1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Universal power supply monitor class 4 * 5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru> 6 * Copyright © 2004 Szabolcs Gyurko 7 * Copyright © 2003 Ian Molton <spyro@f2s.com> 8 * 9 * Modified: 2004, Oct Szabolcs Gyurko 10 */ 11 12 #ifndef __LINUX_POWER_SUPPLY_H__ 13 #define __LINUX_POWER_SUPPLY_H__ 14 15 #include <linux/device.h> 16 #include <linux/workqueue.h> 17 #include <linux/leds.h> 18 #include <linux/spinlock.h> 19 #include <linux/notifier.h> 20 21 /* 22 * All voltages, currents, charges, energies, time and temperatures in uV, 23 * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise 24 * stated. It's driver's job to convert its raw values to units in which 25 * this class operates. 26 */ 27 28 /* 29 * For systems where the charger determines the maximum battery capacity 30 * the min and max fields should be used to present these values to user 31 * space. Unused/unknown fields will not appear in sysfs. 32 */ 33 34 enum { 35 POWER_SUPPLY_STATUS_UNKNOWN = 0, 36 POWER_SUPPLY_STATUS_CHARGING, 37 POWER_SUPPLY_STATUS_DISCHARGING, 38 POWER_SUPPLY_STATUS_NOT_CHARGING, 39 POWER_SUPPLY_STATUS_FULL, 40 }; 41 42 /* What algorithm is the charger using? */ 43 enum { 44 POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0, 45 POWER_SUPPLY_CHARGE_TYPE_NONE, 46 POWER_SUPPLY_CHARGE_TYPE_TRICKLE, /* slow speed */ 47 POWER_SUPPLY_CHARGE_TYPE_FAST, /* fast speed */ 48 POWER_SUPPLY_CHARGE_TYPE_STANDARD, /* normal speed */ 49 POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE, /* dynamically adjusted speed */ 50 POWER_SUPPLY_CHARGE_TYPE_CUSTOM, /* use CHARGE_CONTROL_* props */ 51 POWER_SUPPLY_CHARGE_TYPE_LONGLIFE, /* slow speed, longer life */ 52 POWER_SUPPLY_CHARGE_TYPE_BYPASS, /* bypassing the charger */ 53 }; 54 55 enum { 56 POWER_SUPPLY_HEALTH_UNKNOWN = 0, 57 POWER_SUPPLY_HEALTH_GOOD, 58 POWER_SUPPLY_HEALTH_OVERHEAT, 59 POWER_SUPPLY_HEALTH_DEAD, 60 POWER_SUPPLY_HEALTH_OVERVOLTAGE, 61 POWER_SUPPLY_HEALTH_UNSPEC_FAILURE, 62 POWER_SUPPLY_HEALTH_COLD, 63 POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE, 64 POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE, 65 POWER_SUPPLY_HEALTH_OVERCURRENT, 66 POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED, 67 POWER_SUPPLY_HEALTH_WARM, 68 POWER_SUPPLY_HEALTH_COOL, 69 POWER_SUPPLY_HEALTH_HOT, 70 POWER_SUPPLY_HEALTH_NO_BATTERY, 71 }; 72 73 enum { 74 POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0, 75 POWER_SUPPLY_TECHNOLOGY_NiMH, 76 POWER_SUPPLY_TECHNOLOGY_LION, 77 POWER_SUPPLY_TECHNOLOGY_LIPO, 78 POWER_SUPPLY_TECHNOLOGY_LiFe, 79 POWER_SUPPLY_TECHNOLOGY_NiCd, 80 POWER_SUPPLY_TECHNOLOGY_LiMn, 81 }; 82 83 enum { 84 POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0, 85 POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL, 86 POWER_SUPPLY_CAPACITY_LEVEL_LOW, 87 POWER_SUPPLY_CAPACITY_LEVEL_NORMAL, 88 POWER_SUPPLY_CAPACITY_LEVEL_HIGH, 89 POWER_SUPPLY_CAPACITY_LEVEL_FULL, 90 }; 91 92 enum { 93 POWER_SUPPLY_SCOPE_UNKNOWN = 0, 94 POWER_SUPPLY_SCOPE_SYSTEM, 95 POWER_SUPPLY_SCOPE_DEVICE, 96 }; 97 98 enum power_supply_property { 99 /* Properties of type `int' */ 100 POWER_SUPPLY_PROP_STATUS = 0, 101 POWER_SUPPLY_PROP_CHARGE_TYPE, 102 POWER_SUPPLY_PROP_HEALTH, 103 POWER_SUPPLY_PROP_PRESENT, 104 POWER_SUPPLY_PROP_ONLINE, 105 POWER_SUPPLY_PROP_AUTHENTIC, 106 POWER_SUPPLY_PROP_TECHNOLOGY, 107 POWER_SUPPLY_PROP_CYCLE_COUNT, 108 POWER_SUPPLY_PROP_VOLTAGE_MAX, 109 POWER_SUPPLY_PROP_VOLTAGE_MIN, 110 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 111 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, 112 POWER_SUPPLY_PROP_VOLTAGE_NOW, 113 POWER_SUPPLY_PROP_VOLTAGE_AVG, 114 POWER_SUPPLY_PROP_VOLTAGE_OCV, 115 POWER_SUPPLY_PROP_VOLTAGE_BOOT, 116 POWER_SUPPLY_PROP_CURRENT_MAX, 117 POWER_SUPPLY_PROP_CURRENT_NOW, 118 POWER_SUPPLY_PROP_CURRENT_AVG, 119 POWER_SUPPLY_PROP_CURRENT_BOOT, 120 POWER_SUPPLY_PROP_POWER_NOW, 121 POWER_SUPPLY_PROP_POWER_AVG, 122 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 123 POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN, 124 POWER_SUPPLY_PROP_CHARGE_FULL, 125 POWER_SUPPLY_PROP_CHARGE_EMPTY, 126 POWER_SUPPLY_PROP_CHARGE_NOW, 127 POWER_SUPPLY_PROP_CHARGE_AVG, 128 POWER_SUPPLY_PROP_CHARGE_COUNTER, 129 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, 130 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, 131 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, 132 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, 133 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, 134 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, 135 POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */ 136 POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */ 137 POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR, 138 POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, 139 POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT, 140 POWER_SUPPLY_PROP_INPUT_POWER_LIMIT, 141 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 142 POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN, 143 POWER_SUPPLY_PROP_ENERGY_FULL, 144 POWER_SUPPLY_PROP_ENERGY_EMPTY, 145 POWER_SUPPLY_PROP_ENERGY_NOW, 146 POWER_SUPPLY_PROP_ENERGY_AVG, 147 POWER_SUPPLY_PROP_CAPACITY, /* in percents! */ 148 POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */ 149 POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */ 150 POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */ 151 POWER_SUPPLY_PROP_CAPACITY_LEVEL, 152 POWER_SUPPLY_PROP_TEMP, 153 POWER_SUPPLY_PROP_TEMP_MAX, 154 POWER_SUPPLY_PROP_TEMP_MIN, 155 POWER_SUPPLY_PROP_TEMP_ALERT_MIN, 156 POWER_SUPPLY_PROP_TEMP_ALERT_MAX, 157 POWER_SUPPLY_PROP_TEMP_AMBIENT, 158 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN, 159 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX, 160 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, 161 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 162 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, 163 POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, 164 POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */ 165 POWER_SUPPLY_PROP_USB_TYPE, 166 POWER_SUPPLY_PROP_SCOPE, 167 POWER_SUPPLY_PROP_PRECHARGE_CURRENT, 168 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, 169 POWER_SUPPLY_PROP_CALIBRATE, 170 POWER_SUPPLY_PROP_MANUFACTURE_YEAR, 171 POWER_SUPPLY_PROP_MANUFACTURE_MONTH, 172 POWER_SUPPLY_PROP_MANUFACTURE_DAY, 173 /* Properties of type `const char *' */ 174 POWER_SUPPLY_PROP_MODEL_NAME, 175 POWER_SUPPLY_PROP_MANUFACTURER, 176 POWER_SUPPLY_PROP_SERIAL_NUMBER, 177 }; 178 179 enum power_supply_type { 180 POWER_SUPPLY_TYPE_UNKNOWN = 0, 181 POWER_SUPPLY_TYPE_BATTERY, 182 POWER_SUPPLY_TYPE_UPS, 183 POWER_SUPPLY_TYPE_MAINS, 184 POWER_SUPPLY_TYPE_USB, /* Standard Downstream Port */ 185 POWER_SUPPLY_TYPE_USB_DCP, /* Dedicated Charging Port */ 186 POWER_SUPPLY_TYPE_USB_CDP, /* Charging Downstream Port */ 187 POWER_SUPPLY_TYPE_USB_ACA, /* Accessory Charger Adapters */ 188 POWER_SUPPLY_TYPE_USB_TYPE_C, /* Type C Port */ 189 POWER_SUPPLY_TYPE_USB_PD, /* Power Delivery Port */ 190 POWER_SUPPLY_TYPE_USB_PD_DRP, /* PD Dual Role Port */ 191 POWER_SUPPLY_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ 192 POWER_SUPPLY_TYPE_WIRELESS, /* Wireless */ 193 }; 194 195 enum power_supply_usb_type { 196 POWER_SUPPLY_USB_TYPE_UNKNOWN = 0, 197 POWER_SUPPLY_USB_TYPE_SDP, /* Standard Downstream Port */ 198 POWER_SUPPLY_USB_TYPE_DCP, /* Dedicated Charging Port */ 199 POWER_SUPPLY_USB_TYPE_CDP, /* Charging Downstream Port */ 200 POWER_SUPPLY_USB_TYPE_ACA, /* Accessory Charger Adapters */ 201 POWER_SUPPLY_USB_TYPE_C, /* Type C Port */ 202 POWER_SUPPLY_USB_TYPE_PD, /* Power Delivery Port */ 203 POWER_SUPPLY_USB_TYPE_PD_DRP, /* PD Dual Role Port */ 204 POWER_SUPPLY_USB_TYPE_PD_PPS, /* PD Programmable Power Supply */ 205 POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ 206 }; 207 208 enum power_supply_charge_behaviour { 209 POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0, 210 POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE, 211 POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE, 212 }; 213 214 enum power_supply_notifier_events { 215 PSY_EVENT_PROP_CHANGED, 216 }; 217 218 union power_supply_propval { 219 int intval; 220 const char *strval; 221 }; 222 223 struct device_node; 224 struct power_supply; 225 226 /* Run-time specific power supply configuration */ 227 struct power_supply_config { 228 struct device_node *of_node; 229 struct fwnode_handle *fwnode; 230 231 /* Driver private data */ 232 void *drv_data; 233 234 /* Device specific sysfs attributes */ 235 const struct attribute_group **attr_grp; 236 237 char **supplied_to; 238 size_t num_supplicants; 239 }; 240 241 /* Description of power supply */ 242 struct power_supply_desc { 243 const char *name; 244 enum power_supply_type type; 245 const enum power_supply_usb_type *usb_types; 246 size_t num_usb_types; 247 const enum power_supply_property *properties; 248 size_t num_properties; 249 250 /* 251 * Functions for drivers implementing power supply class. 252 * These shouldn't be called directly by other drivers for accessing 253 * this power supply. Instead use power_supply_*() functions (for 254 * example power_supply_get_property()). 255 */ 256 int (*get_property)(struct power_supply *psy, 257 enum power_supply_property psp, 258 union power_supply_propval *val); 259 int (*set_property)(struct power_supply *psy, 260 enum power_supply_property psp, 261 const union power_supply_propval *val); 262 /* 263 * property_is_writeable() will be called during registration 264 * of power supply. If this happens during device probe then it must 265 * not access internal data of device (because probe did not end). 266 */ 267 int (*property_is_writeable)(struct power_supply *psy, 268 enum power_supply_property psp); 269 void (*external_power_changed)(struct power_supply *psy); 270 void (*set_charged)(struct power_supply *psy); 271 272 /* 273 * Set if thermal zone should not be created for this power supply. 274 * For example for virtual supplies forwarding calls to actual 275 * sensors or other supplies. 276 */ 277 bool no_thermal; 278 /* For APM emulation, think legacy userspace. */ 279 int use_for_apm; 280 }; 281 282 struct power_supply { 283 const struct power_supply_desc *desc; 284 285 char **supplied_to; 286 size_t num_supplicants; 287 288 char **supplied_from; 289 size_t num_supplies; 290 struct device_node *of_node; 291 292 /* Driver private data */ 293 void *drv_data; 294 295 /* private */ 296 struct device dev; 297 struct work_struct changed_work; 298 struct delayed_work deferred_register_work; 299 spinlock_t changed_lock; 300 bool changed; 301 bool initialized; 302 bool removing; 303 atomic_t use_cnt; 304 struct power_supply_battery_info *battery_info; 305 #ifdef CONFIG_THERMAL 306 struct thermal_zone_device *tzd; 307 struct thermal_cooling_device *tcd; 308 #endif 309 310 #ifdef CONFIG_LEDS_TRIGGERS 311 struct led_trigger *charging_full_trig; 312 char *charging_full_trig_name; 313 struct led_trigger *charging_trig; 314 char *charging_trig_name; 315 struct led_trigger *full_trig; 316 char *full_trig_name; 317 struct led_trigger *online_trig; 318 char *online_trig_name; 319 struct led_trigger *charging_blink_full_solid_trig; 320 char *charging_blink_full_solid_trig_name; 321 #endif 322 }; 323 324 /* 325 * This is recommended structure to specify static power supply parameters. 326 * Generic one, parametrizable for different power supplies. Power supply 327 * class itself does not use it, but that's what implementing most platform 328 * drivers, should try reuse for consistency. 329 */ 330 331 struct power_supply_info { 332 const char *name; 333 int technology; 334 int voltage_max_design; 335 int voltage_min_design; 336 int charge_full_design; 337 int charge_empty_design; 338 int energy_full_design; 339 int energy_empty_design; 340 int use_for_apm; 341 }; 342 343 struct power_supply_battery_ocv_table { 344 int ocv; /* microVolts */ 345 int capacity; /* percent */ 346 }; 347 348 struct power_supply_resistance_temp_table { 349 int temp; /* celsius */ 350 int resistance; /* internal resistance percent */ 351 }; 352 353 struct power_supply_vbat_ri_table { 354 int vbat_uv; /* Battery voltage in microvolt */ 355 int ri_uohm; /* Internal resistance in microohm */ 356 }; 357 358 /** 359 * struct power_supply_maintenance_charge_table - setting for maintenace charging 360 * @charge_current_max_ua: maintenance charging current that is used to keep 361 * the charge of the battery full as current is consumed after full charging. 362 * The corresponding charge_voltage_max_uv is used as a safeguard: when we 363 * reach this voltage the maintenance charging current is turned off. It is 364 * turned back on if we fall below this voltage. 365 * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit 366 * lower than the constant_charge_voltage_max_uv. We can apply this settings 367 * charge_current_max_ua until we get back up to this voltage. 368 * @safety_timer_minutes: maintenance charging safety timer, with an expiry 369 * time in minutes. We will only use maintenance charging in this setting 370 * for a certain amount of time, then we will first move to the next 371 * maintenance charge current and voltage pair in respective array and wait 372 * for the next safety timer timeout, or, if we reached the last maintencance 373 * charging setting, disable charging until we reach 374 * charge_restart_voltage_uv and restart ordinary CC/CV charging from there. 375 * These timers should be chosen to align with the typical discharge curve 376 * for the battery. 377 * 378 * Ordinary CC/CV charging will stop charging when the charge current goes 379 * below charge_term_current_ua, and then restart it (if the device is still 380 * plugged into the charger) at charge_restart_voltage_uv. This happens in most 381 * consumer products because the power usage while connected to a charger is 382 * not zero, and devices are not manufactured to draw power directly from the 383 * charger: instead they will at all times dissipate the battery a little, like 384 * the power used in standby mode. This will over time give a charge graph 385 * such as this: 386 * 387 * Energy 388 * ^ ... ... ... ... ... ... ... 389 * | . . . . . . . . . . . . . 390 * | .. . .. . .. . .. . .. . .. . .. 391 * |. .. .. .. .. .. .. 392 * +-------------------------------------------------------------------> t 393 * 394 * Practically this means that the Li-ions are wandering back and forth in the 395 * battery and this causes degeneration of the battery anode and cathode. 396 * To prolong the life of the battery, maintenance charging is applied after 397 * reaching charge_term_current_ua to hold up the charge in the battery while 398 * consuming power, thus lowering the wear on the battery: 399 * 400 * Energy 401 * ^ ....................................... 402 * | . ...................... 403 * | .. 404 * |. 405 * +-------------------------------------------------------------------> t 406 * 407 * Maintenance charging uses the voltages from this table: a table of settings 408 * is traversed using a slightly lower current and voltage than what is used for 409 * CC/CV charging. The maintenance charging will for safety reasons not go on 410 * indefinately: we lower the current and voltage with successive maintenance 411 * settings, then disable charging completely after we reach the last one, 412 * and after that we do not restart charging until we reach 413 * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart 414 * ordinary CC/CV charging from there. 415 * 416 * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged 417 * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to 418 * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours. 419 * After this the charge cycle is restarted waiting for 420 * charge_restart_voltage_uv. 421 * 422 * For most mobile electronics this type of maintenance charging is enough for 423 * the user to disconnect the device and make use of it before both maintenance 424 * charging cycles are complete, if the current and voltage has been chosen 425 * appropriately. These need to be determined from battery discharge curves 426 * and expected standby current. 427 * 428 * If the voltage anyway drops to charge_restart_voltage_uv during maintenance 429 * charging, ordinary CC/CV charging is restarted. This can happen if the 430 * device is e.g. actively used during charging, so more current is drawn than 431 * the expected stand-by current. Also overvoltage protection will be applied 432 * as usual. 433 */ 434 struct power_supply_maintenance_charge_table { 435 int charge_current_max_ua; 436 int charge_voltage_max_uv; 437 int charge_safety_timer_minutes; 438 }; 439 440 #define POWER_SUPPLY_OCV_TEMP_MAX 20 441 442 /** 443 * struct power_supply_battery_info - information about batteries 444 * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum 445 * @energy_full_design_uwh: energy content when fully charged in microwatt 446 * hours 447 * @charge_full_design_uah: charge content when fully charged in microampere 448 * hours 449 * @voltage_min_design_uv: minimum voltage across the poles when the battery 450 * is at minimum voltage level in microvolts. If the voltage drops below this 451 * level the battery will need precharging when using CC/CV charging. 452 * @voltage_max_design_uv: voltage across the poles when the battery is fully 453 * charged in microvolts. This is the "nominal voltage" i.e. the voltage 454 * printed on the label of the battery. 455 * @tricklecharge_current_ua: the tricklecharge current used when trickle 456 * charging the battery in microamperes. This is the charging phase when the 457 * battery is completely empty and we need to carefully trickle in some 458 * charge until we reach the precharging voltage. 459 * @precharge_current_ua: current to use in the precharge phase in microamperes, 460 * the precharge rate is limited by limiting the current to this value. 461 * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in 462 * microvolts. When we pass this voltage we will nominally switch over to the 463 * CC (constant current) charging phase defined by constant_charge_current_ua 464 * and constant_charge_voltage_max_uv. 465 * @charge_term_current_ua: when the current in the CV (constant voltage) 466 * charging phase drops below this value in microamperes the charging will 467 * terminate completely and not restart until the voltage over the battery 468 * poles reach charge_restart_voltage_uv unless we use maintenance charging. 469 * @charge_restart_voltage_uv: when the battery has been fully charged by 470 * CC/CV charging and charging has been disabled, and the voltage subsequently 471 * drops below this value in microvolts, the charging will be restarted 472 * (typically using CV charging). 473 * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage 474 * voltage_max_design_uv and we reach this voltage level, all charging must 475 * stop and emergency procedures take place, such as shutting down the system 476 * in some cases. 477 * @constant_charge_current_max_ua: current in microamperes to use in the CC 478 * (constant current) charging phase. The charging rate is limited 479 * by this current. This is the main charging phase and as the current is 480 * constant into the battery the voltage slowly ascends to 481 * constant_charge_voltage_max_uv. 482 * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of 483 * the CC (constant current) charging phase and the beginning of the CV 484 * (constant voltage) charging phase. 485 * @maintenance_charge: an array of maintenance charging settings to be used 486 * after the main CC/CV charging phase is complete. 487 * @maintenance_charge_size: the number of maintenance charging settings in 488 * maintenance_charge. 489 * @alert_low_temp_charge_current_ua: The charging current to use if the battery 490 * enters low alert temperature, i.e. if the internal temperature is between 491 * temp_alert_min and temp_min. No matter the charging phase, this 492 * and alert_high_temp_charge_voltage_uv will be applied. 493 * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua, 494 * but for the charging voltage. 495 * @alert_high_temp_charge_current_ua: The charging current to use if the 496 * battery enters high alert temperature, i.e. if the internal temperature is 497 * between temp_alert_max and temp_max. No matter the charging phase, this 498 * and alert_high_temp_charge_voltage_uv will be applied, usually lowering 499 * the charging current as an evasive manouver. 500 * @alert_high_temp_charge_voltage_uv: Same as 501 * alert_high_temp_charge_current_ua, but for the charging voltage. 502 * @factory_internal_resistance_uohm: the internal resistance of the battery 503 * at fabrication time, expressed in microohms. This resistance will vary 504 * depending on the lifetime and charge of the battery, so this is just a 505 * nominal ballpark figure. This internal resistance is given for the state 506 * when the battery is discharging. 507 * @factory_internal_resistance_charging_uohm: the internal resistance of the 508 * battery at fabrication time while charging, expressed in microohms. 509 * The charging process will affect the internal resistance of the battery 510 * so this value provides a better resistance under these circumstances. 511 * This resistance will vary depending on the lifetime and charge of the 512 * battery, so this is just a nominal ballpark figure. 513 * @ocv_temp: array indicating the open circuit voltage (OCV) capacity 514 * temperature indices. This is an array of temperatures in degrees Celsius 515 * indicating which capacity table to use for a certain temperature, since 516 * the capacity for reasons of chemistry will be different at different 517 * temperatures. Determining capacity is a multivariate problem and the 518 * temperature is the first variable we determine. 519 * @temp_ambient_alert_min: the battery will go outside of operating conditions 520 * when the ambient temperature goes below this temperature in degrees 521 * Celsius. 522 * @temp_ambient_alert_max: the battery will go outside of operating conditions 523 * when the ambient temperature goes above this temperature in degrees 524 * Celsius. 525 * @temp_alert_min: the battery should issue an alert if the internal 526 * temperature goes below this temperature in degrees Celsius. 527 * @temp_alert_max: the battery should issue an alert if the internal 528 * temperature goes above this temperature in degrees Celsius. 529 * @temp_min: the battery will go outside of operating conditions when 530 * the internal temperature goes below this temperature in degrees Celsius. 531 * Normally this means the system should shut down. 532 * @temp_max: the battery will go outside of operating conditions when 533 * the internal temperature goes above this temperature in degrees Celsius. 534 * Normally this means the system should shut down. 535 * @ocv_table: for each entry in ocv_temp there is a corresponding entry in 536 * ocv_table and a size for each entry in ocv_table_size. These arrays 537 * determine the capacity in percent in relation to the voltage in microvolts 538 * at the indexed temperature. 539 * @ocv_table_size: for each entry in ocv_temp this array is giving the size of 540 * each entry in the array of capacity arrays in ocv_table. 541 * @resist_table: this is a table that correlates a battery temperature to the 542 * expected internal resistance at this temperature. The resistance is given 543 * as a percentage of factory_internal_resistance_uohm. Knowing the 544 * resistance of the battery is usually necessary for calculating the open 545 * circuit voltage (OCV) that is then used with the ocv_table to calculate 546 * the capacity of the battery. The resist_table must be ordered descending 547 * by temperature: highest temperature with lowest resistance first, lowest 548 * temperature with highest resistance last. 549 * @resist_table_size: the number of items in the resist_table. 550 * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT) 551 * to internal resistance (Ri). The resistance is given in microohm for the 552 * corresponding voltage in microvolts. The internal resistance is used to 553 * determine the open circuit voltage so that we can determine the capacity 554 * of the battery. These voltages to resistance tables apply when the battery 555 * is discharging. The table must be ordered descending by voltage: highest 556 * voltage first. 557 * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging 558 * table. 559 * @vbat2ri_charging: same function as vbat2ri_discharging but for the state 560 * when the battery is charging. Being under charge changes the battery's 561 * internal resistance characteristics so a separate table is needed.* 562 * The table must be ordered descending by voltage: highest voltage first. 563 * @vbat2ri_charging_size: the number of items in the vbat2ri_charging 564 * table. 565 * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance 566 * in ohms for this battery, if an identification resistor is mounted 567 * between a third battery terminal and ground. This scheme is used by a lot 568 * of mobile device batteries. 569 * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance, 570 * for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the 571 * tolerance is 10% we will detect a proper battery if the BTI resistance 572 * is between 6300 and 7700 Ohm. 573 * 574 * This is the recommended struct to manage static battery parameters, 575 * populated by power_supply_get_battery_info(). Most platform drivers should 576 * use these for consistency. 577 * 578 * Its field names must correspond to elements in enum power_supply_property. 579 * The default field value is -EINVAL or NULL for pointers. 580 * 581 * CC/CV CHARGING: 582 * 583 * The charging parameters here assume a CC/CV charging scheme. This method 584 * is most common with Lithium Ion batteries (other methods are possible) and 585 * looks as follows: 586 * 587 * ^ Battery voltage 588 * | --- overvoltage_limit_uv 589 * | 590 * | ................................................... 591 * | .. constant_charge_voltage_max_uv 592 * | .. 593 * | . 594 * | . 595 * | . 596 * | . 597 * | . 598 * | .. precharge_voltage_max_uv 599 * | .. 600 * |. (trickle charging) 601 * +------------------------------------------------------------------> time 602 * 603 * ^ Current into the battery 604 * | 605 * | ............. constant_charge_current_max_ua 606 * | . . 607 * | . . 608 * | . . 609 * | . . 610 * | . .. 611 * | . .... 612 * | . ..... 613 * | ... precharge_current_ua ....... charge_term_current_ua 614 * | . . 615 * | . . 616 * |.... tricklecharge_current_ua . 617 * | . 618 * +-----------------------------------------------------------------> time 619 * 620 * These diagrams are synchronized on time and the voltage and current 621 * follow each other. 622 * 623 * With CC/CV charging commence over time like this for an empty battery: 624 * 625 * 1. When the battery is completely empty it may need to be charged with 626 * an especially small current so that electrons just "trickle in", 627 * this is the tricklecharge_current_ua. 628 * 629 * 2. Next a small initial pre-charge current (precharge_current_ua) 630 * is applied if the voltage is below precharge_voltage_max_uv until we 631 * reach precharge_voltage_max_uv. CAUTION: in some texts this is referred 632 * to as "trickle charging" but the use in the Linux kernel is different 633 * see below! 634 * 635 * 3. Then the main charging current is applied, which is called the constant 636 * current (CC) phase. A current regulator is set up to allow 637 * constant_charge_current_max_ua of current to flow into the battery. 638 * The chemical reaction in the battery will make the voltage go up as 639 * charge goes into the battery. This current is applied until we reach 640 * the constant_charge_voltage_max_uv voltage. 641 * 642 * 4. At this voltage we switch over to the constant voltage (CV) phase. This 643 * means we allow current to go into the battery, but we keep the voltage 644 * fixed. This current will continue to charge the battery while keeping 645 * the voltage the same. A chemical reaction in the battery goes on 646 * storing energy without affecting the voltage. Over time the current 647 * will slowly drop and when we reach charge_term_current_ua we will 648 * end the constant voltage phase. 649 * 650 * After this the battery is fully charged, and if we do not support maintenance 651 * charging, the charging will not restart until power dissipation makes the 652 * voltage fall so that we reach charge_restart_voltage_uv and at this point 653 * we restart charging at the appropriate phase, usually this will be inside 654 * the CV phase. 655 * 656 * If we support maintenance charging the voltage is however kept high after 657 * the CV phase with a very low current. This is meant to let the same charge 658 * go in for usage while the charger is still connected, mainly for 659 * dissipation for the power consuming entity while connected to the 660 * charger. 661 * 662 * All charging MUST terminate if the overvoltage_limit_uv is ever reached. 663 * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or 664 * explosions. 665 * 666 * DETERMINING BATTERY CAPACITY: 667 * 668 * Several members of the struct deal with trying to determine the remaining 669 * capacity in the battery, usually as a percentage of charge. In practice 670 * many chargers uses a so-called fuel gauge or coloumb counter that measure 671 * how much charge goes into the battery and how much goes out (+/- leak 672 * consumption). This does not help if we do not know how much capacity the 673 * battery has to begin with, such as when it is first used or was taken out 674 * and charged in a separate charger. Therefore many capacity algorithms use 675 * the open circuit voltage with a look-up table to determine the rough 676 * capacity of the battery. The open circuit voltage can be conceptualized 677 * with an ideal voltage source (V) in series with an internal resistance (Ri) 678 * like this: 679 * 680 * +-------> IBAT >----------------+ 681 * | ^ | 682 * [ ] Ri | | 683 * | | VBAT | 684 * o <---------- | | 685 * +| ^ | [ ] Rload 686 * .---. | | | 687 * | V | | OCV | | 688 * '---' | | | 689 * | | | | 690 * GND +-------------------------------+ 691 * 692 * If we disconnect the load (here simplified as a fixed resistance Rload) 693 * and measure VBAT with a infinite impedance voltage meter we will get 694 * VBAT = OCV and this assumption is sometimes made even under load, assuming 695 * Rload is insignificant. However this will be of dubious quality because the 696 * load is rarely that small and Ri is strongly nonlinear depending on 697 * temperature and how much capacity is left in the battery due to the 698 * chemistry involved. 699 * 700 * In many practical applications we cannot just disconnect the battery from 701 * the load, so instead we often try to measure the instantaneous IBAT (the 702 * current out from the battery), estimate the Ri and thus calculate the 703 * voltage drop over Ri and compensate like this: 704 * 705 * OCV = VBAT - (IBAT * Ri) 706 * 707 * The tables vbat2ri_discharging and vbat2ri_charging are used to determine 708 * (by interpolation) the Ri from the VBAT under load. These curves are highly 709 * nonlinear and may need many datapoints but can be found in datasheets for 710 * some batteries. This gives the compensated open circuit voltage (OCV) for 711 * the battery even under load. Using this method will also compensate for 712 * temperature changes in the environment: this will also make the internal 713 * resistance change, and it will affect the VBAT under load, so correlating 714 * VBAT to Ri takes both remaining capacity and temperature into consideration. 715 * 716 * Alternatively a manufacturer can specify how the capacity of the battery 717 * is dependent on the battery temperature which is the main factor affecting 718 * Ri. As we know all checmical reactions are faster when it is warm and slower 719 * when it is cold. You can put in 1500mAh and only get 800mAh out before the 720 * voltage drops too low for example. This effect is also highly nonlinear and 721 * the purpose of the table resist_table: this will take a temperature and 722 * tell us how big percentage of Ri the specified temperature correlates to. 723 * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees 724 * Celsius. 725 * 726 * The power supply class itself doesn't use this struct as of now. 727 */ 728 729 struct power_supply_battery_info { 730 unsigned int technology; 731 int energy_full_design_uwh; 732 int charge_full_design_uah; 733 int voltage_min_design_uv; 734 int voltage_max_design_uv; 735 int tricklecharge_current_ua; 736 int precharge_current_ua; 737 int precharge_voltage_max_uv; 738 int charge_term_current_ua; 739 int charge_restart_voltage_uv; 740 int overvoltage_limit_uv; 741 int constant_charge_current_max_ua; 742 int constant_charge_voltage_max_uv; 743 struct power_supply_maintenance_charge_table *maintenance_charge; 744 int maintenance_charge_size; 745 int alert_low_temp_charge_current_ua; 746 int alert_low_temp_charge_voltage_uv; 747 int alert_high_temp_charge_current_ua; 748 int alert_high_temp_charge_voltage_uv; 749 int factory_internal_resistance_uohm; 750 int factory_internal_resistance_charging_uohm; 751 int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX]; 752 int temp_ambient_alert_min; 753 int temp_ambient_alert_max; 754 int temp_alert_min; 755 int temp_alert_max; 756 int temp_min; 757 int temp_max; 758 struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX]; 759 int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX]; 760 struct power_supply_resistance_temp_table *resist_table; 761 int resist_table_size; 762 struct power_supply_vbat_ri_table *vbat2ri_discharging; 763 int vbat2ri_discharging_size; 764 struct power_supply_vbat_ri_table *vbat2ri_charging; 765 int vbat2ri_charging_size; 766 int bti_resistance_ohm; 767 int bti_resistance_tolerance; 768 }; 769 770 extern struct atomic_notifier_head power_supply_notifier; 771 extern int power_supply_reg_notifier(struct notifier_block *nb); 772 extern void power_supply_unreg_notifier(struct notifier_block *nb); 773 #if IS_ENABLED(CONFIG_POWER_SUPPLY) 774 extern struct power_supply *power_supply_get_by_name(const char *name); 775 extern void power_supply_put(struct power_supply *psy); 776 #else 777 static inline void power_supply_put(struct power_supply *psy) {} 778 static inline struct power_supply *power_supply_get_by_name(const char *name) 779 { return NULL; } 780 #endif 781 #ifdef CONFIG_OF 782 extern struct power_supply *power_supply_get_by_phandle(struct device_node *np, 783 const char *property); 784 extern struct power_supply *devm_power_supply_get_by_phandle( 785 struct device *dev, const char *property); 786 #else /* !CONFIG_OF */ 787 static inline struct power_supply * 788 power_supply_get_by_phandle(struct device_node *np, const char *property) 789 { return NULL; } 790 static inline struct power_supply * 791 devm_power_supply_get_by_phandle(struct device *dev, const char *property) 792 { return NULL; } 793 #endif /* CONFIG_OF */ 794 795 extern const enum power_supply_property power_supply_battery_info_properties[]; 796 extern const size_t power_supply_battery_info_properties_size; 797 extern int power_supply_get_battery_info(struct power_supply *psy, 798 struct power_supply_battery_info **info_out); 799 extern void power_supply_put_battery_info(struct power_supply *psy, 800 struct power_supply_battery_info *info); 801 extern bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info, 802 enum power_supply_property psp); 803 extern int power_supply_battery_info_get_prop(struct power_supply_battery_info *info, 804 enum power_supply_property psp, 805 union power_supply_propval *val); 806 extern int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table, 807 int table_len, int ocv); 808 extern struct power_supply_battery_ocv_table * 809 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info, 810 int temp, int *table_len); 811 extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info, 812 int ocv, int temp); 813 extern int 814 power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table, 815 int table_len, int temp); 816 extern int power_supply_vbat2ri(struct power_supply_battery_info *info, 817 int vbat_uv, bool charging); 818 extern struct power_supply_maintenance_charge_table * 819 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index); 820 extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info, 821 int resistance); 822 extern void power_supply_changed(struct power_supply *psy); 823 extern int power_supply_am_i_supplied(struct power_supply *psy); 824 int power_supply_get_property_from_supplier(struct power_supply *psy, 825 enum power_supply_property psp, 826 union power_supply_propval *val); 827 extern int power_supply_set_battery_charged(struct power_supply *psy); 828 829 static inline bool 830 power_supply_supports_maintenance_charging(struct power_supply_battery_info *info) 831 { 832 struct power_supply_maintenance_charge_table *mt; 833 834 mt = power_supply_get_maintenance_charging_setting(info, 0); 835 836 return (mt != NULL); 837 } 838 839 static inline bool 840 power_supply_supports_vbat2ri(struct power_supply_battery_info *info) 841 { 842 return ((info->vbat2ri_discharging != NULL) && 843 info->vbat2ri_discharging_size > 0); 844 } 845 846 static inline bool 847 power_supply_supports_temp2ri(struct power_supply_battery_info *info) 848 { 849 return ((info->resist_table != NULL) && 850 info->resist_table_size > 0); 851 } 852 853 #ifdef CONFIG_POWER_SUPPLY 854 extern int power_supply_is_system_supplied(void); 855 #else 856 static inline int power_supply_is_system_supplied(void) { return -ENOSYS; } 857 #endif 858 859 extern int power_supply_get_property(struct power_supply *psy, 860 enum power_supply_property psp, 861 union power_supply_propval *val); 862 #if IS_ENABLED(CONFIG_POWER_SUPPLY) 863 extern int power_supply_set_property(struct power_supply *psy, 864 enum power_supply_property psp, 865 const union power_supply_propval *val); 866 #else 867 static inline int power_supply_set_property(struct power_supply *psy, 868 enum power_supply_property psp, 869 const union power_supply_propval *val) 870 { return 0; } 871 #endif 872 extern int power_supply_property_is_writeable(struct power_supply *psy, 873 enum power_supply_property psp); 874 extern void power_supply_external_power_changed(struct power_supply *psy); 875 876 extern struct power_supply *__must_check 877 power_supply_register(struct device *parent, 878 const struct power_supply_desc *desc, 879 const struct power_supply_config *cfg); 880 extern struct power_supply *__must_check 881 power_supply_register_no_ws(struct device *parent, 882 const struct power_supply_desc *desc, 883 const struct power_supply_config *cfg); 884 extern struct power_supply *__must_check 885 devm_power_supply_register(struct device *parent, 886 const struct power_supply_desc *desc, 887 const struct power_supply_config *cfg); 888 extern struct power_supply *__must_check 889 devm_power_supply_register_no_ws(struct device *parent, 890 const struct power_supply_desc *desc, 891 const struct power_supply_config *cfg); 892 extern void power_supply_unregister(struct power_supply *psy); 893 extern int power_supply_powers(struct power_supply *psy, struct device *dev); 894 895 #define to_power_supply(device) container_of(device, struct power_supply, dev) 896 897 extern void *power_supply_get_drvdata(struct power_supply *psy); 898 /* For APM emulation, think legacy userspace. */ 899 extern struct class *power_supply_class; 900 901 static inline bool power_supply_is_amp_property(enum power_supply_property psp) 902 { 903 switch (psp) { 904 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 905 case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN: 906 case POWER_SUPPLY_PROP_CHARGE_FULL: 907 case POWER_SUPPLY_PROP_CHARGE_EMPTY: 908 case POWER_SUPPLY_PROP_CHARGE_NOW: 909 case POWER_SUPPLY_PROP_CHARGE_AVG: 910 case POWER_SUPPLY_PROP_CHARGE_COUNTER: 911 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: 912 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 913 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: 914 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 915 case POWER_SUPPLY_PROP_CURRENT_MAX: 916 case POWER_SUPPLY_PROP_CURRENT_NOW: 917 case POWER_SUPPLY_PROP_CURRENT_AVG: 918 case POWER_SUPPLY_PROP_CURRENT_BOOT: 919 return true; 920 default: 921 break; 922 } 923 924 return false; 925 } 926 927 static inline bool power_supply_is_watt_property(enum power_supply_property psp) 928 { 929 switch (psp) { 930 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 931 case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN: 932 case POWER_SUPPLY_PROP_ENERGY_FULL: 933 case POWER_SUPPLY_PROP_ENERGY_EMPTY: 934 case POWER_SUPPLY_PROP_ENERGY_NOW: 935 case POWER_SUPPLY_PROP_ENERGY_AVG: 936 case POWER_SUPPLY_PROP_VOLTAGE_MAX: 937 case POWER_SUPPLY_PROP_VOLTAGE_MIN: 938 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: 939 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 940 case POWER_SUPPLY_PROP_VOLTAGE_NOW: 941 case POWER_SUPPLY_PROP_VOLTAGE_AVG: 942 case POWER_SUPPLY_PROP_VOLTAGE_OCV: 943 case POWER_SUPPLY_PROP_VOLTAGE_BOOT: 944 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: 945 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: 946 case POWER_SUPPLY_PROP_POWER_NOW: 947 return true; 948 default: 949 break; 950 } 951 952 return false; 953 } 954 955 #ifdef CONFIG_POWER_SUPPLY_HWMON 956 int power_supply_add_hwmon_sysfs(struct power_supply *psy); 957 void power_supply_remove_hwmon_sysfs(struct power_supply *psy); 958 #else 959 static inline int power_supply_add_hwmon_sysfs(struct power_supply *psy) 960 { 961 return 0; 962 } 963 964 static inline 965 void power_supply_remove_hwmon_sysfs(struct power_supply *psy) {} 966 #endif 967 968 #ifdef CONFIG_SYSFS 969 ssize_t power_supply_charge_behaviour_show(struct device *dev, 970 unsigned int available_behaviours, 971 enum power_supply_charge_behaviour behaviour, 972 char *buf); 973 974 int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf); 975 #else 976 static inline 977 ssize_t power_supply_charge_behaviour_show(struct device *dev, 978 unsigned int available_behaviours, 979 enum power_supply_charge_behaviour behaviour, 980 char *buf) 981 { 982 return -EOPNOTSUPP; 983 } 984 985 static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours, 986 const char *buf) 987 { 988 return -EOPNOTSUPP; 989 } 990 #endif 991 992 #endif /* __LINUX_POWER_SUPPLY_H__ */ 993