xref: /openbmc/linux/include/linux/netdevice.h (revision fa5d824ce5dd8306c66f45c34fd78536e6ce2488)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <net/net_namespace.h>
38 #ifdef CONFIG_DCB
39 #include <net/dcbnl.h>
40 #endif
41 #include <net/netprio_cgroup.h>
42 #include <net/xdp.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <linux/hashtable.h>
50 #include <linux/rbtree.h>
51 #include <net/net_trackers.h>
52 
53 struct netpoll_info;
54 struct device;
55 struct ethtool_ops;
56 struct phy_device;
57 struct dsa_port;
58 struct ip_tunnel_parm;
59 struct macsec_context;
60 struct macsec_ops;
61 
62 struct sfp_bus;
63 /* 802.11 specific */
64 struct wireless_dev;
65 /* 802.15.4 specific */
66 struct wpan_dev;
67 struct mpls_dev;
68 /* UDP Tunnel offloads */
69 struct udp_tunnel_info;
70 struct udp_tunnel_nic_info;
71 struct udp_tunnel_nic;
72 struct bpf_prog;
73 struct xdp_buff;
74 
75 void synchronize_net(void);
76 void netdev_set_default_ethtool_ops(struct net_device *dev,
77 				    const struct ethtool_ops *ops);
78 
79 /* Backlog congestion levels */
80 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
81 #define NET_RX_DROP		1	/* packet dropped */
82 
83 #define MAX_NEST_DEV 8
84 
85 /*
86  * Transmit return codes: transmit return codes originate from three different
87  * namespaces:
88  *
89  * - qdisc return codes
90  * - driver transmit return codes
91  * - errno values
92  *
93  * Drivers are allowed to return any one of those in their hard_start_xmit()
94  * function. Real network devices commonly used with qdiscs should only return
95  * the driver transmit return codes though - when qdiscs are used, the actual
96  * transmission happens asynchronously, so the value is not propagated to
97  * higher layers. Virtual network devices transmit synchronously; in this case
98  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
99  * others are propagated to higher layers.
100  */
101 
102 /* qdisc ->enqueue() return codes. */
103 #define NET_XMIT_SUCCESS	0x00
104 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
105 #define NET_XMIT_CN		0x02	/* congestion notification	*/
106 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
107 
108 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
109  * indicates that the device will soon be dropping packets, or already drops
110  * some packets of the same priority; prompting us to send less aggressively. */
111 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
112 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
113 
114 /* Driver transmit return codes */
115 #define NETDEV_TX_MASK		0xf0
116 
117 enum netdev_tx {
118 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
119 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
120 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
121 };
122 typedef enum netdev_tx netdev_tx_t;
123 
124 /*
125  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
126  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
127  */
128 static inline bool dev_xmit_complete(int rc)
129 {
130 	/*
131 	 * Positive cases with an skb consumed by a driver:
132 	 * - successful transmission (rc == NETDEV_TX_OK)
133 	 * - error while transmitting (rc < 0)
134 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
135 	 */
136 	if (likely(rc < NET_XMIT_MASK))
137 		return true;
138 
139 	return false;
140 }
141 
142 /*
143  *	Compute the worst-case header length according to the protocols
144  *	used.
145  */
146 
147 #if defined(CONFIG_HYPERV_NET)
148 # define LL_MAX_HEADER 128
149 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
150 # if defined(CONFIG_MAC80211_MESH)
151 #  define LL_MAX_HEADER 128
152 # else
153 #  define LL_MAX_HEADER 96
154 # endif
155 #else
156 # define LL_MAX_HEADER 32
157 #endif
158 
159 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
160     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
161 #define MAX_HEADER LL_MAX_HEADER
162 #else
163 #define MAX_HEADER (LL_MAX_HEADER + 48)
164 #endif
165 
166 /*
167  *	Old network device statistics. Fields are native words
168  *	(unsigned long) so they can be read and written atomically.
169  */
170 
171 struct net_device_stats {
172 	unsigned long	rx_packets;
173 	unsigned long	tx_packets;
174 	unsigned long	rx_bytes;
175 	unsigned long	tx_bytes;
176 	unsigned long	rx_errors;
177 	unsigned long	tx_errors;
178 	unsigned long	rx_dropped;
179 	unsigned long	tx_dropped;
180 	unsigned long	multicast;
181 	unsigned long	collisions;
182 	unsigned long	rx_length_errors;
183 	unsigned long	rx_over_errors;
184 	unsigned long	rx_crc_errors;
185 	unsigned long	rx_frame_errors;
186 	unsigned long	rx_fifo_errors;
187 	unsigned long	rx_missed_errors;
188 	unsigned long	tx_aborted_errors;
189 	unsigned long	tx_carrier_errors;
190 	unsigned long	tx_fifo_errors;
191 	unsigned long	tx_heartbeat_errors;
192 	unsigned long	tx_window_errors;
193 	unsigned long	rx_compressed;
194 	unsigned long	tx_compressed;
195 };
196 
197 
198 #include <linux/cache.h>
199 #include <linux/skbuff.h>
200 
201 #ifdef CONFIG_RPS
202 #include <linux/static_key.h>
203 extern struct static_key_false rps_needed;
204 extern struct static_key_false rfs_needed;
205 #endif
206 
207 struct neighbour;
208 struct neigh_parms;
209 struct sk_buff;
210 
211 struct netdev_hw_addr {
212 	struct list_head	list;
213 	struct rb_node		node;
214 	unsigned char		addr[MAX_ADDR_LEN];
215 	unsigned char		type;
216 #define NETDEV_HW_ADDR_T_LAN		1
217 #define NETDEV_HW_ADDR_T_SAN		2
218 #define NETDEV_HW_ADDR_T_UNICAST	3
219 #define NETDEV_HW_ADDR_T_MULTICAST	4
220 	bool			global_use;
221 	int			sync_cnt;
222 	int			refcount;
223 	int			synced;
224 	struct rcu_head		rcu_head;
225 };
226 
227 struct netdev_hw_addr_list {
228 	struct list_head	list;
229 	int			count;
230 
231 	/* Auxiliary tree for faster lookup on addition and deletion */
232 	struct rb_root		tree;
233 };
234 
235 #define netdev_hw_addr_list_count(l) ((l)->count)
236 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
237 #define netdev_hw_addr_list_for_each(ha, l) \
238 	list_for_each_entry(ha, &(l)->list, list)
239 
240 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
241 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
242 #define netdev_for_each_uc_addr(ha, dev) \
243 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
244 
245 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
246 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
247 #define netdev_for_each_mc_addr(ha, dev) \
248 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
249 
250 struct hh_cache {
251 	unsigned int	hh_len;
252 	seqlock_t	hh_lock;
253 
254 	/* cached hardware header; allow for machine alignment needs.        */
255 #define HH_DATA_MOD	16
256 #define HH_DATA_OFF(__len) \
257 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
258 #define HH_DATA_ALIGN(__len) \
259 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
260 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
261 };
262 
263 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
264  * Alternative is:
265  *   dev->hard_header_len ? (dev->hard_header_len +
266  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
267  *
268  * We could use other alignment values, but we must maintain the
269  * relationship HH alignment <= LL alignment.
270  */
271 #define LL_RESERVED_SPACE(dev) \
272 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
273 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
274 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
275 
276 struct header_ops {
277 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
278 			   unsigned short type, const void *daddr,
279 			   const void *saddr, unsigned int len);
280 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
281 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
282 	void	(*cache_update)(struct hh_cache *hh,
283 				const struct net_device *dev,
284 				const unsigned char *haddr);
285 	bool	(*validate)(const char *ll_header, unsigned int len);
286 	__be16	(*parse_protocol)(const struct sk_buff *skb);
287 };
288 
289 /* These flag bits are private to the generic network queueing
290  * layer; they may not be explicitly referenced by any other
291  * code.
292  */
293 
294 enum netdev_state_t {
295 	__LINK_STATE_START,
296 	__LINK_STATE_PRESENT,
297 	__LINK_STATE_NOCARRIER,
298 	__LINK_STATE_LINKWATCH_PENDING,
299 	__LINK_STATE_DORMANT,
300 	__LINK_STATE_TESTING,
301 };
302 
303 struct gro_list {
304 	struct list_head	list;
305 	int			count;
306 };
307 
308 /*
309  * size of gro hash buckets, must less than bit number of
310  * napi_struct::gro_bitmask
311  */
312 #define GRO_HASH_BUCKETS	8
313 
314 /*
315  * Structure for NAPI scheduling similar to tasklet but with weighting
316  */
317 struct napi_struct {
318 	/* The poll_list must only be managed by the entity which
319 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
320 	 * whoever atomically sets that bit can add this napi_struct
321 	 * to the per-CPU poll_list, and whoever clears that bit
322 	 * can remove from the list right before clearing the bit.
323 	 */
324 	struct list_head	poll_list;
325 
326 	unsigned long		state;
327 	int			weight;
328 	int			defer_hard_irqs_count;
329 	unsigned long		gro_bitmask;
330 	int			(*poll)(struct napi_struct *, int);
331 #ifdef CONFIG_NETPOLL
332 	int			poll_owner;
333 #endif
334 	struct net_device	*dev;
335 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
336 	struct sk_buff		*skb;
337 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
338 	int			rx_count; /* length of rx_list */
339 	struct hrtimer		timer;
340 	struct list_head	dev_list;
341 	struct hlist_node	napi_hash_node;
342 	unsigned int		napi_id;
343 	struct task_struct	*thread;
344 };
345 
346 enum {
347 	NAPI_STATE_SCHED,		/* Poll is scheduled */
348 	NAPI_STATE_MISSED,		/* reschedule a napi */
349 	NAPI_STATE_DISABLE,		/* Disable pending */
350 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
351 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
352 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
353 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
354 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
355 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
356 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
357 };
358 
359 enum {
360 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
361 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
362 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
363 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
364 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
365 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
366 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
367 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
368 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
369 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
370 };
371 
372 enum gro_result {
373 	GRO_MERGED,
374 	GRO_MERGED_FREE,
375 	GRO_HELD,
376 	GRO_NORMAL,
377 	GRO_CONSUMED,
378 };
379 typedef enum gro_result gro_result_t;
380 
381 /*
382  * enum rx_handler_result - Possible return values for rx_handlers.
383  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
384  * further.
385  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
386  * case skb->dev was changed by rx_handler.
387  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
388  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
389  *
390  * rx_handlers are functions called from inside __netif_receive_skb(), to do
391  * special processing of the skb, prior to delivery to protocol handlers.
392  *
393  * Currently, a net_device can only have a single rx_handler registered. Trying
394  * to register a second rx_handler will return -EBUSY.
395  *
396  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
397  * To unregister a rx_handler on a net_device, use
398  * netdev_rx_handler_unregister().
399  *
400  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
401  * do with the skb.
402  *
403  * If the rx_handler consumed the skb in some way, it should return
404  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
405  * the skb to be delivered in some other way.
406  *
407  * If the rx_handler changed skb->dev, to divert the skb to another
408  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
409  * new device will be called if it exists.
410  *
411  * If the rx_handler decides the skb should be ignored, it should return
412  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
413  * are registered on exact device (ptype->dev == skb->dev).
414  *
415  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
416  * delivered, it should return RX_HANDLER_PASS.
417  *
418  * A device without a registered rx_handler will behave as if rx_handler
419  * returned RX_HANDLER_PASS.
420  */
421 
422 enum rx_handler_result {
423 	RX_HANDLER_CONSUMED,
424 	RX_HANDLER_ANOTHER,
425 	RX_HANDLER_EXACT,
426 	RX_HANDLER_PASS,
427 };
428 typedef enum rx_handler_result rx_handler_result_t;
429 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
430 
431 void __napi_schedule(struct napi_struct *n);
432 void __napi_schedule_irqoff(struct napi_struct *n);
433 
434 static inline bool napi_disable_pending(struct napi_struct *n)
435 {
436 	return test_bit(NAPI_STATE_DISABLE, &n->state);
437 }
438 
439 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
440 {
441 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
442 }
443 
444 bool napi_schedule_prep(struct napi_struct *n);
445 
446 /**
447  *	napi_schedule - schedule NAPI poll
448  *	@n: NAPI context
449  *
450  * Schedule NAPI poll routine to be called if it is not already
451  * running.
452  */
453 static inline void napi_schedule(struct napi_struct *n)
454 {
455 	if (napi_schedule_prep(n))
456 		__napi_schedule(n);
457 }
458 
459 /**
460  *	napi_schedule_irqoff - schedule NAPI poll
461  *	@n: NAPI context
462  *
463  * Variant of napi_schedule(), assuming hard irqs are masked.
464  */
465 static inline void napi_schedule_irqoff(struct napi_struct *n)
466 {
467 	if (napi_schedule_prep(n))
468 		__napi_schedule_irqoff(n);
469 }
470 
471 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
472 static inline bool napi_reschedule(struct napi_struct *napi)
473 {
474 	if (napi_schedule_prep(napi)) {
475 		__napi_schedule(napi);
476 		return true;
477 	}
478 	return false;
479 }
480 
481 bool napi_complete_done(struct napi_struct *n, int work_done);
482 /**
483  *	napi_complete - NAPI processing complete
484  *	@n: NAPI context
485  *
486  * Mark NAPI processing as complete.
487  * Consider using napi_complete_done() instead.
488  * Return false if device should avoid rearming interrupts.
489  */
490 static inline bool napi_complete(struct napi_struct *n)
491 {
492 	return napi_complete_done(n, 0);
493 }
494 
495 int dev_set_threaded(struct net_device *dev, bool threaded);
496 
497 /**
498  *	napi_disable - prevent NAPI from scheduling
499  *	@n: NAPI context
500  *
501  * Stop NAPI from being scheduled on this context.
502  * Waits till any outstanding processing completes.
503  */
504 void napi_disable(struct napi_struct *n);
505 
506 void napi_enable(struct napi_struct *n);
507 
508 /**
509  *	napi_synchronize - wait until NAPI is not running
510  *	@n: NAPI context
511  *
512  * Wait until NAPI is done being scheduled on this context.
513  * Waits till any outstanding processing completes but
514  * does not disable future activations.
515  */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518 	if (IS_ENABLED(CONFIG_SMP))
519 		while (test_bit(NAPI_STATE_SCHED, &n->state))
520 			msleep(1);
521 	else
522 		barrier();
523 }
524 
525 /**
526  *	napi_if_scheduled_mark_missed - if napi is running, set the
527  *	NAPIF_STATE_MISSED
528  *	@n: NAPI context
529  *
530  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
531  * NAPI is scheduled.
532  **/
533 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
534 {
535 	unsigned long val, new;
536 
537 	do {
538 		val = READ_ONCE(n->state);
539 		if (val & NAPIF_STATE_DISABLE)
540 			return true;
541 
542 		if (!(val & NAPIF_STATE_SCHED))
543 			return false;
544 
545 		new = val | NAPIF_STATE_MISSED;
546 	} while (cmpxchg(&n->state, val, new) != val);
547 
548 	return true;
549 }
550 
551 enum netdev_queue_state_t {
552 	__QUEUE_STATE_DRV_XOFF,
553 	__QUEUE_STATE_STACK_XOFF,
554 	__QUEUE_STATE_FROZEN,
555 };
556 
557 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
558 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
559 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
560 
561 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
562 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
563 					QUEUE_STATE_FROZEN)
564 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
565 					QUEUE_STATE_FROZEN)
566 
567 /*
568  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
569  * netif_tx_* functions below are used to manipulate this flag.  The
570  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
571  * queue independently.  The netif_xmit_*stopped functions below are called
572  * to check if the queue has been stopped by the driver or stack (either
573  * of the XOFF bits are set in the state).  Drivers should not need to call
574  * netif_xmit*stopped functions, they should only be using netif_tx_*.
575  */
576 
577 struct netdev_queue {
578 /*
579  * read-mostly part
580  */
581 	struct net_device	*dev;
582 	netdevice_tracker	dev_tracker;
583 
584 	struct Qdisc __rcu	*qdisc;
585 	struct Qdisc		*qdisc_sleeping;
586 #ifdef CONFIG_SYSFS
587 	struct kobject		kobj;
588 #endif
589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
590 	int			numa_node;
591 #endif
592 	unsigned long		tx_maxrate;
593 	/*
594 	 * Number of TX timeouts for this queue
595 	 * (/sys/class/net/DEV/Q/trans_timeout)
596 	 */
597 	atomic_long_t		trans_timeout;
598 
599 	/* Subordinate device that the queue has been assigned to */
600 	struct net_device	*sb_dev;
601 #ifdef CONFIG_XDP_SOCKETS
602 	struct xsk_buff_pool    *pool;
603 #endif
604 /*
605  * write-mostly part
606  */
607 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
608 	int			xmit_lock_owner;
609 	/*
610 	 * Time (in jiffies) of last Tx
611 	 */
612 	unsigned long		trans_start;
613 
614 	unsigned long		state;
615 
616 #ifdef CONFIG_BQL
617 	struct dql		dql;
618 #endif
619 } ____cacheline_aligned_in_smp;
620 
621 extern int sysctl_fb_tunnels_only_for_init_net;
622 extern int sysctl_devconf_inherit_init_net;
623 
624 /*
625  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
626  *                                     == 1 : For initns only
627  *                                     == 2 : For none.
628  */
629 static inline bool net_has_fallback_tunnels(const struct net *net)
630 {
631 	return !IS_ENABLED(CONFIG_SYSCTL) ||
632 	       !sysctl_fb_tunnels_only_for_init_net ||
633 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
634 }
635 
636 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
637 {
638 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
639 	return q->numa_node;
640 #else
641 	return NUMA_NO_NODE;
642 #endif
643 }
644 
645 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
646 {
647 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
648 	q->numa_node = node;
649 #endif
650 }
651 
652 #ifdef CONFIG_RPS
653 /*
654  * This structure holds an RPS map which can be of variable length.  The
655  * map is an array of CPUs.
656  */
657 struct rps_map {
658 	unsigned int len;
659 	struct rcu_head rcu;
660 	u16 cpus[];
661 };
662 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
663 
664 /*
665  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
666  * tail pointer for that CPU's input queue at the time of last enqueue, and
667  * a hardware filter index.
668  */
669 struct rps_dev_flow {
670 	u16 cpu;
671 	u16 filter;
672 	unsigned int last_qtail;
673 };
674 #define RPS_NO_FILTER 0xffff
675 
676 /*
677  * The rps_dev_flow_table structure contains a table of flow mappings.
678  */
679 struct rps_dev_flow_table {
680 	unsigned int mask;
681 	struct rcu_head rcu;
682 	struct rps_dev_flow flows[];
683 };
684 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
685     ((_num) * sizeof(struct rps_dev_flow)))
686 
687 /*
688  * The rps_sock_flow_table contains mappings of flows to the last CPU
689  * on which they were processed by the application (set in recvmsg).
690  * Each entry is a 32bit value. Upper part is the high-order bits
691  * of flow hash, lower part is CPU number.
692  * rps_cpu_mask is used to partition the space, depending on number of
693  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
694  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
695  * meaning we use 32-6=26 bits for the hash.
696  */
697 struct rps_sock_flow_table {
698 	u32	mask;
699 
700 	u32	ents[] ____cacheline_aligned_in_smp;
701 };
702 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
703 
704 #define RPS_NO_CPU 0xffff
705 
706 extern u32 rps_cpu_mask;
707 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
708 
709 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
710 					u32 hash)
711 {
712 	if (table && hash) {
713 		unsigned int index = hash & table->mask;
714 		u32 val = hash & ~rps_cpu_mask;
715 
716 		/* We only give a hint, preemption can change CPU under us */
717 		val |= raw_smp_processor_id();
718 
719 		if (table->ents[index] != val)
720 			table->ents[index] = val;
721 	}
722 }
723 
724 #ifdef CONFIG_RFS_ACCEL
725 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
726 			 u16 filter_id);
727 #endif
728 #endif /* CONFIG_RPS */
729 
730 /* This structure contains an instance of an RX queue. */
731 struct netdev_rx_queue {
732 	struct xdp_rxq_info		xdp_rxq;
733 #ifdef CONFIG_RPS
734 	struct rps_map __rcu		*rps_map;
735 	struct rps_dev_flow_table __rcu	*rps_flow_table;
736 #endif
737 	struct kobject			kobj;
738 	struct net_device		*dev;
739 	netdevice_tracker		dev_tracker;
740 
741 #ifdef CONFIG_XDP_SOCKETS
742 	struct xsk_buff_pool            *pool;
743 #endif
744 } ____cacheline_aligned_in_smp;
745 
746 /*
747  * RX queue sysfs structures and functions.
748  */
749 struct rx_queue_attribute {
750 	struct attribute attr;
751 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
752 	ssize_t (*store)(struct netdev_rx_queue *queue,
753 			 const char *buf, size_t len);
754 };
755 
756 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
757 enum xps_map_type {
758 	XPS_CPUS = 0,
759 	XPS_RXQS,
760 	XPS_MAPS_MAX,
761 };
762 
763 #ifdef CONFIG_XPS
764 /*
765  * This structure holds an XPS map which can be of variable length.  The
766  * map is an array of queues.
767  */
768 struct xps_map {
769 	unsigned int len;
770 	unsigned int alloc_len;
771 	struct rcu_head rcu;
772 	u16 queues[];
773 };
774 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
775 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
776        - sizeof(struct xps_map)) / sizeof(u16))
777 
778 /*
779  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
780  *
781  * We keep track of the number of cpus/rxqs used when the struct is allocated,
782  * in nr_ids. This will help not accessing out-of-bound memory.
783  *
784  * We keep track of the number of traffic classes used when the struct is
785  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
786  * not crossing its upper bound, as the original dev->num_tc can be updated in
787  * the meantime.
788  */
789 struct xps_dev_maps {
790 	struct rcu_head rcu;
791 	unsigned int nr_ids;
792 	s16 num_tc;
793 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
794 };
795 
796 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
797 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
798 
799 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
800 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
801 
802 #endif /* CONFIG_XPS */
803 
804 #define TC_MAX_QUEUE	16
805 #define TC_BITMASK	15
806 /* HW offloaded queuing disciplines txq count and offset maps */
807 struct netdev_tc_txq {
808 	u16 count;
809 	u16 offset;
810 };
811 
812 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
813 /*
814  * This structure is to hold information about the device
815  * configured to run FCoE protocol stack.
816  */
817 struct netdev_fcoe_hbainfo {
818 	char	manufacturer[64];
819 	char	serial_number[64];
820 	char	hardware_version[64];
821 	char	driver_version[64];
822 	char	optionrom_version[64];
823 	char	firmware_version[64];
824 	char	model[256];
825 	char	model_description[256];
826 };
827 #endif
828 
829 #define MAX_PHYS_ITEM_ID_LEN 32
830 
831 /* This structure holds a unique identifier to identify some
832  * physical item (port for example) used by a netdevice.
833  */
834 struct netdev_phys_item_id {
835 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
836 	unsigned char id_len;
837 };
838 
839 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
840 					    struct netdev_phys_item_id *b)
841 {
842 	return a->id_len == b->id_len &&
843 	       memcmp(a->id, b->id, a->id_len) == 0;
844 }
845 
846 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
847 				       struct sk_buff *skb,
848 				       struct net_device *sb_dev);
849 
850 enum net_device_path_type {
851 	DEV_PATH_ETHERNET = 0,
852 	DEV_PATH_VLAN,
853 	DEV_PATH_BRIDGE,
854 	DEV_PATH_PPPOE,
855 	DEV_PATH_DSA,
856 };
857 
858 struct net_device_path {
859 	enum net_device_path_type	type;
860 	const struct net_device		*dev;
861 	union {
862 		struct {
863 			u16		id;
864 			__be16		proto;
865 			u8		h_dest[ETH_ALEN];
866 		} encap;
867 		struct {
868 			enum {
869 				DEV_PATH_BR_VLAN_KEEP,
870 				DEV_PATH_BR_VLAN_TAG,
871 				DEV_PATH_BR_VLAN_UNTAG,
872 				DEV_PATH_BR_VLAN_UNTAG_HW,
873 			}		vlan_mode;
874 			u16		vlan_id;
875 			__be16		vlan_proto;
876 		} bridge;
877 		struct {
878 			int port;
879 			u16 proto;
880 		} dsa;
881 	};
882 };
883 
884 #define NET_DEVICE_PATH_STACK_MAX	5
885 #define NET_DEVICE_PATH_VLAN_MAX	2
886 
887 struct net_device_path_stack {
888 	int			num_paths;
889 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
890 };
891 
892 struct net_device_path_ctx {
893 	const struct net_device *dev;
894 	const u8		*daddr;
895 
896 	int			num_vlans;
897 	struct {
898 		u16		id;
899 		__be16		proto;
900 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
901 };
902 
903 enum tc_setup_type {
904 	TC_SETUP_QDISC_MQPRIO,
905 	TC_SETUP_CLSU32,
906 	TC_SETUP_CLSFLOWER,
907 	TC_SETUP_CLSMATCHALL,
908 	TC_SETUP_CLSBPF,
909 	TC_SETUP_BLOCK,
910 	TC_SETUP_QDISC_CBS,
911 	TC_SETUP_QDISC_RED,
912 	TC_SETUP_QDISC_PRIO,
913 	TC_SETUP_QDISC_MQ,
914 	TC_SETUP_QDISC_ETF,
915 	TC_SETUP_ROOT_QDISC,
916 	TC_SETUP_QDISC_GRED,
917 	TC_SETUP_QDISC_TAPRIO,
918 	TC_SETUP_FT,
919 	TC_SETUP_QDISC_ETS,
920 	TC_SETUP_QDISC_TBF,
921 	TC_SETUP_QDISC_FIFO,
922 	TC_SETUP_QDISC_HTB,
923 	TC_SETUP_ACT,
924 };
925 
926 /* These structures hold the attributes of bpf state that are being passed
927  * to the netdevice through the bpf op.
928  */
929 enum bpf_netdev_command {
930 	/* Set or clear a bpf program used in the earliest stages of packet
931 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
932 	 * is responsible for calling bpf_prog_put on any old progs that are
933 	 * stored. In case of error, the callee need not release the new prog
934 	 * reference, but on success it takes ownership and must bpf_prog_put
935 	 * when it is no longer used.
936 	 */
937 	XDP_SETUP_PROG,
938 	XDP_SETUP_PROG_HW,
939 	/* BPF program for offload callbacks, invoked at program load time. */
940 	BPF_OFFLOAD_MAP_ALLOC,
941 	BPF_OFFLOAD_MAP_FREE,
942 	XDP_SETUP_XSK_POOL,
943 };
944 
945 struct bpf_prog_offload_ops;
946 struct netlink_ext_ack;
947 struct xdp_umem;
948 struct xdp_dev_bulk_queue;
949 struct bpf_xdp_link;
950 
951 enum bpf_xdp_mode {
952 	XDP_MODE_SKB = 0,
953 	XDP_MODE_DRV = 1,
954 	XDP_MODE_HW = 2,
955 	__MAX_XDP_MODE
956 };
957 
958 struct bpf_xdp_entity {
959 	struct bpf_prog *prog;
960 	struct bpf_xdp_link *link;
961 };
962 
963 struct netdev_bpf {
964 	enum bpf_netdev_command command;
965 	union {
966 		/* XDP_SETUP_PROG */
967 		struct {
968 			u32 flags;
969 			struct bpf_prog *prog;
970 			struct netlink_ext_ack *extack;
971 		};
972 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
973 		struct {
974 			struct bpf_offloaded_map *offmap;
975 		};
976 		/* XDP_SETUP_XSK_POOL */
977 		struct {
978 			struct xsk_buff_pool *pool;
979 			u16 queue_id;
980 		} xsk;
981 	};
982 };
983 
984 /* Flags for ndo_xsk_wakeup. */
985 #define XDP_WAKEUP_RX (1 << 0)
986 #define XDP_WAKEUP_TX (1 << 1)
987 
988 #ifdef CONFIG_XFRM_OFFLOAD
989 struct xfrmdev_ops {
990 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
991 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
992 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
993 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
994 				       struct xfrm_state *x);
995 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
996 };
997 #endif
998 
999 struct dev_ifalias {
1000 	struct rcu_head rcuhead;
1001 	char ifalias[];
1002 };
1003 
1004 struct devlink;
1005 struct tlsdev_ops;
1006 
1007 struct netdev_name_node {
1008 	struct hlist_node hlist;
1009 	struct list_head list;
1010 	struct net_device *dev;
1011 	const char *name;
1012 };
1013 
1014 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
1015 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
1016 
1017 struct netdev_net_notifier {
1018 	struct list_head list;
1019 	struct notifier_block *nb;
1020 };
1021 
1022 /*
1023  * This structure defines the management hooks for network devices.
1024  * The following hooks can be defined; unless noted otherwise, they are
1025  * optional and can be filled with a null pointer.
1026  *
1027  * int (*ndo_init)(struct net_device *dev);
1028  *     This function is called once when a network device is registered.
1029  *     The network device can use this for any late stage initialization
1030  *     or semantic validation. It can fail with an error code which will
1031  *     be propagated back to register_netdev.
1032  *
1033  * void (*ndo_uninit)(struct net_device *dev);
1034  *     This function is called when device is unregistered or when registration
1035  *     fails. It is not called if init fails.
1036  *
1037  * int (*ndo_open)(struct net_device *dev);
1038  *     This function is called when a network device transitions to the up
1039  *     state.
1040  *
1041  * int (*ndo_stop)(struct net_device *dev);
1042  *     This function is called when a network device transitions to the down
1043  *     state.
1044  *
1045  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1046  *                               struct net_device *dev);
1047  *	Called when a packet needs to be transmitted.
1048  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1049  *	the queue before that can happen; it's for obsolete devices and weird
1050  *	corner cases, but the stack really does a non-trivial amount
1051  *	of useless work if you return NETDEV_TX_BUSY.
1052  *	Required; cannot be NULL.
1053  *
1054  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1055  *					   struct net_device *dev
1056  *					   netdev_features_t features);
1057  *	Called by core transmit path to determine if device is capable of
1058  *	performing offload operations on a given packet. This is to give
1059  *	the device an opportunity to implement any restrictions that cannot
1060  *	be otherwise expressed by feature flags. The check is called with
1061  *	the set of features that the stack has calculated and it returns
1062  *	those the driver believes to be appropriate.
1063  *
1064  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1065  *                         struct net_device *sb_dev);
1066  *	Called to decide which queue to use when device supports multiple
1067  *	transmit queues.
1068  *
1069  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1070  *	This function is called to allow device receiver to make
1071  *	changes to configuration when multicast or promiscuous is enabled.
1072  *
1073  * void (*ndo_set_rx_mode)(struct net_device *dev);
1074  *	This function is called device changes address list filtering.
1075  *	If driver handles unicast address filtering, it should set
1076  *	IFF_UNICAST_FLT in its priv_flags.
1077  *
1078  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1079  *	This function  is called when the Media Access Control address
1080  *	needs to be changed. If this interface is not defined, the
1081  *	MAC address can not be changed.
1082  *
1083  * int (*ndo_validate_addr)(struct net_device *dev);
1084  *	Test if Media Access Control address is valid for the device.
1085  *
1086  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1087  *	Old-style ioctl entry point. This is used internally by the
1088  *	appletalk and ieee802154 subsystems but is no longer called by
1089  *	the device ioctl handler.
1090  *
1091  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1092  *	Used by the bonding driver for its device specific ioctls:
1093  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1094  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1095  *
1096  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1097  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1098  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1099  *
1100  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1101  *	Used to set network devices bus interface parameters. This interface
1102  *	is retained for legacy reasons; new devices should use the bus
1103  *	interface (PCI) for low level management.
1104  *
1105  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1106  *	Called when a user wants to change the Maximum Transfer Unit
1107  *	of a device.
1108  *
1109  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1110  *	Callback used when the transmitter has not made any progress
1111  *	for dev->watchdog ticks.
1112  *
1113  * void (*ndo_get_stats64)(struct net_device *dev,
1114  *                         struct rtnl_link_stats64 *storage);
1115  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1116  *	Called when a user wants to get the network device usage
1117  *	statistics. Drivers must do one of the following:
1118  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1119  *	   rtnl_link_stats64 structure passed by the caller.
1120  *	2. Define @ndo_get_stats to update a net_device_stats structure
1121  *	   (which should normally be dev->stats) and return a pointer to
1122  *	   it. The structure may be changed asynchronously only if each
1123  *	   field is written atomically.
1124  *	3. Update dev->stats asynchronously and atomically, and define
1125  *	   neither operation.
1126  *
1127  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1128  *	Return true if this device supports offload stats of this attr_id.
1129  *
1130  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1131  *	void *attr_data)
1132  *	Get statistics for offload operations by attr_id. Write it into the
1133  *	attr_data pointer.
1134  *
1135  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1136  *	If device supports VLAN filtering this function is called when a
1137  *	VLAN id is registered.
1138  *
1139  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1140  *	If device supports VLAN filtering this function is called when a
1141  *	VLAN id is unregistered.
1142  *
1143  * void (*ndo_poll_controller)(struct net_device *dev);
1144  *
1145  *	SR-IOV management functions.
1146  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1147  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1148  *			  u8 qos, __be16 proto);
1149  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1150  *			  int max_tx_rate);
1151  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1152  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1153  * int (*ndo_get_vf_config)(struct net_device *dev,
1154  *			    int vf, struct ifla_vf_info *ivf);
1155  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1156  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1157  *			  struct nlattr *port[]);
1158  *
1159  *      Enable or disable the VF ability to query its RSS Redirection Table and
1160  *      Hash Key. This is needed since on some devices VF share this information
1161  *      with PF and querying it may introduce a theoretical security risk.
1162  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1163  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1164  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1165  *		       void *type_data);
1166  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1167  *	This is always called from the stack with the rtnl lock held and netif
1168  *	tx queues stopped. This allows the netdevice to perform queue
1169  *	management safely.
1170  *
1171  *	Fiber Channel over Ethernet (FCoE) offload functions.
1172  * int (*ndo_fcoe_enable)(struct net_device *dev);
1173  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1174  *	so the underlying device can perform whatever needed configuration or
1175  *	initialization to support acceleration of FCoE traffic.
1176  *
1177  * int (*ndo_fcoe_disable)(struct net_device *dev);
1178  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1179  *	so the underlying device can perform whatever needed clean-ups to
1180  *	stop supporting acceleration of FCoE traffic.
1181  *
1182  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1183  *			     struct scatterlist *sgl, unsigned int sgc);
1184  *	Called when the FCoE Initiator wants to initialize an I/O that
1185  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1186  *	perform necessary setup and returns 1 to indicate the device is set up
1187  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1188  *
1189  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1190  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1191  *	indicated by the FC exchange id 'xid', so the underlying device can
1192  *	clean up and reuse resources for later DDP requests.
1193  *
1194  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1195  *			      struct scatterlist *sgl, unsigned int sgc);
1196  *	Called when the FCoE Target wants to initialize an I/O that
1197  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1198  *	perform necessary setup and returns 1 to indicate the device is set up
1199  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1200  *
1201  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1202  *			       struct netdev_fcoe_hbainfo *hbainfo);
1203  *	Called when the FCoE Protocol stack wants information on the underlying
1204  *	device. This information is utilized by the FCoE protocol stack to
1205  *	register attributes with Fiber Channel management service as per the
1206  *	FC-GS Fabric Device Management Information(FDMI) specification.
1207  *
1208  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1209  *	Called when the underlying device wants to override default World Wide
1210  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1211  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1212  *	protocol stack to use.
1213  *
1214  *	RFS acceleration.
1215  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1216  *			    u16 rxq_index, u32 flow_id);
1217  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1218  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1219  *	Return the filter ID on success, or a negative error code.
1220  *
1221  *	Slave management functions (for bridge, bonding, etc).
1222  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1223  *	Called to make another netdev an underling.
1224  *
1225  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1226  *	Called to release previously enslaved netdev.
1227  *
1228  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1229  *					    struct sk_buff *skb,
1230  *					    bool all_slaves);
1231  *	Get the xmit slave of master device. If all_slaves is true, function
1232  *	assume all the slaves can transmit.
1233  *
1234  *      Feature/offload setting functions.
1235  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1236  *		netdev_features_t features);
1237  *	Adjusts the requested feature flags according to device-specific
1238  *	constraints, and returns the resulting flags. Must not modify
1239  *	the device state.
1240  *
1241  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1242  *	Called to update device configuration to new features. Passed
1243  *	feature set might be less than what was returned by ndo_fix_features()).
1244  *	Must return >0 or -errno if it changed dev->features itself.
1245  *
1246  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1247  *		      struct net_device *dev,
1248  *		      const unsigned char *addr, u16 vid, u16 flags,
1249  *		      struct netlink_ext_ack *extack);
1250  *	Adds an FDB entry to dev for addr.
1251  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1252  *		      struct net_device *dev,
1253  *		      const unsigned char *addr, u16 vid)
1254  *	Deletes the FDB entry from dev coresponding to addr.
1255  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1256  *		       struct net_device *dev, struct net_device *filter_dev,
1257  *		       int *idx)
1258  *	Used to add FDB entries to dump requests. Implementers should add
1259  *	entries to skb and update idx with the number of entries.
1260  *
1261  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1262  *			     u16 flags, struct netlink_ext_ack *extack)
1263  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1264  *			     struct net_device *dev, u32 filter_mask,
1265  *			     int nlflags)
1266  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1267  *			     u16 flags);
1268  *
1269  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1270  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1271  *	which do not represent real hardware may define this to allow their
1272  *	userspace components to manage their virtual carrier state. Devices
1273  *	that determine carrier state from physical hardware properties (eg
1274  *	network cables) or protocol-dependent mechanisms (eg
1275  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1276  *
1277  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1278  *			       struct netdev_phys_item_id *ppid);
1279  *	Called to get ID of physical port of this device. If driver does
1280  *	not implement this, it is assumed that the hw is not able to have
1281  *	multiple net devices on single physical port.
1282  *
1283  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1284  *				 struct netdev_phys_item_id *ppid)
1285  *	Called to get the parent ID of the physical port of this device.
1286  *
1287  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1288  *				 struct net_device *dev)
1289  *	Called by upper layer devices to accelerate switching or other
1290  *	station functionality into hardware. 'pdev is the lowerdev
1291  *	to use for the offload and 'dev' is the net device that will
1292  *	back the offload. Returns a pointer to the private structure
1293  *	the upper layer will maintain.
1294  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1295  *	Called by upper layer device to delete the station created
1296  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1297  *	the station and priv is the structure returned by the add
1298  *	operation.
1299  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1300  *			     int queue_index, u32 maxrate);
1301  *	Called when a user wants to set a max-rate limitation of specific
1302  *	TX queue.
1303  * int (*ndo_get_iflink)(const struct net_device *dev);
1304  *	Called to get the iflink value of this device.
1305  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1306  *	This function is used to get egress tunnel information for given skb.
1307  *	This is useful for retrieving outer tunnel header parameters while
1308  *	sampling packet.
1309  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1310  *	This function is used to specify the headroom that the skb must
1311  *	consider when allocation skb during packet reception. Setting
1312  *	appropriate rx headroom value allows avoiding skb head copy on
1313  *	forward. Setting a negative value resets the rx headroom to the
1314  *	default value.
1315  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1316  *	This function is used to set or query state related to XDP on the
1317  *	netdevice and manage BPF offload. See definition of
1318  *	enum bpf_netdev_command for details.
1319  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1320  *			u32 flags);
1321  *	This function is used to submit @n XDP packets for transmit on a
1322  *	netdevice. Returns number of frames successfully transmitted, frames
1323  *	that got dropped are freed/returned via xdp_return_frame().
1324  *	Returns negative number, means general error invoking ndo, meaning
1325  *	no frames were xmit'ed and core-caller will free all frames.
1326  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1327  *					        struct xdp_buff *xdp);
1328  *      Get the xmit slave of master device based on the xdp_buff.
1329  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1330  *      This function is used to wake up the softirq, ksoftirqd or kthread
1331  *	responsible for sending and/or receiving packets on a specific
1332  *	queue id bound to an AF_XDP socket. The flags field specifies if
1333  *	only RX, only Tx, or both should be woken up using the flags
1334  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1335  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1336  *	Get devlink port instance associated with a given netdev.
1337  *	Called with a reference on the netdevice and devlink locks only,
1338  *	rtnl_lock is not held.
1339  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1340  *			 int cmd);
1341  *	Add, change, delete or get information on an IPv4 tunnel.
1342  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1343  *	If a device is paired with a peer device, return the peer instance.
1344  *	The caller must be under RCU read context.
1345  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1346  *     Get the forwarding path to reach the real device from the HW destination address
1347  */
1348 struct net_device_ops {
1349 	int			(*ndo_init)(struct net_device *dev);
1350 	void			(*ndo_uninit)(struct net_device *dev);
1351 	int			(*ndo_open)(struct net_device *dev);
1352 	int			(*ndo_stop)(struct net_device *dev);
1353 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1354 						  struct net_device *dev);
1355 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1356 						      struct net_device *dev,
1357 						      netdev_features_t features);
1358 	u16			(*ndo_select_queue)(struct net_device *dev,
1359 						    struct sk_buff *skb,
1360 						    struct net_device *sb_dev);
1361 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1362 						       int flags);
1363 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1364 	int			(*ndo_set_mac_address)(struct net_device *dev,
1365 						       void *addr);
1366 	int			(*ndo_validate_addr)(struct net_device *dev);
1367 	int			(*ndo_do_ioctl)(struct net_device *dev,
1368 					        struct ifreq *ifr, int cmd);
1369 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1370 						 struct ifreq *ifr, int cmd);
1371 	int			(*ndo_siocbond)(struct net_device *dev,
1372 						struct ifreq *ifr, int cmd);
1373 	int			(*ndo_siocwandev)(struct net_device *dev,
1374 						  struct if_settings *ifs);
1375 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1376 						      struct ifreq *ifr,
1377 						      void __user *data, int cmd);
1378 	int			(*ndo_set_config)(struct net_device *dev,
1379 					          struct ifmap *map);
1380 	int			(*ndo_change_mtu)(struct net_device *dev,
1381 						  int new_mtu);
1382 	int			(*ndo_neigh_setup)(struct net_device *dev,
1383 						   struct neigh_parms *);
1384 	void			(*ndo_tx_timeout) (struct net_device *dev,
1385 						   unsigned int txqueue);
1386 
1387 	void			(*ndo_get_stats64)(struct net_device *dev,
1388 						   struct rtnl_link_stats64 *storage);
1389 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1390 	int			(*ndo_get_offload_stats)(int attr_id,
1391 							 const struct net_device *dev,
1392 							 void *attr_data);
1393 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1394 
1395 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1396 						       __be16 proto, u16 vid);
1397 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1398 						        __be16 proto, u16 vid);
1399 #ifdef CONFIG_NET_POLL_CONTROLLER
1400 	void                    (*ndo_poll_controller)(struct net_device *dev);
1401 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1402 						     struct netpoll_info *info);
1403 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1404 #endif
1405 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1406 						  int queue, u8 *mac);
1407 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1408 						   int queue, u16 vlan,
1409 						   u8 qos, __be16 proto);
1410 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1411 						   int vf, int min_tx_rate,
1412 						   int max_tx_rate);
1413 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1414 						       int vf, bool setting);
1415 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1416 						    int vf, bool setting);
1417 	int			(*ndo_get_vf_config)(struct net_device *dev,
1418 						     int vf,
1419 						     struct ifla_vf_info *ivf);
1420 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1421 							 int vf, int link_state);
1422 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1423 						    int vf,
1424 						    struct ifla_vf_stats
1425 						    *vf_stats);
1426 	int			(*ndo_set_vf_port)(struct net_device *dev,
1427 						   int vf,
1428 						   struct nlattr *port[]);
1429 	int			(*ndo_get_vf_port)(struct net_device *dev,
1430 						   int vf, struct sk_buff *skb);
1431 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1432 						   int vf,
1433 						   struct ifla_vf_guid *node_guid,
1434 						   struct ifla_vf_guid *port_guid);
1435 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1436 						   int vf, u64 guid,
1437 						   int guid_type);
1438 	int			(*ndo_set_vf_rss_query_en)(
1439 						   struct net_device *dev,
1440 						   int vf, bool setting);
1441 	int			(*ndo_setup_tc)(struct net_device *dev,
1442 						enum tc_setup_type type,
1443 						void *type_data);
1444 #if IS_ENABLED(CONFIG_FCOE)
1445 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1446 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1447 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1448 						      u16 xid,
1449 						      struct scatterlist *sgl,
1450 						      unsigned int sgc);
1451 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1452 						     u16 xid);
1453 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1454 						       u16 xid,
1455 						       struct scatterlist *sgl,
1456 						       unsigned int sgc);
1457 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1458 							struct netdev_fcoe_hbainfo *hbainfo);
1459 #endif
1460 
1461 #if IS_ENABLED(CONFIG_LIBFCOE)
1462 #define NETDEV_FCOE_WWNN 0
1463 #define NETDEV_FCOE_WWPN 1
1464 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1465 						    u64 *wwn, int type);
1466 #endif
1467 
1468 #ifdef CONFIG_RFS_ACCEL
1469 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1470 						     const struct sk_buff *skb,
1471 						     u16 rxq_index,
1472 						     u32 flow_id);
1473 #endif
1474 	int			(*ndo_add_slave)(struct net_device *dev,
1475 						 struct net_device *slave_dev,
1476 						 struct netlink_ext_ack *extack);
1477 	int			(*ndo_del_slave)(struct net_device *dev,
1478 						 struct net_device *slave_dev);
1479 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1480 						      struct sk_buff *skb,
1481 						      bool all_slaves);
1482 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1483 							struct sock *sk);
1484 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1485 						    netdev_features_t features);
1486 	int			(*ndo_set_features)(struct net_device *dev,
1487 						    netdev_features_t features);
1488 	int			(*ndo_neigh_construct)(struct net_device *dev,
1489 						       struct neighbour *n);
1490 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1491 						     struct neighbour *n);
1492 
1493 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1494 					       struct nlattr *tb[],
1495 					       struct net_device *dev,
1496 					       const unsigned char *addr,
1497 					       u16 vid,
1498 					       u16 flags,
1499 					       struct netlink_ext_ack *extack);
1500 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1501 					       struct nlattr *tb[],
1502 					       struct net_device *dev,
1503 					       const unsigned char *addr,
1504 					       u16 vid);
1505 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1506 						struct netlink_callback *cb,
1507 						struct net_device *dev,
1508 						struct net_device *filter_dev,
1509 						int *idx);
1510 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1511 					       struct nlattr *tb[],
1512 					       struct net_device *dev,
1513 					       const unsigned char *addr,
1514 					       u16 vid, u32 portid, u32 seq,
1515 					       struct netlink_ext_ack *extack);
1516 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1517 						      struct nlmsghdr *nlh,
1518 						      u16 flags,
1519 						      struct netlink_ext_ack *extack);
1520 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1521 						      u32 pid, u32 seq,
1522 						      struct net_device *dev,
1523 						      u32 filter_mask,
1524 						      int nlflags);
1525 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1526 						      struct nlmsghdr *nlh,
1527 						      u16 flags);
1528 	int			(*ndo_change_carrier)(struct net_device *dev,
1529 						      bool new_carrier);
1530 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1531 							struct netdev_phys_item_id *ppid);
1532 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1533 							  struct netdev_phys_item_id *ppid);
1534 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1535 							  char *name, size_t len);
1536 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1537 							struct net_device *dev);
1538 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1539 							void *priv);
1540 
1541 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1542 						      int queue_index,
1543 						      u32 maxrate);
1544 	int			(*ndo_get_iflink)(const struct net_device *dev);
1545 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1546 						       struct sk_buff *skb);
1547 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1548 						       int needed_headroom);
1549 	int			(*ndo_bpf)(struct net_device *dev,
1550 					   struct netdev_bpf *bpf);
1551 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1552 						struct xdp_frame **xdp,
1553 						u32 flags);
1554 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1555 							  struct xdp_buff *xdp);
1556 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1557 						  u32 queue_id, u32 flags);
1558 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1559 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1560 						  struct ip_tunnel_parm *p, int cmd);
1561 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1562 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1563                                                          struct net_device_path *path);
1564 };
1565 
1566 /**
1567  * enum netdev_priv_flags - &struct net_device priv_flags
1568  *
1569  * These are the &struct net_device, they are only set internally
1570  * by drivers and used in the kernel. These flags are invisible to
1571  * userspace; this means that the order of these flags can change
1572  * during any kernel release.
1573  *
1574  * You should have a pretty good reason to be extending these flags.
1575  *
1576  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1577  * @IFF_EBRIDGE: Ethernet bridging device
1578  * @IFF_BONDING: bonding master or slave
1579  * @IFF_ISATAP: ISATAP interface (RFC4214)
1580  * @IFF_WAN_HDLC: WAN HDLC device
1581  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1582  *	release skb->dst
1583  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1584  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1585  * @IFF_MACVLAN_PORT: device used as macvlan port
1586  * @IFF_BRIDGE_PORT: device used as bridge port
1587  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1588  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1589  * @IFF_UNICAST_FLT: Supports unicast filtering
1590  * @IFF_TEAM_PORT: device used as team port
1591  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1592  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1593  *	change when it's running
1594  * @IFF_MACVLAN: Macvlan device
1595  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1596  *	underlying stacked devices
1597  * @IFF_L3MDEV_MASTER: device is an L3 master device
1598  * @IFF_NO_QUEUE: device can run without qdisc attached
1599  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1600  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1601  * @IFF_TEAM: device is a team device
1602  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1603  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1604  *	entity (i.e. the master device for bridged veth)
1605  * @IFF_MACSEC: device is a MACsec device
1606  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1607  * @IFF_FAILOVER: device is a failover master device
1608  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1609  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1610  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1611  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1612  *	skb_headlen(skb) == 0 (data starts from frag0)
1613  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1614  */
1615 enum netdev_priv_flags {
1616 	IFF_802_1Q_VLAN			= 1<<0,
1617 	IFF_EBRIDGE			= 1<<1,
1618 	IFF_BONDING			= 1<<2,
1619 	IFF_ISATAP			= 1<<3,
1620 	IFF_WAN_HDLC			= 1<<4,
1621 	IFF_XMIT_DST_RELEASE		= 1<<5,
1622 	IFF_DONT_BRIDGE			= 1<<6,
1623 	IFF_DISABLE_NETPOLL		= 1<<7,
1624 	IFF_MACVLAN_PORT		= 1<<8,
1625 	IFF_BRIDGE_PORT			= 1<<9,
1626 	IFF_OVS_DATAPATH		= 1<<10,
1627 	IFF_TX_SKB_SHARING		= 1<<11,
1628 	IFF_UNICAST_FLT			= 1<<12,
1629 	IFF_TEAM_PORT			= 1<<13,
1630 	IFF_SUPP_NOFCS			= 1<<14,
1631 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1632 	IFF_MACVLAN			= 1<<16,
1633 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1634 	IFF_L3MDEV_MASTER		= 1<<18,
1635 	IFF_NO_QUEUE			= 1<<19,
1636 	IFF_OPENVSWITCH			= 1<<20,
1637 	IFF_L3MDEV_SLAVE		= 1<<21,
1638 	IFF_TEAM			= 1<<22,
1639 	IFF_RXFH_CONFIGURED		= 1<<23,
1640 	IFF_PHONY_HEADROOM		= 1<<24,
1641 	IFF_MACSEC			= 1<<25,
1642 	IFF_NO_RX_HANDLER		= 1<<26,
1643 	IFF_FAILOVER			= 1<<27,
1644 	IFF_FAILOVER_SLAVE		= 1<<28,
1645 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1646 	IFF_LIVE_RENAME_OK		= 1<<30,
1647 	IFF_TX_SKB_NO_LINEAR		= 1<<31,
1648 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1649 };
1650 
1651 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1652 #define IFF_EBRIDGE			IFF_EBRIDGE
1653 #define IFF_BONDING			IFF_BONDING
1654 #define IFF_ISATAP			IFF_ISATAP
1655 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1656 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1657 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1658 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1659 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1660 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1661 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1662 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1663 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1664 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1665 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1666 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1667 #define IFF_MACVLAN			IFF_MACVLAN
1668 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1669 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1670 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1671 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1672 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1673 #define IFF_TEAM			IFF_TEAM
1674 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1675 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1676 #define IFF_MACSEC			IFF_MACSEC
1677 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1678 #define IFF_FAILOVER			IFF_FAILOVER
1679 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1680 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1681 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1682 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1683 
1684 /* Specifies the type of the struct net_device::ml_priv pointer */
1685 enum netdev_ml_priv_type {
1686 	ML_PRIV_NONE,
1687 	ML_PRIV_CAN,
1688 };
1689 
1690 /**
1691  *	struct net_device - The DEVICE structure.
1692  *
1693  *	Actually, this whole structure is a big mistake.  It mixes I/O
1694  *	data with strictly "high-level" data, and it has to know about
1695  *	almost every data structure used in the INET module.
1696  *
1697  *	@name:	This is the first field of the "visible" part of this structure
1698  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1699  *		of the interface.
1700  *
1701  *	@name_node:	Name hashlist node
1702  *	@ifalias:	SNMP alias
1703  *	@mem_end:	Shared memory end
1704  *	@mem_start:	Shared memory start
1705  *	@base_addr:	Device I/O address
1706  *	@irq:		Device IRQ number
1707  *
1708  *	@state:		Generic network queuing layer state, see netdev_state_t
1709  *	@dev_list:	The global list of network devices
1710  *	@napi_list:	List entry used for polling NAPI devices
1711  *	@unreg_list:	List entry  when we are unregistering the
1712  *			device; see the function unregister_netdev
1713  *	@close_list:	List entry used when we are closing the device
1714  *	@ptype_all:     Device-specific packet handlers for all protocols
1715  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1716  *
1717  *	@adj_list:	Directly linked devices, like slaves for bonding
1718  *	@features:	Currently active device features
1719  *	@hw_features:	User-changeable features
1720  *
1721  *	@wanted_features:	User-requested features
1722  *	@vlan_features:		Mask of features inheritable by VLAN devices
1723  *
1724  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1725  *				This field indicates what encapsulation
1726  *				offloads the hardware is capable of doing,
1727  *				and drivers will need to set them appropriately.
1728  *
1729  *	@mpls_features:	Mask of features inheritable by MPLS
1730  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1731  *
1732  *	@ifindex:	interface index
1733  *	@group:		The group the device belongs to
1734  *
1735  *	@stats:		Statistics struct, which was left as a legacy, use
1736  *			rtnl_link_stats64 instead
1737  *
1738  *	@rx_dropped:	Dropped packets by core network,
1739  *			do not use this in drivers
1740  *	@tx_dropped:	Dropped packets by core network,
1741  *			do not use this in drivers
1742  *	@rx_nohandler:	nohandler dropped packets by core network on
1743  *			inactive devices, do not use this in drivers
1744  *	@carrier_up_count:	Number of times the carrier has been up
1745  *	@carrier_down_count:	Number of times the carrier has been down
1746  *
1747  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1748  *				instead of ioctl,
1749  *				see <net/iw_handler.h> for details.
1750  *	@wireless_data:	Instance data managed by the core of wireless extensions
1751  *
1752  *	@netdev_ops:	Includes several pointers to callbacks,
1753  *			if one wants to override the ndo_*() functions
1754  *	@ethtool_ops:	Management operations
1755  *	@l3mdev_ops:	Layer 3 master device operations
1756  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1757  *			discovery handling. Necessary for e.g. 6LoWPAN.
1758  *	@xfrmdev_ops:	Transformation offload operations
1759  *	@tlsdev_ops:	Transport Layer Security offload operations
1760  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1761  *			of Layer 2 headers.
1762  *
1763  *	@flags:		Interface flags (a la BSD)
1764  *	@priv_flags:	Like 'flags' but invisible to userspace,
1765  *			see if.h for the definitions
1766  *	@gflags:	Global flags ( kept as legacy )
1767  *	@padded:	How much padding added by alloc_netdev()
1768  *	@operstate:	RFC2863 operstate
1769  *	@link_mode:	Mapping policy to operstate
1770  *	@if_port:	Selectable AUI, TP, ...
1771  *	@dma:		DMA channel
1772  *	@mtu:		Interface MTU value
1773  *	@min_mtu:	Interface Minimum MTU value
1774  *	@max_mtu:	Interface Maximum MTU value
1775  *	@type:		Interface hardware type
1776  *	@hard_header_len: Maximum hardware header length.
1777  *	@min_header_len:  Minimum hardware header length
1778  *
1779  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1780  *			  cases can this be guaranteed
1781  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1782  *			  cases can this be guaranteed. Some cases also use
1783  *			  LL_MAX_HEADER instead to allocate the skb
1784  *
1785  *	interface address info:
1786  *
1787  * 	@perm_addr:		Permanent hw address
1788  * 	@addr_assign_type:	Hw address assignment type
1789  * 	@addr_len:		Hardware address length
1790  *	@upper_level:		Maximum depth level of upper devices.
1791  *	@lower_level:		Maximum depth level of lower devices.
1792  *	@neigh_priv_len:	Used in neigh_alloc()
1793  * 	@dev_id:		Used to differentiate devices that share
1794  * 				the same link layer address
1795  * 	@dev_port:		Used to differentiate devices that share
1796  * 				the same function
1797  *	@addr_list_lock:	XXX: need comments on this one
1798  *	@name_assign_type:	network interface name assignment type
1799  *	@uc_promisc:		Counter that indicates promiscuous mode
1800  *				has been enabled due to the need to listen to
1801  *				additional unicast addresses in a device that
1802  *				does not implement ndo_set_rx_mode()
1803  *	@uc:			unicast mac addresses
1804  *	@mc:			multicast mac addresses
1805  *	@dev_addrs:		list of device hw addresses
1806  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1807  *	@promiscuity:		Number of times the NIC is told to work in
1808  *				promiscuous mode; if it becomes 0 the NIC will
1809  *				exit promiscuous mode
1810  *	@allmulti:		Counter, enables or disables allmulticast mode
1811  *
1812  *	@vlan_info:	VLAN info
1813  *	@dsa_ptr:	dsa specific data
1814  *	@tipc_ptr:	TIPC specific data
1815  *	@atalk_ptr:	AppleTalk link
1816  *	@ip_ptr:	IPv4 specific data
1817  *	@dn_ptr:	DECnet specific data
1818  *	@ip6_ptr:	IPv6 specific data
1819  *	@ax25_ptr:	AX.25 specific data
1820  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1821  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1822  *			 device struct
1823  *	@mpls_ptr:	mpls_dev struct pointer
1824  *	@mctp_ptr:	MCTP specific data
1825  *
1826  *	@dev_addr:	Hw address (before bcast,
1827  *			because most packets are unicast)
1828  *
1829  *	@_rx:			Array of RX queues
1830  *	@num_rx_queues:		Number of RX queues
1831  *				allocated at register_netdev() time
1832  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1833  *	@xdp_prog:		XDP sockets filter program pointer
1834  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1835  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1836  *				allow to avoid NIC hard IRQ, on busy queues.
1837  *
1838  *	@rx_handler:		handler for received packets
1839  *	@rx_handler_data: 	XXX: need comments on this one
1840  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1841  *				ingress processing
1842  *	@ingress_queue:		XXX: need comments on this one
1843  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1844  *	@broadcast:		hw bcast address
1845  *
1846  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1847  *			indexed by RX queue number. Assigned by driver.
1848  *			This must only be set if the ndo_rx_flow_steer
1849  *			operation is defined
1850  *	@index_hlist:		Device index hash chain
1851  *
1852  *	@_tx:			Array of TX queues
1853  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1854  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1855  *	@qdisc:			Root qdisc from userspace point of view
1856  *	@tx_queue_len:		Max frames per queue allowed
1857  *	@tx_global_lock: 	XXX: need comments on this one
1858  *	@xdp_bulkq:		XDP device bulk queue
1859  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1860  *
1861  *	@xps_maps:	XXX: need comments on this one
1862  *	@miniq_egress:		clsact qdisc specific data for
1863  *				egress processing
1864  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1865  *	@qdisc_hash:		qdisc hash table
1866  *	@watchdog_timeo:	Represents the timeout that is used by
1867  *				the watchdog (see dev_watchdog())
1868  *	@watchdog_timer:	List of timers
1869  *
1870  *	@proto_down_reason:	reason a netdev interface is held down
1871  *	@pcpu_refcnt:		Number of references to this device
1872  *	@dev_refcnt:		Number of references to this device
1873  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1874  *	@todo_list:		Delayed register/unregister
1875  *	@link_watch_list:	XXX: need comments on this one
1876  *
1877  *	@reg_state:		Register/unregister state machine
1878  *	@dismantle:		Device is going to be freed
1879  *	@rtnl_link_state:	This enum represents the phases of creating
1880  *				a new link
1881  *
1882  *	@needs_free_netdev:	Should unregister perform free_netdev?
1883  *	@priv_destructor:	Called from unregister
1884  *	@npinfo:		XXX: need comments on this one
1885  * 	@nd_net:		Network namespace this network device is inside
1886  *
1887  * 	@ml_priv:	Mid-layer private
1888  *	@ml_priv_type:  Mid-layer private type
1889  * 	@lstats:	Loopback statistics
1890  * 	@tstats:	Tunnel statistics
1891  * 	@dstats:	Dummy statistics
1892  * 	@vstats:	Virtual ethernet statistics
1893  *
1894  *	@garp_port:	GARP
1895  *	@mrp_port:	MRP
1896  *
1897  *	@dev:		Class/net/name entry
1898  *	@sysfs_groups:	Space for optional device, statistics and wireless
1899  *			sysfs groups
1900  *
1901  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1902  *	@rtnl_link_ops:	Rtnl_link_ops
1903  *
1904  *	@gso_max_size:	Maximum size of generic segmentation offload
1905  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1906  *			NIC for GSO
1907  *
1908  *	@dcbnl_ops:	Data Center Bridging netlink ops
1909  *	@num_tc:	Number of traffic classes in the net device
1910  *	@tc_to_txq:	XXX: need comments on this one
1911  *	@prio_tc_map:	XXX: need comments on this one
1912  *
1913  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1914  *
1915  *	@priomap:	XXX: need comments on this one
1916  *	@phydev:	Physical device may attach itself
1917  *			for hardware timestamping
1918  *	@sfp_bus:	attached &struct sfp_bus structure.
1919  *
1920  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1921  *
1922  *	@proto_down:	protocol port state information can be sent to the
1923  *			switch driver and used to set the phys state of the
1924  *			switch port.
1925  *
1926  *	@wol_enabled:	Wake-on-LAN is enabled
1927  *
1928  *	@threaded:	napi threaded mode is enabled
1929  *
1930  *	@net_notifier_list:	List of per-net netdev notifier block
1931  *				that follow this device when it is moved
1932  *				to another network namespace.
1933  *
1934  *	@macsec_ops:    MACsec offloading ops
1935  *
1936  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1937  *				offload capabilities of the device
1938  *	@udp_tunnel_nic:	UDP tunnel offload state
1939  *	@xdp_state:		stores info on attached XDP BPF programs
1940  *
1941  *	@nested_level:	Used as a parameter of spin_lock_nested() of
1942  *			dev->addr_list_lock.
1943  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1944  *			keep a list of interfaces to be deleted.
1945  *	@gro_max_size:	Maximum size of aggregated packet in generic
1946  *			receive offload (GRO)
1947  *
1948  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
1949  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
1950  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
1951  *	@dev_registered_tracker:	tracker for reference held while
1952  *					registered
1953  *
1954  *	FIXME: cleanup struct net_device such that network protocol info
1955  *	moves out.
1956  */
1957 
1958 struct net_device {
1959 	char			name[IFNAMSIZ];
1960 	struct netdev_name_node	*name_node;
1961 	struct dev_ifalias	__rcu *ifalias;
1962 	/*
1963 	 *	I/O specific fields
1964 	 *	FIXME: Merge these and struct ifmap into one
1965 	 */
1966 	unsigned long		mem_end;
1967 	unsigned long		mem_start;
1968 	unsigned long		base_addr;
1969 
1970 	/*
1971 	 *	Some hardware also needs these fields (state,dev_list,
1972 	 *	napi_list,unreg_list,close_list) but they are not
1973 	 *	part of the usual set specified in Space.c.
1974 	 */
1975 
1976 	unsigned long		state;
1977 
1978 	struct list_head	dev_list;
1979 	struct list_head	napi_list;
1980 	struct list_head	unreg_list;
1981 	struct list_head	close_list;
1982 	struct list_head	ptype_all;
1983 	struct list_head	ptype_specific;
1984 
1985 	struct {
1986 		struct list_head upper;
1987 		struct list_head lower;
1988 	} adj_list;
1989 
1990 	/* Read-mostly cache-line for fast-path access */
1991 	unsigned int		flags;
1992 	unsigned long long	priv_flags;
1993 	const struct net_device_ops *netdev_ops;
1994 	int			ifindex;
1995 	unsigned short		gflags;
1996 	unsigned short		hard_header_len;
1997 
1998 	/* Note : dev->mtu is often read without holding a lock.
1999 	 * Writers usually hold RTNL.
2000 	 * It is recommended to use READ_ONCE() to annotate the reads,
2001 	 * and to use WRITE_ONCE() to annotate the writes.
2002 	 */
2003 	unsigned int		mtu;
2004 	unsigned short		needed_headroom;
2005 	unsigned short		needed_tailroom;
2006 
2007 	netdev_features_t	features;
2008 	netdev_features_t	hw_features;
2009 	netdev_features_t	wanted_features;
2010 	netdev_features_t	vlan_features;
2011 	netdev_features_t	hw_enc_features;
2012 	netdev_features_t	mpls_features;
2013 	netdev_features_t	gso_partial_features;
2014 
2015 	unsigned int		min_mtu;
2016 	unsigned int		max_mtu;
2017 	unsigned short		type;
2018 	unsigned char		min_header_len;
2019 	unsigned char		name_assign_type;
2020 
2021 	int			group;
2022 
2023 	struct net_device_stats	stats; /* not used by modern drivers */
2024 
2025 	atomic_long_t		rx_dropped;
2026 	atomic_long_t		tx_dropped;
2027 	atomic_long_t		rx_nohandler;
2028 
2029 	/* Stats to monitor link on/off, flapping */
2030 	atomic_t		carrier_up_count;
2031 	atomic_t		carrier_down_count;
2032 
2033 #ifdef CONFIG_WIRELESS_EXT
2034 	const struct iw_handler_def *wireless_handlers;
2035 	struct iw_public_data	*wireless_data;
2036 #endif
2037 	const struct ethtool_ops *ethtool_ops;
2038 #ifdef CONFIG_NET_L3_MASTER_DEV
2039 	const struct l3mdev_ops	*l3mdev_ops;
2040 #endif
2041 #if IS_ENABLED(CONFIG_IPV6)
2042 	const struct ndisc_ops *ndisc_ops;
2043 #endif
2044 
2045 #ifdef CONFIG_XFRM_OFFLOAD
2046 	const struct xfrmdev_ops *xfrmdev_ops;
2047 #endif
2048 
2049 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2050 	const struct tlsdev_ops *tlsdev_ops;
2051 #endif
2052 
2053 	const struct header_ops *header_ops;
2054 
2055 	unsigned char		operstate;
2056 	unsigned char		link_mode;
2057 
2058 	unsigned char		if_port;
2059 	unsigned char		dma;
2060 
2061 	/* Interface address info. */
2062 	unsigned char		perm_addr[MAX_ADDR_LEN];
2063 	unsigned char		addr_assign_type;
2064 	unsigned char		addr_len;
2065 	unsigned char		upper_level;
2066 	unsigned char		lower_level;
2067 
2068 	unsigned short		neigh_priv_len;
2069 	unsigned short          dev_id;
2070 	unsigned short          dev_port;
2071 	unsigned short		padded;
2072 
2073 	spinlock_t		addr_list_lock;
2074 	int			irq;
2075 
2076 	struct netdev_hw_addr_list	uc;
2077 	struct netdev_hw_addr_list	mc;
2078 	struct netdev_hw_addr_list	dev_addrs;
2079 
2080 #ifdef CONFIG_SYSFS
2081 	struct kset		*queues_kset;
2082 #endif
2083 #ifdef CONFIG_LOCKDEP
2084 	struct list_head	unlink_list;
2085 #endif
2086 	unsigned int		promiscuity;
2087 	unsigned int		allmulti;
2088 	bool			uc_promisc;
2089 #ifdef CONFIG_LOCKDEP
2090 	unsigned char		nested_level;
2091 #endif
2092 
2093 
2094 	/* Protocol-specific pointers */
2095 
2096 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2097 	struct vlan_info __rcu	*vlan_info;
2098 #endif
2099 #if IS_ENABLED(CONFIG_NET_DSA)
2100 	struct dsa_port		*dsa_ptr;
2101 #endif
2102 #if IS_ENABLED(CONFIG_TIPC)
2103 	struct tipc_bearer __rcu *tipc_ptr;
2104 #endif
2105 #if IS_ENABLED(CONFIG_ATALK)
2106 	void 			*atalk_ptr;
2107 #endif
2108 	struct in_device __rcu	*ip_ptr;
2109 #if IS_ENABLED(CONFIG_DECNET)
2110 	struct dn_dev __rcu     *dn_ptr;
2111 #endif
2112 	struct inet6_dev __rcu	*ip6_ptr;
2113 #if IS_ENABLED(CONFIG_AX25)
2114 	void			*ax25_ptr;
2115 #endif
2116 	struct wireless_dev	*ieee80211_ptr;
2117 	struct wpan_dev		*ieee802154_ptr;
2118 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2119 	struct mpls_dev __rcu	*mpls_ptr;
2120 #endif
2121 #if IS_ENABLED(CONFIG_MCTP)
2122 	struct mctp_dev __rcu	*mctp_ptr;
2123 #endif
2124 
2125 /*
2126  * Cache lines mostly used on receive path (including eth_type_trans())
2127  */
2128 	/* Interface address info used in eth_type_trans() */
2129 	const unsigned char	*dev_addr;
2130 
2131 	struct netdev_rx_queue	*_rx;
2132 	unsigned int		num_rx_queues;
2133 	unsigned int		real_num_rx_queues;
2134 
2135 	struct bpf_prog __rcu	*xdp_prog;
2136 	unsigned long		gro_flush_timeout;
2137 	int			napi_defer_hard_irqs;
2138 #define GRO_MAX_SIZE		65536
2139 	unsigned int		gro_max_size;
2140 	rx_handler_func_t __rcu	*rx_handler;
2141 	void __rcu		*rx_handler_data;
2142 
2143 #ifdef CONFIG_NET_CLS_ACT
2144 	struct mini_Qdisc __rcu	*miniq_ingress;
2145 #endif
2146 	struct netdev_queue __rcu *ingress_queue;
2147 #ifdef CONFIG_NETFILTER_INGRESS
2148 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2149 #endif
2150 
2151 	unsigned char		broadcast[MAX_ADDR_LEN];
2152 #ifdef CONFIG_RFS_ACCEL
2153 	struct cpu_rmap		*rx_cpu_rmap;
2154 #endif
2155 	struct hlist_node	index_hlist;
2156 
2157 /*
2158  * Cache lines mostly used on transmit path
2159  */
2160 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2161 	unsigned int		num_tx_queues;
2162 	unsigned int		real_num_tx_queues;
2163 	struct Qdisc		*qdisc;
2164 	unsigned int		tx_queue_len;
2165 	spinlock_t		tx_global_lock;
2166 
2167 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2168 
2169 #ifdef CONFIG_XPS
2170 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2171 #endif
2172 #ifdef CONFIG_NET_CLS_ACT
2173 	struct mini_Qdisc __rcu	*miniq_egress;
2174 #endif
2175 #ifdef CONFIG_NETFILTER_EGRESS
2176 	struct nf_hook_entries __rcu *nf_hooks_egress;
2177 #endif
2178 
2179 #ifdef CONFIG_NET_SCHED
2180 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2181 #endif
2182 	/* These may be needed for future network-power-down code. */
2183 	struct timer_list	watchdog_timer;
2184 	int			watchdog_timeo;
2185 
2186 	u32                     proto_down_reason;
2187 
2188 	struct list_head	todo_list;
2189 
2190 #ifdef CONFIG_PCPU_DEV_REFCNT
2191 	int __percpu		*pcpu_refcnt;
2192 #else
2193 	refcount_t		dev_refcnt;
2194 #endif
2195 	struct ref_tracker_dir	refcnt_tracker;
2196 
2197 	struct list_head	link_watch_list;
2198 
2199 	enum { NETREG_UNINITIALIZED=0,
2200 	       NETREG_REGISTERED,	/* completed register_netdevice */
2201 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2202 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2203 	       NETREG_RELEASED,		/* called free_netdev */
2204 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2205 	} reg_state:8;
2206 
2207 	bool dismantle;
2208 
2209 	enum {
2210 		RTNL_LINK_INITIALIZED,
2211 		RTNL_LINK_INITIALIZING,
2212 	} rtnl_link_state:16;
2213 
2214 	bool needs_free_netdev;
2215 	void (*priv_destructor)(struct net_device *dev);
2216 
2217 #ifdef CONFIG_NETPOLL
2218 	struct netpoll_info __rcu	*npinfo;
2219 #endif
2220 
2221 	possible_net_t			nd_net;
2222 
2223 	/* mid-layer private */
2224 	void				*ml_priv;
2225 	enum netdev_ml_priv_type	ml_priv_type;
2226 
2227 	union {
2228 		struct pcpu_lstats __percpu		*lstats;
2229 		struct pcpu_sw_netstats __percpu	*tstats;
2230 		struct pcpu_dstats __percpu		*dstats;
2231 	};
2232 
2233 #if IS_ENABLED(CONFIG_GARP)
2234 	struct garp_port __rcu	*garp_port;
2235 #endif
2236 #if IS_ENABLED(CONFIG_MRP)
2237 	struct mrp_port __rcu	*mrp_port;
2238 #endif
2239 
2240 	struct device		dev;
2241 	const struct attribute_group *sysfs_groups[4];
2242 	const struct attribute_group *sysfs_rx_queue_group;
2243 
2244 	const struct rtnl_link_ops *rtnl_link_ops;
2245 
2246 	/* for setting kernel sock attribute on TCP connection setup */
2247 #define GSO_MAX_SIZE		65536
2248 	unsigned int		gso_max_size;
2249 #define GSO_MAX_SEGS		65535
2250 	u16			gso_max_segs;
2251 
2252 #ifdef CONFIG_DCB
2253 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2254 #endif
2255 	s16			num_tc;
2256 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2257 	u8			prio_tc_map[TC_BITMASK + 1];
2258 
2259 #if IS_ENABLED(CONFIG_FCOE)
2260 	unsigned int		fcoe_ddp_xid;
2261 #endif
2262 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2263 	struct netprio_map __rcu *priomap;
2264 #endif
2265 	struct phy_device	*phydev;
2266 	struct sfp_bus		*sfp_bus;
2267 	struct lock_class_key	*qdisc_tx_busylock;
2268 	bool			proto_down;
2269 	unsigned		wol_enabled:1;
2270 	unsigned		threaded:1;
2271 
2272 	struct list_head	net_notifier_list;
2273 
2274 #if IS_ENABLED(CONFIG_MACSEC)
2275 	/* MACsec management functions */
2276 	const struct macsec_ops *macsec_ops;
2277 #endif
2278 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2279 	struct udp_tunnel_nic	*udp_tunnel_nic;
2280 
2281 	/* protected by rtnl_lock */
2282 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2283 
2284 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2285 	netdevice_tracker	linkwatch_dev_tracker;
2286 	netdevice_tracker	watchdog_dev_tracker;
2287 	netdevice_tracker	dev_registered_tracker;
2288 };
2289 #define to_net_dev(d) container_of(d, struct net_device, dev)
2290 
2291 static inline bool netif_elide_gro(const struct net_device *dev)
2292 {
2293 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2294 		return true;
2295 	return false;
2296 }
2297 
2298 #define	NETDEV_ALIGN		32
2299 
2300 static inline
2301 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2302 {
2303 	return dev->prio_tc_map[prio & TC_BITMASK];
2304 }
2305 
2306 static inline
2307 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2308 {
2309 	if (tc >= dev->num_tc)
2310 		return -EINVAL;
2311 
2312 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2313 	return 0;
2314 }
2315 
2316 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2317 void netdev_reset_tc(struct net_device *dev);
2318 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2319 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2320 
2321 static inline
2322 int netdev_get_num_tc(struct net_device *dev)
2323 {
2324 	return dev->num_tc;
2325 }
2326 
2327 static inline void net_prefetch(void *p)
2328 {
2329 	prefetch(p);
2330 #if L1_CACHE_BYTES < 128
2331 	prefetch((u8 *)p + L1_CACHE_BYTES);
2332 #endif
2333 }
2334 
2335 static inline void net_prefetchw(void *p)
2336 {
2337 	prefetchw(p);
2338 #if L1_CACHE_BYTES < 128
2339 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2340 #endif
2341 }
2342 
2343 void netdev_unbind_sb_channel(struct net_device *dev,
2344 			      struct net_device *sb_dev);
2345 int netdev_bind_sb_channel_queue(struct net_device *dev,
2346 				 struct net_device *sb_dev,
2347 				 u8 tc, u16 count, u16 offset);
2348 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2349 static inline int netdev_get_sb_channel(struct net_device *dev)
2350 {
2351 	return max_t(int, -dev->num_tc, 0);
2352 }
2353 
2354 static inline
2355 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2356 					 unsigned int index)
2357 {
2358 	return &dev->_tx[index];
2359 }
2360 
2361 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2362 						    const struct sk_buff *skb)
2363 {
2364 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2365 }
2366 
2367 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2368 					    void (*f)(struct net_device *,
2369 						      struct netdev_queue *,
2370 						      void *),
2371 					    void *arg)
2372 {
2373 	unsigned int i;
2374 
2375 	for (i = 0; i < dev->num_tx_queues; i++)
2376 		f(dev, &dev->_tx[i], arg);
2377 }
2378 
2379 #define netdev_lockdep_set_classes(dev)				\
2380 {								\
2381 	static struct lock_class_key qdisc_tx_busylock_key;	\
2382 	static struct lock_class_key qdisc_xmit_lock_key;	\
2383 	static struct lock_class_key dev_addr_list_lock_key;	\
2384 	unsigned int i;						\
2385 								\
2386 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2387 	lockdep_set_class(&(dev)->addr_list_lock,		\
2388 			  &dev_addr_list_lock_key);		\
2389 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2390 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2391 				  &qdisc_xmit_lock_key);	\
2392 }
2393 
2394 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2395 		     struct net_device *sb_dev);
2396 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2397 					 struct sk_buff *skb,
2398 					 struct net_device *sb_dev);
2399 
2400 /* returns the headroom that the master device needs to take in account
2401  * when forwarding to this dev
2402  */
2403 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2404 {
2405 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2406 }
2407 
2408 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2409 {
2410 	if (dev->netdev_ops->ndo_set_rx_headroom)
2411 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2412 }
2413 
2414 /* set the device rx headroom to the dev's default */
2415 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2416 {
2417 	netdev_set_rx_headroom(dev, -1);
2418 }
2419 
2420 static inline void *netdev_get_ml_priv(struct net_device *dev,
2421 				       enum netdev_ml_priv_type type)
2422 {
2423 	if (dev->ml_priv_type != type)
2424 		return NULL;
2425 
2426 	return dev->ml_priv;
2427 }
2428 
2429 static inline void netdev_set_ml_priv(struct net_device *dev,
2430 				      void *ml_priv,
2431 				      enum netdev_ml_priv_type type)
2432 {
2433 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2434 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2435 	     dev->ml_priv_type, type);
2436 	WARN(!dev->ml_priv_type && dev->ml_priv,
2437 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2438 
2439 	dev->ml_priv = ml_priv;
2440 	dev->ml_priv_type = type;
2441 }
2442 
2443 /*
2444  * Net namespace inlines
2445  */
2446 static inline
2447 struct net *dev_net(const struct net_device *dev)
2448 {
2449 	return read_pnet(&dev->nd_net);
2450 }
2451 
2452 static inline
2453 void dev_net_set(struct net_device *dev, struct net *net)
2454 {
2455 	write_pnet(&dev->nd_net, net);
2456 }
2457 
2458 /**
2459  *	netdev_priv - access network device private data
2460  *	@dev: network device
2461  *
2462  * Get network device private data
2463  */
2464 static inline void *netdev_priv(const struct net_device *dev)
2465 {
2466 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2467 }
2468 
2469 /* Set the sysfs physical device reference for the network logical device
2470  * if set prior to registration will cause a symlink during initialization.
2471  */
2472 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2473 
2474 /* Set the sysfs device type for the network logical device to allow
2475  * fine-grained identification of different network device types. For
2476  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2477  */
2478 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2479 
2480 /* Default NAPI poll() weight
2481  * Device drivers are strongly advised to not use bigger value
2482  */
2483 #define NAPI_POLL_WEIGHT 64
2484 
2485 /**
2486  *	netif_napi_add - initialize a NAPI context
2487  *	@dev:  network device
2488  *	@napi: NAPI context
2489  *	@poll: polling function
2490  *	@weight: default weight
2491  *
2492  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2493  * *any* of the other NAPI-related functions.
2494  */
2495 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2496 		    int (*poll)(struct napi_struct *, int), int weight);
2497 
2498 /**
2499  *	netif_tx_napi_add - initialize a NAPI context
2500  *	@dev:  network device
2501  *	@napi: NAPI context
2502  *	@poll: polling function
2503  *	@weight: default weight
2504  *
2505  * This variant of netif_napi_add() should be used from drivers using NAPI
2506  * to exclusively poll a TX queue.
2507  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2508  */
2509 static inline void netif_tx_napi_add(struct net_device *dev,
2510 				     struct napi_struct *napi,
2511 				     int (*poll)(struct napi_struct *, int),
2512 				     int weight)
2513 {
2514 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2515 	netif_napi_add(dev, napi, poll, weight);
2516 }
2517 
2518 /**
2519  *  __netif_napi_del - remove a NAPI context
2520  *  @napi: NAPI context
2521  *
2522  * Warning: caller must observe RCU grace period before freeing memory
2523  * containing @napi. Drivers might want to call this helper to combine
2524  * all the needed RCU grace periods into a single one.
2525  */
2526 void __netif_napi_del(struct napi_struct *napi);
2527 
2528 /**
2529  *  netif_napi_del - remove a NAPI context
2530  *  @napi: NAPI context
2531  *
2532  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2533  */
2534 static inline void netif_napi_del(struct napi_struct *napi)
2535 {
2536 	__netif_napi_del(napi);
2537 	synchronize_net();
2538 }
2539 
2540 struct packet_type {
2541 	__be16			type;	/* This is really htons(ether_type). */
2542 	bool			ignore_outgoing;
2543 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2544 	netdevice_tracker	dev_tracker;
2545 	int			(*func) (struct sk_buff *,
2546 					 struct net_device *,
2547 					 struct packet_type *,
2548 					 struct net_device *);
2549 	void			(*list_func) (struct list_head *,
2550 					      struct packet_type *,
2551 					      struct net_device *);
2552 	bool			(*id_match)(struct packet_type *ptype,
2553 					    struct sock *sk);
2554 	struct net		*af_packet_net;
2555 	void			*af_packet_priv;
2556 	struct list_head	list;
2557 };
2558 
2559 struct offload_callbacks {
2560 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2561 						netdev_features_t features);
2562 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2563 						struct sk_buff *skb);
2564 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2565 };
2566 
2567 struct packet_offload {
2568 	__be16			 type;	/* This is really htons(ether_type). */
2569 	u16			 priority;
2570 	struct offload_callbacks callbacks;
2571 	struct list_head	 list;
2572 };
2573 
2574 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2575 struct pcpu_sw_netstats {
2576 	u64     rx_packets;
2577 	u64     rx_bytes;
2578 	u64     tx_packets;
2579 	u64     tx_bytes;
2580 	struct u64_stats_sync   syncp;
2581 } __aligned(4 * sizeof(u64));
2582 
2583 struct pcpu_lstats {
2584 	u64_stats_t packets;
2585 	u64_stats_t bytes;
2586 	struct u64_stats_sync syncp;
2587 } __aligned(2 * sizeof(u64));
2588 
2589 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2590 
2591 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2592 {
2593 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2594 
2595 	u64_stats_update_begin(&tstats->syncp);
2596 	tstats->rx_bytes += len;
2597 	tstats->rx_packets++;
2598 	u64_stats_update_end(&tstats->syncp);
2599 }
2600 
2601 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2602 					  unsigned int packets,
2603 					  unsigned int len)
2604 {
2605 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2606 
2607 	u64_stats_update_begin(&tstats->syncp);
2608 	tstats->tx_bytes += len;
2609 	tstats->tx_packets += packets;
2610 	u64_stats_update_end(&tstats->syncp);
2611 }
2612 
2613 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2614 {
2615 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2616 
2617 	u64_stats_update_begin(&lstats->syncp);
2618 	u64_stats_add(&lstats->bytes, len);
2619 	u64_stats_inc(&lstats->packets);
2620 	u64_stats_update_end(&lstats->syncp);
2621 }
2622 
2623 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2624 ({									\
2625 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2626 	if (pcpu_stats)	{						\
2627 		int __cpu;						\
2628 		for_each_possible_cpu(__cpu) {				\
2629 			typeof(type) *stat;				\
2630 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2631 			u64_stats_init(&stat->syncp);			\
2632 		}							\
2633 	}								\
2634 	pcpu_stats;							\
2635 })
2636 
2637 #define netdev_alloc_pcpu_stats(type)					\
2638 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2639 
2640 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2641 ({									\
2642 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2643 	if (pcpu_stats) {						\
2644 		int __cpu;						\
2645 		for_each_possible_cpu(__cpu) {				\
2646 			typeof(type) *stat;				\
2647 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2648 			u64_stats_init(&stat->syncp);			\
2649 		}							\
2650 	}								\
2651 	pcpu_stats;							\
2652 })
2653 
2654 enum netdev_lag_tx_type {
2655 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2656 	NETDEV_LAG_TX_TYPE_RANDOM,
2657 	NETDEV_LAG_TX_TYPE_BROADCAST,
2658 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2659 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2660 	NETDEV_LAG_TX_TYPE_HASH,
2661 };
2662 
2663 enum netdev_lag_hash {
2664 	NETDEV_LAG_HASH_NONE,
2665 	NETDEV_LAG_HASH_L2,
2666 	NETDEV_LAG_HASH_L34,
2667 	NETDEV_LAG_HASH_L23,
2668 	NETDEV_LAG_HASH_E23,
2669 	NETDEV_LAG_HASH_E34,
2670 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2671 	NETDEV_LAG_HASH_UNKNOWN,
2672 };
2673 
2674 struct netdev_lag_upper_info {
2675 	enum netdev_lag_tx_type tx_type;
2676 	enum netdev_lag_hash hash_type;
2677 };
2678 
2679 struct netdev_lag_lower_state_info {
2680 	u8 link_up : 1,
2681 	   tx_enabled : 1;
2682 };
2683 
2684 #include <linux/notifier.h>
2685 
2686 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2687  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2688  * adding new types.
2689  */
2690 enum netdev_cmd {
2691 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2692 	NETDEV_DOWN,
2693 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2694 				   detected a hardware crash and restarted
2695 				   - we can use this eg to kick tcp sessions
2696 				   once done */
2697 	NETDEV_CHANGE,		/* Notify device state change */
2698 	NETDEV_REGISTER,
2699 	NETDEV_UNREGISTER,
2700 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2701 	NETDEV_CHANGEADDR,	/* notify after the address change */
2702 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2703 	NETDEV_GOING_DOWN,
2704 	NETDEV_CHANGENAME,
2705 	NETDEV_FEAT_CHANGE,
2706 	NETDEV_BONDING_FAILOVER,
2707 	NETDEV_PRE_UP,
2708 	NETDEV_PRE_TYPE_CHANGE,
2709 	NETDEV_POST_TYPE_CHANGE,
2710 	NETDEV_POST_INIT,
2711 	NETDEV_RELEASE,
2712 	NETDEV_NOTIFY_PEERS,
2713 	NETDEV_JOIN,
2714 	NETDEV_CHANGEUPPER,
2715 	NETDEV_RESEND_IGMP,
2716 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2717 	NETDEV_CHANGEINFODATA,
2718 	NETDEV_BONDING_INFO,
2719 	NETDEV_PRECHANGEUPPER,
2720 	NETDEV_CHANGELOWERSTATE,
2721 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2722 	NETDEV_UDP_TUNNEL_DROP_INFO,
2723 	NETDEV_CHANGE_TX_QUEUE_LEN,
2724 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2725 	NETDEV_CVLAN_FILTER_DROP_INFO,
2726 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2727 	NETDEV_SVLAN_FILTER_DROP_INFO,
2728 };
2729 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2730 
2731 int register_netdevice_notifier(struct notifier_block *nb);
2732 int unregister_netdevice_notifier(struct notifier_block *nb);
2733 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2734 int unregister_netdevice_notifier_net(struct net *net,
2735 				      struct notifier_block *nb);
2736 int register_netdevice_notifier_dev_net(struct net_device *dev,
2737 					struct notifier_block *nb,
2738 					struct netdev_net_notifier *nn);
2739 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2740 					  struct notifier_block *nb,
2741 					  struct netdev_net_notifier *nn);
2742 
2743 struct netdev_notifier_info {
2744 	struct net_device	*dev;
2745 	struct netlink_ext_ack	*extack;
2746 };
2747 
2748 struct netdev_notifier_info_ext {
2749 	struct netdev_notifier_info info; /* must be first */
2750 	union {
2751 		u32 mtu;
2752 	} ext;
2753 };
2754 
2755 struct netdev_notifier_change_info {
2756 	struct netdev_notifier_info info; /* must be first */
2757 	unsigned int flags_changed;
2758 };
2759 
2760 struct netdev_notifier_changeupper_info {
2761 	struct netdev_notifier_info info; /* must be first */
2762 	struct net_device *upper_dev; /* new upper dev */
2763 	bool master; /* is upper dev master */
2764 	bool linking; /* is the notification for link or unlink */
2765 	void *upper_info; /* upper dev info */
2766 };
2767 
2768 struct netdev_notifier_changelowerstate_info {
2769 	struct netdev_notifier_info info; /* must be first */
2770 	void *lower_state_info; /* is lower dev state */
2771 };
2772 
2773 struct netdev_notifier_pre_changeaddr_info {
2774 	struct netdev_notifier_info info; /* must be first */
2775 	const unsigned char *dev_addr;
2776 };
2777 
2778 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2779 					     struct net_device *dev)
2780 {
2781 	info->dev = dev;
2782 	info->extack = NULL;
2783 }
2784 
2785 static inline struct net_device *
2786 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2787 {
2788 	return info->dev;
2789 }
2790 
2791 static inline struct netlink_ext_ack *
2792 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2793 {
2794 	return info->extack;
2795 }
2796 
2797 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2798 
2799 
2800 extern rwlock_t				dev_base_lock;		/* Device list lock */
2801 
2802 #define for_each_netdev(net, d)		\
2803 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2804 #define for_each_netdev_reverse(net, d)	\
2805 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2806 #define for_each_netdev_rcu(net, d)		\
2807 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2808 #define for_each_netdev_safe(net, d, n)	\
2809 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2810 #define for_each_netdev_continue(net, d)		\
2811 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2812 #define for_each_netdev_continue_reverse(net, d)		\
2813 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2814 						     dev_list)
2815 #define for_each_netdev_continue_rcu(net, d)		\
2816 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2817 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2818 		for_each_netdev_rcu(&init_net, slave)	\
2819 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2820 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2821 
2822 static inline struct net_device *next_net_device(struct net_device *dev)
2823 {
2824 	struct list_head *lh;
2825 	struct net *net;
2826 
2827 	net = dev_net(dev);
2828 	lh = dev->dev_list.next;
2829 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2830 }
2831 
2832 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2833 {
2834 	struct list_head *lh;
2835 	struct net *net;
2836 
2837 	net = dev_net(dev);
2838 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2839 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2840 }
2841 
2842 static inline struct net_device *first_net_device(struct net *net)
2843 {
2844 	return list_empty(&net->dev_base_head) ? NULL :
2845 		net_device_entry(net->dev_base_head.next);
2846 }
2847 
2848 static inline struct net_device *first_net_device_rcu(struct net *net)
2849 {
2850 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2851 
2852 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2853 }
2854 
2855 int netdev_boot_setup_check(struct net_device *dev);
2856 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2857 				       const char *hwaddr);
2858 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2859 void dev_add_pack(struct packet_type *pt);
2860 void dev_remove_pack(struct packet_type *pt);
2861 void __dev_remove_pack(struct packet_type *pt);
2862 void dev_add_offload(struct packet_offload *po);
2863 void dev_remove_offload(struct packet_offload *po);
2864 
2865 int dev_get_iflink(const struct net_device *dev);
2866 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2867 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2868 			  struct net_device_path_stack *stack);
2869 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2870 				      unsigned short mask);
2871 struct net_device *dev_get_by_name(struct net *net, const char *name);
2872 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2873 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2874 bool netdev_name_in_use(struct net *net, const char *name);
2875 int dev_alloc_name(struct net_device *dev, const char *name);
2876 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2877 void dev_close(struct net_device *dev);
2878 void dev_close_many(struct list_head *head, bool unlink);
2879 void dev_disable_lro(struct net_device *dev);
2880 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2881 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2882 		     struct net_device *sb_dev);
2883 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2884 		       struct net_device *sb_dev);
2885 
2886 int dev_queue_xmit(struct sk_buff *skb);
2887 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2888 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2889 
2890 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2891 {
2892 	int ret;
2893 
2894 	ret = __dev_direct_xmit(skb, queue_id);
2895 	if (!dev_xmit_complete(ret))
2896 		kfree_skb(skb);
2897 	return ret;
2898 }
2899 
2900 int register_netdevice(struct net_device *dev);
2901 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2902 void unregister_netdevice_many(struct list_head *head);
2903 static inline void unregister_netdevice(struct net_device *dev)
2904 {
2905 	unregister_netdevice_queue(dev, NULL);
2906 }
2907 
2908 int netdev_refcnt_read(const struct net_device *dev);
2909 void free_netdev(struct net_device *dev);
2910 void netdev_freemem(struct net_device *dev);
2911 int init_dummy_netdev(struct net_device *dev);
2912 
2913 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2914 					 struct sk_buff *skb,
2915 					 bool all_slaves);
2916 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
2917 					    struct sock *sk);
2918 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2919 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2920 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2921 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2922 int netdev_get_name(struct net *net, char *name, int ifindex);
2923 int dev_restart(struct net_device *dev);
2924 
2925 
2926 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2927 				  unsigned short type,
2928 				  const void *daddr, const void *saddr,
2929 				  unsigned int len)
2930 {
2931 	if (!dev->header_ops || !dev->header_ops->create)
2932 		return 0;
2933 
2934 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2935 }
2936 
2937 static inline int dev_parse_header(const struct sk_buff *skb,
2938 				   unsigned char *haddr)
2939 {
2940 	const struct net_device *dev = skb->dev;
2941 
2942 	if (!dev->header_ops || !dev->header_ops->parse)
2943 		return 0;
2944 	return dev->header_ops->parse(skb, haddr);
2945 }
2946 
2947 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2948 {
2949 	const struct net_device *dev = skb->dev;
2950 
2951 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
2952 		return 0;
2953 	return dev->header_ops->parse_protocol(skb);
2954 }
2955 
2956 /* ll_header must have at least hard_header_len allocated */
2957 static inline bool dev_validate_header(const struct net_device *dev,
2958 				       char *ll_header, int len)
2959 {
2960 	if (likely(len >= dev->hard_header_len))
2961 		return true;
2962 	if (len < dev->min_header_len)
2963 		return false;
2964 
2965 	if (capable(CAP_SYS_RAWIO)) {
2966 		memset(ll_header + len, 0, dev->hard_header_len - len);
2967 		return true;
2968 	}
2969 
2970 	if (dev->header_ops && dev->header_ops->validate)
2971 		return dev->header_ops->validate(ll_header, len);
2972 
2973 	return false;
2974 }
2975 
2976 static inline bool dev_has_header(const struct net_device *dev)
2977 {
2978 	return dev->header_ops && dev->header_ops->create;
2979 }
2980 
2981 #ifdef CONFIG_NET_FLOW_LIMIT
2982 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2983 struct sd_flow_limit {
2984 	u64			count;
2985 	unsigned int		num_buckets;
2986 	unsigned int		history_head;
2987 	u16			history[FLOW_LIMIT_HISTORY];
2988 	u8			buckets[];
2989 };
2990 
2991 extern int netdev_flow_limit_table_len;
2992 #endif /* CONFIG_NET_FLOW_LIMIT */
2993 
2994 /*
2995  * Incoming packets are placed on per-CPU queues
2996  */
2997 struct softnet_data {
2998 	struct list_head	poll_list;
2999 	struct sk_buff_head	process_queue;
3000 
3001 	/* stats */
3002 	unsigned int		processed;
3003 	unsigned int		time_squeeze;
3004 	unsigned int		received_rps;
3005 #ifdef CONFIG_RPS
3006 	struct softnet_data	*rps_ipi_list;
3007 #endif
3008 #ifdef CONFIG_NET_FLOW_LIMIT
3009 	struct sd_flow_limit __rcu *flow_limit;
3010 #endif
3011 	struct Qdisc		*output_queue;
3012 	struct Qdisc		**output_queue_tailp;
3013 	struct sk_buff		*completion_queue;
3014 #ifdef CONFIG_XFRM_OFFLOAD
3015 	struct sk_buff_head	xfrm_backlog;
3016 #endif
3017 	/* written and read only by owning cpu: */
3018 	struct {
3019 		u16 recursion;
3020 		u8  more;
3021 	} xmit;
3022 #ifdef CONFIG_RPS
3023 	/* input_queue_head should be written by cpu owning this struct,
3024 	 * and only read by other cpus. Worth using a cache line.
3025 	 */
3026 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3027 
3028 	/* Elements below can be accessed between CPUs for RPS/RFS */
3029 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3030 	struct softnet_data	*rps_ipi_next;
3031 	unsigned int		cpu;
3032 	unsigned int		input_queue_tail;
3033 #endif
3034 	unsigned int		dropped;
3035 	struct sk_buff_head	input_pkt_queue;
3036 	struct napi_struct	backlog;
3037 
3038 };
3039 
3040 static inline void input_queue_head_incr(struct softnet_data *sd)
3041 {
3042 #ifdef CONFIG_RPS
3043 	sd->input_queue_head++;
3044 #endif
3045 }
3046 
3047 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3048 					      unsigned int *qtail)
3049 {
3050 #ifdef CONFIG_RPS
3051 	*qtail = ++sd->input_queue_tail;
3052 #endif
3053 }
3054 
3055 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3056 
3057 static inline int dev_recursion_level(void)
3058 {
3059 	return this_cpu_read(softnet_data.xmit.recursion);
3060 }
3061 
3062 #define XMIT_RECURSION_LIMIT	8
3063 static inline bool dev_xmit_recursion(void)
3064 {
3065 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3066 			XMIT_RECURSION_LIMIT);
3067 }
3068 
3069 static inline void dev_xmit_recursion_inc(void)
3070 {
3071 	__this_cpu_inc(softnet_data.xmit.recursion);
3072 }
3073 
3074 static inline void dev_xmit_recursion_dec(void)
3075 {
3076 	__this_cpu_dec(softnet_data.xmit.recursion);
3077 }
3078 
3079 void __netif_schedule(struct Qdisc *q);
3080 void netif_schedule_queue(struct netdev_queue *txq);
3081 
3082 static inline void netif_tx_schedule_all(struct net_device *dev)
3083 {
3084 	unsigned int i;
3085 
3086 	for (i = 0; i < dev->num_tx_queues; i++)
3087 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3088 }
3089 
3090 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3091 {
3092 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3093 }
3094 
3095 /**
3096  *	netif_start_queue - allow transmit
3097  *	@dev: network device
3098  *
3099  *	Allow upper layers to call the device hard_start_xmit routine.
3100  */
3101 static inline void netif_start_queue(struct net_device *dev)
3102 {
3103 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3104 }
3105 
3106 static inline void netif_tx_start_all_queues(struct net_device *dev)
3107 {
3108 	unsigned int i;
3109 
3110 	for (i = 0; i < dev->num_tx_queues; i++) {
3111 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3112 		netif_tx_start_queue(txq);
3113 	}
3114 }
3115 
3116 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3117 
3118 /**
3119  *	netif_wake_queue - restart transmit
3120  *	@dev: network device
3121  *
3122  *	Allow upper layers to call the device hard_start_xmit routine.
3123  *	Used for flow control when transmit resources are available.
3124  */
3125 static inline void netif_wake_queue(struct net_device *dev)
3126 {
3127 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3128 }
3129 
3130 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3131 {
3132 	unsigned int i;
3133 
3134 	for (i = 0; i < dev->num_tx_queues; i++) {
3135 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3136 		netif_tx_wake_queue(txq);
3137 	}
3138 }
3139 
3140 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3141 {
3142 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3143 }
3144 
3145 /**
3146  *	netif_stop_queue - stop transmitted packets
3147  *	@dev: network device
3148  *
3149  *	Stop upper layers calling the device hard_start_xmit routine.
3150  *	Used for flow control when transmit resources are unavailable.
3151  */
3152 static inline void netif_stop_queue(struct net_device *dev)
3153 {
3154 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3155 }
3156 
3157 void netif_tx_stop_all_queues(struct net_device *dev);
3158 
3159 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3160 {
3161 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3162 }
3163 
3164 /**
3165  *	netif_queue_stopped - test if transmit queue is flowblocked
3166  *	@dev: network device
3167  *
3168  *	Test if transmit queue on device is currently unable to send.
3169  */
3170 static inline bool netif_queue_stopped(const struct net_device *dev)
3171 {
3172 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3173 }
3174 
3175 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3176 {
3177 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3178 }
3179 
3180 static inline bool
3181 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3182 {
3183 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3184 }
3185 
3186 static inline bool
3187 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3188 {
3189 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3190 }
3191 
3192 /**
3193  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3194  *	@dev_queue: pointer to transmit queue
3195  *	@min_limit: dql minimum limit
3196  *
3197  * Forces xmit_more() to return true until the minimum threshold
3198  * defined by @min_limit is reached (or until the tx queue is
3199  * empty). Warning: to be use with care, misuse will impact the
3200  * latency.
3201  */
3202 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3203 						  unsigned int min_limit)
3204 {
3205 #ifdef CONFIG_BQL
3206 	dev_queue->dql.min_limit = min_limit;
3207 #endif
3208 }
3209 
3210 /**
3211  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3212  *	@dev_queue: pointer to transmit queue
3213  *
3214  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3215  * to give appropriate hint to the CPU.
3216  */
3217 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3218 {
3219 #ifdef CONFIG_BQL
3220 	prefetchw(&dev_queue->dql.num_queued);
3221 #endif
3222 }
3223 
3224 /**
3225  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3226  *	@dev_queue: pointer to transmit queue
3227  *
3228  * BQL enabled drivers might use this helper in their TX completion path,
3229  * to give appropriate hint to the CPU.
3230  */
3231 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3232 {
3233 #ifdef CONFIG_BQL
3234 	prefetchw(&dev_queue->dql.limit);
3235 #endif
3236 }
3237 
3238 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3239 					unsigned int bytes)
3240 {
3241 #ifdef CONFIG_BQL
3242 	dql_queued(&dev_queue->dql, bytes);
3243 
3244 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3245 		return;
3246 
3247 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3248 
3249 	/*
3250 	 * The XOFF flag must be set before checking the dql_avail below,
3251 	 * because in netdev_tx_completed_queue we update the dql_completed
3252 	 * before checking the XOFF flag.
3253 	 */
3254 	smp_mb();
3255 
3256 	/* check again in case another CPU has just made room avail */
3257 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3258 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3259 #endif
3260 }
3261 
3262 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3263  * that they should not test BQL status themselves.
3264  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3265  * skb of a batch.
3266  * Returns true if the doorbell must be used to kick the NIC.
3267  */
3268 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3269 					  unsigned int bytes,
3270 					  bool xmit_more)
3271 {
3272 	if (xmit_more) {
3273 #ifdef CONFIG_BQL
3274 		dql_queued(&dev_queue->dql, bytes);
3275 #endif
3276 		return netif_tx_queue_stopped(dev_queue);
3277 	}
3278 	netdev_tx_sent_queue(dev_queue, bytes);
3279 	return true;
3280 }
3281 
3282 /**
3283  * 	netdev_sent_queue - report the number of bytes queued to hardware
3284  * 	@dev: network device
3285  * 	@bytes: number of bytes queued to the hardware device queue
3286  *
3287  * 	Report the number of bytes queued for sending/completion to the network
3288  * 	device hardware queue. @bytes should be a good approximation and should
3289  * 	exactly match netdev_completed_queue() @bytes
3290  */
3291 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3292 {
3293 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3294 }
3295 
3296 static inline bool __netdev_sent_queue(struct net_device *dev,
3297 				       unsigned int bytes,
3298 				       bool xmit_more)
3299 {
3300 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3301 				      xmit_more);
3302 }
3303 
3304 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3305 					     unsigned int pkts, unsigned int bytes)
3306 {
3307 #ifdef CONFIG_BQL
3308 	if (unlikely(!bytes))
3309 		return;
3310 
3311 	dql_completed(&dev_queue->dql, bytes);
3312 
3313 	/*
3314 	 * Without the memory barrier there is a small possiblity that
3315 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3316 	 * be stopped forever
3317 	 */
3318 	smp_mb();
3319 
3320 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3321 		return;
3322 
3323 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3324 		netif_schedule_queue(dev_queue);
3325 #endif
3326 }
3327 
3328 /**
3329  * 	netdev_completed_queue - report bytes and packets completed by device
3330  * 	@dev: network device
3331  * 	@pkts: actual number of packets sent over the medium
3332  * 	@bytes: actual number of bytes sent over the medium
3333  *
3334  * 	Report the number of bytes and packets transmitted by the network device
3335  * 	hardware queue over the physical medium, @bytes must exactly match the
3336  * 	@bytes amount passed to netdev_sent_queue()
3337  */
3338 static inline void netdev_completed_queue(struct net_device *dev,
3339 					  unsigned int pkts, unsigned int bytes)
3340 {
3341 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3342 }
3343 
3344 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3345 {
3346 #ifdef CONFIG_BQL
3347 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3348 	dql_reset(&q->dql);
3349 #endif
3350 }
3351 
3352 /**
3353  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3354  * 	@dev_queue: network device
3355  *
3356  * 	Reset the bytes and packet count of a network device and clear the
3357  * 	software flow control OFF bit for this network device
3358  */
3359 static inline void netdev_reset_queue(struct net_device *dev_queue)
3360 {
3361 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3362 }
3363 
3364 /**
3365  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3366  * 	@dev: network device
3367  * 	@queue_index: given tx queue index
3368  *
3369  * 	Returns 0 if given tx queue index >= number of device tx queues,
3370  * 	otherwise returns the originally passed tx queue index.
3371  */
3372 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3373 {
3374 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3375 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3376 				     dev->name, queue_index,
3377 				     dev->real_num_tx_queues);
3378 		return 0;
3379 	}
3380 
3381 	return queue_index;
3382 }
3383 
3384 /**
3385  *	netif_running - test if up
3386  *	@dev: network device
3387  *
3388  *	Test if the device has been brought up.
3389  */
3390 static inline bool netif_running(const struct net_device *dev)
3391 {
3392 	return test_bit(__LINK_STATE_START, &dev->state);
3393 }
3394 
3395 /*
3396  * Routines to manage the subqueues on a device.  We only need start,
3397  * stop, and a check if it's stopped.  All other device management is
3398  * done at the overall netdevice level.
3399  * Also test the device if we're multiqueue.
3400  */
3401 
3402 /**
3403  *	netif_start_subqueue - allow sending packets on subqueue
3404  *	@dev: network device
3405  *	@queue_index: sub queue index
3406  *
3407  * Start individual transmit queue of a device with multiple transmit queues.
3408  */
3409 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3410 {
3411 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3412 
3413 	netif_tx_start_queue(txq);
3414 }
3415 
3416 /**
3417  *	netif_stop_subqueue - stop sending packets on subqueue
3418  *	@dev: network device
3419  *	@queue_index: sub queue index
3420  *
3421  * Stop individual transmit queue of a device with multiple transmit queues.
3422  */
3423 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3424 {
3425 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3426 	netif_tx_stop_queue(txq);
3427 }
3428 
3429 /**
3430  *	__netif_subqueue_stopped - test status of subqueue
3431  *	@dev: network device
3432  *	@queue_index: sub queue index
3433  *
3434  * Check individual transmit queue of a device with multiple transmit queues.
3435  */
3436 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3437 					    u16 queue_index)
3438 {
3439 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3440 
3441 	return netif_tx_queue_stopped(txq);
3442 }
3443 
3444 /**
3445  *	netif_subqueue_stopped - test status of subqueue
3446  *	@dev: network device
3447  *	@skb: sub queue buffer pointer
3448  *
3449  * Check individual transmit queue of a device with multiple transmit queues.
3450  */
3451 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3452 					  struct sk_buff *skb)
3453 {
3454 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3455 }
3456 
3457 /**
3458  *	netif_wake_subqueue - allow sending packets on subqueue
3459  *	@dev: network device
3460  *	@queue_index: sub queue index
3461  *
3462  * Resume individual transmit queue of a device with multiple transmit queues.
3463  */
3464 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3465 {
3466 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3467 
3468 	netif_tx_wake_queue(txq);
3469 }
3470 
3471 #ifdef CONFIG_XPS
3472 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3473 			u16 index);
3474 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3475 			  u16 index, enum xps_map_type type);
3476 
3477 /**
3478  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3479  *	@j: CPU/Rx queue index
3480  *	@mask: bitmask of all cpus/rx queues
3481  *	@nr_bits: number of bits in the bitmask
3482  *
3483  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3484  */
3485 static inline bool netif_attr_test_mask(unsigned long j,
3486 					const unsigned long *mask,
3487 					unsigned int nr_bits)
3488 {
3489 	cpu_max_bits_warn(j, nr_bits);
3490 	return test_bit(j, mask);
3491 }
3492 
3493 /**
3494  *	netif_attr_test_online - Test for online CPU/Rx queue
3495  *	@j: CPU/Rx queue index
3496  *	@online_mask: bitmask for CPUs/Rx queues that are online
3497  *	@nr_bits: number of bits in the bitmask
3498  *
3499  * Returns true if a CPU/Rx queue is online.
3500  */
3501 static inline bool netif_attr_test_online(unsigned long j,
3502 					  const unsigned long *online_mask,
3503 					  unsigned int nr_bits)
3504 {
3505 	cpu_max_bits_warn(j, nr_bits);
3506 
3507 	if (online_mask)
3508 		return test_bit(j, online_mask);
3509 
3510 	return (j < nr_bits);
3511 }
3512 
3513 /**
3514  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3515  *	@n: CPU/Rx queue index
3516  *	@srcp: the cpumask/Rx queue mask pointer
3517  *	@nr_bits: number of bits in the bitmask
3518  *
3519  * Returns >= nr_bits if no further CPUs/Rx queues set.
3520  */
3521 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3522 					       unsigned int nr_bits)
3523 {
3524 	/* -1 is a legal arg here. */
3525 	if (n != -1)
3526 		cpu_max_bits_warn(n, nr_bits);
3527 
3528 	if (srcp)
3529 		return find_next_bit(srcp, nr_bits, n + 1);
3530 
3531 	return n + 1;
3532 }
3533 
3534 /**
3535  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3536  *	@n: CPU/Rx queue index
3537  *	@src1p: the first CPUs/Rx queues mask pointer
3538  *	@src2p: the second CPUs/Rx queues mask pointer
3539  *	@nr_bits: number of bits in the bitmask
3540  *
3541  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3542  */
3543 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3544 					  const unsigned long *src2p,
3545 					  unsigned int nr_bits)
3546 {
3547 	/* -1 is a legal arg here. */
3548 	if (n != -1)
3549 		cpu_max_bits_warn(n, nr_bits);
3550 
3551 	if (src1p && src2p)
3552 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3553 	else if (src1p)
3554 		return find_next_bit(src1p, nr_bits, n + 1);
3555 	else if (src2p)
3556 		return find_next_bit(src2p, nr_bits, n + 1);
3557 
3558 	return n + 1;
3559 }
3560 #else
3561 static inline int netif_set_xps_queue(struct net_device *dev,
3562 				      const struct cpumask *mask,
3563 				      u16 index)
3564 {
3565 	return 0;
3566 }
3567 
3568 static inline int __netif_set_xps_queue(struct net_device *dev,
3569 					const unsigned long *mask,
3570 					u16 index, enum xps_map_type type)
3571 {
3572 	return 0;
3573 }
3574 #endif
3575 
3576 /**
3577  *	netif_is_multiqueue - test if device has multiple transmit queues
3578  *	@dev: network device
3579  *
3580  * Check if device has multiple transmit queues
3581  */
3582 static inline bool netif_is_multiqueue(const struct net_device *dev)
3583 {
3584 	return dev->num_tx_queues > 1;
3585 }
3586 
3587 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3588 
3589 #ifdef CONFIG_SYSFS
3590 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3591 #else
3592 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3593 						unsigned int rxqs)
3594 {
3595 	dev->real_num_rx_queues = rxqs;
3596 	return 0;
3597 }
3598 #endif
3599 int netif_set_real_num_queues(struct net_device *dev,
3600 			      unsigned int txq, unsigned int rxq);
3601 
3602 static inline struct netdev_rx_queue *
3603 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3604 {
3605 	return dev->_rx + rxq;
3606 }
3607 
3608 #ifdef CONFIG_SYSFS
3609 static inline unsigned int get_netdev_rx_queue_index(
3610 		struct netdev_rx_queue *queue)
3611 {
3612 	struct net_device *dev = queue->dev;
3613 	int index = queue - dev->_rx;
3614 
3615 	BUG_ON(index >= dev->num_rx_queues);
3616 	return index;
3617 }
3618 #endif
3619 
3620 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3621 int netif_get_num_default_rss_queues(void);
3622 
3623 enum skb_free_reason {
3624 	SKB_REASON_CONSUMED,
3625 	SKB_REASON_DROPPED,
3626 };
3627 
3628 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3629 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3630 
3631 /*
3632  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3633  * interrupt context or with hardware interrupts being disabled.
3634  * (in_hardirq() || irqs_disabled())
3635  *
3636  * We provide four helpers that can be used in following contexts :
3637  *
3638  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3639  *  replacing kfree_skb(skb)
3640  *
3641  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3642  *  Typically used in place of consume_skb(skb) in TX completion path
3643  *
3644  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3645  *  replacing kfree_skb(skb)
3646  *
3647  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3648  *  and consumed a packet. Used in place of consume_skb(skb)
3649  */
3650 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3651 {
3652 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3653 }
3654 
3655 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3656 {
3657 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3658 }
3659 
3660 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3661 {
3662 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3663 }
3664 
3665 static inline void dev_consume_skb_any(struct sk_buff *skb)
3666 {
3667 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3668 }
3669 
3670 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3671 			     struct bpf_prog *xdp_prog);
3672 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3673 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3674 int netif_rx(struct sk_buff *skb);
3675 int __netif_rx(struct sk_buff *skb);
3676 
3677 static inline int netif_rx_ni(struct sk_buff *skb)
3678 {
3679 	return netif_rx(skb);
3680 }
3681 
3682 static inline int netif_rx_any_context(struct sk_buff *skb)
3683 {
3684 	return netif_rx(skb);
3685 }
3686 
3687 int netif_receive_skb(struct sk_buff *skb);
3688 int netif_receive_skb_core(struct sk_buff *skb);
3689 void netif_receive_skb_list_internal(struct list_head *head);
3690 void netif_receive_skb_list(struct list_head *head);
3691 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3692 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3693 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3694 gro_result_t napi_gro_frags(struct napi_struct *napi);
3695 struct packet_offload *gro_find_receive_by_type(__be16 type);
3696 struct packet_offload *gro_find_complete_by_type(__be16 type);
3697 
3698 static inline void napi_free_frags(struct napi_struct *napi)
3699 {
3700 	kfree_skb(napi->skb);
3701 	napi->skb = NULL;
3702 }
3703 
3704 bool netdev_is_rx_handler_busy(struct net_device *dev);
3705 int netdev_rx_handler_register(struct net_device *dev,
3706 			       rx_handler_func_t *rx_handler,
3707 			       void *rx_handler_data);
3708 void netdev_rx_handler_unregister(struct net_device *dev);
3709 
3710 bool dev_valid_name(const char *name);
3711 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3712 {
3713 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3714 }
3715 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3716 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3717 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3718 		void __user *data, bool *need_copyout);
3719 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3720 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3721 unsigned int dev_get_flags(const struct net_device *);
3722 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3723 		       struct netlink_ext_ack *extack);
3724 int dev_change_flags(struct net_device *dev, unsigned int flags,
3725 		     struct netlink_ext_ack *extack);
3726 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3727 			unsigned int gchanges);
3728 int dev_change_name(struct net_device *, const char *);
3729 int dev_set_alias(struct net_device *, const char *, size_t);
3730 int dev_get_alias(const struct net_device *, char *, size_t);
3731 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3732 			       const char *pat, int new_ifindex);
3733 static inline
3734 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3735 			     const char *pat)
3736 {
3737 	return __dev_change_net_namespace(dev, net, pat, 0);
3738 }
3739 int __dev_set_mtu(struct net_device *, int);
3740 int dev_validate_mtu(struct net_device *dev, int mtu,
3741 		     struct netlink_ext_ack *extack);
3742 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3743 		    struct netlink_ext_ack *extack);
3744 int dev_set_mtu(struct net_device *, int);
3745 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3746 void dev_set_group(struct net_device *, int);
3747 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3748 			      struct netlink_ext_ack *extack);
3749 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3750 			struct netlink_ext_ack *extack);
3751 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3752 			     struct netlink_ext_ack *extack);
3753 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3754 int dev_change_carrier(struct net_device *, bool new_carrier);
3755 int dev_get_phys_port_id(struct net_device *dev,
3756 			 struct netdev_phys_item_id *ppid);
3757 int dev_get_phys_port_name(struct net_device *dev,
3758 			   char *name, size_t len);
3759 int dev_get_port_parent_id(struct net_device *dev,
3760 			   struct netdev_phys_item_id *ppid, bool recurse);
3761 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3762 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3763 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3764 				  u32 value);
3765 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3766 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3767 				    struct netdev_queue *txq, int *ret);
3768 
3769 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3770 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3771 		      int fd, int expected_fd, u32 flags);
3772 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3773 u8 dev_xdp_prog_count(struct net_device *dev);
3774 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3775 
3776 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3777 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3778 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3779 bool is_skb_forwardable(const struct net_device *dev,
3780 			const struct sk_buff *skb);
3781 
3782 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3783 						 const struct sk_buff *skb,
3784 						 const bool check_mtu)
3785 {
3786 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3787 	unsigned int len;
3788 
3789 	if (!(dev->flags & IFF_UP))
3790 		return false;
3791 
3792 	if (!check_mtu)
3793 		return true;
3794 
3795 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3796 	if (skb->len <= len)
3797 		return true;
3798 
3799 	/* if TSO is enabled, we don't care about the length as the packet
3800 	 * could be forwarded without being segmented before
3801 	 */
3802 	if (skb_is_gso(skb))
3803 		return true;
3804 
3805 	return false;
3806 }
3807 
3808 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3809 					       struct sk_buff *skb,
3810 					       const bool check_mtu)
3811 {
3812 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3813 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3814 		atomic_long_inc(&dev->rx_dropped);
3815 		kfree_skb(skb);
3816 		return NET_RX_DROP;
3817 	}
3818 
3819 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3820 	skb->priority = 0;
3821 	return 0;
3822 }
3823 
3824 bool dev_nit_active(struct net_device *dev);
3825 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3826 
3827 extern int		netdev_budget;
3828 extern unsigned int	netdev_budget_usecs;
3829 
3830 /* Called by rtnetlink.c:rtnl_unlock() */
3831 void netdev_run_todo(void);
3832 
3833 static inline void __dev_put(struct net_device *dev)
3834 {
3835 	if (dev) {
3836 #ifdef CONFIG_PCPU_DEV_REFCNT
3837 		this_cpu_dec(*dev->pcpu_refcnt);
3838 #else
3839 		refcount_dec(&dev->dev_refcnt);
3840 #endif
3841 	}
3842 }
3843 
3844 static inline void __dev_hold(struct net_device *dev)
3845 {
3846 	if (dev) {
3847 #ifdef CONFIG_PCPU_DEV_REFCNT
3848 		this_cpu_inc(*dev->pcpu_refcnt);
3849 #else
3850 		refcount_inc(&dev->dev_refcnt);
3851 #endif
3852 	}
3853 }
3854 
3855 static inline void __netdev_tracker_alloc(struct net_device *dev,
3856 					  netdevice_tracker *tracker,
3857 					  gfp_t gfp)
3858 {
3859 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3860 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
3861 #endif
3862 }
3863 
3864 /* netdev_tracker_alloc() can upgrade a prior untracked reference
3865  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
3866  */
3867 static inline void netdev_tracker_alloc(struct net_device *dev,
3868 					netdevice_tracker *tracker, gfp_t gfp)
3869 {
3870 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3871 	refcount_dec(&dev->refcnt_tracker.no_tracker);
3872 	__netdev_tracker_alloc(dev, tracker, gfp);
3873 #endif
3874 }
3875 
3876 static inline void netdev_tracker_free(struct net_device *dev,
3877 				       netdevice_tracker *tracker)
3878 {
3879 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3880 	ref_tracker_free(&dev->refcnt_tracker, tracker);
3881 #endif
3882 }
3883 
3884 static inline void dev_hold_track(struct net_device *dev,
3885 				  netdevice_tracker *tracker, gfp_t gfp)
3886 {
3887 	if (dev) {
3888 		__dev_hold(dev);
3889 		__netdev_tracker_alloc(dev, tracker, gfp);
3890 	}
3891 }
3892 
3893 static inline void dev_put_track(struct net_device *dev,
3894 				 netdevice_tracker *tracker)
3895 {
3896 	if (dev) {
3897 		netdev_tracker_free(dev, tracker);
3898 		__dev_put(dev);
3899 	}
3900 }
3901 
3902 /**
3903  *	dev_hold - get reference to device
3904  *	@dev: network device
3905  *
3906  * Hold reference to device to keep it from being freed.
3907  * Try using dev_hold_track() instead.
3908  */
3909 static inline void dev_hold(struct net_device *dev)
3910 {
3911 	dev_hold_track(dev, NULL, GFP_ATOMIC);
3912 }
3913 
3914 /**
3915  *	dev_put - release reference to device
3916  *	@dev: network device
3917  *
3918  * Release reference to device to allow it to be freed.
3919  * Try using dev_put_track() instead.
3920  */
3921 static inline void dev_put(struct net_device *dev)
3922 {
3923 	dev_put_track(dev, NULL);
3924 }
3925 
3926 static inline void dev_replace_track(struct net_device *odev,
3927 				     struct net_device *ndev,
3928 				     netdevice_tracker *tracker,
3929 				     gfp_t gfp)
3930 {
3931 	if (odev)
3932 		netdev_tracker_free(odev, tracker);
3933 
3934 	__dev_hold(ndev);
3935 	__dev_put(odev);
3936 
3937 	if (ndev)
3938 		__netdev_tracker_alloc(ndev, tracker, gfp);
3939 }
3940 
3941 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3942  * and _off may be called from IRQ context, but it is caller
3943  * who is responsible for serialization of these calls.
3944  *
3945  * The name carrier is inappropriate, these functions should really be
3946  * called netif_lowerlayer_*() because they represent the state of any
3947  * kind of lower layer not just hardware media.
3948  */
3949 
3950 void linkwatch_init_dev(struct net_device *dev);
3951 void linkwatch_fire_event(struct net_device *dev);
3952 void linkwatch_forget_dev(struct net_device *dev);
3953 
3954 /**
3955  *	netif_carrier_ok - test if carrier present
3956  *	@dev: network device
3957  *
3958  * Check if carrier is present on device
3959  */
3960 static inline bool netif_carrier_ok(const struct net_device *dev)
3961 {
3962 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3963 }
3964 
3965 unsigned long dev_trans_start(struct net_device *dev);
3966 
3967 void __netdev_watchdog_up(struct net_device *dev);
3968 
3969 void netif_carrier_on(struct net_device *dev);
3970 void netif_carrier_off(struct net_device *dev);
3971 void netif_carrier_event(struct net_device *dev);
3972 
3973 /**
3974  *	netif_dormant_on - mark device as dormant.
3975  *	@dev: network device
3976  *
3977  * Mark device as dormant (as per RFC2863).
3978  *
3979  * The dormant state indicates that the relevant interface is not
3980  * actually in a condition to pass packets (i.e., it is not 'up') but is
3981  * in a "pending" state, waiting for some external event.  For "on-
3982  * demand" interfaces, this new state identifies the situation where the
3983  * interface is waiting for events to place it in the up state.
3984  */
3985 static inline void netif_dormant_on(struct net_device *dev)
3986 {
3987 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3988 		linkwatch_fire_event(dev);
3989 }
3990 
3991 /**
3992  *	netif_dormant_off - set device as not dormant.
3993  *	@dev: network device
3994  *
3995  * Device is not in dormant state.
3996  */
3997 static inline void netif_dormant_off(struct net_device *dev)
3998 {
3999 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4000 		linkwatch_fire_event(dev);
4001 }
4002 
4003 /**
4004  *	netif_dormant - test if device is dormant
4005  *	@dev: network device
4006  *
4007  * Check if device is dormant.
4008  */
4009 static inline bool netif_dormant(const struct net_device *dev)
4010 {
4011 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4012 }
4013 
4014 
4015 /**
4016  *	netif_testing_on - mark device as under test.
4017  *	@dev: network device
4018  *
4019  * Mark device as under test (as per RFC2863).
4020  *
4021  * The testing state indicates that some test(s) must be performed on
4022  * the interface. After completion, of the test, the interface state
4023  * will change to up, dormant, or down, as appropriate.
4024  */
4025 static inline void netif_testing_on(struct net_device *dev)
4026 {
4027 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4028 		linkwatch_fire_event(dev);
4029 }
4030 
4031 /**
4032  *	netif_testing_off - set device as not under test.
4033  *	@dev: network device
4034  *
4035  * Device is not in testing state.
4036  */
4037 static inline void netif_testing_off(struct net_device *dev)
4038 {
4039 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4040 		linkwatch_fire_event(dev);
4041 }
4042 
4043 /**
4044  *	netif_testing - test if device is under test
4045  *	@dev: network device
4046  *
4047  * Check if device is under test
4048  */
4049 static inline bool netif_testing(const struct net_device *dev)
4050 {
4051 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4052 }
4053 
4054 
4055 /**
4056  *	netif_oper_up - test if device is operational
4057  *	@dev: network device
4058  *
4059  * Check if carrier is operational
4060  */
4061 static inline bool netif_oper_up(const struct net_device *dev)
4062 {
4063 	return (dev->operstate == IF_OPER_UP ||
4064 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4065 }
4066 
4067 /**
4068  *	netif_device_present - is device available or removed
4069  *	@dev: network device
4070  *
4071  * Check if device has not been removed from system.
4072  */
4073 static inline bool netif_device_present(const struct net_device *dev)
4074 {
4075 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4076 }
4077 
4078 void netif_device_detach(struct net_device *dev);
4079 
4080 void netif_device_attach(struct net_device *dev);
4081 
4082 /*
4083  * Network interface message level settings
4084  */
4085 
4086 enum {
4087 	NETIF_MSG_DRV_BIT,
4088 	NETIF_MSG_PROBE_BIT,
4089 	NETIF_MSG_LINK_BIT,
4090 	NETIF_MSG_TIMER_BIT,
4091 	NETIF_MSG_IFDOWN_BIT,
4092 	NETIF_MSG_IFUP_BIT,
4093 	NETIF_MSG_RX_ERR_BIT,
4094 	NETIF_MSG_TX_ERR_BIT,
4095 	NETIF_MSG_TX_QUEUED_BIT,
4096 	NETIF_MSG_INTR_BIT,
4097 	NETIF_MSG_TX_DONE_BIT,
4098 	NETIF_MSG_RX_STATUS_BIT,
4099 	NETIF_MSG_PKTDATA_BIT,
4100 	NETIF_MSG_HW_BIT,
4101 	NETIF_MSG_WOL_BIT,
4102 
4103 	/* When you add a new bit above, update netif_msg_class_names array
4104 	 * in net/ethtool/common.c
4105 	 */
4106 	NETIF_MSG_CLASS_COUNT,
4107 };
4108 /* Both ethtool_ops interface and internal driver implementation use u32 */
4109 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4110 
4111 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4112 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4113 
4114 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4115 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4116 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4117 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4118 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4119 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4120 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4121 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4122 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4123 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4124 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4125 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4126 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4127 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4128 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4129 
4130 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4131 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4132 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4133 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4134 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4135 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4136 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4137 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4138 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4139 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4140 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4141 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4142 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4143 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4144 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4145 
4146 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4147 {
4148 	/* use default */
4149 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4150 		return default_msg_enable_bits;
4151 	if (debug_value == 0)	/* no output */
4152 		return 0;
4153 	/* set low N bits */
4154 	return (1U << debug_value) - 1;
4155 }
4156 
4157 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4158 {
4159 	spin_lock(&txq->_xmit_lock);
4160 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4161 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4162 }
4163 
4164 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4165 {
4166 	__acquire(&txq->_xmit_lock);
4167 	return true;
4168 }
4169 
4170 static inline void __netif_tx_release(struct netdev_queue *txq)
4171 {
4172 	__release(&txq->_xmit_lock);
4173 }
4174 
4175 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4176 {
4177 	spin_lock_bh(&txq->_xmit_lock);
4178 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4179 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4180 }
4181 
4182 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4183 {
4184 	bool ok = spin_trylock(&txq->_xmit_lock);
4185 
4186 	if (likely(ok)) {
4187 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4188 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4189 	}
4190 	return ok;
4191 }
4192 
4193 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4194 {
4195 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4196 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4197 	spin_unlock(&txq->_xmit_lock);
4198 }
4199 
4200 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4201 {
4202 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4203 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4204 	spin_unlock_bh(&txq->_xmit_lock);
4205 }
4206 
4207 /*
4208  * txq->trans_start can be read locklessly from dev_watchdog()
4209  */
4210 static inline void txq_trans_update(struct netdev_queue *txq)
4211 {
4212 	if (txq->xmit_lock_owner != -1)
4213 		WRITE_ONCE(txq->trans_start, jiffies);
4214 }
4215 
4216 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4217 {
4218 	unsigned long now = jiffies;
4219 
4220 	if (READ_ONCE(txq->trans_start) != now)
4221 		WRITE_ONCE(txq->trans_start, now);
4222 }
4223 
4224 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4225 static inline void netif_trans_update(struct net_device *dev)
4226 {
4227 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4228 
4229 	txq_trans_cond_update(txq);
4230 }
4231 
4232 /**
4233  *	netif_tx_lock - grab network device transmit lock
4234  *	@dev: network device
4235  *
4236  * Get network device transmit lock
4237  */
4238 void netif_tx_lock(struct net_device *dev);
4239 
4240 static inline void netif_tx_lock_bh(struct net_device *dev)
4241 {
4242 	local_bh_disable();
4243 	netif_tx_lock(dev);
4244 }
4245 
4246 void netif_tx_unlock(struct net_device *dev);
4247 
4248 static inline void netif_tx_unlock_bh(struct net_device *dev)
4249 {
4250 	netif_tx_unlock(dev);
4251 	local_bh_enable();
4252 }
4253 
4254 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4255 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4256 		__netif_tx_lock(txq, cpu);		\
4257 	} else {					\
4258 		__netif_tx_acquire(txq);		\
4259 	}						\
4260 }
4261 
4262 #define HARD_TX_TRYLOCK(dev, txq)			\
4263 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4264 		__netif_tx_trylock(txq) :		\
4265 		__netif_tx_acquire(txq))
4266 
4267 #define HARD_TX_UNLOCK(dev, txq) {			\
4268 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4269 		__netif_tx_unlock(txq);			\
4270 	} else {					\
4271 		__netif_tx_release(txq);		\
4272 	}						\
4273 }
4274 
4275 static inline void netif_tx_disable(struct net_device *dev)
4276 {
4277 	unsigned int i;
4278 	int cpu;
4279 
4280 	local_bh_disable();
4281 	cpu = smp_processor_id();
4282 	spin_lock(&dev->tx_global_lock);
4283 	for (i = 0; i < dev->num_tx_queues; i++) {
4284 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4285 
4286 		__netif_tx_lock(txq, cpu);
4287 		netif_tx_stop_queue(txq);
4288 		__netif_tx_unlock(txq);
4289 	}
4290 	spin_unlock(&dev->tx_global_lock);
4291 	local_bh_enable();
4292 }
4293 
4294 static inline void netif_addr_lock(struct net_device *dev)
4295 {
4296 	unsigned char nest_level = 0;
4297 
4298 #ifdef CONFIG_LOCKDEP
4299 	nest_level = dev->nested_level;
4300 #endif
4301 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4302 }
4303 
4304 static inline void netif_addr_lock_bh(struct net_device *dev)
4305 {
4306 	unsigned char nest_level = 0;
4307 
4308 #ifdef CONFIG_LOCKDEP
4309 	nest_level = dev->nested_level;
4310 #endif
4311 	local_bh_disable();
4312 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4313 }
4314 
4315 static inline void netif_addr_unlock(struct net_device *dev)
4316 {
4317 	spin_unlock(&dev->addr_list_lock);
4318 }
4319 
4320 static inline void netif_addr_unlock_bh(struct net_device *dev)
4321 {
4322 	spin_unlock_bh(&dev->addr_list_lock);
4323 }
4324 
4325 /*
4326  * dev_addrs walker. Should be used only for read access. Call with
4327  * rcu_read_lock held.
4328  */
4329 #define for_each_dev_addr(dev, ha) \
4330 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4331 
4332 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4333 
4334 void ether_setup(struct net_device *dev);
4335 
4336 /* Support for loadable net-drivers */
4337 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4338 				    unsigned char name_assign_type,
4339 				    void (*setup)(struct net_device *),
4340 				    unsigned int txqs, unsigned int rxqs);
4341 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4342 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4343 
4344 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4345 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4346 			 count)
4347 
4348 int register_netdev(struct net_device *dev);
4349 void unregister_netdev(struct net_device *dev);
4350 
4351 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4352 
4353 /* General hardware address lists handling functions */
4354 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4355 		   struct netdev_hw_addr_list *from_list, int addr_len);
4356 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4357 		      struct netdev_hw_addr_list *from_list, int addr_len);
4358 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4359 		       struct net_device *dev,
4360 		       int (*sync)(struct net_device *, const unsigned char *),
4361 		       int (*unsync)(struct net_device *,
4362 				     const unsigned char *));
4363 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4364 			   struct net_device *dev,
4365 			   int (*sync)(struct net_device *,
4366 				       const unsigned char *, int),
4367 			   int (*unsync)(struct net_device *,
4368 					 const unsigned char *, int));
4369 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4370 			      struct net_device *dev,
4371 			      int (*unsync)(struct net_device *,
4372 					    const unsigned char *, int));
4373 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4374 			  struct net_device *dev,
4375 			  int (*unsync)(struct net_device *,
4376 					const unsigned char *));
4377 void __hw_addr_init(struct netdev_hw_addr_list *list);
4378 
4379 /* Functions used for device addresses handling */
4380 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4381 		  const void *addr, size_t len);
4382 
4383 static inline void
4384 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4385 {
4386 	dev_addr_mod(dev, 0, addr, len);
4387 }
4388 
4389 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4390 {
4391 	__dev_addr_set(dev, addr, dev->addr_len);
4392 }
4393 
4394 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4395 		 unsigned char addr_type);
4396 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4397 		 unsigned char addr_type);
4398 void dev_addr_flush(struct net_device *dev);
4399 int dev_addr_init(struct net_device *dev);
4400 void dev_addr_check(struct net_device *dev);
4401 
4402 /* Functions used for unicast addresses handling */
4403 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4404 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4405 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4406 int dev_uc_sync(struct net_device *to, struct net_device *from);
4407 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4408 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4409 void dev_uc_flush(struct net_device *dev);
4410 void dev_uc_init(struct net_device *dev);
4411 
4412 /**
4413  *  __dev_uc_sync - Synchonize device's unicast list
4414  *  @dev:  device to sync
4415  *  @sync: function to call if address should be added
4416  *  @unsync: function to call if address should be removed
4417  *
4418  *  Add newly added addresses to the interface, and release
4419  *  addresses that have been deleted.
4420  */
4421 static inline int __dev_uc_sync(struct net_device *dev,
4422 				int (*sync)(struct net_device *,
4423 					    const unsigned char *),
4424 				int (*unsync)(struct net_device *,
4425 					      const unsigned char *))
4426 {
4427 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4428 }
4429 
4430 /**
4431  *  __dev_uc_unsync - Remove synchronized addresses from device
4432  *  @dev:  device to sync
4433  *  @unsync: function to call if address should be removed
4434  *
4435  *  Remove all addresses that were added to the device by dev_uc_sync().
4436  */
4437 static inline void __dev_uc_unsync(struct net_device *dev,
4438 				   int (*unsync)(struct net_device *,
4439 						 const unsigned char *))
4440 {
4441 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4442 }
4443 
4444 /* Functions used for multicast addresses handling */
4445 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4446 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4447 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4448 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4449 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4450 int dev_mc_sync(struct net_device *to, struct net_device *from);
4451 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4452 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4453 void dev_mc_flush(struct net_device *dev);
4454 void dev_mc_init(struct net_device *dev);
4455 
4456 /**
4457  *  __dev_mc_sync - Synchonize device's multicast list
4458  *  @dev:  device to sync
4459  *  @sync: function to call if address should be added
4460  *  @unsync: function to call if address should be removed
4461  *
4462  *  Add newly added addresses to the interface, and release
4463  *  addresses that have been deleted.
4464  */
4465 static inline int __dev_mc_sync(struct net_device *dev,
4466 				int (*sync)(struct net_device *,
4467 					    const unsigned char *),
4468 				int (*unsync)(struct net_device *,
4469 					      const unsigned char *))
4470 {
4471 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4472 }
4473 
4474 /**
4475  *  __dev_mc_unsync - Remove synchronized addresses from device
4476  *  @dev:  device to sync
4477  *  @unsync: function to call if address should be removed
4478  *
4479  *  Remove all addresses that were added to the device by dev_mc_sync().
4480  */
4481 static inline void __dev_mc_unsync(struct net_device *dev,
4482 				   int (*unsync)(struct net_device *,
4483 						 const unsigned char *))
4484 {
4485 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4486 }
4487 
4488 /* Functions used for secondary unicast and multicast support */
4489 void dev_set_rx_mode(struct net_device *dev);
4490 void __dev_set_rx_mode(struct net_device *dev);
4491 int dev_set_promiscuity(struct net_device *dev, int inc);
4492 int dev_set_allmulti(struct net_device *dev, int inc);
4493 void netdev_state_change(struct net_device *dev);
4494 void __netdev_notify_peers(struct net_device *dev);
4495 void netdev_notify_peers(struct net_device *dev);
4496 void netdev_features_change(struct net_device *dev);
4497 /* Load a device via the kmod */
4498 void dev_load(struct net *net, const char *name);
4499 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4500 					struct rtnl_link_stats64 *storage);
4501 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4502 			     const struct net_device_stats *netdev_stats);
4503 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4504 			   const struct pcpu_sw_netstats __percpu *netstats);
4505 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4506 
4507 extern int		netdev_max_backlog;
4508 extern int		netdev_tstamp_prequeue;
4509 extern int		netdev_unregister_timeout_secs;
4510 extern int		weight_p;
4511 extern int		dev_weight_rx_bias;
4512 extern int		dev_weight_tx_bias;
4513 extern int		dev_rx_weight;
4514 extern int		dev_tx_weight;
4515 extern int		gro_normal_batch;
4516 
4517 enum {
4518 	NESTED_SYNC_IMM_BIT,
4519 	NESTED_SYNC_TODO_BIT,
4520 };
4521 
4522 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4523 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4524 
4525 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4526 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4527 
4528 struct netdev_nested_priv {
4529 	unsigned char flags;
4530 	void *data;
4531 };
4532 
4533 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4534 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4535 						     struct list_head **iter);
4536 
4537 #ifdef CONFIG_LOCKDEP
4538 static LIST_HEAD(net_unlink_list);
4539 
4540 static inline void net_unlink_todo(struct net_device *dev)
4541 {
4542 	if (list_empty(&dev->unlink_list))
4543 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4544 }
4545 #endif
4546 
4547 /* iterate through upper list, must be called under RCU read lock */
4548 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4549 	for (iter = &(dev)->adj_list.upper, \
4550 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4551 	     updev; \
4552 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4553 
4554 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4555 				  int (*fn)(struct net_device *upper_dev,
4556 					    struct netdev_nested_priv *priv),
4557 				  struct netdev_nested_priv *priv);
4558 
4559 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4560 				  struct net_device *upper_dev);
4561 
4562 bool netdev_has_any_upper_dev(struct net_device *dev);
4563 
4564 void *netdev_lower_get_next_private(struct net_device *dev,
4565 				    struct list_head **iter);
4566 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4567 					struct list_head **iter);
4568 
4569 #define netdev_for_each_lower_private(dev, priv, iter) \
4570 	for (iter = (dev)->adj_list.lower.next, \
4571 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4572 	     priv; \
4573 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4574 
4575 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4576 	for (iter = &(dev)->adj_list.lower, \
4577 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4578 	     priv; \
4579 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4580 
4581 void *netdev_lower_get_next(struct net_device *dev,
4582 				struct list_head **iter);
4583 
4584 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4585 	for (iter = (dev)->adj_list.lower.next, \
4586 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4587 	     ldev; \
4588 	     ldev = netdev_lower_get_next(dev, &(iter)))
4589 
4590 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4591 					     struct list_head **iter);
4592 int netdev_walk_all_lower_dev(struct net_device *dev,
4593 			      int (*fn)(struct net_device *lower_dev,
4594 					struct netdev_nested_priv *priv),
4595 			      struct netdev_nested_priv *priv);
4596 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4597 				  int (*fn)(struct net_device *lower_dev,
4598 					    struct netdev_nested_priv *priv),
4599 				  struct netdev_nested_priv *priv);
4600 
4601 void *netdev_adjacent_get_private(struct list_head *adj_list);
4602 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4603 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4604 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4605 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4606 			  struct netlink_ext_ack *extack);
4607 int netdev_master_upper_dev_link(struct net_device *dev,
4608 				 struct net_device *upper_dev,
4609 				 void *upper_priv, void *upper_info,
4610 				 struct netlink_ext_ack *extack);
4611 void netdev_upper_dev_unlink(struct net_device *dev,
4612 			     struct net_device *upper_dev);
4613 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4614 				   struct net_device *new_dev,
4615 				   struct net_device *dev,
4616 				   struct netlink_ext_ack *extack);
4617 void netdev_adjacent_change_commit(struct net_device *old_dev,
4618 				   struct net_device *new_dev,
4619 				   struct net_device *dev);
4620 void netdev_adjacent_change_abort(struct net_device *old_dev,
4621 				  struct net_device *new_dev,
4622 				  struct net_device *dev);
4623 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4624 void *netdev_lower_dev_get_private(struct net_device *dev,
4625 				   struct net_device *lower_dev);
4626 void netdev_lower_state_changed(struct net_device *lower_dev,
4627 				void *lower_state_info);
4628 
4629 /* RSS keys are 40 or 52 bytes long */
4630 #define NETDEV_RSS_KEY_LEN 52
4631 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4632 void netdev_rss_key_fill(void *buffer, size_t len);
4633 
4634 int skb_checksum_help(struct sk_buff *skb);
4635 int skb_crc32c_csum_help(struct sk_buff *skb);
4636 int skb_csum_hwoffload_help(struct sk_buff *skb,
4637 			    const netdev_features_t features);
4638 
4639 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4640 				  netdev_features_t features, bool tx_path);
4641 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4642 				    netdev_features_t features);
4643 
4644 struct netdev_bonding_info {
4645 	ifslave	slave;
4646 	ifbond	master;
4647 };
4648 
4649 struct netdev_notifier_bonding_info {
4650 	struct netdev_notifier_info info; /* must be first */
4651 	struct netdev_bonding_info  bonding_info;
4652 };
4653 
4654 void netdev_bonding_info_change(struct net_device *dev,
4655 				struct netdev_bonding_info *bonding_info);
4656 
4657 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4658 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4659 #else
4660 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4661 				  const void *data)
4662 {
4663 }
4664 #endif
4665 
4666 static inline
4667 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4668 {
4669 	return __skb_gso_segment(skb, features, true);
4670 }
4671 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4672 
4673 static inline bool can_checksum_protocol(netdev_features_t features,
4674 					 __be16 protocol)
4675 {
4676 	if (protocol == htons(ETH_P_FCOE))
4677 		return !!(features & NETIF_F_FCOE_CRC);
4678 
4679 	/* Assume this is an IP checksum (not SCTP CRC) */
4680 
4681 	if (features & NETIF_F_HW_CSUM) {
4682 		/* Can checksum everything */
4683 		return true;
4684 	}
4685 
4686 	switch (protocol) {
4687 	case htons(ETH_P_IP):
4688 		return !!(features & NETIF_F_IP_CSUM);
4689 	case htons(ETH_P_IPV6):
4690 		return !!(features & NETIF_F_IPV6_CSUM);
4691 	default:
4692 		return false;
4693 	}
4694 }
4695 
4696 #ifdef CONFIG_BUG
4697 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4698 #else
4699 static inline void netdev_rx_csum_fault(struct net_device *dev,
4700 					struct sk_buff *skb)
4701 {
4702 }
4703 #endif
4704 /* rx skb timestamps */
4705 void net_enable_timestamp(void);
4706 void net_disable_timestamp(void);
4707 
4708 #ifdef CONFIG_PROC_FS
4709 int __init dev_proc_init(void);
4710 #else
4711 #define dev_proc_init() 0
4712 #endif
4713 
4714 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4715 					      struct sk_buff *skb, struct net_device *dev,
4716 					      bool more)
4717 {
4718 	__this_cpu_write(softnet_data.xmit.more, more);
4719 	return ops->ndo_start_xmit(skb, dev);
4720 }
4721 
4722 static inline bool netdev_xmit_more(void)
4723 {
4724 	return __this_cpu_read(softnet_data.xmit.more);
4725 }
4726 
4727 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4728 					    struct netdev_queue *txq, bool more)
4729 {
4730 	const struct net_device_ops *ops = dev->netdev_ops;
4731 	netdev_tx_t rc;
4732 
4733 	rc = __netdev_start_xmit(ops, skb, dev, more);
4734 	if (rc == NETDEV_TX_OK)
4735 		txq_trans_update(txq);
4736 
4737 	return rc;
4738 }
4739 
4740 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4741 				const void *ns);
4742 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4743 				 const void *ns);
4744 
4745 extern const struct kobj_ns_type_operations net_ns_type_operations;
4746 
4747 const char *netdev_drivername(const struct net_device *dev);
4748 
4749 void linkwatch_run_queue(void);
4750 
4751 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4752 							  netdev_features_t f2)
4753 {
4754 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4755 		if (f1 & NETIF_F_HW_CSUM)
4756 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4757 		else
4758 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4759 	}
4760 
4761 	return f1 & f2;
4762 }
4763 
4764 static inline netdev_features_t netdev_get_wanted_features(
4765 	struct net_device *dev)
4766 {
4767 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4768 }
4769 netdev_features_t netdev_increment_features(netdev_features_t all,
4770 	netdev_features_t one, netdev_features_t mask);
4771 
4772 /* Allow TSO being used on stacked device :
4773  * Performing the GSO segmentation before last device
4774  * is a performance improvement.
4775  */
4776 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4777 							netdev_features_t mask)
4778 {
4779 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4780 }
4781 
4782 int __netdev_update_features(struct net_device *dev);
4783 void netdev_update_features(struct net_device *dev);
4784 void netdev_change_features(struct net_device *dev);
4785 
4786 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4787 					struct net_device *dev);
4788 
4789 netdev_features_t passthru_features_check(struct sk_buff *skb,
4790 					  struct net_device *dev,
4791 					  netdev_features_t features);
4792 netdev_features_t netif_skb_features(struct sk_buff *skb);
4793 
4794 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4795 {
4796 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4797 
4798 	/* check flags correspondence */
4799 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4800 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4801 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4802 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4803 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4804 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4805 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4806 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4807 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4808 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4809 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4810 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4811 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4812 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4813 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4814 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4815 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4816 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4817 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4818 
4819 	return (features & feature) == feature;
4820 }
4821 
4822 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4823 {
4824 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4825 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4826 }
4827 
4828 static inline bool netif_needs_gso(struct sk_buff *skb,
4829 				   netdev_features_t features)
4830 {
4831 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4832 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4833 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4834 }
4835 
4836 static inline void netif_set_gso_max_size(struct net_device *dev,
4837 					  unsigned int size)
4838 {
4839 	/* dev->gso_max_size is read locklessly from sk_setup_caps() */
4840 	WRITE_ONCE(dev->gso_max_size, size);
4841 }
4842 
4843 static inline void netif_set_gso_max_segs(struct net_device *dev,
4844 					  unsigned int segs)
4845 {
4846 	/* dev->gso_max_segs is read locklessly from sk_setup_caps() */
4847 	WRITE_ONCE(dev->gso_max_segs, segs);
4848 }
4849 
4850 static inline void netif_set_gro_max_size(struct net_device *dev,
4851 					  unsigned int size)
4852 {
4853 	/* This pairs with the READ_ONCE() in skb_gro_receive() */
4854 	WRITE_ONCE(dev->gro_max_size, size);
4855 }
4856 
4857 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4858 					int pulled_hlen, u16 mac_offset,
4859 					int mac_len)
4860 {
4861 	skb->protocol = protocol;
4862 	skb->encapsulation = 1;
4863 	skb_push(skb, pulled_hlen);
4864 	skb_reset_transport_header(skb);
4865 	skb->mac_header = mac_offset;
4866 	skb->network_header = skb->mac_header + mac_len;
4867 	skb->mac_len = mac_len;
4868 }
4869 
4870 static inline bool netif_is_macsec(const struct net_device *dev)
4871 {
4872 	return dev->priv_flags & IFF_MACSEC;
4873 }
4874 
4875 static inline bool netif_is_macvlan(const struct net_device *dev)
4876 {
4877 	return dev->priv_flags & IFF_MACVLAN;
4878 }
4879 
4880 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4881 {
4882 	return dev->priv_flags & IFF_MACVLAN_PORT;
4883 }
4884 
4885 static inline bool netif_is_bond_master(const struct net_device *dev)
4886 {
4887 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4888 }
4889 
4890 static inline bool netif_is_bond_slave(const struct net_device *dev)
4891 {
4892 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4893 }
4894 
4895 static inline bool netif_supports_nofcs(struct net_device *dev)
4896 {
4897 	return dev->priv_flags & IFF_SUPP_NOFCS;
4898 }
4899 
4900 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4901 {
4902 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4903 }
4904 
4905 static inline bool netif_is_l3_master(const struct net_device *dev)
4906 {
4907 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4908 }
4909 
4910 static inline bool netif_is_l3_slave(const struct net_device *dev)
4911 {
4912 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4913 }
4914 
4915 static inline bool netif_is_bridge_master(const struct net_device *dev)
4916 {
4917 	return dev->priv_flags & IFF_EBRIDGE;
4918 }
4919 
4920 static inline bool netif_is_bridge_port(const struct net_device *dev)
4921 {
4922 	return dev->priv_flags & IFF_BRIDGE_PORT;
4923 }
4924 
4925 static inline bool netif_is_ovs_master(const struct net_device *dev)
4926 {
4927 	return dev->priv_flags & IFF_OPENVSWITCH;
4928 }
4929 
4930 static inline bool netif_is_ovs_port(const struct net_device *dev)
4931 {
4932 	return dev->priv_flags & IFF_OVS_DATAPATH;
4933 }
4934 
4935 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4936 {
4937 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4938 }
4939 
4940 static inline bool netif_is_team_master(const struct net_device *dev)
4941 {
4942 	return dev->priv_flags & IFF_TEAM;
4943 }
4944 
4945 static inline bool netif_is_team_port(const struct net_device *dev)
4946 {
4947 	return dev->priv_flags & IFF_TEAM_PORT;
4948 }
4949 
4950 static inline bool netif_is_lag_master(const struct net_device *dev)
4951 {
4952 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4953 }
4954 
4955 static inline bool netif_is_lag_port(const struct net_device *dev)
4956 {
4957 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4958 }
4959 
4960 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4961 {
4962 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4963 }
4964 
4965 static inline bool netif_is_failover(const struct net_device *dev)
4966 {
4967 	return dev->priv_flags & IFF_FAILOVER;
4968 }
4969 
4970 static inline bool netif_is_failover_slave(const struct net_device *dev)
4971 {
4972 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4973 }
4974 
4975 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4976 static inline void netif_keep_dst(struct net_device *dev)
4977 {
4978 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4979 }
4980 
4981 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4982 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4983 {
4984 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4985 	return netif_is_macsec(dev);
4986 }
4987 
4988 extern struct pernet_operations __net_initdata loopback_net_ops;
4989 
4990 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4991 
4992 /* netdev_printk helpers, similar to dev_printk */
4993 
4994 static inline const char *netdev_name(const struct net_device *dev)
4995 {
4996 	if (!dev->name[0] || strchr(dev->name, '%'))
4997 		return "(unnamed net_device)";
4998 	return dev->name;
4999 }
5000 
5001 static inline bool netdev_unregistering(const struct net_device *dev)
5002 {
5003 	return dev->reg_state == NETREG_UNREGISTERING;
5004 }
5005 
5006 static inline const char *netdev_reg_state(const struct net_device *dev)
5007 {
5008 	switch (dev->reg_state) {
5009 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5010 	case NETREG_REGISTERED: return "";
5011 	case NETREG_UNREGISTERING: return " (unregistering)";
5012 	case NETREG_UNREGISTERED: return " (unregistered)";
5013 	case NETREG_RELEASED: return " (released)";
5014 	case NETREG_DUMMY: return " (dummy)";
5015 	}
5016 
5017 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5018 	return " (unknown)";
5019 }
5020 
5021 __printf(3, 4) __cold
5022 void netdev_printk(const char *level, const struct net_device *dev,
5023 		   const char *format, ...);
5024 __printf(2, 3) __cold
5025 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5026 __printf(2, 3) __cold
5027 void netdev_alert(const struct net_device *dev, const char *format, ...);
5028 __printf(2, 3) __cold
5029 void netdev_crit(const struct net_device *dev, const char *format, ...);
5030 __printf(2, 3) __cold
5031 void netdev_err(const struct net_device *dev, const char *format, ...);
5032 __printf(2, 3) __cold
5033 void netdev_warn(const struct net_device *dev, const char *format, ...);
5034 __printf(2, 3) __cold
5035 void netdev_notice(const struct net_device *dev, const char *format, ...);
5036 __printf(2, 3) __cold
5037 void netdev_info(const struct net_device *dev, const char *format, ...);
5038 
5039 #define netdev_level_once(level, dev, fmt, ...)			\
5040 do {								\
5041 	static bool __section(".data.once") __print_once;	\
5042 								\
5043 	if (!__print_once) {					\
5044 		__print_once = true;				\
5045 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5046 	}							\
5047 } while (0)
5048 
5049 #define netdev_emerg_once(dev, fmt, ...) \
5050 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5051 #define netdev_alert_once(dev, fmt, ...) \
5052 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5053 #define netdev_crit_once(dev, fmt, ...) \
5054 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5055 #define netdev_err_once(dev, fmt, ...) \
5056 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5057 #define netdev_warn_once(dev, fmt, ...) \
5058 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5059 #define netdev_notice_once(dev, fmt, ...) \
5060 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5061 #define netdev_info_once(dev, fmt, ...) \
5062 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5063 
5064 #define MODULE_ALIAS_NETDEV(device) \
5065 	MODULE_ALIAS("netdev-" device)
5066 
5067 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5068 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5069 #define netdev_dbg(__dev, format, args...)			\
5070 do {								\
5071 	dynamic_netdev_dbg(__dev, format, ##args);		\
5072 } while (0)
5073 #elif defined(DEBUG)
5074 #define netdev_dbg(__dev, format, args...)			\
5075 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5076 #else
5077 #define netdev_dbg(__dev, format, args...)			\
5078 ({								\
5079 	if (0)							\
5080 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5081 })
5082 #endif
5083 
5084 #if defined(VERBOSE_DEBUG)
5085 #define netdev_vdbg	netdev_dbg
5086 #else
5087 
5088 #define netdev_vdbg(dev, format, args...)			\
5089 ({								\
5090 	if (0)							\
5091 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5092 	0;							\
5093 })
5094 #endif
5095 
5096 /*
5097  * netdev_WARN() acts like dev_printk(), but with the key difference
5098  * of using a WARN/WARN_ON to get the message out, including the
5099  * file/line information and a backtrace.
5100  */
5101 #define netdev_WARN(dev, format, args...)			\
5102 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5103 	     netdev_reg_state(dev), ##args)
5104 
5105 #define netdev_WARN_ONCE(dev, format, args...)				\
5106 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5107 		  netdev_reg_state(dev), ##args)
5108 
5109 /* netif printk helpers, similar to netdev_printk */
5110 
5111 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5112 do {					  			\
5113 	if (netif_msg_##type(priv))				\
5114 		netdev_printk(level, (dev), fmt, ##args);	\
5115 } while (0)
5116 
5117 #define netif_level(level, priv, type, dev, fmt, args...)	\
5118 do {								\
5119 	if (netif_msg_##type(priv))				\
5120 		netdev_##level(dev, fmt, ##args);		\
5121 } while (0)
5122 
5123 #define netif_emerg(priv, type, dev, fmt, args...)		\
5124 	netif_level(emerg, priv, type, dev, fmt, ##args)
5125 #define netif_alert(priv, type, dev, fmt, args...)		\
5126 	netif_level(alert, priv, type, dev, fmt, ##args)
5127 #define netif_crit(priv, type, dev, fmt, args...)		\
5128 	netif_level(crit, priv, type, dev, fmt, ##args)
5129 #define netif_err(priv, type, dev, fmt, args...)		\
5130 	netif_level(err, priv, type, dev, fmt, ##args)
5131 #define netif_warn(priv, type, dev, fmt, args...)		\
5132 	netif_level(warn, priv, type, dev, fmt, ##args)
5133 #define netif_notice(priv, type, dev, fmt, args...)		\
5134 	netif_level(notice, priv, type, dev, fmt, ##args)
5135 #define netif_info(priv, type, dev, fmt, args...)		\
5136 	netif_level(info, priv, type, dev, fmt, ##args)
5137 
5138 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5139 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5140 #define netif_dbg(priv, type, netdev, format, args...)		\
5141 do {								\
5142 	if (netif_msg_##type(priv))				\
5143 		dynamic_netdev_dbg(netdev, format, ##args);	\
5144 } while (0)
5145 #elif defined(DEBUG)
5146 #define netif_dbg(priv, type, dev, format, args...)		\
5147 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5148 #else
5149 #define netif_dbg(priv, type, dev, format, args...)			\
5150 ({									\
5151 	if (0)								\
5152 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5153 	0;								\
5154 })
5155 #endif
5156 
5157 /* if @cond then downgrade to debug, else print at @level */
5158 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5159 	do {                                                              \
5160 		if (cond)                                                 \
5161 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5162 		else                                                      \
5163 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5164 	} while (0)
5165 
5166 #if defined(VERBOSE_DEBUG)
5167 #define netif_vdbg	netif_dbg
5168 #else
5169 #define netif_vdbg(priv, type, dev, format, args...)		\
5170 ({								\
5171 	if (0)							\
5172 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5173 	0;							\
5174 })
5175 #endif
5176 
5177 /*
5178  *	The list of packet types we will receive (as opposed to discard)
5179  *	and the routines to invoke.
5180  *
5181  *	Why 16. Because with 16 the only overlap we get on a hash of the
5182  *	low nibble of the protocol value is RARP/SNAP/X.25.
5183  *
5184  *		0800	IP
5185  *		0001	802.3
5186  *		0002	AX.25
5187  *		0004	802.2
5188  *		8035	RARP
5189  *		0005	SNAP
5190  *		0805	X.25
5191  *		0806	ARP
5192  *		8137	IPX
5193  *		0009	Localtalk
5194  *		86DD	IPv6
5195  */
5196 #define PTYPE_HASH_SIZE	(16)
5197 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5198 
5199 extern struct list_head ptype_all __read_mostly;
5200 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5201 
5202 extern struct net_device *blackhole_netdev;
5203 
5204 #endif	/* _LINUX_NETDEVICE_H */
5205