xref: /openbmc/linux/include/linux/pagemap.h (revision 05654431)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4 
5 /*
6  * Copyright 1995 Linus Torvalds
7  */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18 
19 struct folio_batch;
20 
21 unsigned long invalidate_mapping_pages(struct address_space *mapping,
22 					pgoff_t start, pgoff_t end);
23 
24 static inline void invalidate_remote_inode(struct inode *inode)
25 {
26 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27 	    S_ISLNK(inode->i_mode))
28 		invalidate_mapping_pages(inode->i_mapping, 0, -1);
29 }
30 int invalidate_inode_pages2(struct address_space *mapping);
31 int invalidate_inode_pages2_range(struct address_space *mapping,
32 		pgoff_t start, pgoff_t end);
33 int write_inode_now(struct inode *, int sync);
34 int filemap_fdatawrite(struct address_space *);
35 int filemap_flush(struct address_space *);
36 int filemap_fdatawait_keep_errors(struct address_space *mapping);
37 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
38 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
39 		loff_t start_byte, loff_t end_byte);
40 
41 static inline int filemap_fdatawait(struct address_space *mapping)
42 {
43 	return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
44 }
45 
46 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
47 int filemap_write_and_wait_range(struct address_space *mapping,
48 		loff_t lstart, loff_t lend);
49 int __filemap_fdatawrite_range(struct address_space *mapping,
50 		loff_t start, loff_t end, int sync_mode);
51 int filemap_fdatawrite_range(struct address_space *mapping,
52 		loff_t start, loff_t end);
53 int filemap_check_errors(struct address_space *mapping);
54 void __filemap_set_wb_err(struct address_space *mapping, int err);
55 int filemap_fdatawrite_wbc(struct address_space *mapping,
56 			   struct writeback_control *wbc);
57 
58 static inline int filemap_write_and_wait(struct address_space *mapping)
59 {
60 	return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
61 }
62 
63 /**
64  * filemap_set_wb_err - set a writeback error on an address_space
65  * @mapping: mapping in which to set writeback error
66  * @err: error to be set in mapping
67  *
68  * When writeback fails in some way, we must record that error so that
69  * userspace can be informed when fsync and the like are called.  We endeavor
70  * to report errors on any file that was open at the time of the error.  Some
71  * internal callers also need to know when writeback errors have occurred.
72  *
73  * When a writeback error occurs, most filesystems will want to call
74  * filemap_set_wb_err to record the error in the mapping so that it will be
75  * automatically reported whenever fsync is called on the file.
76  */
77 static inline void filemap_set_wb_err(struct address_space *mapping, int err)
78 {
79 	/* Fastpath for common case of no error */
80 	if (unlikely(err))
81 		__filemap_set_wb_err(mapping, err);
82 }
83 
84 /**
85  * filemap_check_wb_err - has an error occurred since the mark was sampled?
86  * @mapping: mapping to check for writeback errors
87  * @since: previously-sampled errseq_t
88  *
89  * Grab the errseq_t value from the mapping, and see if it has changed "since"
90  * the given value was sampled.
91  *
92  * If it has then report the latest error set, otherwise return 0.
93  */
94 static inline int filemap_check_wb_err(struct address_space *mapping,
95 					errseq_t since)
96 {
97 	return errseq_check(&mapping->wb_err, since);
98 }
99 
100 /**
101  * filemap_sample_wb_err - sample the current errseq_t to test for later errors
102  * @mapping: mapping to be sampled
103  *
104  * Writeback errors are always reported relative to a particular sample point
105  * in the past. This function provides those sample points.
106  */
107 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
108 {
109 	return errseq_sample(&mapping->wb_err);
110 }
111 
112 /**
113  * file_sample_sb_err - sample the current errseq_t to test for later errors
114  * @file: file pointer to be sampled
115  *
116  * Grab the most current superblock-level errseq_t value for the given
117  * struct file.
118  */
119 static inline errseq_t file_sample_sb_err(struct file *file)
120 {
121 	return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
122 }
123 
124 /*
125  * Flush file data before changing attributes.  Caller must hold any locks
126  * required to prevent further writes to this file until we're done setting
127  * flags.
128  */
129 static inline int inode_drain_writes(struct inode *inode)
130 {
131 	inode_dio_wait(inode);
132 	return filemap_write_and_wait(inode->i_mapping);
133 }
134 
135 static inline bool mapping_empty(struct address_space *mapping)
136 {
137 	return xa_empty(&mapping->i_pages);
138 }
139 
140 /*
141  * mapping_shrinkable - test if page cache state allows inode reclaim
142  * @mapping: the page cache mapping
143  *
144  * This checks the mapping's cache state for the pupose of inode
145  * reclaim and LRU management.
146  *
147  * The caller is expected to hold the i_lock, but is not required to
148  * hold the i_pages lock, which usually protects cache state. That's
149  * because the i_lock and the list_lru lock that protect the inode and
150  * its LRU state don't nest inside the irq-safe i_pages lock.
151  *
152  * Cache deletions are performed under the i_lock, which ensures that
153  * when an inode goes empty, it will reliably get queued on the LRU.
154  *
155  * Cache additions do not acquire the i_lock and may race with this
156  * check, in which case we'll report the inode as shrinkable when it
157  * has cache pages. This is okay: the shrinker also checks the
158  * refcount and the referenced bit, which will be elevated or set in
159  * the process of adding new cache pages to an inode.
160  */
161 static inline bool mapping_shrinkable(struct address_space *mapping)
162 {
163 	void *head;
164 
165 	/*
166 	 * On highmem systems, there could be lowmem pressure from the
167 	 * inodes before there is highmem pressure from the page
168 	 * cache. Make inodes shrinkable regardless of cache state.
169 	 */
170 	if (IS_ENABLED(CONFIG_HIGHMEM))
171 		return true;
172 
173 	/* Cache completely empty? Shrink away. */
174 	head = rcu_access_pointer(mapping->i_pages.xa_head);
175 	if (!head)
176 		return true;
177 
178 	/*
179 	 * The xarray stores single offset-0 entries directly in the
180 	 * head pointer, which allows non-resident page cache entries
181 	 * to escape the shadow shrinker's list of xarray nodes. The
182 	 * inode shrinker needs to pick them up under memory pressure.
183 	 */
184 	if (!xa_is_node(head) && xa_is_value(head))
185 		return true;
186 
187 	return false;
188 }
189 
190 /*
191  * Bits in mapping->flags.
192  */
193 enum mapping_flags {
194 	AS_EIO		= 0,	/* IO error on async write */
195 	AS_ENOSPC	= 1,	/* ENOSPC on async write */
196 	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
197 	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
198 	AS_EXITING	= 4, 	/* final truncate in progress */
199 	/* writeback related tags are not used */
200 	AS_NO_WRITEBACK_TAGS = 5,
201 	AS_LARGE_FOLIO_SUPPORT = 6,
202 };
203 
204 /**
205  * mapping_set_error - record a writeback error in the address_space
206  * @mapping: the mapping in which an error should be set
207  * @error: the error to set in the mapping
208  *
209  * When writeback fails in some way, we must record that error so that
210  * userspace can be informed when fsync and the like are called.  We endeavor
211  * to report errors on any file that was open at the time of the error.  Some
212  * internal callers also need to know when writeback errors have occurred.
213  *
214  * When a writeback error occurs, most filesystems will want to call
215  * mapping_set_error to record the error in the mapping so that it can be
216  * reported when the application calls fsync(2).
217  */
218 static inline void mapping_set_error(struct address_space *mapping, int error)
219 {
220 	if (likely(!error))
221 		return;
222 
223 	/* Record in wb_err for checkers using errseq_t based tracking */
224 	__filemap_set_wb_err(mapping, error);
225 
226 	/* Record it in superblock */
227 	if (mapping->host)
228 		errseq_set(&mapping->host->i_sb->s_wb_err, error);
229 
230 	/* Record it in flags for now, for legacy callers */
231 	if (error == -ENOSPC)
232 		set_bit(AS_ENOSPC, &mapping->flags);
233 	else
234 		set_bit(AS_EIO, &mapping->flags);
235 }
236 
237 static inline void mapping_set_unevictable(struct address_space *mapping)
238 {
239 	set_bit(AS_UNEVICTABLE, &mapping->flags);
240 }
241 
242 static inline void mapping_clear_unevictable(struct address_space *mapping)
243 {
244 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
245 }
246 
247 static inline bool mapping_unevictable(struct address_space *mapping)
248 {
249 	return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
250 }
251 
252 static inline void mapping_set_exiting(struct address_space *mapping)
253 {
254 	set_bit(AS_EXITING, &mapping->flags);
255 }
256 
257 static inline int mapping_exiting(struct address_space *mapping)
258 {
259 	return test_bit(AS_EXITING, &mapping->flags);
260 }
261 
262 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
263 {
264 	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
265 }
266 
267 static inline int mapping_use_writeback_tags(struct address_space *mapping)
268 {
269 	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
270 }
271 
272 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
273 {
274 	return mapping->gfp_mask;
275 }
276 
277 /* Restricts the given gfp_mask to what the mapping allows. */
278 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
279 		gfp_t gfp_mask)
280 {
281 	return mapping_gfp_mask(mapping) & gfp_mask;
282 }
283 
284 /*
285  * This is non-atomic.  Only to be used before the mapping is activated.
286  * Probably needs a barrier...
287  */
288 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
289 {
290 	m->gfp_mask = mask;
291 }
292 
293 /**
294  * mapping_set_large_folios() - Indicate the file supports large folios.
295  * @mapping: The file.
296  *
297  * The filesystem should call this function in its inode constructor to
298  * indicate that the VFS can use large folios to cache the contents of
299  * the file.
300  *
301  * Context: This should not be called while the inode is active as it
302  * is non-atomic.
303  */
304 static inline void mapping_set_large_folios(struct address_space *mapping)
305 {
306 	__set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
307 }
308 
309 /*
310  * Large folio support currently depends on THP.  These dependencies are
311  * being worked on but are not yet fixed.
312  */
313 static inline bool mapping_large_folio_support(struct address_space *mapping)
314 {
315 	return IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
316 		test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
317 }
318 
319 static inline int filemap_nr_thps(struct address_space *mapping)
320 {
321 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
322 	return atomic_read(&mapping->nr_thps);
323 #else
324 	return 0;
325 #endif
326 }
327 
328 static inline void filemap_nr_thps_inc(struct address_space *mapping)
329 {
330 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
331 	if (!mapping_large_folio_support(mapping))
332 		atomic_inc(&mapping->nr_thps);
333 #else
334 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
335 #endif
336 }
337 
338 static inline void filemap_nr_thps_dec(struct address_space *mapping)
339 {
340 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
341 	if (!mapping_large_folio_support(mapping))
342 		atomic_dec(&mapping->nr_thps);
343 #else
344 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
345 #endif
346 }
347 
348 void release_pages(struct page **pages, int nr);
349 
350 struct address_space *page_mapping(struct page *);
351 struct address_space *folio_mapping(struct folio *);
352 struct address_space *swapcache_mapping(struct folio *);
353 
354 /**
355  * folio_file_mapping - Find the mapping this folio belongs to.
356  * @folio: The folio.
357  *
358  * For folios which are in the page cache, return the mapping that this
359  * page belongs to.  Folios in the swap cache return the mapping of the
360  * swap file or swap device where the data is stored.  This is different
361  * from the mapping returned by folio_mapping().  The only reason to
362  * use it is if, like NFS, you return 0 from ->activate_swapfile.
363  *
364  * Do not call this for folios which aren't in the page cache or swap cache.
365  */
366 static inline struct address_space *folio_file_mapping(struct folio *folio)
367 {
368 	if (unlikely(folio_test_swapcache(folio)))
369 		return swapcache_mapping(folio);
370 
371 	return folio->mapping;
372 }
373 
374 static inline struct address_space *page_file_mapping(struct page *page)
375 {
376 	return folio_file_mapping(page_folio(page));
377 }
378 
379 /*
380  * For file cache pages, return the address_space, otherwise return NULL
381  */
382 static inline struct address_space *page_mapping_file(struct page *page)
383 {
384 	struct folio *folio = page_folio(page);
385 
386 	if (unlikely(folio_test_swapcache(folio)))
387 		return NULL;
388 	return folio_mapping(folio);
389 }
390 
391 /**
392  * folio_inode - Get the host inode for this folio.
393  * @folio: The folio.
394  *
395  * For folios which are in the page cache, return the inode that this folio
396  * belongs to.
397  *
398  * Do not call this for folios which aren't in the page cache.
399  */
400 static inline struct inode *folio_inode(struct folio *folio)
401 {
402 	return folio->mapping->host;
403 }
404 
405 /**
406  * folio_attach_private - Attach private data to a folio.
407  * @folio: Folio to attach data to.
408  * @data: Data to attach to folio.
409  *
410  * Attaching private data to a folio increments the page's reference count.
411  * The data must be detached before the folio will be freed.
412  */
413 static inline void folio_attach_private(struct folio *folio, void *data)
414 {
415 	folio_get(folio);
416 	folio->private = data;
417 	folio_set_private(folio);
418 }
419 
420 /**
421  * folio_change_private - Change private data on a folio.
422  * @folio: Folio to change the data on.
423  * @data: Data to set on the folio.
424  *
425  * Change the private data attached to a folio and return the old
426  * data.  The page must previously have had data attached and the data
427  * must be detached before the folio will be freed.
428  *
429  * Return: Data that was previously attached to the folio.
430  */
431 static inline void *folio_change_private(struct folio *folio, void *data)
432 {
433 	void *old = folio_get_private(folio);
434 
435 	folio->private = data;
436 	return old;
437 }
438 
439 /**
440  * folio_detach_private - Detach private data from a folio.
441  * @folio: Folio to detach data from.
442  *
443  * Removes the data that was previously attached to the folio and decrements
444  * the refcount on the page.
445  *
446  * Return: Data that was attached to the folio.
447  */
448 static inline void *folio_detach_private(struct folio *folio)
449 {
450 	void *data = folio_get_private(folio);
451 
452 	if (!folio_test_private(folio))
453 		return NULL;
454 	folio_clear_private(folio);
455 	folio->private = NULL;
456 	folio_put(folio);
457 
458 	return data;
459 }
460 
461 static inline void attach_page_private(struct page *page, void *data)
462 {
463 	folio_attach_private(page_folio(page), data);
464 }
465 
466 static inline void *detach_page_private(struct page *page)
467 {
468 	return folio_detach_private(page_folio(page));
469 }
470 
471 #ifdef CONFIG_NUMA
472 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order);
473 #else
474 static inline struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
475 {
476 	return folio_alloc(gfp, order);
477 }
478 #endif
479 
480 static inline struct page *__page_cache_alloc(gfp_t gfp)
481 {
482 	return &filemap_alloc_folio(gfp, 0)->page;
483 }
484 
485 static inline struct page *page_cache_alloc(struct address_space *x)
486 {
487 	return __page_cache_alloc(mapping_gfp_mask(x));
488 }
489 
490 static inline gfp_t readahead_gfp_mask(struct address_space *x)
491 {
492 	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
493 }
494 
495 typedef int filler_t(void *, struct page *);
496 
497 pgoff_t page_cache_next_miss(struct address_space *mapping,
498 			     pgoff_t index, unsigned long max_scan);
499 pgoff_t page_cache_prev_miss(struct address_space *mapping,
500 			     pgoff_t index, unsigned long max_scan);
501 
502 #define FGP_ACCESSED		0x00000001
503 #define FGP_LOCK		0x00000002
504 #define FGP_CREAT		0x00000004
505 #define FGP_WRITE		0x00000008
506 #define FGP_NOFS		0x00000010
507 #define FGP_NOWAIT		0x00000020
508 #define FGP_FOR_MMAP		0x00000040
509 #define FGP_HEAD		0x00000080
510 #define FGP_ENTRY		0x00000100
511 #define FGP_STABLE		0x00000200
512 
513 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
514 		int fgp_flags, gfp_t gfp);
515 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
516 		int fgp_flags, gfp_t gfp);
517 
518 /**
519  * filemap_get_folio - Find and get a folio.
520  * @mapping: The address_space to search.
521  * @index: The page index.
522  *
523  * Looks up the page cache entry at @mapping & @index.  If a folio is
524  * present, it is returned with an increased refcount.
525  *
526  * Otherwise, %NULL is returned.
527  */
528 static inline struct folio *filemap_get_folio(struct address_space *mapping,
529 					pgoff_t index)
530 {
531 	return __filemap_get_folio(mapping, index, 0, 0);
532 }
533 
534 /**
535  * filemap_lock_folio - Find and lock a folio.
536  * @mapping: The address_space to search.
537  * @index: The page index.
538  *
539  * Looks up the page cache entry at @mapping & @index.  If a folio is
540  * present, it is returned locked with an increased refcount.
541  *
542  * Context: May sleep.
543  * Return: A folio or %NULL if there is no folio in the cache for this
544  * index.  Will not return a shadow, swap or DAX entry.
545  */
546 static inline struct folio *filemap_lock_folio(struct address_space *mapping,
547 					pgoff_t index)
548 {
549 	return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
550 }
551 
552 /**
553  * find_get_page - find and get a page reference
554  * @mapping: the address_space to search
555  * @offset: the page index
556  *
557  * Looks up the page cache slot at @mapping & @offset.  If there is a
558  * page cache page, it is returned with an increased refcount.
559  *
560  * Otherwise, %NULL is returned.
561  */
562 static inline struct page *find_get_page(struct address_space *mapping,
563 					pgoff_t offset)
564 {
565 	return pagecache_get_page(mapping, offset, 0, 0);
566 }
567 
568 static inline struct page *find_get_page_flags(struct address_space *mapping,
569 					pgoff_t offset, int fgp_flags)
570 {
571 	return pagecache_get_page(mapping, offset, fgp_flags, 0);
572 }
573 
574 /**
575  * find_lock_page - locate, pin and lock a pagecache page
576  * @mapping: the address_space to search
577  * @index: the page index
578  *
579  * Looks up the page cache entry at @mapping & @index.  If there is a
580  * page cache page, it is returned locked and with an increased
581  * refcount.
582  *
583  * Context: May sleep.
584  * Return: A struct page or %NULL if there is no page in the cache for this
585  * index.
586  */
587 static inline struct page *find_lock_page(struct address_space *mapping,
588 					pgoff_t index)
589 {
590 	return pagecache_get_page(mapping, index, FGP_LOCK, 0);
591 }
592 
593 /**
594  * find_or_create_page - locate or add a pagecache page
595  * @mapping: the page's address_space
596  * @index: the page's index into the mapping
597  * @gfp_mask: page allocation mode
598  *
599  * Looks up the page cache slot at @mapping & @offset.  If there is a
600  * page cache page, it is returned locked and with an increased
601  * refcount.
602  *
603  * If the page is not present, a new page is allocated using @gfp_mask
604  * and added to the page cache and the VM's LRU list.  The page is
605  * returned locked and with an increased refcount.
606  *
607  * On memory exhaustion, %NULL is returned.
608  *
609  * find_or_create_page() may sleep, even if @gfp_flags specifies an
610  * atomic allocation!
611  */
612 static inline struct page *find_or_create_page(struct address_space *mapping,
613 					pgoff_t index, gfp_t gfp_mask)
614 {
615 	return pagecache_get_page(mapping, index,
616 					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
617 					gfp_mask);
618 }
619 
620 /**
621  * grab_cache_page_nowait - returns locked page at given index in given cache
622  * @mapping: target address_space
623  * @index: the page index
624  *
625  * Same as grab_cache_page(), but do not wait if the page is unavailable.
626  * This is intended for speculative data generators, where the data can
627  * be regenerated if the page couldn't be grabbed.  This routine should
628  * be safe to call while holding the lock for another page.
629  *
630  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
631  * and deadlock against the caller's locked page.
632  */
633 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
634 				pgoff_t index)
635 {
636 	return pagecache_get_page(mapping, index,
637 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
638 			mapping_gfp_mask(mapping));
639 }
640 
641 #define swapcache_index(folio)	__page_file_index(&(folio)->page)
642 
643 /**
644  * folio_index - File index of a folio.
645  * @folio: The folio.
646  *
647  * For a folio which is either in the page cache or the swap cache,
648  * return its index within the address_space it belongs to.  If you know
649  * the page is definitely in the page cache, you can look at the folio's
650  * index directly.
651  *
652  * Return: The index (offset in units of pages) of a folio in its file.
653  */
654 static inline pgoff_t folio_index(struct folio *folio)
655 {
656         if (unlikely(folio_test_swapcache(folio)))
657                 return swapcache_index(folio);
658         return folio->index;
659 }
660 
661 /**
662  * folio_next_index - Get the index of the next folio.
663  * @folio: The current folio.
664  *
665  * Return: The index of the folio which follows this folio in the file.
666  */
667 static inline pgoff_t folio_next_index(struct folio *folio)
668 {
669 	return folio->index + folio_nr_pages(folio);
670 }
671 
672 /**
673  * folio_file_page - The page for a particular index.
674  * @folio: The folio which contains this index.
675  * @index: The index we want to look up.
676  *
677  * Sometimes after looking up a folio in the page cache, we need to
678  * obtain the specific page for an index (eg a page fault).
679  *
680  * Return: The page containing the file data for this index.
681  */
682 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
683 {
684 	/* HugeTLBfs indexes the page cache in units of hpage_size */
685 	if (folio_test_hugetlb(folio))
686 		return &folio->page;
687 	return folio_page(folio, index & (folio_nr_pages(folio) - 1));
688 }
689 
690 /**
691  * folio_contains - Does this folio contain this index?
692  * @folio: The folio.
693  * @index: The page index within the file.
694  *
695  * Context: The caller should have the page locked in order to prevent
696  * (eg) shmem from moving the page between the page cache and swap cache
697  * and changing its index in the middle of the operation.
698  * Return: true or false.
699  */
700 static inline bool folio_contains(struct folio *folio, pgoff_t index)
701 {
702 	/* HugeTLBfs indexes the page cache in units of hpage_size */
703 	if (folio_test_hugetlb(folio))
704 		return folio->index == index;
705 	return index - folio_index(folio) < folio_nr_pages(folio);
706 }
707 
708 /*
709  * Given the page we found in the page cache, return the page corresponding
710  * to this index in the file
711  */
712 static inline struct page *find_subpage(struct page *head, pgoff_t index)
713 {
714 	/* HugeTLBfs wants the head page regardless */
715 	if (PageHuge(head))
716 		return head;
717 
718 	return head + (index & (thp_nr_pages(head) - 1));
719 }
720 
721 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
722 			pgoff_t end, unsigned int nr_pages,
723 			struct page **pages);
724 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
725 			       unsigned int nr_pages, struct page **pages);
726 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
727 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
728 			struct page **pages);
729 static inline unsigned find_get_pages_tag(struct address_space *mapping,
730 			pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
731 			struct page **pages)
732 {
733 	return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
734 					nr_pages, pages);
735 }
736 
737 struct page *grab_cache_page_write_begin(struct address_space *mapping,
738 			pgoff_t index, unsigned flags);
739 
740 /*
741  * Returns locked page at given index in given cache, creating it if needed.
742  */
743 static inline struct page *grab_cache_page(struct address_space *mapping,
744 								pgoff_t index)
745 {
746 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
747 }
748 
749 struct folio *read_cache_folio(struct address_space *, pgoff_t index,
750 		filler_t *filler, void *data);
751 struct page *read_cache_page(struct address_space *, pgoff_t index,
752 		filler_t *filler, void *data);
753 extern struct page * read_cache_page_gfp(struct address_space *mapping,
754 				pgoff_t index, gfp_t gfp_mask);
755 
756 static inline struct page *read_mapping_page(struct address_space *mapping,
757 				pgoff_t index, struct file *file)
758 {
759 	return read_cache_page(mapping, index, NULL, file);
760 }
761 
762 static inline struct folio *read_mapping_folio(struct address_space *mapping,
763 				pgoff_t index, struct file *file)
764 {
765 	return read_cache_folio(mapping, index, NULL, file);
766 }
767 
768 /*
769  * Get index of the page within radix-tree (but not for hugetlb pages).
770  * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
771  */
772 static inline pgoff_t page_to_index(struct page *page)
773 {
774 	struct page *head;
775 
776 	if (likely(!PageTransTail(page)))
777 		return page->index;
778 
779 	head = compound_head(page);
780 	/*
781 	 *  We don't initialize ->index for tail pages: calculate based on
782 	 *  head page
783 	 */
784 	return head->index + page - head;
785 }
786 
787 extern pgoff_t hugetlb_basepage_index(struct page *page);
788 
789 /*
790  * Get the offset in PAGE_SIZE (even for hugetlb pages).
791  * (TODO: hugetlb pages should have ->index in PAGE_SIZE)
792  */
793 static inline pgoff_t page_to_pgoff(struct page *page)
794 {
795 	if (unlikely(PageHuge(page)))
796 		return hugetlb_basepage_index(page);
797 	return page_to_index(page);
798 }
799 
800 /*
801  * Return byte-offset into filesystem object for page.
802  */
803 static inline loff_t page_offset(struct page *page)
804 {
805 	return ((loff_t)page->index) << PAGE_SHIFT;
806 }
807 
808 static inline loff_t page_file_offset(struct page *page)
809 {
810 	return ((loff_t)page_index(page)) << PAGE_SHIFT;
811 }
812 
813 /**
814  * folio_pos - Returns the byte position of this folio in its file.
815  * @folio: The folio.
816  */
817 static inline loff_t folio_pos(struct folio *folio)
818 {
819 	return page_offset(&folio->page);
820 }
821 
822 /**
823  * folio_file_pos - Returns the byte position of this folio in its file.
824  * @folio: The folio.
825  *
826  * This differs from folio_pos() for folios which belong to a swap file.
827  * NFS is the only filesystem today which needs to use folio_file_pos().
828  */
829 static inline loff_t folio_file_pos(struct folio *folio)
830 {
831 	return page_file_offset(&folio->page);
832 }
833 
834 /*
835  * Get the offset in PAGE_SIZE (even for hugetlb folios).
836  * (TODO: hugetlb folios should have ->index in PAGE_SIZE)
837  */
838 static inline pgoff_t folio_pgoff(struct folio *folio)
839 {
840 	if (unlikely(folio_test_hugetlb(folio)))
841 		return hugetlb_basepage_index(&folio->page);
842 	return folio->index;
843 }
844 
845 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
846 				     unsigned long address);
847 
848 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
849 					unsigned long address)
850 {
851 	pgoff_t pgoff;
852 	if (unlikely(is_vm_hugetlb_page(vma)))
853 		return linear_hugepage_index(vma, address);
854 	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
855 	pgoff += vma->vm_pgoff;
856 	return pgoff;
857 }
858 
859 struct wait_page_key {
860 	struct folio *folio;
861 	int bit_nr;
862 	int page_match;
863 };
864 
865 struct wait_page_queue {
866 	struct folio *folio;
867 	int bit_nr;
868 	wait_queue_entry_t wait;
869 };
870 
871 static inline bool wake_page_match(struct wait_page_queue *wait_page,
872 				  struct wait_page_key *key)
873 {
874 	if (wait_page->folio != key->folio)
875 	       return false;
876 	key->page_match = 1;
877 
878 	if (wait_page->bit_nr != key->bit_nr)
879 		return false;
880 
881 	return true;
882 }
883 
884 void __folio_lock(struct folio *folio);
885 int __folio_lock_killable(struct folio *folio);
886 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
887 				unsigned int flags);
888 void unlock_page(struct page *page);
889 void folio_unlock(struct folio *folio);
890 
891 static inline bool folio_trylock(struct folio *folio)
892 {
893 	return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
894 }
895 
896 /*
897  * Return true if the page was successfully locked
898  */
899 static inline int trylock_page(struct page *page)
900 {
901 	return folio_trylock(page_folio(page));
902 }
903 
904 static inline void folio_lock(struct folio *folio)
905 {
906 	might_sleep();
907 	if (!folio_trylock(folio))
908 		__folio_lock(folio);
909 }
910 
911 /*
912  * lock_page may only be called if we have the page's inode pinned.
913  */
914 static inline void lock_page(struct page *page)
915 {
916 	struct folio *folio;
917 	might_sleep();
918 
919 	folio = page_folio(page);
920 	if (!folio_trylock(folio))
921 		__folio_lock(folio);
922 }
923 
924 static inline int folio_lock_killable(struct folio *folio)
925 {
926 	might_sleep();
927 	if (!folio_trylock(folio))
928 		return __folio_lock_killable(folio);
929 	return 0;
930 }
931 
932 /*
933  * lock_page_killable is like lock_page but can be interrupted by fatal
934  * signals.  It returns 0 if it locked the page and -EINTR if it was
935  * killed while waiting.
936  */
937 static inline int lock_page_killable(struct page *page)
938 {
939 	return folio_lock_killable(page_folio(page));
940 }
941 
942 /*
943  * lock_page_or_retry - Lock the page, unless this would block and the
944  * caller indicated that it can handle a retry.
945  *
946  * Return value and mmap_lock implications depend on flags; see
947  * __folio_lock_or_retry().
948  */
949 static inline bool lock_page_or_retry(struct page *page, struct mm_struct *mm,
950 				     unsigned int flags)
951 {
952 	struct folio *folio;
953 	might_sleep();
954 
955 	folio = page_folio(page);
956 	return folio_trylock(folio) || __folio_lock_or_retry(folio, mm, flags);
957 }
958 
959 /*
960  * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
961  * and should not be used directly.
962  */
963 void folio_wait_bit(struct folio *folio, int bit_nr);
964 int folio_wait_bit_killable(struct folio *folio, int bit_nr);
965 
966 /*
967  * Wait for a folio to be unlocked.
968  *
969  * This must be called with the caller "holding" the folio,
970  * ie with increased "page->count" so that the folio won't
971  * go away during the wait..
972  */
973 static inline void folio_wait_locked(struct folio *folio)
974 {
975 	if (folio_test_locked(folio))
976 		folio_wait_bit(folio, PG_locked);
977 }
978 
979 static inline int folio_wait_locked_killable(struct folio *folio)
980 {
981 	if (!folio_test_locked(folio))
982 		return 0;
983 	return folio_wait_bit_killable(folio, PG_locked);
984 }
985 
986 static inline void wait_on_page_locked(struct page *page)
987 {
988 	folio_wait_locked(page_folio(page));
989 }
990 
991 static inline int wait_on_page_locked_killable(struct page *page)
992 {
993 	return folio_wait_locked_killable(page_folio(page));
994 }
995 
996 int folio_put_wait_locked(struct folio *folio, int state);
997 void wait_on_page_writeback(struct page *page);
998 void folio_wait_writeback(struct folio *folio);
999 int folio_wait_writeback_killable(struct folio *folio);
1000 void end_page_writeback(struct page *page);
1001 void folio_end_writeback(struct folio *folio);
1002 void wait_for_stable_page(struct page *page);
1003 void folio_wait_stable(struct folio *folio);
1004 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
1005 static inline void __set_page_dirty(struct page *page,
1006 		struct address_space *mapping, int warn)
1007 {
1008 	__folio_mark_dirty(page_folio(page), mapping, warn);
1009 }
1010 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1011 void __folio_cancel_dirty(struct folio *folio);
1012 static inline void folio_cancel_dirty(struct folio *folio)
1013 {
1014 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1015 	if (folio_test_dirty(folio))
1016 		__folio_cancel_dirty(folio);
1017 }
1018 static inline void cancel_dirty_page(struct page *page)
1019 {
1020 	folio_cancel_dirty(page_folio(page));
1021 }
1022 bool folio_clear_dirty_for_io(struct folio *folio);
1023 bool clear_page_dirty_for_io(struct page *page);
1024 void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1025 int __must_check folio_write_one(struct folio *folio);
1026 static inline int __must_check write_one_page(struct page *page)
1027 {
1028 	return folio_write_one(page_folio(page));
1029 }
1030 
1031 int __set_page_dirty_nobuffers(struct page *page);
1032 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1033 
1034 void page_endio(struct page *page, bool is_write, int err);
1035 
1036 void folio_end_private_2(struct folio *folio);
1037 void folio_wait_private_2(struct folio *folio);
1038 int folio_wait_private_2_killable(struct folio *folio);
1039 
1040 /*
1041  * Add an arbitrary waiter to a page's wait queue
1042  */
1043 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter);
1044 
1045 /*
1046  * Fault in userspace address range.
1047  */
1048 size_t fault_in_writeable(char __user *uaddr, size_t size);
1049 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1050 size_t fault_in_readable(const char __user *uaddr, size_t size);
1051 
1052 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
1053 		pgoff_t index, gfp_t gfp);
1054 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1055 		pgoff_t index, gfp_t gfp);
1056 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1057 		pgoff_t index, gfp_t gfp);
1058 void filemap_remove_folio(struct folio *folio);
1059 void delete_from_page_cache(struct page *page);
1060 void __filemap_remove_folio(struct folio *folio, void *shadow);
1061 static inline void __delete_from_page_cache(struct page *page, void *shadow)
1062 {
1063 	__filemap_remove_folio(page_folio(page), shadow);
1064 }
1065 void replace_page_cache_page(struct page *old, struct page *new);
1066 void delete_from_page_cache_batch(struct address_space *mapping,
1067 				  struct folio_batch *fbatch);
1068 int try_to_release_page(struct page *page, gfp_t gfp);
1069 bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1070 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1071 		int whence);
1072 
1073 /*
1074  * Like add_to_page_cache_locked, but used to add newly allocated pages:
1075  * the page is new, so we can just run __SetPageLocked() against it.
1076  */
1077 static inline int add_to_page_cache(struct page *page,
1078 		struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
1079 {
1080 	int error;
1081 
1082 	__SetPageLocked(page);
1083 	error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
1084 	if (unlikely(error))
1085 		__ClearPageLocked(page);
1086 	return error;
1087 }
1088 
1089 /* Must be non-static for BPF error injection */
1090 int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1091 		pgoff_t index, gfp_t gfp, void **shadowp);
1092 
1093 bool filemap_range_has_writeback(struct address_space *mapping,
1094 				 loff_t start_byte, loff_t end_byte);
1095 
1096 /**
1097  * filemap_range_needs_writeback - check if range potentially needs writeback
1098  * @mapping:           address space within which to check
1099  * @start_byte:        offset in bytes where the range starts
1100  * @end_byte:          offset in bytes where the range ends (inclusive)
1101  *
1102  * Find at least one page in the range supplied, usually used to check if
1103  * direct writing in this range will trigger a writeback. Used by O_DIRECT
1104  * read/write with IOCB_NOWAIT, to see if the caller needs to do
1105  * filemap_write_and_wait_range() before proceeding.
1106  *
1107  * Return: %true if the caller should do filemap_write_and_wait_range() before
1108  * doing O_DIRECT to a page in this range, %false otherwise.
1109  */
1110 static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1111 						 loff_t start_byte,
1112 						 loff_t end_byte)
1113 {
1114 	if (!mapping->nrpages)
1115 		return false;
1116 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1117 	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1118 		return false;
1119 	return filemap_range_has_writeback(mapping, start_byte, end_byte);
1120 }
1121 
1122 /**
1123  * struct readahead_control - Describes a readahead request.
1124  *
1125  * A readahead request is for consecutive pages.  Filesystems which
1126  * implement the ->readahead method should call readahead_page() or
1127  * readahead_page_batch() in a loop and attempt to start I/O against
1128  * each page in the request.
1129  *
1130  * Most of the fields in this struct are private and should be accessed
1131  * by the functions below.
1132  *
1133  * @file: The file, used primarily by network filesystems for authentication.
1134  *	  May be NULL if invoked internally by the filesystem.
1135  * @mapping: Readahead this filesystem object.
1136  * @ra: File readahead state.  May be NULL.
1137  */
1138 struct readahead_control {
1139 	struct file *file;
1140 	struct address_space *mapping;
1141 	struct file_ra_state *ra;
1142 /* private: use the readahead_* accessors instead */
1143 	pgoff_t _index;
1144 	unsigned int _nr_pages;
1145 	unsigned int _batch_count;
1146 };
1147 
1148 #define DEFINE_READAHEAD(ractl, f, r, m, i)				\
1149 	struct readahead_control ractl = {				\
1150 		.file = f,						\
1151 		.mapping = m,						\
1152 		.ra = r,						\
1153 		._index = i,						\
1154 	}
1155 
1156 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
1157 
1158 void page_cache_ra_unbounded(struct readahead_control *,
1159 		unsigned long nr_to_read, unsigned long lookahead_count);
1160 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1161 void page_cache_async_ra(struct readahead_control *, struct folio *,
1162 		unsigned long req_count);
1163 void readahead_expand(struct readahead_control *ractl,
1164 		      loff_t new_start, size_t new_len);
1165 
1166 /**
1167  * page_cache_sync_readahead - generic file readahead
1168  * @mapping: address_space which holds the pagecache and I/O vectors
1169  * @ra: file_ra_state which holds the readahead state
1170  * @file: Used by the filesystem for authentication.
1171  * @index: Index of first page to be read.
1172  * @req_count: Total number of pages being read by the caller.
1173  *
1174  * page_cache_sync_readahead() should be called when a cache miss happened:
1175  * it will submit the read.  The readahead logic may decide to piggyback more
1176  * pages onto the read request if access patterns suggest it will improve
1177  * performance.
1178  */
1179 static inline
1180 void page_cache_sync_readahead(struct address_space *mapping,
1181 		struct file_ra_state *ra, struct file *file, pgoff_t index,
1182 		unsigned long req_count)
1183 {
1184 	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1185 	page_cache_sync_ra(&ractl, req_count);
1186 }
1187 
1188 /**
1189  * page_cache_async_readahead - file readahead for marked pages
1190  * @mapping: address_space which holds the pagecache and I/O vectors
1191  * @ra: file_ra_state which holds the readahead state
1192  * @file: Used by the filesystem for authentication.
1193  * @page: The page at @index which triggered the readahead call.
1194  * @index: Index of first page to be read.
1195  * @req_count: Total number of pages being read by the caller.
1196  *
1197  * page_cache_async_readahead() should be called when a page is used which
1198  * is marked as PageReadahead; this is a marker to suggest that the application
1199  * has used up enough of the readahead window that we should start pulling in
1200  * more pages.
1201  */
1202 static inline
1203 void page_cache_async_readahead(struct address_space *mapping,
1204 		struct file_ra_state *ra, struct file *file,
1205 		struct page *page, pgoff_t index, unsigned long req_count)
1206 {
1207 	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1208 	page_cache_async_ra(&ractl, page_folio(page), req_count);
1209 }
1210 
1211 static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1212 {
1213 	struct folio *folio;
1214 
1215 	BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1216 	ractl->_nr_pages -= ractl->_batch_count;
1217 	ractl->_index += ractl->_batch_count;
1218 
1219 	if (!ractl->_nr_pages) {
1220 		ractl->_batch_count = 0;
1221 		return NULL;
1222 	}
1223 
1224 	folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1225 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1226 	ractl->_batch_count = folio_nr_pages(folio);
1227 
1228 	return folio;
1229 }
1230 
1231 /**
1232  * readahead_page - Get the next page to read.
1233  * @ractl: The current readahead request.
1234  *
1235  * Context: The page is locked and has an elevated refcount.  The caller
1236  * should decreases the refcount once the page has been submitted for I/O
1237  * and unlock the page once all I/O to that page has completed.
1238  * Return: A pointer to the next page, or %NULL if we are done.
1239  */
1240 static inline struct page *readahead_page(struct readahead_control *ractl)
1241 {
1242 	struct folio *folio = __readahead_folio(ractl);
1243 
1244 	return &folio->page;
1245 }
1246 
1247 /**
1248  * readahead_folio - Get the next folio to read.
1249  * @ractl: The current readahead request.
1250  *
1251  * Context: The folio is locked.  The caller should unlock the folio once
1252  * all I/O to that folio has completed.
1253  * Return: A pointer to the next folio, or %NULL if we are done.
1254  */
1255 static inline struct folio *readahead_folio(struct readahead_control *ractl)
1256 {
1257 	struct folio *folio = __readahead_folio(ractl);
1258 
1259 	if (folio)
1260 		folio_put(folio);
1261 	return folio;
1262 }
1263 
1264 static inline unsigned int __readahead_batch(struct readahead_control *rac,
1265 		struct page **array, unsigned int array_sz)
1266 {
1267 	unsigned int i = 0;
1268 	XA_STATE(xas, &rac->mapping->i_pages, 0);
1269 	struct page *page;
1270 
1271 	BUG_ON(rac->_batch_count > rac->_nr_pages);
1272 	rac->_nr_pages -= rac->_batch_count;
1273 	rac->_index += rac->_batch_count;
1274 	rac->_batch_count = 0;
1275 
1276 	xas_set(&xas, rac->_index);
1277 	rcu_read_lock();
1278 	xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1279 		if (xas_retry(&xas, page))
1280 			continue;
1281 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1282 		VM_BUG_ON_PAGE(PageTail(page), page);
1283 		array[i++] = page;
1284 		rac->_batch_count += thp_nr_pages(page);
1285 		if (i == array_sz)
1286 			break;
1287 	}
1288 	rcu_read_unlock();
1289 
1290 	return i;
1291 }
1292 
1293 /**
1294  * readahead_page_batch - Get a batch of pages to read.
1295  * @rac: The current readahead request.
1296  * @array: An array of pointers to struct page.
1297  *
1298  * Context: The pages are locked and have an elevated refcount.  The caller
1299  * should decreases the refcount once the page has been submitted for I/O
1300  * and unlock the page once all I/O to that page has completed.
1301  * Return: The number of pages placed in the array.  0 indicates the request
1302  * is complete.
1303  */
1304 #define readahead_page_batch(rac, array)				\
1305 	__readahead_batch(rac, array, ARRAY_SIZE(array))
1306 
1307 /**
1308  * readahead_pos - The byte offset into the file of this readahead request.
1309  * @rac: The readahead request.
1310  */
1311 static inline loff_t readahead_pos(struct readahead_control *rac)
1312 {
1313 	return (loff_t)rac->_index * PAGE_SIZE;
1314 }
1315 
1316 /**
1317  * readahead_length - The number of bytes in this readahead request.
1318  * @rac: The readahead request.
1319  */
1320 static inline size_t readahead_length(struct readahead_control *rac)
1321 {
1322 	return rac->_nr_pages * PAGE_SIZE;
1323 }
1324 
1325 /**
1326  * readahead_index - The index of the first page in this readahead request.
1327  * @rac: The readahead request.
1328  */
1329 static inline pgoff_t readahead_index(struct readahead_control *rac)
1330 {
1331 	return rac->_index;
1332 }
1333 
1334 /**
1335  * readahead_count - The number of pages in this readahead request.
1336  * @rac: The readahead request.
1337  */
1338 static inline unsigned int readahead_count(struct readahead_control *rac)
1339 {
1340 	return rac->_nr_pages;
1341 }
1342 
1343 /**
1344  * readahead_batch_length - The number of bytes in the current batch.
1345  * @rac: The readahead request.
1346  */
1347 static inline size_t readahead_batch_length(struct readahead_control *rac)
1348 {
1349 	return rac->_batch_count * PAGE_SIZE;
1350 }
1351 
1352 static inline unsigned long dir_pages(struct inode *inode)
1353 {
1354 	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1355 			       PAGE_SHIFT;
1356 }
1357 
1358 /**
1359  * folio_mkwrite_check_truncate - check if folio was truncated
1360  * @folio: the folio to check
1361  * @inode: the inode to check the folio against
1362  *
1363  * Return: the number of bytes in the folio up to EOF,
1364  * or -EFAULT if the folio was truncated.
1365  */
1366 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1367 					      struct inode *inode)
1368 {
1369 	loff_t size = i_size_read(inode);
1370 	pgoff_t index = size >> PAGE_SHIFT;
1371 	size_t offset = offset_in_folio(folio, size);
1372 
1373 	if (!folio->mapping)
1374 		return -EFAULT;
1375 
1376 	/* folio is wholly inside EOF */
1377 	if (folio_next_index(folio) - 1 < index)
1378 		return folio_size(folio);
1379 	/* folio is wholly past EOF */
1380 	if (folio->index > index || !offset)
1381 		return -EFAULT;
1382 	/* folio is partially inside EOF */
1383 	return offset;
1384 }
1385 
1386 /**
1387  * page_mkwrite_check_truncate - check if page was truncated
1388  * @page: the page to check
1389  * @inode: the inode to check the page against
1390  *
1391  * Returns the number of bytes in the page up to EOF,
1392  * or -EFAULT if the page was truncated.
1393  */
1394 static inline int page_mkwrite_check_truncate(struct page *page,
1395 					      struct inode *inode)
1396 {
1397 	loff_t size = i_size_read(inode);
1398 	pgoff_t index = size >> PAGE_SHIFT;
1399 	int offset = offset_in_page(size);
1400 
1401 	if (page->mapping != inode->i_mapping)
1402 		return -EFAULT;
1403 
1404 	/* page is wholly inside EOF */
1405 	if (page->index < index)
1406 		return PAGE_SIZE;
1407 	/* page is wholly past EOF */
1408 	if (page->index > index || !offset)
1409 		return -EFAULT;
1410 	/* page is partially inside EOF */
1411 	return offset;
1412 }
1413 
1414 /**
1415  * i_blocks_per_folio - How many blocks fit in this folio.
1416  * @inode: The inode which contains the blocks.
1417  * @folio: The folio.
1418  *
1419  * If the block size is larger than the size of this folio, return zero.
1420  *
1421  * Context: The caller should hold a refcount on the folio to prevent it
1422  * from being split.
1423  * Return: The number of filesystem blocks covered by this folio.
1424  */
1425 static inline
1426 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1427 {
1428 	return folio_size(folio) >> inode->i_blkbits;
1429 }
1430 
1431 static inline
1432 unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1433 {
1434 	return i_blocks_per_folio(inode, page_folio(page));
1435 }
1436 #endif /* _LINUX_PAGEMAP_H */
1437