1 /* 2 * User-mode machine state access 3 * 4 * Copyright (C) 2007 Red Hat, Inc. All rights reserved. 5 * 6 * This copyrighted material is made available to anyone wishing to use, 7 * modify, copy, or redistribute it subject to the terms and conditions 8 * of the GNU General Public License v.2. 9 * 10 * Red Hat Author: Roland McGrath. 11 */ 12 13 #ifndef _LINUX_REGSET_H 14 #define _LINUX_REGSET_H 1 15 16 #include <linux/compiler.h> 17 #include <linux/types.h> 18 #include <linux/bug.h> 19 #include <linux/uaccess.h> 20 struct task_struct; 21 struct user_regset; 22 23 24 /** 25 * user_regset_active_fn - type of @active function in &struct user_regset 26 * @target: thread being examined 27 * @regset: regset being examined 28 * 29 * Return -%ENODEV if not available on the hardware found. 30 * Return %0 if no interesting state in this thread. 31 * Return >%0 number of @size units of interesting state. 32 * Any get call fetching state beyond that number will 33 * see the default initialization state for this data, 34 * so a caller that knows what the default state is need 35 * not copy it all out. 36 * This call is optional; the pointer is %NULL if there 37 * is no inexpensive check to yield a value < @n. 38 */ 39 typedef int user_regset_active_fn(struct task_struct *target, 40 const struct user_regset *regset); 41 42 /** 43 * user_regset_get_fn - type of @get function in &struct user_regset 44 * @target: thread being examined 45 * @regset: regset being examined 46 * @pos: offset into the regset data to access, in bytes 47 * @count: amount of data to copy, in bytes 48 * @kbuf: if not %NULL, a kernel-space pointer to copy into 49 * @ubuf: if @kbuf is %NULL, a user-space pointer to copy into 50 * 51 * Fetch register values. Return %0 on success; -%EIO or -%ENODEV 52 * are usual failure returns. The @pos and @count values are in 53 * bytes, but must be properly aligned. If @kbuf is non-null, that 54 * buffer is used and @ubuf is ignored. If @kbuf is %NULL, then 55 * ubuf gives a userland pointer to access directly, and an -%EFAULT 56 * return value is possible. 57 */ 58 typedef int user_regset_get_fn(struct task_struct *target, 59 const struct user_regset *regset, 60 unsigned int pos, unsigned int count, 61 void *kbuf, void __user *ubuf); 62 63 /** 64 * user_regset_set_fn - type of @set function in &struct user_regset 65 * @target: thread being examined 66 * @regset: regset being examined 67 * @pos: offset into the regset data to access, in bytes 68 * @count: amount of data to copy, in bytes 69 * @kbuf: if not %NULL, a kernel-space pointer to copy from 70 * @ubuf: if @kbuf is %NULL, a user-space pointer to copy from 71 * 72 * Store register values. Return %0 on success; -%EIO or -%ENODEV 73 * are usual failure returns. The @pos and @count values are in 74 * bytes, but must be properly aligned. If @kbuf is non-null, that 75 * buffer is used and @ubuf is ignored. If @kbuf is %NULL, then 76 * ubuf gives a userland pointer to access directly, and an -%EFAULT 77 * return value is possible. 78 */ 79 typedef int user_regset_set_fn(struct task_struct *target, 80 const struct user_regset *regset, 81 unsigned int pos, unsigned int count, 82 const void *kbuf, const void __user *ubuf); 83 84 /** 85 * user_regset_writeback_fn - type of @writeback function in &struct user_regset 86 * @target: thread being examined 87 * @regset: regset being examined 88 * @immediate: zero if writeback at completion of next context switch is OK 89 * 90 * This call is optional; usually the pointer is %NULL. When 91 * provided, there is some user memory associated with this regset's 92 * hardware, such as memory backing cached register data on register 93 * window machines; the regset's data controls what user memory is 94 * used (e.g. via the stack pointer value). 95 * 96 * Write register data back to user memory. If the @immediate flag 97 * is nonzero, it must be written to the user memory so uaccess or 98 * access_process_vm() can see it when this call returns; if zero, 99 * then it must be written back by the time the task completes a 100 * context switch (as synchronized with wait_task_inactive()). 101 * Return %0 on success or if there was nothing to do, -%EFAULT for 102 * a memory problem (bad stack pointer or whatever), or -%EIO for a 103 * hardware problem. 104 */ 105 typedef int user_regset_writeback_fn(struct task_struct *target, 106 const struct user_regset *regset, 107 int immediate); 108 109 /** 110 * user_regset_get_size_fn - type of @get_size function in &struct user_regset 111 * @target: thread being examined 112 * @regset: regset being examined 113 * 114 * This call is optional; usually the pointer is %NULL. 115 * 116 * When provided, this function must return the current size of regset 117 * data, as observed by the @get function in &struct user_regset. The 118 * value returned must be a multiple of @size. The returned size is 119 * required to be valid only until the next time (if any) @regset is 120 * modified for @target. 121 * 122 * This function is intended for dynamically sized regsets. A regset 123 * that is statically sized does not need to implement it. 124 * 125 * This function should not be called directly: instead, callers should 126 * call regset_size() to determine the current size of a regset. 127 */ 128 typedef unsigned int user_regset_get_size_fn(struct task_struct *target, 129 const struct user_regset *regset); 130 131 /** 132 * struct user_regset - accessible thread CPU state 133 * @n: Number of slots (registers). 134 * @size: Size in bytes of a slot (register). 135 * @align: Required alignment, in bytes. 136 * @bias: Bias from natural indexing. 137 * @core_note_type: ELF note @n_type value used in core dumps. 138 * @get: Function to fetch values. 139 * @set: Function to store values. 140 * @active: Function to report if regset is active, or %NULL. 141 * @writeback: Function to write data back to user memory, or %NULL. 142 * @get_size: Function to return the regset's size, or %NULL. 143 * 144 * This data structure describes a machine resource we call a register set. 145 * This is part of the state of an individual thread, not necessarily 146 * actual CPU registers per se. A register set consists of a number of 147 * similar slots, given by @n. Each slot is @size bytes, and aligned to 148 * @align bytes (which is at least @size). For dynamically-sized 149 * regsets, @n must contain the maximum possible number of slots for the 150 * regset, and @get_size must point to a function that returns the 151 * current regset size. 152 * 153 * Callers that need to know only the current size of the regset and do 154 * not care about its internal structure should call regset_size() 155 * instead of inspecting @n or calling @get_size. 156 * 157 * For backward compatibility, the @get and @set methods must pad to, or 158 * accept, @n * @size bytes, even if the current regset size is smaller. 159 * The precise semantics of these operations depend on the regset being 160 * accessed. 161 * 162 * The functions to which &struct user_regset members point must be 163 * called only on the current thread or on a thread that is in 164 * %TASK_STOPPED or %TASK_TRACED state, that we are guaranteed will not 165 * be woken up and return to user mode, and that we have called 166 * wait_task_inactive() on. (The target thread always might wake up for 167 * SIGKILL while these functions are working, in which case that 168 * thread's user_regset state might be scrambled.) 169 * 170 * The @pos argument must be aligned according to @align; the @count 171 * argument must be a multiple of @size. These functions are not 172 * responsible for checking for invalid arguments. 173 * 174 * When there is a natural value to use as an index, @bias gives the 175 * difference between the natural index and the slot index for the 176 * register set. For example, x86 GDT segment descriptors form a regset; 177 * the segment selector produces a natural index, but only a subset of 178 * that index space is available as a regset (the TLS slots); subtracting 179 * @bias from a segment selector index value computes the regset slot. 180 * 181 * If nonzero, @core_note_type gives the n_type field (NT_* value) 182 * of the core file note in which this regset's data appears. 183 * NT_PRSTATUS is a special case in that the regset data starts at 184 * offsetof(struct elf_prstatus, pr_reg) into the note data; that is 185 * part of the per-machine ELF formats userland knows about. In 186 * other cases, the core file note contains exactly the whole regset 187 * (@n * @size) and nothing else. The core file note is normally 188 * omitted when there is an @active function and it returns zero. 189 */ 190 struct user_regset { 191 user_regset_get_fn *get; 192 user_regset_set_fn *set; 193 user_regset_active_fn *active; 194 user_regset_writeback_fn *writeback; 195 user_regset_get_size_fn *get_size; 196 unsigned int n; 197 unsigned int size; 198 unsigned int align; 199 unsigned int bias; 200 unsigned int core_note_type; 201 }; 202 203 /** 204 * struct user_regset_view - available regsets 205 * @name: Identifier, e.g. UTS_MACHINE string. 206 * @regsets: Array of @n regsets available in this view. 207 * @n: Number of elements in @regsets. 208 * @e_machine: ELF header @e_machine %EM_* value written in core dumps. 209 * @e_flags: ELF header @e_flags value written in core dumps. 210 * @ei_osabi: ELF header @e_ident[%EI_OSABI] value written in core dumps. 211 * 212 * A regset view is a collection of regsets (&struct user_regset, 213 * above). This describes all the state of a thread that can be seen 214 * from a given architecture/ABI environment. More than one view might 215 * refer to the same &struct user_regset, or more than one regset 216 * might refer to the same machine-specific state in the thread. For 217 * example, a 32-bit thread's state could be examined from the 32-bit 218 * view or from the 64-bit view. Either method reaches the same thread 219 * register state, doing appropriate widening or truncation. 220 */ 221 struct user_regset_view { 222 const char *name; 223 const struct user_regset *regsets; 224 unsigned int n; 225 u32 e_flags; 226 u16 e_machine; 227 u8 ei_osabi; 228 }; 229 230 /* 231 * This is documented here rather than at the definition sites because its 232 * implementation is machine-dependent but its interface is universal. 233 */ 234 /** 235 * task_user_regset_view - Return the process's native regset view. 236 * @tsk: a thread of the process in question 237 * 238 * Return the &struct user_regset_view that is native for the given process. 239 * For example, what it would access when it called ptrace(). 240 * Throughout the life of the process, this only changes at exec. 241 */ 242 const struct user_regset_view *task_user_regset_view(struct task_struct *tsk); 243 244 245 /* 246 * These are helpers for writing regset get/set functions in arch code. 247 * Because @start_pos and @end_pos are always compile-time constants, 248 * these are inlined into very little code though they look large. 249 * 250 * Use one or more calls sequentially for each chunk of regset data stored 251 * contiguously in memory. Call with constants for @start_pos and @end_pos, 252 * giving the range of byte positions in the regset that data corresponds 253 * to; @end_pos can be -1 if this chunk is at the end of the regset layout. 254 * Each call updates the arguments to point past its chunk. 255 */ 256 257 static inline int user_regset_copyout(unsigned int *pos, unsigned int *count, 258 void **kbuf, 259 void __user **ubuf, const void *data, 260 const int start_pos, const int end_pos) 261 { 262 if (*count == 0) 263 return 0; 264 BUG_ON(*pos < start_pos); 265 if (end_pos < 0 || *pos < end_pos) { 266 unsigned int copy = (end_pos < 0 ? *count 267 : min(*count, end_pos - *pos)); 268 data += *pos - start_pos; 269 if (*kbuf) { 270 memcpy(*kbuf, data, copy); 271 *kbuf += copy; 272 } else if (__copy_to_user(*ubuf, data, copy)) 273 return -EFAULT; 274 else 275 *ubuf += copy; 276 *pos += copy; 277 *count -= copy; 278 } 279 return 0; 280 } 281 282 static inline int user_regset_copyin(unsigned int *pos, unsigned int *count, 283 const void **kbuf, 284 const void __user **ubuf, void *data, 285 const int start_pos, const int end_pos) 286 { 287 if (*count == 0) 288 return 0; 289 BUG_ON(*pos < start_pos); 290 if (end_pos < 0 || *pos < end_pos) { 291 unsigned int copy = (end_pos < 0 ? *count 292 : min(*count, end_pos - *pos)); 293 data += *pos - start_pos; 294 if (*kbuf) { 295 memcpy(data, *kbuf, copy); 296 *kbuf += copy; 297 } else if (__copy_from_user(data, *ubuf, copy)) 298 return -EFAULT; 299 else 300 *ubuf += copy; 301 *pos += copy; 302 *count -= copy; 303 } 304 return 0; 305 } 306 307 /* 308 * These two parallel the two above, but for portions of a regset layout 309 * that always read as all-zero or for which writes are ignored. 310 */ 311 static inline int user_regset_copyout_zero(unsigned int *pos, 312 unsigned int *count, 313 void **kbuf, void __user **ubuf, 314 const int start_pos, 315 const int end_pos) 316 { 317 if (*count == 0) 318 return 0; 319 BUG_ON(*pos < start_pos); 320 if (end_pos < 0 || *pos < end_pos) { 321 unsigned int copy = (end_pos < 0 ? *count 322 : min(*count, end_pos - *pos)); 323 if (*kbuf) { 324 memset(*kbuf, 0, copy); 325 *kbuf += copy; 326 } else if (__clear_user(*ubuf, copy)) 327 return -EFAULT; 328 else 329 *ubuf += copy; 330 *pos += copy; 331 *count -= copy; 332 } 333 return 0; 334 } 335 336 static inline int user_regset_copyin_ignore(unsigned int *pos, 337 unsigned int *count, 338 const void **kbuf, 339 const void __user **ubuf, 340 const int start_pos, 341 const int end_pos) 342 { 343 if (*count == 0) 344 return 0; 345 BUG_ON(*pos < start_pos); 346 if (end_pos < 0 || *pos < end_pos) { 347 unsigned int copy = (end_pos < 0 ? *count 348 : min(*count, end_pos - *pos)); 349 if (*kbuf) 350 *kbuf += copy; 351 else 352 *ubuf += copy; 353 *pos += copy; 354 *count -= copy; 355 } 356 return 0; 357 } 358 359 /** 360 * copy_regset_to_user - fetch a thread's user_regset data into user memory 361 * @target: thread to be examined 362 * @view: &struct user_regset_view describing user thread machine state 363 * @setno: index in @view->regsets 364 * @offset: offset into the regset data, in bytes 365 * @size: amount of data to copy, in bytes 366 * @data: user-mode pointer to copy into 367 */ 368 static inline int copy_regset_to_user(struct task_struct *target, 369 const struct user_regset_view *view, 370 unsigned int setno, 371 unsigned int offset, unsigned int size, 372 void __user *data) 373 { 374 const struct user_regset *regset = &view->regsets[setno]; 375 376 if (!regset->get) 377 return -EOPNOTSUPP; 378 379 if (!access_ok(VERIFY_WRITE, data, size)) 380 return -EFAULT; 381 382 return regset->get(target, regset, offset, size, NULL, data); 383 } 384 385 /** 386 * copy_regset_from_user - store into thread's user_regset data from user memory 387 * @target: thread to be examined 388 * @view: &struct user_regset_view describing user thread machine state 389 * @setno: index in @view->regsets 390 * @offset: offset into the regset data, in bytes 391 * @size: amount of data to copy, in bytes 392 * @data: user-mode pointer to copy from 393 */ 394 static inline int copy_regset_from_user(struct task_struct *target, 395 const struct user_regset_view *view, 396 unsigned int setno, 397 unsigned int offset, unsigned int size, 398 const void __user *data) 399 { 400 const struct user_regset *regset = &view->regsets[setno]; 401 402 if (!regset->set) 403 return -EOPNOTSUPP; 404 405 if (!access_ok(VERIFY_READ, data, size)) 406 return -EFAULT; 407 408 return regset->set(target, regset, offset, size, NULL, data); 409 } 410 411 /** 412 * regset_size - determine the current size of a regset 413 * @target: thread to be examined 414 * @regset: regset to be examined 415 * 416 * Note that the returned size is valid only until the next time 417 * (if any) @regset is modified for @target. 418 */ 419 static inline unsigned int regset_size(struct task_struct *target, 420 const struct user_regset *regset) 421 { 422 if (!regset->get_size) 423 return regset->n * regset->size; 424 else 425 return regset->get_size(target, regset); 426 } 427 428 #endif /* <linux/regset.h> */ 429