xref: /openbmc/linux/include/linux/percpu-defs.h (revision ba61bb17)
1 /*
2  * linux/percpu-defs.h - basic definitions for percpu areas
3  *
4  * DO NOT INCLUDE DIRECTLY OUTSIDE PERCPU IMPLEMENTATION PROPER.
5  *
6  * This file is separate from linux/percpu.h to avoid cyclic inclusion
7  * dependency from arch header files.  Only to be included from
8  * asm/percpu.h.
9  *
10  * This file includes macros necessary to declare percpu sections and
11  * variables, and definitions of percpu accessors and operations.  It
12  * should provide enough percpu features to arch header files even when
13  * they can only include asm/percpu.h to avoid cyclic inclusion dependency.
14  */
15 
16 #ifndef _LINUX_PERCPU_DEFS_H
17 #define _LINUX_PERCPU_DEFS_H
18 
19 #ifdef CONFIG_SMP
20 
21 #ifdef MODULE
22 #define PER_CPU_SHARED_ALIGNED_SECTION ""
23 #define PER_CPU_ALIGNED_SECTION ""
24 #else
25 #define PER_CPU_SHARED_ALIGNED_SECTION "..shared_aligned"
26 #define PER_CPU_ALIGNED_SECTION "..shared_aligned"
27 #endif
28 #define PER_CPU_FIRST_SECTION "..first"
29 
30 #else
31 
32 #define PER_CPU_SHARED_ALIGNED_SECTION ""
33 #define PER_CPU_ALIGNED_SECTION "..shared_aligned"
34 #define PER_CPU_FIRST_SECTION ""
35 
36 #endif
37 
38 /*
39  * Base implementations of per-CPU variable declarations and definitions, where
40  * the section in which the variable is to be placed is provided by the
41  * 'sec' argument.  This may be used to affect the parameters governing the
42  * variable's storage.
43  *
44  * NOTE!  The sections for the DECLARE and for the DEFINE must match, lest
45  * linkage errors occur due the compiler generating the wrong code to access
46  * that section.
47  */
48 #define __PCPU_ATTRS(sec)						\
49 	__percpu __attribute__((section(PER_CPU_BASE_SECTION sec)))	\
50 	PER_CPU_ATTRIBUTES
51 
52 #define __PCPU_DUMMY_ATTRS						\
53 	__attribute__((section(".discard"), unused))
54 
55 /*
56  * s390 and alpha modules require percpu variables to be defined as
57  * weak to force the compiler to generate GOT based external
58  * references for them.  This is necessary because percpu sections
59  * will be located outside of the usually addressable area.
60  *
61  * This definition puts the following two extra restrictions when
62  * defining percpu variables.
63  *
64  * 1. The symbol must be globally unique, even the static ones.
65  * 2. Static percpu variables cannot be defined inside a function.
66  *
67  * Archs which need weak percpu definitions should define
68  * ARCH_NEEDS_WEAK_PER_CPU in asm/percpu.h when necessary.
69  *
70  * To ensure that the generic code observes the above two
71  * restrictions, if CONFIG_DEBUG_FORCE_WEAK_PER_CPU is set weak
72  * definition is used for all cases.
73  */
74 #if defined(ARCH_NEEDS_WEAK_PER_CPU) || defined(CONFIG_DEBUG_FORCE_WEAK_PER_CPU)
75 /*
76  * __pcpu_scope_* dummy variable is used to enforce scope.  It
77  * receives the static modifier when it's used in front of
78  * DEFINE_PER_CPU() and will trigger build failure if
79  * DECLARE_PER_CPU() is used for the same variable.
80  *
81  * __pcpu_unique_* dummy variable is used to enforce symbol uniqueness
82  * such that hidden weak symbol collision, which will cause unrelated
83  * variables to share the same address, can be detected during build.
84  */
85 #define DECLARE_PER_CPU_SECTION(type, name, sec)			\
86 	extern __PCPU_DUMMY_ATTRS char __pcpu_scope_##name;		\
87 	extern __PCPU_ATTRS(sec) __typeof__(type) name
88 
89 #define DEFINE_PER_CPU_SECTION(type, name, sec)				\
90 	__PCPU_DUMMY_ATTRS char __pcpu_scope_##name;			\
91 	extern __PCPU_DUMMY_ATTRS char __pcpu_unique_##name;		\
92 	__PCPU_DUMMY_ATTRS char __pcpu_unique_##name;			\
93 	extern __PCPU_ATTRS(sec) __typeof__(type) name;			\
94 	__PCPU_ATTRS(sec) PER_CPU_DEF_ATTRIBUTES __weak			\
95 	__typeof__(type) name
96 #else
97 /*
98  * Normal declaration and definition macros.
99  */
100 #define DECLARE_PER_CPU_SECTION(type, name, sec)			\
101 	extern __PCPU_ATTRS(sec) __typeof__(type) name
102 
103 #define DEFINE_PER_CPU_SECTION(type, name, sec)				\
104 	__PCPU_ATTRS(sec) PER_CPU_DEF_ATTRIBUTES			\
105 	__typeof__(type) name
106 #endif
107 
108 /*
109  * Variant on the per-CPU variable declaration/definition theme used for
110  * ordinary per-CPU variables.
111  */
112 #define DECLARE_PER_CPU(type, name)					\
113 	DECLARE_PER_CPU_SECTION(type, name, "")
114 
115 #define DEFINE_PER_CPU(type, name)					\
116 	DEFINE_PER_CPU_SECTION(type, name, "")
117 
118 /*
119  * Declaration/definition used for per-CPU variables that must come first in
120  * the set of variables.
121  */
122 #define DECLARE_PER_CPU_FIRST(type, name)				\
123 	DECLARE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION)
124 
125 #define DEFINE_PER_CPU_FIRST(type, name)				\
126 	DEFINE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION)
127 
128 /*
129  * Declaration/definition used for per-CPU variables that must be cacheline
130  * aligned under SMP conditions so that, whilst a particular instance of the
131  * data corresponds to a particular CPU, inefficiencies due to direct access by
132  * other CPUs are reduced by preventing the data from unnecessarily spanning
133  * cachelines.
134  *
135  * An example of this would be statistical data, where each CPU's set of data
136  * is updated by that CPU alone, but the data from across all CPUs is collated
137  * by a CPU processing a read from a proc file.
138  */
139 #define DECLARE_PER_CPU_SHARED_ALIGNED(type, name)			\
140 	DECLARE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \
141 	____cacheline_aligned_in_smp
142 
143 #define DEFINE_PER_CPU_SHARED_ALIGNED(type, name)			\
144 	DEFINE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \
145 	____cacheline_aligned_in_smp
146 
147 #define DECLARE_PER_CPU_ALIGNED(type, name)				\
148 	DECLARE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION)	\
149 	____cacheline_aligned
150 
151 #define DEFINE_PER_CPU_ALIGNED(type, name)				\
152 	DEFINE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION)	\
153 	____cacheline_aligned
154 
155 /*
156  * Declaration/definition used for per-CPU variables that must be page aligned.
157  */
158 #define DECLARE_PER_CPU_PAGE_ALIGNED(type, name)			\
159 	DECLARE_PER_CPU_SECTION(type, name, "..page_aligned")		\
160 	__aligned(PAGE_SIZE)
161 
162 #define DEFINE_PER_CPU_PAGE_ALIGNED(type, name)				\
163 	DEFINE_PER_CPU_SECTION(type, name, "..page_aligned")		\
164 	__aligned(PAGE_SIZE)
165 
166 /*
167  * Declaration/definition used for per-CPU variables that must be read mostly.
168  */
169 #define DECLARE_PER_CPU_READ_MOSTLY(type, name)			\
170 	DECLARE_PER_CPU_SECTION(type, name, "..read_mostly")
171 
172 #define DEFINE_PER_CPU_READ_MOSTLY(type, name)				\
173 	DEFINE_PER_CPU_SECTION(type, name, "..read_mostly")
174 
175 /*
176  * Declaration/definition used for per-CPU variables that should be accessed
177  * as decrypted when memory encryption is enabled in the guest.
178  */
179 #if defined(CONFIG_VIRTUALIZATION) && defined(CONFIG_AMD_MEM_ENCRYPT)
180 
181 #define DECLARE_PER_CPU_DECRYPTED(type, name)				\
182 	DECLARE_PER_CPU_SECTION(type, name, "..decrypted")
183 
184 #define DEFINE_PER_CPU_DECRYPTED(type, name)				\
185 	DEFINE_PER_CPU_SECTION(type, name, "..decrypted")
186 #else
187 #define DEFINE_PER_CPU_DECRYPTED(type, name)	DEFINE_PER_CPU(type, name)
188 #endif
189 
190 /*
191  * Intermodule exports for per-CPU variables.  sparse forgets about
192  * address space across EXPORT_SYMBOL(), change EXPORT_SYMBOL() to
193  * noop if __CHECKER__.
194  */
195 #ifndef __CHECKER__
196 #define EXPORT_PER_CPU_SYMBOL(var) EXPORT_SYMBOL(var)
197 #define EXPORT_PER_CPU_SYMBOL_GPL(var) EXPORT_SYMBOL_GPL(var)
198 #else
199 #define EXPORT_PER_CPU_SYMBOL(var)
200 #define EXPORT_PER_CPU_SYMBOL_GPL(var)
201 #endif
202 
203 /*
204  * Accessors and operations.
205  */
206 #ifndef __ASSEMBLY__
207 
208 /*
209  * __verify_pcpu_ptr() verifies @ptr is a percpu pointer without evaluating
210  * @ptr and is invoked once before a percpu area is accessed by all
211  * accessors and operations.  This is performed in the generic part of
212  * percpu and arch overrides don't need to worry about it; however, if an
213  * arch wants to implement an arch-specific percpu accessor or operation,
214  * it may use __verify_pcpu_ptr() to verify the parameters.
215  *
216  * + 0 is required in order to convert the pointer type from a
217  * potential array type to a pointer to a single item of the array.
218  */
219 #define __verify_pcpu_ptr(ptr)						\
220 do {									\
221 	const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL;	\
222 	(void)__vpp_verify;						\
223 } while (0)
224 
225 #ifdef CONFIG_SMP
226 
227 /*
228  * Add an offset to a pointer but keep the pointer as-is.  Use RELOC_HIDE()
229  * to prevent the compiler from making incorrect assumptions about the
230  * pointer value.  The weird cast keeps both GCC and sparse happy.
231  */
232 #define SHIFT_PERCPU_PTR(__p, __offset)					\
233 	RELOC_HIDE((typeof(*(__p)) __kernel __force *)(__p), (__offset))
234 
235 #define per_cpu_ptr(ptr, cpu)						\
236 ({									\
237 	__verify_pcpu_ptr(ptr);						\
238 	SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)));			\
239 })
240 
241 #define raw_cpu_ptr(ptr)						\
242 ({									\
243 	__verify_pcpu_ptr(ptr);						\
244 	arch_raw_cpu_ptr(ptr);						\
245 })
246 
247 #ifdef CONFIG_DEBUG_PREEMPT
248 #define this_cpu_ptr(ptr)						\
249 ({									\
250 	__verify_pcpu_ptr(ptr);						\
251 	SHIFT_PERCPU_PTR(ptr, my_cpu_offset);				\
252 })
253 #else
254 #define this_cpu_ptr(ptr) raw_cpu_ptr(ptr)
255 #endif
256 
257 #else	/* CONFIG_SMP */
258 
259 #define VERIFY_PERCPU_PTR(__p)						\
260 ({									\
261 	__verify_pcpu_ptr(__p);						\
262 	(typeof(*(__p)) __kernel __force *)(__p);			\
263 })
264 
265 #define per_cpu_ptr(ptr, cpu)	({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
266 #define raw_cpu_ptr(ptr)	per_cpu_ptr(ptr, 0)
267 #define this_cpu_ptr(ptr)	raw_cpu_ptr(ptr)
268 
269 #endif	/* CONFIG_SMP */
270 
271 #define per_cpu(var, cpu)	(*per_cpu_ptr(&(var), cpu))
272 
273 /*
274  * Must be an lvalue. Since @var must be a simple identifier,
275  * we force a syntax error here if it isn't.
276  */
277 #define get_cpu_var(var)						\
278 (*({									\
279 	preempt_disable();						\
280 	this_cpu_ptr(&var);						\
281 }))
282 
283 /*
284  * The weird & is necessary because sparse considers (void)(var) to be
285  * a direct dereference of percpu variable (var).
286  */
287 #define put_cpu_var(var)						\
288 do {									\
289 	(void)&(var);							\
290 	preempt_enable();						\
291 } while (0)
292 
293 #define get_cpu_ptr(var)						\
294 ({									\
295 	preempt_disable();						\
296 	this_cpu_ptr(var);						\
297 })
298 
299 #define put_cpu_ptr(var)						\
300 do {									\
301 	(void)(var);							\
302 	preempt_enable();						\
303 } while (0)
304 
305 /*
306  * Branching function to split up a function into a set of functions that
307  * are called for different scalar sizes of the objects handled.
308  */
309 
310 extern void __bad_size_call_parameter(void);
311 
312 #ifdef CONFIG_DEBUG_PREEMPT
313 extern void __this_cpu_preempt_check(const char *op);
314 #else
315 static inline void __this_cpu_preempt_check(const char *op) { }
316 #endif
317 
318 #define __pcpu_size_call_return(stem, variable)				\
319 ({									\
320 	typeof(variable) pscr_ret__;					\
321 	__verify_pcpu_ptr(&(variable));					\
322 	switch(sizeof(variable)) {					\
323 	case 1: pscr_ret__ = stem##1(variable); break;			\
324 	case 2: pscr_ret__ = stem##2(variable); break;			\
325 	case 4: pscr_ret__ = stem##4(variable); break;			\
326 	case 8: pscr_ret__ = stem##8(variable); break;			\
327 	default:							\
328 		__bad_size_call_parameter(); break;			\
329 	}								\
330 	pscr_ret__;							\
331 })
332 
333 #define __pcpu_size_call_return2(stem, variable, ...)			\
334 ({									\
335 	typeof(variable) pscr2_ret__;					\
336 	__verify_pcpu_ptr(&(variable));					\
337 	switch(sizeof(variable)) {					\
338 	case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break;	\
339 	case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break;	\
340 	case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break;	\
341 	case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break;	\
342 	default:							\
343 		__bad_size_call_parameter(); break;			\
344 	}								\
345 	pscr2_ret__;							\
346 })
347 
348 /*
349  * Special handling for cmpxchg_double.  cmpxchg_double is passed two
350  * percpu variables.  The first has to be aligned to a double word
351  * boundary and the second has to follow directly thereafter.
352  * We enforce this on all architectures even if they don't support
353  * a double cmpxchg instruction, since it's a cheap requirement, and it
354  * avoids breaking the requirement for architectures with the instruction.
355  */
356 #define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...)		\
357 ({									\
358 	bool pdcrb_ret__;						\
359 	__verify_pcpu_ptr(&(pcp1));					\
360 	BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2));			\
361 	VM_BUG_ON((unsigned long)(&(pcp1)) % (2 * sizeof(pcp1)));	\
362 	VM_BUG_ON((unsigned long)(&(pcp2)) !=				\
363 		  (unsigned long)(&(pcp1)) + sizeof(pcp1));		\
364 	switch(sizeof(pcp1)) {						\
365 	case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break;	\
366 	case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break;	\
367 	case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break;	\
368 	case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break;	\
369 	default:							\
370 		__bad_size_call_parameter(); break;			\
371 	}								\
372 	pdcrb_ret__;							\
373 })
374 
375 #define __pcpu_size_call(stem, variable, ...)				\
376 do {									\
377 	__verify_pcpu_ptr(&(variable));					\
378 	switch(sizeof(variable)) {					\
379 		case 1: stem##1(variable, __VA_ARGS__);break;		\
380 		case 2: stem##2(variable, __VA_ARGS__);break;		\
381 		case 4: stem##4(variable, __VA_ARGS__);break;		\
382 		case 8: stem##8(variable, __VA_ARGS__);break;		\
383 		default: 						\
384 			__bad_size_call_parameter();break;		\
385 	}								\
386 } while (0)
387 
388 /*
389  * this_cpu operations (C) 2008-2013 Christoph Lameter <cl@linux.com>
390  *
391  * Optimized manipulation for memory allocated through the per cpu
392  * allocator or for addresses of per cpu variables.
393  *
394  * These operation guarantee exclusivity of access for other operations
395  * on the *same* processor. The assumption is that per cpu data is only
396  * accessed by a single processor instance (the current one).
397  *
398  * The arch code can provide optimized implementation by defining macros
399  * for certain scalar sizes. F.e. provide this_cpu_add_2() to provide per
400  * cpu atomic operations for 2 byte sized RMW actions. If arch code does
401  * not provide operations for a scalar size then the fallback in the
402  * generic code will be used.
403  *
404  * cmpxchg_double replaces two adjacent scalars at once.  The first two
405  * parameters are per cpu variables which have to be of the same size.  A
406  * truth value is returned to indicate success or failure (since a double
407  * register result is difficult to handle).  There is very limited hardware
408  * support for these operations, so only certain sizes may work.
409  */
410 
411 /*
412  * Operations for contexts where we do not want to do any checks for
413  * preemptions.  Unless strictly necessary, always use [__]this_cpu_*()
414  * instead.
415  *
416  * If there is no other protection through preempt disable and/or disabling
417  * interupts then one of these RMW operations can show unexpected behavior
418  * because the execution thread was rescheduled on another processor or an
419  * interrupt occurred and the same percpu variable was modified from the
420  * interrupt context.
421  */
422 #define raw_cpu_read(pcp)		__pcpu_size_call_return(raw_cpu_read_, pcp)
423 #define raw_cpu_write(pcp, val)		__pcpu_size_call(raw_cpu_write_, pcp, val)
424 #define raw_cpu_add(pcp, val)		__pcpu_size_call(raw_cpu_add_, pcp, val)
425 #define raw_cpu_and(pcp, val)		__pcpu_size_call(raw_cpu_and_, pcp, val)
426 #define raw_cpu_or(pcp, val)		__pcpu_size_call(raw_cpu_or_, pcp, val)
427 #define raw_cpu_add_return(pcp, val)	__pcpu_size_call_return2(raw_cpu_add_return_, pcp, val)
428 #define raw_cpu_xchg(pcp, nval)		__pcpu_size_call_return2(raw_cpu_xchg_, pcp, nval)
429 #define raw_cpu_cmpxchg(pcp, oval, nval) \
430 	__pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval)
431 #define raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
432 	__pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2)
433 
434 #define raw_cpu_sub(pcp, val)		raw_cpu_add(pcp, -(val))
435 #define raw_cpu_inc(pcp)		raw_cpu_add(pcp, 1)
436 #define raw_cpu_dec(pcp)		raw_cpu_sub(pcp, 1)
437 #define raw_cpu_sub_return(pcp, val)	raw_cpu_add_return(pcp, -(typeof(pcp))(val))
438 #define raw_cpu_inc_return(pcp)		raw_cpu_add_return(pcp, 1)
439 #define raw_cpu_dec_return(pcp)		raw_cpu_add_return(pcp, -1)
440 
441 /*
442  * Operations for contexts that are safe from preemption/interrupts.  These
443  * operations verify that preemption is disabled.
444  */
445 #define __this_cpu_read(pcp)						\
446 ({									\
447 	__this_cpu_preempt_check("read");				\
448 	raw_cpu_read(pcp);						\
449 })
450 
451 #define __this_cpu_write(pcp, val)					\
452 ({									\
453 	__this_cpu_preempt_check("write");				\
454 	raw_cpu_write(pcp, val);					\
455 })
456 
457 #define __this_cpu_add(pcp, val)					\
458 ({									\
459 	__this_cpu_preempt_check("add");				\
460 	raw_cpu_add(pcp, val);						\
461 })
462 
463 #define __this_cpu_and(pcp, val)					\
464 ({									\
465 	__this_cpu_preempt_check("and");				\
466 	raw_cpu_and(pcp, val);						\
467 })
468 
469 #define __this_cpu_or(pcp, val)						\
470 ({									\
471 	__this_cpu_preempt_check("or");					\
472 	raw_cpu_or(pcp, val);						\
473 })
474 
475 #define __this_cpu_add_return(pcp, val)					\
476 ({									\
477 	__this_cpu_preempt_check("add_return");				\
478 	raw_cpu_add_return(pcp, val);					\
479 })
480 
481 #define __this_cpu_xchg(pcp, nval)					\
482 ({									\
483 	__this_cpu_preempt_check("xchg");				\
484 	raw_cpu_xchg(pcp, nval);					\
485 })
486 
487 #define __this_cpu_cmpxchg(pcp, oval, nval)				\
488 ({									\
489 	__this_cpu_preempt_check("cmpxchg");				\
490 	raw_cpu_cmpxchg(pcp, oval, nval);				\
491 })
492 
493 #define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
494 ({	__this_cpu_preempt_check("cmpxchg_double");			\
495 	raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2);	\
496 })
497 
498 #define __this_cpu_sub(pcp, val)	__this_cpu_add(pcp, -(typeof(pcp))(val))
499 #define __this_cpu_inc(pcp)		__this_cpu_add(pcp, 1)
500 #define __this_cpu_dec(pcp)		__this_cpu_sub(pcp, 1)
501 #define __this_cpu_sub_return(pcp, val)	__this_cpu_add_return(pcp, -(typeof(pcp))(val))
502 #define __this_cpu_inc_return(pcp)	__this_cpu_add_return(pcp, 1)
503 #define __this_cpu_dec_return(pcp)	__this_cpu_add_return(pcp, -1)
504 
505 /*
506  * Operations with implied preemption/interrupt protection.  These
507  * operations can be used without worrying about preemption or interrupt.
508  */
509 #define this_cpu_read(pcp)		__pcpu_size_call_return(this_cpu_read_, pcp)
510 #define this_cpu_write(pcp, val)	__pcpu_size_call(this_cpu_write_, pcp, val)
511 #define this_cpu_add(pcp, val)		__pcpu_size_call(this_cpu_add_, pcp, val)
512 #define this_cpu_and(pcp, val)		__pcpu_size_call(this_cpu_and_, pcp, val)
513 #define this_cpu_or(pcp, val)		__pcpu_size_call(this_cpu_or_, pcp, val)
514 #define this_cpu_add_return(pcp, val)	__pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
515 #define this_cpu_xchg(pcp, nval)	__pcpu_size_call_return2(this_cpu_xchg_, pcp, nval)
516 #define this_cpu_cmpxchg(pcp, oval, nval) \
517 	__pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
518 #define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
519 	__pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2)
520 
521 #define this_cpu_sub(pcp, val)		this_cpu_add(pcp, -(typeof(pcp))(val))
522 #define this_cpu_inc(pcp)		this_cpu_add(pcp, 1)
523 #define this_cpu_dec(pcp)		this_cpu_sub(pcp, 1)
524 #define this_cpu_sub_return(pcp, val)	this_cpu_add_return(pcp, -(typeof(pcp))(val))
525 #define this_cpu_inc_return(pcp)	this_cpu_add_return(pcp, 1)
526 #define this_cpu_dec_return(pcp)	this_cpu_add_return(pcp, -1)
527 
528 #endif /* __ASSEMBLY__ */
529 #endif /* _LINUX_PERCPU_DEFS_H */
530