xref: /openbmc/linux/include/linux/pgtable.h (revision 68d8904b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4 
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7 
8 #ifndef __ASSEMBLY__
9 #ifdef CONFIG_MMU
10 
11 #include <linux/mm_types.h>
12 #include <linux/bug.h>
13 #include <linux/errno.h>
14 #include <asm-generic/pgtable_uffd.h>
15 
16 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
17 	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
18 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
19 #endif
20 
21 /*
22  * On almost all architectures and configurations, 0 can be used as the
23  * upper ceiling to free_pgtables(): on many architectures it has the same
24  * effect as using TASK_SIZE.  However, there is one configuration which
25  * must impose a more careful limit, to avoid freeing kernel pgtables.
26  */
27 #ifndef USER_PGTABLES_CEILING
28 #define USER_PGTABLES_CEILING	0UL
29 #endif
30 
31 /*
32  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
33  *
34  * The pXx_index() functions return the index of the entry in the page
35  * table page which would control the given virtual address
36  *
37  * As these functions may be used by the same code for different levels of
38  * the page table folding, they are always available, regardless of
39  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
40  * because in such cases PTRS_PER_PxD equals 1.
41  */
42 
43 static inline unsigned long pte_index(unsigned long address)
44 {
45 	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
46 }
47 
48 #ifndef pmd_index
49 static inline unsigned long pmd_index(unsigned long address)
50 {
51 	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
52 }
53 #define pmd_index pmd_index
54 #endif
55 
56 #ifndef pud_index
57 static inline unsigned long pud_index(unsigned long address)
58 {
59 	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
60 }
61 #define pud_index pud_index
62 #endif
63 
64 #ifndef pgd_index
65 /* Must be a compile-time constant, so implement it as a macro */
66 #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
67 #endif
68 
69 #ifndef pte_offset_kernel
70 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
71 {
72 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
73 }
74 #define pte_offset_kernel pte_offset_kernel
75 #endif
76 
77 #if defined(CONFIG_HIGHPTE)
78 #define pte_offset_map(dir, address)				\
79 	((pte_t *)kmap_atomic(pmd_page(*(dir))) +		\
80 	 pte_index((address)))
81 #define pte_unmap(pte) kunmap_atomic((pte))
82 #else
83 #define pte_offset_map(dir, address)	pte_offset_kernel((dir), (address))
84 #define pte_unmap(pte) ((void)(pte))	/* NOP */
85 #endif
86 
87 /* Find an entry in the second-level page table.. */
88 #ifndef pmd_offset
89 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
90 {
91 	return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
92 }
93 #define pmd_offset pmd_offset
94 #endif
95 
96 #ifndef pud_offset
97 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
98 {
99 	return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address);
100 }
101 #define pud_offset pud_offset
102 #endif
103 
104 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
105 {
106 	return (pgd + pgd_index(address));
107 };
108 
109 /*
110  * a shortcut to get a pgd_t in a given mm
111  */
112 #ifndef pgd_offset
113 #define pgd_offset(mm, address)		pgd_offset_pgd((mm)->pgd, (address))
114 #endif
115 
116 /*
117  * a shortcut which implies the use of the kernel's pgd, instead
118  * of a process's
119  */
120 #define pgd_offset_k(address)		pgd_offset(&init_mm, (address))
121 
122 /*
123  * In many cases it is known that a virtual address is mapped at PMD or PTE
124  * level, so instead of traversing all the page table levels, we can get a
125  * pointer to the PMD entry in user or kernel page table or translate a virtual
126  * address to the pointer in the PTE in the kernel page tables with simple
127  * helpers.
128  */
129 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
130 {
131 	return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
132 }
133 
134 static inline pmd_t *pmd_off_k(unsigned long va)
135 {
136 	return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
137 }
138 
139 static inline pte_t *virt_to_kpte(unsigned long vaddr)
140 {
141 	pmd_t *pmd = pmd_off_k(vaddr);
142 
143 	return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
144 }
145 
146 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
147 extern int ptep_set_access_flags(struct vm_area_struct *vma,
148 				 unsigned long address, pte_t *ptep,
149 				 pte_t entry, int dirty);
150 #endif
151 
152 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
153 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
154 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
155 				 unsigned long address, pmd_t *pmdp,
156 				 pmd_t entry, int dirty);
157 extern int pudp_set_access_flags(struct vm_area_struct *vma,
158 				 unsigned long address, pud_t *pudp,
159 				 pud_t entry, int dirty);
160 #else
161 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
162 					unsigned long address, pmd_t *pmdp,
163 					pmd_t entry, int dirty)
164 {
165 	BUILD_BUG();
166 	return 0;
167 }
168 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
169 					unsigned long address, pud_t *pudp,
170 					pud_t entry, int dirty)
171 {
172 	BUILD_BUG();
173 	return 0;
174 }
175 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
176 #endif
177 
178 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
179 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
180 					    unsigned long address,
181 					    pte_t *ptep)
182 {
183 	pte_t pte = *ptep;
184 	int r = 1;
185 	if (!pte_young(pte))
186 		r = 0;
187 	else
188 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
189 	return r;
190 }
191 #endif
192 
193 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
194 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
195 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
196 					    unsigned long address,
197 					    pmd_t *pmdp)
198 {
199 	pmd_t pmd = *pmdp;
200 	int r = 1;
201 	if (!pmd_young(pmd))
202 		r = 0;
203 	else
204 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
205 	return r;
206 }
207 #else
208 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
209 					    unsigned long address,
210 					    pmd_t *pmdp)
211 {
212 	BUILD_BUG();
213 	return 0;
214 }
215 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
216 #endif
217 
218 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
219 int ptep_clear_flush_young(struct vm_area_struct *vma,
220 			   unsigned long address, pte_t *ptep);
221 #endif
222 
223 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
224 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
225 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
226 				  unsigned long address, pmd_t *pmdp);
227 #else
228 /*
229  * Despite relevant to THP only, this API is called from generic rmap code
230  * under PageTransHuge(), hence needs a dummy implementation for !THP
231  */
232 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
233 					 unsigned long address, pmd_t *pmdp)
234 {
235 	BUILD_BUG();
236 	return 0;
237 }
238 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
239 #endif
240 
241 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
242 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
243 				       unsigned long address,
244 				       pte_t *ptep)
245 {
246 	pte_t pte = *ptep;
247 	pte_clear(mm, address, ptep);
248 	return pte;
249 }
250 #endif
251 
252 #ifndef __HAVE_ARCH_PTEP_GET
253 static inline pte_t ptep_get(pte_t *ptep)
254 {
255 	return READ_ONCE(*ptep);
256 }
257 #endif
258 
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
261 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
262 					    unsigned long address,
263 					    pmd_t *pmdp)
264 {
265 	pmd_t pmd = *pmdp;
266 	pmd_clear(pmdp);
267 	return pmd;
268 }
269 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
270 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
271 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
272 					    unsigned long address,
273 					    pud_t *pudp)
274 {
275 	pud_t pud = *pudp;
276 
277 	pud_clear(pudp);
278 	return pud;
279 }
280 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
281 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
282 
283 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
284 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
285 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
286 					    unsigned long address, pmd_t *pmdp,
287 					    int full)
288 {
289 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
290 }
291 #endif
292 
293 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
294 static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
295 					    unsigned long address, pud_t *pudp,
296 					    int full)
297 {
298 	return pudp_huge_get_and_clear(mm, address, pudp);
299 }
300 #endif
301 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
302 
303 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
304 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
305 					    unsigned long address, pte_t *ptep,
306 					    int full)
307 {
308 	pte_t pte;
309 	pte = ptep_get_and_clear(mm, address, ptep);
310 	return pte;
311 }
312 #endif
313 
314 
315 /*
316  * If two threads concurrently fault at the same page, the thread that
317  * won the race updates the PTE and its local TLB/Cache. The other thread
318  * gives up, simply does nothing, and continues; on architectures where
319  * software can update TLB,  local TLB can be updated here to avoid next page
320  * fault. This function updates TLB only, do nothing with cache or others.
321  * It is the difference with function update_mmu_cache.
322  */
323 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
324 static inline void update_mmu_tlb(struct vm_area_struct *vma,
325 				unsigned long address, pte_t *ptep)
326 {
327 }
328 #define __HAVE_ARCH_UPDATE_MMU_TLB
329 #endif
330 
331 /*
332  * Some architectures may be able to avoid expensive synchronization
333  * primitives when modifications are made to PTE's which are already
334  * not present, or in the process of an address space destruction.
335  */
336 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
337 static inline void pte_clear_not_present_full(struct mm_struct *mm,
338 					      unsigned long address,
339 					      pte_t *ptep,
340 					      int full)
341 {
342 	pte_clear(mm, address, ptep);
343 }
344 #endif
345 
346 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
347 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
348 			      unsigned long address,
349 			      pte_t *ptep);
350 #endif
351 
352 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
353 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
354 			      unsigned long address,
355 			      pmd_t *pmdp);
356 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
357 			      unsigned long address,
358 			      pud_t *pudp);
359 #endif
360 
361 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
362 struct mm_struct;
363 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
364 {
365 	pte_t old_pte = *ptep;
366 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
367 }
368 #endif
369 
370 /*
371  * On some architectures hardware does not set page access bit when accessing
372  * memory page, it is responsibilty of software setting this bit. It brings
373  * out extra page fault penalty to track page access bit. For optimization page
374  * access bit can be set during all page fault flow on these arches.
375  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
376  * where software maintains page access bit.
377  */
378 #ifndef pte_sw_mkyoung
379 static inline pte_t pte_sw_mkyoung(pte_t pte)
380 {
381 	return pte;
382 }
383 #define pte_sw_mkyoung	pte_sw_mkyoung
384 #endif
385 
386 #ifndef pte_savedwrite
387 #define pte_savedwrite pte_write
388 #endif
389 
390 #ifndef pte_mk_savedwrite
391 #define pte_mk_savedwrite pte_mkwrite
392 #endif
393 
394 #ifndef pte_clear_savedwrite
395 #define pte_clear_savedwrite pte_wrprotect
396 #endif
397 
398 #ifndef pmd_savedwrite
399 #define pmd_savedwrite pmd_write
400 #endif
401 
402 #ifndef pmd_mk_savedwrite
403 #define pmd_mk_savedwrite pmd_mkwrite
404 #endif
405 
406 #ifndef pmd_clear_savedwrite
407 #define pmd_clear_savedwrite pmd_wrprotect
408 #endif
409 
410 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
412 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
413 				      unsigned long address, pmd_t *pmdp)
414 {
415 	pmd_t old_pmd = *pmdp;
416 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
417 }
418 #else
419 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
420 				      unsigned long address, pmd_t *pmdp)
421 {
422 	BUILD_BUG();
423 }
424 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
425 #endif
426 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
427 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
428 static inline void pudp_set_wrprotect(struct mm_struct *mm,
429 				      unsigned long address, pud_t *pudp)
430 {
431 	pud_t old_pud = *pudp;
432 
433 	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
434 }
435 #else
436 static inline void pudp_set_wrprotect(struct mm_struct *mm,
437 				      unsigned long address, pud_t *pudp)
438 {
439 	BUILD_BUG();
440 }
441 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
442 #endif
443 
444 #ifndef pmdp_collapse_flush
445 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
446 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
447 				 unsigned long address, pmd_t *pmdp);
448 #else
449 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
450 					unsigned long address,
451 					pmd_t *pmdp)
452 {
453 	BUILD_BUG();
454 	return *pmdp;
455 }
456 #define pmdp_collapse_flush pmdp_collapse_flush
457 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
458 #endif
459 
460 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
461 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
462 				       pgtable_t pgtable);
463 #endif
464 
465 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
466 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
467 #endif
468 
469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
470 /*
471  * This is an implementation of pmdp_establish() that is only suitable for an
472  * architecture that doesn't have hardware dirty/accessed bits. In this case we
473  * can't race with CPU which sets these bits and non-atomic aproach is fine.
474  */
475 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
476 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
477 {
478 	pmd_t old_pmd = *pmdp;
479 	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
480 	return old_pmd;
481 }
482 #endif
483 
484 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
485 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
486 			    pmd_t *pmdp);
487 #endif
488 
489 #ifndef __HAVE_ARCH_PTE_SAME
490 static inline int pte_same(pte_t pte_a, pte_t pte_b)
491 {
492 	return pte_val(pte_a) == pte_val(pte_b);
493 }
494 #endif
495 
496 #ifndef __HAVE_ARCH_PTE_UNUSED
497 /*
498  * Some architectures provide facilities to virtualization guests
499  * so that they can flag allocated pages as unused. This allows the
500  * host to transparently reclaim unused pages. This function returns
501  * whether the pte's page is unused.
502  */
503 static inline int pte_unused(pte_t pte)
504 {
505 	return 0;
506 }
507 #endif
508 
509 #ifndef pte_access_permitted
510 #define pte_access_permitted(pte, write) \
511 	(pte_present(pte) && (!(write) || pte_write(pte)))
512 #endif
513 
514 #ifndef pmd_access_permitted
515 #define pmd_access_permitted(pmd, write) \
516 	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
517 #endif
518 
519 #ifndef pud_access_permitted
520 #define pud_access_permitted(pud, write) \
521 	(pud_present(pud) && (!(write) || pud_write(pud)))
522 #endif
523 
524 #ifndef p4d_access_permitted
525 #define p4d_access_permitted(p4d, write) \
526 	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
527 #endif
528 
529 #ifndef pgd_access_permitted
530 #define pgd_access_permitted(pgd, write) \
531 	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
532 #endif
533 
534 #ifndef __HAVE_ARCH_PMD_SAME
535 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
536 {
537 	return pmd_val(pmd_a) == pmd_val(pmd_b);
538 }
539 
540 static inline int pud_same(pud_t pud_a, pud_t pud_b)
541 {
542 	return pud_val(pud_a) == pud_val(pud_b);
543 }
544 #endif
545 
546 #ifndef __HAVE_ARCH_P4D_SAME
547 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
548 {
549 	return p4d_val(p4d_a) == p4d_val(p4d_b);
550 }
551 #endif
552 
553 #ifndef __HAVE_ARCH_PGD_SAME
554 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
555 {
556 	return pgd_val(pgd_a) == pgd_val(pgd_b);
557 }
558 #endif
559 
560 /*
561  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
562  * TLB flush will be required as a result of the "set". For example, use
563  * in scenarios where it is known ahead of time that the routine is
564  * setting non-present entries, or re-setting an existing entry to the
565  * same value. Otherwise, use the typical "set" helpers and flush the
566  * TLB.
567  */
568 #define set_pte_safe(ptep, pte) \
569 ({ \
570 	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
571 	set_pte(ptep, pte); \
572 })
573 
574 #define set_pmd_safe(pmdp, pmd) \
575 ({ \
576 	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
577 	set_pmd(pmdp, pmd); \
578 })
579 
580 #define set_pud_safe(pudp, pud) \
581 ({ \
582 	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
583 	set_pud(pudp, pud); \
584 })
585 
586 #define set_p4d_safe(p4dp, p4d) \
587 ({ \
588 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
589 	set_p4d(p4dp, p4d); \
590 })
591 
592 #define set_pgd_safe(pgdp, pgd) \
593 ({ \
594 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
595 	set_pgd(pgdp, pgd); \
596 })
597 
598 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
599 /*
600  * Some architectures support metadata associated with a page. When a
601  * page is being swapped out, this metadata must be saved so it can be
602  * restored when the page is swapped back in. SPARC M7 and newer
603  * processors support an ADI (Application Data Integrity) tag for the
604  * page as metadata for the page. arch_do_swap_page() can restore this
605  * metadata when a page is swapped back in.
606  */
607 static inline void arch_do_swap_page(struct mm_struct *mm,
608 				     struct vm_area_struct *vma,
609 				     unsigned long addr,
610 				     pte_t pte, pte_t oldpte)
611 {
612 
613 }
614 #endif
615 
616 #ifndef __HAVE_ARCH_UNMAP_ONE
617 /*
618  * Some architectures support metadata associated with a page. When a
619  * page is being swapped out, this metadata must be saved so it can be
620  * restored when the page is swapped back in. SPARC M7 and newer
621  * processors support an ADI (Application Data Integrity) tag for the
622  * page as metadata for the page. arch_unmap_one() can save this
623  * metadata on a swap-out of a page.
624  */
625 static inline int arch_unmap_one(struct mm_struct *mm,
626 				  struct vm_area_struct *vma,
627 				  unsigned long addr,
628 				  pte_t orig_pte)
629 {
630 	return 0;
631 }
632 #endif
633 
634 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
635 #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
636 #endif
637 
638 #ifndef __HAVE_ARCH_MOVE_PTE
639 #define move_pte(pte, prot, old_addr, new_addr)	(pte)
640 #endif
641 
642 #ifndef pte_accessible
643 # define pte_accessible(mm, pte)	((void)(pte), 1)
644 #endif
645 
646 #ifndef flush_tlb_fix_spurious_fault
647 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
648 #endif
649 
650 /*
651  * When walking page tables, get the address of the next boundary,
652  * or the end address of the range if that comes earlier.  Although no
653  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
654  */
655 
656 #define pgd_addr_end(addr, end)						\
657 ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
658 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
659 })
660 
661 #ifndef p4d_addr_end
662 #define p4d_addr_end(addr, end)						\
663 ({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
664 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
665 })
666 #endif
667 
668 #ifndef pud_addr_end
669 #define pud_addr_end(addr, end)						\
670 ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
671 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
672 })
673 #endif
674 
675 #ifndef pmd_addr_end
676 #define pmd_addr_end(addr, end)						\
677 ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
678 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
679 })
680 #endif
681 
682 /*
683  * When walking page tables, we usually want to skip any p?d_none entries;
684  * and any p?d_bad entries - reporting the error before resetting to none.
685  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
686  */
687 void pgd_clear_bad(pgd_t *);
688 
689 #ifndef __PAGETABLE_P4D_FOLDED
690 void p4d_clear_bad(p4d_t *);
691 #else
692 #define p4d_clear_bad(p4d)        do { } while (0)
693 #endif
694 
695 #ifndef __PAGETABLE_PUD_FOLDED
696 void pud_clear_bad(pud_t *);
697 #else
698 #define pud_clear_bad(p4d)        do { } while (0)
699 #endif
700 
701 void pmd_clear_bad(pmd_t *);
702 
703 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
704 {
705 	if (pgd_none(*pgd))
706 		return 1;
707 	if (unlikely(pgd_bad(*pgd))) {
708 		pgd_clear_bad(pgd);
709 		return 1;
710 	}
711 	return 0;
712 }
713 
714 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
715 {
716 	if (p4d_none(*p4d))
717 		return 1;
718 	if (unlikely(p4d_bad(*p4d))) {
719 		p4d_clear_bad(p4d);
720 		return 1;
721 	}
722 	return 0;
723 }
724 
725 static inline int pud_none_or_clear_bad(pud_t *pud)
726 {
727 	if (pud_none(*pud))
728 		return 1;
729 	if (unlikely(pud_bad(*pud))) {
730 		pud_clear_bad(pud);
731 		return 1;
732 	}
733 	return 0;
734 }
735 
736 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
737 {
738 	if (pmd_none(*pmd))
739 		return 1;
740 	if (unlikely(pmd_bad(*pmd))) {
741 		pmd_clear_bad(pmd);
742 		return 1;
743 	}
744 	return 0;
745 }
746 
747 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
748 					     unsigned long addr,
749 					     pte_t *ptep)
750 {
751 	/*
752 	 * Get the current pte state, but zero it out to make it
753 	 * non-present, preventing the hardware from asynchronously
754 	 * updating it.
755 	 */
756 	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
757 }
758 
759 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
760 					     unsigned long addr,
761 					     pte_t *ptep, pte_t pte)
762 {
763 	/*
764 	 * The pte is non-present, so there's no hardware state to
765 	 * preserve.
766 	 */
767 	set_pte_at(vma->vm_mm, addr, ptep, pte);
768 }
769 
770 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
771 /*
772  * Start a pte protection read-modify-write transaction, which
773  * protects against asynchronous hardware modifications to the pte.
774  * The intention is not to prevent the hardware from making pte
775  * updates, but to prevent any updates it may make from being lost.
776  *
777  * This does not protect against other software modifications of the
778  * pte; the appropriate pte lock must be held over the transation.
779  *
780  * Note that this interface is intended to be batchable, meaning that
781  * ptep_modify_prot_commit may not actually update the pte, but merely
782  * queue the update to be done at some later time.  The update must be
783  * actually committed before the pte lock is released, however.
784  */
785 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
786 					   unsigned long addr,
787 					   pte_t *ptep)
788 {
789 	return __ptep_modify_prot_start(vma, addr, ptep);
790 }
791 
792 /*
793  * Commit an update to a pte, leaving any hardware-controlled bits in
794  * the PTE unmodified.
795  */
796 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
797 					   unsigned long addr,
798 					   pte_t *ptep, pte_t old_pte, pte_t pte)
799 {
800 	__ptep_modify_prot_commit(vma, addr, ptep, pte);
801 }
802 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
803 #endif /* CONFIG_MMU */
804 
805 /*
806  * No-op macros that just return the current protection value. Defined here
807  * because these macros can be used even if CONFIG_MMU is not defined.
808  */
809 
810 #ifndef pgprot_nx
811 #define pgprot_nx(prot)	(prot)
812 #endif
813 
814 #ifndef pgprot_noncached
815 #define pgprot_noncached(prot)	(prot)
816 #endif
817 
818 #ifndef pgprot_writecombine
819 #define pgprot_writecombine pgprot_noncached
820 #endif
821 
822 #ifndef pgprot_writethrough
823 #define pgprot_writethrough pgprot_noncached
824 #endif
825 
826 #ifndef pgprot_device
827 #define pgprot_device pgprot_noncached
828 #endif
829 
830 #ifdef CONFIG_MMU
831 #ifndef pgprot_modify
832 #define pgprot_modify pgprot_modify
833 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
834 {
835 	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
836 		newprot = pgprot_noncached(newprot);
837 	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
838 		newprot = pgprot_writecombine(newprot);
839 	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
840 		newprot = pgprot_device(newprot);
841 	return newprot;
842 }
843 #endif
844 #endif /* CONFIG_MMU */
845 
846 #ifndef pgprot_encrypted
847 #define pgprot_encrypted(prot)	(prot)
848 #endif
849 
850 #ifndef pgprot_decrypted
851 #define pgprot_decrypted(prot)	(prot)
852 #endif
853 
854 /*
855  * A facility to provide lazy MMU batching.  This allows PTE updates and
856  * page invalidations to be delayed until a call to leave lazy MMU mode
857  * is issued.  Some architectures may benefit from doing this, and it is
858  * beneficial for both shadow and direct mode hypervisors, which may batch
859  * the PTE updates which happen during this window.  Note that using this
860  * interface requires that read hazards be removed from the code.  A read
861  * hazard could result in the direct mode hypervisor case, since the actual
862  * write to the page tables may not yet have taken place, so reads though
863  * a raw PTE pointer after it has been modified are not guaranteed to be
864  * up to date.  This mode can only be entered and left under the protection of
865  * the page table locks for all page tables which may be modified.  In the UP
866  * case, this is required so that preemption is disabled, and in the SMP case,
867  * it must synchronize the delayed page table writes properly on other CPUs.
868  */
869 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
870 #define arch_enter_lazy_mmu_mode()	do {} while (0)
871 #define arch_leave_lazy_mmu_mode()	do {} while (0)
872 #define arch_flush_lazy_mmu_mode()	do {} while (0)
873 #endif
874 
875 /*
876  * A facility to provide batching of the reload of page tables and
877  * other process state with the actual context switch code for
878  * paravirtualized guests.  By convention, only one of the batched
879  * update (lazy) modes (CPU, MMU) should be active at any given time,
880  * entry should never be nested, and entry and exits should always be
881  * paired.  This is for sanity of maintaining and reasoning about the
882  * kernel code.  In this case, the exit (end of the context switch) is
883  * in architecture-specific code, and so doesn't need a generic
884  * definition.
885  */
886 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
887 #define arch_start_context_switch(prev)	do {} while (0)
888 #endif
889 
890 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
891 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
892 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
893 {
894 	return pmd;
895 }
896 
897 static inline int pmd_swp_soft_dirty(pmd_t pmd)
898 {
899 	return 0;
900 }
901 
902 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
903 {
904 	return pmd;
905 }
906 #endif
907 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
908 static inline int pte_soft_dirty(pte_t pte)
909 {
910 	return 0;
911 }
912 
913 static inline int pmd_soft_dirty(pmd_t pmd)
914 {
915 	return 0;
916 }
917 
918 static inline pte_t pte_mksoft_dirty(pte_t pte)
919 {
920 	return pte;
921 }
922 
923 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
924 {
925 	return pmd;
926 }
927 
928 static inline pte_t pte_clear_soft_dirty(pte_t pte)
929 {
930 	return pte;
931 }
932 
933 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
934 {
935 	return pmd;
936 }
937 
938 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
939 {
940 	return pte;
941 }
942 
943 static inline int pte_swp_soft_dirty(pte_t pte)
944 {
945 	return 0;
946 }
947 
948 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
949 {
950 	return pte;
951 }
952 
953 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
954 {
955 	return pmd;
956 }
957 
958 static inline int pmd_swp_soft_dirty(pmd_t pmd)
959 {
960 	return 0;
961 }
962 
963 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
964 {
965 	return pmd;
966 }
967 #endif
968 
969 #ifndef __HAVE_PFNMAP_TRACKING
970 /*
971  * Interfaces that can be used by architecture code to keep track of
972  * memory type of pfn mappings specified by the remap_pfn_range,
973  * vmf_insert_pfn.
974  */
975 
976 /*
977  * track_pfn_remap is called when a _new_ pfn mapping is being established
978  * by remap_pfn_range() for physical range indicated by pfn and size.
979  */
980 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
981 				  unsigned long pfn, unsigned long addr,
982 				  unsigned long size)
983 {
984 	return 0;
985 }
986 
987 /*
988  * track_pfn_insert is called when a _new_ single pfn is established
989  * by vmf_insert_pfn().
990  */
991 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
992 				    pfn_t pfn)
993 {
994 }
995 
996 /*
997  * track_pfn_copy is called when vma that is covering the pfnmap gets
998  * copied through copy_page_range().
999  */
1000 static inline int track_pfn_copy(struct vm_area_struct *vma)
1001 {
1002 	return 0;
1003 }
1004 
1005 /*
1006  * untrack_pfn is called while unmapping a pfnmap for a region.
1007  * untrack can be called for a specific region indicated by pfn and size or
1008  * can be for the entire vma (in which case pfn, size are zero).
1009  */
1010 static inline void untrack_pfn(struct vm_area_struct *vma,
1011 			       unsigned long pfn, unsigned long size)
1012 {
1013 }
1014 
1015 /*
1016  * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1017  */
1018 static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1019 {
1020 }
1021 #else
1022 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1023 			   unsigned long pfn, unsigned long addr,
1024 			   unsigned long size);
1025 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1026 			     pfn_t pfn);
1027 extern int track_pfn_copy(struct vm_area_struct *vma);
1028 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1029 			unsigned long size);
1030 extern void untrack_pfn_moved(struct vm_area_struct *vma);
1031 #endif
1032 
1033 #ifdef __HAVE_COLOR_ZERO_PAGE
1034 static inline int is_zero_pfn(unsigned long pfn)
1035 {
1036 	extern unsigned long zero_pfn;
1037 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1038 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1039 }
1040 
1041 #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
1042 
1043 #else
1044 static inline int is_zero_pfn(unsigned long pfn)
1045 {
1046 	extern unsigned long zero_pfn;
1047 	return pfn == zero_pfn;
1048 }
1049 
1050 static inline unsigned long my_zero_pfn(unsigned long addr)
1051 {
1052 	extern unsigned long zero_pfn;
1053 	return zero_pfn;
1054 }
1055 #endif
1056 
1057 #ifdef CONFIG_MMU
1058 
1059 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
1060 static inline int pmd_trans_huge(pmd_t pmd)
1061 {
1062 	return 0;
1063 }
1064 #ifndef pmd_write
1065 static inline int pmd_write(pmd_t pmd)
1066 {
1067 	BUG();
1068 	return 0;
1069 }
1070 #endif /* pmd_write */
1071 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1072 
1073 #ifndef pud_write
1074 static inline int pud_write(pud_t pud)
1075 {
1076 	BUG();
1077 	return 0;
1078 }
1079 #endif /* pud_write */
1080 
1081 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1082 static inline int pmd_devmap(pmd_t pmd)
1083 {
1084 	return 0;
1085 }
1086 static inline int pud_devmap(pud_t pud)
1087 {
1088 	return 0;
1089 }
1090 static inline int pgd_devmap(pgd_t pgd)
1091 {
1092 	return 0;
1093 }
1094 #endif
1095 
1096 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1097 	(defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1098 	 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
1099 static inline int pud_trans_huge(pud_t pud)
1100 {
1101 	return 0;
1102 }
1103 #endif
1104 
1105 /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1106 static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1107 {
1108 	pud_t pudval = READ_ONCE(*pud);
1109 
1110 	if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1111 		return 1;
1112 	if (unlikely(pud_bad(pudval))) {
1113 		pud_clear_bad(pud);
1114 		return 1;
1115 	}
1116 	return 0;
1117 }
1118 
1119 /* See pmd_trans_unstable for discussion. */
1120 static inline int pud_trans_unstable(pud_t *pud)
1121 {
1122 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
1123 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1124 	return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1125 #else
1126 	return 0;
1127 #endif
1128 }
1129 
1130 #ifndef pmd_read_atomic
1131 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1132 {
1133 	/*
1134 	 * Depend on compiler for an atomic pmd read. NOTE: this is
1135 	 * only going to work, if the pmdval_t isn't larger than
1136 	 * an unsigned long.
1137 	 */
1138 	return *pmdp;
1139 }
1140 #endif
1141 
1142 #ifndef arch_needs_pgtable_deposit
1143 #define arch_needs_pgtable_deposit() (false)
1144 #endif
1145 /*
1146  * This function is meant to be used by sites walking pagetables with
1147  * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1148  * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1149  * into a null pmd and the transhuge page fault can convert a null pmd
1150  * into an hugepmd or into a regular pmd (if the hugepage allocation
1151  * fails). While holding the mmap_lock in read mode the pmd becomes
1152  * stable and stops changing under us only if it's not null and not a
1153  * transhuge pmd. When those races occurs and this function makes a
1154  * difference vs the standard pmd_none_or_clear_bad, the result is
1155  * undefined so behaving like if the pmd was none is safe (because it
1156  * can return none anyway). The compiler level barrier() is critically
1157  * important to compute the two checks atomically on the same pmdval.
1158  *
1159  * For 32bit kernels with a 64bit large pmd_t this automatically takes
1160  * care of reading the pmd atomically to avoid SMP race conditions
1161  * against pmd_populate() when the mmap_lock is hold for reading by the
1162  * caller (a special atomic read not done by "gcc" as in the generic
1163  * version above, is also needed when THP is disabled because the page
1164  * fault can populate the pmd from under us).
1165  */
1166 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1167 {
1168 	pmd_t pmdval = pmd_read_atomic(pmd);
1169 	/*
1170 	 * The barrier will stabilize the pmdval in a register or on
1171 	 * the stack so that it will stop changing under the code.
1172 	 *
1173 	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1174 	 * pmd_read_atomic is allowed to return a not atomic pmdval
1175 	 * (for example pointing to an hugepage that has never been
1176 	 * mapped in the pmd). The below checks will only care about
1177 	 * the low part of the pmd with 32bit PAE x86 anyway, with the
1178 	 * exception of pmd_none(). So the important thing is that if
1179 	 * the low part of the pmd is found null, the high part will
1180 	 * be also null or the pmd_none() check below would be
1181 	 * confused.
1182 	 */
1183 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1184 	barrier();
1185 #endif
1186 	/*
1187 	 * !pmd_present() checks for pmd migration entries
1188 	 *
1189 	 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1190 	 * But using that requires moving current function and pmd_trans_unstable()
1191 	 * to linux/swapops.h to resovle dependency, which is too much code move.
1192 	 *
1193 	 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1194 	 * because !pmd_present() pages can only be under migration not swapped
1195 	 * out.
1196 	 *
1197 	 * pmd_none() is preseved for future condition checks on pmd migration
1198 	 * entries and not confusing with this function name, although it is
1199 	 * redundant with !pmd_present().
1200 	 */
1201 	if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1202 		(IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1203 		return 1;
1204 	if (unlikely(pmd_bad(pmdval))) {
1205 		pmd_clear_bad(pmd);
1206 		return 1;
1207 	}
1208 	return 0;
1209 }
1210 
1211 /*
1212  * This is a noop if Transparent Hugepage Support is not built into
1213  * the kernel. Otherwise it is equivalent to
1214  * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1215  * places that already verified the pmd is not none and they want to
1216  * walk ptes while holding the mmap sem in read mode (write mode don't
1217  * need this). If THP is not enabled, the pmd can't go away under the
1218  * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1219  * run a pmd_trans_unstable before walking the ptes after
1220  * split_huge_pmd returns (because it may have run when the pmd become
1221  * null, but then a page fault can map in a THP and not a regular page).
1222  */
1223 static inline int pmd_trans_unstable(pmd_t *pmd)
1224 {
1225 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1226 	return pmd_none_or_trans_huge_or_clear_bad(pmd);
1227 #else
1228 	return 0;
1229 #endif
1230 }
1231 
1232 #ifndef CONFIG_NUMA_BALANCING
1233 /*
1234  * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1235  * the only case the kernel cares is for NUMA balancing and is only ever set
1236  * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1237  * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1238  * is the responsibility of the caller to distinguish between PROT_NONE
1239  * protections and NUMA hinting fault protections.
1240  */
1241 static inline int pte_protnone(pte_t pte)
1242 {
1243 	return 0;
1244 }
1245 
1246 static inline int pmd_protnone(pmd_t pmd)
1247 {
1248 	return 0;
1249 }
1250 #endif /* CONFIG_NUMA_BALANCING */
1251 
1252 #endif /* CONFIG_MMU */
1253 
1254 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1255 
1256 #ifndef __PAGETABLE_P4D_FOLDED
1257 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1258 int p4d_clear_huge(p4d_t *p4d);
1259 #else
1260 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1261 {
1262 	return 0;
1263 }
1264 static inline int p4d_clear_huge(p4d_t *p4d)
1265 {
1266 	return 0;
1267 }
1268 #endif /* !__PAGETABLE_P4D_FOLDED */
1269 
1270 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1271 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1272 int pud_clear_huge(pud_t *pud);
1273 int pmd_clear_huge(pmd_t *pmd);
1274 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1275 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1276 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1277 #else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1278 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1279 {
1280 	return 0;
1281 }
1282 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1283 {
1284 	return 0;
1285 }
1286 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1287 {
1288 	return 0;
1289 }
1290 static inline int p4d_clear_huge(p4d_t *p4d)
1291 {
1292 	return 0;
1293 }
1294 static inline int pud_clear_huge(pud_t *pud)
1295 {
1296 	return 0;
1297 }
1298 static inline int pmd_clear_huge(pmd_t *pmd)
1299 {
1300 	return 0;
1301 }
1302 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1303 {
1304 	return 0;
1305 }
1306 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1307 {
1308 	return 0;
1309 }
1310 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1311 {
1312 	return 0;
1313 }
1314 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1315 
1316 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1318 /*
1319  * ARCHes with special requirements for evicting THP backing TLB entries can
1320  * implement this. Otherwise also, it can help optimize normal TLB flush in
1321  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1322  * entire TLB if flush span is greater than a threshold, which will
1323  * likely be true for a single huge page. Thus a single THP flush will
1324  * invalidate the entire TLB which is not desirable.
1325  * e.g. see arch/arc: flush_pmd_tlb_range
1326  */
1327 #define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1328 #define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1329 #else
1330 #define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1331 #define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1332 #endif
1333 #endif
1334 
1335 struct file;
1336 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1337 			unsigned long size, pgprot_t *vma_prot);
1338 
1339 #ifndef CONFIG_X86_ESPFIX64
1340 static inline void init_espfix_bsp(void) { }
1341 #endif
1342 
1343 extern void __init pgtable_cache_init(void);
1344 
1345 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1346 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1347 {
1348 	return true;
1349 }
1350 
1351 static inline bool arch_has_pfn_modify_check(void)
1352 {
1353 	return false;
1354 }
1355 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1356 
1357 /*
1358  * Architecture PAGE_KERNEL_* fallbacks
1359  *
1360  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1361  * because they really don't support them, or the port needs to be updated to
1362  * reflect the required functionality. Below are a set of relatively safe
1363  * fallbacks, as best effort, which we can count on in lieu of the architectures
1364  * not defining them on their own yet.
1365  */
1366 
1367 #ifndef PAGE_KERNEL_RO
1368 # define PAGE_KERNEL_RO PAGE_KERNEL
1369 #endif
1370 
1371 #ifndef PAGE_KERNEL_EXEC
1372 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1373 #endif
1374 
1375 /*
1376  * Page Table Modification bits for pgtbl_mod_mask.
1377  *
1378  * These are used by the p?d_alloc_track*() set of functions an in the generic
1379  * vmalloc/ioremap code to track at which page-table levels entries have been
1380  * modified. Based on that the code can better decide when vmalloc and ioremap
1381  * mapping changes need to be synchronized to other page-tables in the system.
1382  */
1383 #define		__PGTBL_PGD_MODIFIED	0
1384 #define		__PGTBL_P4D_MODIFIED	1
1385 #define		__PGTBL_PUD_MODIFIED	2
1386 #define		__PGTBL_PMD_MODIFIED	3
1387 #define		__PGTBL_PTE_MODIFIED	4
1388 
1389 #define		PGTBL_PGD_MODIFIED	BIT(__PGTBL_PGD_MODIFIED)
1390 #define		PGTBL_P4D_MODIFIED	BIT(__PGTBL_P4D_MODIFIED)
1391 #define		PGTBL_PUD_MODIFIED	BIT(__PGTBL_PUD_MODIFIED)
1392 #define		PGTBL_PMD_MODIFIED	BIT(__PGTBL_PMD_MODIFIED)
1393 #define		PGTBL_PTE_MODIFIED	BIT(__PGTBL_PTE_MODIFIED)
1394 
1395 /* Page-Table Modification Mask */
1396 typedef unsigned int pgtbl_mod_mask;
1397 
1398 #endif /* !__ASSEMBLY__ */
1399 
1400 #ifndef io_remap_pfn_range
1401 #define io_remap_pfn_range remap_pfn_range
1402 #endif
1403 
1404 #ifndef has_transparent_hugepage
1405 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1406 #define has_transparent_hugepage() 1
1407 #else
1408 #define has_transparent_hugepage() 0
1409 #endif
1410 #endif
1411 
1412 /*
1413  * On some architectures it depends on the mm if the p4d/pud or pmd
1414  * layer of the page table hierarchy is folded or not.
1415  */
1416 #ifndef mm_p4d_folded
1417 #define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1418 #endif
1419 
1420 #ifndef mm_pud_folded
1421 #define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1422 #endif
1423 
1424 #ifndef mm_pmd_folded
1425 #define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1426 #endif
1427 
1428 /*
1429  * p?d_leaf() - true if this entry is a final mapping to a physical address.
1430  * This differs from p?d_huge() by the fact that they are always available (if
1431  * the architecture supports large pages at the appropriate level) even
1432  * if CONFIG_HUGETLB_PAGE is not defined.
1433  * Only meaningful when called on a valid entry.
1434  */
1435 #ifndef pgd_leaf
1436 #define pgd_leaf(x)	0
1437 #endif
1438 #ifndef p4d_leaf
1439 #define p4d_leaf(x)	0
1440 #endif
1441 #ifndef pud_leaf
1442 #define pud_leaf(x)	0
1443 #endif
1444 #ifndef pmd_leaf
1445 #define pmd_leaf(x)	0
1446 #endif
1447 
1448 #endif /* _LINUX_PGTABLE_H */
1449