set_current_state(state_value)			\
132 	do {							\
133 		WARN_ON_ONCE(is_special_task_state(state_value));\
134 		current->task_state_change = _THIS_IP_;		\
135 		current->state = (state_value);			\
136 	} while (0)
137 
138 #define set_current_state(state_value)				\
139 	do {							\
140 		WARN_ON_ONCE(is_special_task_state(state_value));\
141 		current->task_state_change = _THIS_IP_;		\
142 		smp_store_mb(current->state, (state_value));	\
143 	} while (0)
144 
145 #define set_special_state(state_value)					\
146 	do {								\
147 		unsigned long flags; /* may shadow */			\
148 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
149 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
150 		current->task_state_change = _THIS_IP_;			\
151 		current->state = (state_value);				\
152 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
153 	} while (0)
154 #else
155 /*
156  * set_current_state() includes a barrier so that the write of current->state
157  * is correctly serialised wrt the caller's subsequent test of whether to
158  * actually sleep:
159  *
160  *   for (;;) {
161  *	set_current_state(TASK_UNINTERRUPTIBLE);
162  *	if (CONDITION)
163  *	   break;
164  *
165  *	schedule();
166  *   }
167  *   __set_current_state(TASK_RUNNING);
168  *
169  * If the caller does not need such serialisation (because, for instance, the
170  * CONDITION test and condition change and wakeup are under the same lock) then
171  * use __set_current_state().
172  *
173  * The above is typically ordered against the wakeup, which does:
174  *
175  *   CONDITION = 1;
176  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
177  *
178  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
179  * accessing p->state.
180  *
181  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
182  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
183  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
184  *
185  * However, with slightly different timing the wakeup TASK_RUNNING store can
186  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
187  * a problem either because that will result in one extra go around the loop
188  * and our @cond test will save the day.
189  *
190  * Also see the comments of try_to_wake_up().
191  */
192 #define __set_current_state(state_value)				\
193 	current->state = (state_value)
194 
195 #define set_current_state(state_value)					\
196 	smp_store_mb(current->state, (state_value))
197 
198 /*
199  * set_special_state() should be used for those states when the blocking task
200  * can not use the regular condition based wait-loop. In that case we must
201  * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
202  * will not collide with our state change.
203  */
204 #define set_special_state(state_value)					\
205 	do {								\
206 		unsigned long flags; /* may shadow */			\
207 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
208 		current->state = (state_value);				\
209 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
210 	} while (0)
211 
212 #endif
213 
214 /* Task command name length: */
215 #define TASK_COMM_LEN			16
216 
217 extern void scheduler_tick(void);
218 
219 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
220 
221 extern long schedule_timeout(long timeout);
222 extern long schedule_timeout_interruptible(long timeout);
223 extern long schedule_timeout_killable(long timeout);
224 extern long schedule_timeout_uninterruptible(long timeout);
225 extern long schedule_timeout_idle(long timeout);
226 asmlinkage void schedule(void);
227 extern void schedule_preempt_disabled(void);
228 asmlinkage void preempt_schedule_irq(void);
229 
230 extern int __must_check io_schedule_prepare(void);
231 extern void io_schedule_finish(int token);
232 extern long io_schedule_timeout(long timeout);
233 extern void io_schedule(void);
234 
235 /**
236  * struct prev_cputime - snapshot of system and user cputime
237  * @utime: time spent in user mode
238  * @stime: time spent in system mode
239  * @lock: protects the above two fields
240  *
241  * Stores previous user/system time values such that we can guarantee
242  * monotonicity.
243  */
244 struct prev_cputime {
245 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
246 	u64				utime;
247 	u64				stime;
248 	raw_spinlock_t			lock;
249 #endif
250 };
251 
252 enum vtime_state {
253 	/* Task is sleeping or running in a CPU with VTIME inactive: */
254 	VTIME_INACTIVE = 0,
255 	/* Task is idle */
256 	VTIME_IDLE,
257 	/* Task runs in kernelspace in a CPU with VTIME active: */
258 	VTIME_SYS,
259 	/* Task runs in userspace in a CPU with VTIME active: */
260 	VTIME_USER,
261 	/* Task runs as guests in a CPU with VTIME active: */
262 	VTIME_GUEST,
263 };
264 
265 struct vtime {
266 	seqcount_t		seqcount;
267 	unsigned long long	starttime;
268 	enum vtime_state	state;
269 	unsigned int		cpu;
270 	u64			utime;
271 	u64			stime;
272 	u64			gtime;
273 };
274 
275 /*
276  * Utilization clamp constraints.
277  * @UCLAMP_MIN:	Minimum utilization
278  * @UCLAMP_MAX:	Maximum utilization
279  * @UCLAMP_CNT:	Utilization clamp constraints count
280  */
281 enum uclamp_id {
282 	UCLAMP_MIN = 0,
283 	UCLAMP_MAX,
284 	UCLAMP_CNT
285 };
286 
287 #ifdef CONFIG_SMP
288 extern struct root_domain def_root_domain;
289 extern struct mutex sched_domains_mutex;
290 #endif
291 
292 struct sched_info {
293 #ifdef CONFIG_SCHED_INFO
294 	/* Cumulative counters: */
295 
296 	/* # of times we have run on this CPU: */
297 	unsigned long			pcount;
298 
299 	/* Time spent waiting on a runqueue: */
300 	unsigned long long		run_delay;
301 
302 	/* Timestamps: */
303 
304 	/* When did we last run on a CPU? */
305 	unsigned long long		last_arrival;
306 
307 	/* When were we last queued to run? */
308 	unsigned long long		last_queued;
309 
310 #endif /* CONFIG_SCHED_INFO */
311 };
312 
313 /*
314  * Integer metrics need fixed point arithmetic, e.g., sched/fair
315  * has a few: load, load_avg, util_avg, freq, and capacity.
316  *
317  * We define a basic fixed point arithmetic range, and then formalize
318  * all these metrics based on that basic range.
319  */
320 # define SCHED_FIXEDPOINT_SHIFT		10
321 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
322 
323 /* Increase resolution of cpu_capacity calculations */
324 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
325 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
326 
327 struct load_weight {
328 	unsigned long			weight;
329 	u32				inv_weight;
330 };
331 
332 /**
333  * struct util_est - Estimation utilization of FAIR tasks
334  * @enqueued: instantaneous estimated utilization of a task/cpu
335  * @ewma:     the Exponential Weighted Moving Average (EWMA)
336  *            utilization of a task
337  *
338  * Support data structure to track an Exponential Weighted Moving Average
339  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
340  * average each time a task completes an activation. Sample's weight is chosen
341  * so that the EWMA will be relatively insensitive to transient changes to the
342  * task's workload.
343  *
344  * The enqueued attribute has a slightly different meaning for tasks and cpus:
345  * - task:   the task's util_avg at last task dequeue time
346  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
347  * Thus, the util_est.enqueued of a task represents the contribution on the
348  * estimated utilization of the CPU where that task is currently enqueued.
349  *
350  * Only for tasks we track a moving average of the past instantaneous
351  * estimated utilization. This allows to absorb sporadic drops in utilization
352  * of an otherwise almost periodic task.
353  */
354 struct util_est {
355 	unsigned int			enqueued;
356 	unsigned int			ewma;
357 #define UTIL_EST_WEIGHT_SHIFT		2
358 } __attribute__((__aligned__(sizeof(u64))));
359 
360 /*
361  * The load/runnable/util_avg accumulates an infinite geometric series
362  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
363  *
364  * [load_avg definition]
365  *
366  *   load_avg = runnable% * scale_load_down(load)
367  *
368  * [runnable_avg definition]
369  *
370  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
371  *
372  * [util_avg definition]
373  *
374  *   util_avg = running% * SCHED_CAPACITY_SCALE
375  *
376  * where runnable% is the time ratio that a sched_entity is runnable and
377  * running% the time ratio that a sched_entity is running.
378  *
379  * For cfs_rq, they are the aggregated values of all runnable and blocked
380  * sched_entities.
381  *
382  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
383  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
384  * for computing those signals (see update_rq_clock_pelt())
385  *
386  * N.B., the above ratios (runnable% and running%) themselves are in the
387  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
388  * to as large a range as necessary. This is for example reflected by
389  * util_avg's SCHED_CAPACITY_SCALE.
390  *
391  * [Overflow issue]
392  *
393  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
394  * with the highest load (=88761), always runnable on a single cfs_rq,
395  * and should not overflow as the number already hits PID_MAX_LIMIT.
396  *
397  * For all other cases (including 32-bit kernels), struct load_weight's
398  * weight will overflow first before we do, because:
399  *
400  *    Max(load_avg) <= Max(load.weight)
401  *
402  * Then it is the load_weight's responsibility to consider overflow
403  * issues.
404  */
405 struct sched_avg {
406 	u64				last_update_time;
407 	u64				load_sum;
408 	u64				runnable_sum;
409 	u32				util_sum;
410 	u32				period_contrib;
411 	unsigned long			load_avg;
412 	unsigned long			runnable_avg;
413 	unsigned long			util_avg;
414 	struct util_est			util_est;
415 } ____cacheline_aligned;
416 
417 struct sched_statistics {
418 #ifdef CONFIG_SCHEDSTATS
419 	u64				wait_start;
420 	u64				wait_max;
421 	u64				wait_count;
422 	u64				wait_sum;
423 	u64				iowait_count;
424 	u64				iowait_sum;
425 
426 	u64				sleep_start;
427 	u64				sleep_max;
428 	s64				sum_sleep_runtime;
429 
430 	u64				block_start;
431 	u64				block_max;
432 	u64				exec_max;
433 	u64				slice_max;
434 
435 	u64				nr_migrations_cold;
436 	u64				nr_failed_migrations_affine;
437 	u64				nr_failed_migrations_running;
438 	u64				nr_failed_migrations_hot;
439 	u64				nr_forced_migrations;
440 
441 	u64				nr_wakeups;
442 	u64				nr_wakeups_sync;
443 	u64				nr_wakeups_migrate;
444 	u64				nr_wakeups_local;
445 	u64				nr_wakeups_remote;
446 	u64				nr_wakeups_affine;
447 	u64				nr_wakeups_affine_attempts;
448 	u64				nr_wakeups_passive;
449 	u64				nr_wakeups_idle;
450 #endif
451 };
452 
453 struct sched_entity {
454 	/* For load-balancing: */
455 	struct load_weight		load;
456 	struct rb_node			run_node;
457 	struct list_head		group_node;
458 	unsigned int			on_rq;
459 
460 	u64				exec_start;
461 	u64				sum_exec_runtime;
462 	u64				vruntime;
463 	u64				prev_sum_exec_runtime;
464 
465 	u64				nr_migrations;
466 
467 	struct sched_statistics		statistics;
468 
469 #ifdef CONFIG_FAIR_GROUP_SCHED
470 	int				depth;
471 	struct sched_entity		*parent;
472 	/* rq on which this entity is (to be) queued: */
473 	struct cfs_rq			*cfs_rq;
474 	/* rq "owned" by this entity/group: */
475 	struct cfs_rq			*my_q;
476 	/* cached value of my_q->h_nr_running */
477 	unsigned long			runnable_weight;
478 #endif
479 
480 #ifdef CONFIG_SMP
481 	/*
482 	 * Per entity load average tracking.
483 	 *
484 	 * Put into separate cache line so it does not
485 	 * collide with read-mostly values above.
486 	 */
487 	struct sched_avg		avg;
488 #endif
489 };
490 
491 struct sched_rt_entity {
492 	struct list_head		run_list;
493 	unsigned long			timeout;
494 	unsigned long			watchdog_stamp;
495 	unsigned int			time_slice;
496 	unsigned short			on_rq;
497 	unsigned short			on_list;
498 
499 	struct sched_rt_entity		*back;
500 #ifdef CONFIG_RT_GROUP_SCHED
501 	struct sched_rt_entity		*parent;
502 	/* rq on which this entity is (to be) queued: */
503 	struct rt_rq			*rt_rq;
504 	/* rq "owned" by this entity/group: */
505 	struct rt_rq			*my_q;
506 #endif
507 } __randomize_layout;
508 
509 struct sched_dl_entity {
510 	struct rb_node			rb_node;
511 
512 	/*
513 	 * Original scheduling parameters. Copied here from sched_attr
514 	 * during sched_setattr(), they will remain the same until
515 	 * the next sched_setattr().
516 	 */
517 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
518 	u64				dl_deadline;	/* Relative deadline of each instance	*/
519 	u64				dl_period;	/* Separation of two instances (period) */
520 	u64				dl_bw;		/* dl_runtime / dl_period		*/
521 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
522 
523 	/*
524 	 * Actual scheduling parameters. Initialized with the values above,
525 	 * they are continuously updated during task execution. Note that
526 	 * the remaining runtime could be < 0 in case we are in overrun.
527 	 */
528 	s64				runtime;	/* Remaining runtime for this instance	*/
529 	u64				deadline;	/* Absolute deadline for this instance	*/
530 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
531 
532 	/*
533 	 * Some bool flags:
534 	 *
535 	 * @dl_throttled tells if we exhausted the runtime. If so, the
536 	 * task has to wait for a replenishment to be performed at the
537 	 * next firing of dl_timer.
538 	 *
539 	 * @dl_boosted tells if we are boosted due to DI. If so we are
540 	 * outside bandwidth enforcement mechanism (but only until we
541 	 * exit the critical section);
542 	 *
543 	 * @dl_yielded tells if task gave up the CPU before consuming
544 	 * all its available runtime during the last job.
545 	 *
546 	 * @dl_non_contending tells if the task is inactive while still
547 	 * contributing to the active utilization. In other words, it
548 	 * indicates if the inactive timer has been armed and its handler
549 	 * has not been executed yet. This flag is useful to avoid race
550 	 * conditions between the inactive timer handler and the wakeup
551 	 * code.
552 	 *
553 	 * @dl_overrun tells if the task asked to be informed about runtime
554 	 * overruns.
555 	 */
556 	unsigned int			dl_throttled      : 1;
557 	unsigned int			dl_yielded        : 1;
558 	unsigned int			dl_non_contending : 1;
559 	unsigned int			dl_overrun	  : 1;
560 
561 	/*
562 	 * Bandwidth enforcement timer. Each -deadline task has its
563 	 * own bandwidth to be enforced, thus we need one timer per task.
564 	 */
565 	struct hrtimer			dl_timer;
566 
567 	/*
568 	 * Inactive timer, responsible for decreasing the active utilization
569 	 * at the "0-lag time". When a -deadline task blocks, it contributes
570 	 * to GRUB's active utilization until the "0-lag time", hence a
571 	 * timer is needed to decrease the active utilization at the correct
572 	 * time.
573 	 */
574 	struct hrtimer inactive_timer;
575 
576 #ifdef CONFIG_RT_MUTEXES
577 	/*
578 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
579 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
580 	 * to (the original one/itself).
581 	 */
582 	struct sched_dl_entity *pi_se;
583 #endif
584 };
585 
586 #ifdef CONFIG_UCLAMP_TASK
587 /* Number of utilization clamp buckets (shorter alias) */
588 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
589 
590 /*
591  * Utilization clamp for a scheduling entity
592  * @value:		clamp value "assigned" to a se
593  * @bucket_id:		bucket index corresponding to the "assigned" value
594  * @active:		the se is currently refcounted in a rq's bucket
595  * @user_defined:	the requested clamp value comes from user-space
596  *
597  * The bucket_id is the index of the clamp bucket matching the clamp value
598  * which is pre-computed and stored to avoid expensive integer divisions from
599  * the fast path.
600  *
601  * The active bit is set whenever a task has got an "effective" value assigned,
602  * which can be different from the clamp value "requested" from user-space.
603  * This allows to know a task is refcounted in the rq's bucket corresponding
604  * to the "effective" bucket_id.
605  *
606  * The user_defined bit is set whenever a task has got a task-specific clamp
607  * value requested from userspace, i.e. the system defaults apply to this task
608  * just as a restriction. This allows to relax default clamps when a less
609  * restrictive task-specific value has been requested, thus allowing to
610  * implement a "nice" semantic. For example, a task running with a 20%
611  * default boost can still drop its own boosting to 0%.
612  */
613 struct uclamp_se {
614 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
615 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
616 	unsigned int active		: 1;
617 	unsigned int user_defined	: 1;
618 };
619 #endif /* CONFIG_UCLAMP_TASK */
620 
621 union rcu_special {
622 	struct {
623 		u8			blocked;
624 		u8			need_qs;
625 		u8			exp_hint; /* Hint for performance. */
626 		u8			need_mb; /* Readers need smp_mb(). */
627 	} b; /* Bits. */
628 	u32 s; /* Set of bits. */
629 };
630 
631 enum perf_event_task_context {
632 	perf_invalid_context = -1,
633 	perf_hw_context = 0,
634 	perf_sw_context,
635 	perf_nr_task_contexts,
636 };
637 
638 struct wake_q_node {
639 	struct wake_q_node *next;
640 };
641 
642 struct kmap_ctrl {
643 #ifdef CONFIG_KMAP_LOCAL
644 	int				idx;
645 	pte_t				pteval[KM_MAX_IDX];
646 #endif
647 };
648 
649 struct task_struct {
650 #ifdef CONFIG_THREAD_INFO_IN_TASK
651 	/*
652 	 * For reasons of header soup (see current_thread_info()), this
653 	 * must be the first element of task_struct.
654 	 */
655 	struct thread_info		thread_info;
656 #endif
657 	/* -1 unrunnable, 0 runnable, >0 stopped: */
658 	volatile long			state;
659 
660 	/*
661 	 * This begins the randomizable portion of task_struct. Only
662 	 * scheduling-critical items should be added above here.
663 	 */
664 	randomized_struct_fields_start
665 
666 	void				*stack;
667 	refcount_t			usage;
668 	/* Per task flags (PF_*), defined further below: */
669 	unsigned int			flags;
670 	unsigned int			ptrace;
671 
672 #ifdef CONFIG_SMP
673 	int				on_cpu;
674 	struct __call_single_node	wake_entry;
675 #ifdef CONFIG_THREAD_INFO_IN_TASK
676 	/* Current CPU: */
677 	unsigned int			cpu;
678 #endif
679 	unsigned int			wakee_flips;
680 	unsigned long			wakee_flip_decay_ts;
681 	struct task_struct		*last_wakee;
682 
683 	/*
684 	 * recent_used_cpu is initially set as the last CPU used by a task
685 	 * that wakes affine another task. Waker/wakee relationships can
686 	 * push tasks around a CPU where each wakeup moves to the next one.
687 	 * Tracking a recently used CPU allows a quick search for a recently
688 	 * used CPU that may be idle.
689 	 */
690 	int				recent_used_cpu;
691 	int				wake_cpu;
692 #endif
693 	int				on_rq;
694 
695 	int				prio;
696 	int				static_prio;
697 	int				normal_prio;
698 	unsigned int			rt_priority;
699 
700 	const struct sched_class	*sched_class;
701 	struct sched_entity		se;
702 	struct sched_rt_entity		rt;
703 #ifdef CONFIG_CGROUP_SCHED
704 	struct task_group		*sched_task_group;
705 #endif
706 	struct sched_dl_entity		dl;
707 
708 #ifdef CONFIG_UCLAMP_TASK
709 	/*
710 	 * Clamp values requested for a scheduling entity.
711 	 * Must be updated with task_rq_lock() held.
712 	 */
713 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
714 	/*
715 	 * Effective clamp values used for a scheduling entity.
716 	 * Must be updated with task_rq_lock() held.
717 	 */
718 	struct uclamp_se		uclamp[UCLAMP_CNT];
719 #endif
720 
721 #ifdef CONFIG_PREEMPT_NOTIFIERS
722 	/* List of struct preempt_notifier: */
723 	struct hlist_head		preempt_notifiers;
724 #endif
725 
726 #ifdef CONFIG_BLK_DEV_IO_TRACE
727 	unsigned int			btrace_seq;
728 #endif
729 
730 	unsigned int			policy;
731 	int				nr_cpus_allowed;
732 	const cpumask_t			*cpus_ptr;
733 	cpumask_t			cpus_mask;
734 	void				*migration_pending;
735 #ifdef CONFIG_SMP
736 	unsigned short			migration_disabled;
737 #endif
738 	unsigned short			migration_flags;
739 
740 #ifdef CONFIG_PREEMPT_RCU
741 	int				rcu_read_lock_nesting;
742 	union rcu_special		rcu_read_unlock_special;
743 	struct list_head		rcu_node_entry;
744 	struct rcu_node			*rcu_blocked_node;
745 #endif /* #ifdef CONFIG_PREEMPT_RCU */
746 
747 #ifdef CONFIG_TASKS_RCU
748 	unsigned long			rcu_tasks_nvcsw;
749 	u8				rcu_tasks_holdout;
750 	u8				rcu_tasks_idx;
751 	int				rcu_tasks_idle_cpu;
752 	struct list_head		rcu_tasks_holdout_list;
753 #endif /* #ifdef CONFIG_TASKS_RCU */
754 
755 #ifdef CONFIG_TASKS_TRACE_RCU
756 	int				trc_reader_nesting;
757 	int				trc_ipi_to_cpu;
758 	union rcu_special		trc_reader_special;
759 	bool				trc_reader_checked;
760 	struct list_head		trc_holdout_list;
761 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
762 
763 	struct sched_info		sched_info;
764 
765 	struct list_head		tasks;
766 #ifdef CONFIG_SMP
767 	struct plist_node		pushable_tasks;
768 	struct rb_node			pushable_dl_tasks;
769 #endif
770 
771 	struct mm_struct		*mm;
772 	struct mm_struct		*active_mm;
773 
774 	/* Per-thread vma caching: */
775 	struct vmacache			vmacache;
776 
777 #ifdef SPLIT_RSS_COUNTING
778 	struct task_rss_stat		rss_stat;
779 #endif
780 	int				exit_state;
781 	int				exit_code;
782 	int				exit_signal;
783 	/* The signal sent when the parent dies: */
784 	int				pdeath_signal;
785 	/* JOBCTL_*, siglock protected: */
786 	unsigned long			jobctl;
787 
788 	/* Used for emulating ABI behavior of previous Linux versions: */
789 	unsigned int			personality;
790 
791 	/* Scheduler bits, serialized by scheduler locks: */
792 	unsigned			sched_reset_on_fork:1;
793 	unsigned			sched_contributes_to_load:1;
794 	unsigned			sched_migrated:1;
795 #ifdef CONFIG_PSI
796 	unsigned			sched_psi_wake_requeue:1;
797 #endif
798 
799 	/* Force alignment to the next boundary: */
800 	unsigned			:0;
801 
802 	/* Unserialized, strictly 'current' */
803 
804 	/*
805 	 * This field must not be in the scheduler word above due to wakelist
806 	 * queueing no longer being serialized by p->on_cpu. However:
807 	 *
808 	 * p->XXX = X;			ttwu()
809 	 * schedule()			  if (p->on_rq && ..) // false
810 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
811 	 *   deactivate_task()		      ttwu_queue_wakelist())
812 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
813 	 *
814 	 * guarantees all stores of 'current' are visible before
815 	 * ->sched_remote_wakeup gets used, so it can be in this word.
816 	 */
817 	unsigned			sched_remote_wakeup:1;
818 
819 	/* Bit to tell LSMs we're in execve(): */
820 	unsigned			in_execve:1;
821 	unsigned			in_iowait:1;
822 #ifndef TIF_RESTORE_SIGMASK
823 	unsigned			restore_sigmask:1;
824 #endif
825 #ifdef CONFIG_MEMCG
826 	unsigned			in_user_fault:1;
827 #endif
828 #ifdef CONFIG_COMPAT_BRK
829 	unsigned			brk_randomized:1;
830 #endif
831 #ifdef CONFIG_CGROUPS
832 	/* disallow userland-initiated cgroup migration */
833 	unsigned			no_cgroup_migration:1;
834 	/* task is frozen/stopped (used by the cgroup freezer) */
835 	unsigned			frozen:1;
836 #endif
837 #ifdef CONFIG_BLK_CGROUP
838 	unsigned			use_memdelay:1;
839 #endif
840 #ifdef CONFIG_PSI
841 	/* Stalled due to lack of memory */
842 	unsigned			in_memstall:1;
843 #endif
844 
845 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
846 
847 	struct restart_block		restart_block;
848 
849 	pid_t				pid;
850 	pid_t				tgid;
851 
852 #ifdef CONFIG_STACKPROTECTOR
853 	/* Canary value for the -fstack-protector GCC feature: */
854 	unsigned long			stack_canary;
855 #endif
856 	/*
857 	 * Pointers to the (original) parent process, youngest child, younger sibling,
858 	 * older sibling, respectively.  (p->father can be replaced with
859 	 * p->real_parent->pid)
860 	 */
861 
862 	/* Real parent process: */
863 	struct task_struct __rcu	*real_parent;
864 
865 	/* Recipient of SIGCHLD, wait4() reports: */
866 	struct task_struct __rcu	*parent;
867 
868 	/*
869 	 * Children/sibling form the list of natural children:
870 	 */
871 	struct list_head		children;
872 	struct list_head		sibling;
873 	struct task_struct		*group_leader;
874 
875 	/*
876 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
877 	 *
878 	 * This includes both natural children and PTRACE_ATTACH targets.
879 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
880 	 */
881 	struct list_head		ptraced;
882 	struct list_head		ptrace_entry;
883 
884 	/* PID/PID hash table linkage. */
885 	struct pid			*thread_pid;
886 	struct hlist_node		pid_links[PIDTYPE_MAX];
887 	struct list_head		thread_group;
888 	struct list_head		thread_node;
889 
890 	struct completion		*vfork_done;
891 
892 	/* CLONE_CHILD_SETTID: */
893 	int __user			*set_child_tid;
894 
895 	/* CLONE_CHILD_CLEARTID: */
896 	int __user			*clear_child_tid;
897 
898 	/* PF_IO_WORKER */
899 	void				*pf_io_worker;
900 
901 	u64				utime;
902 	u64				stime;
903 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
904 	u64				utimescaled;
905 	u64				stimescaled;
906 #endif
907 	u64				gtime;
908 	struct prev_cputime		prev_cputime;
909 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
910 	struct vtime			vtime;
911 #endif
912 
913 #ifdef CONFIG_NO_HZ_FULL
914 	atomic_t			tick_dep_mask;
915 #endif
916 	/* Context switch counts: */
917 	unsigned long			nvcsw;
918 	unsigned long			nivcsw;
919 
920 	/* Monotonic time in nsecs: */
921 	u64				start_time;
922 
923 	/* Boot based time in nsecs: */
924 	u64				start_boottime;
925 
926 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
927 	unsigned long			min_flt;
928 	unsigned long			maj_flt;
929 
930 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
931 	struct posix_cputimers		posix_cputimers;
932 
933 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
934 	struct posix_cputimers_work	posix_cputimers_work;
935 #endif
936 
937 	/* Process credentials: */
938 
939 	/* Tracer's credentials at attach: */
940 	const struct cred __rcu		*ptracer_cred;
941 
942 	/* Objective and real subjective task credentials (COW): */
943 	const struct cred __rcu		*real_cred;
944 
945 	/* Effective (overridable) subjective task credentials (COW): */
946 	const struct cred __rcu		*cred;
947 
948 #ifdef CONFIG_KEYS
949 	/* Cached requested key. */
950 	struct key			*cached_requested_key;
951 #endif
952 
953 	/*
954 	 * executable name, excluding path.
955 	 *
956 	 * - normally initialized setup_new_exec()
957 	 * - access it with [gs]et_task_comm()
958 	 * - lock it with task_lock()
959 	 */
960 	char				comm[TASK_COMM_LEN];
961 
962 	struct nameidata		*nameidata;
963 
964 #ifdef CONFIG_SYSVIPC
965 	struct sysv_sem			sysvsem;
966 	struct sysv_shm			sysvshm;
967 #endif
968 #ifdef CONFIG_DETECT_HUNG_TASK
969 	unsigned long			last_switch_count;
970 	unsigned long			last_switch_time;
971 #endif
972 	/* Filesystem information: */
973 	struct fs_struct		*fs;
974 
975 	/* Open file information: */
976 	struct files_struct		*files;
977 
978 #ifdef CONFIG_IO_URING
979 	struct io_uring_task		*io_uring;
980 #endif
981 
982 	/* Namespaces: */
983 	struct nsproxy			*nsproxy;
984 
985 	/* Signal handlers: */
986 	struct signal_struct		*signal;
987 	struct sighand_struct __rcu		*sighand;
988 	sigset_t			blocked;
989 	sigset_t			real_blocked;
990 	/* Restored if set_restore_sigmask() was used: */
991 	sigset_t			saved_sigmask;
992 	struct sigpending		pending;
993 	unsigned long			sas_ss_sp;
994 	size_t				sas_ss_size;
995 	unsigned int			sas_ss_flags;
996 
997 	struct callback_head		*task_works;
998 
999 #ifdef CONFIG_AUDIT
1000 #ifdef CONFIG_AUDITSYSCALL
1001 	struct audit_context		*audit_context;
1002 #endif
1003 	kuid_t				loginuid;
1004 	unsigned int			sessionid;
1005 #endif
1006 	struct seccomp			seccomp;
1007 	struct syscall_user_dispatch	syscall_dispatch;
1008 
1009 	/* Thread group tracking: */
1010 	u64				parent_exec_id;
1011 	u64				self_exec_id;
1012 
1013 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1014 	spinlock_t			alloc_lock;
1015 
1016 	/* Protection of the PI data structures: */
1017 	raw_spinlock_t			pi_lock;
1018 
1019 	struct wake_q_node		wake_q;
1020 
1021 #ifdef CONFIG_RT_MUTEXES
1022 	/* PI waiters blocked on a rt_mutex held by this task: */
1023 	struct rb_root_cached		pi_waiters;
1024 	/* Updated under owner's pi_lock and rq lock */
1025 	struct task_struct		*pi_top_task;
1026 	/* Deadlock detection and priority inheritance handling: */
1027 	struct rt_mutex_waiter		*pi_blocked_on;
1028 #endif
1029 
1030 #ifdef CONFIG_DEBUG_MUTEXES
1031 	/* Mutex deadlock detection: */
1032 	struct mutex_waiter		*blocked_on;
1033 #endif
1034 
1035 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1036 	int				non_block_count;
1037 #endif
1038 
1039 #ifdef CONFIG_TRACE_IRQFLAGS
1040 	struct irqtrace_events		irqtrace;
1041 	unsigned int			hardirq_threaded;
1042 	u64				hardirq_chain_key;
1043 	int				softirqs_enabled;
1044 	int				softirq_context;
1045 	int				irq_config;
1046 #endif
1047 
1048 #ifdef CONFIG_LOCKDEP
1049 # define MAX_LOCK_DEPTH			48UL
1050 	u64				curr_chain_key;
1051 	int				lockdep_depth;
1052 	unsigned int			lockdep_recursion;
1053 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1054 #endif
1055 
1056 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1057 	unsigned int			in_ubsan;
1058 #endif
1059 
1060 	/* Journalling filesystem info: */
1061 	void				*journal_info;
1062 
1063 	/* Stacked block device info: */
1064 	struct bio_list			*bio_list;
1065 
1066 #ifdef CONFIG_BLOCK
1067 	/* Stack plugging: */
1068 	struct blk_plug			*plug;
1069 #endif
1070 
1071 	/* VM state: */
1072 	struct reclaim_state		*reclaim_state;
1073 
1074 	struct backing_dev_info		*backing_dev_info;
1075 
1076 	struct io_context		*io_context;
1077 
1078 #ifdef CONFIG_COMPACTION
1079 	struct capture_control		*capture_control;
1080 #endif
1081 	/* Ptrace state: */
1082 	unsigned long			ptrace_message;
1083 	kernel_siginfo_t		*last_siginfo;
1084 
1085 	struct task_io_accounting	ioac;
1086 #ifdef CONFIG_PSI
1087 	/* Pressure stall state */
1088 	unsigned int			psi_flags;
1089 #endif
1090 #ifdef CONFIG_TASK_XACCT
1091 	/* Accumulated RSS usage: */
1092 	u64				acct_rss_mem1;
1093 	/* Accumulated virtual memory usage: */
1094 	u64				acct_vm_mem1;
1095 	/* stime + utime since last update: */
1096 	u64				acct_timexpd;
1097 #endif
1098 #ifdef CONFIG_CPUSETS
1099 	/* Protected by ->alloc_lock: */
1100 	nodemask_t			mems_allowed;
1101 	/* Seqence number to catch updates: */
1102 	seqcount_spinlock_t		mems_allowed_seq;
1103 	int				cpuset_mem_spread_rotor;
1104 	int				cpuset_slab_spread_rotor;
1105 #endif
1106 #ifdef CONFIG_CGROUPS
1107 	/* Control Group info protected by css_set_lock: */
1108 	struct css_set __rcu		*cgroups;
1109 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1110 	struct list_head		cg_list;
1111 #endif
1112 #ifdef CONFIG_X86_CPU_RESCTRL
1113 	u32				closid;
1114 	u32				rmid;
1115 #endif
1116 #ifdef CONFIG_FUTEX
1117 	struct robust_list_head __user	*robust_list;
1118 #ifdef CONFIG_COMPAT
1119 	struct compat_robust_list_head __user *compat_robust_list;
1120 #endif
1121 	struct list_head		pi_state_list;
1122 	struct futex_pi_state		*pi_state_cache;
1123 	struct mutex			futex_exit_mutex;
1124 	unsigned int			futex_state;
1125 #endif
1126 #ifdef CONFIG_PERF_EVENTS
1127 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
1128 	struct mutex			perf_event_mutex;
1129 	struct list_head		perf_event_list;
1130 #endif
1131 #ifdef CONFIG_DEBUG_PREEMPT
1132 	unsigned long			preempt_disable_ip;
1133 #endif
1134 #ifdef CONFIG_NUMA
1135 	/* Protected by alloc_lock: */
1136 	struct mempolicy		*mempolicy;
1137 	short				il_prev;
1138 	short				pref_node_fork;
1139 #endif
1140 #ifdef CONFIG_NUMA_BALANCING
1141 	int				numa_scan_seq;
1142 	unsigned int			numa_scan_period;
1143 	unsigned int			numa_scan_period_max;
1144 	int				numa_preferred_nid;
1145 	unsigned long			numa_migrate_retry;
1146 	/* Migration stamp: */
1147 	u64				node_stamp;
1148 	u64				last_task_numa_placement;
1149 	u64				last_sum_exec_runtime;
1150 	struct callback_head		numa_work;
1151 
1152 	/*
1153 	 * This pointer is only modified for current in syscall and
1154 	 * pagefault context (and for tasks being destroyed), so it can be read
1155 	 * from any of the following contexts:
1156 	 *  - RCU read-side critical section
1157 	 *  - current->numa_group from everywhere
1158 	 *  - task's runqueue locked, task not running
1159 	 */
1160 	struct numa_group __rcu		*numa_group;
1161 
1162 	/*
1163 	 * numa_faults is an array split into four regions:
1164 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1165 	 * in this precise order.
1166 	 *
1167 	 * faults_memory: Exponential decaying average of faults on a per-node
1168 	 * basis. Scheduling placement decisions are made based on these
1169 	 * counts. The values remain static for the duration of a PTE scan.
1170 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1171 	 * hinting fault was incurred.
1172 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1173 	 * during the current scan window. When the scan completes, the counts
1174 	 * in faults_memory and faults_cpu decay and these values are copied.
1175 	 */
1176 	unsigned long			*numa_faults;
1177 	unsigned long			total_numa_faults;
1178 
1179 	/*
1180 	 * numa_faults_locality tracks if faults recorded during the last
1181 	 * scan window were remote/local or failed to migrate. The task scan
1182 	 * period is adapted based on the locality of the faults with different
1183 	 * weights depending on whether they were shared or private faults
1184 	 */
1185 	unsigned long			numa_faults_locality[3];
1186 
1187 	unsigned long			numa_pages_migrated;
1188 #endif /* CONFIG_NUMA_BALANCING */
1189 
1190 #ifdef CONFIG_RSEQ
1191 	struct rseq __user *rseq;
1192 	u32 rseq_sig;
1193 	/*
1194 	 * RmW on rseq_event_mask must be performed atomically
1195 	 * with respect to preemption.
1196 	 */
1197 	unsigned long rseq_event_mask;
1198 #endif
1199 
1200 	struct tlbflush_unmap_batch	tlb_ubc;
1201 
1202 	union {
1203 		refcount_t		rcu_users;
1204 		struct rcu_head		rcu;
1205 	};
1206 
1207 	/* Cache last used pipe for splice(): */
1208 	struct pipe_inode_info		*splice_pipe;
1209 
1210 	struct page_frag		task_frag;
1211 
1212 #ifdef CONFIG_TASK_DELAY_ACCT
1213 	struct task_delay_info		*delays;
1214 #endif
1215 
1216 #ifdef CONFIG_FAULT_INJECTION
1217 	int				make_it_fail;
1218 	unsigned int			fail_nth;
1219 #endif
1220 	/*
1221 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1222 	 * balance_dirty_pages() for a dirty throttling pause:
1223 	 */
1224 	int				nr_dirtied;
1225 	int				nr_dirtied_pause;
1226 	/* Start of a write-and-pause period: */
1227 	unsigned long			dirty_paused_when;
1228 
1229 #ifdef CONFIG_LATENCYTOP
1230 	int				latency_record_count;
1231 	struct latency_record		latency_record[LT_SAVECOUNT];
1232 #endif
1233 	/*
1234 	 * Time slack values; these are used to round up poll() and
1235 	 * select() etc timeout values. These are in nanoseconds.
1236 	 */
1237 	u64				timer_slack_ns;
1238 	u64				default_timer_slack_ns;
1239 
1240 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1241 	unsigned int			kasan_depth;
1242 #endif
1243 
1244 #ifdef CONFIG_KCSAN
1245 	struct kcsan_ctx		kcsan_ctx;
1246 #ifdef CONFIG_TRACE_IRQFLAGS
1247 	struct irqtrace_events		kcsan_save_irqtrace;
1248 #endif
1249 #endif
1250 
1251 #if IS_ENABLED(CONFIG_KUNIT)
1252 	struct kunit			*kunit_test;
1253 #endif
1254 
1255 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1256 	/* Index of current stored address in ret_stack: */
1257 	int				curr_ret_stack;
1258 	int				curr_ret_depth;
1259 
1260 	/* Stack of return addresses for return function tracing: */
1261 	struct ftrace_ret_stack		*ret_stack;
1262 
1263 	/* Timestamp for last schedule: */
1264 	unsigned long long		ftrace_timestamp;
1265 
1266 	/*
1267 	 * Number of functions that haven't been traced
1268 	 * because of depth overrun:
1269 	 */
1270 	atomic_t			trace_overrun;
1271 
1272 	/* Pause tracing: */
1273 	atomic_t			tracing_graph_pause;
1274 #endif
1275 
1276 #ifdef CONFIG_TRACING
1277 	/* State flags for use by tracers: */
1278 	unsigned long			trace;
1279 
1280 	/* Bitmask and counter of trace recursion: */
1281 	unsigned long			trace_recursion;
1282 #endif /* CONFIG_TRACING */
1283 
1284 #ifdef CONFIG_KCOV
1285 	/* See kernel/kcov.c for more details. */
1286 
1287 	/* Coverage collection mode enabled for this task (0 if disabled): */
1288 	unsigned int			kcov_mode;
1289 
1290 	/* Size of the kcov_area: */
1291 	unsigned int			kcov_size;
1292 
1293 	/* Buffer for coverage collection: */
1294 	void				*kcov_area;
1295 
1296 	/* KCOV descriptor wired with this task or NULL: */
1297 	struct kcov			*kcov;
1298 
1299 	/* KCOV common handle for remote coverage collection: */
1300 	u64				kcov_handle;
1301 
1302 	/* KCOV sequence number: */
1303 	int				kcov_sequence;
1304 
1305 	/* Collect coverage from softirq context: */
1306 	unsigned int			kcov_softirq;
1307 #endif
1308 
1309 #ifdef CONFIG_MEMCG
1310 	struct mem_cgroup		*memcg_in_oom;
1311 	gfp_t				memcg_oom_gfp_mask;
1312 	int				memcg_oom_order;
1313 
1314 	/* Number of pages to reclaim on returning to userland: */
1315 	unsigned int			memcg_nr_pages_over_high;
1316 
1317 	/* Used by memcontrol for targeted memcg charge: */
1318 	struct mem_cgroup		*active_memcg;
1319 #endif
1320 
1321 #ifdef CONFIG_BLK_CGROUP
1322 	struct request_queue		*throttle_queue;
1323 #endif
1324 
1325 #ifdef CONFIG_UPROBES
1326 	struct uprobe_task		*utask;
1327 #endif
1328 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1329 	unsigned int			sequential_io;
1330 	unsigned int			sequential_io_avg;
1331 #endif
1332 	struct kmap_ctrl		kmap_ctrl;
1333 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1334 	unsigned long			task_state_change;
1335 #endif
1336 	int				pagefault_disabled;
1337 #ifdef CONFIG_MMU
1338 	struct task_struct		*oom_reaper_list;
1339 #endif
1340 #ifdef CONFIG_VMAP_STACK
1341 	struct vm_struct		*stack_vm_area;
1342 #endif
1343 #ifdef CONFIG_THREAD_INFO_IN_TASK
1344 	/* A live task holds one reference: */
1345 	refcount_t			stack_refcount;
1346 #endif
1347 #ifdef CONFIG_LIVEPATCH
1348 	int patch_state;
1349 #endif
1350 #ifdef CONFIG_SECURITY
1351 	/* Used by LSM modules for access restriction: */
1352 	void				*security;
1353 #endif
1354 
1355 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1356 	unsigned long			lowest_stack;
1357 	unsigned long			prev_lowest_stack;
1358 #endif
1359 
1360 #ifdef CONFIG_X86_MCE
1361 	void __user			*mce_vaddr;
1362 	__u64				mce_kflags;
1363 	u64				mce_addr;
1364 	__u64				mce_ripv : 1,
1365 					mce_whole_page : 1,
1366 					__mce_reserved : 62;
1367 	struct callback_head		mce_kill_me;
1368 #endif
1369 
1370 #ifdef CONFIG_KRETPROBES
1371 	struct llist_head               kretprobe_instances;
1372 #endif
1373 
1374 	/*
1375 	 * New fields for task_struct should be added above here, so that
1376 	 * they are included in the randomized portion of task_struct.
1377 	 */
1378 	randomized_struct_fields_end
1379 
1380 	/* CPU-specific state of this task: */
1381 	struct thread_struct		thread;
1382 
1383 	/*
1384 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1385 	 * structure.  It *MUST* be at the end of 'task_struct'.
1386 	 *
1387 	 * Do not put anything below here!
1388 	 */
1389 };
1390 
1391 static inline struct pid *task_pid(struct task_struct *task)
1392 {
1393 	return task->thread_pid;
1394 }
1395 
1396 /*
1397  * the helpers to get the task's different pids as they are seen
1398  * from various namespaces
1399  *
1400  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1401  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1402  *                     current.
1403  * task_xid_nr_ns()  : id seen from the ns specified;
1404  *
1405  * see also pid_nr() etc in include/linux/pid.h
1406  */
1407 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1408 
1409 static inline pid_t task_pid_nr(struct task_struct *tsk)
1410 {
1411 	return tsk->pid;
1412 }
1413 
1414 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1415 {
1416 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1417 }
1418 
1419 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1420 {
1421 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1422 }
1423 
1424 
1425 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1426 {
1427 	return tsk->tgid;
1428 }
1429 
1430 /**
1431  * pid_alive - check that a task structure is not stale
1432  * @p: Task structure to be checked.
1433  *
1434  * Test if a process is not yet dead (at most zombie state)
1435  * If pid_alive fails, then pointers within the task structure
1436  * can be stale and must not be dereferenced.
1437  *
1438  * Return: 1 if the process is alive. 0 otherwise.
1439  */
1440 static inline int pid_alive(const struct task_struct *p)
1441 {
1442 	return p->thread_pid != NULL;
1443 }
1444 
1445 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1446 {
1447 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1448 }
1449 
1450 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1451 {
1452 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1453 }
1454 
1455 
1456 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1457 {
1458 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1459 }
1460 
1461 static inline pid_t task_session_vnr(struct task_struct *tsk)
1462 {
1463 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1464 }
1465 
1466 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1467 {
1468 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1469 }
1470 
1471 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1472 {
1473 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1474 }
1475 
1476 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1477 {
1478 	pid_t pid = 0;
1479 
1480 	rcu_read_lock();
1481 	if (pid_alive(tsk))
1482 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1483 	rcu_read_unlock();
1484 
1485 	return pid;
1486 }
1487 
1488 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1489 {
1490 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1491 }
1492 
1493 /* Obsolete, do not use: */
1494 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1495 {
1496 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1497 }
1498 
1499 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1500 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1501 
1502 static inline unsigned int task_state_index(struct task_struct *tsk)
1503 {
1504 	unsigned int tsk_state = READ_ONCE(tsk->state);
1505 	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1506 
1507 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1508 
1509 	if (tsk_state == TASK_IDLE)
1510 		state = TASK_REPORT_IDLE;
1511 
1512 	return fls(state);
1513 }
1514 
1515 static inline char task_index_to_char(unsigned int state)
1516 {
1517 	static const char state_char[] = "RSDTtXZPI";
1518 
1519 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1520 
1521 	return state_char[state];
1522 }
1523 
1524 static inline char task_state_to_char(struct task_struct *tsk)
1525 {
1526 	return task_index_to_char(task_state_index(tsk));
1527 }
1528 
1529 /**
1530  * is_global_init - check if a task structure is init. Since init
1531  * is free to have sub-threads we need to check tgid.
1532  * @tsk: Task structure to be checked.
1533  *
1534  * Check if a task structure is the first user space task the kernel created.
1535  *
1536  * Return: 1 if the task structure is init. 0 otherwise.
1537  */
1538 static inline int is_global_init(struct task_struct *tsk)
1539 {
1540 	return task_tgid_nr(tsk) == 1;
1541 }
1542 
1543 extern struct pid *cad_pid;
1544 
1545 /*
1546  * Per process flags
1547  */
1548 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1549 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1550 #define PF_EXITING		0x00000004	/* Getting shut down */
1551 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1552 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1553 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1554 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1555 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1556 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1557 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1558 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1559 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1560 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1561 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1562 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1563 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1564 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1565 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1566 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1567 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1568 						 * I am cleaning dirty pages from some other bdi. */
1569 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1570 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1571 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1572 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1573 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1574 #define PF_MEMALLOC_NOCMA	0x10000000	/* All allocation request will have _GFP_MOVABLE cleared */
1575 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1576 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1577 
1578 /*
1579  * Only the _current_ task can read/write to tsk->flags, but other
1580  * tasks can access tsk->flags in readonly mode for example
1581  * with tsk_used_math (like during threaded core dumping).
1582  * There is however an exception to this rule during ptrace
1583  * or during fork: the ptracer task is allowed to write to the
1584  * child->flags of its traced child (same goes for fork, the parent
1585  * can write to the child->flags), because we're guaranteed the
1586  * child is not running and in turn not changing child->flags
1587  * at the same time the parent does it.
1588  */
1589 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1590 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1591 #define clear_used_math()			clear_stopped_child_used_math(current)
1592 #define set_used_math()				set_stopped_child_used_math(current)
1593 
1594 #define conditional_stopped_child_used_math(condition, child) \
1595 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1596 
1597 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1598 
1599 #define copy_to_stopped_child_used_math(child) \
1600 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1601 
1602 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1603 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1604 #define used_math()				tsk_used_math(current)
1605 
1606 static inline bool is_percpu_thread(void)
1607 {
1608 #ifdef CONFIG_SMP
1609 	return (current->flags & PF_NO_SETAFFINITY) &&
1610 		(current->nr_cpus_allowed  == 1);
1611 #else
1612 	return true;
1613 #endif
1614 }
1615 
1616 /* Per-process atomic flags. */
1617 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1618 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1619 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1620 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1621 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1622 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1623 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1624 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1625 
1626 #define TASK_PFA_TEST(name, func)					\
1627 	static inline bool task_##func(struct task_struct *p)		\
1628 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1629 
1630 #define TASK_PFA_SET(name, func)					\
1631 	static inline void task_set_##func(struct task_struct *p)	\
1632 	{ set_bit(PFA_##name, &p->atomic_flags); }
1633 
1634 #define TASK_PFA_CLEAR(name, func)					\
1635 	static inline void task_clear_##func(struct task_struct *p)	\
1636 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1637 
1638 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1639 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1640 
1641 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1642 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1643 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1644 
1645 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1646 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1647 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1648 
1649 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1650 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1651 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1652 
1653 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1654 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1655 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1656 
1657 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1658 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1659 
1660 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1661 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1662 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1663 
1664 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1665 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1666 
1667 static inline void
1668 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1669 {
1670 	current->flags &= ~flags;
1671 	current->flags |= orig_flags & flags;
1672 }
1673 
1674 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1675 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1676 #ifdef CONFIG_SMP
1677 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1678 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1679 #else
1680 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1681 {
1682 }
1683 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1684 {
1685 	if (!cpumask_test_cpu(0, new_mask))
1686 		return -EINVAL;
1687 	return 0;
1688 }
1689 #endif
1690 
1691 extern int yield_to(struct task_struct *p, bool preempt);
1692 extern void set_user_nice(struct task_struct *p, long nice);
1693 extern int task_prio(const struct task_struct *p);
1694 
1695 /**
1696  * task_nice - return the nice value of a given task.
1697  * @p: the task in question.
1698  *
1699  * Return: The nice value [ -20 ... 0 ... 19 ].
1700  */
1701 static inline int task_nice(const struct task_struct *p)
1702 {
1703 	return PRIO_TO_NICE((p)->static_prio);
1704 }
1705 
1706 extern int can_nice(const struct task_struct *p, const int nice);
1707 extern int task_curr(const struct task_struct *p);
1708 extern int idle_cpu(int cpu);
1709 extern int available_idle_cpu(int cpu);
1710 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1711 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1712 extern void sched_set_fifo(struct task_struct *p);
1713 extern void sched_set_fifo_low(struct task_struct *p);
1714 extern void sched_set_normal(struct task_struct *p, int nice);
1715 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1716 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1717 extern struct task_struct *idle_task(int cpu);
1718 
1719 /**
1720  * is_idle_task - is the specified task an idle task?
1721  * @p: the task in question.
1722  *
1723  * Return: 1 if @p is an idle task. 0 otherwise.
1724  */
1725 static __always_inline bool is_idle_task(const struct task_struct *p)
1726 {
1727 	return !!(p->flags & PF_IDLE);
1728 }
1729 
1730 extern struct task_struct *curr_task(int cpu);
1731 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1732 
1733 void yield(void);
1734 
1735 union thread_union {
1736 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1737 	struct task_struct task;
1738 #endif
1739 #ifndef CONFIG_THREAD_INFO_IN_TASK
1740 	struct thread_info thread_info;
1741 #endif
1742 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1743 };
1744 
1745 #ifndef CONFIG_THREAD_INFO_IN_TASK
1746 extern struct thread_info init_thread_info;
1747 #endif
1748 
1749 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1750 
1751 #ifdef CONFIG_THREAD_INFO_IN_TASK
1752 static inline struct thread_info *task_thread_info(struct task_struct *task)
1753 {
1754 	return &task->thread_info;
1755 }
1756 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1757 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1758 #endif
1759 
1760 /*
1761  * find a task by one of its numerical ids
1762  *
1763  * find_task_by_pid_ns():
1764  *      finds a task by its pid in the specified namespace
1765  * find_task_by_vpid():
1766  *      finds a task by its virtual pid
1767  *
1768  * see also find_vpid() etc in include/linux/pid.h
1769  */
1770 
1771 extern struct task_struct *find_task_by_vpid(pid_t nr);
1772 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1773 
1774 /*
1775  * find a task by its virtual pid and get the task struct
1776  */
1777 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1778 
1779 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1780 extern int wake_up_process(struct task_struct *tsk);
1781 extern void wake_up_new_task(struct task_struct *tsk);
1782 
1783 #ifdef CONFIG_SMP
1784 extern void kick_process(struct task_struct *tsk);
1785 #else
1786 static inline void kick_process(struct task_struct *tsk) { }
1787 #endif
1788 
1789 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1790 
1791 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1792 {
1793 	__set_task_comm(tsk, from, false);
1794 }
1795 
1796 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1797 #define get_task_comm(buf, tsk) ({			\
1798 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1799 	__get_task_comm(buf, sizeof(buf), tsk);		\
1800 })
1801 
1802 #ifdef CONFIG_SMP
1803 static __always_inline void scheduler_ipi(void)
1804 {
1805 	/*
1806 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1807 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1808 	 * this IPI.
1809 	 */
1810 	preempt_fold_need_resched();
1811 }
1812 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1813 #else
1814 static inline void scheduler_ipi(void) { }
1815 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1816 {
1817 	return 1;
1818 }
1819 #endif
1820 
1821 /*
1822  * Set thread flags in other task's structures.
1823  * See asm/thread_info.h for TIF_xxxx flags available:
1824  */
1825 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1826 {
1827 	set_ti_thread_flag(task_thread_info(tsk), flag);
1828 }
1829 
1830 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1831 {
1832 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1833 }
1834 
1835 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1836 					  bool value)
1837 {
1838 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
1839 }
1840 
1841 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1842 {
1843 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1844 }
1845 
1846 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1847 {
1848 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1849 }
1850 
1851 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1852 {
1853 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1854 }
1855 
1856 static inline void set_tsk_need_resched(struct task_struct *tsk)
1857 {
1858 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1859 }
1860 
1861 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1862 {
1863 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1864 }
1865 
1866 static inline int test_tsk_need_resched(struct task_struct *tsk)
1867 {
1868 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1869 }
1870 
1871 /*
1872  * cond_resched() and cond_resched_lock(): latency reduction via
1873  * explicit rescheduling in places that are safe. The return
1874  * value indicates whether a reschedule was done in fact.
1875  * cond_resched_lock() will drop the spinlock before scheduling,
1876  */
1877 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
1878 extern int __cond_resched(void);
1879 
1880 #ifdef CONFIG_PREEMPT_DYNAMIC
1881 
1882 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
1883 
1884 static __always_inline int _cond_resched(void)
1885 {
1886 	return static_call_mod(cond_resched)();
1887 }
1888 
1889 #else
1890 
1891 static inline int _cond_resched(void)
1892 {
1893 	return __cond_resched();
1894 }
1895 
1896 #endif /* CONFIG_PREEMPT_DYNAMIC */
1897 
1898 #else
1899 
1900 static inline int _cond_resched(void) { return 0; }
1901 
1902 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
1903 
1904 #define cond_resched() ({			\
1905 	___might_sleep(__FILE__, __LINE__, 0);	\
1906 	_cond_resched();			\
1907 })
1908 
1909 extern int __cond_resched_lock(spinlock_t *lock);
1910 extern int __cond_resched_rwlock_read(rwlock_t *lock);
1911 extern int __cond_resched_rwlock_write(rwlock_t *lock);
1912 
1913 #define cond_resched_lock(lock) ({				\
1914 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1915 	__cond_resched_lock(lock);				\
1916 })
1917 
1918 #define cond_resched_rwlock_read(lock) ({			\
1919 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
1920 	__cond_resched_rwlock_read(lock);			\
1921 })
1922 
1923 #define cond_resched_rwlock_write(lock) ({			\
1924 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
1925 	__cond_resched_rwlock_write(lock);			\
1926 })
1927 
1928 static inline void cond_resched_rcu(void)
1929 {
1930 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1931 	rcu_read_unlock();
1932 	cond_resched();
1933 	rcu_read_lock();
1934 #endif
1935 }
1936 
1937 /*
1938  * Does a critical section need to be broken due to another
1939  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1940  * but a general need for low latency)
1941  */
1942 static inline int spin_needbreak(spinlock_t *lock)
1943 {
1944 #ifdef CONFIG_PREEMPTION
1945 	return spin_is_contended(lock);
1946 #else
1947 	return 0;
1948 #endif
1949 }
1950 
1951 /*
1952  * Check if a rwlock is contended.
1953  * Returns non-zero if there is another task waiting on the rwlock.
1954  * Returns zero if the lock is not contended or the system / underlying
1955  * rwlock implementation does not support contention detection.
1956  * Technically does not depend on CONFIG_PREEMPTION, but a general need
1957  * for low latency.
1958  */
1959 static inline int rwlock_needbreak(rwlock_t *lock)
1960 {
1961 #ifdef CONFIG_PREEMPTION
1962 	return rwlock_is_contended(lock);
1963 #else
1964 	return 0;
1965 #endif
1966 }
1967 
1968 static __always_inline bool need_resched(void)
1969 {
1970 	return unlikely(tif_need_resched());
1971 }
1972 
1973 /*
1974  * Wrappers for p->thread_info->cpu access. No-op on UP.
1975  */
1976 #ifdef CONFIG_SMP
1977 
1978 static inline unsigned int task_cpu(const struct task_struct *p)
1979 {
1980 #ifdef CONFIG_THREAD_INFO_IN_TASK
1981 	return READ_ONCE(p->cpu);
1982 #else
1983 	return READ_ONCE(task_thread_info(p)->cpu);
1984 #endif
1985 }
1986 
1987 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1988 
1989 #else
1990 
1991 static inline unsigned int task_cpu(const struct task_struct *p)
1992 {
1993 	return 0;
1994 }
1995 
1996 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1997 {
1998 }
1999 
2000 #endif /* CONFIG_SMP */
2001 
2002 /*
2003  * In order to reduce various lock holder preemption latencies provide an
2004  * interface to see if a vCPU is currently running or not.
2005  *
2006  * This allows us to terminate optimistic spin loops and block, analogous to
2007  * the native optimistic spin heuristic of testing if the lock owner task is
2008  * running or not.
2009  */
2010 #ifndef vcpu_is_preempted
2011 static inline bool vcpu_is_preempted(int cpu)
2012 {
2013 	return false;
2014 }
2015 #endif
2016 
2017 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2018 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2019 
2020 #ifndef TASK_SIZE_OF
2021 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2022 #endif
2023 
2024 #ifdef CONFIG_SMP
2025 /* Returns effective CPU energy utilization, as seen by the scheduler */
2026 unsigned long sched_cpu_util(int cpu, unsigned long max);
2027 #endif /* CONFIG_SMP */
2028 
2029 #ifdef CONFIG_RSEQ
2030 
2031 /*
2032  * Map the event mask on the user-space ABI enum rseq_cs_flags
2033  * for direct mask checks.
2034  */
2035 enum rseq_event_mask_bits {
2036 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2037 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2038 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2039 };
2040 
2041 enum rseq_event_mask {
2042 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
2043 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
2044 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
2045 };
2046 
2047 static inline void rseq_set_notify_resume(struct task_struct *t)
2048 {
2049 	if (t->rseq)
2050 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2051 }
2052 
2053 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2054 
2055 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2056 					     struct pt_regs *regs)
2057 {
2058 	if (current->rseq)
2059 		__rseq_handle_notify_resume(ksig, regs);
2060 }
2061 
2062 static inline void rseq_signal_deliver(struct ksignal *ksig,
2063 				       struct pt_regs *regs)
2064 {
2065 	preempt_disable();
2066 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2067 	preempt_enable();
2068 	rseq_handle_notify_resume(ksig, regs);
2069 }
2070 
2071 /* rseq_preempt() requires preemption to be disabled. */
2072 static inline void rseq_preempt(struct task_struct *t)
2073 {
2074 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2075 	rseq_set_notify_resume(t);
2076 }
2077 
2078 /* rseq_migrate() requires preemption to be disabled. */
2079 static inline void rseq_migrate(struct task_struct *t)
2080 {
2081 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2082 	rseq_set_notify_resume(t);
2083 }
2084 
2085 /*
2086  * If parent process has a registered restartable sequences area, the
2087  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2088  */
2089 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2090 {
2091 	if (clone_flags & CLONE_VM) {
2092 		t->rseq = NULL;
2093 		t->rseq_sig = 0;
2094 		t->rseq_event_mask = 0;
2095 	} else {
2096 		t->rseq = current->rseq;
2097 		t->rseq_sig = current->rseq_sig;
2098 		t->rseq_event_mask = current->rseq_event_mask;
2099 	}
2100 }
2101 
2102 static inline void rseq_execve(struct task_struct *t)
2103 {
2104 	t->rseq = NULL;
2105 	t->rseq_sig = 0;
2106 	t->rseq_event_mask = 0;
2107 }
2108 
2109 #else
2110 
2111 static inline void rseq_set_notify_resume(struct task_struct *t)
2112 {
2113 }
2114 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2115 					     struct pt_regs *regs)
2116 {
2117 }
2118 static inline void rseq_signal_deliver(struct ksignal *ksig,
2119 				       struct pt_regs *regs)
2120 {
2121 }
2122 static inline void rseq_preempt(struct task_struct *t)
2123 {
2124 }
2125 static inline void rseq_migrate(struct task_struct *t)
2126 {
2127 }
2128 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2129 {
2130 }
2131 static inline void rseq_execve(struct task_struct *t)
2132 {
2133 }
2134 
2135 #endif
2136 
2137 #ifdef CONFIG_DEBUG_RSEQ
2138 
2139 void rseq_syscall(struct pt_regs *regs);
2140 
2141 #else
2142 
2143 static inline void rseq_syscall(struct pt_regs *regs)
2144 {
2145 }
2146 
2147 #endif
2148 
2149 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2150 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2151 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2152 
2153 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2154 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2155 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2156 
2157 int sched_trace_rq_cpu(struct rq *rq);
2158 int sched_trace_rq_cpu_capacity(struct rq *rq);
2159 int sched_trace_rq_nr_running(struct rq *rq);
2160 
2161 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2162 
2163 #endif
2164