xref: /openbmc/linux/include/linux/page-flags.h (revision 31e67366)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages. The "struct page" of such a page
21  * should in general not be touched (e.g. set dirty) except by its owner.
22  * Pages marked as PG_reserved include:
23  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24  *   initrd, HW tables)
25  * - Pages reserved or allocated early during boot (before the page allocator
26  *   was initialized). This includes (depending on the architecture) the
27  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
29  *   be given to the page allocator.
30  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31  *   to read/write these pages might end badly. Don't touch!
32  * - The zero page(s)
33  * - Pages not added to the page allocator when onlining a section because
34  *   they were excluded via the online_page_callback() or because they are
35  *   PG_hwpoison.
36  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37  *   control pages, vmcoreinfo)
38  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39  *   not marked PG_reserved (as they might be in use by somebody else who does
40  *   not respect the caching strategy).
41  * - Pages part of an offline section (struct pages of offline sections should
42  *   not be trusted as they will be initialized when first onlined).
43  * - MCA pages on ia64
44  * - Pages holding CPU notes for POWER Firmware Assisted Dump
45  * - Device memory (e.g. PMEM, DAX, HMM)
46  * Some PG_reserved pages will be excluded from the hibernation image.
47  * PG_reserved does in general not hinder anybody from dumping or swapping
48  * and is no longer required for remap_pfn_range(). ioremap might require it.
49  * Consequently, PG_reserved for a page mapped into user space can indicate
50  * the zero page, the vDSO, MMIO pages or device memory.
51  *
52  * The PG_private bitflag is set on pagecache pages if they contain filesystem
53  * specific data (which is normally at page->private). It can be used by
54  * private allocations for its own usage.
55  *
56  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58  * is set before writeback starts and cleared when it finishes.
59  *
60  * PG_locked also pins a page in pagecache, and blocks truncation of the file
61  * while it is held.
62  *
63  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64  * to become unlocked.
65  *
66  * PG_swapbacked is set when a page uses swap as a backing storage.  This are
67  * usually PageAnon or shmem pages but please note that even anonymous pages
68  * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69  * a result of MADV_FREE).
70  *
71  * PG_uptodate tells whether the page's contents is valid.  When a read
72  * completes, the page becomes uptodate, unless a disk I/O error happened.
73  *
74  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
75  * file-backed pagecache (see mm/vmscan.c).
76  *
77  * PG_error is set to indicate that an I/O error occurred on this page.
78  *
79  * PG_arch_1 is an architecture specific page state bit.  The generic code
80  * guarantees that this bit is cleared for a page when it first is entered into
81  * the page cache.
82  *
83  * PG_hwpoison indicates that a page got corrupted in hardware and contains
84  * data with incorrect ECC bits that triggered a machine check. Accessing is
85  * not safe since it may cause another machine check. Don't touch!
86  */
87 
88 /*
89  * Don't use the pageflags directly.  Use the PageFoo macros.
90  *
91  * The page flags field is split into two parts, the main flags area
92  * which extends from the low bits upwards, and the fields area which
93  * extends from the high bits downwards.
94  *
95  *  | FIELD | ... | FLAGS |
96  *  N-1           ^       0
97  *               (NR_PAGEFLAGS)
98  *
99  * The fields area is reserved for fields mapping zone, node (for NUMA) and
100  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
101  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
102  */
103 enum pageflags {
104 	PG_locked,		/* Page is locked. Don't touch. */
105 	PG_referenced,
106 	PG_uptodate,
107 	PG_dirty,
108 	PG_lru,
109 	PG_active,
110 	PG_workingset,
111 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
112 	PG_error,
113 	PG_slab,
114 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
115 	PG_arch_1,
116 	PG_reserved,
117 	PG_private,		/* If pagecache, has fs-private data */
118 	PG_private_2,		/* If pagecache, has fs aux data */
119 	PG_writeback,		/* Page is under writeback */
120 	PG_head,		/* A head page */
121 	PG_mappedtodisk,	/* Has blocks allocated on-disk */
122 	PG_reclaim,		/* To be reclaimed asap */
123 	PG_swapbacked,		/* Page is backed by RAM/swap */
124 	PG_unevictable,		/* Page is "unevictable"  */
125 #ifdef CONFIG_MMU
126 	PG_mlocked,		/* Page is vma mlocked */
127 #endif
128 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
129 	PG_uncached,		/* Page has been mapped as uncached */
130 #endif
131 #ifdef CONFIG_MEMORY_FAILURE
132 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
133 #endif
134 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
135 	PG_young,
136 	PG_idle,
137 #endif
138 #ifdef CONFIG_64BIT
139 	PG_arch_2,
140 #endif
141 	__NR_PAGEFLAGS,
142 
143 	/* Filesystems */
144 	PG_checked = PG_owner_priv_1,
145 
146 	/* SwapBacked */
147 	PG_swapcache = PG_owner_priv_1,	/* Swap page: swp_entry_t in private */
148 
149 	/* Two page bits are conscripted by FS-Cache to maintain local caching
150 	 * state.  These bits are set on pages belonging to the netfs's inodes
151 	 * when those inodes are being locally cached.
152 	 */
153 	PG_fscache = PG_private_2,	/* page backed by cache */
154 
155 	/* XEN */
156 	/* Pinned in Xen as a read-only pagetable page. */
157 	PG_pinned = PG_owner_priv_1,
158 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
159 	PG_savepinned = PG_dirty,
160 	/* Has a grant mapping of another (foreign) domain's page. */
161 	PG_foreign = PG_owner_priv_1,
162 	/* Remapped by swiotlb-xen. */
163 	PG_xen_remapped = PG_owner_priv_1,
164 
165 	/* SLOB */
166 	PG_slob_free = PG_private,
167 
168 	/* Compound pages. Stored in first tail page's flags */
169 	PG_double_map = PG_workingset,
170 
171 	/* non-lru isolated movable page */
172 	PG_isolated = PG_reclaim,
173 
174 	/* Only valid for buddy pages. Used to track pages that are reported */
175 	PG_reported = PG_uptodate,
176 };
177 
178 #ifndef __GENERATING_BOUNDS_H
179 
180 struct page;	/* forward declaration */
181 
182 static inline struct page *compound_head(struct page *page)
183 {
184 	unsigned long head = READ_ONCE(page->compound_head);
185 
186 	if (unlikely(head & 1))
187 		return (struct page *) (head - 1);
188 	return page;
189 }
190 
191 static __always_inline int PageTail(struct page *page)
192 {
193 	return READ_ONCE(page->compound_head) & 1;
194 }
195 
196 static __always_inline int PageCompound(struct page *page)
197 {
198 	return test_bit(PG_head, &page->flags) || PageTail(page);
199 }
200 
201 #define	PAGE_POISON_PATTERN	-1l
202 static inline int PagePoisoned(const struct page *page)
203 {
204 	return page->flags == PAGE_POISON_PATTERN;
205 }
206 
207 #ifdef CONFIG_DEBUG_VM
208 void page_init_poison(struct page *page, size_t size);
209 #else
210 static inline void page_init_poison(struct page *page, size_t size)
211 {
212 }
213 #endif
214 
215 /*
216  * Page flags policies wrt compound pages
217  *
218  * PF_POISONED_CHECK
219  *     check if this struct page poisoned/uninitialized
220  *
221  * PF_ANY:
222  *     the page flag is relevant for small, head and tail pages.
223  *
224  * PF_HEAD:
225  *     for compound page all operations related to the page flag applied to
226  *     head page.
227  *
228  * PF_ONLY_HEAD:
229  *     for compound page, callers only ever operate on the head page.
230  *
231  * PF_NO_TAIL:
232  *     modifications of the page flag must be done on small or head pages,
233  *     checks can be done on tail pages too.
234  *
235  * PF_NO_COMPOUND:
236  *     the page flag is not relevant for compound pages.
237  *
238  * PF_SECOND:
239  *     the page flag is stored in the first tail page.
240  */
241 #define PF_POISONED_CHECK(page) ({					\
242 		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
243 		page; })
244 #define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
245 #define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
246 #define PF_ONLY_HEAD(page, enforce) ({					\
247 		VM_BUG_ON_PGFLAGS(PageTail(page), page);		\
248 		PF_POISONED_CHECK(page); })
249 #define PF_NO_TAIL(page, enforce) ({					\
250 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
251 		PF_POISONED_CHECK(compound_head(page)); })
252 #define PF_NO_COMPOUND(page, enforce) ({				\
253 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
254 		PF_POISONED_CHECK(page); })
255 #define PF_SECOND(page, enforce) ({					\
256 		VM_BUG_ON_PGFLAGS(!PageHead(page), page);		\
257 		PF_POISONED_CHECK(&page[1]); })
258 
259 /*
260  * Macros to create function definitions for page flags
261  */
262 #define TESTPAGEFLAG(uname, lname, policy)				\
263 static __always_inline int Page##uname(struct page *page)		\
264 	{ return test_bit(PG_##lname, &policy(page, 0)->flags); }
265 
266 #define SETPAGEFLAG(uname, lname, policy)				\
267 static __always_inline void SetPage##uname(struct page *page)		\
268 	{ set_bit(PG_##lname, &policy(page, 1)->flags); }
269 
270 #define CLEARPAGEFLAG(uname, lname, policy)				\
271 static __always_inline void ClearPage##uname(struct page *page)		\
272 	{ clear_bit(PG_##lname, &policy(page, 1)->flags); }
273 
274 #define __SETPAGEFLAG(uname, lname, policy)				\
275 static __always_inline void __SetPage##uname(struct page *page)		\
276 	{ __set_bit(PG_##lname, &policy(page, 1)->flags); }
277 
278 #define __CLEARPAGEFLAG(uname, lname, policy)				\
279 static __always_inline void __ClearPage##uname(struct page *page)	\
280 	{ __clear_bit(PG_##lname, &policy(page, 1)->flags); }
281 
282 #define TESTSETFLAG(uname, lname, policy)				\
283 static __always_inline int TestSetPage##uname(struct page *page)	\
284 	{ return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
285 
286 #define TESTCLEARFLAG(uname, lname, policy)				\
287 static __always_inline int TestClearPage##uname(struct page *page)	\
288 	{ return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
289 
290 #define PAGEFLAG(uname, lname, policy)					\
291 	TESTPAGEFLAG(uname, lname, policy)				\
292 	SETPAGEFLAG(uname, lname, policy)				\
293 	CLEARPAGEFLAG(uname, lname, policy)
294 
295 #define __PAGEFLAG(uname, lname, policy)				\
296 	TESTPAGEFLAG(uname, lname, policy)				\
297 	__SETPAGEFLAG(uname, lname, policy)				\
298 	__CLEARPAGEFLAG(uname, lname, policy)
299 
300 #define TESTSCFLAG(uname, lname, policy)				\
301 	TESTSETFLAG(uname, lname, policy)				\
302 	TESTCLEARFLAG(uname, lname, policy)
303 
304 #define TESTPAGEFLAG_FALSE(uname)					\
305 static inline int Page##uname(const struct page *page) { return 0; }
306 
307 #define SETPAGEFLAG_NOOP(uname)						\
308 static inline void SetPage##uname(struct page *page) {  }
309 
310 #define CLEARPAGEFLAG_NOOP(uname)					\
311 static inline void ClearPage##uname(struct page *page) {  }
312 
313 #define __CLEARPAGEFLAG_NOOP(uname)					\
314 static inline void __ClearPage##uname(struct page *page) {  }
315 
316 #define TESTSETFLAG_FALSE(uname)					\
317 static inline int TestSetPage##uname(struct page *page) { return 0; }
318 
319 #define TESTCLEARFLAG_FALSE(uname)					\
320 static inline int TestClearPage##uname(struct page *page) { return 0; }
321 
322 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname)			\
323 	SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
324 
325 #define TESTSCFLAG_FALSE(uname)						\
326 	TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
327 
328 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
329 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
330 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
331 PAGEFLAG(Referenced, referenced, PF_HEAD)
332 	TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
333 	__SETPAGEFLAG(Referenced, referenced, PF_HEAD)
334 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
335 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
336 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
337 	TESTCLEARFLAG(LRU, lru, PF_HEAD)
338 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
339 	TESTCLEARFLAG(Active, active, PF_HEAD)
340 PAGEFLAG(Workingset, workingset, PF_HEAD)
341 	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
342 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
343 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
344 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
345 
346 /* Xen */
347 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
348 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
349 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
350 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
351 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
352 	TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
353 
354 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
355 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
356 	__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
357 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
358 	__CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
359 	__SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
360 
361 /*
362  * Private page markings that may be used by the filesystem that owns the page
363  * for its own purposes.
364  * - PG_private and PG_private_2 cause releasepage() and co to be invoked
365  */
366 PAGEFLAG(Private, private, PF_ANY)
367 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
368 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
369 	TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
370 
371 /*
372  * Only test-and-set exist for PG_writeback.  The unconditional operators are
373  * risky: they bypass page accounting.
374  */
375 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
376 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
377 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
378 
379 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
380 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
381 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
382 PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
383 	TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
384 
385 #ifdef CONFIG_HIGHMEM
386 /*
387  * Must use a macro here due to header dependency issues. page_zone() is not
388  * available at this point.
389  */
390 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
391 #else
392 PAGEFLAG_FALSE(HighMem)
393 #endif
394 
395 #ifdef CONFIG_SWAP
396 static __always_inline int PageSwapCache(struct page *page)
397 {
398 #ifdef CONFIG_THP_SWAP
399 	page = compound_head(page);
400 #endif
401 	return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
402 
403 }
404 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
405 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
406 #else
407 PAGEFLAG_FALSE(SwapCache)
408 #endif
409 
410 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
411 	__CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
412 	TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
413 
414 #ifdef CONFIG_MMU
415 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
416 	__CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
417 	TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
418 #else
419 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
420 	TESTSCFLAG_FALSE(Mlocked)
421 #endif
422 
423 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
424 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
425 #else
426 PAGEFLAG_FALSE(Uncached)
427 #endif
428 
429 #ifdef CONFIG_MEMORY_FAILURE
430 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
431 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
432 #define __PG_HWPOISON (1UL << PG_hwpoison)
433 extern bool take_page_off_buddy(struct page *page);
434 #else
435 PAGEFLAG_FALSE(HWPoison)
436 #define __PG_HWPOISON 0
437 #endif
438 
439 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
440 TESTPAGEFLAG(Young, young, PF_ANY)
441 SETPAGEFLAG(Young, young, PF_ANY)
442 TESTCLEARFLAG(Young, young, PF_ANY)
443 PAGEFLAG(Idle, idle, PF_ANY)
444 #endif
445 
446 /*
447  * PageReported() is used to track reported free pages within the Buddy
448  * allocator. We can use the non-atomic version of the test and set
449  * operations as both should be shielded with the zone lock to prevent
450  * any possible races on the setting or clearing of the bit.
451  */
452 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
453 
454 /*
455  * On an anonymous page mapped into a user virtual memory area,
456  * page->mapping points to its anon_vma, not to a struct address_space;
457  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
458  *
459  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
460  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
461  * bit; and then page->mapping points, not to an anon_vma, but to a private
462  * structure which KSM associates with that merged page.  See ksm.h.
463  *
464  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
465  * page and then page->mapping points a struct address_space.
466  *
467  * Please note that, confusingly, "page_mapping" refers to the inode
468  * address_space which maps the page from disk; whereas "page_mapped"
469  * refers to user virtual address space into which the page is mapped.
470  */
471 #define PAGE_MAPPING_ANON	0x1
472 #define PAGE_MAPPING_MOVABLE	0x2
473 #define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
474 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
475 
476 static __always_inline int PageMappingFlags(struct page *page)
477 {
478 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
479 }
480 
481 static __always_inline int PageAnon(struct page *page)
482 {
483 	page = compound_head(page);
484 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
485 }
486 
487 static __always_inline int __PageMovable(struct page *page)
488 {
489 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
490 				PAGE_MAPPING_MOVABLE;
491 }
492 
493 #ifdef CONFIG_KSM
494 /*
495  * A KSM page is one of those write-protected "shared pages" or "merged pages"
496  * which KSM maps into multiple mms, wherever identical anonymous page content
497  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
498  * anon_vma, but to that page's node of the stable tree.
499  */
500 static __always_inline int PageKsm(struct page *page)
501 {
502 	page = compound_head(page);
503 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
504 				PAGE_MAPPING_KSM;
505 }
506 #else
507 TESTPAGEFLAG_FALSE(Ksm)
508 #endif
509 
510 u64 stable_page_flags(struct page *page);
511 
512 static inline int PageUptodate(struct page *page)
513 {
514 	int ret;
515 	page = compound_head(page);
516 	ret = test_bit(PG_uptodate, &(page)->flags);
517 	/*
518 	 * Must ensure that the data we read out of the page is loaded
519 	 * _after_ we've loaded page->flags to check for PageUptodate.
520 	 * We can skip the barrier if the page is not uptodate, because
521 	 * we wouldn't be reading anything from it.
522 	 *
523 	 * See SetPageUptodate() for the other side of the story.
524 	 */
525 	if (ret)
526 		smp_rmb();
527 
528 	return ret;
529 }
530 
531 static __always_inline void __SetPageUptodate(struct page *page)
532 {
533 	VM_BUG_ON_PAGE(PageTail(page), page);
534 	smp_wmb();
535 	__set_bit(PG_uptodate, &page->flags);
536 }
537 
538 static __always_inline void SetPageUptodate(struct page *page)
539 {
540 	VM_BUG_ON_PAGE(PageTail(page), page);
541 	/*
542 	 * Memory barrier must be issued before setting the PG_uptodate bit,
543 	 * so that all previous stores issued in order to bring the page
544 	 * uptodate are actually visible before PageUptodate becomes true.
545 	 */
546 	smp_wmb();
547 	set_bit(PG_uptodate, &page->flags);
548 }
549 
550 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
551 
552 int test_clear_page_writeback(struct page *page);
553 int __test_set_page_writeback(struct page *page, bool keep_write);
554 
555 #define test_set_page_writeback(page)			\
556 	__test_set_page_writeback(page, false)
557 #define test_set_page_writeback_keepwrite(page)	\
558 	__test_set_page_writeback(page, true)
559 
560 static inline void set_page_writeback(struct page *page)
561 {
562 	test_set_page_writeback(page);
563 }
564 
565 static inline void set_page_writeback_keepwrite(struct page *page)
566 {
567 	test_set_page_writeback_keepwrite(page);
568 }
569 
570 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
571 
572 static __always_inline void set_compound_head(struct page *page, struct page *head)
573 {
574 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
575 }
576 
577 static __always_inline void clear_compound_head(struct page *page)
578 {
579 	WRITE_ONCE(page->compound_head, 0);
580 }
581 
582 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
583 static inline void ClearPageCompound(struct page *page)
584 {
585 	BUG_ON(!PageHead(page));
586 	ClearPageHead(page);
587 }
588 #endif
589 
590 #define PG_head_mask ((1UL << PG_head))
591 
592 #ifdef CONFIG_HUGETLB_PAGE
593 int PageHuge(struct page *page);
594 int PageHeadHuge(struct page *page);
595 #else
596 TESTPAGEFLAG_FALSE(Huge)
597 TESTPAGEFLAG_FALSE(HeadHuge)
598 #endif
599 
600 
601 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
602 /*
603  * PageHuge() only returns true for hugetlbfs pages, but not for
604  * normal or transparent huge pages.
605  *
606  * PageTransHuge() returns true for both transparent huge and
607  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
608  * called only in the core VM paths where hugetlbfs pages can't exist.
609  */
610 static inline int PageTransHuge(struct page *page)
611 {
612 	VM_BUG_ON_PAGE(PageTail(page), page);
613 	return PageHead(page);
614 }
615 
616 /*
617  * PageTransCompound returns true for both transparent huge pages
618  * and hugetlbfs pages, so it should only be called when it's known
619  * that hugetlbfs pages aren't involved.
620  */
621 static inline int PageTransCompound(struct page *page)
622 {
623 	return PageCompound(page);
624 }
625 
626 /*
627  * PageTransCompoundMap is the same as PageTransCompound, but it also
628  * guarantees the primary MMU has the entire compound page mapped
629  * through pmd_trans_huge, which in turn guarantees the secondary MMUs
630  * can also map the entire compound page. This allows the secondary
631  * MMUs to call get_user_pages() only once for each compound page and
632  * to immediately map the entire compound page with a single secondary
633  * MMU fault. If there will be a pmd split later, the secondary MMUs
634  * will get an update through the MMU notifier invalidation through
635  * split_huge_pmd().
636  *
637  * Unlike PageTransCompound, this is safe to be called only while
638  * split_huge_pmd() cannot run from under us, like if protected by the
639  * MMU notifier, otherwise it may result in page->_mapcount check false
640  * positives.
641  *
642  * We have to treat page cache THP differently since every subpage of it
643  * would get _mapcount inc'ed once it is PMD mapped.  But, it may be PTE
644  * mapped in the current process so comparing subpage's _mapcount to
645  * compound_mapcount to filter out PTE mapped case.
646  */
647 static inline int PageTransCompoundMap(struct page *page)
648 {
649 	struct page *head;
650 
651 	if (!PageTransCompound(page))
652 		return 0;
653 
654 	if (PageAnon(page))
655 		return atomic_read(&page->_mapcount) < 0;
656 
657 	head = compound_head(page);
658 	/* File THP is PMD mapped and not PTE mapped */
659 	return atomic_read(&page->_mapcount) ==
660 	       atomic_read(compound_mapcount_ptr(head));
661 }
662 
663 /*
664  * PageTransTail returns true for both transparent huge pages
665  * and hugetlbfs pages, so it should only be called when it's known
666  * that hugetlbfs pages aren't involved.
667  */
668 static inline int PageTransTail(struct page *page)
669 {
670 	return PageTail(page);
671 }
672 
673 /*
674  * PageDoubleMap indicates that the compound page is mapped with PTEs as well
675  * as PMDs.
676  *
677  * This is required for optimization of rmap operations for THP: we can postpone
678  * per small page mapcount accounting (and its overhead from atomic operations)
679  * until the first PMD split.
680  *
681  * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
682  * by one. This reference will go away with last compound_mapcount.
683  *
684  * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
685  */
686 PAGEFLAG(DoubleMap, double_map, PF_SECOND)
687 	TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
688 #else
689 TESTPAGEFLAG_FALSE(TransHuge)
690 TESTPAGEFLAG_FALSE(TransCompound)
691 TESTPAGEFLAG_FALSE(TransCompoundMap)
692 TESTPAGEFLAG_FALSE(TransTail)
693 PAGEFLAG_FALSE(DoubleMap)
694 	TESTSCFLAG_FALSE(DoubleMap)
695 #endif
696 
697 /*
698  * For pages that are never mapped to userspace (and aren't PageSlab),
699  * page_type may be used.  Because it is initialised to -1, we invert the
700  * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
701  * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
702  * low bits so that an underflow or overflow of page_mapcount() won't be
703  * mistaken for a page type value.
704  */
705 
706 #define PAGE_TYPE_BASE	0xf0000000
707 /* Reserve		0x0000007f to catch underflows of page_mapcount */
708 #define PAGE_MAPCOUNT_RESERVE	-128
709 #define PG_buddy	0x00000080
710 #define PG_offline	0x00000100
711 #define PG_table	0x00000200
712 #define PG_guard	0x00000400
713 
714 #define PageType(page, flag)						\
715 	((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
716 
717 static inline int page_has_type(struct page *page)
718 {
719 	return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
720 }
721 
722 #define PAGE_TYPE_OPS(uname, lname)					\
723 static __always_inline int Page##uname(struct page *page)		\
724 {									\
725 	return PageType(page, PG_##lname);				\
726 }									\
727 static __always_inline void __SetPage##uname(struct page *page)		\
728 {									\
729 	VM_BUG_ON_PAGE(!PageType(page, 0), page);			\
730 	page->page_type &= ~PG_##lname;					\
731 }									\
732 static __always_inline void __ClearPage##uname(struct page *page)	\
733 {									\
734 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
735 	page->page_type |= PG_##lname;					\
736 }
737 
738 /*
739  * PageBuddy() indicates that the page is free and in the buddy system
740  * (see mm/page_alloc.c).
741  */
742 PAGE_TYPE_OPS(Buddy, buddy)
743 
744 /*
745  * PageOffline() indicates that the page is logically offline although the
746  * containing section is online. (e.g. inflated in a balloon driver or
747  * not onlined when onlining the section).
748  * The content of these pages is effectively stale. Such pages should not
749  * be touched (read/write/dump/save) except by their owner.
750  *
751  * If a driver wants to allow to offline unmovable PageOffline() pages without
752  * putting them back to the buddy, it can do so via the memory notifier by
753  * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
754  * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
755  * pages (now with a reference count of zero) are treated like free pages,
756  * allowing the containing memory block to get offlined. A driver that
757  * relies on this feature is aware that re-onlining the memory block will
758  * require to re-set the pages PageOffline() and not giving them to the
759  * buddy via online_page_callback_t.
760  */
761 PAGE_TYPE_OPS(Offline, offline)
762 
763 /*
764  * Marks pages in use as page tables.
765  */
766 PAGE_TYPE_OPS(Table, table)
767 
768 /*
769  * Marks guardpages used with debug_pagealloc.
770  */
771 PAGE_TYPE_OPS(Guard, guard)
772 
773 extern bool is_free_buddy_page(struct page *page);
774 
775 __PAGEFLAG(Isolated, isolated, PF_ANY);
776 
777 /*
778  * If network-based swap is enabled, sl*b must keep track of whether pages
779  * were allocated from pfmemalloc reserves.
780  */
781 static inline int PageSlabPfmemalloc(struct page *page)
782 {
783 	VM_BUG_ON_PAGE(!PageSlab(page), page);
784 	return PageActive(page);
785 }
786 
787 static inline void SetPageSlabPfmemalloc(struct page *page)
788 {
789 	VM_BUG_ON_PAGE(!PageSlab(page), page);
790 	SetPageActive(page);
791 }
792 
793 static inline void __ClearPageSlabPfmemalloc(struct page *page)
794 {
795 	VM_BUG_ON_PAGE(!PageSlab(page), page);
796 	__ClearPageActive(page);
797 }
798 
799 static inline void ClearPageSlabPfmemalloc(struct page *page)
800 {
801 	VM_BUG_ON_PAGE(!PageSlab(page), page);
802 	ClearPageActive(page);
803 }
804 
805 #ifdef CONFIG_MMU
806 #define __PG_MLOCKED		(1UL << PG_mlocked)
807 #else
808 #define __PG_MLOCKED		0
809 #endif
810 
811 /*
812  * Flags checked when a page is freed.  Pages being freed should not have
813  * these flags set.  If they are, there is a problem.
814  */
815 #define PAGE_FLAGS_CHECK_AT_FREE				\
816 	(1UL << PG_lru		| 1UL << PG_locked	|	\
817 	 1UL << PG_private	| 1UL << PG_private_2	|	\
818 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
819 	 1UL << PG_slab		| 1UL << PG_active 	|	\
820 	 1UL << PG_unevictable	| __PG_MLOCKED)
821 
822 /*
823  * Flags checked when a page is prepped for return by the page allocator.
824  * Pages being prepped should not have these flags set.  If they are set,
825  * there has been a kernel bug or struct page corruption.
826  *
827  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
828  * alloc-free cycle to prevent from reusing the page.
829  */
830 #define PAGE_FLAGS_CHECK_AT_PREP	\
831 	(((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
832 
833 #define PAGE_FLAGS_PRIVATE				\
834 	(1UL << PG_private | 1UL << PG_private_2)
835 /**
836  * page_has_private - Determine if page has private stuff
837  * @page: The page to be checked
838  *
839  * Determine if a page has private stuff, indicating that release routines
840  * should be invoked upon it.
841  */
842 static inline int page_has_private(struct page *page)
843 {
844 	return !!(page->flags & PAGE_FLAGS_PRIVATE);
845 }
846 
847 #undef PF_ANY
848 #undef PF_HEAD
849 #undef PF_ONLY_HEAD
850 #undef PF_NO_TAIL
851 #undef PF_NO_COMPOUND
852 #undef PF_SECOND
853 #endif /* !__GENERATING_BOUNDS_H */
854 
855 #endif	/* PAGE_FLAGS_H */
856