xref: /openbmc/linux/include/linux/rmap.h (revision c6fbb759)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_RMAP_H
3 #define _LINUX_RMAP_H
4 /*
5  * Declarations for Reverse Mapping functions in mm/rmap.c
6  */
7 
8 #include <linux/list.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/rwsem.h>
12 #include <linux/memcontrol.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/memremap.h>
16 
17 /*
18  * The anon_vma heads a list of private "related" vmas, to scan if
19  * an anonymous page pointing to this anon_vma needs to be unmapped:
20  * the vmas on the list will be related by forking, or by splitting.
21  *
22  * Since vmas come and go as they are split and merged (particularly
23  * in mprotect), the mapping field of an anonymous page cannot point
24  * directly to a vma: instead it points to an anon_vma, on whose list
25  * the related vmas can be easily linked or unlinked.
26  *
27  * After unlinking the last vma on the list, we must garbage collect
28  * the anon_vma object itself: we're guaranteed no page can be
29  * pointing to this anon_vma once its vma list is empty.
30  */
31 struct anon_vma {
32 	struct anon_vma *root;		/* Root of this anon_vma tree */
33 	struct rw_semaphore rwsem;	/* W: modification, R: walking the list */
34 	/*
35 	 * The refcount is taken on an anon_vma when there is no
36 	 * guarantee that the vma of page tables will exist for
37 	 * the duration of the operation. A caller that takes
38 	 * the reference is responsible for clearing up the
39 	 * anon_vma if they are the last user on release
40 	 */
41 	atomic_t refcount;
42 
43 	/*
44 	 * Count of child anon_vmas. Equals to the count of all anon_vmas that
45 	 * have ->parent pointing to this one, including itself.
46 	 *
47 	 * This counter is used for making decision about reusing anon_vma
48 	 * instead of forking new one. See comments in function anon_vma_clone.
49 	 */
50 	unsigned long num_children;
51 	/* Count of VMAs whose ->anon_vma pointer points to this object. */
52 	unsigned long num_active_vmas;
53 
54 	struct anon_vma *parent;	/* Parent of this anon_vma */
55 
56 	/*
57 	 * NOTE: the LSB of the rb_root.rb_node is set by
58 	 * mm_take_all_locks() _after_ taking the above lock. So the
59 	 * rb_root must only be read/written after taking the above lock
60 	 * to be sure to see a valid next pointer. The LSB bit itself
61 	 * is serialized by a system wide lock only visible to
62 	 * mm_take_all_locks() (mm_all_locks_mutex).
63 	 */
64 
65 	/* Interval tree of private "related" vmas */
66 	struct rb_root_cached rb_root;
67 };
68 
69 /*
70  * The copy-on-write semantics of fork mean that an anon_vma
71  * can become associated with multiple processes. Furthermore,
72  * each child process will have its own anon_vma, where new
73  * pages for that process are instantiated.
74  *
75  * This structure allows us to find the anon_vmas associated
76  * with a VMA, or the VMAs associated with an anon_vma.
77  * The "same_vma" list contains the anon_vma_chains linking
78  * all the anon_vmas associated with this VMA.
79  * The "rb" field indexes on an interval tree the anon_vma_chains
80  * which link all the VMAs associated with this anon_vma.
81  */
82 struct anon_vma_chain {
83 	struct vm_area_struct *vma;
84 	struct anon_vma *anon_vma;
85 	struct list_head same_vma;   /* locked by mmap_lock & page_table_lock */
86 	struct rb_node rb;			/* locked by anon_vma->rwsem */
87 	unsigned long rb_subtree_last;
88 #ifdef CONFIG_DEBUG_VM_RB
89 	unsigned long cached_vma_start, cached_vma_last;
90 #endif
91 };
92 
93 enum ttu_flags {
94 	TTU_SPLIT_HUGE_PMD	= 0x4,	/* split huge PMD if any */
95 	TTU_IGNORE_MLOCK	= 0x8,	/* ignore mlock */
96 	TTU_SYNC		= 0x10,	/* avoid racy checks with PVMW_SYNC */
97 	TTU_IGNORE_HWPOISON	= 0x20,	/* corrupted page is recoverable */
98 	TTU_BATCH_FLUSH		= 0x40,	/* Batch TLB flushes where possible
99 					 * and caller guarantees they will
100 					 * do a final flush if necessary */
101 	TTU_RMAP_LOCKED		= 0x80,	/* do not grab rmap lock:
102 					 * caller holds it */
103 };
104 
105 #ifdef CONFIG_MMU
106 static inline void get_anon_vma(struct anon_vma *anon_vma)
107 {
108 	atomic_inc(&anon_vma->refcount);
109 }
110 
111 void __put_anon_vma(struct anon_vma *anon_vma);
112 
113 static inline void put_anon_vma(struct anon_vma *anon_vma)
114 {
115 	if (atomic_dec_and_test(&anon_vma->refcount))
116 		__put_anon_vma(anon_vma);
117 }
118 
119 static inline void anon_vma_lock_write(struct anon_vma *anon_vma)
120 {
121 	down_write(&anon_vma->root->rwsem);
122 }
123 
124 static inline void anon_vma_unlock_write(struct anon_vma *anon_vma)
125 {
126 	up_write(&anon_vma->root->rwsem);
127 }
128 
129 static inline void anon_vma_lock_read(struct anon_vma *anon_vma)
130 {
131 	down_read(&anon_vma->root->rwsem);
132 }
133 
134 static inline int anon_vma_trylock_read(struct anon_vma *anon_vma)
135 {
136 	return down_read_trylock(&anon_vma->root->rwsem);
137 }
138 
139 static inline void anon_vma_unlock_read(struct anon_vma *anon_vma)
140 {
141 	up_read(&anon_vma->root->rwsem);
142 }
143 
144 
145 /*
146  * anon_vma helper functions.
147  */
148 void anon_vma_init(void);	/* create anon_vma_cachep */
149 int  __anon_vma_prepare(struct vm_area_struct *);
150 void unlink_anon_vmas(struct vm_area_struct *);
151 int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *);
152 int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *);
153 
154 static inline int anon_vma_prepare(struct vm_area_struct *vma)
155 {
156 	if (likely(vma->anon_vma))
157 		return 0;
158 
159 	return __anon_vma_prepare(vma);
160 }
161 
162 static inline void anon_vma_merge(struct vm_area_struct *vma,
163 				  struct vm_area_struct *next)
164 {
165 	VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma);
166 	unlink_anon_vmas(next);
167 }
168 
169 struct anon_vma *folio_get_anon_vma(struct folio *folio);
170 
171 /* RMAP flags, currently only relevant for some anon rmap operations. */
172 typedef int __bitwise rmap_t;
173 
174 /*
175  * No special request: if the page is a subpage of a compound page, it is
176  * mapped via a PTE. The mapped (sub)page is possibly shared between processes.
177  */
178 #define RMAP_NONE		((__force rmap_t)0)
179 
180 /* The (sub)page is exclusive to a single process. */
181 #define RMAP_EXCLUSIVE		((__force rmap_t)BIT(0))
182 
183 /*
184  * The compound page is not mapped via PTEs, but instead via a single PMD and
185  * should be accounted accordingly.
186  */
187 #define RMAP_COMPOUND		((__force rmap_t)BIT(1))
188 
189 /*
190  * rmap interfaces called when adding or removing pte of page
191  */
192 void page_move_anon_rmap(struct page *, struct vm_area_struct *);
193 void page_add_anon_rmap(struct page *, struct vm_area_struct *,
194 		unsigned long address, rmap_t flags);
195 void page_add_new_anon_rmap(struct page *, struct vm_area_struct *,
196 		unsigned long address);
197 void page_add_file_rmap(struct page *, struct vm_area_struct *,
198 		bool compound);
199 void page_remove_rmap(struct page *, struct vm_area_struct *,
200 		bool compound);
201 
202 void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *,
203 		unsigned long address, rmap_t flags);
204 void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *,
205 		unsigned long address);
206 
207 static inline void __page_dup_rmap(struct page *page, bool compound)
208 {
209 	atomic_inc(compound ? compound_mapcount_ptr(page) : &page->_mapcount);
210 }
211 
212 static inline void page_dup_file_rmap(struct page *page, bool compound)
213 {
214 	__page_dup_rmap(page, compound);
215 }
216 
217 /**
218  * page_try_dup_anon_rmap - try duplicating a mapping of an already mapped
219  *			    anonymous page
220  * @page: the page to duplicate the mapping for
221  * @compound: the page is mapped as compound or as a small page
222  * @vma: the source vma
223  *
224  * The caller needs to hold the PT lock and the vma->vma_mm->write_protect_seq.
225  *
226  * Duplicating the mapping can only fail if the page may be pinned; device
227  * private pages cannot get pinned and consequently this function cannot fail.
228  *
229  * If duplicating the mapping succeeds, the page has to be mapped R/O into
230  * the parent and the child. It must *not* get mapped writable after this call.
231  *
232  * Returns 0 if duplicating the mapping succeeded. Returns -EBUSY otherwise.
233  */
234 static inline int page_try_dup_anon_rmap(struct page *page, bool compound,
235 					 struct vm_area_struct *vma)
236 {
237 	VM_BUG_ON_PAGE(!PageAnon(page), page);
238 
239 	/*
240 	 * No need to check+clear for already shared pages, including KSM
241 	 * pages.
242 	 */
243 	if (!PageAnonExclusive(page))
244 		goto dup;
245 
246 	/*
247 	 * If this page may have been pinned by the parent process,
248 	 * don't allow to duplicate the mapping but instead require to e.g.,
249 	 * copy the page immediately for the child so that we'll always
250 	 * guarantee the pinned page won't be randomly replaced in the
251 	 * future on write faults.
252 	 */
253 	if (likely(!is_device_private_page(page) &&
254 	    unlikely(page_needs_cow_for_dma(vma, page))))
255 		return -EBUSY;
256 
257 	ClearPageAnonExclusive(page);
258 	/*
259 	 * It's okay to share the anon page between both processes, mapping
260 	 * the page R/O into both processes.
261 	 */
262 dup:
263 	__page_dup_rmap(page, compound);
264 	return 0;
265 }
266 
267 /**
268  * page_try_share_anon_rmap - try marking an exclusive anonymous page possibly
269  *			      shared to prepare for KSM or temporary unmapping
270  * @page: the exclusive anonymous page to try marking possibly shared
271  *
272  * The caller needs to hold the PT lock and has to have the page table entry
273  * cleared/invalidated.
274  *
275  * This is similar to page_try_dup_anon_rmap(), however, not used during fork()
276  * to duplicate a mapping, but instead to prepare for KSM or temporarily
277  * unmapping a page (swap, migration) via page_remove_rmap().
278  *
279  * Marking the page shared can only fail if the page may be pinned; device
280  * private pages cannot get pinned and consequently this function cannot fail.
281  *
282  * Returns 0 if marking the page possibly shared succeeded. Returns -EBUSY
283  * otherwise.
284  */
285 static inline int page_try_share_anon_rmap(struct page *page)
286 {
287 	VM_BUG_ON_PAGE(!PageAnon(page) || !PageAnonExclusive(page), page);
288 
289 	/* device private pages cannot get pinned via GUP. */
290 	if (unlikely(is_device_private_page(page))) {
291 		ClearPageAnonExclusive(page);
292 		return 0;
293 	}
294 
295 	/*
296 	 * We have to make sure that when we clear PageAnonExclusive, that
297 	 * the page is not pinned and that concurrent GUP-fast won't succeed in
298 	 * concurrently pinning the page.
299 	 *
300 	 * Conceptually, PageAnonExclusive clearing consists of:
301 	 * (A1) Clear PTE
302 	 * (A2) Check if the page is pinned; back off if so.
303 	 * (A3) Clear PageAnonExclusive
304 	 * (A4) Restore PTE (optional, but certainly not writable)
305 	 *
306 	 * When clearing PageAnonExclusive, we cannot possibly map the page
307 	 * writable again, because anon pages that may be shared must never
308 	 * be writable. So in any case, if the PTE was writable it cannot
309 	 * be writable anymore afterwards and there would be a PTE change. Only
310 	 * if the PTE wasn't writable, there might not be a PTE change.
311 	 *
312 	 * Conceptually, GUP-fast pinning of an anon page consists of:
313 	 * (B1) Read the PTE
314 	 * (B2) FOLL_WRITE: check if the PTE is not writable; back off if so.
315 	 * (B3) Pin the mapped page
316 	 * (B4) Check if the PTE changed by re-reading it; back off if so.
317 	 * (B5) If the original PTE is not writable, check if
318 	 *	PageAnonExclusive is not set; back off if so.
319 	 *
320 	 * If the PTE was writable, we only have to make sure that GUP-fast
321 	 * observes a PTE change and properly backs off.
322 	 *
323 	 * If the PTE was not writable, we have to make sure that GUP-fast either
324 	 * detects a (temporary) PTE change or that PageAnonExclusive is cleared
325 	 * and properly backs off.
326 	 *
327 	 * Consequently, when clearing PageAnonExclusive(), we have to make
328 	 * sure that (A1), (A2)/(A3) and (A4) happen in the right memory
329 	 * order. In GUP-fast pinning code, we have to make sure that (B3),(B4)
330 	 * and (B5) happen in the right memory order.
331 	 *
332 	 * We assume that there might not be a memory barrier after
333 	 * clearing/invalidating the PTE (A1) and before restoring the PTE (A4),
334 	 * so we use explicit ones here.
335 	 */
336 
337 	/* Paired with the memory barrier in try_grab_folio(). */
338 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
339 		smp_mb();
340 
341 	if (unlikely(page_maybe_dma_pinned(page)))
342 		return -EBUSY;
343 	ClearPageAnonExclusive(page);
344 
345 	/*
346 	 * This is conceptually a smp_wmb() paired with the smp_rmb() in
347 	 * gup_must_unshare().
348 	 */
349 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
350 		smp_mb__after_atomic();
351 	return 0;
352 }
353 
354 /*
355  * Called from mm/vmscan.c to handle paging out
356  */
357 int folio_referenced(struct folio *, int is_locked,
358 			struct mem_cgroup *memcg, unsigned long *vm_flags);
359 
360 void try_to_migrate(struct folio *folio, enum ttu_flags flags);
361 void try_to_unmap(struct folio *, enum ttu_flags flags);
362 
363 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
364 				unsigned long end, struct page **pages,
365 				void *arg);
366 
367 /* Avoid racy checks */
368 #define PVMW_SYNC		(1 << 0)
369 /* Look for migration entries rather than present PTEs */
370 #define PVMW_MIGRATION		(1 << 1)
371 
372 struct page_vma_mapped_walk {
373 	unsigned long pfn;
374 	unsigned long nr_pages;
375 	pgoff_t pgoff;
376 	struct vm_area_struct *vma;
377 	unsigned long address;
378 	pmd_t *pmd;
379 	pte_t *pte;
380 	spinlock_t *ptl;
381 	unsigned int flags;
382 };
383 
384 #define DEFINE_PAGE_VMA_WALK(name, _page, _vma, _address, _flags)	\
385 	struct page_vma_mapped_walk name = {				\
386 		.pfn = page_to_pfn(_page),				\
387 		.nr_pages = compound_nr(_page),				\
388 		.pgoff = page_to_pgoff(_page),				\
389 		.vma = _vma,						\
390 		.address = _address,					\
391 		.flags = _flags,					\
392 	}
393 
394 #define DEFINE_FOLIO_VMA_WALK(name, _folio, _vma, _address, _flags)	\
395 	struct page_vma_mapped_walk name = {				\
396 		.pfn = folio_pfn(_folio),				\
397 		.nr_pages = folio_nr_pages(_folio),			\
398 		.pgoff = folio_pgoff(_folio),				\
399 		.vma = _vma,						\
400 		.address = _address,					\
401 		.flags = _flags,					\
402 	}
403 
404 static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw)
405 {
406 	/* HugeTLB pte is set to the relevant page table entry without pte_mapped. */
407 	if (pvmw->pte && !is_vm_hugetlb_page(pvmw->vma))
408 		pte_unmap(pvmw->pte);
409 	if (pvmw->ptl)
410 		spin_unlock(pvmw->ptl);
411 }
412 
413 bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw);
414 
415 /*
416  * Used by swapoff to help locate where page is expected in vma.
417  */
418 unsigned long page_address_in_vma(struct page *, struct vm_area_struct *);
419 
420 /*
421  * Cleans the PTEs of shared mappings.
422  * (and since clean PTEs should also be readonly, write protects them too)
423  *
424  * returns the number of cleaned PTEs.
425  */
426 int folio_mkclean(struct folio *);
427 
428 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
429 		      struct vm_area_struct *vma);
430 
431 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked);
432 
433 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
434 
435 /*
436  * rmap_walk_control: To control rmap traversing for specific needs
437  *
438  * arg: passed to rmap_one() and invalid_vma()
439  * try_lock: bail out if the rmap lock is contended
440  * contended: indicate the rmap traversal bailed out due to lock contention
441  * rmap_one: executed on each vma where page is mapped
442  * done: for checking traversing termination condition
443  * anon_lock: for getting anon_lock by optimized way rather than default
444  * invalid_vma: for skipping uninterested vma
445  */
446 struct rmap_walk_control {
447 	void *arg;
448 	bool try_lock;
449 	bool contended;
450 	/*
451 	 * Return false if page table scanning in rmap_walk should be stopped.
452 	 * Otherwise, return true.
453 	 */
454 	bool (*rmap_one)(struct folio *folio, struct vm_area_struct *vma,
455 					unsigned long addr, void *arg);
456 	int (*done)(struct folio *folio);
457 	struct anon_vma *(*anon_lock)(struct folio *folio,
458 				      struct rmap_walk_control *rwc);
459 	bool (*invalid_vma)(struct vm_area_struct *vma, void *arg);
460 };
461 
462 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc);
463 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc);
464 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
465 					  struct rmap_walk_control *rwc);
466 
467 #else	/* !CONFIG_MMU */
468 
469 #define anon_vma_init()		do {} while (0)
470 #define anon_vma_prepare(vma)	(0)
471 #define anon_vma_link(vma)	do {} while (0)
472 
473 static inline int folio_referenced(struct folio *folio, int is_locked,
474 				  struct mem_cgroup *memcg,
475 				  unsigned long *vm_flags)
476 {
477 	*vm_flags = 0;
478 	return 0;
479 }
480 
481 static inline void try_to_unmap(struct folio *folio, enum ttu_flags flags)
482 {
483 }
484 
485 static inline int folio_mkclean(struct folio *folio)
486 {
487 	return 0;
488 }
489 #endif	/* CONFIG_MMU */
490 
491 static inline int page_mkclean(struct page *page)
492 {
493 	return folio_mkclean(page_folio(page));
494 }
495 #endif	/* _LINUX_RMAP_H */
496