xref: /openbmc/linux/include/linux/page-flags.h (revision 0022cec7)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages. The "struct page" of such a page
21  * should in general not be touched (e.g. set dirty) except by its owner.
22  * Pages marked as PG_reserved include:
23  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24  *   initrd, HW tables)
25  * - Pages reserved or allocated early during boot (before the page allocator
26  *   was initialized). This includes (depending on the architecture) the
27  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
29  *   be given to the page allocator.
30  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31  *   to read/write these pages might end badly. Don't touch!
32  * - The zero page(s)
33  * - Pages not added to the page allocator when onlining a section because
34  *   they were excluded via the online_page_callback() or because they are
35  *   PG_hwpoison.
36  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37  *   control pages, vmcoreinfo)
38  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39  *   not marked PG_reserved (as they might be in use by somebody else who does
40  *   not respect the caching strategy).
41  * - Pages part of an offline section (struct pages of offline sections should
42  *   not be trusted as they will be initialized when first onlined).
43  * - MCA pages on ia64
44  * - Pages holding CPU notes for POWER Firmware Assisted Dump
45  * - Device memory (e.g. PMEM, DAX, HMM)
46  * Some PG_reserved pages will be excluded from the hibernation image.
47  * PG_reserved does in general not hinder anybody from dumping or swapping
48  * and is no longer required for remap_pfn_range(). ioremap might require it.
49  * Consequently, PG_reserved for a page mapped into user space can indicate
50  * the zero page, the vDSO, MMIO pages or device memory.
51  *
52  * The PG_private bitflag is set on pagecache pages if they contain filesystem
53  * specific data (which is normally at page->private). It can be used by
54  * private allocations for its own usage.
55  *
56  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58  * is set before writeback starts and cleared when it finishes.
59  *
60  * PG_locked also pins a page in pagecache, and blocks truncation of the file
61  * while it is held.
62  *
63  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64  * to become unlocked.
65  *
66  * PG_swapbacked is set when a page uses swap as a backing storage.  This are
67  * usually PageAnon or shmem pages but please note that even anonymous pages
68  * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69  * a result of MADV_FREE).
70  *
71  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
72  * file-backed pagecache (see mm/vmscan.c).
73  *
74  * PG_error is set to indicate that an I/O error occurred on this page.
75  *
76  * PG_arch_1 is an architecture specific page state bit.  The generic code
77  * guarantees that this bit is cleared for a page when it first is entered into
78  * the page cache.
79  *
80  * PG_hwpoison indicates that a page got corrupted in hardware and contains
81  * data with incorrect ECC bits that triggered a machine check. Accessing is
82  * not safe since it may cause another machine check. Don't touch!
83  */
84 
85 /*
86  * Don't use the pageflags directly.  Use the PageFoo macros.
87  *
88  * The page flags field is split into two parts, the main flags area
89  * which extends from the low bits upwards, and the fields area which
90  * extends from the high bits downwards.
91  *
92  *  | FIELD | ... | FLAGS |
93  *  N-1           ^       0
94  *               (NR_PAGEFLAGS)
95  *
96  * The fields area is reserved for fields mapping zone, node (for NUMA) and
97  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
98  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
99  */
100 enum pageflags {
101 	PG_locked,		/* Page is locked. Don't touch. */
102 	PG_referenced,
103 	PG_uptodate,
104 	PG_dirty,
105 	PG_lru,
106 	PG_active,
107 	PG_workingset,
108 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
109 	PG_error,
110 	PG_slab,
111 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
112 	PG_arch_1,
113 	PG_reserved,
114 	PG_private,		/* If pagecache, has fs-private data */
115 	PG_private_2,		/* If pagecache, has fs aux data */
116 	PG_writeback,		/* Page is under writeback */
117 	PG_head,		/* A head page */
118 	PG_mappedtodisk,	/* Has blocks allocated on-disk */
119 	PG_reclaim,		/* To be reclaimed asap */
120 	PG_swapbacked,		/* Page is backed by RAM/swap */
121 	PG_unevictable,		/* Page is "unevictable"  */
122 #ifdef CONFIG_MMU
123 	PG_mlocked,		/* Page is vma mlocked */
124 #endif
125 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
126 	PG_uncached,		/* Page has been mapped as uncached */
127 #endif
128 #ifdef CONFIG_MEMORY_FAILURE
129 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
130 #endif
131 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
132 	PG_young,
133 	PG_idle,
134 #endif
135 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
136 	PG_arch_2,
137 	PG_arch_3,
138 #endif
139 	__NR_PAGEFLAGS,
140 
141 	PG_readahead = PG_reclaim,
142 
143 	/*
144 	 * Depending on the way an anonymous folio can be mapped into a page
145 	 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped
146 	 * THP), PG_anon_exclusive may be set only for the head page or for
147 	 * tail pages of an anonymous folio. For now, we only expect it to be
148 	 * set on tail pages for PTE-mapped THP.
149 	 */
150 	PG_anon_exclusive = PG_mappedtodisk,
151 
152 	/* Filesystems */
153 	PG_checked = PG_owner_priv_1,
154 
155 	/* SwapBacked */
156 	PG_swapcache = PG_owner_priv_1,	/* Swap page: swp_entry_t in private */
157 
158 	/* Two page bits are conscripted by FS-Cache to maintain local caching
159 	 * state.  These bits are set on pages belonging to the netfs's inodes
160 	 * when those inodes are being locally cached.
161 	 */
162 	PG_fscache = PG_private_2,	/* page backed by cache */
163 
164 	/* XEN */
165 	/* Pinned in Xen as a read-only pagetable page. */
166 	PG_pinned = PG_owner_priv_1,
167 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
168 	PG_savepinned = PG_dirty,
169 	/* Has a grant mapping of another (foreign) domain's page. */
170 	PG_foreign = PG_owner_priv_1,
171 	/* Remapped by swiotlb-xen. */
172 	PG_xen_remapped = PG_owner_priv_1,
173 
174 #ifdef CONFIG_MEMORY_FAILURE
175 	/*
176 	 * Compound pages. Stored in first tail page's flags.
177 	 * Indicates that at least one subpage is hwpoisoned in the
178 	 * THP.
179 	 */
180 	PG_has_hwpoisoned = PG_error,
181 #endif
182 
183 	/* non-lru isolated movable page */
184 	PG_isolated = PG_reclaim,
185 
186 	/* Only valid for buddy pages. Used to track pages that are reported */
187 	PG_reported = PG_uptodate,
188 
189 #ifdef CONFIG_MEMORY_HOTPLUG
190 	/* For self-hosted memmap pages */
191 	PG_vmemmap_self_hosted = PG_owner_priv_1,
192 #endif
193 };
194 
195 #define PAGEFLAGS_MASK		((1UL << NR_PAGEFLAGS) - 1)
196 
197 #ifndef __GENERATING_BOUNDS_H
198 
199 #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
200 DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
201 
202 /*
203  * Return the real head page struct iff the @page is a fake head page, otherwise
204  * return the @page itself. See Documentation/mm/vmemmap_dedup.rst.
205  */
206 static __always_inline const struct page *page_fixed_fake_head(const struct page *page)
207 {
208 	if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key))
209 		return page;
210 
211 	/*
212 	 * Only addresses aligned with PAGE_SIZE of struct page may be fake head
213 	 * struct page. The alignment check aims to avoid access the fields (
214 	 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly)
215 	 * cold cacheline in some cases.
216 	 */
217 	if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) &&
218 	    test_bit(PG_head, &page->flags)) {
219 		/*
220 		 * We can safely access the field of the @page[1] with PG_head
221 		 * because the @page is a compound page composed with at least
222 		 * two contiguous pages.
223 		 */
224 		unsigned long head = READ_ONCE(page[1].compound_head);
225 
226 		if (likely(head & 1))
227 			return (const struct page *)(head - 1);
228 	}
229 	return page;
230 }
231 #else
232 static inline const struct page *page_fixed_fake_head(const struct page *page)
233 {
234 	return page;
235 }
236 #endif
237 
238 static __always_inline int page_is_fake_head(struct page *page)
239 {
240 	return page_fixed_fake_head(page) != page;
241 }
242 
243 static inline unsigned long _compound_head(const struct page *page)
244 {
245 	unsigned long head = READ_ONCE(page->compound_head);
246 
247 	if (unlikely(head & 1))
248 		return head - 1;
249 	return (unsigned long)page_fixed_fake_head(page);
250 }
251 
252 #define compound_head(page)	((typeof(page))_compound_head(page))
253 
254 /**
255  * page_folio - Converts from page to folio.
256  * @p: The page.
257  *
258  * Every page is part of a folio.  This function cannot be called on a
259  * NULL pointer.
260  *
261  * Context: No reference, nor lock is required on @page.  If the caller
262  * does not hold a reference, this call may race with a folio split, so
263  * it should re-check the folio still contains this page after gaining
264  * a reference on the folio.
265  * Return: The folio which contains this page.
266  */
267 #define page_folio(p)		(_Generic((p),				\
268 	const struct page *:	(const struct folio *)_compound_head(p), \
269 	struct page *:		(struct folio *)_compound_head(p)))
270 
271 /**
272  * folio_page - Return a page from a folio.
273  * @folio: The folio.
274  * @n: The page number to return.
275  *
276  * @n is relative to the start of the folio.  This function does not
277  * check that the page number lies within @folio; the caller is presumed
278  * to have a reference to the page.
279  */
280 #define folio_page(folio, n)	nth_page(&(folio)->page, n)
281 
282 static __always_inline int PageTail(struct page *page)
283 {
284 	return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page);
285 }
286 
287 static __always_inline int PageCompound(struct page *page)
288 {
289 	return test_bit(PG_head, &page->flags) ||
290 	       READ_ONCE(page->compound_head) & 1;
291 }
292 
293 #define	PAGE_POISON_PATTERN	-1l
294 static inline int PagePoisoned(const struct page *page)
295 {
296 	return READ_ONCE(page->flags) == PAGE_POISON_PATTERN;
297 }
298 
299 #ifdef CONFIG_DEBUG_VM
300 void page_init_poison(struct page *page, size_t size);
301 #else
302 static inline void page_init_poison(struct page *page, size_t size)
303 {
304 }
305 #endif
306 
307 static unsigned long *folio_flags(struct folio *folio, unsigned n)
308 {
309 	struct page *page = &folio->page;
310 
311 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
312 	VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
313 	return &page[n].flags;
314 }
315 
316 /*
317  * Page flags policies wrt compound pages
318  *
319  * PF_POISONED_CHECK
320  *     check if this struct page poisoned/uninitialized
321  *
322  * PF_ANY:
323  *     the page flag is relevant for small, head and tail pages.
324  *
325  * PF_HEAD:
326  *     for compound page all operations related to the page flag applied to
327  *     head page.
328  *
329  * PF_ONLY_HEAD:
330  *     for compound page, callers only ever operate on the head page.
331  *
332  * PF_NO_TAIL:
333  *     modifications of the page flag must be done on small or head pages,
334  *     checks can be done on tail pages too.
335  *
336  * PF_NO_COMPOUND:
337  *     the page flag is not relevant for compound pages.
338  *
339  * PF_SECOND:
340  *     the page flag is stored in the first tail page.
341  */
342 #define PF_POISONED_CHECK(page) ({					\
343 		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
344 		page; })
345 #define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
346 #define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
347 #define PF_ONLY_HEAD(page, enforce) ({					\
348 		VM_BUG_ON_PGFLAGS(PageTail(page), page);		\
349 		PF_POISONED_CHECK(page); })
350 #define PF_NO_TAIL(page, enforce) ({					\
351 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
352 		PF_POISONED_CHECK(compound_head(page)); })
353 #define PF_NO_COMPOUND(page, enforce) ({				\
354 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
355 		PF_POISONED_CHECK(page); })
356 #define PF_SECOND(page, enforce) ({					\
357 		VM_BUG_ON_PGFLAGS(!PageHead(page), page);		\
358 		PF_POISONED_CHECK(&page[1]); })
359 
360 /* Which page is the flag stored in */
361 #define FOLIO_PF_ANY		0
362 #define FOLIO_PF_HEAD		0
363 #define FOLIO_PF_ONLY_HEAD	0
364 #define FOLIO_PF_NO_TAIL	0
365 #define FOLIO_PF_NO_COMPOUND	0
366 #define FOLIO_PF_SECOND		1
367 
368 /*
369  * Macros to create function definitions for page flags
370  */
371 #define TESTPAGEFLAG(uname, lname, policy)				\
372 static __always_inline bool folio_test_##lname(struct folio *folio)	\
373 { return test_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
374 static __always_inline int Page##uname(struct page *page)		\
375 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
376 
377 #define SETPAGEFLAG(uname, lname, policy)				\
378 static __always_inline							\
379 void folio_set_##lname(struct folio *folio)				\
380 { set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
381 static __always_inline void SetPage##uname(struct page *page)		\
382 { set_bit(PG_##lname, &policy(page, 1)->flags); }
383 
384 #define CLEARPAGEFLAG(uname, lname, policy)				\
385 static __always_inline							\
386 void folio_clear_##lname(struct folio *folio)				\
387 { clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
388 static __always_inline void ClearPage##uname(struct page *page)		\
389 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
390 
391 #define __SETPAGEFLAG(uname, lname, policy)				\
392 static __always_inline							\
393 void __folio_set_##lname(struct folio *folio)				\
394 { __set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
395 static __always_inline void __SetPage##uname(struct page *page)		\
396 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
397 
398 #define __CLEARPAGEFLAG(uname, lname, policy)				\
399 static __always_inline							\
400 void __folio_clear_##lname(struct folio *folio)				\
401 { __clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
402 static __always_inline void __ClearPage##uname(struct page *page)	\
403 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
404 
405 #define TESTSETFLAG(uname, lname, policy)				\
406 static __always_inline							\
407 bool folio_test_set_##lname(struct folio *folio)			\
408 { return test_and_set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
409 static __always_inline int TestSetPage##uname(struct page *page)	\
410 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
411 
412 #define TESTCLEARFLAG(uname, lname, policy)				\
413 static __always_inline							\
414 bool folio_test_clear_##lname(struct folio *folio)			\
415 { return test_and_clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
416 static __always_inline int TestClearPage##uname(struct page *page)	\
417 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
418 
419 #define PAGEFLAG(uname, lname, policy)					\
420 	TESTPAGEFLAG(uname, lname, policy)				\
421 	SETPAGEFLAG(uname, lname, policy)				\
422 	CLEARPAGEFLAG(uname, lname, policy)
423 
424 #define __PAGEFLAG(uname, lname, policy)				\
425 	TESTPAGEFLAG(uname, lname, policy)				\
426 	__SETPAGEFLAG(uname, lname, policy)				\
427 	__CLEARPAGEFLAG(uname, lname, policy)
428 
429 #define TESTSCFLAG(uname, lname, policy)				\
430 	TESTSETFLAG(uname, lname, policy)				\
431 	TESTCLEARFLAG(uname, lname, policy)
432 
433 #define TESTPAGEFLAG_FALSE(uname, lname)				\
434 static inline bool folio_test_##lname(const struct folio *folio) { return false; } \
435 static inline int Page##uname(const struct page *page) { return 0; }
436 
437 #define SETPAGEFLAG_NOOP(uname, lname)					\
438 static inline void folio_set_##lname(struct folio *folio) { }		\
439 static inline void SetPage##uname(struct page *page) {  }
440 
441 #define CLEARPAGEFLAG_NOOP(uname, lname)				\
442 static inline void folio_clear_##lname(struct folio *folio) { }		\
443 static inline void ClearPage##uname(struct page *page) {  }
444 
445 #define __CLEARPAGEFLAG_NOOP(uname, lname)				\
446 static inline void __folio_clear_##lname(struct folio *folio) { }	\
447 static inline void __ClearPage##uname(struct page *page) {  }
448 
449 #define TESTSETFLAG_FALSE(uname, lname)					\
450 static inline bool folio_test_set_##lname(struct folio *folio)		\
451 { return 0; }								\
452 static inline int TestSetPage##uname(struct page *page) { return 0; }
453 
454 #define TESTCLEARFLAG_FALSE(uname, lname)				\
455 static inline bool folio_test_clear_##lname(struct folio *folio)	\
456 { return 0; }								\
457 static inline int TestClearPage##uname(struct page *page) { return 0; }
458 
459 #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname)	\
460 	SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname)
461 
462 #define TESTSCFLAG_FALSE(uname, lname)					\
463 	TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
464 
465 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
466 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
467 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
468 PAGEFLAG(Referenced, referenced, PF_HEAD)
469 	TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
470 	__SETPAGEFLAG(Referenced, referenced, PF_HEAD)
471 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
472 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
473 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
474 	TESTCLEARFLAG(LRU, lru, PF_HEAD)
475 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
476 	TESTCLEARFLAG(Active, active, PF_HEAD)
477 PAGEFLAG(Workingset, workingset, PF_HEAD)
478 	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
479 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
480 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
481 
482 /* Xen */
483 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
484 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
485 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
486 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
487 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
488 	TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
489 
490 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
491 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
492 	__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
493 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
494 	__CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
495 	__SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
496 
497 /*
498  * Private page markings that may be used by the filesystem that owns the page
499  * for its own purposes.
500  * - PG_private and PG_private_2 cause release_folio() and co to be invoked
501  */
502 PAGEFLAG(Private, private, PF_ANY)
503 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
504 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
505 	TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
506 
507 /*
508  * Only test-and-set exist for PG_writeback.  The unconditional operators are
509  * risky: they bypass page accounting.
510  */
511 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
512 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
513 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
514 
515 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
516 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
517 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
518 PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND)
519 	TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND)
520 
521 #ifdef CONFIG_HIGHMEM
522 /*
523  * Must use a macro here due to header dependency issues. page_zone() is not
524  * available at this point.
525  */
526 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
527 #define folio_test_highmem(__f)	is_highmem_idx(folio_zonenum(__f))
528 #else
529 PAGEFLAG_FALSE(HighMem, highmem)
530 #endif
531 
532 #ifdef CONFIG_SWAP
533 static __always_inline bool folio_test_swapcache(struct folio *folio)
534 {
535 	return folio_test_swapbacked(folio) &&
536 			test_bit(PG_swapcache, folio_flags(folio, 0));
537 }
538 
539 static __always_inline bool PageSwapCache(struct page *page)
540 {
541 	return folio_test_swapcache(page_folio(page));
542 }
543 
544 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
545 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
546 #else
547 PAGEFLAG_FALSE(SwapCache, swapcache)
548 #endif
549 
550 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
551 	__CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
552 	TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
553 
554 #ifdef CONFIG_MMU
555 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
556 	__CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
557 	TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
558 #else
559 PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked)
560 	TESTSCFLAG_FALSE(Mlocked, mlocked)
561 #endif
562 
563 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
564 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
565 #else
566 PAGEFLAG_FALSE(Uncached, uncached)
567 #endif
568 
569 #ifdef CONFIG_MEMORY_FAILURE
570 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
571 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
572 #define __PG_HWPOISON (1UL << PG_hwpoison)
573 #define MAGIC_HWPOISON	0x48575053U	/* HWPS */
574 extern void SetPageHWPoisonTakenOff(struct page *page);
575 extern void ClearPageHWPoisonTakenOff(struct page *page);
576 extern bool take_page_off_buddy(struct page *page);
577 extern bool put_page_back_buddy(struct page *page);
578 #else
579 PAGEFLAG_FALSE(HWPoison, hwpoison)
580 #define __PG_HWPOISON 0
581 #endif
582 
583 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
584 TESTPAGEFLAG(Young, young, PF_ANY)
585 SETPAGEFLAG(Young, young, PF_ANY)
586 TESTCLEARFLAG(Young, young, PF_ANY)
587 PAGEFLAG(Idle, idle, PF_ANY)
588 #endif
589 
590 /*
591  * PageReported() is used to track reported free pages within the Buddy
592  * allocator. We can use the non-atomic version of the test and set
593  * operations as both should be shielded with the zone lock to prevent
594  * any possible races on the setting or clearing of the bit.
595  */
596 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
597 
598 #ifdef CONFIG_MEMORY_HOTPLUG
599 PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY)
600 #else
601 PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted)
602 #endif
603 
604 /*
605  * On an anonymous page mapped into a user virtual memory area,
606  * page->mapping points to its anon_vma, not to a struct address_space;
607  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
608  *
609  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
610  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
611  * bit; and then page->mapping points, not to an anon_vma, but to a private
612  * structure which KSM associates with that merged page.  See ksm.h.
613  *
614  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
615  * page and then page->mapping points to a struct movable_operations.
616  *
617  * Please note that, confusingly, "page_mapping" refers to the inode
618  * address_space which maps the page from disk; whereas "page_mapped"
619  * refers to user virtual address space into which the page is mapped.
620  */
621 #define PAGE_MAPPING_ANON	0x1
622 #define PAGE_MAPPING_MOVABLE	0x2
623 #define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
624 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
625 
626 /*
627  * Different with flags above, this flag is used only for fsdax mode.  It
628  * indicates that this page->mapping is now under reflink case.
629  */
630 #define PAGE_MAPPING_DAX_SHARED	((void *)0x1)
631 
632 static __always_inline bool folio_mapping_flags(struct folio *folio)
633 {
634 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) != 0;
635 }
636 
637 static __always_inline int PageMappingFlags(struct page *page)
638 {
639 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
640 }
641 
642 static __always_inline bool folio_test_anon(struct folio *folio)
643 {
644 	return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0;
645 }
646 
647 static __always_inline bool PageAnon(struct page *page)
648 {
649 	return folio_test_anon(page_folio(page));
650 }
651 
652 static __always_inline bool __folio_test_movable(const struct folio *folio)
653 {
654 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
655 			PAGE_MAPPING_MOVABLE;
656 }
657 
658 static __always_inline int __PageMovable(struct page *page)
659 {
660 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
661 				PAGE_MAPPING_MOVABLE;
662 }
663 
664 #ifdef CONFIG_KSM
665 /*
666  * A KSM page is one of those write-protected "shared pages" or "merged pages"
667  * which KSM maps into multiple mms, wherever identical anonymous page content
668  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
669  * anon_vma, but to that page's node of the stable tree.
670  */
671 static __always_inline bool folio_test_ksm(struct folio *folio)
672 {
673 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
674 				PAGE_MAPPING_KSM;
675 }
676 
677 static __always_inline bool PageKsm(struct page *page)
678 {
679 	return folio_test_ksm(page_folio(page));
680 }
681 #else
682 TESTPAGEFLAG_FALSE(Ksm, ksm)
683 #endif
684 
685 u64 stable_page_flags(struct page *page);
686 
687 /**
688  * folio_test_uptodate - Is this folio up to date?
689  * @folio: The folio.
690  *
691  * The uptodate flag is set on a folio when every byte in the folio is
692  * at least as new as the corresponding bytes on storage.  Anonymous
693  * and CoW folios are always uptodate.  If the folio is not uptodate,
694  * some of the bytes in it may be; see the is_partially_uptodate()
695  * address_space operation.
696  */
697 static inline bool folio_test_uptodate(struct folio *folio)
698 {
699 	bool ret = test_bit(PG_uptodate, folio_flags(folio, 0));
700 	/*
701 	 * Must ensure that the data we read out of the folio is loaded
702 	 * _after_ we've loaded folio->flags to check the uptodate bit.
703 	 * We can skip the barrier if the folio is not uptodate, because
704 	 * we wouldn't be reading anything from it.
705 	 *
706 	 * See folio_mark_uptodate() for the other side of the story.
707 	 */
708 	if (ret)
709 		smp_rmb();
710 
711 	return ret;
712 }
713 
714 static inline int PageUptodate(struct page *page)
715 {
716 	return folio_test_uptodate(page_folio(page));
717 }
718 
719 static __always_inline void __folio_mark_uptodate(struct folio *folio)
720 {
721 	smp_wmb();
722 	__set_bit(PG_uptodate, folio_flags(folio, 0));
723 }
724 
725 static __always_inline void folio_mark_uptodate(struct folio *folio)
726 {
727 	/*
728 	 * Memory barrier must be issued before setting the PG_uptodate bit,
729 	 * so that all previous stores issued in order to bring the folio
730 	 * uptodate are actually visible before folio_test_uptodate becomes true.
731 	 */
732 	smp_wmb();
733 	set_bit(PG_uptodate, folio_flags(folio, 0));
734 }
735 
736 static __always_inline void __SetPageUptodate(struct page *page)
737 {
738 	__folio_mark_uptodate((struct folio *)page);
739 }
740 
741 static __always_inline void SetPageUptodate(struct page *page)
742 {
743 	folio_mark_uptodate((struct folio *)page);
744 }
745 
746 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
747 
748 bool __folio_start_writeback(struct folio *folio, bool keep_write);
749 bool set_page_writeback(struct page *page);
750 
751 #define folio_start_writeback(folio)			\
752 	__folio_start_writeback(folio, false)
753 #define folio_start_writeback_keepwrite(folio)	\
754 	__folio_start_writeback(folio, true)
755 
756 static inline bool test_set_page_writeback(struct page *page)
757 {
758 	return set_page_writeback(page);
759 }
760 
761 static __always_inline bool folio_test_head(struct folio *folio)
762 {
763 	return test_bit(PG_head, folio_flags(folio, FOLIO_PF_ANY));
764 }
765 
766 static __always_inline int PageHead(struct page *page)
767 {
768 	PF_POISONED_CHECK(page);
769 	return test_bit(PG_head, &page->flags) && !page_is_fake_head(page);
770 }
771 
772 __SETPAGEFLAG(Head, head, PF_ANY)
773 __CLEARPAGEFLAG(Head, head, PF_ANY)
774 CLEARPAGEFLAG(Head, head, PF_ANY)
775 
776 /**
777  * folio_test_large() - Does this folio contain more than one page?
778  * @folio: The folio to test.
779  *
780  * Return: True if the folio is larger than one page.
781  */
782 static inline bool folio_test_large(struct folio *folio)
783 {
784 	return folio_test_head(folio);
785 }
786 
787 static __always_inline void set_compound_head(struct page *page, struct page *head)
788 {
789 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
790 }
791 
792 static __always_inline void clear_compound_head(struct page *page)
793 {
794 	WRITE_ONCE(page->compound_head, 0);
795 }
796 
797 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
798 static inline void ClearPageCompound(struct page *page)
799 {
800 	BUG_ON(!PageHead(page));
801 	ClearPageHead(page);
802 }
803 #endif
804 
805 #define PG_head_mask ((1UL << PG_head))
806 
807 #ifdef CONFIG_HUGETLB_PAGE
808 int PageHuge(struct page *page);
809 bool folio_test_hugetlb(struct folio *folio);
810 #else
811 TESTPAGEFLAG_FALSE(Huge, hugetlb)
812 #endif
813 
814 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
815 /*
816  * PageHuge() only returns true for hugetlbfs pages, but not for
817  * normal or transparent huge pages.
818  *
819  * PageTransHuge() returns true for both transparent huge and
820  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
821  * called only in the core VM paths where hugetlbfs pages can't exist.
822  */
823 static inline int PageTransHuge(struct page *page)
824 {
825 	VM_BUG_ON_PAGE(PageTail(page), page);
826 	return PageHead(page);
827 }
828 
829 static inline bool folio_test_transhuge(struct folio *folio)
830 {
831 	return folio_test_head(folio);
832 }
833 
834 /*
835  * PageTransCompound returns true for both transparent huge pages
836  * and hugetlbfs pages, so it should only be called when it's known
837  * that hugetlbfs pages aren't involved.
838  */
839 static inline int PageTransCompound(struct page *page)
840 {
841 	return PageCompound(page);
842 }
843 
844 /*
845  * PageTransTail returns true for both transparent huge pages
846  * and hugetlbfs pages, so it should only be called when it's known
847  * that hugetlbfs pages aren't involved.
848  */
849 static inline int PageTransTail(struct page *page)
850 {
851 	return PageTail(page);
852 }
853 #else
854 TESTPAGEFLAG_FALSE(TransHuge, transhuge)
855 TESTPAGEFLAG_FALSE(TransCompound, transcompound)
856 TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap)
857 TESTPAGEFLAG_FALSE(TransTail, transtail)
858 #endif
859 
860 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
861 /*
862  * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
863  * compound page.
864  *
865  * This flag is set by hwpoison handler.  Cleared by THP split or free page.
866  */
867 PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
868 	TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
869 #else
870 PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
871 	TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
872 #endif
873 
874 /*
875  * Check if a page is currently marked HWPoisoned. Note that this check is
876  * best effort only and inherently racy: there is no way to synchronize with
877  * failing hardware.
878  */
879 static inline bool is_page_hwpoison(struct page *page)
880 {
881 	if (PageHWPoison(page))
882 		return true;
883 	return PageHuge(page) && PageHWPoison(compound_head(page));
884 }
885 
886 /*
887  * For pages that are never mapped to userspace (and aren't PageSlab),
888  * page_type may be used.  Because it is initialised to -1, we invert the
889  * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
890  * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
891  * low bits so that an underflow or overflow of page_mapcount() won't be
892  * mistaken for a page type value.
893  */
894 
895 #define PAGE_TYPE_BASE	0xf0000000
896 /* Reserve		0x0000007f to catch underflows of page_mapcount */
897 #define PAGE_MAPCOUNT_RESERVE	-128
898 #define PG_buddy	0x00000080
899 #define PG_offline	0x00000100
900 #define PG_table	0x00000200
901 #define PG_guard	0x00000400
902 
903 #define PageType(page, flag)						\
904 	((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
905 
906 static inline int page_type_has_type(unsigned int page_type)
907 {
908 	return (int)page_type < PAGE_MAPCOUNT_RESERVE;
909 }
910 
911 static inline int page_has_type(struct page *page)
912 {
913 	return page_type_has_type(page->page_type);
914 }
915 
916 #define PAGE_TYPE_OPS(uname, lname)					\
917 static __always_inline int Page##uname(struct page *page)		\
918 {									\
919 	return PageType(page, PG_##lname);				\
920 }									\
921 static __always_inline void __SetPage##uname(struct page *page)		\
922 {									\
923 	VM_BUG_ON_PAGE(!PageType(page, 0), page);			\
924 	page->page_type &= ~PG_##lname;					\
925 }									\
926 static __always_inline void __ClearPage##uname(struct page *page)	\
927 {									\
928 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
929 	page->page_type |= PG_##lname;					\
930 }
931 
932 /*
933  * PageBuddy() indicates that the page is free and in the buddy system
934  * (see mm/page_alloc.c).
935  */
936 PAGE_TYPE_OPS(Buddy, buddy)
937 
938 /*
939  * PageOffline() indicates that the page is logically offline although the
940  * containing section is online. (e.g. inflated in a balloon driver or
941  * not onlined when onlining the section).
942  * The content of these pages is effectively stale. Such pages should not
943  * be touched (read/write/dump/save) except by their owner.
944  *
945  * If a driver wants to allow to offline unmovable PageOffline() pages without
946  * putting them back to the buddy, it can do so via the memory notifier by
947  * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
948  * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
949  * pages (now with a reference count of zero) are treated like free pages,
950  * allowing the containing memory block to get offlined. A driver that
951  * relies on this feature is aware that re-onlining the memory block will
952  * require to re-set the pages PageOffline() and not giving them to the
953  * buddy via online_page_callback_t.
954  *
955  * There are drivers that mark a page PageOffline() and expect there won't be
956  * any further access to page content. PFN walkers that read content of random
957  * pages should check PageOffline() and synchronize with such drivers using
958  * page_offline_freeze()/page_offline_thaw().
959  */
960 PAGE_TYPE_OPS(Offline, offline)
961 
962 extern void page_offline_freeze(void);
963 extern void page_offline_thaw(void);
964 extern void page_offline_begin(void);
965 extern void page_offline_end(void);
966 
967 /*
968  * Marks pages in use as page tables.
969  */
970 PAGE_TYPE_OPS(Table, table)
971 
972 /*
973  * Marks guardpages used with debug_pagealloc.
974  */
975 PAGE_TYPE_OPS(Guard, guard)
976 
977 extern bool is_free_buddy_page(struct page *page);
978 
979 PAGEFLAG(Isolated, isolated, PF_ANY);
980 
981 static __always_inline int PageAnonExclusive(struct page *page)
982 {
983 	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
984 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
985 	return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
986 }
987 
988 static __always_inline void SetPageAnonExclusive(struct page *page)
989 {
990 	VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
991 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
992 	set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
993 }
994 
995 static __always_inline void ClearPageAnonExclusive(struct page *page)
996 {
997 	VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
998 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
999 	clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1000 }
1001 
1002 static __always_inline void __ClearPageAnonExclusive(struct page *page)
1003 {
1004 	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1005 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1006 	__clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1007 }
1008 
1009 #ifdef CONFIG_MMU
1010 #define __PG_MLOCKED		(1UL << PG_mlocked)
1011 #else
1012 #define __PG_MLOCKED		0
1013 #endif
1014 
1015 /*
1016  * Flags checked when a page is freed.  Pages being freed should not have
1017  * these flags set.  If they are, there is a problem.
1018  */
1019 #define PAGE_FLAGS_CHECK_AT_FREE				\
1020 	(1UL << PG_lru		| 1UL << PG_locked	|	\
1021 	 1UL << PG_private	| 1UL << PG_private_2	|	\
1022 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
1023 	 1UL << PG_slab		| 1UL << PG_active 	|	\
1024 	 1UL << PG_unevictable	| __PG_MLOCKED | LRU_GEN_MASK)
1025 
1026 /*
1027  * Flags checked when a page is prepped for return by the page allocator.
1028  * Pages being prepped should not have these flags set.  If they are set,
1029  * there has been a kernel bug or struct page corruption.
1030  *
1031  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
1032  * alloc-free cycle to prevent from reusing the page.
1033  */
1034 #define PAGE_FLAGS_CHECK_AT_PREP	\
1035 	((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK)
1036 
1037 #define PAGE_FLAGS_PRIVATE				\
1038 	(1UL << PG_private | 1UL << PG_private_2)
1039 /**
1040  * page_has_private - Determine if page has private stuff
1041  * @page: The page to be checked
1042  *
1043  * Determine if a page has private stuff, indicating that release routines
1044  * should be invoked upon it.
1045  */
1046 static inline int page_has_private(struct page *page)
1047 {
1048 	return !!(page->flags & PAGE_FLAGS_PRIVATE);
1049 }
1050 
1051 static inline bool folio_has_private(struct folio *folio)
1052 {
1053 	return page_has_private(&folio->page);
1054 }
1055 
1056 #undef PF_ANY
1057 #undef PF_HEAD
1058 #undef PF_ONLY_HEAD
1059 #undef PF_NO_TAIL
1060 #undef PF_NO_COMPOUND
1061 #undef PF_SECOND
1062 #endif /* !__GENERATING_BOUNDS_H */
1063 
1064 #endif	/* PAGE_FLAGS_H */
1065