xref: /openbmc/linux/include/linux/pagemap.h (revision d78c317f)
1 #ifndef _LINUX_PAGEMAP_H
2 #define _LINUX_PAGEMAP_H
3 
4 /*
5  * Copyright 1995 Linus Torvalds
6  */
7 #include <linux/mm.h>
8 #include <linux/fs.h>
9 #include <linux/list.h>
10 #include <linux/highmem.h>
11 #include <linux/compiler.h>
12 #include <asm/uaccess.h>
13 #include <linux/gfp.h>
14 #include <linux/bitops.h>
15 #include <linux/hardirq.h> /* for in_interrupt() */
16 #include <linux/hugetlb_inline.h>
17 
18 /*
19  * Bits in mapping->flags.  The lower __GFP_BITS_SHIFT bits are the page
20  * allocation mode flags.
21  */
22 enum mapping_flags {
23 	AS_EIO		= __GFP_BITS_SHIFT + 0,	/* IO error on async write */
24 	AS_ENOSPC	= __GFP_BITS_SHIFT + 1,	/* ENOSPC on async write */
25 	AS_MM_ALL_LOCKS	= __GFP_BITS_SHIFT + 2,	/* under mm_take_all_locks() */
26 	AS_UNEVICTABLE	= __GFP_BITS_SHIFT + 3,	/* e.g., ramdisk, SHM_LOCK */
27 };
28 
29 static inline void mapping_set_error(struct address_space *mapping, int error)
30 {
31 	if (unlikely(error)) {
32 		if (error == -ENOSPC)
33 			set_bit(AS_ENOSPC, &mapping->flags);
34 		else
35 			set_bit(AS_EIO, &mapping->flags);
36 	}
37 }
38 
39 static inline void mapping_set_unevictable(struct address_space *mapping)
40 {
41 	set_bit(AS_UNEVICTABLE, &mapping->flags);
42 }
43 
44 static inline void mapping_clear_unevictable(struct address_space *mapping)
45 {
46 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
47 }
48 
49 static inline int mapping_unevictable(struct address_space *mapping)
50 {
51 	if (mapping)
52 		return test_bit(AS_UNEVICTABLE, &mapping->flags);
53 	return !!mapping;
54 }
55 
56 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
57 {
58 	return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
59 }
60 
61 /*
62  * This is non-atomic.  Only to be used before the mapping is activated.
63  * Probably needs a barrier...
64  */
65 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
66 {
67 	m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
68 				(__force unsigned long)mask;
69 }
70 
71 /*
72  * The page cache can done in larger chunks than
73  * one page, because it allows for more efficient
74  * throughput (it can then be mapped into user
75  * space in smaller chunks for same flexibility).
76  *
77  * Or rather, it _will_ be done in larger chunks.
78  */
79 #define PAGE_CACHE_SHIFT	PAGE_SHIFT
80 #define PAGE_CACHE_SIZE		PAGE_SIZE
81 #define PAGE_CACHE_MASK		PAGE_MASK
82 #define PAGE_CACHE_ALIGN(addr)	(((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
83 
84 #define page_cache_get(page)		get_page(page)
85 #define page_cache_release(page)	put_page(page)
86 void release_pages(struct page **pages, int nr, int cold);
87 
88 /*
89  * speculatively take a reference to a page.
90  * If the page is free (_count == 0), then _count is untouched, and 0
91  * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
92  *
93  * This function must be called inside the same rcu_read_lock() section as has
94  * been used to lookup the page in the pagecache radix-tree (or page table):
95  * this allows allocators to use a synchronize_rcu() to stabilize _count.
96  *
97  * Unless an RCU grace period has passed, the count of all pages coming out
98  * of the allocator must be considered unstable. page_count may return higher
99  * than expected, and put_page must be able to do the right thing when the
100  * page has been finished with, no matter what it is subsequently allocated
101  * for (because put_page is what is used here to drop an invalid speculative
102  * reference).
103  *
104  * This is the interesting part of the lockless pagecache (and lockless
105  * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
106  * has the following pattern:
107  * 1. find page in radix tree
108  * 2. conditionally increment refcount
109  * 3. check the page is still in pagecache (if no, goto 1)
110  *
111  * Remove-side that cares about stability of _count (eg. reclaim) has the
112  * following (with tree_lock held for write):
113  * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
114  * B. remove page from pagecache
115  * C. free the page
116  *
117  * There are 2 critical interleavings that matter:
118  * - 2 runs before A: in this case, A sees elevated refcount and bails out
119  * - A runs before 2: in this case, 2 sees zero refcount and retries;
120  *   subsequently, B will complete and 1 will find no page, causing the
121  *   lookup to return NULL.
122  *
123  * It is possible that between 1 and 2, the page is removed then the exact same
124  * page is inserted into the same position in pagecache. That's OK: the
125  * old find_get_page using tree_lock could equally have run before or after
126  * such a re-insertion, depending on order that locks are granted.
127  *
128  * Lookups racing against pagecache insertion isn't a big problem: either 1
129  * will find the page or it will not. Likewise, the old find_get_page could run
130  * either before the insertion or afterwards, depending on timing.
131  */
132 static inline int page_cache_get_speculative(struct page *page)
133 {
134 	VM_BUG_ON(in_interrupt());
135 
136 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
137 # ifdef CONFIG_PREEMPT_COUNT
138 	VM_BUG_ON(!in_atomic());
139 # endif
140 	/*
141 	 * Preempt must be disabled here - we rely on rcu_read_lock doing
142 	 * this for us.
143 	 *
144 	 * Pagecache won't be truncated from interrupt context, so if we have
145 	 * found a page in the radix tree here, we have pinned its refcount by
146 	 * disabling preempt, and hence no need for the "speculative get" that
147 	 * SMP requires.
148 	 */
149 	VM_BUG_ON(page_count(page) == 0);
150 	atomic_inc(&page->_count);
151 
152 #else
153 	if (unlikely(!get_page_unless_zero(page))) {
154 		/*
155 		 * Either the page has been freed, or will be freed.
156 		 * In either case, retry here and the caller should
157 		 * do the right thing (see comments above).
158 		 */
159 		return 0;
160 	}
161 #endif
162 	VM_BUG_ON(PageTail(page));
163 
164 	return 1;
165 }
166 
167 /*
168  * Same as above, but add instead of inc (could just be merged)
169  */
170 static inline int page_cache_add_speculative(struct page *page, int count)
171 {
172 	VM_BUG_ON(in_interrupt());
173 
174 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
175 # ifdef CONFIG_PREEMPT_COUNT
176 	VM_BUG_ON(!in_atomic());
177 # endif
178 	VM_BUG_ON(page_count(page) == 0);
179 	atomic_add(count, &page->_count);
180 
181 #else
182 	if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
183 		return 0;
184 #endif
185 	VM_BUG_ON(PageCompound(page) && page != compound_head(page));
186 
187 	return 1;
188 }
189 
190 static inline int page_freeze_refs(struct page *page, int count)
191 {
192 	return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
193 }
194 
195 static inline void page_unfreeze_refs(struct page *page, int count)
196 {
197 	VM_BUG_ON(page_count(page) != 0);
198 	VM_BUG_ON(count == 0);
199 
200 	atomic_set(&page->_count, count);
201 }
202 
203 #ifdef CONFIG_NUMA
204 extern struct page *__page_cache_alloc(gfp_t gfp);
205 #else
206 static inline struct page *__page_cache_alloc(gfp_t gfp)
207 {
208 	return alloc_pages(gfp, 0);
209 }
210 #endif
211 
212 static inline struct page *page_cache_alloc(struct address_space *x)
213 {
214 	return __page_cache_alloc(mapping_gfp_mask(x));
215 }
216 
217 static inline struct page *page_cache_alloc_cold(struct address_space *x)
218 {
219 	return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
220 }
221 
222 static inline struct page *page_cache_alloc_readahead(struct address_space *x)
223 {
224 	return __page_cache_alloc(mapping_gfp_mask(x) |
225 				  __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN);
226 }
227 
228 typedef int filler_t(void *, struct page *);
229 
230 extern struct page * find_get_page(struct address_space *mapping,
231 				pgoff_t index);
232 extern struct page * find_lock_page(struct address_space *mapping,
233 				pgoff_t index);
234 extern struct page * find_or_create_page(struct address_space *mapping,
235 				pgoff_t index, gfp_t gfp_mask);
236 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
237 			unsigned int nr_pages, struct page **pages);
238 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
239 			       unsigned int nr_pages, struct page **pages);
240 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
241 			int tag, unsigned int nr_pages, struct page **pages);
242 
243 struct page *grab_cache_page_write_begin(struct address_space *mapping,
244 			pgoff_t index, unsigned flags);
245 
246 /*
247  * Returns locked page at given index in given cache, creating it if needed.
248  */
249 static inline struct page *grab_cache_page(struct address_space *mapping,
250 								pgoff_t index)
251 {
252 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
253 }
254 
255 extern struct page * grab_cache_page_nowait(struct address_space *mapping,
256 				pgoff_t index);
257 extern struct page * read_cache_page_async(struct address_space *mapping,
258 				pgoff_t index, filler_t *filler, void *data);
259 extern struct page * read_cache_page(struct address_space *mapping,
260 				pgoff_t index, filler_t *filler, void *data);
261 extern struct page * read_cache_page_gfp(struct address_space *mapping,
262 				pgoff_t index, gfp_t gfp_mask);
263 extern int read_cache_pages(struct address_space *mapping,
264 		struct list_head *pages, filler_t *filler, void *data);
265 
266 static inline struct page *read_mapping_page_async(
267 				struct address_space *mapping,
268 				pgoff_t index, void *data)
269 {
270 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
271 	return read_cache_page_async(mapping, index, filler, data);
272 }
273 
274 static inline struct page *read_mapping_page(struct address_space *mapping,
275 				pgoff_t index, void *data)
276 {
277 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
278 	return read_cache_page(mapping, index, filler, data);
279 }
280 
281 /*
282  * Return byte-offset into filesystem object for page.
283  */
284 static inline loff_t page_offset(struct page *page)
285 {
286 	return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
287 }
288 
289 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
290 				     unsigned long address);
291 
292 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
293 					unsigned long address)
294 {
295 	pgoff_t pgoff;
296 	if (unlikely(is_vm_hugetlb_page(vma)))
297 		return linear_hugepage_index(vma, address);
298 	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
299 	pgoff += vma->vm_pgoff;
300 	return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
301 }
302 
303 extern void __lock_page(struct page *page);
304 extern int __lock_page_killable(struct page *page);
305 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
306 				unsigned int flags);
307 extern void unlock_page(struct page *page);
308 
309 static inline void __set_page_locked(struct page *page)
310 {
311 	__set_bit(PG_locked, &page->flags);
312 }
313 
314 static inline void __clear_page_locked(struct page *page)
315 {
316 	__clear_bit(PG_locked, &page->flags);
317 }
318 
319 static inline int trylock_page(struct page *page)
320 {
321 	return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
322 }
323 
324 /*
325  * lock_page may only be called if we have the page's inode pinned.
326  */
327 static inline void lock_page(struct page *page)
328 {
329 	might_sleep();
330 	if (!trylock_page(page))
331 		__lock_page(page);
332 }
333 
334 /*
335  * lock_page_killable is like lock_page but can be interrupted by fatal
336  * signals.  It returns 0 if it locked the page and -EINTR if it was
337  * killed while waiting.
338  */
339 static inline int lock_page_killable(struct page *page)
340 {
341 	might_sleep();
342 	if (!trylock_page(page))
343 		return __lock_page_killable(page);
344 	return 0;
345 }
346 
347 /*
348  * lock_page_or_retry - Lock the page, unless this would block and the
349  * caller indicated that it can handle a retry.
350  */
351 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
352 				     unsigned int flags)
353 {
354 	might_sleep();
355 	return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
356 }
357 
358 /*
359  * This is exported only for wait_on_page_locked/wait_on_page_writeback.
360  * Never use this directly!
361  */
362 extern void wait_on_page_bit(struct page *page, int bit_nr);
363 
364 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
365 
366 static inline int wait_on_page_locked_killable(struct page *page)
367 {
368 	if (PageLocked(page))
369 		return wait_on_page_bit_killable(page, PG_locked);
370 	return 0;
371 }
372 
373 /*
374  * Wait for a page to be unlocked.
375  *
376  * This must be called with the caller "holding" the page,
377  * ie with increased "page->count" so that the page won't
378  * go away during the wait..
379  */
380 static inline void wait_on_page_locked(struct page *page)
381 {
382 	if (PageLocked(page))
383 		wait_on_page_bit(page, PG_locked);
384 }
385 
386 /*
387  * Wait for a page to complete writeback
388  */
389 static inline void wait_on_page_writeback(struct page *page)
390 {
391 	if (PageWriteback(page))
392 		wait_on_page_bit(page, PG_writeback);
393 }
394 
395 extern void end_page_writeback(struct page *page);
396 
397 /*
398  * Add an arbitrary waiter to a page's wait queue
399  */
400 extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
401 
402 /*
403  * Fault a userspace page into pagetables.  Return non-zero on a fault.
404  *
405  * This assumes that two userspace pages are always sufficient.  That's
406  * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
407  */
408 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
409 {
410 	int ret;
411 
412 	if (unlikely(size == 0))
413 		return 0;
414 
415 	/*
416 	 * Writing zeroes into userspace here is OK, because we know that if
417 	 * the zero gets there, we'll be overwriting it.
418 	 */
419 	ret = __put_user(0, uaddr);
420 	if (ret == 0) {
421 		char __user *end = uaddr + size - 1;
422 
423 		/*
424 		 * If the page was already mapped, this will get a cache miss
425 		 * for sure, so try to avoid doing it.
426 		 */
427 		if (((unsigned long)uaddr & PAGE_MASK) !=
428 				((unsigned long)end & PAGE_MASK))
429 		 	ret = __put_user(0, end);
430 	}
431 	return ret;
432 }
433 
434 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
435 {
436 	volatile char c;
437 	int ret;
438 
439 	if (unlikely(size == 0))
440 		return 0;
441 
442 	ret = __get_user(c, uaddr);
443 	if (ret == 0) {
444 		const char __user *end = uaddr + size - 1;
445 
446 		if (((unsigned long)uaddr & PAGE_MASK) !=
447 				((unsigned long)end & PAGE_MASK)) {
448 		 	ret = __get_user(c, end);
449 			(void)c;
450 		}
451 	}
452 	return ret;
453 }
454 
455 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
456 				pgoff_t index, gfp_t gfp_mask);
457 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
458 				pgoff_t index, gfp_t gfp_mask);
459 extern void delete_from_page_cache(struct page *page);
460 extern void __delete_from_page_cache(struct page *page);
461 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
462 
463 /*
464  * Like add_to_page_cache_locked, but used to add newly allocated pages:
465  * the page is new, so we can just run __set_page_locked() against it.
466  */
467 static inline int add_to_page_cache(struct page *page,
468 		struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
469 {
470 	int error;
471 
472 	__set_page_locked(page);
473 	error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
474 	if (unlikely(error))
475 		__clear_page_locked(page);
476 	return error;
477 }
478 
479 #endif /* _LINUX_PAGEMAP_H */
480