xref: /openbmc/linux/include/linux/pgtable.h (revision ef4290e6)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4 
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7 
8 #ifndef __ASSEMBLY__
9 #ifdef CONFIG_MMU
10 
11 #include <linux/mm_types.h>
12 #include <linux/bug.h>
13 #include <linux/errno.h>
14 #include <asm-generic/pgtable_uffd.h>
15 #include <linux/page_table_check.h>
16 
17 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
18 	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
19 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
20 #endif
21 
22 /*
23  * On almost all architectures and configurations, 0 can be used as the
24  * upper ceiling to free_pgtables(): on many architectures it has the same
25  * effect as using TASK_SIZE.  However, there is one configuration which
26  * must impose a more careful limit, to avoid freeing kernel pgtables.
27  */
28 #ifndef USER_PGTABLES_CEILING
29 #define USER_PGTABLES_CEILING	0UL
30 #endif
31 
32 /*
33  * This defines the first usable user address. Platforms
34  * can override its value with custom FIRST_USER_ADDRESS
35  * defined in their respective <asm/pgtable.h>.
36  */
37 #ifndef FIRST_USER_ADDRESS
38 #define FIRST_USER_ADDRESS	0UL
39 #endif
40 
41 /*
42  * This defines the generic helper for accessing PMD page
43  * table page. Although platforms can still override this
44  * via their respective <asm/pgtable.h>.
45  */
46 #ifndef pmd_pgtable
47 #define pmd_pgtable(pmd) pmd_page(pmd)
48 #endif
49 
50 /*
51  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
52  *
53  * The pXx_index() functions return the index of the entry in the page
54  * table page which would control the given virtual address
55  *
56  * As these functions may be used by the same code for different levels of
57  * the page table folding, they are always available, regardless of
58  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
59  * because in such cases PTRS_PER_PxD equals 1.
60  */
61 
62 static inline unsigned long pte_index(unsigned long address)
63 {
64 	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
65 }
66 #define pte_index pte_index
67 
68 #ifndef pmd_index
69 static inline unsigned long pmd_index(unsigned long address)
70 {
71 	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
72 }
73 #define pmd_index pmd_index
74 #endif
75 
76 #ifndef pud_index
77 static inline unsigned long pud_index(unsigned long address)
78 {
79 	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
80 }
81 #define pud_index pud_index
82 #endif
83 
84 #ifndef pgd_index
85 /* Must be a compile-time constant, so implement it as a macro */
86 #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
87 #endif
88 
89 #ifndef pte_offset_kernel
90 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
91 {
92 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
93 }
94 #define pte_offset_kernel pte_offset_kernel
95 #endif
96 
97 #if defined(CONFIG_HIGHPTE)
98 #define pte_offset_map(dir, address)				\
99 	((pte_t *)kmap_atomic(pmd_page(*(dir))) +		\
100 	 pte_index((address)))
101 #define pte_unmap(pte) kunmap_atomic((pte))
102 #else
103 #define pte_offset_map(dir, address)	pte_offset_kernel((dir), (address))
104 #define pte_unmap(pte) ((void)(pte))	/* NOP */
105 #endif
106 
107 /* Find an entry in the second-level page table.. */
108 #ifndef pmd_offset
109 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
110 {
111 	return pud_pgtable(*pud) + pmd_index(address);
112 }
113 #define pmd_offset pmd_offset
114 #endif
115 
116 #ifndef pud_offset
117 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
118 {
119 	return p4d_pgtable(*p4d) + pud_index(address);
120 }
121 #define pud_offset pud_offset
122 #endif
123 
124 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
125 {
126 	return (pgd + pgd_index(address));
127 };
128 
129 /*
130  * a shortcut to get a pgd_t in a given mm
131  */
132 #ifndef pgd_offset
133 #define pgd_offset(mm, address)		pgd_offset_pgd((mm)->pgd, (address))
134 #endif
135 
136 /*
137  * a shortcut which implies the use of the kernel's pgd, instead
138  * of a process's
139  */
140 #ifndef pgd_offset_k
141 #define pgd_offset_k(address)		pgd_offset(&init_mm, (address))
142 #endif
143 
144 /*
145  * In many cases it is known that a virtual address is mapped at PMD or PTE
146  * level, so instead of traversing all the page table levels, we can get a
147  * pointer to the PMD entry in user or kernel page table or translate a virtual
148  * address to the pointer in the PTE in the kernel page tables with simple
149  * helpers.
150  */
151 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
152 {
153 	return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
154 }
155 
156 static inline pmd_t *pmd_off_k(unsigned long va)
157 {
158 	return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
159 }
160 
161 static inline pte_t *virt_to_kpte(unsigned long vaddr)
162 {
163 	pmd_t *pmd = pmd_off_k(vaddr);
164 
165 	return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
166 }
167 
168 #ifndef pmd_young
169 static inline int pmd_young(pmd_t pmd)
170 {
171 	return 0;
172 }
173 #endif
174 
175 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
176 extern int ptep_set_access_flags(struct vm_area_struct *vma,
177 				 unsigned long address, pte_t *ptep,
178 				 pte_t entry, int dirty);
179 #endif
180 
181 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
182 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
183 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
184 				 unsigned long address, pmd_t *pmdp,
185 				 pmd_t entry, int dirty);
186 extern int pudp_set_access_flags(struct vm_area_struct *vma,
187 				 unsigned long address, pud_t *pudp,
188 				 pud_t entry, int dirty);
189 #else
190 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
191 					unsigned long address, pmd_t *pmdp,
192 					pmd_t entry, int dirty)
193 {
194 	BUILD_BUG();
195 	return 0;
196 }
197 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
198 					unsigned long address, pud_t *pudp,
199 					pud_t entry, int dirty)
200 {
201 	BUILD_BUG();
202 	return 0;
203 }
204 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
205 #endif
206 
207 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
208 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
209 					    unsigned long address,
210 					    pte_t *ptep)
211 {
212 	pte_t pte = *ptep;
213 	int r = 1;
214 	if (!pte_young(pte))
215 		r = 0;
216 	else
217 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
218 	return r;
219 }
220 #endif
221 
222 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
223 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
224 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
225 					    unsigned long address,
226 					    pmd_t *pmdp)
227 {
228 	pmd_t pmd = *pmdp;
229 	int r = 1;
230 	if (!pmd_young(pmd))
231 		r = 0;
232 	else
233 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
234 	return r;
235 }
236 #else
237 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
238 					    unsigned long address,
239 					    pmd_t *pmdp)
240 {
241 	BUILD_BUG();
242 	return 0;
243 }
244 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
245 #endif
246 
247 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
248 int ptep_clear_flush_young(struct vm_area_struct *vma,
249 			   unsigned long address, pte_t *ptep);
250 #endif
251 
252 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
253 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
254 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
255 				  unsigned long address, pmd_t *pmdp);
256 #else
257 /*
258  * Despite relevant to THP only, this API is called from generic rmap code
259  * under PageTransHuge(), hence needs a dummy implementation for !THP
260  */
261 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
262 					 unsigned long address, pmd_t *pmdp)
263 {
264 	BUILD_BUG();
265 	return 0;
266 }
267 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
268 #endif
269 
270 #ifndef arch_has_hw_nonleaf_pmd_young
271 /*
272  * Return whether the accessed bit in non-leaf PMD entries is supported on the
273  * local CPU.
274  */
275 static inline bool arch_has_hw_nonleaf_pmd_young(void)
276 {
277 	return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
278 }
279 #endif
280 
281 #ifndef arch_has_hw_pte_young
282 /*
283  * Return whether the accessed bit is supported on the local CPU.
284  *
285  * This stub assumes accessing through an old PTE triggers a page fault.
286  * Architectures that automatically set the access bit should overwrite it.
287  */
288 static inline bool arch_has_hw_pte_young(void)
289 {
290 	return false;
291 }
292 #endif
293 
294 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
295 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
296 				       unsigned long address,
297 				       pte_t *ptep)
298 {
299 	pte_t pte = *ptep;
300 	pte_clear(mm, address, ptep);
301 	page_table_check_pte_clear(mm, address, pte);
302 	return pte;
303 }
304 #endif
305 
306 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
307 			      pte_t *ptep)
308 {
309 	ptep_get_and_clear(mm, addr, ptep);
310 }
311 
312 #ifndef ptep_get
313 static inline pte_t ptep_get(pte_t *ptep)
314 {
315 	return READ_ONCE(*ptep);
316 }
317 #endif
318 
319 #ifndef pmdp_get
320 static inline pmd_t pmdp_get(pmd_t *pmdp)
321 {
322 	return READ_ONCE(*pmdp);
323 }
324 #endif
325 
326 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
327 /*
328  * For walking the pagetables without holding any locks.  Some architectures
329  * (eg x86-32 PAE) cannot load the entries atomically without using expensive
330  * instructions.  We are guaranteed that a PTE will only either go from not
331  * present to present, or present to not present -- it will not switch to a
332  * completely different present page without a TLB flush inbetween; which we
333  * are blocking by holding interrupts off.
334  *
335  * Setting ptes from not present to present goes:
336  *
337  *   ptep->pte_high = h;
338  *   smp_wmb();
339  *   ptep->pte_low = l;
340  *
341  * And present to not present goes:
342  *
343  *   ptep->pte_low = 0;
344  *   smp_wmb();
345  *   ptep->pte_high = 0;
346  *
347  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
348  * We load pte_high *after* loading pte_low, which ensures we don't see an older
349  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
350  * picked up a changed pte high. We might have gotten rubbish values from
351  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
352  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
353  * operates on present ptes we're safe.
354  */
355 static inline pte_t ptep_get_lockless(pte_t *ptep)
356 {
357 	pte_t pte;
358 
359 	do {
360 		pte.pte_low = ptep->pte_low;
361 		smp_rmb();
362 		pte.pte_high = ptep->pte_high;
363 		smp_rmb();
364 	} while (unlikely(pte.pte_low != ptep->pte_low));
365 
366 	return pte;
367 }
368 #define ptep_get_lockless ptep_get_lockless
369 
370 #if CONFIG_PGTABLE_LEVELS > 2
371 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
372 {
373 	pmd_t pmd;
374 
375 	do {
376 		pmd.pmd_low = pmdp->pmd_low;
377 		smp_rmb();
378 		pmd.pmd_high = pmdp->pmd_high;
379 		smp_rmb();
380 	} while (unlikely(pmd.pmd_low != pmdp->pmd_low));
381 
382 	return pmd;
383 }
384 #define pmdp_get_lockless pmdp_get_lockless
385 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
386 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
387 
388 /*
389  * We require that the PTE can be read atomically.
390  */
391 #ifndef ptep_get_lockless
392 static inline pte_t ptep_get_lockless(pte_t *ptep)
393 {
394 	return ptep_get(ptep);
395 }
396 #endif
397 
398 #ifndef pmdp_get_lockless
399 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
400 {
401 	return pmdp_get(pmdp);
402 }
403 #endif
404 
405 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
406 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
407 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
408 					    unsigned long address,
409 					    pmd_t *pmdp)
410 {
411 	pmd_t pmd = *pmdp;
412 
413 	pmd_clear(pmdp);
414 	page_table_check_pmd_clear(mm, address, pmd);
415 
416 	return pmd;
417 }
418 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
419 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
420 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
421 					    unsigned long address,
422 					    pud_t *pudp)
423 {
424 	pud_t pud = *pudp;
425 
426 	pud_clear(pudp);
427 	page_table_check_pud_clear(mm, address, pud);
428 
429 	return pud;
430 }
431 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
432 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
433 
434 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
435 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
436 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
437 					    unsigned long address, pmd_t *pmdp,
438 					    int full)
439 {
440 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
441 }
442 #endif
443 
444 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
445 static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
446 					    unsigned long address, pud_t *pudp,
447 					    int full)
448 {
449 	return pudp_huge_get_and_clear(mm, address, pudp);
450 }
451 #endif
452 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
453 
454 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
455 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
456 					    unsigned long address, pte_t *ptep,
457 					    int full)
458 {
459 	return ptep_get_and_clear(mm, address, ptep);
460 }
461 #endif
462 
463 
464 /*
465  * If two threads concurrently fault at the same page, the thread that
466  * won the race updates the PTE and its local TLB/Cache. The other thread
467  * gives up, simply does nothing, and continues; on architectures where
468  * software can update TLB,  local TLB can be updated here to avoid next page
469  * fault. This function updates TLB only, do nothing with cache or others.
470  * It is the difference with function update_mmu_cache.
471  */
472 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
473 static inline void update_mmu_tlb(struct vm_area_struct *vma,
474 				unsigned long address, pte_t *ptep)
475 {
476 }
477 #define __HAVE_ARCH_UPDATE_MMU_TLB
478 #endif
479 
480 /*
481  * Some architectures may be able to avoid expensive synchronization
482  * primitives when modifications are made to PTE's which are already
483  * not present, or in the process of an address space destruction.
484  */
485 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
486 static inline void pte_clear_not_present_full(struct mm_struct *mm,
487 					      unsigned long address,
488 					      pte_t *ptep,
489 					      int full)
490 {
491 	pte_clear(mm, address, ptep);
492 }
493 #endif
494 
495 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
496 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
497 			      unsigned long address,
498 			      pte_t *ptep);
499 #endif
500 
501 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
502 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
503 			      unsigned long address,
504 			      pmd_t *pmdp);
505 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
506 			      unsigned long address,
507 			      pud_t *pudp);
508 #endif
509 
510 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
511 struct mm_struct;
512 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
513 {
514 	pte_t old_pte = *ptep;
515 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
516 }
517 #endif
518 
519 /*
520  * On some architectures hardware does not set page access bit when accessing
521  * memory page, it is responsibility of software setting this bit. It brings
522  * out extra page fault penalty to track page access bit. For optimization page
523  * access bit can be set during all page fault flow on these arches.
524  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
525  * where software maintains page access bit.
526  */
527 #ifndef pte_sw_mkyoung
528 static inline pte_t pte_sw_mkyoung(pte_t pte)
529 {
530 	return pte;
531 }
532 #define pte_sw_mkyoung	pte_sw_mkyoung
533 #endif
534 
535 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
537 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
538 				      unsigned long address, pmd_t *pmdp)
539 {
540 	pmd_t old_pmd = *pmdp;
541 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
542 }
543 #else
544 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
545 				      unsigned long address, pmd_t *pmdp)
546 {
547 	BUILD_BUG();
548 }
549 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
550 #endif
551 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
552 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
553 static inline void pudp_set_wrprotect(struct mm_struct *mm,
554 				      unsigned long address, pud_t *pudp)
555 {
556 	pud_t old_pud = *pudp;
557 
558 	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
559 }
560 #else
561 static inline void pudp_set_wrprotect(struct mm_struct *mm,
562 				      unsigned long address, pud_t *pudp)
563 {
564 	BUILD_BUG();
565 }
566 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
567 #endif
568 
569 #ifndef pmdp_collapse_flush
570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
571 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
572 				 unsigned long address, pmd_t *pmdp);
573 #else
574 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
575 					unsigned long address,
576 					pmd_t *pmdp)
577 {
578 	BUILD_BUG();
579 	return *pmdp;
580 }
581 #define pmdp_collapse_flush pmdp_collapse_flush
582 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
583 #endif
584 
585 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
586 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
587 				       pgtable_t pgtable);
588 #endif
589 
590 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
591 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
592 #endif
593 
594 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
595 /*
596  * This is an implementation of pmdp_establish() that is only suitable for an
597  * architecture that doesn't have hardware dirty/accessed bits. In this case we
598  * can't race with CPU which sets these bits and non-atomic approach is fine.
599  */
600 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
601 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
602 {
603 	pmd_t old_pmd = *pmdp;
604 	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
605 	return old_pmd;
606 }
607 #endif
608 
609 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
610 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
611 			    pmd_t *pmdp);
612 #endif
613 
614 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
615 
616 /*
617  * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
618  * hugepage mapping in the page tables. This function is similar to
619  * pmdp_invalidate(), but should only be used if the access and dirty bits would
620  * not be cleared by the software in the new PMD value. The function ensures
621  * that hardware changes of the access and dirty bits updates would not be lost.
622  *
623  * Doing so can allow in certain architectures to avoid a TLB flush in most
624  * cases. Yet, another TLB flush might be necessary later if the PMD update
625  * itself requires such flush (e.g., if protection was set to be stricter). Yet,
626  * even when a TLB flush is needed because of the update, the caller may be able
627  * to batch these TLB flushing operations, so fewer TLB flush operations are
628  * needed.
629  */
630 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
631 				unsigned long address, pmd_t *pmdp);
632 #endif
633 
634 #ifndef __HAVE_ARCH_PTE_SAME
635 static inline int pte_same(pte_t pte_a, pte_t pte_b)
636 {
637 	return pte_val(pte_a) == pte_val(pte_b);
638 }
639 #endif
640 
641 #ifndef __HAVE_ARCH_PTE_UNUSED
642 /*
643  * Some architectures provide facilities to virtualization guests
644  * so that they can flag allocated pages as unused. This allows the
645  * host to transparently reclaim unused pages. This function returns
646  * whether the pte's page is unused.
647  */
648 static inline int pte_unused(pte_t pte)
649 {
650 	return 0;
651 }
652 #endif
653 
654 #ifndef pte_access_permitted
655 #define pte_access_permitted(pte, write) \
656 	(pte_present(pte) && (!(write) || pte_write(pte)))
657 #endif
658 
659 #ifndef pmd_access_permitted
660 #define pmd_access_permitted(pmd, write) \
661 	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
662 #endif
663 
664 #ifndef pud_access_permitted
665 #define pud_access_permitted(pud, write) \
666 	(pud_present(pud) && (!(write) || pud_write(pud)))
667 #endif
668 
669 #ifndef p4d_access_permitted
670 #define p4d_access_permitted(p4d, write) \
671 	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
672 #endif
673 
674 #ifndef pgd_access_permitted
675 #define pgd_access_permitted(pgd, write) \
676 	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
677 #endif
678 
679 #ifndef __HAVE_ARCH_PMD_SAME
680 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
681 {
682 	return pmd_val(pmd_a) == pmd_val(pmd_b);
683 }
684 
685 static inline int pud_same(pud_t pud_a, pud_t pud_b)
686 {
687 	return pud_val(pud_a) == pud_val(pud_b);
688 }
689 #endif
690 
691 #ifndef __HAVE_ARCH_P4D_SAME
692 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
693 {
694 	return p4d_val(p4d_a) == p4d_val(p4d_b);
695 }
696 #endif
697 
698 #ifndef __HAVE_ARCH_PGD_SAME
699 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
700 {
701 	return pgd_val(pgd_a) == pgd_val(pgd_b);
702 }
703 #endif
704 
705 /*
706  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
707  * TLB flush will be required as a result of the "set". For example, use
708  * in scenarios where it is known ahead of time that the routine is
709  * setting non-present entries, or re-setting an existing entry to the
710  * same value. Otherwise, use the typical "set" helpers and flush the
711  * TLB.
712  */
713 #define set_pte_safe(ptep, pte) \
714 ({ \
715 	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
716 	set_pte(ptep, pte); \
717 })
718 
719 #define set_pmd_safe(pmdp, pmd) \
720 ({ \
721 	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
722 	set_pmd(pmdp, pmd); \
723 })
724 
725 #define set_pud_safe(pudp, pud) \
726 ({ \
727 	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
728 	set_pud(pudp, pud); \
729 })
730 
731 #define set_p4d_safe(p4dp, p4d) \
732 ({ \
733 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
734 	set_p4d(p4dp, p4d); \
735 })
736 
737 #define set_pgd_safe(pgdp, pgd) \
738 ({ \
739 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
740 	set_pgd(pgdp, pgd); \
741 })
742 
743 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
744 /*
745  * Some architectures support metadata associated with a page. When a
746  * page is being swapped out, this metadata must be saved so it can be
747  * restored when the page is swapped back in. SPARC M7 and newer
748  * processors support an ADI (Application Data Integrity) tag for the
749  * page as metadata for the page. arch_do_swap_page() can restore this
750  * metadata when a page is swapped back in.
751  */
752 static inline void arch_do_swap_page(struct mm_struct *mm,
753 				     struct vm_area_struct *vma,
754 				     unsigned long addr,
755 				     pte_t pte, pte_t oldpte)
756 {
757 
758 }
759 #endif
760 
761 #ifndef __HAVE_ARCH_UNMAP_ONE
762 /*
763  * Some architectures support metadata associated with a page. When a
764  * page is being swapped out, this metadata must be saved so it can be
765  * restored when the page is swapped back in. SPARC M7 and newer
766  * processors support an ADI (Application Data Integrity) tag for the
767  * page as metadata for the page. arch_unmap_one() can save this
768  * metadata on a swap-out of a page.
769  */
770 static inline int arch_unmap_one(struct mm_struct *mm,
771 				  struct vm_area_struct *vma,
772 				  unsigned long addr,
773 				  pte_t orig_pte)
774 {
775 	return 0;
776 }
777 #endif
778 
779 /*
780  * Allow architectures to preserve additional metadata associated with
781  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
782  * prototypes must be defined in the arch-specific asm/pgtable.h file.
783  */
784 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
785 static inline int arch_prepare_to_swap(struct page *page)
786 {
787 	return 0;
788 }
789 #endif
790 
791 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
792 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
793 {
794 }
795 
796 static inline void arch_swap_invalidate_area(int type)
797 {
798 }
799 #endif
800 
801 #ifndef __HAVE_ARCH_SWAP_RESTORE
802 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
803 {
804 }
805 #endif
806 
807 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
808 #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
809 #endif
810 
811 #ifndef __HAVE_ARCH_MOVE_PTE
812 #define move_pte(pte, prot, old_addr, new_addr)	(pte)
813 #endif
814 
815 #ifndef pte_accessible
816 # define pte_accessible(mm, pte)	((void)(pte), 1)
817 #endif
818 
819 #ifndef flush_tlb_fix_spurious_fault
820 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
821 #endif
822 
823 /*
824  * When walking page tables, get the address of the next boundary,
825  * or the end address of the range if that comes earlier.  Although no
826  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
827  */
828 
829 #define pgd_addr_end(addr, end)						\
830 ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
831 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
832 })
833 
834 #ifndef p4d_addr_end
835 #define p4d_addr_end(addr, end)						\
836 ({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
837 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
838 })
839 #endif
840 
841 #ifndef pud_addr_end
842 #define pud_addr_end(addr, end)						\
843 ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
844 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
845 })
846 #endif
847 
848 #ifndef pmd_addr_end
849 #define pmd_addr_end(addr, end)						\
850 ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
851 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
852 })
853 #endif
854 
855 /*
856  * When walking page tables, we usually want to skip any p?d_none entries;
857  * and any p?d_bad entries - reporting the error before resetting to none.
858  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
859  */
860 void pgd_clear_bad(pgd_t *);
861 
862 #ifndef __PAGETABLE_P4D_FOLDED
863 void p4d_clear_bad(p4d_t *);
864 #else
865 #define p4d_clear_bad(p4d)        do { } while (0)
866 #endif
867 
868 #ifndef __PAGETABLE_PUD_FOLDED
869 void pud_clear_bad(pud_t *);
870 #else
871 #define pud_clear_bad(p4d)        do { } while (0)
872 #endif
873 
874 void pmd_clear_bad(pmd_t *);
875 
876 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
877 {
878 	if (pgd_none(*pgd))
879 		return 1;
880 	if (unlikely(pgd_bad(*pgd))) {
881 		pgd_clear_bad(pgd);
882 		return 1;
883 	}
884 	return 0;
885 }
886 
887 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
888 {
889 	if (p4d_none(*p4d))
890 		return 1;
891 	if (unlikely(p4d_bad(*p4d))) {
892 		p4d_clear_bad(p4d);
893 		return 1;
894 	}
895 	return 0;
896 }
897 
898 static inline int pud_none_or_clear_bad(pud_t *pud)
899 {
900 	if (pud_none(*pud))
901 		return 1;
902 	if (unlikely(pud_bad(*pud))) {
903 		pud_clear_bad(pud);
904 		return 1;
905 	}
906 	return 0;
907 }
908 
909 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
910 {
911 	if (pmd_none(*pmd))
912 		return 1;
913 	if (unlikely(pmd_bad(*pmd))) {
914 		pmd_clear_bad(pmd);
915 		return 1;
916 	}
917 	return 0;
918 }
919 
920 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
921 					     unsigned long addr,
922 					     pte_t *ptep)
923 {
924 	/*
925 	 * Get the current pte state, but zero it out to make it
926 	 * non-present, preventing the hardware from asynchronously
927 	 * updating it.
928 	 */
929 	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
930 }
931 
932 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
933 					     unsigned long addr,
934 					     pte_t *ptep, pte_t pte)
935 {
936 	/*
937 	 * The pte is non-present, so there's no hardware state to
938 	 * preserve.
939 	 */
940 	set_pte_at(vma->vm_mm, addr, ptep, pte);
941 }
942 
943 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
944 /*
945  * Start a pte protection read-modify-write transaction, which
946  * protects against asynchronous hardware modifications to the pte.
947  * The intention is not to prevent the hardware from making pte
948  * updates, but to prevent any updates it may make from being lost.
949  *
950  * This does not protect against other software modifications of the
951  * pte; the appropriate pte lock must be held over the transaction.
952  *
953  * Note that this interface is intended to be batchable, meaning that
954  * ptep_modify_prot_commit may not actually update the pte, but merely
955  * queue the update to be done at some later time.  The update must be
956  * actually committed before the pte lock is released, however.
957  */
958 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
959 					   unsigned long addr,
960 					   pte_t *ptep)
961 {
962 	return __ptep_modify_prot_start(vma, addr, ptep);
963 }
964 
965 /*
966  * Commit an update to a pte, leaving any hardware-controlled bits in
967  * the PTE unmodified.
968  */
969 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
970 					   unsigned long addr,
971 					   pte_t *ptep, pte_t old_pte, pte_t pte)
972 {
973 	__ptep_modify_prot_commit(vma, addr, ptep, pte);
974 }
975 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
976 #endif /* CONFIG_MMU */
977 
978 /*
979  * No-op macros that just return the current protection value. Defined here
980  * because these macros can be used even if CONFIG_MMU is not defined.
981  */
982 
983 #ifndef pgprot_nx
984 #define pgprot_nx(prot)	(prot)
985 #endif
986 
987 #ifndef pgprot_noncached
988 #define pgprot_noncached(prot)	(prot)
989 #endif
990 
991 #ifndef pgprot_writecombine
992 #define pgprot_writecombine pgprot_noncached
993 #endif
994 
995 #ifndef pgprot_writethrough
996 #define pgprot_writethrough pgprot_noncached
997 #endif
998 
999 #ifndef pgprot_device
1000 #define pgprot_device pgprot_noncached
1001 #endif
1002 
1003 #ifndef pgprot_mhp
1004 #define pgprot_mhp(prot)	(prot)
1005 #endif
1006 
1007 #ifdef CONFIG_MMU
1008 #ifndef pgprot_modify
1009 #define pgprot_modify pgprot_modify
1010 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1011 {
1012 	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1013 		newprot = pgprot_noncached(newprot);
1014 	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1015 		newprot = pgprot_writecombine(newprot);
1016 	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1017 		newprot = pgprot_device(newprot);
1018 	return newprot;
1019 }
1020 #endif
1021 #endif /* CONFIG_MMU */
1022 
1023 #ifndef pgprot_encrypted
1024 #define pgprot_encrypted(prot)	(prot)
1025 #endif
1026 
1027 #ifndef pgprot_decrypted
1028 #define pgprot_decrypted(prot)	(prot)
1029 #endif
1030 
1031 /*
1032  * A facility to provide lazy MMU batching.  This allows PTE updates and
1033  * page invalidations to be delayed until a call to leave lazy MMU mode
1034  * is issued.  Some architectures may benefit from doing this, and it is
1035  * beneficial for both shadow and direct mode hypervisors, which may batch
1036  * the PTE updates which happen during this window.  Note that using this
1037  * interface requires that read hazards be removed from the code.  A read
1038  * hazard could result in the direct mode hypervisor case, since the actual
1039  * write to the page tables may not yet have taken place, so reads though
1040  * a raw PTE pointer after it has been modified are not guaranteed to be
1041  * up to date.  This mode can only be entered and left under the protection of
1042  * the page table locks for all page tables which may be modified.  In the UP
1043  * case, this is required so that preemption is disabled, and in the SMP case,
1044  * it must synchronize the delayed page table writes properly on other CPUs.
1045  */
1046 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
1047 #define arch_enter_lazy_mmu_mode()	do {} while (0)
1048 #define arch_leave_lazy_mmu_mode()	do {} while (0)
1049 #define arch_flush_lazy_mmu_mode()	do {} while (0)
1050 #endif
1051 
1052 /*
1053  * A facility to provide batching of the reload of page tables and
1054  * other process state with the actual context switch code for
1055  * paravirtualized guests.  By convention, only one of the batched
1056  * update (lazy) modes (CPU, MMU) should be active at any given time,
1057  * entry should never be nested, and entry and exits should always be
1058  * paired.  This is for sanity of maintaining and reasoning about the
1059  * kernel code.  In this case, the exit (end of the context switch) is
1060  * in architecture-specific code, and so doesn't need a generic
1061  * definition.
1062  */
1063 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1064 #define arch_start_context_switch(prev)	do {} while (0)
1065 #endif
1066 
1067 /*
1068  * When replacing an anonymous page by a real (!non) swap entry, we clear
1069  * PG_anon_exclusive from the page and instead remember whether the flag was
1070  * set in the swp pte. During fork(), we have to mark the entry as !exclusive
1071  * (possibly shared). On swapin, we use that information to restore
1072  * PG_anon_exclusive, which is very helpful in cases where we might have
1073  * additional (e.g., FOLL_GET) references on a page and wouldn't be able to
1074  * detect exclusivity.
1075  *
1076  * These functions don't apply to non-swap entries (e.g., migration, hwpoison,
1077  * ...).
1078  */
1079 #ifndef __HAVE_ARCH_PTE_SWP_EXCLUSIVE
1080 static inline pte_t pte_swp_mkexclusive(pte_t pte)
1081 {
1082 	return pte;
1083 }
1084 
1085 static inline int pte_swp_exclusive(pte_t pte)
1086 {
1087 	return false;
1088 }
1089 
1090 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1091 {
1092 	return pte;
1093 }
1094 #endif
1095 
1096 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1097 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1098 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1099 {
1100 	return pmd;
1101 }
1102 
1103 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1104 {
1105 	return 0;
1106 }
1107 
1108 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1109 {
1110 	return pmd;
1111 }
1112 #endif
1113 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1114 static inline int pte_soft_dirty(pte_t pte)
1115 {
1116 	return 0;
1117 }
1118 
1119 static inline int pmd_soft_dirty(pmd_t pmd)
1120 {
1121 	return 0;
1122 }
1123 
1124 static inline pte_t pte_mksoft_dirty(pte_t pte)
1125 {
1126 	return pte;
1127 }
1128 
1129 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1130 {
1131 	return pmd;
1132 }
1133 
1134 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1135 {
1136 	return pte;
1137 }
1138 
1139 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1140 {
1141 	return pmd;
1142 }
1143 
1144 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1145 {
1146 	return pte;
1147 }
1148 
1149 static inline int pte_swp_soft_dirty(pte_t pte)
1150 {
1151 	return 0;
1152 }
1153 
1154 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1155 {
1156 	return pte;
1157 }
1158 
1159 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1160 {
1161 	return pmd;
1162 }
1163 
1164 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1165 {
1166 	return 0;
1167 }
1168 
1169 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1170 {
1171 	return pmd;
1172 }
1173 #endif
1174 
1175 #ifndef __HAVE_PFNMAP_TRACKING
1176 /*
1177  * Interfaces that can be used by architecture code to keep track of
1178  * memory type of pfn mappings specified by the remap_pfn_range,
1179  * vmf_insert_pfn.
1180  */
1181 
1182 /*
1183  * track_pfn_remap is called when a _new_ pfn mapping is being established
1184  * by remap_pfn_range() for physical range indicated by pfn and size.
1185  */
1186 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1187 				  unsigned long pfn, unsigned long addr,
1188 				  unsigned long size)
1189 {
1190 	return 0;
1191 }
1192 
1193 /*
1194  * track_pfn_insert is called when a _new_ single pfn is established
1195  * by vmf_insert_pfn().
1196  */
1197 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1198 				    pfn_t pfn)
1199 {
1200 }
1201 
1202 /*
1203  * track_pfn_copy is called when vma that is covering the pfnmap gets
1204  * copied through copy_page_range().
1205  */
1206 static inline int track_pfn_copy(struct vm_area_struct *vma)
1207 {
1208 	return 0;
1209 }
1210 
1211 /*
1212  * untrack_pfn is called while unmapping a pfnmap for a region.
1213  * untrack can be called for a specific region indicated by pfn and size or
1214  * can be for the entire vma (in which case pfn, size are zero).
1215  */
1216 static inline void untrack_pfn(struct vm_area_struct *vma,
1217 			       unsigned long pfn, unsigned long size)
1218 {
1219 }
1220 
1221 /*
1222  * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1223  */
1224 static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1225 {
1226 }
1227 #else
1228 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1229 			   unsigned long pfn, unsigned long addr,
1230 			   unsigned long size);
1231 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1232 			     pfn_t pfn);
1233 extern int track_pfn_copy(struct vm_area_struct *vma);
1234 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1235 			unsigned long size);
1236 extern void untrack_pfn_moved(struct vm_area_struct *vma);
1237 #endif
1238 
1239 #ifdef CONFIG_MMU
1240 #ifdef __HAVE_COLOR_ZERO_PAGE
1241 static inline int is_zero_pfn(unsigned long pfn)
1242 {
1243 	extern unsigned long zero_pfn;
1244 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1245 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1246 }
1247 
1248 #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
1249 
1250 #else
1251 static inline int is_zero_pfn(unsigned long pfn)
1252 {
1253 	extern unsigned long zero_pfn;
1254 	return pfn == zero_pfn;
1255 }
1256 
1257 static inline unsigned long my_zero_pfn(unsigned long addr)
1258 {
1259 	extern unsigned long zero_pfn;
1260 	return zero_pfn;
1261 }
1262 #endif
1263 #else
1264 static inline int is_zero_pfn(unsigned long pfn)
1265 {
1266 	return 0;
1267 }
1268 
1269 static inline unsigned long my_zero_pfn(unsigned long addr)
1270 {
1271 	return 0;
1272 }
1273 #endif /* CONFIG_MMU */
1274 
1275 #ifdef CONFIG_MMU
1276 
1277 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
1278 static inline int pmd_trans_huge(pmd_t pmd)
1279 {
1280 	return 0;
1281 }
1282 #ifndef pmd_write
1283 static inline int pmd_write(pmd_t pmd)
1284 {
1285 	BUG();
1286 	return 0;
1287 }
1288 #endif /* pmd_write */
1289 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1290 
1291 #ifndef pud_write
1292 static inline int pud_write(pud_t pud)
1293 {
1294 	BUG();
1295 	return 0;
1296 }
1297 #endif /* pud_write */
1298 
1299 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1300 static inline int pmd_devmap(pmd_t pmd)
1301 {
1302 	return 0;
1303 }
1304 static inline int pud_devmap(pud_t pud)
1305 {
1306 	return 0;
1307 }
1308 static inline int pgd_devmap(pgd_t pgd)
1309 {
1310 	return 0;
1311 }
1312 #endif
1313 
1314 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1315 	!defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1316 static inline int pud_trans_huge(pud_t pud)
1317 {
1318 	return 0;
1319 }
1320 #endif
1321 
1322 /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1323 static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1324 {
1325 	pud_t pudval = READ_ONCE(*pud);
1326 
1327 	if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1328 		return 1;
1329 	if (unlikely(pud_bad(pudval))) {
1330 		pud_clear_bad(pud);
1331 		return 1;
1332 	}
1333 	return 0;
1334 }
1335 
1336 /* See pmd_trans_unstable for discussion. */
1337 static inline int pud_trans_unstable(pud_t *pud)
1338 {
1339 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
1340 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1341 	return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1342 #else
1343 	return 0;
1344 #endif
1345 }
1346 
1347 #ifndef arch_needs_pgtable_deposit
1348 #define arch_needs_pgtable_deposit() (false)
1349 #endif
1350 /*
1351  * This function is meant to be used by sites walking pagetables with
1352  * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1353  * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1354  * into a null pmd and the transhuge page fault can convert a null pmd
1355  * into an hugepmd or into a regular pmd (if the hugepage allocation
1356  * fails). While holding the mmap_lock in read mode the pmd becomes
1357  * stable and stops changing under us only if it's not null and not a
1358  * transhuge pmd. When those races occurs and this function makes a
1359  * difference vs the standard pmd_none_or_clear_bad, the result is
1360  * undefined so behaving like if the pmd was none is safe (because it
1361  * can return none anyway). The compiler level barrier() is critically
1362  * important to compute the two checks atomically on the same pmdval.
1363  *
1364  * For 32bit kernels with a 64bit large pmd_t this automatically takes
1365  * care of reading the pmd atomically to avoid SMP race conditions
1366  * against pmd_populate() when the mmap_lock is hold for reading by the
1367  * caller (a special atomic read not done by "gcc" as in the generic
1368  * version above, is also needed when THP is disabled because the page
1369  * fault can populate the pmd from under us).
1370  */
1371 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1372 {
1373 	pmd_t pmdval = pmdp_get_lockless(pmd);
1374 	/*
1375 	 * The barrier will stabilize the pmdval in a register or on
1376 	 * the stack so that it will stop changing under the code.
1377 	 *
1378 	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1379 	 * pmdp_get_lockless is allowed to return a not atomic pmdval
1380 	 * (for example pointing to an hugepage that has never been
1381 	 * mapped in the pmd). The below checks will only care about
1382 	 * the low part of the pmd with 32bit PAE x86 anyway, with the
1383 	 * exception of pmd_none(). So the important thing is that if
1384 	 * the low part of the pmd is found null, the high part will
1385 	 * be also null or the pmd_none() check below would be
1386 	 * confused.
1387 	 */
1388 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1389 	barrier();
1390 #endif
1391 	/*
1392 	 * !pmd_present() checks for pmd migration entries
1393 	 *
1394 	 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1395 	 * But using that requires moving current function and pmd_trans_unstable()
1396 	 * to linux/swapops.h to resolve dependency, which is too much code move.
1397 	 *
1398 	 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1399 	 * because !pmd_present() pages can only be under migration not swapped
1400 	 * out.
1401 	 *
1402 	 * pmd_none() is preserved for future condition checks on pmd migration
1403 	 * entries and not confusing with this function name, although it is
1404 	 * redundant with !pmd_present().
1405 	 */
1406 	if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1407 		(IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1408 		return 1;
1409 	if (unlikely(pmd_bad(pmdval))) {
1410 		pmd_clear_bad(pmd);
1411 		return 1;
1412 	}
1413 	return 0;
1414 }
1415 
1416 /*
1417  * This is a noop if Transparent Hugepage Support is not built into
1418  * the kernel. Otherwise it is equivalent to
1419  * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1420  * places that already verified the pmd is not none and they want to
1421  * walk ptes while holding the mmap sem in read mode (write mode don't
1422  * need this). If THP is not enabled, the pmd can't go away under the
1423  * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1424  * run a pmd_trans_unstable before walking the ptes after
1425  * split_huge_pmd returns (because it may have run when the pmd become
1426  * null, but then a page fault can map in a THP and not a regular page).
1427  */
1428 static inline int pmd_trans_unstable(pmd_t *pmd)
1429 {
1430 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1431 	return pmd_none_or_trans_huge_or_clear_bad(pmd);
1432 #else
1433 	return 0;
1434 #endif
1435 }
1436 
1437 /*
1438  * the ordering of these checks is important for pmds with _page_devmap set.
1439  * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
1440  * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
1441  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
1442  */
1443 static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
1444 {
1445 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
1446 }
1447 
1448 #ifndef CONFIG_NUMA_BALANCING
1449 /*
1450  * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1451  * the only case the kernel cares is for NUMA balancing and is only ever set
1452  * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1453  * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1454  * is the responsibility of the caller to distinguish between PROT_NONE
1455  * protections and NUMA hinting fault protections.
1456  */
1457 static inline int pte_protnone(pte_t pte)
1458 {
1459 	return 0;
1460 }
1461 
1462 static inline int pmd_protnone(pmd_t pmd)
1463 {
1464 	return 0;
1465 }
1466 #endif /* CONFIG_NUMA_BALANCING */
1467 
1468 #endif /* CONFIG_MMU */
1469 
1470 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1471 
1472 #ifndef __PAGETABLE_P4D_FOLDED
1473 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1474 void p4d_clear_huge(p4d_t *p4d);
1475 #else
1476 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1477 {
1478 	return 0;
1479 }
1480 static inline void p4d_clear_huge(p4d_t *p4d) { }
1481 #endif /* !__PAGETABLE_P4D_FOLDED */
1482 
1483 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1484 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1485 int pud_clear_huge(pud_t *pud);
1486 int pmd_clear_huge(pmd_t *pmd);
1487 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1488 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1489 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1490 #else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1491 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1492 {
1493 	return 0;
1494 }
1495 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1496 {
1497 	return 0;
1498 }
1499 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1500 {
1501 	return 0;
1502 }
1503 static inline void p4d_clear_huge(p4d_t *p4d) { }
1504 static inline int pud_clear_huge(pud_t *pud)
1505 {
1506 	return 0;
1507 }
1508 static inline int pmd_clear_huge(pmd_t *pmd)
1509 {
1510 	return 0;
1511 }
1512 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1513 {
1514 	return 0;
1515 }
1516 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1517 {
1518 	return 0;
1519 }
1520 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1521 {
1522 	return 0;
1523 }
1524 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1525 
1526 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1527 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1528 /*
1529  * ARCHes with special requirements for evicting THP backing TLB entries can
1530  * implement this. Otherwise also, it can help optimize normal TLB flush in
1531  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1532  * entire TLB if flush span is greater than a threshold, which will
1533  * likely be true for a single huge page. Thus a single THP flush will
1534  * invalidate the entire TLB which is not desirable.
1535  * e.g. see arch/arc: flush_pmd_tlb_range
1536  */
1537 #define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1538 #define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1539 #else
1540 #define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1541 #define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1542 #endif
1543 #endif
1544 
1545 struct file;
1546 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1547 			unsigned long size, pgprot_t *vma_prot);
1548 
1549 #ifndef CONFIG_X86_ESPFIX64
1550 static inline void init_espfix_bsp(void) { }
1551 #endif
1552 
1553 extern void __init pgtable_cache_init(void);
1554 
1555 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1556 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1557 {
1558 	return true;
1559 }
1560 
1561 static inline bool arch_has_pfn_modify_check(void)
1562 {
1563 	return false;
1564 }
1565 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1566 
1567 /*
1568  * Architecture PAGE_KERNEL_* fallbacks
1569  *
1570  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1571  * because they really don't support them, or the port needs to be updated to
1572  * reflect the required functionality. Below are a set of relatively safe
1573  * fallbacks, as best effort, which we can count on in lieu of the architectures
1574  * not defining them on their own yet.
1575  */
1576 
1577 #ifndef PAGE_KERNEL_RO
1578 # define PAGE_KERNEL_RO PAGE_KERNEL
1579 #endif
1580 
1581 #ifndef PAGE_KERNEL_EXEC
1582 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1583 #endif
1584 
1585 /*
1586  * Page Table Modification bits for pgtbl_mod_mask.
1587  *
1588  * These are used by the p?d_alloc_track*() set of functions an in the generic
1589  * vmalloc/ioremap code to track at which page-table levels entries have been
1590  * modified. Based on that the code can better decide when vmalloc and ioremap
1591  * mapping changes need to be synchronized to other page-tables in the system.
1592  */
1593 #define		__PGTBL_PGD_MODIFIED	0
1594 #define		__PGTBL_P4D_MODIFIED	1
1595 #define		__PGTBL_PUD_MODIFIED	2
1596 #define		__PGTBL_PMD_MODIFIED	3
1597 #define		__PGTBL_PTE_MODIFIED	4
1598 
1599 #define		PGTBL_PGD_MODIFIED	BIT(__PGTBL_PGD_MODIFIED)
1600 #define		PGTBL_P4D_MODIFIED	BIT(__PGTBL_P4D_MODIFIED)
1601 #define		PGTBL_PUD_MODIFIED	BIT(__PGTBL_PUD_MODIFIED)
1602 #define		PGTBL_PMD_MODIFIED	BIT(__PGTBL_PMD_MODIFIED)
1603 #define		PGTBL_PTE_MODIFIED	BIT(__PGTBL_PTE_MODIFIED)
1604 
1605 /* Page-Table Modification Mask */
1606 typedef unsigned int pgtbl_mod_mask;
1607 
1608 #endif /* !__ASSEMBLY__ */
1609 
1610 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1611 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1612 /*
1613  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1614  * with physical address space extension, but falls back to
1615  * BITS_PER_LONG otherwise.
1616  */
1617 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1618 #else
1619 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1620 #endif
1621 #endif
1622 
1623 #ifndef has_transparent_hugepage
1624 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1625 #endif
1626 
1627 /*
1628  * On some architectures it depends on the mm if the p4d/pud or pmd
1629  * layer of the page table hierarchy is folded or not.
1630  */
1631 #ifndef mm_p4d_folded
1632 #define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1633 #endif
1634 
1635 #ifndef mm_pud_folded
1636 #define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1637 #endif
1638 
1639 #ifndef mm_pmd_folded
1640 #define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1641 #endif
1642 
1643 #ifndef p4d_offset_lockless
1644 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1645 #endif
1646 #ifndef pud_offset_lockless
1647 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1648 #endif
1649 #ifndef pmd_offset_lockless
1650 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1651 #endif
1652 
1653 /*
1654  * p?d_leaf() - true if this entry is a final mapping to a physical address.
1655  * This differs from p?d_huge() by the fact that they are always available (if
1656  * the architecture supports large pages at the appropriate level) even
1657  * if CONFIG_HUGETLB_PAGE is not defined.
1658  * Only meaningful when called on a valid entry.
1659  */
1660 #ifndef pgd_leaf
1661 #define pgd_leaf(x)	0
1662 #endif
1663 #ifndef p4d_leaf
1664 #define p4d_leaf(x)	0
1665 #endif
1666 #ifndef pud_leaf
1667 #define pud_leaf(x)	0
1668 #endif
1669 #ifndef pmd_leaf
1670 #define pmd_leaf(x)	0
1671 #endif
1672 
1673 #ifndef pgd_leaf_size
1674 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1675 #endif
1676 #ifndef p4d_leaf_size
1677 #define p4d_leaf_size(x) P4D_SIZE
1678 #endif
1679 #ifndef pud_leaf_size
1680 #define pud_leaf_size(x) PUD_SIZE
1681 #endif
1682 #ifndef pmd_leaf_size
1683 #define pmd_leaf_size(x) PMD_SIZE
1684 #endif
1685 #ifndef pte_leaf_size
1686 #define pte_leaf_size(x) PAGE_SIZE
1687 #endif
1688 
1689 /*
1690  * Some architectures have MMUs that are configurable or selectable at boot
1691  * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1692  * helps to have a static maximum value.
1693  */
1694 
1695 #ifndef MAX_PTRS_PER_PTE
1696 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1697 #endif
1698 
1699 #ifndef MAX_PTRS_PER_PMD
1700 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1701 #endif
1702 
1703 #ifndef MAX_PTRS_PER_PUD
1704 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1705 #endif
1706 
1707 #ifndef MAX_PTRS_PER_P4D
1708 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1709 #endif
1710 
1711 /* description of effects of mapping type and prot in current implementation.
1712  * this is due to the limited x86 page protection hardware.  The expected
1713  * behavior is in parens:
1714  *
1715  * map_type	prot
1716  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
1717  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1718  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
1719  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1720  *
1721  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1722  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
1723  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1724  *
1725  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1726  * MAP_PRIVATE (with Enhanced PAN supported):
1727  *								r: (no) no
1728  *								w: (no) no
1729  *								x: (yes) yes
1730  */
1731 #define DECLARE_VM_GET_PAGE_PROT					\
1732 pgprot_t vm_get_page_prot(unsigned long vm_flags)			\
1733 {									\
1734 		return protection_map[vm_flags &			\
1735 			(VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)];	\
1736 }									\
1737 EXPORT_SYMBOL(vm_get_page_prot);
1738 
1739 #endif /* _LINUX_PGTABLE_H */
1740