1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Universal power supply monitor class 4 * 5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru> 6 * Copyright © 2004 Szabolcs Gyurko 7 * Copyright © 2003 Ian Molton <spyro@f2s.com> 8 * 9 * Modified: 2004, Oct Szabolcs Gyurko 10 */ 11 12 #ifndef __LINUX_POWER_SUPPLY_H__ 13 #define __LINUX_POWER_SUPPLY_H__ 14 15 #include <linux/device.h> 16 #include <linux/workqueue.h> 17 #include <linux/leds.h> 18 #include <linux/spinlock.h> 19 #include <linux/notifier.h> 20 21 /* 22 * All voltages, currents, charges, energies, time and temperatures in uV, 23 * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise 24 * stated. It's driver's job to convert its raw values to units in which 25 * this class operates. 26 */ 27 28 /* 29 * For systems where the charger determines the maximum battery capacity 30 * the min and max fields should be used to present these values to user 31 * space. Unused/unknown fields will not appear in sysfs. 32 */ 33 34 enum { 35 POWER_SUPPLY_STATUS_UNKNOWN = 0, 36 POWER_SUPPLY_STATUS_CHARGING, 37 POWER_SUPPLY_STATUS_DISCHARGING, 38 POWER_SUPPLY_STATUS_NOT_CHARGING, 39 POWER_SUPPLY_STATUS_FULL, 40 }; 41 42 /* What algorithm is the charger using? */ 43 enum { 44 POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0, 45 POWER_SUPPLY_CHARGE_TYPE_NONE, 46 POWER_SUPPLY_CHARGE_TYPE_TRICKLE, /* slow speed */ 47 POWER_SUPPLY_CHARGE_TYPE_FAST, /* fast speed */ 48 POWER_SUPPLY_CHARGE_TYPE_STANDARD, /* normal speed */ 49 POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE, /* dynamically adjusted speed */ 50 POWER_SUPPLY_CHARGE_TYPE_CUSTOM, /* use CHARGE_CONTROL_* props */ 51 POWER_SUPPLY_CHARGE_TYPE_LONGLIFE, /* slow speed, longer life */ 52 }; 53 54 enum { 55 POWER_SUPPLY_HEALTH_UNKNOWN = 0, 56 POWER_SUPPLY_HEALTH_GOOD, 57 POWER_SUPPLY_HEALTH_OVERHEAT, 58 POWER_SUPPLY_HEALTH_DEAD, 59 POWER_SUPPLY_HEALTH_OVERVOLTAGE, 60 POWER_SUPPLY_HEALTH_UNSPEC_FAILURE, 61 POWER_SUPPLY_HEALTH_COLD, 62 POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE, 63 POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE, 64 POWER_SUPPLY_HEALTH_OVERCURRENT, 65 POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED, 66 POWER_SUPPLY_HEALTH_WARM, 67 POWER_SUPPLY_HEALTH_COOL, 68 POWER_SUPPLY_HEALTH_HOT, 69 POWER_SUPPLY_HEALTH_NO_BATTERY, 70 }; 71 72 enum { 73 POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0, 74 POWER_SUPPLY_TECHNOLOGY_NiMH, 75 POWER_SUPPLY_TECHNOLOGY_LION, 76 POWER_SUPPLY_TECHNOLOGY_LIPO, 77 POWER_SUPPLY_TECHNOLOGY_LiFe, 78 POWER_SUPPLY_TECHNOLOGY_NiCd, 79 POWER_SUPPLY_TECHNOLOGY_LiMn, 80 }; 81 82 enum { 83 POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0, 84 POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL, 85 POWER_SUPPLY_CAPACITY_LEVEL_LOW, 86 POWER_SUPPLY_CAPACITY_LEVEL_NORMAL, 87 POWER_SUPPLY_CAPACITY_LEVEL_HIGH, 88 POWER_SUPPLY_CAPACITY_LEVEL_FULL, 89 }; 90 91 enum { 92 POWER_SUPPLY_SCOPE_UNKNOWN = 0, 93 POWER_SUPPLY_SCOPE_SYSTEM, 94 POWER_SUPPLY_SCOPE_DEVICE, 95 }; 96 97 enum power_supply_property { 98 /* Properties of type `int' */ 99 POWER_SUPPLY_PROP_STATUS = 0, 100 POWER_SUPPLY_PROP_CHARGE_TYPE, 101 POWER_SUPPLY_PROP_HEALTH, 102 POWER_SUPPLY_PROP_PRESENT, 103 POWER_SUPPLY_PROP_ONLINE, 104 POWER_SUPPLY_PROP_AUTHENTIC, 105 POWER_SUPPLY_PROP_TECHNOLOGY, 106 POWER_SUPPLY_PROP_CYCLE_COUNT, 107 POWER_SUPPLY_PROP_VOLTAGE_MAX, 108 POWER_SUPPLY_PROP_VOLTAGE_MIN, 109 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 110 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, 111 POWER_SUPPLY_PROP_VOLTAGE_NOW, 112 POWER_SUPPLY_PROP_VOLTAGE_AVG, 113 POWER_SUPPLY_PROP_VOLTAGE_OCV, 114 POWER_SUPPLY_PROP_VOLTAGE_BOOT, 115 POWER_SUPPLY_PROP_CURRENT_MAX, 116 POWER_SUPPLY_PROP_CURRENT_NOW, 117 POWER_SUPPLY_PROP_CURRENT_AVG, 118 POWER_SUPPLY_PROP_CURRENT_BOOT, 119 POWER_SUPPLY_PROP_POWER_NOW, 120 POWER_SUPPLY_PROP_POWER_AVG, 121 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 122 POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN, 123 POWER_SUPPLY_PROP_CHARGE_FULL, 124 POWER_SUPPLY_PROP_CHARGE_EMPTY, 125 POWER_SUPPLY_PROP_CHARGE_NOW, 126 POWER_SUPPLY_PROP_CHARGE_AVG, 127 POWER_SUPPLY_PROP_CHARGE_COUNTER, 128 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, 129 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, 130 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, 131 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, 132 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, 133 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, 134 POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */ 135 POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */ 136 POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR, 137 POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, 138 POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT, 139 POWER_SUPPLY_PROP_INPUT_POWER_LIMIT, 140 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 141 POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN, 142 POWER_SUPPLY_PROP_ENERGY_FULL, 143 POWER_SUPPLY_PROP_ENERGY_EMPTY, 144 POWER_SUPPLY_PROP_ENERGY_NOW, 145 POWER_SUPPLY_PROP_ENERGY_AVG, 146 POWER_SUPPLY_PROP_CAPACITY, /* in percents! */ 147 POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */ 148 POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */ 149 POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */ 150 POWER_SUPPLY_PROP_CAPACITY_LEVEL, 151 POWER_SUPPLY_PROP_TEMP, 152 POWER_SUPPLY_PROP_TEMP_MAX, 153 POWER_SUPPLY_PROP_TEMP_MIN, 154 POWER_SUPPLY_PROP_TEMP_ALERT_MIN, 155 POWER_SUPPLY_PROP_TEMP_ALERT_MAX, 156 POWER_SUPPLY_PROP_TEMP_AMBIENT, 157 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN, 158 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX, 159 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, 160 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 161 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, 162 POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, 163 POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */ 164 POWER_SUPPLY_PROP_USB_TYPE, 165 POWER_SUPPLY_PROP_SCOPE, 166 POWER_SUPPLY_PROP_PRECHARGE_CURRENT, 167 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, 168 POWER_SUPPLY_PROP_CALIBRATE, 169 POWER_SUPPLY_PROP_MANUFACTURE_YEAR, 170 POWER_SUPPLY_PROP_MANUFACTURE_MONTH, 171 POWER_SUPPLY_PROP_MANUFACTURE_DAY, 172 /* Properties of type `const char *' */ 173 POWER_SUPPLY_PROP_MODEL_NAME, 174 POWER_SUPPLY_PROP_MANUFACTURER, 175 POWER_SUPPLY_PROP_SERIAL_NUMBER, 176 }; 177 178 enum power_supply_type { 179 POWER_SUPPLY_TYPE_UNKNOWN = 0, 180 POWER_SUPPLY_TYPE_BATTERY, 181 POWER_SUPPLY_TYPE_UPS, 182 POWER_SUPPLY_TYPE_MAINS, 183 POWER_SUPPLY_TYPE_USB, /* Standard Downstream Port */ 184 POWER_SUPPLY_TYPE_USB_DCP, /* Dedicated Charging Port */ 185 POWER_SUPPLY_TYPE_USB_CDP, /* Charging Downstream Port */ 186 POWER_SUPPLY_TYPE_USB_ACA, /* Accessory Charger Adapters */ 187 POWER_SUPPLY_TYPE_USB_TYPE_C, /* Type C Port */ 188 POWER_SUPPLY_TYPE_USB_PD, /* Power Delivery Port */ 189 POWER_SUPPLY_TYPE_USB_PD_DRP, /* PD Dual Role Port */ 190 POWER_SUPPLY_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ 191 POWER_SUPPLY_TYPE_WIRELESS, /* Wireless */ 192 }; 193 194 enum power_supply_usb_type { 195 POWER_SUPPLY_USB_TYPE_UNKNOWN = 0, 196 POWER_SUPPLY_USB_TYPE_SDP, /* Standard Downstream Port */ 197 POWER_SUPPLY_USB_TYPE_DCP, /* Dedicated Charging Port */ 198 POWER_SUPPLY_USB_TYPE_CDP, /* Charging Downstream Port */ 199 POWER_SUPPLY_USB_TYPE_ACA, /* Accessory Charger Adapters */ 200 POWER_SUPPLY_USB_TYPE_C, /* Type C Port */ 201 POWER_SUPPLY_USB_TYPE_PD, /* Power Delivery Port */ 202 POWER_SUPPLY_USB_TYPE_PD_DRP, /* PD Dual Role Port */ 203 POWER_SUPPLY_USB_TYPE_PD_PPS, /* PD Programmable Power Supply */ 204 POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ 205 }; 206 207 enum power_supply_charge_behaviour { 208 POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0, 209 POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE, 210 POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE, 211 }; 212 213 enum power_supply_notifier_events { 214 PSY_EVENT_PROP_CHANGED, 215 }; 216 217 union power_supply_propval { 218 int intval; 219 const char *strval; 220 }; 221 222 struct device_node; 223 struct power_supply; 224 225 /* Run-time specific power supply configuration */ 226 struct power_supply_config { 227 struct device_node *of_node; 228 struct fwnode_handle *fwnode; 229 230 /* Driver private data */ 231 void *drv_data; 232 233 /* Device specific sysfs attributes */ 234 const struct attribute_group **attr_grp; 235 236 char **supplied_to; 237 size_t num_supplicants; 238 }; 239 240 /* Description of power supply */ 241 struct power_supply_desc { 242 const char *name; 243 enum power_supply_type type; 244 const enum power_supply_usb_type *usb_types; 245 size_t num_usb_types; 246 const enum power_supply_property *properties; 247 size_t num_properties; 248 249 /* 250 * Functions for drivers implementing power supply class. 251 * These shouldn't be called directly by other drivers for accessing 252 * this power supply. Instead use power_supply_*() functions (for 253 * example power_supply_get_property()). 254 */ 255 int (*get_property)(struct power_supply *psy, 256 enum power_supply_property psp, 257 union power_supply_propval *val); 258 int (*set_property)(struct power_supply *psy, 259 enum power_supply_property psp, 260 const union power_supply_propval *val); 261 /* 262 * property_is_writeable() will be called during registration 263 * of power supply. If this happens during device probe then it must 264 * not access internal data of device (because probe did not end). 265 */ 266 int (*property_is_writeable)(struct power_supply *psy, 267 enum power_supply_property psp); 268 void (*external_power_changed)(struct power_supply *psy); 269 void (*set_charged)(struct power_supply *psy); 270 271 /* 272 * Set if thermal zone should not be created for this power supply. 273 * For example for virtual supplies forwarding calls to actual 274 * sensors or other supplies. 275 */ 276 bool no_thermal; 277 /* For APM emulation, think legacy userspace. */ 278 int use_for_apm; 279 }; 280 281 struct power_supply { 282 const struct power_supply_desc *desc; 283 284 char **supplied_to; 285 size_t num_supplicants; 286 287 char **supplied_from; 288 size_t num_supplies; 289 struct device_node *of_node; 290 291 /* Driver private data */ 292 void *drv_data; 293 294 /* private */ 295 struct device dev; 296 struct work_struct changed_work; 297 struct delayed_work deferred_register_work; 298 spinlock_t changed_lock; 299 bool changed; 300 bool initialized; 301 bool removing; 302 atomic_t use_cnt; 303 #ifdef CONFIG_THERMAL 304 struct thermal_zone_device *tzd; 305 struct thermal_cooling_device *tcd; 306 #endif 307 308 #ifdef CONFIG_LEDS_TRIGGERS 309 struct led_trigger *charging_full_trig; 310 char *charging_full_trig_name; 311 struct led_trigger *charging_trig; 312 char *charging_trig_name; 313 struct led_trigger *full_trig; 314 char *full_trig_name; 315 struct led_trigger *online_trig; 316 char *online_trig_name; 317 struct led_trigger *charging_blink_full_solid_trig; 318 char *charging_blink_full_solid_trig_name; 319 #endif 320 }; 321 322 /* 323 * This is recommended structure to specify static power supply parameters. 324 * Generic one, parametrizable for different power supplies. Power supply 325 * class itself does not use it, but that's what implementing most platform 326 * drivers, should try reuse for consistency. 327 */ 328 329 struct power_supply_info { 330 const char *name; 331 int technology; 332 int voltage_max_design; 333 int voltage_min_design; 334 int charge_full_design; 335 int charge_empty_design; 336 int energy_full_design; 337 int energy_empty_design; 338 int use_for_apm; 339 }; 340 341 struct power_supply_battery_ocv_table { 342 int ocv; /* microVolts */ 343 int capacity; /* percent */ 344 }; 345 346 struct power_supply_resistance_temp_table { 347 int temp; /* celsius */ 348 int resistance; /* internal resistance percent */ 349 }; 350 351 #define POWER_SUPPLY_OCV_TEMP_MAX 20 352 353 /** 354 * struct power_supply_battery_info - information about batteries 355 * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum 356 * @energy_full_design_uwh: energy content when fully charged in microwatt 357 * hours 358 * @charge_full_design_uah: charge content when fully charged in microampere 359 * hours 360 * @voltage_min_design_uv: minimum voltage across the poles when the battery 361 * is at minimum voltage level in microvolts. If the voltage drops below this 362 * level the battery will need precharging when using CC/CV charging. 363 * @voltage_max_design_uv: voltage across the poles when the battery is fully 364 * charged in microvolts. This is the "nominal voltage" i.e. the voltage 365 * printed on the label of the battery. 366 * @tricklecharge_current_ua: the tricklecharge current used when trickle 367 * charging the battery in microamperes. This is the charging phase when the 368 * battery is completely empty and we need to carefully trickle in some 369 * charge until we reach the precharging voltage. 370 * @precharge_current_ua: current to use in the precharge phase in microamperes, 371 * the precharge rate is limited by limiting the current to this value. 372 * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in 373 * microvolts. When we pass this voltage we will nominally switch over to the 374 * CC (constant current) charging phase defined by constant_charge_current_ua 375 * and constant_charge_voltage_max_uv. 376 * @charge_term_current_ua: when the current in the CV (constant voltage) 377 * charging phase drops below this value in microamperes the charging will 378 * terminate completely and not restart until the voltage over the battery 379 * poles reach charge_restart_voltage_uv unless we use maintenance charging. 380 * @charge_restart_voltage_uv: when the battery has been fully charged by 381 * CC/CV charging and charging has been disabled, and the voltage subsequently 382 * drops below this value in microvolts, the charging will be restarted 383 * (typically using CV charging). 384 * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage 385 * voltage_max_design_uv and we reach this voltage level, all charging must 386 * stop and emergency procedures take place, such as shutting down the system 387 * in some cases. 388 * @constant_charge_current_max_ua: current in microamperes to use in the CC 389 * (constant current) charging phase. The charging rate is limited 390 * by this current. This is the main charging phase and as the current is 391 * constant into the battery the voltage slowly ascends to 392 * constant_charge_voltage_max_uv. 393 * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of 394 * the CC (constant current) charging phase and the beginning of the CV 395 * (constant voltage) charging phase. 396 * @factory_internal_resistance_uohm: the internal resistance of the battery 397 * at fabrication time, expressed in microohms. This resistance will vary 398 * depending on the lifetime and charge of the battery, so this is just a 399 * nominal ballpark figure. 400 * @ocv_temp: array indicating the open circuit voltage (OCV) capacity 401 * temperature indices. This is an array of temperatures in degrees Celsius 402 * indicating which capacity table to use for a certain temperature, since 403 * the capacity for reasons of chemistry will be different at different 404 * temperatures. Determining capacity is a multivariate problem and the 405 * temperature is the first variable we determine. 406 * @temp_ambient_alert_min: the battery will go outside of operating conditions 407 * when the ambient temperature goes below this temperature in degrees 408 * Celsius. 409 * @temp_ambient_alert_max: the battery will go outside of operating conditions 410 * when the ambient temperature goes above this temperature in degrees 411 * Celsius. 412 * @temp_alert_min: the battery should issue an alert if the internal 413 * temperature goes below this temperature in degrees Celsius. 414 * @temp_alert_max: the battery should issue an alert if the internal 415 * temperature goes above this temperature in degrees Celsius. 416 * @temp_min: the battery will go outside of operating conditions when 417 * the internal temperature goes below this temperature in degrees Celsius. 418 * Normally this means the system should shut down. 419 * @temp_max: the battery will go outside of operating conditions when 420 * the internal temperature goes above this temperature in degrees Celsius. 421 * Normally this means the system should shut down. 422 * @ocv_table: for each entry in ocv_temp there is a corresponding entry in 423 * ocv_table and a size for each entry in ocv_table_size. These arrays 424 * determine the capacity in percent in relation to the voltage in microvolts 425 * at the indexed temperature. 426 * @ocv_table_size: for each entry in ocv_temp this array is giving the size of 427 * each entry in the array of capacity arrays in ocv_table. 428 * @resist_table: this is a table that correlates a battery temperature to the 429 * expected internal resistance at this temperature. The resistance is given 430 * as a percentage of factory_internal_resistance_uohm. Knowing the 431 * resistance of the battery is usually necessary for calculating the open 432 * circuit voltage (OCV) that is then used with the ocv_table to calculate 433 * the capacity of the battery. The resist_table must be ordered descending 434 * by temperature: highest temperature with lowest resistance first, lowest 435 * temperature with highest resistance last. 436 * @resist_table_size: the number of items in the resist_table. 437 * 438 * This is the recommended struct to manage static battery parameters, 439 * populated by power_supply_get_battery_info(). Most platform drivers should 440 * use these for consistency. 441 * 442 * Its field names must correspond to elements in enum power_supply_property. 443 * The default field value is -EINVAL. 444 * 445 * The charging parameters here assume a CC/CV charging scheme. This method 446 * is most common with Lithium Ion batteries (other methods are possible) and 447 * looks as follows: 448 * 449 * ^ Battery voltage 450 * | --- overvoltage_limit_uv 451 * | 452 * | ................................................... 453 * | .. constant_charge_voltage_max_uv 454 * | .. 455 * | . 456 * | . 457 * | . 458 * | . 459 * | . 460 * | .. precharge_voltage_max_uv 461 * | .. 462 * |. (trickle charging) 463 * +------------------------------------------------------------------> time 464 * 465 * ^ Current into the battery 466 * | 467 * | ............. constant_charge_current_max_ua 468 * | . . 469 * | . . 470 * | . . 471 * | . . 472 * | . .. 473 * | . .... 474 * | . ..... 475 * | ... precharge_current_ua ....... charge_term_current_ua 476 * | . . 477 * | . . 478 * |.... tricklecharge_current_ua . 479 * | . 480 * +-----------------------------------------------------------------> time 481 * 482 * These diagrams are synchronized on time and the voltage and current 483 * follow each other. 484 * 485 * With CC/CV charging commence over time like this for an empty battery: 486 * 487 * 1. When the battery is completely empty it may need to be charged with 488 * an especially small current so that electrons just "trickle in", 489 * this is the tricklecharge_current_ua. 490 * 491 * 2. Next a small initial pre-charge current (precharge_current_ua) 492 * is applied if the voltage is below precharge_voltage_max_uv until we 493 * reach precharge_voltage_max_uv. CAUTION: in some texts this is referred 494 * to as "trickle charging" but the use in the Linux kernel is different 495 * see below! 496 * 497 * 3. Then the main charging current is applied, which is called the constant 498 * current (CC) phase. A current regulator is set up to allow 499 * constant_charge_current_max_ua of current to flow into the battery. 500 * The chemical reaction in the battery will make the voltage go up as 501 * charge goes into the battery. This current is applied until we reach 502 * the constant_charge_voltage_max_uv voltage. 503 * 504 * 4. At this voltage we switch over to the constant voltage (CV) phase. This 505 * means we allow current to go into the battery, but we keep the voltage 506 * fixed. This current will continue to charge the battery while keeping 507 * the voltage the same. A chemical reaction in the battery goes on 508 * storing energy without affecting the voltage. Over time the current 509 * will slowly drop and when we reach charge_term_current_ua we will 510 * end the constant voltage phase. 511 * 512 * After this the battery is fully charged, and if we do not support maintenance 513 * charging, the charging will not restart until power dissipation makes the 514 * voltage fall so that we reach charge_restart_voltage_uv and at this point 515 * we restart charging at the appropriate phase, usually this will be inside 516 * the CV phase. 517 * 518 * If we support maintenance charging the voltage is however kept high after 519 * the CV phase with a very low current. This is meant to let the same charge 520 * go in for usage while the charger is still connected, mainly for 521 * dissipation for the power consuming entity while connected to the 522 * charger. 523 * 524 * All charging MUST terminate if the overvoltage_limit_uv is ever reached. 525 * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or 526 * explosions. 527 * 528 * The power supply class itself doesn't use this struct as of now. 529 */ 530 531 struct power_supply_battery_info { 532 unsigned int technology; 533 int energy_full_design_uwh; 534 int charge_full_design_uah; 535 int voltage_min_design_uv; 536 int voltage_max_design_uv; 537 int tricklecharge_current_ua; 538 int precharge_current_ua; 539 int precharge_voltage_max_uv; 540 int charge_term_current_ua; 541 int charge_restart_voltage_uv; 542 int overvoltage_limit_uv; 543 int constant_charge_current_max_ua; 544 int constant_charge_voltage_max_uv; 545 int factory_internal_resistance_uohm; 546 int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX]; 547 int temp_ambient_alert_min; 548 int temp_ambient_alert_max; 549 int temp_alert_min; 550 int temp_alert_max; 551 int temp_min; 552 int temp_max; 553 struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX]; 554 int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX]; 555 struct power_supply_resistance_temp_table *resist_table; 556 int resist_table_size; 557 }; 558 559 extern struct atomic_notifier_head power_supply_notifier; 560 extern int power_supply_reg_notifier(struct notifier_block *nb); 561 extern void power_supply_unreg_notifier(struct notifier_block *nb); 562 #if IS_ENABLED(CONFIG_POWER_SUPPLY) 563 extern struct power_supply *power_supply_get_by_name(const char *name); 564 extern void power_supply_put(struct power_supply *psy); 565 #else 566 static inline void power_supply_put(struct power_supply *psy) {} 567 static inline struct power_supply *power_supply_get_by_name(const char *name) 568 { return NULL; } 569 #endif 570 #ifdef CONFIG_OF 571 extern struct power_supply *power_supply_get_by_phandle(struct device_node *np, 572 const char *property); 573 extern struct power_supply *devm_power_supply_get_by_phandle( 574 struct device *dev, const char *property); 575 #else /* !CONFIG_OF */ 576 static inline struct power_supply * 577 power_supply_get_by_phandle(struct device_node *np, const char *property) 578 { return NULL; } 579 static inline struct power_supply * 580 devm_power_supply_get_by_phandle(struct device *dev, const char *property) 581 { return NULL; } 582 #endif /* CONFIG_OF */ 583 584 extern int power_supply_get_battery_info(struct power_supply *psy, 585 struct power_supply_battery_info **info_out); 586 extern void power_supply_put_battery_info(struct power_supply *psy, 587 struct power_supply_battery_info *info); 588 extern int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table, 589 int table_len, int ocv); 590 extern struct power_supply_battery_ocv_table * 591 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info, 592 int temp, int *table_len); 593 extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info, 594 int ocv, int temp); 595 extern int 596 power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table, 597 int table_len, int temp); 598 extern void power_supply_changed(struct power_supply *psy); 599 extern int power_supply_am_i_supplied(struct power_supply *psy); 600 extern int power_supply_set_input_current_limit_from_supplier( 601 struct power_supply *psy); 602 extern int power_supply_set_battery_charged(struct power_supply *psy); 603 604 #ifdef CONFIG_POWER_SUPPLY 605 extern int power_supply_is_system_supplied(void); 606 #else 607 static inline int power_supply_is_system_supplied(void) { return -ENOSYS; } 608 #endif 609 610 extern int power_supply_get_property(struct power_supply *psy, 611 enum power_supply_property psp, 612 union power_supply_propval *val); 613 #if IS_ENABLED(CONFIG_POWER_SUPPLY) 614 extern int power_supply_set_property(struct power_supply *psy, 615 enum power_supply_property psp, 616 const union power_supply_propval *val); 617 #else 618 static inline int power_supply_set_property(struct power_supply *psy, 619 enum power_supply_property psp, 620 const union power_supply_propval *val) 621 { return 0; } 622 #endif 623 extern int power_supply_property_is_writeable(struct power_supply *psy, 624 enum power_supply_property psp); 625 extern void power_supply_external_power_changed(struct power_supply *psy); 626 627 extern struct power_supply *__must_check 628 power_supply_register(struct device *parent, 629 const struct power_supply_desc *desc, 630 const struct power_supply_config *cfg); 631 extern struct power_supply *__must_check 632 power_supply_register_no_ws(struct device *parent, 633 const struct power_supply_desc *desc, 634 const struct power_supply_config *cfg); 635 extern struct power_supply *__must_check 636 devm_power_supply_register(struct device *parent, 637 const struct power_supply_desc *desc, 638 const struct power_supply_config *cfg); 639 extern struct power_supply *__must_check 640 devm_power_supply_register_no_ws(struct device *parent, 641 const struct power_supply_desc *desc, 642 const struct power_supply_config *cfg); 643 extern void power_supply_unregister(struct power_supply *psy); 644 extern int power_supply_powers(struct power_supply *psy, struct device *dev); 645 646 #define to_power_supply(device) container_of(device, struct power_supply, dev) 647 648 extern void *power_supply_get_drvdata(struct power_supply *psy); 649 /* For APM emulation, think legacy userspace. */ 650 extern struct class *power_supply_class; 651 652 static inline bool power_supply_is_amp_property(enum power_supply_property psp) 653 { 654 switch (psp) { 655 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 656 case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN: 657 case POWER_SUPPLY_PROP_CHARGE_FULL: 658 case POWER_SUPPLY_PROP_CHARGE_EMPTY: 659 case POWER_SUPPLY_PROP_CHARGE_NOW: 660 case POWER_SUPPLY_PROP_CHARGE_AVG: 661 case POWER_SUPPLY_PROP_CHARGE_COUNTER: 662 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: 663 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 664 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: 665 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 666 case POWER_SUPPLY_PROP_CURRENT_MAX: 667 case POWER_SUPPLY_PROP_CURRENT_NOW: 668 case POWER_SUPPLY_PROP_CURRENT_AVG: 669 case POWER_SUPPLY_PROP_CURRENT_BOOT: 670 return true; 671 default: 672 break; 673 } 674 675 return false; 676 } 677 678 static inline bool power_supply_is_watt_property(enum power_supply_property psp) 679 { 680 switch (psp) { 681 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 682 case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN: 683 case POWER_SUPPLY_PROP_ENERGY_FULL: 684 case POWER_SUPPLY_PROP_ENERGY_EMPTY: 685 case POWER_SUPPLY_PROP_ENERGY_NOW: 686 case POWER_SUPPLY_PROP_ENERGY_AVG: 687 case POWER_SUPPLY_PROP_VOLTAGE_MAX: 688 case POWER_SUPPLY_PROP_VOLTAGE_MIN: 689 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: 690 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 691 case POWER_SUPPLY_PROP_VOLTAGE_NOW: 692 case POWER_SUPPLY_PROP_VOLTAGE_AVG: 693 case POWER_SUPPLY_PROP_VOLTAGE_OCV: 694 case POWER_SUPPLY_PROP_VOLTAGE_BOOT: 695 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: 696 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: 697 case POWER_SUPPLY_PROP_POWER_NOW: 698 return true; 699 default: 700 break; 701 } 702 703 return false; 704 } 705 706 #ifdef CONFIG_POWER_SUPPLY_HWMON 707 int power_supply_add_hwmon_sysfs(struct power_supply *psy); 708 void power_supply_remove_hwmon_sysfs(struct power_supply *psy); 709 #else 710 static inline int power_supply_add_hwmon_sysfs(struct power_supply *psy) 711 { 712 return 0; 713 } 714 715 static inline 716 void power_supply_remove_hwmon_sysfs(struct power_supply *psy) {} 717 #endif 718 719 #ifdef CONFIG_SYSFS 720 ssize_t power_supply_charge_behaviour_show(struct device *dev, 721 unsigned int available_behaviours, 722 enum power_supply_charge_behaviour behaviour, 723 char *buf); 724 725 int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf); 726 #else 727 static inline 728 ssize_t power_supply_charge_behaviour_show(struct device *dev, 729 unsigned int available_behaviours, 730 enum power_supply_charge_behaviour behaviour, 731 char *buf) 732 { 733 return -EOPNOTSUPP; 734 } 735 736 static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours, 737 const char *buf) 738 { 739 return -EOPNOTSUPP; 740 } 741 #endif 742 743 #endif /* __LINUX_POWER_SUPPLY_H__ */ 744