xref: /openbmc/linux/include/linux/netdevice.h (revision f6882b8fac60f928fda51efc64274463806f956c)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <net/net_namespace.h>
38 #ifdef CONFIG_DCB
39 #include <net/dcbnl.h>
40 #endif
41 #include <net/netprio_cgroup.h>
42 #include <net/xdp.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <linux/hashtable.h>
50 #include <linux/rbtree.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct ethtool_ops;
55 struct phy_device;
56 struct dsa_port;
57 struct ip_tunnel_parm;
58 struct macsec_context;
59 struct macsec_ops;
60 
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct udp_tunnel_nic_info;
70 struct udp_tunnel_nic;
71 struct bpf_prog;
72 struct xdp_buff;
73 
74 void synchronize_net(void);
75 void netdev_set_default_ethtool_ops(struct net_device *dev,
76 				    const struct ethtool_ops *ops);
77 
78 /* Backlog congestion levels */
79 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
80 #define NET_RX_DROP		1	/* packet dropped */
81 
82 #define MAX_NEST_DEV 8
83 
84 /*
85  * Transmit return codes: transmit return codes originate from three different
86  * namespaces:
87  *
88  * - qdisc return codes
89  * - driver transmit return codes
90  * - errno values
91  *
92  * Drivers are allowed to return any one of those in their hard_start_xmit()
93  * function. Real network devices commonly used with qdiscs should only return
94  * the driver transmit return codes though - when qdiscs are used, the actual
95  * transmission happens asynchronously, so the value is not propagated to
96  * higher layers. Virtual network devices transmit synchronously; in this case
97  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
98  * others are propagated to higher layers.
99  */
100 
101 /* qdisc ->enqueue() return codes. */
102 #define NET_XMIT_SUCCESS	0x00
103 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
104 #define NET_XMIT_CN		0x02	/* congestion notification	*/
105 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
106 
107 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
108  * indicates that the device will soon be dropping packets, or already drops
109  * some packets of the same priority; prompting us to send less aggressively. */
110 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
111 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
112 
113 /* Driver transmit return codes */
114 #define NETDEV_TX_MASK		0xf0
115 
116 enum netdev_tx {
117 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
118 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
119 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
120 };
121 typedef enum netdev_tx netdev_tx_t;
122 
123 /*
124  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
125  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
126  */
127 static inline bool dev_xmit_complete(int rc)
128 {
129 	/*
130 	 * Positive cases with an skb consumed by a driver:
131 	 * - successful transmission (rc == NETDEV_TX_OK)
132 	 * - error while transmitting (rc < 0)
133 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
134 	 */
135 	if (likely(rc < NET_XMIT_MASK))
136 		return true;
137 
138 	return false;
139 }
140 
141 /*
142  *	Compute the worst-case header length according to the protocols
143  *	used.
144  */
145 
146 #if defined(CONFIG_HYPERV_NET)
147 # define LL_MAX_HEADER 128
148 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
149 # if defined(CONFIG_MAC80211_MESH)
150 #  define LL_MAX_HEADER 128
151 # else
152 #  define LL_MAX_HEADER 96
153 # endif
154 #else
155 # define LL_MAX_HEADER 32
156 #endif
157 
158 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
159     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
160 #define MAX_HEADER LL_MAX_HEADER
161 #else
162 #define MAX_HEADER (LL_MAX_HEADER + 48)
163 #endif
164 
165 /*
166  *	Old network device statistics. Fields are native words
167  *	(unsigned long) so they can be read and written atomically.
168  */
169 
170 struct net_device_stats {
171 	unsigned long	rx_packets;
172 	unsigned long	tx_packets;
173 	unsigned long	rx_bytes;
174 	unsigned long	tx_bytes;
175 	unsigned long	rx_errors;
176 	unsigned long	tx_errors;
177 	unsigned long	rx_dropped;
178 	unsigned long	tx_dropped;
179 	unsigned long	multicast;
180 	unsigned long	collisions;
181 	unsigned long	rx_length_errors;
182 	unsigned long	rx_over_errors;
183 	unsigned long	rx_crc_errors;
184 	unsigned long	rx_frame_errors;
185 	unsigned long	rx_fifo_errors;
186 	unsigned long	rx_missed_errors;
187 	unsigned long	tx_aborted_errors;
188 	unsigned long	tx_carrier_errors;
189 	unsigned long	tx_fifo_errors;
190 	unsigned long	tx_heartbeat_errors;
191 	unsigned long	tx_window_errors;
192 	unsigned long	rx_compressed;
193 	unsigned long	tx_compressed;
194 };
195 
196 
197 #include <linux/cache.h>
198 #include <linux/skbuff.h>
199 
200 #ifdef CONFIG_RPS
201 #include <linux/static_key.h>
202 extern struct static_key_false rps_needed;
203 extern struct static_key_false rfs_needed;
204 #endif
205 
206 struct neighbour;
207 struct neigh_parms;
208 struct sk_buff;
209 
210 struct netdev_hw_addr {
211 	struct list_head	list;
212 	struct rb_node		node;
213 	unsigned char		addr[MAX_ADDR_LEN];
214 	unsigned char		type;
215 #define NETDEV_HW_ADDR_T_LAN		1
216 #define NETDEV_HW_ADDR_T_SAN		2
217 #define NETDEV_HW_ADDR_T_UNICAST	3
218 #define NETDEV_HW_ADDR_T_MULTICAST	4
219 	bool			global_use;
220 	int			sync_cnt;
221 	int			refcount;
222 	int			synced;
223 	struct rcu_head		rcu_head;
224 };
225 
226 struct netdev_hw_addr_list {
227 	struct list_head	list;
228 	int			count;
229 
230 	/* Auxiliary tree for faster lookup on addition and deletion */
231 	struct rb_root		tree;
232 };
233 
234 #define netdev_hw_addr_list_count(l) ((l)->count)
235 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
236 #define netdev_hw_addr_list_for_each(ha, l) \
237 	list_for_each_entry(ha, &(l)->list, list)
238 
239 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
240 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
241 #define netdev_for_each_uc_addr(ha, dev) \
242 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
243 
244 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
245 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
246 #define netdev_for_each_mc_addr(ha, dev) \
247 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
248 
249 struct hh_cache {
250 	unsigned int	hh_len;
251 	seqlock_t	hh_lock;
252 
253 	/* cached hardware header; allow for machine alignment needs.        */
254 #define HH_DATA_MOD	16
255 #define HH_DATA_OFF(__len) \
256 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
257 #define HH_DATA_ALIGN(__len) \
258 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
259 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
260 };
261 
262 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
263  * Alternative is:
264  *   dev->hard_header_len ? (dev->hard_header_len +
265  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
266  *
267  * We could use other alignment values, but we must maintain the
268  * relationship HH alignment <= LL alignment.
269  */
270 #define LL_RESERVED_SPACE(dev) \
271 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
272 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
273 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
274 
275 struct header_ops {
276 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
277 			   unsigned short type, const void *daddr,
278 			   const void *saddr, unsigned int len);
279 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
280 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
281 	void	(*cache_update)(struct hh_cache *hh,
282 				const struct net_device *dev,
283 				const unsigned char *haddr);
284 	bool	(*validate)(const char *ll_header, unsigned int len);
285 	__be16	(*parse_protocol)(const struct sk_buff *skb);
286 };
287 
288 /* These flag bits are private to the generic network queueing
289  * layer; they may not be explicitly referenced by any other
290  * code.
291  */
292 
293 enum netdev_state_t {
294 	__LINK_STATE_START,
295 	__LINK_STATE_PRESENT,
296 	__LINK_STATE_NOCARRIER,
297 	__LINK_STATE_LINKWATCH_PENDING,
298 	__LINK_STATE_DORMANT,
299 	__LINK_STATE_TESTING,
300 };
301 
302 
303 struct gro_list {
304 	struct list_head	list;
305 	int			count;
306 };
307 
308 /*
309  * size of gro hash buckets, must less than bit number of
310  * napi_struct::gro_bitmask
311  */
312 #define GRO_HASH_BUCKETS	8
313 
314 /*
315  * Structure for NAPI scheduling similar to tasklet but with weighting
316  */
317 struct napi_struct {
318 	/* The poll_list must only be managed by the entity which
319 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
320 	 * whoever atomically sets that bit can add this napi_struct
321 	 * to the per-CPU poll_list, and whoever clears that bit
322 	 * can remove from the list right before clearing the bit.
323 	 */
324 	struct list_head	poll_list;
325 
326 	unsigned long		state;
327 	int			weight;
328 	int			defer_hard_irqs_count;
329 	unsigned long		gro_bitmask;
330 	int			(*poll)(struct napi_struct *, int);
331 #ifdef CONFIG_NETPOLL
332 	int			poll_owner;
333 #endif
334 	struct net_device	*dev;
335 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
336 	struct sk_buff		*skb;
337 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
338 	int			rx_count; /* length of rx_list */
339 	struct hrtimer		timer;
340 	struct list_head	dev_list;
341 	struct hlist_node	napi_hash_node;
342 	unsigned int		napi_id;
343 	struct task_struct	*thread;
344 };
345 
346 enum {
347 	NAPI_STATE_SCHED,		/* Poll is scheduled */
348 	NAPI_STATE_MISSED,		/* reschedule a napi */
349 	NAPI_STATE_DISABLE,		/* Disable pending */
350 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
351 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
352 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
353 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
354 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
355 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
356 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
357 };
358 
359 enum {
360 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
361 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
362 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
363 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
364 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
365 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
366 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
367 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
368 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
369 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
370 };
371 
372 enum gro_result {
373 	GRO_MERGED,
374 	GRO_MERGED_FREE,
375 	GRO_HELD,
376 	GRO_NORMAL,
377 	GRO_CONSUMED,
378 };
379 typedef enum gro_result gro_result_t;
380 
381 /*
382  * enum rx_handler_result - Possible return values for rx_handlers.
383  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
384  * further.
385  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
386  * case skb->dev was changed by rx_handler.
387  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
388  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
389  *
390  * rx_handlers are functions called from inside __netif_receive_skb(), to do
391  * special processing of the skb, prior to delivery to protocol handlers.
392  *
393  * Currently, a net_device can only have a single rx_handler registered. Trying
394  * to register a second rx_handler will return -EBUSY.
395  *
396  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
397  * To unregister a rx_handler on a net_device, use
398  * netdev_rx_handler_unregister().
399  *
400  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
401  * do with the skb.
402  *
403  * If the rx_handler consumed the skb in some way, it should return
404  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
405  * the skb to be delivered in some other way.
406  *
407  * If the rx_handler changed skb->dev, to divert the skb to another
408  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
409  * new device will be called if it exists.
410  *
411  * If the rx_handler decides the skb should be ignored, it should return
412  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
413  * are registered on exact device (ptype->dev == skb->dev).
414  *
415  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
416  * delivered, it should return RX_HANDLER_PASS.
417  *
418  * A device without a registered rx_handler will behave as if rx_handler
419  * returned RX_HANDLER_PASS.
420  */
421 
422 enum rx_handler_result {
423 	RX_HANDLER_CONSUMED,
424 	RX_HANDLER_ANOTHER,
425 	RX_HANDLER_EXACT,
426 	RX_HANDLER_PASS,
427 };
428 typedef enum rx_handler_result rx_handler_result_t;
429 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
430 
431 void __napi_schedule(struct napi_struct *n);
432 void __napi_schedule_irqoff(struct napi_struct *n);
433 
434 static inline bool napi_disable_pending(struct napi_struct *n)
435 {
436 	return test_bit(NAPI_STATE_DISABLE, &n->state);
437 }
438 
439 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
440 {
441 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
442 }
443 
444 bool napi_schedule_prep(struct napi_struct *n);
445 
446 /**
447  *	napi_schedule - schedule NAPI poll
448  *	@n: NAPI context
449  *
450  * Schedule NAPI poll routine to be called if it is not already
451  * running.
452  */
453 static inline void napi_schedule(struct napi_struct *n)
454 {
455 	if (napi_schedule_prep(n))
456 		__napi_schedule(n);
457 }
458 
459 /**
460  *	napi_schedule_irqoff - schedule NAPI poll
461  *	@n: NAPI context
462  *
463  * Variant of napi_schedule(), assuming hard irqs are masked.
464  */
465 static inline void napi_schedule_irqoff(struct napi_struct *n)
466 {
467 	if (napi_schedule_prep(n))
468 		__napi_schedule_irqoff(n);
469 }
470 
471 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
472 static inline bool napi_reschedule(struct napi_struct *napi)
473 {
474 	if (napi_schedule_prep(napi)) {
475 		__napi_schedule(napi);
476 		return true;
477 	}
478 	return false;
479 }
480 
481 bool napi_complete_done(struct napi_struct *n, int work_done);
482 /**
483  *	napi_complete - NAPI processing complete
484  *	@n: NAPI context
485  *
486  * Mark NAPI processing as complete.
487  * Consider using napi_complete_done() instead.
488  * Return false if device should avoid rearming interrupts.
489  */
490 static inline bool napi_complete(struct napi_struct *n)
491 {
492 	return napi_complete_done(n, 0);
493 }
494 
495 int dev_set_threaded(struct net_device *dev, bool threaded);
496 
497 /**
498  *	napi_disable - prevent NAPI from scheduling
499  *	@n: NAPI context
500  *
501  * Stop NAPI from being scheduled on this context.
502  * Waits till any outstanding processing completes.
503  */
504 void napi_disable(struct napi_struct *n);
505 
506 void napi_enable(struct napi_struct *n);
507 
508 /**
509  *	napi_synchronize - wait until NAPI is not running
510  *	@n: NAPI context
511  *
512  * Wait until NAPI is done being scheduled on this context.
513  * Waits till any outstanding processing completes but
514  * does not disable future activations.
515  */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518 	if (IS_ENABLED(CONFIG_SMP))
519 		while (test_bit(NAPI_STATE_SCHED, &n->state))
520 			msleep(1);
521 	else
522 		barrier();
523 }
524 
525 /**
526  *	napi_if_scheduled_mark_missed - if napi is running, set the
527  *	NAPIF_STATE_MISSED
528  *	@n: NAPI context
529  *
530  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
531  * NAPI is scheduled.
532  **/
533 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
534 {
535 	unsigned long val, new;
536 
537 	do {
538 		val = READ_ONCE(n->state);
539 		if (val & NAPIF_STATE_DISABLE)
540 			return true;
541 
542 		if (!(val & NAPIF_STATE_SCHED))
543 			return false;
544 
545 		new = val | NAPIF_STATE_MISSED;
546 	} while (cmpxchg(&n->state, val, new) != val);
547 
548 	return true;
549 }
550 
551 enum netdev_queue_state_t {
552 	__QUEUE_STATE_DRV_XOFF,
553 	__QUEUE_STATE_STACK_XOFF,
554 	__QUEUE_STATE_FROZEN,
555 };
556 
557 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
558 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
559 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
560 
561 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
562 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
563 					QUEUE_STATE_FROZEN)
564 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
565 					QUEUE_STATE_FROZEN)
566 
567 /*
568  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
569  * netif_tx_* functions below are used to manipulate this flag.  The
570  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
571  * queue independently.  The netif_xmit_*stopped functions below are called
572  * to check if the queue has been stopped by the driver or stack (either
573  * of the XOFF bits are set in the state).  Drivers should not need to call
574  * netif_xmit*stopped functions, they should only be using netif_tx_*.
575  */
576 
577 struct netdev_queue {
578 /*
579  * read-mostly part
580  */
581 	struct net_device	*dev;
582 	struct Qdisc __rcu	*qdisc;
583 	struct Qdisc		*qdisc_sleeping;
584 #ifdef CONFIG_SYSFS
585 	struct kobject		kobj;
586 #endif
587 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
588 	int			numa_node;
589 #endif
590 	unsigned long		tx_maxrate;
591 	/*
592 	 * Number of TX timeouts for this queue
593 	 * (/sys/class/net/DEV/Q/trans_timeout)
594 	 */
595 	atomic_long_t		trans_timeout;
596 
597 	/* Subordinate device that the queue has been assigned to */
598 	struct net_device	*sb_dev;
599 #ifdef CONFIG_XDP_SOCKETS
600 	struct xsk_buff_pool    *pool;
601 #endif
602 /*
603  * write-mostly part
604  */
605 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
606 	int			xmit_lock_owner;
607 	/*
608 	 * Time (in jiffies) of last Tx
609 	 */
610 	unsigned long		trans_start;
611 
612 	unsigned long		state;
613 
614 #ifdef CONFIG_BQL
615 	struct dql		dql;
616 #endif
617 } ____cacheline_aligned_in_smp;
618 
619 extern int sysctl_fb_tunnels_only_for_init_net;
620 extern int sysctl_devconf_inherit_init_net;
621 
622 /*
623  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
624  *                                     == 1 : For initns only
625  *                                     == 2 : For none.
626  */
627 static inline bool net_has_fallback_tunnels(const struct net *net)
628 {
629 	return !IS_ENABLED(CONFIG_SYSCTL) ||
630 	       !sysctl_fb_tunnels_only_for_init_net ||
631 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
632 }
633 
634 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
635 {
636 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
637 	return q->numa_node;
638 #else
639 	return NUMA_NO_NODE;
640 #endif
641 }
642 
643 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
644 {
645 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
646 	q->numa_node = node;
647 #endif
648 }
649 
650 #ifdef CONFIG_RPS
651 /*
652  * This structure holds an RPS map which can be of variable length.  The
653  * map is an array of CPUs.
654  */
655 struct rps_map {
656 	unsigned int len;
657 	struct rcu_head rcu;
658 	u16 cpus[];
659 };
660 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
661 
662 /*
663  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
664  * tail pointer for that CPU's input queue at the time of last enqueue, and
665  * a hardware filter index.
666  */
667 struct rps_dev_flow {
668 	u16 cpu;
669 	u16 filter;
670 	unsigned int last_qtail;
671 };
672 #define RPS_NO_FILTER 0xffff
673 
674 /*
675  * The rps_dev_flow_table structure contains a table of flow mappings.
676  */
677 struct rps_dev_flow_table {
678 	unsigned int mask;
679 	struct rcu_head rcu;
680 	struct rps_dev_flow flows[];
681 };
682 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
683     ((_num) * sizeof(struct rps_dev_flow)))
684 
685 /*
686  * The rps_sock_flow_table contains mappings of flows to the last CPU
687  * on which they were processed by the application (set in recvmsg).
688  * Each entry is a 32bit value. Upper part is the high-order bits
689  * of flow hash, lower part is CPU number.
690  * rps_cpu_mask is used to partition the space, depending on number of
691  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
692  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
693  * meaning we use 32-6=26 bits for the hash.
694  */
695 struct rps_sock_flow_table {
696 	u32	mask;
697 
698 	u32	ents[] ____cacheline_aligned_in_smp;
699 };
700 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
701 
702 #define RPS_NO_CPU 0xffff
703 
704 extern u32 rps_cpu_mask;
705 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
706 
707 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
708 					u32 hash)
709 {
710 	if (table && hash) {
711 		unsigned int index = hash & table->mask;
712 		u32 val = hash & ~rps_cpu_mask;
713 
714 		/* We only give a hint, preemption can change CPU under us */
715 		val |= raw_smp_processor_id();
716 
717 		if (table->ents[index] != val)
718 			table->ents[index] = val;
719 	}
720 }
721 
722 #ifdef CONFIG_RFS_ACCEL
723 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
724 			 u16 filter_id);
725 #endif
726 #endif /* CONFIG_RPS */
727 
728 /* This structure contains an instance of an RX queue. */
729 struct netdev_rx_queue {
730 	struct xdp_rxq_info		xdp_rxq;
731 #ifdef CONFIG_RPS
732 	struct rps_map __rcu		*rps_map;
733 	struct rps_dev_flow_table __rcu	*rps_flow_table;
734 #endif
735 	struct kobject			kobj;
736 	struct net_device		*dev;
737 #ifdef CONFIG_XDP_SOCKETS
738 	struct xsk_buff_pool            *pool;
739 #endif
740 } ____cacheline_aligned_in_smp;
741 
742 /*
743  * RX queue sysfs structures and functions.
744  */
745 struct rx_queue_attribute {
746 	struct attribute attr;
747 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
748 	ssize_t (*store)(struct netdev_rx_queue *queue,
749 			 const char *buf, size_t len);
750 };
751 
752 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
753 enum xps_map_type {
754 	XPS_CPUS = 0,
755 	XPS_RXQS,
756 	XPS_MAPS_MAX,
757 };
758 
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765 	unsigned int len;
766 	unsigned int alloc_len;
767 	struct rcu_head rcu;
768 	u16 queues[];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773 
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  *
777  * We keep track of the number of cpus/rxqs used when the struct is allocated,
778  * in nr_ids. This will help not accessing out-of-bound memory.
779  *
780  * We keep track of the number of traffic classes used when the struct is
781  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
782  * not crossing its upper bound, as the original dev->num_tc can be updated in
783  * the meantime.
784  */
785 struct xps_dev_maps {
786 	struct rcu_head rcu;
787 	unsigned int nr_ids;
788 	s16 num_tc;
789 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
790 };
791 
792 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
793 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
794 
795 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
796 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
797 
798 #endif /* CONFIG_XPS */
799 
800 #define TC_MAX_QUEUE	16
801 #define TC_BITMASK	15
802 /* HW offloaded queuing disciplines txq count and offset maps */
803 struct netdev_tc_txq {
804 	u16 count;
805 	u16 offset;
806 };
807 
808 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
809 /*
810  * This structure is to hold information about the device
811  * configured to run FCoE protocol stack.
812  */
813 struct netdev_fcoe_hbainfo {
814 	char	manufacturer[64];
815 	char	serial_number[64];
816 	char	hardware_version[64];
817 	char	driver_version[64];
818 	char	optionrom_version[64];
819 	char	firmware_version[64];
820 	char	model[256];
821 	char	model_description[256];
822 };
823 #endif
824 
825 #define MAX_PHYS_ITEM_ID_LEN 32
826 
827 /* This structure holds a unique identifier to identify some
828  * physical item (port for example) used by a netdevice.
829  */
830 struct netdev_phys_item_id {
831 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
832 	unsigned char id_len;
833 };
834 
835 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
836 					    struct netdev_phys_item_id *b)
837 {
838 	return a->id_len == b->id_len &&
839 	       memcmp(a->id, b->id, a->id_len) == 0;
840 }
841 
842 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
843 				       struct sk_buff *skb,
844 				       struct net_device *sb_dev);
845 
846 enum net_device_path_type {
847 	DEV_PATH_ETHERNET = 0,
848 	DEV_PATH_VLAN,
849 	DEV_PATH_BRIDGE,
850 	DEV_PATH_PPPOE,
851 	DEV_PATH_DSA,
852 };
853 
854 struct net_device_path {
855 	enum net_device_path_type	type;
856 	const struct net_device		*dev;
857 	union {
858 		struct {
859 			u16		id;
860 			__be16		proto;
861 			u8		h_dest[ETH_ALEN];
862 		} encap;
863 		struct {
864 			enum {
865 				DEV_PATH_BR_VLAN_KEEP,
866 				DEV_PATH_BR_VLAN_TAG,
867 				DEV_PATH_BR_VLAN_UNTAG,
868 				DEV_PATH_BR_VLAN_UNTAG_HW,
869 			}		vlan_mode;
870 			u16		vlan_id;
871 			__be16		vlan_proto;
872 		} bridge;
873 		struct {
874 			int port;
875 			u16 proto;
876 		} dsa;
877 	};
878 };
879 
880 #define NET_DEVICE_PATH_STACK_MAX	5
881 #define NET_DEVICE_PATH_VLAN_MAX	2
882 
883 struct net_device_path_stack {
884 	int			num_paths;
885 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
886 };
887 
888 struct net_device_path_ctx {
889 	const struct net_device *dev;
890 	const u8		*daddr;
891 
892 	int			num_vlans;
893 	struct {
894 		u16		id;
895 		__be16		proto;
896 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
897 };
898 
899 enum tc_setup_type {
900 	TC_SETUP_QDISC_MQPRIO,
901 	TC_SETUP_CLSU32,
902 	TC_SETUP_CLSFLOWER,
903 	TC_SETUP_CLSMATCHALL,
904 	TC_SETUP_CLSBPF,
905 	TC_SETUP_BLOCK,
906 	TC_SETUP_QDISC_CBS,
907 	TC_SETUP_QDISC_RED,
908 	TC_SETUP_QDISC_PRIO,
909 	TC_SETUP_QDISC_MQ,
910 	TC_SETUP_QDISC_ETF,
911 	TC_SETUP_ROOT_QDISC,
912 	TC_SETUP_QDISC_GRED,
913 	TC_SETUP_QDISC_TAPRIO,
914 	TC_SETUP_FT,
915 	TC_SETUP_QDISC_ETS,
916 	TC_SETUP_QDISC_TBF,
917 	TC_SETUP_QDISC_FIFO,
918 	TC_SETUP_QDISC_HTB,
919 };
920 
921 /* These structures hold the attributes of bpf state that are being passed
922  * to the netdevice through the bpf op.
923  */
924 enum bpf_netdev_command {
925 	/* Set or clear a bpf program used in the earliest stages of packet
926 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
927 	 * is responsible for calling bpf_prog_put on any old progs that are
928 	 * stored. In case of error, the callee need not release the new prog
929 	 * reference, but on success it takes ownership and must bpf_prog_put
930 	 * when it is no longer used.
931 	 */
932 	XDP_SETUP_PROG,
933 	XDP_SETUP_PROG_HW,
934 	/* BPF program for offload callbacks, invoked at program load time. */
935 	BPF_OFFLOAD_MAP_ALLOC,
936 	BPF_OFFLOAD_MAP_FREE,
937 	XDP_SETUP_XSK_POOL,
938 };
939 
940 struct bpf_prog_offload_ops;
941 struct netlink_ext_ack;
942 struct xdp_umem;
943 struct xdp_dev_bulk_queue;
944 struct bpf_xdp_link;
945 
946 enum bpf_xdp_mode {
947 	XDP_MODE_SKB = 0,
948 	XDP_MODE_DRV = 1,
949 	XDP_MODE_HW = 2,
950 	__MAX_XDP_MODE
951 };
952 
953 struct bpf_xdp_entity {
954 	struct bpf_prog *prog;
955 	struct bpf_xdp_link *link;
956 };
957 
958 struct netdev_bpf {
959 	enum bpf_netdev_command command;
960 	union {
961 		/* XDP_SETUP_PROG */
962 		struct {
963 			u32 flags;
964 			struct bpf_prog *prog;
965 			struct netlink_ext_ack *extack;
966 		};
967 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
968 		struct {
969 			struct bpf_offloaded_map *offmap;
970 		};
971 		/* XDP_SETUP_XSK_POOL */
972 		struct {
973 			struct xsk_buff_pool *pool;
974 			u16 queue_id;
975 		} xsk;
976 	};
977 };
978 
979 /* Flags for ndo_xsk_wakeup. */
980 #define XDP_WAKEUP_RX (1 << 0)
981 #define XDP_WAKEUP_TX (1 << 1)
982 
983 #ifdef CONFIG_XFRM_OFFLOAD
984 struct xfrmdev_ops {
985 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
986 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
987 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
988 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
989 				       struct xfrm_state *x);
990 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
991 };
992 #endif
993 
994 struct dev_ifalias {
995 	struct rcu_head rcuhead;
996 	char ifalias[];
997 };
998 
999 struct devlink;
1000 struct tlsdev_ops;
1001 
1002 struct netdev_name_node {
1003 	struct hlist_node hlist;
1004 	struct list_head list;
1005 	struct net_device *dev;
1006 	const char *name;
1007 };
1008 
1009 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
1010 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
1011 
1012 struct netdev_net_notifier {
1013 	struct list_head list;
1014 	struct notifier_block *nb;
1015 };
1016 
1017 /*
1018  * This structure defines the management hooks for network devices.
1019  * The following hooks can be defined; unless noted otherwise, they are
1020  * optional and can be filled with a null pointer.
1021  *
1022  * int (*ndo_init)(struct net_device *dev);
1023  *     This function is called once when a network device is registered.
1024  *     The network device can use this for any late stage initialization
1025  *     or semantic validation. It can fail with an error code which will
1026  *     be propagated back to register_netdev.
1027  *
1028  * void (*ndo_uninit)(struct net_device *dev);
1029  *     This function is called when device is unregistered or when registration
1030  *     fails. It is not called if init fails.
1031  *
1032  * int (*ndo_open)(struct net_device *dev);
1033  *     This function is called when a network device transitions to the up
1034  *     state.
1035  *
1036  * int (*ndo_stop)(struct net_device *dev);
1037  *     This function is called when a network device transitions to the down
1038  *     state.
1039  *
1040  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1041  *                               struct net_device *dev);
1042  *	Called when a packet needs to be transmitted.
1043  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1044  *	the queue before that can happen; it's for obsolete devices and weird
1045  *	corner cases, but the stack really does a non-trivial amount
1046  *	of useless work if you return NETDEV_TX_BUSY.
1047  *	Required; cannot be NULL.
1048  *
1049  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1050  *					   struct net_device *dev
1051  *					   netdev_features_t features);
1052  *	Called by core transmit path to determine if device is capable of
1053  *	performing offload operations on a given packet. This is to give
1054  *	the device an opportunity to implement any restrictions that cannot
1055  *	be otherwise expressed by feature flags. The check is called with
1056  *	the set of features that the stack has calculated and it returns
1057  *	those the driver believes to be appropriate.
1058  *
1059  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1060  *                         struct net_device *sb_dev);
1061  *	Called to decide which queue to use when device supports multiple
1062  *	transmit queues.
1063  *
1064  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1065  *	This function is called to allow device receiver to make
1066  *	changes to configuration when multicast or promiscuous is enabled.
1067  *
1068  * void (*ndo_set_rx_mode)(struct net_device *dev);
1069  *	This function is called device changes address list filtering.
1070  *	If driver handles unicast address filtering, it should set
1071  *	IFF_UNICAST_FLT in its priv_flags.
1072  *
1073  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1074  *	This function  is called when the Media Access Control address
1075  *	needs to be changed. If this interface is not defined, the
1076  *	MAC address can not be changed.
1077  *
1078  * int (*ndo_validate_addr)(struct net_device *dev);
1079  *	Test if Media Access Control address is valid for the device.
1080  *
1081  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1082  *	Old-style ioctl entry point. This is used internally by the
1083  *	appletalk and ieee802154 subsystems but is no longer called by
1084  *	the device ioctl handler.
1085  *
1086  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1087  *	Used by the bonding driver for its device specific ioctls:
1088  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1089  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1090  *
1091  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1092  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1093  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1094  *
1095  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1096  *	Used to set network devices bus interface parameters. This interface
1097  *	is retained for legacy reasons; new devices should use the bus
1098  *	interface (PCI) for low level management.
1099  *
1100  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1101  *	Called when a user wants to change the Maximum Transfer Unit
1102  *	of a device.
1103  *
1104  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1105  *	Callback used when the transmitter has not made any progress
1106  *	for dev->watchdog ticks.
1107  *
1108  * void (*ndo_get_stats64)(struct net_device *dev,
1109  *                         struct rtnl_link_stats64 *storage);
1110  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1111  *	Called when a user wants to get the network device usage
1112  *	statistics. Drivers must do one of the following:
1113  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1114  *	   rtnl_link_stats64 structure passed by the caller.
1115  *	2. Define @ndo_get_stats to update a net_device_stats structure
1116  *	   (which should normally be dev->stats) and return a pointer to
1117  *	   it. The structure may be changed asynchronously only if each
1118  *	   field is written atomically.
1119  *	3. Update dev->stats asynchronously and atomically, and define
1120  *	   neither operation.
1121  *
1122  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1123  *	Return true if this device supports offload stats of this attr_id.
1124  *
1125  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1126  *	void *attr_data)
1127  *	Get statistics for offload operations by attr_id. Write it into the
1128  *	attr_data pointer.
1129  *
1130  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1131  *	If device supports VLAN filtering this function is called when a
1132  *	VLAN id is registered.
1133  *
1134  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1135  *	If device supports VLAN filtering this function is called when a
1136  *	VLAN id is unregistered.
1137  *
1138  * void (*ndo_poll_controller)(struct net_device *dev);
1139  *
1140  *	SR-IOV management functions.
1141  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1142  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1143  *			  u8 qos, __be16 proto);
1144  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1145  *			  int max_tx_rate);
1146  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1147  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1148  * int (*ndo_get_vf_config)(struct net_device *dev,
1149  *			    int vf, struct ifla_vf_info *ivf);
1150  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1151  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1152  *			  struct nlattr *port[]);
1153  *
1154  *      Enable or disable the VF ability to query its RSS Redirection Table and
1155  *      Hash Key. This is needed since on some devices VF share this information
1156  *      with PF and querying it may introduce a theoretical security risk.
1157  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1158  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1159  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1160  *		       void *type_data);
1161  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1162  *	This is always called from the stack with the rtnl lock held and netif
1163  *	tx queues stopped. This allows the netdevice to perform queue
1164  *	management safely.
1165  *
1166  *	Fiber Channel over Ethernet (FCoE) offload functions.
1167  * int (*ndo_fcoe_enable)(struct net_device *dev);
1168  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1169  *	so the underlying device can perform whatever needed configuration or
1170  *	initialization to support acceleration of FCoE traffic.
1171  *
1172  * int (*ndo_fcoe_disable)(struct net_device *dev);
1173  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1174  *	so the underlying device can perform whatever needed clean-ups to
1175  *	stop supporting acceleration of FCoE traffic.
1176  *
1177  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1178  *			     struct scatterlist *sgl, unsigned int sgc);
1179  *	Called when the FCoE Initiator wants to initialize an I/O that
1180  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1181  *	perform necessary setup and returns 1 to indicate the device is set up
1182  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1183  *
1184  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1185  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1186  *	indicated by the FC exchange id 'xid', so the underlying device can
1187  *	clean up and reuse resources for later DDP requests.
1188  *
1189  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1190  *			      struct scatterlist *sgl, unsigned int sgc);
1191  *	Called when the FCoE Target wants to initialize an I/O that
1192  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1193  *	perform necessary setup and returns 1 to indicate the device is set up
1194  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1195  *
1196  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1197  *			       struct netdev_fcoe_hbainfo *hbainfo);
1198  *	Called when the FCoE Protocol stack wants information on the underlying
1199  *	device. This information is utilized by the FCoE protocol stack to
1200  *	register attributes with Fiber Channel management service as per the
1201  *	FC-GS Fabric Device Management Information(FDMI) specification.
1202  *
1203  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1204  *	Called when the underlying device wants to override default World Wide
1205  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1206  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1207  *	protocol stack to use.
1208  *
1209  *	RFS acceleration.
1210  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1211  *			    u16 rxq_index, u32 flow_id);
1212  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1213  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1214  *	Return the filter ID on success, or a negative error code.
1215  *
1216  *	Slave management functions (for bridge, bonding, etc).
1217  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1218  *	Called to make another netdev an underling.
1219  *
1220  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1221  *	Called to release previously enslaved netdev.
1222  *
1223  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1224  *					    struct sk_buff *skb,
1225  *					    bool all_slaves);
1226  *	Get the xmit slave of master device. If all_slaves is true, function
1227  *	assume all the slaves can transmit.
1228  *
1229  *      Feature/offload setting functions.
1230  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1231  *		netdev_features_t features);
1232  *	Adjusts the requested feature flags according to device-specific
1233  *	constraints, and returns the resulting flags. Must not modify
1234  *	the device state.
1235  *
1236  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1237  *	Called to update device configuration to new features. Passed
1238  *	feature set might be less than what was returned by ndo_fix_features()).
1239  *	Must return >0 or -errno if it changed dev->features itself.
1240  *
1241  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1242  *		      struct net_device *dev,
1243  *		      const unsigned char *addr, u16 vid, u16 flags,
1244  *		      struct netlink_ext_ack *extack);
1245  *	Adds an FDB entry to dev for addr.
1246  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1247  *		      struct net_device *dev,
1248  *		      const unsigned char *addr, u16 vid)
1249  *	Deletes the FDB entry from dev coresponding to addr.
1250  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1251  *		       struct net_device *dev, struct net_device *filter_dev,
1252  *		       int *idx)
1253  *	Used to add FDB entries to dump requests. Implementers should add
1254  *	entries to skb and update idx with the number of entries.
1255  *
1256  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1257  *			     u16 flags, struct netlink_ext_ack *extack)
1258  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1259  *			     struct net_device *dev, u32 filter_mask,
1260  *			     int nlflags)
1261  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1262  *			     u16 flags);
1263  *
1264  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1265  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1266  *	which do not represent real hardware may define this to allow their
1267  *	userspace components to manage their virtual carrier state. Devices
1268  *	that determine carrier state from physical hardware properties (eg
1269  *	network cables) or protocol-dependent mechanisms (eg
1270  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1271  *
1272  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1273  *			       struct netdev_phys_item_id *ppid);
1274  *	Called to get ID of physical port of this device. If driver does
1275  *	not implement this, it is assumed that the hw is not able to have
1276  *	multiple net devices on single physical port.
1277  *
1278  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1279  *				 struct netdev_phys_item_id *ppid)
1280  *	Called to get the parent ID of the physical port of this device.
1281  *
1282  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1283  *				 struct net_device *dev)
1284  *	Called by upper layer devices to accelerate switching or other
1285  *	station functionality into hardware. 'pdev is the lowerdev
1286  *	to use for the offload and 'dev' is the net device that will
1287  *	back the offload. Returns a pointer to the private structure
1288  *	the upper layer will maintain.
1289  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1290  *	Called by upper layer device to delete the station created
1291  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1292  *	the station and priv is the structure returned by the add
1293  *	operation.
1294  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1295  *			     int queue_index, u32 maxrate);
1296  *	Called when a user wants to set a max-rate limitation of specific
1297  *	TX queue.
1298  * int (*ndo_get_iflink)(const struct net_device *dev);
1299  *	Called to get the iflink value of this device.
1300  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1301  *	This function is used to get egress tunnel information for given skb.
1302  *	This is useful for retrieving outer tunnel header parameters while
1303  *	sampling packet.
1304  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1305  *	This function is used to specify the headroom that the skb must
1306  *	consider when allocation skb during packet reception. Setting
1307  *	appropriate rx headroom value allows avoiding skb head copy on
1308  *	forward. Setting a negative value resets the rx headroom to the
1309  *	default value.
1310  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1311  *	This function is used to set or query state related to XDP on the
1312  *	netdevice and manage BPF offload. See definition of
1313  *	enum bpf_netdev_command for details.
1314  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1315  *			u32 flags);
1316  *	This function is used to submit @n XDP packets for transmit on a
1317  *	netdevice. Returns number of frames successfully transmitted, frames
1318  *	that got dropped are freed/returned via xdp_return_frame().
1319  *	Returns negative number, means general error invoking ndo, meaning
1320  *	no frames were xmit'ed and core-caller will free all frames.
1321  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1322  *					        struct xdp_buff *xdp);
1323  *      Get the xmit slave of master device based on the xdp_buff.
1324  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1325  *      This function is used to wake up the softirq, ksoftirqd or kthread
1326  *	responsible for sending and/or receiving packets on a specific
1327  *	queue id bound to an AF_XDP socket. The flags field specifies if
1328  *	only RX, only Tx, or both should be woken up using the flags
1329  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1330  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1331  *	Get devlink port instance associated with a given netdev.
1332  *	Called with a reference on the netdevice and devlink locks only,
1333  *	rtnl_lock is not held.
1334  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1335  *			 int cmd);
1336  *	Add, change, delete or get information on an IPv4 tunnel.
1337  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1338  *	If a device is paired with a peer device, return the peer instance.
1339  *	The caller must be under RCU read context.
1340  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1341  *     Get the forwarding path to reach the real device from the HW destination address
1342  */
1343 struct net_device_ops {
1344 	int			(*ndo_init)(struct net_device *dev);
1345 	void			(*ndo_uninit)(struct net_device *dev);
1346 	int			(*ndo_open)(struct net_device *dev);
1347 	int			(*ndo_stop)(struct net_device *dev);
1348 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1349 						  struct net_device *dev);
1350 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1351 						      struct net_device *dev,
1352 						      netdev_features_t features);
1353 	u16			(*ndo_select_queue)(struct net_device *dev,
1354 						    struct sk_buff *skb,
1355 						    struct net_device *sb_dev);
1356 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1357 						       int flags);
1358 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1359 	int			(*ndo_set_mac_address)(struct net_device *dev,
1360 						       void *addr);
1361 	int			(*ndo_validate_addr)(struct net_device *dev);
1362 	int			(*ndo_do_ioctl)(struct net_device *dev,
1363 					        struct ifreq *ifr, int cmd);
1364 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1365 						 struct ifreq *ifr, int cmd);
1366 	int			(*ndo_siocbond)(struct net_device *dev,
1367 						struct ifreq *ifr, int cmd);
1368 	int			(*ndo_siocwandev)(struct net_device *dev,
1369 						  struct if_settings *ifs);
1370 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1371 						      struct ifreq *ifr,
1372 						      void __user *data, int cmd);
1373 	int			(*ndo_set_config)(struct net_device *dev,
1374 					          struct ifmap *map);
1375 	int			(*ndo_change_mtu)(struct net_device *dev,
1376 						  int new_mtu);
1377 	int			(*ndo_neigh_setup)(struct net_device *dev,
1378 						   struct neigh_parms *);
1379 	void			(*ndo_tx_timeout) (struct net_device *dev,
1380 						   unsigned int txqueue);
1381 
1382 	void			(*ndo_get_stats64)(struct net_device *dev,
1383 						   struct rtnl_link_stats64 *storage);
1384 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1385 	int			(*ndo_get_offload_stats)(int attr_id,
1386 							 const struct net_device *dev,
1387 							 void *attr_data);
1388 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1389 
1390 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1391 						       __be16 proto, u16 vid);
1392 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1393 						        __be16 proto, u16 vid);
1394 #ifdef CONFIG_NET_POLL_CONTROLLER
1395 	void                    (*ndo_poll_controller)(struct net_device *dev);
1396 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1397 						     struct netpoll_info *info);
1398 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1399 #endif
1400 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1401 						  int queue, u8 *mac);
1402 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1403 						   int queue, u16 vlan,
1404 						   u8 qos, __be16 proto);
1405 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1406 						   int vf, int min_tx_rate,
1407 						   int max_tx_rate);
1408 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1409 						       int vf, bool setting);
1410 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1411 						    int vf, bool setting);
1412 	int			(*ndo_get_vf_config)(struct net_device *dev,
1413 						     int vf,
1414 						     struct ifla_vf_info *ivf);
1415 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1416 							 int vf, int link_state);
1417 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1418 						    int vf,
1419 						    struct ifla_vf_stats
1420 						    *vf_stats);
1421 	int			(*ndo_set_vf_port)(struct net_device *dev,
1422 						   int vf,
1423 						   struct nlattr *port[]);
1424 	int			(*ndo_get_vf_port)(struct net_device *dev,
1425 						   int vf, struct sk_buff *skb);
1426 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1427 						   int vf,
1428 						   struct ifla_vf_guid *node_guid,
1429 						   struct ifla_vf_guid *port_guid);
1430 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1431 						   int vf, u64 guid,
1432 						   int guid_type);
1433 	int			(*ndo_set_vf_rss_query_en)(
1434 						   struct net_device *dev,
1435 						   int vf, bool setting);
1436 	int			(*ndo_setup_tc)(struct net_device *dev,
1437 						enum tc_setup_type type,
1438 						void *type_data);
1439 #if IS_ENABLED(CONFIG_FCOE)
1440 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1441 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1442 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1443 						      u16 xid,
1444 						      struct scatterlist *sgl,
1445 						      unsigned int sgc);
1446 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1447 						     u16 xid);
1448 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1449 						       u16 xid,
1450 						       struct scatterlist *sgl,
1451 						       unsigned int sgc);
1452 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1453 							struct netdev_fcoe_hbainfo *hbainfo);
1454 #endif
1455 
1456 #if IS_ENABLED(CONFIG_LIBFCOE)
1457 #define NETDEV_FCOE_WWNN 0
1458 #define NETDEV_FCOE_WWPN 1
1459 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1460 						    u64 *wwn, int type);
1461 #endif
1462 
1463 #ifdef CONFIG_RFS_ACCEL
1464 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1465 						     const struct sk_buff *skb,
1466 						     u16 rxq_index,
1467 						     u32 flow_id);
1468 #endif
1469 	int			(*ndo_add_slave)(struct net_device *dev,
1470 						 struct net_device *slave_dev,
1471 						 struct netlink_ext_ack *extack);
1472 	int			(*ndo_del_slave)(struct net_device *dev,
1473 						 struct net_device *slave_dev);
1474 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1475 						      struct sk_buff *skb,
1476 						      bool all_slaves);
1477 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1478 							struct sock *sk);
1479 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1480 						    netdev_features_t features);
1481 	int			(*ndo_set_features)(struct net_device *dev,
1482 						    netdev_features_t features);
1483 	int			(*ndo_neigh_construct)(struct net_device *dev,
1484 						       struct neighbour *n);
1485 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1486 						     struct neighbour *n);
1487 
1488 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1489 					       struct nlattr *tb[],
1490 					       struct net_device *dev,
1491 					       const unsigned char *addr,
1492 					       u16 vid,
1493 					       u16 flags,
1494 					       struct netlink_ext_ack *extack);
1495 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1496 					       struct nlattr *tb[],
1497 					       struct net_device *dev,
1498 					       const unsigned char *addr,
1499 					       u16 vid);
1500 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1501 						struct netlink_callback *cb,
1502 						struct net_device *dev,
1503 						struct net_device *filter_dev,
1504 						int *idx);
1505 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1506 					       struct nlattr *tb[],
1507 					       struct net_device *dev,
1508 					       const unsigned char *addr,
1509 					       u16 vid, u32 portid, u32 seq,
1510 					       struct netlink_ext_ack *extack);
1511 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1512 						      struct nlmsghdr *nlh,
1513 						      u16 flags,
1514 						      struct netlink_ext_ack *extack);
1515 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1516 						      u32 pid, u32 seq,
1517 						      struct net_device *dev,
1518 						      u32 filter_mask,
1519 						      int nlflags);
1520 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1521 						      struct nlmsghdr *nlh,
1522 						      u16 flags);
1523 	int			(*ndo_change_carrier)(struct net_device *dev,
1524 						      bool new_carrier);
1525 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1526 							struct netdev_phys_item_id *ppid);
1527 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1528 							  struct netdev_phys_item_id *ppid);
1529 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1530 							  char *name, size_t len);
1531 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1532 							struct net_device *dev);
1533 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1534 							void *priv);
1535 
1536 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1537 						      int queue_index,
1538 						      u32 maxrate);
1539 	int			(*ndo_get_iflink)(const struct net_device *dev);
1540 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1541 						       struct sk_buff *skb);
1542 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1543 						       int needed_headroom);
1544 	int			(*ndo_bpf)(struct net_device *dev,
1545 					   struct netdev_bpf *bpf);
1546 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1547 						struct xdp_frame **xdp,
1548 						u32 flags);
1549 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1550 							  struct xdp_buff *xdp);
1551 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1552 						  u32 queue_id, u32 flags);
1553 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1554 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1555 						  struct ip_tunnel_parm *p, int cmd);
1556 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1557 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1558                                                          struct net_device_path *path);
1559 };
1560 
1561 /**
1562  * enum netdev_priv_flags - &struct net_device priv_flags
1563  *
1564  * These are the &struct net_device, they are only set internally
1565  * by drivers and used in the kernel. These flags are invisible to
1566  * userspace; this means that the order of these flags can change
1567  * during any kernel release.
1568  *
1569  * You should have a pretty good reason to be extending these flags.
1570  *
1571  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1572  * @IFF_EBRIDGE: Ethernet bridging device
1573  * @IFF_BONDING: bonding master or slave
1574  * @IFF_ISATAP: ISATAP interface (RFC4214)
1575  * @IFF_WAN_HDLC: WAN HDLC device
1576  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1577  *	release skb->dst
1578  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1579  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1580  * @IFF_MACVLAN_PORT: device used as macvlan port
1581  * @IFF_BRIDGE_PORT: device used as bridge port
1582  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1583  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1584  * @IFF_UNICAST_FLT: Supports unicast filtering
1585  * @IFF_TEAM_PORT: device used as team port
1586  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1587  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1588  *	change when it's running
1589  * @IFF_MACVLAN: Macvlan device
1590  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1591  *	underlying stacked devices
1592  * @IFF_L3MDEV_MASTER: device is an L3 master device
1593  * @IFF_NO_QUEUE: device can run without qdisc attached
1594  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1595  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1596  * @IFF_TEAM: device is a team device
1597  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1598  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1599  *	entity (i.e. the master device for bridged veth)
1600  * @IFF_MACSEC: device is a MACsec device
1601  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1602  * @IFF_FAILOVER: device is a failover master device
1603  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1604  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1605  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1606  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1607  *	skb_headlen(skb) == 0 (data starts from frag0)
1608  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1609  */
1610 enum netdev_priv_flags {
1611 	IFF_802_1Q_VLAN			= 1<<0,
1612 	IFF_EBRIDGE			= 1<<1,
1613 	IFF_BONDING			= 1<<2,
1614 	IFF_ISATAP			= 1<<3,
1615 	IFF_WAN_HDLC			= 1<<4,
1616 	IFF_XMIT_DST_RELEASE		= 1<<5,
1617 	IFF_DONT_BRIDGE			= 1<<6,
1618 	IFF_DISABLE_NETPOLL		= 1<<7,
1619 	IFF_MACVLAN_PORT		= 1<<8,
1620 	IFF_BRIDGE_PORT			= 1<<9,
1621 	IFF_OVS_DATAPATH		= 1<<10,
1622 	IFF_TX_SKB_SHARING		= 1<<11,
1623 	IFF_UNICAST_FLT			= 1<<12,
1624 	IFF_TEAM_PORT			= 1<<13,
1625 	IFF_SUPP_NOFCS			= 1<<14,
1626 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1627 	IFF_MACVLAN			= 1<<16,
1628 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1629 	IFF_L3MDEV_MASTER		= 1<<18,
1630 	IFF_NO_QUEUE			= 1<<19,
1631 	IFF_OPENVSWITCH			= 1<<20,
1632 	IFF_L3MDEV_SLAVE		= 1<<21,
1633 	IFF_TEAM			= 1<<22,
1634 	IFF_RXFH_CONFIGURED		= 1<<23,
1635 	IFF_PHONY_HEADROOM		= 1<<24,
1636 	IFF_MACSEC			= 1<<25,
1637 	IFF_NO_RX_HANDLER		= 1<<26,
1638 	IFF_FAILOVER			= 1<<27,
1639 	IFF_FAILOVER_SLAVE		= 1<<28,
1640 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1641 	IFF_LIVE_RENAME_OK		= 1<<30,
1642 	IFF_TX_SKB_NO_LINEAR		= 1<<31,
1643 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1644 };
1645 
1646 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1647 #define IFF_EBRIDGE			IFF_EBRIDGE
1648 #define IFF_BONDING			IFF_BONDING
1649 #define IFF_ISATAP			IFF_ISATAP
1650 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1651 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1652 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1653 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1654 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1655 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1656 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1657 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1658 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1659 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1660 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1661 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1662 #define IFF_MACVLAN			IFF_MACVLAN
1663 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1664 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1665 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1666 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1667 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1668 #define IFF_TEAM			IFF_TEAM
1669 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1670 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1671 #define IFF_MACSEC			IFF_MACSEC
1672 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1673 #define IFF_FAILOVER			IFF_FAILOVER
1674 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1675 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1676 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1677 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1678 
1679 /* Specifies the type of the struct net_device::ml_priv pointer */
1680 enum netdev_ml_priv_type {
1681 	ML_PRIV_NONE,
1682 	ML_PRIV_CAN,
1683 };
1684 
1685 /**
1686  *	struct net_device - The DEVICE structure.
1687  *
1688  *	Actually, this whole structure is a big mistake.  It mixes I/O
1689  *	data with strictly "high-level" data, and it has to know about
1690  *	almost every data structure used in the INET module.
1691  *
1692  *	@name:	This is the first field of the "visible" part of this structure
1693  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1694  *		of the interface.
1695  *
1696  *	@name_node:	Name hashlist node
1697  *	@ifalias:	SNMP alias
1698  *	@mem_end:	Shared memory end
1699  *	@mem_start:	Shared memory start
1700  *	@base_addr:	Device I/O address
1701  *	@irq:		Device IRQ number
1702  *
1703  *	@state:		Generic network queuing layer state, see netdev_state_t
1704  *	@dev_list:	The global list of network devices
1705  *	@napi_list:	List entry used for polling NAPI devices
1706  *	@unreg_list:	List entry  when we are unregistering the
1707  *			device; see the function unregister_netdev
1708  *	@close_list:	List entry used when we are closing the device
1709  *	@ptype_all:     Device-specific packet handlers for all protocols
1710  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1711  *
1712  *	@adj_list:	Directly linked devices, like slaves for bonding
1713  *	@features:	Currently active device features
1714  *	@hw_features:	User-changeable features
1715  *
1716  *	@wanted_features:	User-requested features
1717  *	@vlan_features:		Mask of features inheritable by VLAN devices
1718  *
1719  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1720  *				This field indicates what encapsulation
1721  *				offloads the hardware is capable of doing,
1722  *				and drivers will need to set them appropriately.
1723  *
1724  *	@mpls_features:	Mask of features inheritable by MPLS
1725  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1726  *
1727  *	@ifindex:	interface index
1728  *	@group:		The group the device belongs to
1729  *
1730  *	@stats:		Statistics struct, which was left as a legacy, use
1731  *			rtnl_link_stats64 instead
1732  *
1733  *	@rx_dropped:	Dropped packets by core network,
1734  *			do not use this in drivers
1735  *	@tx_dropped:	Dropped packets by core network,
1736  *			do not use this in drivers
1737  *	@rx_nohandler:	nohandler dropped packets by core network on
1738  *			inactive devices, do not use this in drivers
1739  *	@carrier_up_count:	Number of times the carrier has been up
1740  *	@carrier_down_count:	Number of times the carrier has been down
1741  *
1742  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1743  *				instead of ioctl,
1744  *				see <net/iw_handler.h> for details.
1745  *	@wireless_data:	Instance data managed by the core of wireless extensions
1746  *
1747  *	@netdev_ops:	Includes several pointers to callbacks,
1748  *			if one wants to override the ndo_*() functions
1749  *	@ethtool_ops:	Management operations
1750  *	@l3mdev_ops:	Layer 3 master device operations
1751  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1752  *			discovery handling. Necessary for e.g. 6LoWPAN.
1753  *	@xfrmdev_ops:	Transformation offload operations
1754  *	@tlsdev_ops:	Transport Layer Security offload operations
1755  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1756  *			of Layer 2 headers.
1757  *
1758  *	@flags:		Interface flags (a la BSD)
1759  *	@priv_flags:	Like 'flags' but invisible to userspace,
1760  *			see if.h for the definitions
1761  *	@gflags:	Global flags ( kept as legacy )
1762  *	@padded:	How much padding added by alloc_netdev()
1763  *	@operstate:	RFC2863 operstate
1764  *	@link_mode:	Mapping policy to operstate
1765  *	@if_port:	Selectable AUI, TP, ...
1766  *	@dma:		DMA channel
1767  *	@mtu:		Interface MTU value
1768  *	@min_mtu:	Interface Minimum MTU value
1769  *	@max_mtu:	Interface Maximum MTU value
1770  *	@type:		Interface hardware type
1771  *	@hard_header_len: Maximum hardware header length.
1772  *	@min_header_len:  Minimum hardware header length
1773  *
1774  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1775  *			  cases can this be guaranteed
1776  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1777  *			  cases can this be guaranteed. Some cases also use
1778  *			  LL_MAX_HEADER instead to allocate the skb
1779  *
1780  *	interface address info:
1781  *
1782  * 	@perm_addr:		Permanent hw address
1783  * 	@addr_assign_type:	Hw address assignment type
1784  * 	@addr_len:		Hardware address length
1785  *	@upper_level:		Maximum depth level of upper devices.
1786  *	@lower_level:		Maximum depth level of lower devices.
1787  *	@neigh_priv_len:	Used in neigh_alloc()
1788  * 	@dev_id:		Used to differentiate devices that share
1789  * 				the same link layer address
1790  * 	@dev_port:		Used to differentiate devices that share
1791  * 				the same function
1792  *	@addr_list_lock:	XXX: need comments on this one
1793  *	@name_assign_type:	network interface name assignment type
1794  *	@uc_promisc:		Counter that indicates promiscuous mode
1795  *				has been enabled due to the need to listen to
1796  *				additional unicast addresses in a device that
1797  *				does not implement ndo_set_rx_mode()
1798  *	@uc:			unicast mac addresses
1799  *	@mc:			multicast mac addresses
1800  *	@dev_addrs:		list of device hw addresses
1801  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1802  *	@promiscuity:		Number of times the NIC is told to work in
1803  *				promiscuous mode; if it becomes 0 the NIC will
1804  *				exit promiscuous mode
1805  *	@allmulti:		Counter, enables or disables allmulticast mode
1806  *
1807  *	@vlan_info:	VLAN info
1808  *	@dsa_ptr:	dsa specific data
1809  *	@tipc_ptr:	TIPC specific data
1810  *	@atalk_ptr:	AppleTalk link
1811  *	@ip_ptr:	IPv4 specific data
1812  *	@dn_ptr:	DECnet specific data
1813  *	@ip6_ptr:	IPv6 specific data
1814  *	@ax25_ptr:	AX.25 specific data
1815  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1816  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1817  *			 device struct
1818  *	@mpls_ptr:	mpls_dev struct pointer
1819  *	@mctp_ptr:	MCTP specific data
1820  *
1821  *	@dev_addr:	Hw address (before bcast,
1822  *			because most packets are unicast)
1823  *
1824  *	@_rx:			Array of RX queues
1825  *	@num_rx_queues:		Number of RX queues
1826  *				allocated at register_netdev() time
1827  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1828  *	@xdp_prog:		XDP sockets filter program pointer
1829  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1830  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1831  *				allow to avoid NIC hard IRQ, on busy queues.
1832  *
1833  *	@rx_handler:		handler for received packets
1834  *	@rx_handler_data: 	XXX: need comments on this one
1835  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1836  *				ingress processing
1837  *	@ingress_queue:		XXX: need comments on this one
1838  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1839  *	@broadcast:		hw bcast address
1840  *
1841  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1842  *			indexed by RX queue number. Assigned by driver.
1843  *			This must only be set if the ndo_rx_flow_steer
1844  *			operation is defined
1845  *	@index_hlist:		Device index hash chain
1846  *
1847  *	@_tx:			Array of TX queues
1848  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1849  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1850  *	@qdisc:			Root qdisc from userspace point of view
1851  *	@tx_queue_len:		Max frames per queue allowed
1852  *	@tx_global_lock: 	XXX: need comments on this one
1853  *	@xdp_bulkq:		XDP device bulk queue
1854  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1855  *
1856  *	@xps_maps:	XXX: need comments on this one
1857  *	@miniq_egress:		clsact qdisc specific data for
1858  *				egress processing
1859  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1860  *	@qdisc_hash:		qdisc hash table
1861  *	@watchdog_timeo:	Represents the timeout that is used by
1862  *				the watchdog (see dev_watchdog())
1863  *	@watchdog_timer:	List of timers
1864  *
1865  *	@proto_down_reason:	reason a netdev interface is held down
1866  *	@pcpu_refcnt:		Number of references to this device
1867  *	@dev_refcnt:		Number of references to this device
1868  *	@todo_list:		Delayed register/unregister
1869  *	@link_watch_list:	XXX: need comments on this one
1870  *
1871  *	@reg_state:		Register/unregister state machine
1872  *	@dismantle:		Device is going to be freed
1873  *	@rtnl_link_state:	This enum represents the phases of creating
1874  *				a new link
1875  *
1876  *	@needs_free_netdev:	Should unregister perform free_netdev?
1877  *	@priv_destructor:	Called from unregister
1878  *	@npinfo:		XXX: need comments on this one
1879  * 	@nd_net:		Network namespace this network device is inside
1880  *
1881  * 	@ml_priv:	Mid-layer private
1882  *	@ml_priv_type:  Mid-layer private type
1883  * 	@lstats:	Loopback statistics
1884  * 	@tstats:	Tunnel statistics
1885  * 	@dstats:	Dummy statistics
1886  * 	@vstats:	Virtual ethernet statistics
1887  *
1888  *	@garp_port:	GARP
1889  *	@mrp_port:	MRP
1890  *
1891  *	@dev:		Class/net/name entry
1892  *	@sysfs_groups:	Space for optional device, statistics and wireless
1893  *			sysfs groups
1894  *
1895  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1896  *	@rtnl_link_ops:	Rtnl_link_ops
1897  *
1898  *	@gso_max_size:	Maximum size of generic segmentation offload
1899  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1900  *			NIC for GSO
1901  *
1902  *	@dcbnl_ops:	Data Center Bridging netlink ops
1903  *	@num_tc:	Number of traffic classes in the net device
1904  *	@tc_to_txq:	XXX: need comments on this one
1905  *	@prio_tc_map:	XXX: need comments on this one
1906  *
1907  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1908  *
1909  *	@priomap:	XXX: need comments on this one
1910  *	@phydev:	Physical device may attach itself
1911  *			for hardware timestamping
1912  *	@sfp_bus:	attached &struct sfp_bus structure.
1913  *
1914  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1915  *
1916  *	@proto_down:	protocol port state information can be sent to the
1917  *			switch driver and used to set the phys state of the
1918  *			switch port.
1919  *
1920  *	@wol_enabled:	Wake-on-LAN is enabled
1921  *
1922  *	@threaded:	napi threaded mode is enabled
1923  *
1924  *	@net_notifier_list:	List of per-net netdev notifier block
1925  *				that follow this device when it is moved
1926  *				to another network namespace.
1927  *
1928  *	@macsec_ops:    MACsec offloading ops
1929  *
1930  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1931  *				offload capabilities of the device
1932  *	@udp_tunnel_nic:	UDP tunnel offload state
1933  *	@xdp_state:		stores info on attached XDP BPF programs
1934  *
1935  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1936  *			dev->addr_list_lock.
1937  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1938  *			keep a list of interfaces to be deleted.
1939  *
1940  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
1941  *
1942  *	FIXME: cleanup struct net_device such that network protocol info
1943  *	moves out.
1944  */
1945 
1946 struct net_device {
1947 	char			name[IFNAMSIZ];
1948 	struct netdev_name_node	*name_node;
1949 	struct dev_ifalias	__rcu *ifalias;
1950 	/*
1951 	 *	I/O specific fields
1952 	 *	FIXME: Merge these and struct ifmap into one
1953 	 */
1954 	unsigned long		mem_end;
1955 	unsigned long		mem_start;
1956 	unsigned long		base_addr;
1957 
1958 	/*
1959 	 *	Some hardware also needs these fields (state,dev_list,
1960 	 *	napi_list,unreg_list,close_list) but they are not
1961 	 *	part of the usual set specified in Space.c.
1962 	 */
1963 
1964 	unsigned long		state;
1965 
1966 	struct list_head	dev_list;
1967 	struct list_head	napi_list;
1968 	struct list_head	unreg_list;
1969 	struct list_head	close_list;
1970 	struct list_head	ptype_all;
1971 	struct list_head	ptype_specific;
1972 
1973 	struct {
1974 		struct list_head upper;
1975 		struct list_head lower;
1976 	} adj_list;
1977 
1978 	/* Read-mostly cache-line for fast-path access */
1979 	unsigned int		flags;
1980 	unsigned long long	priv_flags;
1981 	const struct net_device_ops *netdev_ops;
1982 	int			ifindex;
1983 	unsigned short		gflags;
1984 	unsigned short		hard_header_len;
1985 
1986 	/* Note : dev->mtu is often read without holding a lock.
1987 	 * Writers usually hold RTNL.
1988 	 * It is recommended to use READ_ONCE() to annotate the reads,
1989 	 * and to use WRITE_ONCE() to annotate the writes.
1990 	 */
1991 	unsigned int		mtu;
1992 	unsigned short		needed_headroom;
1993 	unsigned short		needed_tailroom;
1994 
1995 	netdev_features_t	features;
1996 	netdev_features_t	hw_features;
1997 	netdev_features_t	wanted_features;
1998 	netdev_features_t	vlan_features;
1999 	netdev_features_t	hw_enc_features;
2000 	netdev_features_t	mpls_features;
2001 	netdev_features_t	gso_partial_features;
2002 
2003 	unsigned int		min_mtu;
2004 	unsigned int		max_mtu;
2005 	unsigned short		type;
2006 	unsigned char		min_header_len;
2007 	unsigned char		name_assign_type;
2008 
2009 	int			group;
2010 
2011 	struct net_device_stats	stats; /* not used by modern drivers */
2012 
2013 	atomic_long_t		rx_dropped;
2014 	atomic_long_t		tx_dropped;
2015 	atomic_long_t		rx_nohandler;
2016 
2017 	/* Stats to monitor link on/off, flapping */
2018 	atomic_t		carrier_up_count;
2019 	atomic_t		carrier_down_count;
2020 
2021 #ifdef CONFIG_WIRELESS_EXT
2022 	const struct iw_handler_def *wireless_handlers;
2023 	struct iw_public_data	*wireless_data;
2024 #endif
2025 	const struct ethtool_ops *ethtool_ops;
2026 #ifdef CONFIG_NET_L3_MASTER_DEV
2027 	const struct l3mdev_ops	*l3mdev_ops;
2028 #endif
2029 #if IS_ENABLED(CONFIG_IPV6)
2030 	const struct ndisc_ops *ndisc_ops;
2031 #endif
2032 
2033 #ifdef CONFIG_XFRM_OFFLOAD
2034 	const struct xfrmdev_ops *xfrmdev_ops;
2035 #endif
2036 
2037 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2038 	const struct tlsdev_ops *tlsdev_ops;
2039 #endif
2040 
2041 	const struct header_ops *header_ops;
2042 
2043 	unsigned char		operstate;
2044 	unsigned char		link_mode;
2045 
2046 	unsigned char		if_port;
2047 	unsigned char		dma;
2048 
2049 	/* Interface address info. */
2050 	unsigned char		perm_addr[MAX_ADDR_LEN];
2051 	unsigned char		addr_assign_type;
2052 	unsigned char		addr_len;
2053 	unsigned char		upper_level;
2054 	unsigned char		lower_level;
2055 
2056 	unsigned short		neigh_priv_len;
2057 	unsigned short          dev_id;
2058 	unsigned short          dev_port;
2059 	unsigned short		padded;
2060 
2061 	spinlock_t		addr_list_lock;
2062 	int			irq;
2063 
2064 	struct netdev_hw_addr_list	uc;
2065 	struct netdev_hw_addr_list	mc;
2066 	struct netdev_hw_addr_list	dev_addrs;
2067 
2068 #ifdef CONFIG_SYSFS
2069 	struct kset		*queues_kset;
2070 #endif
2071 #ifdef CONFIG_LOCKDEP
2072 	struct list_head	unlink_list;
2073 #endif
2074 	unsigned int		promiscuity;
2075 	unsigned int		allmulti;
2076 	bool			uc_promisc;
2077 #ifdef CONFIG_LOCKDEP
2078 	unsigned char		nested_level;
2079 #endif
2080 
2081 
2082 	/* Protocol-specific pointers */
2083 
2084 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2085 	struct vlan_info __rcu	*vlan_info;
2086 #endif
2087 #if IS_ENABLED(CONFIG_NET_DSA)
2088 	struct dsa_port		*dsa_ptr;
2089 #endif
2090 #if IS_ENABLED(CONFIG_TIPC)
2091 	struct tipc_bearer __rcu *tipc_ptr;
2092 #endif
2093 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2094 	void 			*atalk_ptr;
2095 #endif
2096 	struct in_device __rcu	*ip_ptr;
2097 #if IS_ENABLED(CONFIG_DECNET)
2098 	struct dn_dev __rcu     *dn_ptr;
2099 #endif
2100 	struct inet6_dev __rcu	*ip6_ptr;
2101 #if IS_ENABLED(CONFIG_AX25)
2102 	void			*ax25_ptr;
2103 #endif
2104 	struct wireless_dev	*ieee80211_ptr;
2105 	struct wpan_dev		*ieee802154_ptr;
2106 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2107 	struct mpls_dev __rcu	*mpls_ptr;
2108 #endif
2109 #if IS_ENABLED(CONFIG_MCTP)
2110 	struct mctp_dev __rcu	*mctp_ptr;
2111 #endif
2112 
2113 /*
2114  * Cache lines mostly used on receive path (including eth_type_trans())
2115  */
2116 	/* Interface address info used in eth_type_trans() */
2117 	const unsigned char	*dev_addr;
2118 
2119 	struct netdev_rx_queue	*_rx;
2120 	unsigned int		num_rx_queues;
2121 	unsigned int		real_num_rx_queues;
2122 
2123 	struct bpf_prog __rcu	*xdp_prog;
2124 	unsigned long		gro_flush_timeout;
2125 	int			napi_defer_hard_irqs;
2126 	rx_handler_func_t __rcu	*rx_handler;
2127 	void __rcu		*rx_handler_data;
2128 
2129 #ifdef CONFIG_NET_CLS_ACT
2130 	struct mini_Qdisc __rcu	*miniq_ingress;
2131 #endif
2132 	struct netdev_queue __rcu *ingress_queue;
2133 #ifdef CONFIG_NETFILTER_INGRESS
2134 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2135 #endif
2136 
2137 	unsigned char		broadcast[MAX_ADDR_LEN];
2138 #ifdef CONFIG_RFS_ACCEL
2139 	struct cpu_rmap		*rx_cpu_rmap;
2140 #endif
2141 	struct hlist_node	index_hlist;
2142 
2143 /*
2144  * Cache lines mostly used on transmit path
2145  */
2146 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2147 	unsigned int		num_tx_queues;
2148 	unsigned int		real_num_tx_queues;
2149 	struct Qdisc		*qdisc;
2150 	unsigned int		tx_queue_len;
2151 	spinlock_t		tx_global_lock;
2152 
2153 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2154 
2155 #ifdef CONFIG_XPS
2156 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2157 #endif
2158 #ifdef CONFIG_NET_CLS_ACT
2159 	struct mini_Qdisc __rcu	*miniq_egress;
2160 #endif
2161 #ifdef CONFIG_NETFILTER_EGRESS
2162 	struct nf_hook_entries __rcu *nf_hooks_egress;
2163 #endif
2164 
2165 #ifdef CONFIG_NET_SCHED
2166 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2167 #endif
2168 	/* These may be needed for future network-power-down code. */
2169 	struct timer_list	watchdog_timer;
2170 	int			watchdog_timeo;
2171 
2172 	u32                     proto_down_reason;
2173 
2174 	struct list_head	todo_list;
2175 
2176 #ifdef CONFIG_PCPU_DEV_REFCNT
2177 	int __percpu		*pcpu_refcnt;
2178 #else
2179 	refcount_t		dev_refcnt;
2180 #endif
2181 
2182 	struct list_head	link_watch_list;
2183 
2184 	enum { NETREG_UNINITIALIZED=0,
2185 	       NETREG_REGISTERED,	/* completed register_netdevice */
2186 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2187 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2188 	       NETREG_RELEASED,		/* called free_netdev */
2189 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2190 	} reg_state:8;
2191 
2192 	bool dismantle;
2193 
2194 	enum {
2195 		RTNL_LINK_INITIALIZED,
2196 		RTNL_LINK_INITIALIZING,
2197 	} rtnl_link_state:16;
2198 
2199 	bool needs_free_netdev;
2200 	void (*priv_destructor)(struct net_device *dev);
2201 
2202 #ifdef CONFIG_NETPOLL
2203 	struct netpoll_info __rcu	*npinfo;
2204 #endif
2205 
2206 	possible_net_t			nd_net;
2207 
2208 	/* mid-layer private */
2209 	void				*ml_priv;
2210 	enum netdev_ml_priv_type	ml_priv_type;
2211 
2212 	union {
2213 		struct pcpu_lstats __percpu		*lstats;
2214 		struct pcpu_sw_netstats __percpu	*tstats;
2215 		struct pcpu_dstats __percpu		*dstats;
2216 	};
2217 
2218 #if IS_ENABLED(CONFIG_GARP)
2219 	struct garp_port __rcu	*garp_port;
2220 #endif
2221 #if IS_ENABLED(CONFIG_MRP)
2222 	struct mrp_port __rcu	*mrp_port;
2223 #endif
2224 
2225 	struct device		dev;
2226 	const struct attribute_group *sysfs_groups[4];
2227 	const struct attribute_group *sysfs_rx_queue_group;
2228 
2229 	const struct rtnl_link_ops *rtnl_link_ops;
2230 
2231 	/* for setting kernel sock attribute on TCP connection setup */
2232 #define GSO_MAX_SIZE		65536
2233 	unsigned int		gso_max_size;
2234 #define GSO_MAX_SEGS		65535
2235 	u16			gso_max_segs;
2236 
2237 #ifdef CONFIG_DCB
2238 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2239 #endif
2240 	s16			num_tc;
2241 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2242 	u8			prio_tc_map[TC_BITMASK + 1];
2243 
2244 #if IS_ENABLED(CONFIG_FCOE)
2245 	unsigned int		fcoe_ddp_xid;
2246 #endif
2247 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2248 	struct netprio_map __rcu *priomap;
2249 #endif
2250 	struct phy_device	*phydev;
2251 	struct sfp_bus		*sfp_bus;
2252 	struct lock_class_key	*qdisc_tx_busylock;
2253 	bool			proto_down;
2254 	unsigned		wol_enabled:1;
2255 	unsigned		threaded:1;
2256 
2257 	struct list_head	net_notifier_list;
2258 
2259 #if IS_ENABLED(CONFIG_MACSEC)
2260 	/* MACsec management functions */
2261 	const struct macsec_ops *macsec_ops;
2262 #endif
2263 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2264 	struct udp_tunnel_nic	*udp_tunnel_nic;
2265 
2266 	/* protected by rtnl_lock */
2267 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2268 
2269 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2270 };
2271 #define to_net_dev(d) container_of(d, struct net_device, dev)
2272 
2273 static inline bool netif_elide_gro(const struct net_device *dev)
2274 {
2275 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2276 		return true;
2277 	return false;
2278 }
2279 
2280 #define	NETDEV_ALIGN		32
2281 
2282 static inline
2283 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2284 {
2285 	return dev->prio_tc_map[prio & TC_BITMASK];
2286 }
2287 
2288 static inline
2289 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2290 {
2291 	if (tc >= dev->num_tc)
2292 		return -EINVAL;
2293 
2294 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2295 	return 0;
2296 }
2297 
2298 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2299 void netdev_reset_tc(struct net_device *dev);
2300 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2301 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2302 
2303 static inline
2304 int netdev_get_num_tc(struct net_device *dev)
2305 {
2306 	return dev->num_tc;
2307 }
2308 
2309 static inline void net_prefetch(void *p)
2310 {
2311 	prefetch(p);
2312 #if L1_CACHE_BYTES < 128
2313 	prefetch((u8 *)p + L1_CACHE_BYTES);
2314 #endif
2315 }
2316 
2317 static inline void net_prefetchw(void *p)
2318 {
2319 	prefetchw(p);
2320 #if L1_CACHE_BYTES < 128
2321 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2322 #endif
2323 }
2324 
2325 void netdev_unbind_sb_channel(struct net_device *dev,
2326 			      struct net_device *sb_dev);
2327 int netdev_bind_sb_channel_queue(struct net_device *dev,
2328 				 struct net_device *sb_dev,
2329 				 u8 tc, u16 count, u16 offset);
2330 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2331 static inline int netdev_get_sb_channel(struct net_device *dev)
2332 {
2333 	return max_t(int, -dev->num_tc, 0);
2334 }
2335 
2336 static inline
2337 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2338 					 unsigned int index)
2339 {
2340 	return &dev->_tx[index];
2341 }
2342 
2343 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2344 						    const struct sk_buff *skb)
2345 {
2346 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2347 }
2348 
2349 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2350 					    void (*f)(struct net_device *,
2351 						      struct netdev_queue *,
2352 						      void *),
2353 					    void *arg)
2354 {
2355 	unsigned int i;
2356 
2357 	for (i = 0; i < dev->num_tx_queues; i++)
2358 		f(dev, &dev->_tx[i], arg);
2359 }
2360 
2361 #define netdev_lockdep_set_classes(dev)				\
2362 {								\
2363 	static struct lock_class_key qdisc_tx_busylock_key;	\
2364 	static struct lock_class_key qdisc_xmit_lock_key;	\
2365 	static struct lock_class_key dev_addr_list_lock_key;	\
2366 	unsigned int i;						\
2367 								\
2368 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2369 	lockdep_set_class(&(dev)->addr_list_lock,		\
2370 			  &dev_addr_list_lock_key);		\
2371 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2372 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2373 				  &qdisc_xmit_lock_key);	\
2374 }
2375 
2376 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2377 		     struct net_device *sb_dev);
2378 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2379 					 struct sk_buff *skb,
2380 					 struct net_device *sb_dev);
2381 
2382 /* returns the headroom that the master device needs to take in account
2383  * when forwarding to this dev
2384  */
2385 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2386 {
2387 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2388 }
2389 
2390 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2391 {
2392 	if (dev->netdev_ops->ndo_set_rx_headroom)
2393 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2394 }
2395 
2396 /* set the device rx headroom to the dev's default */
2397 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2398 {
2399 	netdev_set_rx_headroom(dev, -1);
2400 }
2401 
2402 static inline void *netdev_get_ml_priv(struct net_device *dev,
2403 				       enum netdev_ml_priv_type type)
2404 {
2405 	if (dev->ml_priv_type != type)
2406 		return NULL;
2407 
2408 	return dev->ml_priv;
2409 }
2410 
2411 static inline void netdev_set_ml_priv(struct net_device *dev,
2412 				      void *ml_priv,
2413 				      enum netdev_ml_priv_type type)
2414 {
2415 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2416 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2417 	     dev->ml_priv_type, type);
2418 	WARN(!dev->ml_priv_type && dev->ml_priv,
2419 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2420 
2421 	dev->ml_priv = ml_priv;
2422 	dev->ml_priv_type = type;
2423 }
2424 
2425 /*
2426  * Net namespace inlines
2427  */
2428 static inline
2429 struct net *dev_net(const struct net_device *dev)
2430 {
2431 	return read_pnet(&dev->nd_net);
2432 }
2433 
2434 static inline
2435 void dev_net_set(struct net_device *dev, struct net *net)
2436 {
2437 	write_pnet(&dev->nd_net, net);
2438 }
2439 
2440 /**
2441  *	netdev_priv - access network device private data
2442  *	@dev: network device
2443  *
2444  * Get network device private data
2445  */
2446 static inline void *netdev_priv(const struct net_device *dev)
2447 {
2448 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2449 }
2450 
2451 /* Set the sysfs physical device reference for the network logical device
2452  * if set prior to registration will cause a symlink during initialization.
2453  */
2454 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2455 
2456 /* Set the sysfs device type for the network logical device to allow
2457  * fine-grained identification of different network device types. For
2458  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2459  */
2460 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2461 
2462 /* Default NAPI poll() weight
2463  * Device drivers are strongly advised to not use bigger value
2464  */
2465 #define NAPI_POLL_WEIGHT 64
2466 
2467 /**
2468  *	netif_napi_add - initialize a NAPI context
2469  *	@dev:  network device
2470  *	@napi: NAPI context
2471  *	@poll: polling function
2472  *	@weight: default weight
2473  *
2474  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2475  * *any* of the other NAPI-related functions.
2476  */
2477 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2478 		    int (*poll)(struct napi_struct *, int), int weight);
2479 
2480 /**
2481  *	netif_tx_napi_add - initialize a NAPI context
2482  *	@dev:  network device
2483  *	@napi: NAPI context
2484  *	@poll: polling function
2485  *	@weight: default weight
2486  *
2487  * This variant of netif_napi_add() should be used from drivers using NAPI
2488  * to exclusively poll a TX queue.
2489  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2490  */
2491 static inline void netif_tx_napi_add(struct net_device *dev,
2492 				     struct napi_struct *napi,
2493 				     int (*poll)(struct napi_struct *, int),
2494 				     int weight)
2495 {
2496 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2497 	netif_napi_add(dev, napi, poll, weight);
2498 }
2499 
2500 /**
2501  *  __netif_napi_del - remove a NAPI context
2502  *  @napi: NAPI context
2503  *
2504  * Warning: caller must observe RCU grace period before freeing memory
2505  * containing @napi. Drivers might want to call this helper to combine
2506  * all the needed RCU grace periods into a single one.
2507  */
2508 void __netif_napi_del(struct napi_struct *napi);
2509 
2510 /**
2511  *  netif_napi_del - remove a NAPI context
2512  *  @napi: NAPI context
2513  *
2514  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2515  */
2516 static inline void netif_napi_del(struct napi_struct *napi)
2517 {
2518 	__netif_napi_del(napi);
2519 	synchronize_net();
2520 }
2521 
2522 struct packet_type {
2523 	__be16			type;	/* This is really htons(ether_type). */
2524 	bool			ignore_outgoing;
2525 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2526 	int			(*func) (struct sk_buff *,
2527 					 struct net_device *,
2528 					 struct packet_type *,
2529 					 struct net_device *);
2530 	void			(*list_func) (struct list_head *,
2531 					      struct packet_type *,
2532 					      struct net_device *);
2533 	bool			(*id_match)(struct packet_type *ptype,
2534 					    struct sock *sk);
2535 	void			*af_packet_priv;
2536 	struct list_head	list;
2537 };
2538 
2539 struct offload_callbacks {
2540 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2541 						netdev_features_t features);
2542 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2543 						struct sk_buff *skb);
2544 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2545 };
2546 
2547 struct packet_offload {
2548 	__be16			 type;	/* This is really htons(ether_type). */
2549 	u16			 priority;
2550 	struct offload_callbacks callbacks;
2551 	struct list_head	 list;
2552 };
2553 
2554 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2555 struct pcpu_sw_netstats {
2556 	u64     rx_packets;
2557 	u64     rx_bytes;
2558 	u64     tx_packets;
2559 	u64     tx_bytes;
2560 	struct u64_stats_sync   syncp;
2561 } __aligned(4 * sizeof(u64));
2562 
2563 struct pcpu_lstats {
2564 	u64_stats_t packets;
2565 	u64_stats_t bytes;
2566 	struct u64_stats_sync syncp;
2567 } __aligned(2 * sizeof(u64));
2568 
2569 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2570 
2571 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2572 {
2573 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2574 
2575 	u64_stats_update_begin(&tstats->syncp);
2576 	tstats->rx_bytes += len;
2577 	tstats->rx_packets++;
2578 	u64_stats_update_end(&tstats->syncp);
2579 }
2580 
2581 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2582 					  unsigned int packets,
2583 					  unsigned int len)
2584 {
2585 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2586 
2587 	u64_stats_update_begin(&tstats->syncp);
2588 	tstats->tx_bytes += len;
2589 	tstats->tx_packets += packets;
2590 	u64_stats_update_end(&tstats->syncp);
2591 }
2592 
2593 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2594 {
2595 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2596 
2597 	u64_stats_update_begin(&lstats->syncp);
2598 	u64_stats_add(&lstats->bytes, len);
2599 	u64_stats_inc(&lstats->packets);
2600 	u64_stats_update_end(&lstats->syncp);
2601 }
2602 
2603 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2604 ({									\
2605 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2606 	if (pcpu_stats)	{						\
2607 		int __cpu;						\
2608 		for_each_possible_cpu(__cpu) {				\
2609 			typeof(type) *stat;				\
2610 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2611 			u64_stats_init(&stat->syncp);			\
2612 		}							\
2613 	}								\
2614 	pcpu_stats;							\
2615 })
2616 
2617 #define netdev_alloc_pcpu_stats(type)					\
2618 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2619 
2620 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2621 ({									\
2622 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2623 	if (pcpu_stats) {						\
2624 		int __cpu;						\
2625 		for_each_possible_cpu(__cpu) {				\
2626 			typeof(type) *stat;				\
2627 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2628 			u64_stats_init(&stat->syncp);			\
2629 		}							\
2630 	}								\
2631 	pcpu_stats;							\
2632 })
2633 
2634 enum netdev_lag_tx_type {
2635 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2636 	NETDEV_LAG_TX_TYPE_RANDOM,
2637 	NETDEV_LAG_TX_TYPE_BROADCAST,
2638 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2639 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2640 	NETDEV_LAG_TX_TYPE_HASH,
2641 };
2642 
2643 enum netdev_lag_hash {
2644 	NETDEV_LAG_HASH_NONE,
2645 	NETDEV_LAG_HASH_L2,
2646 	NETDEV_LAG_HASH_L34,
2647 	NETDEV_LAG_HASH_L23,
2648 	NETDEV_LAG_HASH_E23,
2649 	NETDEV_LAG_HASH_E34,
2650 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2651 	NETDEV_LAG_HASH_UNKNOWN,
2652 };
2653 
2654 struct netdev_lag_upper_info {
2655 	enum netdev_lag_tx_type tx_type;
2656 	enum netdev_lag_hash hash_type;
2657 };
2658 
2659 struct netdev_lag_lower_state_info {
2660 	u8 link_up : 1,
2661 	   tx_enabled : 1;
2662 };
2663 
2664 #include <linux/notifier.h>
2665 
2666 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2667  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2668  * adding new types.
2669  */
2670 enum netdev_cmd {
2671 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2672 	NETDEV_DOWN,
2673 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2674 				   detected a hardware crash and restarted
2675 				   - we can use this eg to kick tcp sessions
2676 				   once done */
2677 	NETDEV_CHANGE,		/* Notify device state change */
2678 	NETDEV_REGISTER,
2679 	NETDEV_UNREGISTER,
2680 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2681 	NETDEV_CHANGEADDR,	/* notify after the address change */
2682 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2683 	NETDEV_GOING_DOWN,
2684 	NETDEV_CHANGENAME,
2685 	NETDEV_FEAT_CHANGE,
2686 	NETDEV_BONDING_FAILOVER,
2687 	NETDEV_PRE_UP,
2688 	NETDEV_PRE_TYPE_CHANGE,
2689 	NETDEV_POST_TYPE_CHANGE,
2690 	NETDEV_POST_INIT,
2691 	NETDEV_RELEASE,
2692 	NETDEV_NOTIFY_PEERS,
2693 	NETDEV_JOIN,
2694 	NETDEV_CHANGEUPPER,
2695 	NETDEV_RESEND_IGMP,
2696 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2697 	NETDEV_CHANGEINFODATA,
2698 	NETDEV_BONDING_INFO,
2699 	NETDEV_PRECHANGEUPPER,
2700 	NETDEV_CHANGELOWERSTATE,
2701 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2702 	NETDEV_UDP_TUNNEL_DROP_INFO,
2703 	NETDEV_CHANGE_TX_QUEUE_LEN,
2704 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2705 	NETDEV_CVLAN_FILTER_DROP_INFO,
2706 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2707 	NETDEV_SVLAN_FILTER_DROP_INFO,
2708 };
2709 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2710 
2711 int register_netdevice_notifier(struct notifier_block *nb);
2712 int unregister_netdevice_notifier(struct notifier_block *nb);
2713 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2714 int unregister_netdevice_notifier_net(struct net *net,
2715 				      struct notifier_block *nb);
2716 int register_netdevice_notifier_dev_net(struct net_device *dev,
2717 					struct notifier_block *nb,
2718 					struct netdev_net_notifier *nn);
2719 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2720 					  struct notifier_block *nb,
2721 					  struct netdev_net_notifier *nn);
2722 
2723 struct netdev_notifier_info {
2724 	struct net_device	*dev;
2725 	struct netlink_ext_ack	*extack;
2726 };
2727 
2728 struct netdev_notifier_info_ext {
2729 	struct netdev_notifier_info info; /* must be first */
2730 	union {
2731 		u32 mtu;
2732 	} ext;
2733 };
2734 
2735 struct netdev_notifier_change_info {
2736 	struct netdev_notifier_info info; /* must be first */
2737 	unsigned int flags_changed;
2738 };
2739 
2740 struct netdev_notifier_changeupper_info {
2741 	struct netdev_notifier_info info; /* must be first */
2742 	struct net_device *upper_dev; /* new upper dev */
2743 	bool master; /* is upper dev master */
2744 	bool linking; /* is the notification for link or unlink */
2745 	void *upper_info; /* upper dev info */
2746 };
2747 
2748 struct netdev_notifier_changelowerstate_info {
2749 	struct netdev_notifier_info info; /* must be first */
2750 	void *lower_state_info; /* is lower dev state */
2751 };
2752 
2753 struct netdev_notifier_pre_changeaddr_info {
2754 	struct netdev_notifier_info info; /* must be first */
2755 	const unsigned char *dev_addr;
2756 };
2757 
2758 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2759 					     struct net_device *dev)
2760 {
2761 	info->dev = dev;
2762 	info->extack = NULL;
2763 }
2764 
2765 static inline struct net_device *
2766 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2767 {
2768 	return info->dev;
2769 }
2770 
2771 static inline struct netlink_ext_ack *
2772 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2773 {
2774 	return info->extack;
2775 }
2776 
2777 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2778 
2779 
2780 extern rwlock_t				dev_base_lock;		/* Device list lock */
2781 
2782 #define for_each_netdev(net, d)		\
2783 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2784 #define for_each_netdev_reverse(net, d)	\
2785 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2786 #define for_each_netdev_rcu(net, d)		\
2787 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2788 #define for_each_netdev_safe(net, d, n)	\
2789 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2790 #define for_each_netdev_continue(net, d)		\
2791 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2792 #define for_each_netdev_continue_reverse(net, d)		\
2793 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2794 						     dev_list)
2795 #define for_each_netdev_continue_rcu(net, d)		\
2796 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2797 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2798 		for_each_netdev_rcu(&init_net, slave)	\
2799 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2800 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2801 
2802 static inline struct net_device *next_net_device(struct net_device *dev)
2803 {
2804 	struct list_head *lh;
2805 	struct net *net;
2806 
2807 	net = dev_net(dev);
2808 	lh = dev->dev_list.next;
2809 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2810 }
2811 
2812 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2813 {
2814 	struct list_head *lh;
2815 	struct net *net;
2816 
2817 	net = dev_net(dev);
2818 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2819 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2820 }
2821 
2822 static inline struct net_device *first_net_device(struct net *net)
2823 {
2824 	return list_empty(&net->dev_base_head) ? NULL :
2825 		net_device_entry(net->dev_base_head.next);
2826 }
2827 
2828 static inline struct net_device *first_net_device_rcu(struct net *net)
2829 {
2830 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2831 
2832 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2833 }
2834 
2835 int netdev_boot_setup_check(struct net_device *dev);
2836 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2837 				       const char *hwaddr);
2838 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2839 void dev_add_pack(struct packet_type *pt);
2840 void dev_remove_pack(struct packet_type *pt);
2841 void __dev_remove_pack(struct packet_type *pt);
2842 void dev_add_offload(struct packet_offload *po);
2843 void dev_remove_offload(struct packet_offload *po);
2844 
2845 int dev_get_iflink(const struct net_device *dev);
2846 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2847 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2848 			  struct net_device_path_stack *stack);
2849 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2850 				      unsigned short mask);
2851 struct net_device *dev_get_by_name(struct net *net, const char *name);
2852 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2853 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2854 bool netdev_name_in_use(struct net *net, const char *name);
2855 int dev_alloc_name(struct net_device *dev, const char *name);
2856 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2857 void dev_close(struct net_device *dev);
2858 void dev_close_many(struct list_head *head, bool unlink);
2859 void dev_disable_lro(struct net_device *dev);
2860 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2861 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2862 		     struct net_device *sb_dev);
2863 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2864 		       struct net_device *sb_dev);
2865 
2866 int dev_queue_xmit(struct sk_buff *skb);
2867 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2868 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2869 
2870 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2871 {
2872 	int ret;
2873 
2874 	ret = __dev_direct_xmit(skb, queue_id);
2875 	if (!dev_xmit_complete(ret))
2876 		kfree_skb(skb);
2877 	return ret;
2878 }
2879 
2880 int register_netdevice(struct net_device *dev);
2881 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2882 void unregister_netdevice_many(struct list_head *head);
2883 static inline void unregister_netdevice(struct net_device *dev)
2884 {
2885 	unregister_netdevice_queue(dev, NULL);
2886 }
2887 
2888 int netdev_refcnt_read(const struct net_device *dev);
2889 void free_netdev(struct net_device *dev);
2890 void netdev_freemem(struct net_device *dev);
2891 int init_dummy_netdev(struct net_device *dev);
2892 
2893 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2894 					 struct sk_buff *skb,
2895 					 bool all_slaves);
2896 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
2897 					    struct sock *sk);
2898 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2899 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2900 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2901 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2902 int netdev_get_name(struct net *net, char *name, int ifindex);
2903 int dev_restart(struct net_device *dev);
2904 
2905 
2906 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2907 				  unsigned short type,
2908 				  const void *daddr, const void *saddr,
2909 				  unsigned int len)
2910 {
2911 	if (!dev->header_ops || !dev->header_ops->create)
2912 		return 0;
2913 
2914 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2915 }
2916 
2917 static inline int dev_parse_header(const struct sk_buff *skb,
2918 				   unsigned char *haddr)
2919 {
2920 	const struct net_device *dev = skb->dev;
2921 
2922 	if (!dev->header_ops || !dev->header_ops->parse)
2923 		return 0;
2924 	return dev->header_ops->parse(skb, haddr);
2925 }
2926 
2927 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2928 {
2929 	const struct net_device *dev = skb->dev;
2930 
2931 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
2932 		return 0;
2933 	return dev->header_ops->parse_protocol(skb);
2934 }
2935 
2936 /* ll_header must have at least hard_header_len allocated */
2937 static inline bool dev_validate_header(const struct net_device *dev,
2938 				       char *ll_header, int len)
2939 {
2940 	if (likely(len >= dev->hard_header_len))
2941 		return true;
2942 	if (len < dev->min_header_len)
2943 		return false;
2944 
2945 	if (capable(CAP_SYS_RAWIO)) {
2946 		memset(ll_header + len, 0, dev->hard_header_len - len);
2947 		return true;
2948 	}
2949 
2950 	if (dev->header_ops && dev->header_ops->validate)
2951 		return dev->header_ops->validate(ll_header, len);
2952 
2953 	return false;
2954 }
2955 
2956 static inline bool dev_has_header(const struct net_device *dev)
2957 {
2958 	return dev->header_ops && dev->header_ops->create;
2959 }
2960 
2961 #ifdef CONFIG_NET_FLOW_LIMIT
2962 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2963 struct sd_flow_limit {
2964 	u64			count;
2965 	unsigned int		num_buckets;
2966 	unsigned int		history_head;
2967 	u16			history[FLOW_LIMIT_HISTORY];
2968 	u8			buckets[];
2969 };
2970 
2971 extern int netdev_flow_limit_table_len;
2972 #endif /* CONFIG_NET_FLOW_LIMIT */
2973 
2974 /*
2975  * Incoming packets are placed on per-CPU queues
2976  */
2977 struct softnet_data {
2978 	struct list_head	poll_list;
2979 	struct sk_buff_head	process_queue;
2980 
2981 	/* stats */
2982 	unsigned int		processed;
2983 	unsigned int		time_squeeze;
2984 	unsigned int		received_rps;
2985 #ifdef CONFIG_RPS
2986 	struct softnet_data	*rps_ipi_list;
2987 #endif
2988 #ifdef CONFIG_NET_FLOW_LIMIT
2989 	struct sd_flow_limit __rcu *flow_limit;
2990 #endif
2991 	struct Qdisc		*output_queue;
2992 	struct Qdisc		**output_queue_tailp;
2993 	struct sk_buff		*completion_queue;
2994 #ifdef CONFIG_XFRM_OFFLOAD
2995 	struct sk_buff_head	xfrm_backlog;
2996 #endif
2997 	/* written and read only by owning cpu: */
2998 	struct {
2999 		u16 recursion;
3000 		u8  more;
3001 	} xmit;
3002 #ifdef CONFIG_RPS
3003 	/* input_queue_head should be written by cpu owning this struct,
3004 	 * and only read by other cpus. Worth using a cache line.
3005 	 */
3006 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3007 
3008 	/* Elements below can be accessed between CPUs for RPS/RFS */
3009 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3010 	struct softnet_data	*rps_ipi_next;
3011 	unsigned int		cpu;
3012 	unsigned int		input_queue_tail;
3013 #endif
3014 	unsigned int		dropped;
3015 	struct sk_buff_head	input_pkt_queue;
3016 	struct napi_struct	backlog;
3017 
3018 };
3019 
3020 static inline void input_queue_head_incr(struct softnet_data *sd)
3021 {
3022 #ifdef CONFIG_RPS
3023 	sd->input_queue_head++;
3024 #endif
3025 }
3026 
3027 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3028 					      unsigned int *qtail)
3029 {
3030 #ifdef CONFIG_RPS
3031 	*qtail = ++sd->input_queue_tail;
3032 #endif
3033 }
3034 
3035 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3036 
3037 static inline int dev_recursion_level(void)
3038 {
3039 	return this_cpu_read(softnet_data.xmit.recursion);
3040 }
3041 
3042 #define XMIT_RECURSION_LIMIT	8
3043 static inline bool dev_xmit_recursion(void)
3044 {
3045 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3046 			XMIT_RECURSION_LIMIT);
3047 }
3048 
3049 static inline void dev_xmit_recursion_inc(void)
3050 {
3051 	__this_cpu_inc(softnet_data.xmit.recursion);
3052 }
3053 
3054 static inline void dev_xmit_recursion_dec(void)
3055 {
3056 	__this_cpu_dec(softnet_data.xmit.recursion);
3057 }
3058 
3059 void __netif_schedule(struct Qdisc *q);
3060 void netif_schedule_queue(struct netdev_queue *txq);
3061 
3062 static inline void netif_tx_schedule_all(struct net_device *dev)
3063 {
3064 	unsigned int i;
3065 
3066 	for (i = 0; i < dev->num_tx_queues; i++)
3067 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3068 }
3069 
3070 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3071 {
3072 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3073 }
3074 
3075 /**
3076  *	netif_start_queue - allow transmit
3077  *	@dev: network device
3078  *
3079  *	Allow upper layers to call the device hard_start_xmit routine.
3080  */
3081 static inline void netif_start_queue(struct net_device *dev)
3082 {
3083 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3084 }
3085 
3086 static inline void netif_tx_start_all_queues(struct net_device *dev)
3087 {
3088 	unsigned int i;
3089 
3090 	for (i = 0; i < dev->num_tx_queues; i++) {
3091 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3092 		netif_tx_start_queue(txq);
3093 	}
3094 }
3095 
3096 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3097 
3098 /**
3099  *	netif_wake_queue - restart transmit
3100  *	@dev: network device
3101  *
3102  *	Allow upper layers to call the device hard_start_xmit routine.
3103  *	Used for flow control when transmit resources are available.
3104  */
3105 static inline void netif_wake_queue(struct net_device *dev)
3106 {
3107 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3108 }
3109 
3110 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3111 {
3112 	unsigned int i;
3113 
3114 	for (i = 0; i < dev->num_tx_queues; i++) {
3115 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3116 		netif_tx_wake_queue(txq);
3117 	}
3118 }
3119 
3120 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3121 {
3122 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3123 }
3124 
3125 /**
3126  *	netif_stop_queue - stop transmitted packets
3127  *	@dev: network device
3128  *
3129  *	Stop upper layers calling the device hard_start_xmit routine.
3130  *	Used for flow control when transmit resources are unavailable.
3131  */
3132 static inline void netif_stop_queue(struct net_device *dev)
3133 {
3134 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3135 }
3136 
3137 void netif_tx_stop_all_queues(struct net_device *dev);
3138 
3139 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3140 {
3141 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3142 }
3143 
3144 /**
3145  *	netif_queue_stopped - test if transmit queue is flowblocked
3146  *	@dev: network device
3147  *
3148  *	Test if transmit queue on device is currently unable to send.
3149  */
3150 static inline bool netif_queue_stopped(const struct net_device *dev)
3151 {
3152 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3153 }
3154 
3155 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3156 {
3157 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3158 }
3159 
3160 static inline bool
3161 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3162 {
3163 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3164 }
3165 
3166 static inline bool
3167 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3168 {
3169 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3170 }
3171 
3172 /**
3173  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3174  *	@dev_queue: pointer to transmit queue
3175  *	@min_limit: dql minimum limit
3176  *
3177  * Forces xmit_more() to return true until the minimum threshold
3178  * defined by @min_limit is reached (or until the tx queue is
3179  * empty). Warning: to be use with care, misuse will impact the
3180  * latency.
3181  */
3182 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3183 						  unsigned int min_limit)
3184 {
3185 #ifdef CONFIG_BQL
3186 	dev_queue->dql.min_limit = min_limit;
3187 #endif
3188 }
3189 
3190 /**
3191  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3192  *	@dev_queue: pointer to transmit queue
3193  *
3194  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3195  * to give appropriate hint to the CPU.
3196  */
3197 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3198 {
3199 #ifdef CONFIG_BQL
3200 	prefetchw(&dev_queue->dql.num_queued);
3201 #endif
3202 }
3203 
3204 /**
3205  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3206  *	@dev_queue: pointer to transmit queue
3207  *
3208  * BQL enabled drivers might use this helper in their TX completion path,
3209  * to give appropriate hint to the CPU.
3210  */
3211 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3212 {
3213 #ifdef CONFIG_BQL
3214 	prefetchw(&dev_queue->dql.limit);
3215 #endif
3216 }
3217 
3218 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3219 					unsigned int bytes)
3220 {
3221 #ifdef CONFIG_BQL
3222 	dql_queued(&dev_queue->dql, bytes);
3223 
3224 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3225 		return;
3226 
3227 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3228 
3229 	/*
3230 	 * The XOFF flag must be set before checking the dql_avail below,
3231 	 * because in netdev_tx_completed_queue we update the dql_completed
3232 	 * before checking the XOFF flag.
3233 	 */
3234 	smp_mb();
3235 
3236 	/* check again in case another CPU has just made room avail */
3237 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3238 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3239 #endif
3240 }
3241 
3242 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3243  * that they should not test BQL status themselves.
3244  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3245  * skb of a batch.
3246  * Returns true if the doorbell must be used to kick the NIC.
3247  */
3248 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3249 					  unsigned int bytes,
3250 					  bool xmit_more)
3251 {
3252 	if (xmit_more) {
3253 #ifdef CONFIG_BQL
3254 		dql_queued(&dev_queue->dql, bytes);
3255 #endif
3256 		return netif_tx_queue_stopped(dev_queue);
3257 	}
3258 	netdev_tx_sent_queue(dev_queue, bytes);
3259 	return true;
3260 }
3261 
3262 /**
3263  * 	netdev_sent_queue - report the number of bytes queued to hardware
3264  * 	@dev: network device
3265  * 	@bytes: number of bytes queued to the hardware device queue
3266  *
3267  * 	Report the number of bytes queued for sending/completion to the network
3268  * 	device hardware queue. @bytes should be a good approximation and should
3269  * 	exactly match netdev_completed_queue() @bytes
3270  */
3271 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3272 {
3273 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3274 }
3275 
3276 static inline bool __netdev_sent_queue(struct net_device *dev,
3277 				       unsigned int bytes,
3278 				       bool xmit_more)
3279 {
3280 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3281 				      xmit_more);
3282 }
3283 
3284 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3285 					     unsigned int pkts, unsigned int bytes)
3286 {
3287 #ifdef CONFIG_BQL
3288 	if (unlikely(!bytes))
3289 		return;
3290 
3291 	dql_completed(&dev_queue->dql, bytes);
3292 
3293 	/*
3294 	 * Without the memory barrier there is a small possiblity that
3295 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3296 	 * be stopped forever
3297 	 */
3298 	smp_mb();
3299 
3300 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3301 		return;
3302 
3303 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3304 		netif_schedule_queue(dev_queue);
3305 #endif
3306 }
3307 
3308 /**
3309  * 	netdev_completed_queue - report bytes and packets completed by device
3310  * 	@dev: network device
3311  * 	@pkts: actual number of packets sent over the medium
3312  * 	@bytes: actual number of bytes sent over the medium
3313  *
3314  * 	Report the number of bytes and packets transmitted by the network device
3315  * 	hardware queue over the physical medium, @bytes must exactly match the
3316  * 	@bytes amount passed to netdev_sent_queue()
3317  */
3318 static inline void netdev_completed_queue(struct net_device *dev,
3319 					  unsigned int pkts, unsigned int bytes)
3320 {
3321 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3322 }
3323 
3324 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3325 {
3326 #ifdef CONFIG_BQL
3327 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3328 	dql_reset(&q->dql);
3329 #endif
3330 }
3331 
3332 /**
3333  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3334  * 	@dev_queue: network device
3335  *
3336  * 	Reset the bytes and packet count of a network device and clear the
3337  * 	software flow control OFF bit for this network device
3338  */
3339 static inline void netdev_reset_queue(struct net_device *dev_queue)
3340 {
3341 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3342 }
3343 
3344 /**
3345  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3346  * 	@dev: network device
3347  * 	@queue_index: given tx queue index
3348  *
3349  * 	Returns 0 if given tx queue index >= number of device tx queues,
3350  * 	otherwise returns the originally passed tx queue index.
3351  */
3352 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3353 {
3354 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3355 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3356 				     dev->name, queue_index,
3357 				     dev->real_num_tx_queues);
3358 		return 0;
3359 	}
3360 
3361 	return queue_index;
3362 }
3363 
3364 /**
3365  *	netif_running - test if up
3366  *	@dev: network device
3367  *
3368  *	Test if the device has been brought up.
3369  */
3370 static inline bool netif_running(const struct net_device *dev)
3371 {
3372 	return test_bit(__LINK_STATE_START, &dev->state);
3373 }
3374 
3375 /*
3376  * Routines to manage the subqueues on a device.  We only need start,
3377  * stop, and a check if it's stopped.  All other device management is
3378  * done at the overall netdevice level.
3379  * Also test the device if we're multiqueue.
3380  */
3381 
3382 /**
3383  *	netif_start_subqueue - allow sending packets on subqueue
3384  *	@dev: network device
3385  *	@queue_index: sub queue index
3386  *
3387  * Start individual transmit queue of a device with multiple transmit queues.
3388  */
3389 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3390 {
3391 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3392 
3393 	netif_tx_start_queue(txq);
3394 }
3395 
3396 /**
3397  *	netif_stop_subqueue - stop sending packets on subqueue
3398  *	@dev: network device
3399  *	@queue_index: sub queue index
3400  *
3401  * Stop individual transmit queue of a device with multiple transmit queues.
3402  */
3403 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3404 {
3405 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3406 	netif_tx_stop_queue(txq);
3407 }
3408 
3409 /**
3410  *	__netif_subqueue_stopped - test status of subqueue
3411  *	@dev: network device
3412  *	@queue_index: sub queue index
3413  *
3414  * Check individual transmit queue of a device with multiple transmit queues.
3415  */
3416 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3417 					    u16 queue_index)
3418 {
3419 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3420 
3421 	return netif_tx_queue_stopped(txq);
3422 }
3423 
3424 /**
3425  *	netif_subqueue_stopped - test status of subqueue
3426  *	@dev: network device
3427  *	@skb: sub queue buffer pointer
3428  *
3429  * Check individual transmit queue of a device with multiple transmit queues.
3430  */
3431 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3432 					  struct sk_buff *skb)
3433 {
3434 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3435 }
3436 
3437 /**
3438  *	netif_wake_subqueue - allow sending packets on subqueue
3439  *	@dev: network device
3440  *	@queue_index: sub queue index
3441  *
3442  * Resume individual transmit queue of a device with multiple transmit queues.
3443  */
3444 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3445 {
3446 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3447 
3448 	netif_tx_wake_queue(txq);
3449 }
3450 
3451 #ifdef CONFIG_XPS
3452 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3453 			u16 index);
3454 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3455 			  u16 index, enum xps_map_type type);
3456 
3457 /**
3458  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3459  *	@j: CPU/Rx queue index
3460  *	@mask: bitmask of all cpus/rx queues
3461  *	@nr_bits: number of bits in the bitmask
3462  *
3463  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3464  */
3465 static inline bool netif_attr_test_mask(unsigned long j,
3466 					const unsigned long *mask,
3467 					unsigned int nr_bits)
3468 {
3469 	cpu_max_bits_warn(j, nr_bits);
3470 	return test_bit(j, mask);
3471 }
3472 
3473 /**
3474  *	netif_attr_test_online - Test for online CPU/Rx queue
3475  *	@j: CPU/Rx queue index
3476  *	@online_mask: bitmask for CPUs/Rx queues that are online
3477  *	@nr_bits: number of bits in the bitmask
3478  *
3479  * Returns true if a CPU/Rx queue is online.
3480  */
3481 static inline bool netif_attr_test_online(unsigned long j,
3482 					  const unsigned long *online_mask,
3483 					  unsigned int nr_bits)
3484 {
3485 	cpu_max_bits_warn(j, nr_bits);
3486 
3487 	if (online_mask)
3488 		return test_bit(j, online_mask);
3489 
3490 	return (j < nr_bits);
3491 }
3492 
3493 /**
3494  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3495  *	@n: CPU/Rx queue index
3496  *	@srcp: the cpumask/Rx queue mask pointer
3497  *	@nr_bits: number of bits in the bitmask
3498  *
3499  * Returns >= nr_bits if no further CPUs/Rx queues set.
3500  */
3501 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3502 					       unsigned int nr_bits)
3503 {
3504 	/* -1 is a legal arg here. */
3505 	if (n != -1)
3506 		cpu_max_bits_warn(n, nr_bits);
3507 
3508 	if (srcp)
3509 		return find_next_bit(srcp, nr_bits, n + 1);
3510 
3511 	return n + 1;
3512 }
3513 
3514 /**
3515  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3516  *	@n: CPU/Rx queue index
3517  *	@src1p: the first CPUs/Rx queues mask pointer
3518  *	@src2p: the second CPUs/Rx queues mask pointer
3519  *	@nr_bits: number of bits in the bitmask
3520  *
3521  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3522  */
3523 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3524 					  const unsigned long *src2p,
3525 					  unsigned int nr_bits)
3526 {
3527 	/* -1 is a legal arg here. */
3528 	if (n != -1)
3529 		cpu_max_bits_warn(n, nr_bits);
3530 
3531 	if (src1p && src2p)
3532 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3533 	else if (src1p)
3534 		return find_next_bit(src1p, nr_bits, n + 1);
3535 	else if (src2p)
3536 		return find_next_bit(src2p, nr_bits, n + 1);
3537 
3538 	return n + 1;
3539 }
3540 #else
3541 static inline int netif_set_xps_queue(struct net_device *dev,
3542 				      const struct cpumask *mask,
3543 				      u16 index)
3544 {
3545 	return 0;
3546 }
3547 
3548 static inline int __netif_set_xps_queue(struct net_device *dev,
3549 					const unsigned long *mask,
3550 					u16 index, enum xps_map_type type)
3551 {
3552 	return 0;
3553 }
3554 #endif
3555 
3556 /**
3557  *	netif_is_multiqueue - test if device has multiple transmit queues
3558  *	@dev: network device
3559  *
3560  * Check if device has multiple transmit queues
3561  */
3562 static inline bool netif_is_multiqueue(const struct net_device *dev)
3563 {
3564 	return dev->num_tx_queues > 1;
3565 }
3566 
3567 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3568 
3569 #ifdef CONFIG_SYSFS
3570 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3571 #else
3572 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3573 						unsigned int rxqs)
3574 {
3575 	dev->real_num_rx_queues = rxqs;
3576 	return 0;
3577 }
3578 #endif
3579 int netif_set_real_num_queues(struct net_device *dev,
3580 			      unsigned int txq, unsigned int rxq);
3581 
3582 static inline struct netdev_rx_queue *
3583 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3584 {
3585 	return dev->_rx + rxq;
3586 }
3587 
3588 #ifdef CONFIG_SYSFS
3589 static inline unsigned int get_netdev_rx_queue_index(
3590 		struct netdev_rx_queue *queue)
3591 {
3592 	struct net_device *dev = queue->dev;
3593 	int index = queue - dev->_rx;
3594 
3595 	BUG_ON(index >= dev->num_rx_queues);
3596 	return index;
3597 }
3598 #endif
3599 
3600 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3601 int netif_get_num_default_rss_queues(void);
3602 
3603 enum skb_free_reason {
3604 	SKB_REASON_CONSUMED,
3605 	SKB_REASON_DROPPED,
3606 };
3607 
3608 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3609 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3610 
3611 /*
3612  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3613  * interrupt context or with hardware interrupts being disabled.
3614  * (in_hardirq() || irqs_disabled())
3615  *
3616  * We provide four helpers that can be used in following contexts :
3617  *
3618  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3619  *  replacing kfree_skb(skb)
3620  *
3621  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3622  *  Typically used in place of consume_skb(skb) in TX completion path
3623  *
3624  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3625  *  replacing kfree_skb(skb)
3626  *
3627  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3628  *  and consumed a packet. Used in place of consume_skb(skb)
3629  */
3630 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3631 {
3632 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3633 }
3634 
3635 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3636 {
3637 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3638 }
3639 
3640 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3641 {
3642 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3643 }
3644 
3645 static inline void dev_consume_skb_any(struct sk_buff *skb)
3646 {
3647 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3648 }
3649 
3650 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3651 			     struct bpf_prog *xdp_prog);
3652 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3653 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3654 int netif_rx(struct sk_buff *skb);
3655 int netif_rx_ni(struct sk_buff *skb);
3656 int netif_rx_any_context(struct sk_buff *skb);
3657 int netif_receive_skb(struct sk_buff *skb);
3658 int netif_receive_skb_core(struct sk_buff *skb);
3659 void netif_receive_skb_list_internal(struct list_head *head);
3660 void netif_receive_skb_list(struct list_head *head);
3661 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3662 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3663 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3664 gro_result_t napi_gro_frags(struct napi_struct *napi);
3665 struct packet_offload *gro_find_receive_by_type(__be16 type);
3666 struct packet_offload *gro_find_complete_by_type(__be16 type);
3667 
3668 static inline void napi_free_frags(struct napi_struct *napi)
3669 {
3670 	kfree_skb(napi->skb);
3671 	napi->skb = NULL;
3672 }
3673 
3674 bool netdev_is_rx_handler_busy(struct net_device *dev);
3675 int netdev_rx_handler_register(struct net_device *dev,
3676 			       rx_handler_func_t *rx_handler,
3677 			       void *rx_handler_data);
3678 void netdev_rx_handler_unregister(struct net_device *dev);
3679 
3680 bool dev_valid_name(const char *name);
3681 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3682 {
3683 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3684 }
3685 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3686 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3687 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3688 		void __user *data, bool *need_copyout);
3689 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3690 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3691 unsigned int dev_get_flags(const struct net_device *);
3692 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3693 		       struct netlink_ext_ack *extack);
3694 int dev_change_flags(struct net_device *dev, unsigned int flags,
3695 		     struct netlink_ext_ack *extack);
3696 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3697 			unsigned int gchanges);
3698 int dev_change_name(struct net_device *, const char *);
3699 int dev_set_alias(struct net_device *, const char *, size_t);
3700 int dev_get_alias(const struct net_device *, char *, size_t);
3701 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3702 			       const char *pat, int new_ifindex);
3703 static inline
3704 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3705 			     const char *pat)
3706 {
3707 	return __dev_change_net_namespace(dev, net, pat, 0);
3708 }
3709 int __dev_set_mtu(struct net_device *, int);
3710 int dev_validate_mtu(struct net_device *dev, int mtu,
3711 		     struct netlink_ext_ack *extack);
3712 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3713 		    struct netlink_ext_ack *extack);
3714 int dev_set_mtu(struct net_device *, int);
3715 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3716 void dev_set_group(struct net_device *, int);
3717 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3718 			      struct netlink_ext_ack *extack);
3719 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3720 			struct netlink_ext_ack *extack);
3721 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3722 			     struct netlink_ext_ack *extack);
3723 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3724 int dev_change_carrier(struct net_device *, bool new_carrier);
3725 int dev_get_phys_port_id(struct net_device *dev,
3726 			 struct netdev_phys_item_id *ppid);
3727 int dev_get_phys_port_name(struct net_device *dev,
3728 			   char *name, size_t len);
3729 int dev_get_port_parent_id(struct net_device *dev,
3730 			   struct netdev_phys_item_id *ppid, bool recurse);
3731 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3732 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3733 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3734 				  u32 value);
3735 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3736 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3737 				    struct netdev_queue *txq, int *ret);
3738 
3739 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3740 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3741 		      int fd, int expected_fd, u32 flags);
3742 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3743 u8 dev_xdp_prog_count(struct net_device *dev);
3744 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3745 
3746 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3747 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3748 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3749 bool is_skb_forwardable(const struct net_device *dev,
3750 			const struct sk_buff *skb);
3751 
3752 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3753 						 const struct sk_buff *skb,
3754 						 const bool check_mtu)
3755 {
3756 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3757 	unsigned int len;
3758 
3759 	if (!(dev->flags & IFF_UP))
3760 		return false;
3761 
3762 	if (!check_mtu)
3763 		return true;
3764 
3765 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3766 	if (skb->len <= len)
3767 		return true;
3768 
3769 	/* if TSO is enabled, we don't care about the length as the packet
3770 	 * could be forwarded without being segmented before
3771 	 */
3772 	if (skb_is_gso(skb))
3773 		return true;
3774 
3775 	return false;
3776 }
3777 
3778 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3779 					       struct sk_buff *skb,
3780 					       const bool check_mtu)
3781 {
3782 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3783 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3784 		atomic_long_inc(&dev->rx_dropped);
3785 		kfree_skb(skb);
3786 		return NET_RX_DROP;
3787 	}
3788 
3789 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3790 	skb->priority = 0;
3791 	return 0;
3792 }
3793 
3794 bool dev_nit_active(struct net_device *dev);
3795 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3796 
3797 extern int		netdev_budget;
3798 extern unsigned int	netdev_budget_usecs;
3799 
3800 /* Called by rtnetlink.c:rtnl_unlock() */
3801 void netdev_run_todo(void);
3802 
3803 /**
3804  *	dev_put - release reference to device
3805  *	@dev: network device
3806  *
3807  * Release reference to device to allow it to be freed.
3808  */
3809 static inline void dev_put(struct net_device *dev)
3810 {
3811 	if (dev) {
3812 #ifdef CONFIG_PCPU_DEV_REFCNT
3813 		this_cpu_dec(*dev->pcpu_refcnt);
3814 #else
3815 		refcount_dec(&dev->dev_refcnt);
3816 #endif
3817 	}
3818 }
3819 
3820 /**
3821  *	dev_hold - get reference to device
3822  *	@dev: network device
3823  *
3824  * Hold reference to device to keep it from being freed.
3825  */
3826 static inline void dev_hold(struct net_device *dev)
3827 {
3828 	if (dev) {
3829 #ifdef CONFIG_PCPU_DEV_REFCNT
3830 		this_cpu_inc(*dev->pcpu_refcnt);
3831 #else
3832 		refcount_inc(&dev->dev_refcnt);
3833 #endif
3834 	}
3835 }
3836 
3837 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3838  * and _off may be called from IRQ context, but it is caller
3839  * who is responsible for serialization of these calls.
3840  *
3841  * The name carrier is inappropriate, these functions should really be
3842  * called netif_lowerlayer_*() because they represent the state of any
3843  * kind of lower layer not just hardware media.
3844  */
3845 
3846 void linkwatch_init_dev(struct net_device *dev);
3847 void linkwatch_fire_event(struct net_device *dev);
3848 void linkwatch_forget_dev(struct net_device *dev);
3849 
3850 /**
3851  *	netif_carrier_ok - test if carrier present
3852  *	@dev: network device
3853  *
3854  * Check if carrier is present on device
3855  */
3856 static inline bool netif_carrier_ok(const struct net_device *dev)
3857 {
3858 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3859 }
3860 
3861 unsigned long dev_trans_start(struct net_device *dev);
3862 
3863 void __netdev_watchdog_up(struct net_device *dev);
3864 
3865 void netif_carrier_on(struct net_device *dev);
3866 void netif_carrier_off(struct net_device *dev);
3867 void netif_carrier_event(struct net_device *dev);
3868 
3869 /**
3870  *	netif_dormant_on - mark device as dormant.
3871  *	@dev: network device
3872  *
3873  * Mark device as dormant (as per RFC2863).
3874  *
3875  * The dormant state indicates that the relevant interface is not
3876  * actually in a condition to pass packets (i.e., it is not 'up') but is
3877  * in a "pending" state, waiting for some external event.  For "on-
3878  * demand" interfaces, this new state identifies the situation where the
3879  * interface is waiting for events to place it in the up state.
3880  */
3881 static inline void netif_dormant_on(struct net_device *dev)
3882 {
3883 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3884 		linkwatch_fire_event(dev);
3885 }
3886 
3887 /**
3888  *	netif_dormant_off - set device as not dormant.
3889  *	@dev: network device
3890  *
3891  * Device is not in dormant state.
3892  */
3893 static inline void netif_dormant_off(struct net_device *dev)
3894 {
3895 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3896 		linkwatch_fire_event(dev);
3897 }
3898 
3899 /**
3900  *	netif_dormant - test if device is dormant
3901  *	@dev: network device
3902  *
3903  * Check if device is dormant.
3904  */
3905 static inline bool netif_dormant(const struct net_device *dev)
3906 {
3907 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3908 }
3909 
3910 
3911 /**
3912  *	netif_testing_on - mark device as under test.
3913  *	@dev: network device
3914  *
3915  * Mark device as under test (as per RFC2863).
3916  *
3917  * The testing state indicates that some test(s) must be performed on
3918  * the interface. After completion, of the test, the interface state
3919  * will change to up, dormant, or down, as appropriate.
3920  */
3921 static inline void netif_testing_on(struct net_device *dev)
3922 {
3923 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
3924 		linkwatch_fire_event(dev);
3925 }
3926 
3927 /**
3928  *	netif_testing_off - set device as not under test.
3929  *	@dev: network device
3930  *
3931  * Device is not in testing state.
3932  */
3933 static inline void netif_testing_off(struct net_device *dev)
3934 {
3935 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
3936 		linkwatch_fire_event(dev);
3937 }
3938 
3939 /**
3940  *	netif_testing - test if device is under test
3941  *	@dev: network device
3942  *
3943  * Check if device is under test
3944  */
3945 static inline bool netif_testing(const struct net_device *dev)
3946 {
3947 	return test_bit(__LINK_STATE_TESTING, &dev->state);
3948 }
3949 
3950 
3951 /**
3952  *	netif_oper_up - test if device is operational
3953  *	@dev: network device
3954  *
3955  * Check if carrier is operational
3956  */
3957 static inline bool netif_oper_up(const struct net_device *dev)
3958 {
3959 	return (dev->operstate == IF_OPER_UP ||
3960 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3961 }
3962 
3963 /**
3964  *	netif_device_present - is device available or removed
3965  *	@dev: network device
3966  *
3967  * Check if device has not been removed from system.
3968  */
3969 static inline bool netif_device_present(const struct net_device *dev)
3970 {
3971 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3972 }
3973 
3974 void netif_device_detach(struct net_device *dev);
3975 
3976 void netif_device_attach(struct net_device *dev);
3977 
3978 /*
3979  * Network interface message level settings
3980  */
3981 
3982 enum {
3983 	NETIF_MSG_DRV_BIT,
3984 	NETIF_MSG_PROBE_BIT,
3985 	NETIF_MSG_LINK_BIT,
3986 	NETIF_MSG_TIMER_BIT,
3987 	NETIF_MSG_IFDOWN_BIT,
3988 	NETIF_MSG_IFUP_BIT,
3989 	NETIF_MSG_RX_ERR_BIT,
3990 	NETIF_MSG_TX_ERR_BIT,
3991 	NETIF_MSG_TX_QUEUED_BIT,
3992 	NETIF_MSG_INTR_BIT,
3993 	NETIF_MSG_TX_DONE_BIT,
3994 	NETIF_MSG_RX_STATUS_BIT,
3995 	NETIF_MSG_PKTDATA_BIT,
3996 	NETIF_MSG_HW_BIT,
3997 	NETIF_MSG_WOL_BIT,
3998 
3999 	/* When you add a new bit above, update netif_msg_class_names array
4000 	 * in net/ethtool/common.c
4001 	 */
4002 	NETIF_MSG_CLASS_COUNT,
4003 };
4004 /* Both ethtool_ops interface and internal driver implementation use u32 */
4005 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4006 
4007 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4008 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4009 
4010 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4011 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4012 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4013 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4014 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4015 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4016 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4017 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4018 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4019 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4020 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4021 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4022 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4023 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4024 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4025 
4026 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4027 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4028 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4029 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4030 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4031 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4032 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4033 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4034 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4035 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4036 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4037 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4038 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4039 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4040 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4041 
4042 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4043 {
4044 	/* use default */
4045 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4046 		return default_msg_enable_bits;
4047 	if (debug_value == 0)	/* no output */
4048 		return 0;
4049 	/* set low N bits */
4050 	return (1U << debug_value) - 1;
4051 }
4052 
4053 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4054 {
4055 	spin_lock(&txq->_xmit_lock);
4056 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4057 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4058 }
4059 
4060 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4061 {
4062 	__acquire(&txq->_xmit_lock);
4063 	return true;
4064 }
4065 
4066 static inline void __netif_tx_release(struct netdev_queue *txq)
4067 {
4068 	__release(&txq->_xmit_lock);
4069 }
4070 
4071 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4072 {
4073 	spin_lock_bh(&txq->_xmit_lock);
4074 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4075 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4076 }
4077 
4078 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4079 {
4080 	bool ok = spin_trylock(&txq->_xmit_lock);
4081 
4082 	if (likely(ok)) {
4083 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4084 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4085 	}
4086 	return ok;
4087 }
4088 
4089 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4090 {
4091 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4092 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4093 	spin_unlock(&txq->_xmit_lock);
4094 }
4095 
4096 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4097 {
4098 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4099 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4100 	spin_unlock_bh(&txq->_xmit_lock);
4101 }
4102 
4103 /*
4104  * txq->trans_start can be read locklessly from dev_watchdog()
4105  */
4106 static inline void txq_trans_update(struct netdev_queue *txq)
4107 {
4108 	if (txq->xmit_lock_owner != -1)
4109 		WRITE_ONCE(txq->trans_start, jiffies);
4110 }
4111 
4112 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4113 {
4114 	unsigned long now = jiffies;
4115 
4116 	if (READ_ONCE(txq->trans_start) != now)
4117 		WRITE_ONCE(txq->trans_start, now);
4118 }
4119 
4120 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4121 static inline void netif_trans_update(struct net_device *dev)
4122 {
4123 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4124 
4125 	txq_trans_cond_update(txq);
4126 }
4127 
4128 /**
4129  *	netif_tx_lock - grab network device transmit lock
4130  *	@dev: network device
4131  *
4132  * Get network device transmit lock
4133  */
4134 void netif_tx_lock(struct net_device *dev);
4135 
4136 static inline void netif_tx_lock_bh(struct net_device *dev)
4137 {
4138 	local_bh_disable();
4139 	netif_tx_lock(dev);
4140 }
4141 
4142 void netif_tx_unlock(struct net_device *dev);
4143 
4144 static inline void netif_tx_unlock_bh(struct net_device *dev)
4145 {
4146 	netif_tx_unlock(dev);
4147 	local_bh_enable();
4148 }
4149 
4150 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4151 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4152 		__netif_tx_lock(txq, cpu);		\
4153 	} else {					\
4154 		__netif_tx_acquire(txq);		\
4155 	}						\
4156 }
4157 
4158 #define HARD_TX_TRYLOCK(dev, txq)			\
4159 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4160 		__netif_tx_trylock(txq) :		\
4161 		__netif_tx_acquire(txq))
4162 
4163 #define HARD_TX_UNLOCK(dev, txq) {			\
4164 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4165 		__netif_tx_unlock(txq);			\
4166 	} else {					\
4167 		__netif_tx_release(txq);		\
4168 	}						\
4169 }
4170 
4171 static inline void netif_tx_disable(struct net_device *dev)
4172 {
4173 	unsigned int i;
4174 	int cpu;
4175 
4176 	local_bh_disable();
4177 	cpu = smp_processor_id();
4178 	spin_lock(&dev->tx_global_lock);
4179 	for (i = 0; i < dev->num_tx_queues; i++) {
4180 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4181 
4182 		__netif_tx_lock(txq, cpu);
4183 		netif_tx_stop_queue(txq);
4184 		__netif_tx_unlock(txq);
4185 	}
4186 	spin_unlock(&dev->tx_global_lock);
4187 	local_bh_enable();
4188 }
4189 
4190 static inline void netif_addr_lock(struct net_device *dev)
4191 {
4192 	unsigned char nest_level = 0;
4193 
4194 #ifdef CONFIG_LOCKDEP
4195 	nest_level = dev->nested_level;
4196 #endif
4197 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4198 }
4199 
4200 static inline void netif_addr_lock_bh(struct net_device *dev)
4201 {
4202 	unsigned char nest_level = 0;
4203 
4204 #ifdef CONFIG_LOCKDEP
4205 	nest_level = dev->nested_level;
4206 #endif
4207 	local_bh_disable();
4208 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4209 }
4210 
4211 static inline void netif_addr_unlock(struct net_device *dev)
4212 {
4213 	spin_unlock(&dev->addr_list_lock);
4214 }
4215 
4216 static inline void netif_addr_unlock_bh(struct net_device *dev)
4217 {
4218 	spin_unlock_bh(&dev->addr_list_lock);
4219 }
4220 
4221 /*
4222  * dev_addrs walker. Should be used only for read access. Call with
4223  * rcu_read_lock held.
4224  */
4225 #define for_each_dev_addr(dev, ha) \
4226 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4227 
4228 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4229 
4230 void ether_setup(struct net_device *dev);
4231 
4232 /* Support for loadable net-drivers */
4233 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4234 				    unsigned char name_assign_type,
4235 				    void (*setup)(struct net_device *),
4236 				    unsigned int txqs, unsigned int rxqs);
4237 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4238 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4239 
4240 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4241 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4242 			 count)
4243 
4244 int register_netdev(struct net_device *dev);
4245 void unregister_netdev(struct net_device *dev);
4246 
4247 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4248 
4249 /* General hardware address lists handling functions */
4250 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4251 		   struct netdev_hw_addr_list *from_list, int addr_len);
4252 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4253 		      struct netdev_hw_addr_list *from_list, int addr_len);
4254 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4255 		       struct net_device *dev,
4256 		       int (*sync)(struct net_device *, const unsigned char *),
4257 		       int (*unsync)(struct net_device *,
4258 				     const unsigned char *));
4259 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4260 			   struct net_device *dev,
4261 			   int (*sync)(struct net_device *,
4262 				       const unsigned char *, int),
4263 			   int (*unsync)(struct net_device *,
4264 					 const unsigned char *, int));
4265 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4266 			      struct net_device *dev,
4267 			      int (*unsync)(struct net_device *,
4268 					    const unsigned char *, int));
4269 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4270 			  struct net_device *dev,
4271 			  int (*unsync)(struct net_device *,
4272 					const unsigned char *));
4273 void __hw_addr_init(struct netdev_hw_addr_list *list);
4274 
4275 /* Functions used for device addresses handling */
4276 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4277 		  const void *addr, size_t len);
4278 
4279 static inline void
4280 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4281 {
4282 	dev_addr_mod(dev, 0, addr, len);
4283 }
4284 
4285 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4286 {
4287 	__dev_addr_set(dev, addr, dev->addr_len);
4288 }
4289 
4290 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4291 		 unsigned char addr_type);
4292 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4293 		 unsigned char addr_type);
4294 void dev_addr_flush(struct net_device *dev);
4295 int dev_addr_init(struct net_device *dev);
4296 void dev_addr_check(struct net_device *dev);
4297 
4298 /* Functions used for unicast addresses handling */
4299 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4300 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4301 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4302 int dev_uc_sync(struct net_device *to, struct net_device *from);
4303 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4304 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4305 void dev_uc_flush(struct net_device *dev);
4306 void dev_uc_init(struct net_device *dev);
4307 
4308 /**
4309  *  __dev_uc_sync - Synchonize device's unicast list
4310  *  @dev:  device to sync
4311  *  @sync: function to call if address should be added
4312  *  @unsync: function to call if address should be removed
4313  *
4314  *  Add newly added addresses to the interface, and release
4315  *  addresses that have been deleted.
4316  */
4317 static inline int __dev_uc_sync(struct net_device *dev,
4318 				int (*sync)(struct net_device *,
4319 					    const unsigned char *),
4320 				int (*unsync)(struct net_device *,
4321 					      const unsigned char *))
4322 {
4323 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4324 }
4325 
4326 /**
4327  *  __dev_uc_unsync - Remove synchronized addresses from device
4328  *  @dev:  device to sync
4329  *  @unsync: function to call if address should be removed
4330  *
4331  *  Remove all addresses that were added to the device by dev_uc_sync().
4332  */
4333 static inline void __dev_uc_unsync(struct net_device *dev,
4334 				   int (*unsync)(struct net_device *,
4335 						 const unsigned char *))
4336 {
4337 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4338 }
4339 
4340 /* Functions used for multicast addresses handling */
4341 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4342 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4343 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4344 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4345 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4346 int dev_mc_sync(struct net_device *to, struct net_device *from);
4347 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4348 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4349 void dev_mc_flush(struct net_device *dev);
4350 void dev_mc_init(struct net_device *dev);
4351 
4352 /**
4353  *  __dev_mc_sync - Synchonize device's multicast list
4354  *  @dev:  device to sync
4355  *  @sync: function to call if address should be added
4356  *  @unsync: function to call if address should be removed
4357  *
4358  *  Add newly added addresses to the interface, and release
4359  *  addresses that have been deleted.
4360  */
4361 static inline int __dev_mc_sync(struct net_device *dev,
4362 				int (*sync)(struct net_device *,
4363 					    const unsigned char *),
4364 				int (*unsync)(struct net_device *,
4365 					      const unsigned char *))
4366 {
4367 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4368 }
4369 
4370 /**
4371  *  __dev_mc_unsync - Remove synchronized addresses from device
4372  *  @dev:  device to sync
4373  *  @unsync: function to call if address should be removed
4374  *
4375  *  Remove all addresses that were added to the device by dev_mc_sync().
4376  */
4377 static inline void __dev_mc_unsync(struct net_device *dev,
4378 				   int (*unsync)(struct net_device *,
4379 						 const unsigned char *))
4380 {
4381 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4382 }
4383 
4384 /* Functions used for secondary unicast and multicast support */
4385 void dev_set_rx_mode(struct net_device *dev);
4386 void __dev_set_rx_mode(struct net_device *dev);
4387 int dev_set_promiscuity(struct net_device *dev, int inc);
4388 int dev_set_allmulti(struct net_device *dev, int inc);
4389 void netdev_state_change(struct net_device *dev);
4390 void __netdev_notify_peers(struct net_device *dev);
4391 void netdev_notify_peers(struct net_device *dev);
4392 void netdev_features_change(struct net_device *dev);
4393 /* Load a device via the kmod */
4394 void dev_load(struct net *net, const char *name);
4395 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4396 					struct rtnl_link_stats64 *storage);
4397 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4398 			     const struct net_device_stats *netdev_stats);
4399 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4400 			   const struct pcpu_sw_netstats __percpu *netstats);
4401 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4402 
4403 extern int		netdev_max_backlog;
4404 extern int		netdev_tstamp_prequeue;
4405 extern int		netdev_unregister_timeout_secs;
4406 extern int		weight_p;
4407 extern int		dev_weight_rx_bias;
4408 extern int		dev_weight_tx_bias;
4409 extern int		dev_rx_weight;
4410 extern int		dev_tx_weight;
4411 extern int		gro_normal_batch;
4412 
4413 enum {
4414 	NESTED_SYNC_IMM_BIT,
4415 	NESTED_SYNC_TODO_BIT,
4416 };
4417 
4418 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4419 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4420 
4421 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4422 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4423 
4424 struct netdev_nested_priv {
4425 	unsigned char flags;
4426 	void *data;
4427 };
4428 
4429 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4430 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4431 						     struct list_head **iter);
4432 
4433 #ifdef CONFIG_LOCKDEP
4434 static LIST_HEAD(net_unlink_list);
4435 
4436 static inline void net_unlink_todo(struct net_device *dev)
4437 {
4438 	if (list_empty(&dev->unlink_list))
4439 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4440 }
4441 #endif
4442 
4443 /* iterate through upper list, must be called under RCU read lock */
4444 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4445 	for (iter = &(dev)->adj_list.upper, \
4446 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4447 	     updev; \
4448 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4449 
4450 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4451 				  int (*fn)(struct net_device *upper_dev,
4452 					    struct netdev_nested_priv *priv),
4453 				  struct netdev_nested_priv *priv);
4454 
4455 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4456 				  struct net_device *upper_dev);
4457 
4458 bool netdev_has_any_upper_dev(struct net_device *dev);
4459 
4460 void *netdev_lower_get_next_private(struct net_device *dev,
4461 				    struct list_head **iter);
4462 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4463 					struct list_head **iter);
4464 
4465 #define netdev_for_each_lower_private(dev, priv, iter) \
4466 	for (iter = (dev)->adj_list.lower.next, \
4467 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4468 	     priv; \
4469 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4470 
4471 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4472 	for (iter = &(dev)->adj_list.lower, \
4473 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4474 	     priv; \
4475 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4476 
4477 void *netdev_lower_get_next(struct net_device *dev,
4478 				struct list_head **iter);
4479 
4480 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4481 	for (iter = (dev)->adj_list.lower.next, \
4482 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4483 	     ldev; \
4484 	     ldev = netdev_lower_get_next(dev, &(iter)))
4485 
4486 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4487 					     struct list_head **iter);
4488 int netdev_walk_all_lower_dev(struct net_device *dev,
4489 			      int (*fn)(struct net_device *lower_dev,
4490 					struct netdev_nested_priv *priv),
4491 			      struct netdev_nested_priv *priv);
4492 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4493 				  int (*fn)(struct net_device *lower_dev,
4494 					    struct netdev_nested_priv *priv),
4495 				  struct netdev_nested_priv *priv);
4496 
4497 void *netdev_adjacent_get_private(struct list_head *adj_list);
4498 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4499 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4500 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4501 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4502 			  struct netlink_ext_ack *extack);
4503 int netdev_master_upper_dev_link(struct net_device *dev,
4504 				 struct net_device *upper_dev,
4505 				 void *upper_priv, void *upper_info,
4506 				 struct netlink_ext_ack *extack);
4507 void netdev_upper_dev_unlink(struct net_device *dev,
4508 			     struct net_device *upper_dev);
4509 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4510 				   struct net_device *new_dev,
4511 				   struct net_device *dev,
4512 				   struct netlink_ext_ack *extack);
4513 void netdev_adjacent_change_commit(struct net_device *old_dev,
4514 				   struct net_device *new_dev,
4515 				   struct net_device *dev);
4516 void netdev_adjacent_change_abort(struct net_device *old_dev,
4517 				  struct net_device *new_dev,
4518 				  struct net_device *dev);
4519 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4520 void *netdev_lower_dev_get_private(struct net_device *dev,
4521 				   struct net_device *lower_dev);
4522 void netdev_lower_state_changed(struct net_device *lower_dev,
4523 				void *lower_state_info);
4524 
4525 /* RSS keys are 40 or 52 bytes long */
4526 #define NETDEV_RSS_KEY_LEN 52
4527 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4528 void netdev_rss_key_fill(void *buffer, size_t len);
4529 
4530 int skb_checksum_help(struct sk_buff *skb);
4531 int skb_crc32c_csum_help(struct sk_buff *skb);
4532 int skb_csum_hwoffload_help(struct sk_buff *skb,
4533 			    const netdev_features_t features);
4534 
4535 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4536 				  netdev_features_t features, bool tx_path);
4537 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4538 				    netdev_features_t features);
4539 
4540 struct netdev_bonding_info {
4541 	ifslave	slave;
4542 	ifbond	master;
4543 };
4544 
4545 struct netdev_notifier_bonding_info {
4546 	struct netdev_notifier_info info; /* must be first */
4547 	struct netdev_bonding_info  bonding_info;
4548 };
4549 
4550 void netdev_bonding_info_change(struct net_device *dev,
4551 				struct netdev_bonding_info *bonding_info);
4552 
4553 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4554 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4555 #else
4556 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4557 				  const void *data)
4558 {
4559 }
4560 #endif
4561 
4562 static inline
4563 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4564 {
4565 	return __skb_gso_segment(skb, features, true);
4566 }
4567 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4568 
4569 static inline bool can_checksum_protocol(netdev_features_t features,
4570 					 __be16 protocol)
4571 {
4572 	if (protocol == htons(ETH_P_FCOE))
4573 		return !!(features & NETIF_F_FCOE_CRC);
4574 
4575 	/* Assume this is an IP checksum (not SCTP CRC) */
4576 
4577 	if (features & NETIF_F_HW_CSUM) {
4578 		/* Can checksum everything */
4579 		return true;
4580 	}
4581 
4582 	switch (protocol) {
4583 	case htons(ETH_P_IP):
4584 		return !!(features & NETIF_F_IP_CSUM);
4585 	case htons(ETH_P_IPV6):
4586 		return !!(features & NETIF_F_IPV6_CSUM);
4587 	default:
4588 		return false;
4589 	}
4590 }
4591 
4592 #ifdef CONFIG_BUG
4593 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4594 #else
4595 static inline void netdev_rx_csum_fault(struct net_device *dev,
4596 					struct sk_buff *skb)
4597 {
4598 }
4599 #endif
4600 /* rx skb timestamps */
4601 void net_enable_timestamp(void);
4602 void net_disable_timestamp(void);
4603 
4604 #ifdef CONFIG_PROC_FS
4605 int __init dev_proc_init(void);
4606 #else
4607 #define dev_proc_init() 0
4608 #endif
4609 
4610 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4611 					      struct sk_buff *skb, struct net_device *dev,
4612 					      bool more)
4613 {
4614 	__this_cpu_write(softnet_data.xmit.more, more);
4615 	return ops->ndo_start_xmit(skb, dev);
4616 }
4617 
4618 static inline bool netdev_xmit_more(void)
4619 {
4620 	return __this_cpu_read(softnet_data.xmit.more);
4621 }
4622 
4623 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4624 					    struct netdev_queue *txq, bool more)
4625 {
4626 	const struct net_device_ops *ops = dev->netdev_ops;
4627 	netdev_tx_t rc;
4628 
4629 	rc = __netdev_start_xmit(ops, skb, dev, more);
4630 	if (rc == NETDEV_TX_OK)
4631 		txq_trans_update(txq);
4632 
4633 	return rc;
4634 }
4635 
4636 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4637 				const void *ns);
4638 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4639 				 const void *ns);
4640 
4641 extern const struct kobj_ns_type_operations net_ns_type_operations;
4642 
4643 const char *netdev_drivername(const struct net_device *dev);
4644 
4645 void linkwatch_run_queue(void);
4646 
4647 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4648 							  netdev_features_t f2)
4649 {
4650 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4651 		if (f1 & NETIF_F_HW_CSUM)
4652 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4653 		else
4654 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4655 	}
4656 
4657 	return f1 & f2;
4658 }
4659 
4660 static inline netdev_features_t netdev_get_wanted_features(
4661 	struct net_device *dev)
4662 {
4663 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4664 }
4665 netdev_features_t netdev_increment_features(netdev_features_t all,
4666 	netdev_features_t one, netdev_features_t mask);
4667 
4668 /* Allow TSO being used on stacked device :
4669  * Performing the GSO segmentation before last device
4670  * is a performance improvement.
4671  */
4672 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4673 							netdev_features_t mask)
4674 {
4675 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4676 }
4677 
4678 int __netdev_update_features(struct net_device *dev);
4679 void netdev_update_features(struct net_device *dev);
4680 void netdev_change_features(struct net_device *dev);
4681 
4682 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4683 					struct net_device *dev);
4684 
4685 netdev_features_t passthru_features_check(struct sk_buff *skb,
4686 					  struct net_device *dev,
4687 					  netdev_features_t features);
4688 netdev_features_t netif_skb_features(struct sk_buff *skb);
4689 
4690 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4691 {
4692 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4693 
4694 	/* check flags correspondence */
4695 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4696 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4697 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4698 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4699 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4700 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4701 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4702 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4703 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4704 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4705 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4706 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4707 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4708 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4709 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4710 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4711 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4712 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4713 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4714 
4715 	return (features & feature) == feature;
4716 }
4717 
4718 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4719 {
4720 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4721 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4722 }
4723 
4724 static inline bool netif_needs_gso(struct sk_buff *skb,
4725 				   netdev_features_t features)
4726 {
4727 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4728 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4729 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4730 }
4731 
4732 static inline void netif_set_gso_max_size(struct net_device *dev,
4733 					  unsigned int size)
4734 {
4735 	/* dev->gso_max_size is read locklessly from sk_setup_caps() */
4736 	WRITE_ONCE(dev->gso_max_size, size);
4737 }
4738 
4739 static inline void netif_set_gso_max_segs(struct net_device *dev,
4740 					  unsigned int segs)
4741 {
4742 	/* dev->gso_max_segs is read locklessly from sk_setup_caps() */
4743 	WRITE_ONCE(dev->gso_max_segs, segs);
4744 }
4745 
4746 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4747 					int pulled_hlen, u16 mac_offset,
4748 					int mac_len)
4749 {
4750 	skb->protocol = protocol;
4751 	skb->encapsulation = 1;
4752 	skb_push(skb, pulled_hlen);
4753 	skb_reset_transport_header(skb);
4754 	skb->mac_header = mac_offset;
4755 	skb->network_header = skb->mac_header + mac_len;
4756 	skb->mac_len = mac_len;
4757 }
4758 
4759 static inline bool netif_is_macsec(const struct net_device *dev)
4760 {
4761 	return dev->priv_flags & IFF_MACSEC;
4762 }
4763 
4764 static inline bool netif_is_macvlan(const struct net_device *dev)
4765 {
4766 	return dev->priv_flags & IFF_MACVLAN;
4767 }
4768 
4769 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4770 {
4771 	return dev->priv_flags & IFF_MACVLAN_PORT;
4772 }
4773 
4774 static inline bool netif_is_bond_master(const struct net_device *dev)
4775 {
4776 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4777 }
4778 
4779 static inline bool netif_is_bond_slave(const struct net_device *dev)
4780 {
4781 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4782 }
4783 
4784 static inline bool netif_supports_nofcs(struct net_device *dev)
4785 {
4786 	return dev->priv_flags & IFF_SUPP_NOFCS;
4787 }
4788 
4789 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4790 {
4791 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4792 }
4793 
4794 static inline bool netif_is_l3_master(const struct net_device *dev)
4795 {
4796 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4797 }
4798 
4799 static inline bool netif_is_l3_slave(const struct net_device *dev)
4800 {
4801 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4802 }
4803 
4804 static inline bool netif_is_bridge_master(const struct net_device *dev)
4805 {
4806 	return dev->priv_flags & IFF_EBRIDGE;
4807 }
4808 
4809 static inline bool netif_is_bridge_port(const struct net_device *dev)
4810 {
4811 	return dev->priv_flags & IFF_BRIDGE_PORT;
4812 }
4813 
4814 static inline bool netif_is_ovs_master(const struct net_device *dev)
4815 {
4816 	return dev->priv_flags & IFF_OPENVSWITCH;
4817 }
4818 
4819 static inline bool netif_is_ovs_port(const struct net_device *dev)
4820 {
4821 	return dev->priv_flags & IFF_OVS_DATAPATH;
4822 }
4823 
4824 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4825 {
4826 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4827 }
4828 
4829 static inline bool netif_is_team_master(const struct net_device *dev)
4830 {
4831 	return dev->priv_flags & IFF_TEAM;
4832 }
4833 
4834 static inline bool netif_is_team_port(const struct net_device *dev)
4835 {
4836 	return dev->priv_flags & IFF_TEAM_PORT;
4837 }
4838 
4839 static inline bool netif_is_lag_master(const struct net_device *dev)
4840 {
4841 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4842 }
4843 
4844 static inline bool netif_is_lag_port(const struct net_device *dev)
4845 {
4846 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4847 }
4848 
4849 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4850 {
4851 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4852 }
4853 
4854 static inline bool netif_is_failover(const struct net_device *dev)
4855 {
4856 	return dev->priv_flags & IFF_FAILOVER;
4857 }
4858 
4859 static inline bool netif_is_failover_slave(const struct net_device *dev)
4860 {
4861 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4862 }
4863 
4864 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4865 static inline void netif_keep_dst(struct net_device *dev)
4866 {
4867 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4868 }
4869 
4870 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4871 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4872 {
4873 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4874 	return netif_is_macsec(dev);
4875 }
4876 
4877 extern struct pernet_operations __net_initdata loopback_net_ops;
4878 
4879 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4880 
4881 /* netdev_printk helpers, similar to dev_printk */
4882 
4883 static inline const char *netdev_name(const struct net_device *dev)
4884 {
4885 	if (!dev->name[0] || strchr(dev->name, '%'))
4886 		return "(unnamed net_device)";
4887 	return dev->name;
4888 }
4889 
4890 static inline bool netdev_unregistering(const struct net_device *dev)
4891 {
4892 	return dev->reg_state == NETREG_UNREGISTERING;
4893 }
4894 
4895 static inline const char *netdev_reg_state(const struct net_device *dev)
4896 {
4897 	switch (dev->reg_state) {
4898 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4899 	case NETREG_REGISTERED: return "";
4900 	case NETREG_UNREGISTERING: return " (unregistering)";
4901 	case NETREG_UNREGISTERED: return " (unregistered)";
4902 	case NETREG_RELEASED: return " (released)";
4903 	case NETREG_DUMMY: return " (dummy)";
4904 	}
4905 
4906 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4907 	return " (unknown)";
4908 }
4909 
4910 __printf(3, 4) __cold
4911 void netdev_printk(const char *level, const struct net_device *dev,
4912 		   const char *format, ...);
4913 __printf(2, 3) __cold
4914 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4915 __printf(2, 3) __cold
4916 void netdev_alert(const struct net_device *dev, const char *format, ...);
4917 __printf(2, 3) __cold
4918 void netdev_crit(const struct net_device *dev, const char *format, ...);
4919 __printf(2, 3) __cold
4920 void netdev_err(const struct net_device *dev, const char *format, ...);
4921 __printf(2, 3) __cold
4922 void netdev_warn(const struct net_device *dev, const char *format, ...);
4923 __printf(2, 3) __cold
4924 void netdev_notice(const struct net_device *dev, const char *format, ...);
4925 __printf(2, 3) __cold
4926 void netdev_info(const struct net_device *dev, const char *format, ...);
4927 
4928 #define netdev_level_once(level, dev, fmt, ...)			\
4929 do {								\
4930 	static bool __section(".data.once") __print_once;	\
4931 								\
4932 	if (!__print_once) {					\
4933 		__print_once = true;				\
4934 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4935 	}							\
4936 } while (0)
4937 
4938 #define netdev_emerg_once(dev, fmt, ...) \
4939 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4940 #define netdev_alert_once(dev, fmt, ...) \
4941 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4942 #define netdev_crit_once(dev, fmt, ...) \
4943 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4944 #define netdev_err_once(dev, fmt, ...) \
4945 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4946 #define netdev_warn_once(dev, fmt, ...) \
4947 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4948 #define netdev_notice_once(dev, fmt, ...) \
4949 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4950 #define netdev_info_once(dev, fmt, ...) \
4951 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4952 
4953 #define MODULE_ALIAS_NETDEV(device) \
4954 	MODULE_ALIAS("netdev-" device)
4955 
4956 #if defined(CONFIG_DYNAMIC_DEBUG) || \
4957 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
4958 #define netdev_dbg(__dev, format, args...)			\
4959 do {								\
4960 	dynamic_netdev_dbg(__dev, format, ##args);		\
4961 } while (0)
4962 #elif defined(DEBUG)
4963 #define netdev_dbg(__dev, format, args...)			\
4964 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4965 #else
4966 #define netdev_dbg(__dev, format, args...)			\
4967 ({								\
4968 	if (0)							\
4969 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4970 })
4971 #endif
4972 
4973 #if defined(VERBOSE_DEBUG)
4974 #define netdev_vdbg	netdev_dbg
4975 #else
4976 
4977 #define netdev_vdbg(dev, format, args...)			\
4978 ({								\
4979 	if (0)							\
4980 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4981 	0;							\
4982 })
4983 #endif
4984 
4985 /*
4986  * netdev_WARN() acts like dev_printk(), but with the key difference
4987  * of using a WARN/WARN_ON to get the message out, including the
4988  * file/line information and a backtrace.
4989  */
4990 #define netdev_WARN(dev, format, args...)			\
4991 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4992 	     netdev_reg_state(dev), ##args)
4993 
4994 #define netdev_WARN_ONCE(dev, format, args...)				\
4995 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4996 		  netdev_reg_state(dev), ##args)
4997 
4998 /* netif printk helpers, similar to netdev_printk */
4999 
5000 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5001 do {					  			\
5002 	if (netif_msg_##type(priv))				\
5003 		netdev_printk(level, (dev), fmt, ##args);	\
5004 } while (0)
5005 
5006 #define netif_level(level, priv, type, dev, fmt, args...)	\
5007 do {								\
5008 	if (netif_msg_##type(priv))				\
5009 		netdev_##level(dev, fmt, ##args);		\
5010 } while (0)
5011 
5012 #define netif_emerg(priv, type, dev, fmt, args...)		\
5013 	netif_level(emerg, priv, type, dev, fmt, ##args)
5014 #define netif_alert(priv, type, dev, fmt, args...)		\
5015 	netif_level(alert, priv, type, dev, fmt, ##args)
5016 #define netif_crit(priv, type, dev, fmt, args...)		\
5017 	netif_level(crit, priv, type, dev, fmt, ##args)
5018 #define netif_err(priv, type, dev, fmt, args...)		\
5019 	netif_level(err, priv, type, dev, fmt, ##args)
5020 #define netif_warn(priv, type, dev, fmt, args...)		\
5021 	netif_level(warn, priv, type, dev, fmt, ##args)
5022 #define netif_notice(priv, type, dev, fmt, args...)		\
5023 	netif_level(notice, priv, type, dev, fmt, ##args)
5024 #define netif_info(priv, type, dev, fmt, args...)		\
5025 	netif_level(info, priv, type, dev, fmt, ##args)
5026 
5027 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5028 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5029 #define netif_dbg(priv, type, netdev, format, args...)		\
5030 do {								\
5031 	if (netif_msg_##type(priv))				\
5032 		dynamic_netdev_dbg(netdev, format, ##args);	\
5033 } while (0)
5034 #elif defined(DEBUG)
5035 #define netif_dbg(priv, type, dev, format, args...)		\
5036 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5037 #else
5038 #define netif_dbg(priv, type, dev, format, args...)			\
5039 ({									\
5040 	if (0)								\
5041 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5042 	0;								\
5043 })
5044 #endif
5045 
5046 /* if @cond then downgrade to debug, else print at @level */
5047 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5048 	do {                                                              \
5049 		if (cond)                                                 \
5050 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5051 		else                                                      \
5052 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5053 	} while (0)
5054 
5055 #if defined(VERBOSE_DEBUG)
5056 #define netif_vdbg	netif_dbg
5057 #else
5058 #define netif_vdbg(priv, type, dev, format, args...)		\
5059 ({								\
5060 	if (0)							\
5061 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5062 	0;							\
5063 })
5064 #endif
5065 
5066 /*
5067  *	The list of packet types we will receive (as opposed to discard)
5068  *	and the routines to invoke.
5069  *
5070  *	Why 16. Because with 16 the only overlap we get on a hash of the
5071  *	low nibble of the protocol value is RARP/SNAP/X.25.
5072  *
5073  *		0800	IP
5074  *		0001	802.3
5075  *		0002	AX.25
5076  *		0004	802.2
5077  *		8035	RARP
5078  *		0005	SNAP
5079  *		0805	X.25
5080  *		0806	ARP
5081  *		8137	IPX
5082  *		0009	Localtalk
5083  *		86DD	IPv6
5084  */
5085 #define PTYPE_HASH_SIZE	(16)
5086 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5087 
5088 extern struct list_head ptype_all __read_mostly;
5089 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5090 
5091 extern struct net_device *blackhole_netdev;
5092 
5093 #endif	/* _LINUX_NETDEVICE_H */
5094