xref: /openbmc/linux/include/linux/netdevice.h (revision f43e47c090dc7fe32d5410d8740c3a004eb2676f)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct ethtool_ops;
58 struct phy_device;
59 struct dsa_port;
60 struct ip_tunnel_parm;
61 struct macsec_context;
62 struct macsec_ops;
63 struct netdev_name_node;
64 struct sd_flow_limit;
65 struct sfp_bus;
66 /* 802.11 specific */
67 struct wireless_dev;
68 /* 802.15.4 specific */
69 struct wpan_dev;
70 struct mpls_dev;
71 /* UDP Tunnel offloads */
72 struct udp_tunnel_info;
73 struct udp_tunnel_nic_info;
74 struct udp_tunnel_nic;
75 struct bpf_prog;
76 struct xdp_buff;
77 
78 void synchronize_net(void);
79 void netdev_set_default_ethtool_ops(struct net_device *dev,
80 				    const struct ethtool_ops *ops);
81 
82 /* Backlog congestion levels */
83 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
84 #define NET_RX_DROP		1	/* packet dropped */
85 
86 #define MAX_NEST_DEV 8
87 
88 /*
89  * Transmit return codes: transmit return codes originate from three different
90  * namespaces:
91  *
92  * - qdisc return codes
93  * - driver transmit return codes
94  * - errno values
95  *
96  * Drivers are allowed to return any one of those in their hard_start_xmit()
97  * function. Real network devices commonly used with qdiscs should only return
98  * the driver transmit return codes though - when qdiscs are used, the actual
99  * transmission happens asynchronously, so the value is not propagated to
100  * higher layers. Virtual network devices transmit synchronously; in this case
101  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
102  * others are propagated to higher layers.
103  */
104 
105 /* qdisc ->enqueue() return codes. */
106 #define NET_XMIT_SUCCESS	0x00
107 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
108 #define NET_XMIT_CN		0x02	/* congestion notification	*/
109 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
110 
111 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
112  * indicates that the device will soon be dropping packets, or already drops
113  * some packets of the same priority; prompting us to send less aggressively. */
114 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
115 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
116 
117 /* Driver transmit return codes */
118 #define NETDEV_TX_MASK		0xf0
119 
120 enum netdev_tx {
121 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
122 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
123 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
124 };
125 typedef enum netdev_tx netdev_tx_t;
126 
127 /*
128  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
129  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
130  */
131 static inline bool dev_xmit_complete(int rc)
132 {
133 	/*
134 	 * Positive cases with an skb consumed by a driver:
135 	 * - successful transmission (rc == NETDEV_TX_OK)
136 	 * - error while transmitting (rc < 0)
137 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
138 	 */
139 	if (likely(rc < NET_XMIT_MASK))
140 		return true;
141 
142 	return false;
143 }
144 
145 /*
146  *	Compute the worst-case header length according to the protocols
147  *	used.
148  */
149 
150 #if defined(CONFIG_HYPERV_NET)
151 # define LL_MAX_HEADER 128
152 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
153 # if defined(CONFIG_MAC80211_MESH)
154 #  define LL_MAX_HEADER 128
155 # else
156 #  define LL_MAX_HEADER 96
157 # endif
158 #else
159 # define LL_MAX_HEADER 32
160 #endif
161 
162 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
163     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
164 #define MAX_HEADER LL_MAX_HEADER
165 #else
166 #define MAX_HEADER (LL_MAX_HEADER + 48)
167 #endif
168 
169 /*
170  *	Old network device statistics. Fields are native words
171  *	(unsigned long) so they can be read and written atomically.
172  */
173 
174 struct net_device_stats {
175 	unsigned long	rx_packets;
176 	unsigned long	tx_packets;
177 	unsigned long	rx_bytes;
178 	unsigned long	tx_bytes;
179 	unsigned long	rx_errors;
180 	unsigned long	tx_errors;
181 	unsigned long	rx_dropped;
182 	unsigned long	tx_dropped;
183 	unsigned long	multicast;
184 	unsigned long	collisions;
185 	unsigned long	rx_length_errors;
186 	unsigned long	rx_over_errors;
187 	unsigned long	rx_crc_errors;
188 	unsigned long	rx_frame_errors;
189 	unsigned long	rx_fifo_errors;
190 	unsigned long	rx_missed_errors;
191 	unsigned long	tx_aborted_errors;
192 	unsigned long	tx_carrier_errors;
193 	unsigned long	tx_fifo_errors;
194 	unsigned long	tx_heartbeat_errors;
195 	unsigned long	tx_window_errors;
196 	unsigned long	rx_compressed;
197 	unsigned long	tx_compressed;
198 };
199 
200 /* per-cpu stats, allocated on demand.
201  * Try to fit them in a single cache line, for dev_get_stats() sake.
202  */
203 struct net_device_core_stats {
204 	unsigned long	rx_dropped;
205 	unsigned long	tx_dropped;
206 	unsigned long	rx_nohandler;
207 	unsigned long	rx_otherhost_dropped;
208 } __aligned(4 * sizeof(unsigned long));
209 
210 #include <linux/cache.h>
211 #include <linux/skbuff.h>
212 
213 #ifdef CONFIG_RPS
214 #include <linux/static_key.h>
215 extern struct static_key_false rps_needed;
216 extern struct static_key_false rfs_needed;
217 #endif
218 
219 struct neighbour;
220 struct neigh_parms;
221 struct sk_buff;
222 
223 struct netdev_hw_addr {
224 	struct list_head	list;
225 	struct rb_node		node;
226 	unsigned char		addr[MAX_ADDR_LEN];
227 	unsigned char		type;
228 #define NETDEV_HW_ADDR_T_LAN		1
229 #define NETDEV_HW_ADDR_T_SAN		2
230 #define NETDEV_HW_ADDR_T_UNICAST	3
231 #define NETDEV_HW_ADDR_T_MULTICAST	4
232 	bool			global_use;
233 	int			sync_cnt;
234 	int			refcount;
235 	int			synced;
236 	struct rcu_head		rcu_head;
237 };
238 
239 struct netdev_hw_addr_list {
240 	struct list_head	list;
241 	int			count;
242 
243 	/* Auxiliary tree for faster lookup on addition and deletion */
244 	struct rb_root		tree;
245 };
246 
247 #define netdev_hw_addr_list_count(l) ((l)->count)
248 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
249 #define netdev_hw_addr_list_for_each(ha, l) \
250 	list_for_each_entry(ha, &(l)->list, list)
251 
252 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
253 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
254 #define netdev_for_each_uc_addr(ha, dev) \
255 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
256 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
257 	netdev_for_each_uc_addr((_ha), (_dev)) \
258 		if ((_ha)->sync_cnt)
259 
260 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
261 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
262 #define netdev_for_each_mc_addr(ha, dev) \
263 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
264 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
265 	netdev_for_each_mc_addr((_ha), (_dev)) \
266 		if ((_ha)->sync_cnt)
267 
268 struct hh_cache {
269 	unsigned int	hh_len;
270 	seqlock_t	hh_lock;
271 
272 	/* cached hardware header; allow for machine alignment needs.        */
273 #define HH_DATA_MOD	16
274 #define HH_DATA_OFF(__len) \
275 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
276 #define HH_DATA_ALIGN(__len) \
277 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
278 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
279 };
280 
281 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
282  * Alternative is:
283  *   dev->hard_header_len ? (dev->hard_header_len +
284  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
285  *
286  * We could use other alignment values, but we must maintain the
287  * relationship HH alignment <= LL alignment.
288  */
289 #define LL_RESERVED_SPACE(dev) \
290 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
291 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
292 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
293 
294 struct header_ops {
295 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
296 			   unsigned short type, const void *daddr,
297 			   const void *saddr, unsigned int len);
298 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
299 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
300 	void	(*cache_update)(struct hh_cache *hh,
301 				const struct net_device *dev,
302 				const unsigned char *haddr);
303 	bool	(*validate)(const char *ll_header, unsigned int len);
304 	__be16	(*parse_protocol)(const struct sk_buff *skb);
305 };
306 
307 /* These flag bits are private to the generic network queueing
308  * layer; they may not be explicitly referenced by any other
309  * code.
310  */
311 
312 enum netdev_state_t {
313 	__LINK_STATE_START,
314 	__LINK_STATE_PRESENT,
315 	__LINK_STATE_NOCARRIER,
316 	__LINK_STATE_LINKWATCH_PENDING,
317 	__LINK_STATE_DORMANT,
318 	__LINK_STATE_TESTING,
319 };
320 
321 struct gro_list {
322 	struct list_head	list;
323 	int			count;
324 };
325 
326 /*
327  * size of gro hash buckets, must less than bit number of
328  * napi_struct::gro_bitmask
329  */
330 #define GRO_HASH_BUCKETS	8
331 
332 /*
333  * Structure for NAPI scheduling similar to tasklet but with weighting
334  */
335 struct napi_struct {
336 	/* The poll_list must only be managed by the entity which
337 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
338 	 * whoever atomically sets that bit can add this napi_struct
339 	 * to the per-CPU poll_list, and whoever clears that bit
340 	 * can remove from the list right before clearing the bit.
341 	 */
342 	struct list_head	poll_list;
343 
344 	unsigned long		state;
345 	int			weight;
346 	int			defer_hard_irqs_count;
347 	unsigned long		gro_bitmask;
348 	int			(*poll)(struct napi_struct *, int);
349 #ifdef CONFIG_NETPOLL
350 	int			poll_owner;
351 #endif
352 	struct net_device	*dev;
353 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
354 	struct sk_buff		*skb;
355 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
356 	int			rx_count; /* length of rx_list */
357 	struct hrtimer		timer;
358 	struct list_head	dev_list;
359 	struct hlist_node	napi_hash_node;
360 	unsigned int		napi_id;
361 	struct task_struct	*thread;
362 };
363 
364 enum {
365 	NAPI_STATE_SCHED,		/* Poll is scheduled */
366 	NAPI_STATE_MISSED,		/* reschedule a napi */
367 	NAPI_STATE_DISABLE,		/* Disable pending */
368 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
369 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
370 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
371 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
372 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
373 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
374 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
375 };
376 
377 enum {
378 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
379 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
380 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
381 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
382 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
383 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
384 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
385 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
386 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
387 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
388 };
389 
390 enum gro_result {
391 	GRO_MERGED,
392 	GRO_MERGED_FREE,
393 	GRO_HELD,
394 	GRO_NORMAL,
395 	GRO_CONSUMED,
396 };
397 typedef enum gro_result gro_result_t;
398 
399 /*
400  * enum rx_handler_result - Possible return values for rx_handlers.
401  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
402  * further.
403  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
404  * case skb->dev was changed by rx_handler.
405  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
406  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
407  *
408  * rx_handlers are functions called from inside __netif_receive_skb(), to do
409  * special processing of the skb, prior to delivery to protocol handlers.
410  *
411  * Currently, a net_device can only have a single rx_handler registered. Trying
412  * to register a second rx_handler will return -EBUSY.
413  *
414  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
415  * To unregister a rx_handler on a net_device, use
416  * netdev_rx_handler_unregister().
417  *
418  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
419  * do with the skb.
420  *
421  * If the rx_handler consumed the skb in some way, it should return
422  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
423  * the skb to be delivered in some other way.
424  *
425  * If the rx_handler changed skb->dev, to divert the skb to another
426  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
427  * new device will be called if it exists.
428  *
429  * If the rx_handler decides the skb should be ignored, it should return
430  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
431  * are registered on exact device (ptype->dev == skb->dev).
432  *
433  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
434  * delivered, it should return RX_HANDLER_PASS.
435  *
436  * A device without a registered rx_handler will behave as if rx_handler
437  * returned RX_HANDLER_PASS.
438  */
439 
440 enum rx_handler_result {
441 	RX_HANDLER_CONSUMED,
442 	RX_HANDLER_ANOTHER,
443 	RX_HANDLER_EXACT,
444 	RX_HANDLER_PASS,
445 };
446 typedef enum rx_handler_result rx_handler_result_t;
447 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
448 
449 void __napi_schedule(struct napi_struct *n);
450 void __napi_schedule_irqoff(struct napi_struct *n);
451 
452 static inline bool napi_disable_pending(struct napi_struct *n)
453 {
454 	return test_bit(NAPI_STATE_DISABLE, &n->state);
455 }
456 
457 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
458 {
459 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
460 }
461 
462 bool napi_schedule_prep(struct napi_struct *n);
463 
464 /**
465  *	napi_schedule - schedule NAPI poll
466  *	@n: NAPI context
467  *
468  * Schedule NAPI poll routine to be called if it is not already
469  * running.
470  */
471 static inline void napi_schedule(struct napi_struct *n)
472 {
473 	if (napi_schedule_prep(n))
474 		__napi_schedule(n);
475 }
476 
477 /**
478  *	napi_schedule_irqoff - schedule NAPI poll
479  *	@n: NAPI context
480  *
481  * Variant of napi_schedule(), assuming hard irqs are masked.
482  */
483 static inline void napi_schedule_irqoff(struct napi_struct *n)
484 {
485 	if (napi_schedule_prep(n))
486 		__napi_schedule_irqoff(n);
487 }
488 
489 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
490 static inline bool napi_reschedule(struct napi_struct *napi)
491 {
492 	if (napi_schedule_prep(napi)) {
493 		__napi_schedule(napi);
494 		return true;
495 	}
496 	return false;
497 }
498 
499 bool napi_complete_done(struct napi_struct *n, int work_done);
500 /**
501  *	napi_complete - NAPI processing complete
502  *	@n: NAPI context
503  *
504  * Mark NAPI processing as complete.
505  * Consider using napi_complete_done() instead.
506  * Return false if device should avoid rearming interrupts.
507  */
508 static inline bool napi_complete(struct napi_struct *n)
509 {
510 	return napi_complete_done(n, 0);
511 }
512 
513 int dev_set_threaded(struct net_device *dev, bool threaded);
514 
515 /**
516  *	napi_disable - prevent NAPI from scheduling
517  *	@n: NAPI context
518  *
519  * Stop NAPI from being scheduled on this context.
520  * Waits till any outstanding processing completes.
521  */
522 void napi_disable(struct napi_struct *n);
523 
524 void napi_enable(struct napi_struct *n);
525 
526 /**
527  *	napi_synchronize - wait until NAPI is not running
528  *	@n: NAPI context
529  *
530  * Wait until NAPI is done being scheduled on this context.
531  * Waits till any outstanding processing completes but
532  * does not disable future activations.
533  */
534 static inline void napi_synchronize(const struct napi_struct *n)
535 {
536 	if (IS_ENABLED(CONFIG_SMP))
537 		while (test_bit(NAPI_STATE_SCHED, &n->state))
538 			msleep(1);
539 	else
540 		barrier();
541 }
542 
543 /**
544  *	napi_if_scheduled_mark_missed - if napi is running, set the
545  *	NAPIF_STATE_MISSED
546  *	@n: NAPI context
547  *
548  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
549  * NAPI is scheduled.
550  **/
551 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
552 {
553 	unsigned long val, new;
554 
555 	val = READ_ONCE(n->state);
556 	do {
557 		if (val & NAPIF_STATE_DISABLE)
558 			return true;
559 
560 		if (!(val & NAPIF_STATE_SCHED))
561 			return false;
562 
563 		new = val | NAPIF_STATE_MISSED;
564 	} while (!try_cmpxchg(&n->state, &val, new));
565 
566 	return true;
567 }
568 
569 enum netdev_queue_state_t {
570 	__QUEUE_STATE_DRV_XOFF,
571 	__QUEUE_STATE_STACK_XOFF,
572 	__QUEUE_STATE_FROZEN,
573 };
574 
575 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
576 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
577 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
578 
579 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
580 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
581 					QUEUE_STATE_FROZEN)
582 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
583 					QUEUE_STATE_FROZEN)
584 
585 /*
586  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
587  * netif_tx_* functions below are used to manipulate this flag.  The
588  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
589  * queue independently.  The netif_xmit_*stopped functions below are called
590  * to check if the queue has been stopped by the driver or stack (either
591  * of the XOFF bits are set in the state).  Drivers should not need to call
592  * netif_xmit*stopped functions, they should only be using netif_tx_*.
593  */
594 
595 struct netdev_queue {
596 /*
597  * read-mostly part
598  */
599 	struct net_device	*dev;
600 	netdevice_tracker	dev_tracker;
601 
602 	struct Qdisc __rcu	*qdisc;
603 	struct Qdisc		*qdisc_sleeping;
604 #ifdef CONFIG_SYSFS
605 	struct kobject		kobj;
606 #endif
607 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
608 	int			numa_node;
609 #endif
610 	unsigned long		tx_maxrate;
611 	/*
612 	 * Number of TX timeouts for this queue
613 	 * (/sys/class/net/DEV/Q/trans_timeout)
614 	 */
615 	atomic_long_t		trans_timeout;
616 
617 	/* Subordinate device that the queue has been assigned to */
618 	struct net_device	*sb_dev;
619 #ifdef CONFIG_XDP_SOCKETS
620 	struct xsk_buff_pool    *pool;
621 #endif
622 /*
623  * write-mostly part
624  */
625 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
626 	int			xmit_lock_owner;
627 	/*
628 	 * Time (in jiffies) of last Tx
629 	 */
630 	unsigned long		trans_start;
631 
632 	unsigned long		state;
633 
634 #ifdef CONFIG_BQL
635 	struct dql		dql;
636 #endif
637 } ____cacheline_aligned_in_smp;
638 
639 extern int sysctl_fb_tunnels_only_for_init_net;
640 extern int sysctl_devconf_inherit_init_net;
641 
642 /*
643  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
644  *                                     == 1 : For initns only
645  *                                     == 2 : For none.
646  */
647 static inline bool net_has_fallback_tunnels(const struct net *net)
648 {
649 #if IS_ENABLED(CONFIG_SYSCTL)
650 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
651 
652 	return !fb_tunnels_only_for_init_net ||
653 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
654 #else
655 	return true;
656 #endif
657 }
658 
659 static inline int net_inherit_devconf(void)
660 {
661 #if IS_ENABLED(CONFIG_SYSCTL)
662 	return READ_ONCE(sysctl_devconf_inherit_init_net);
663 #else
664 	return 0;
665 #endif
666 }
667 
668 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
669 {
670 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
671 	return q->numa_node;
672 #else
673 	return NUMA_NO_NODE;
674 #endif
675 }
676 
677 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
678 {
679 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
680 	q->numa_node = node;
681 #endif
682 }
683 
684 #ifdef CONFIG_RPS
685 /*
686  * This structure holds an RPS map which can be of variable length.  The
687  * map is an array of CPUs.
688  */
689 struct rps_map {
690 	unsigned int len;
691 	struct rcu_head rcu;
692 	u16 cpus[];
693 };
694 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
695 
696 /*
697  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
698  * tail pointer for that CPU's input queue at the time of last enqueue, and
699  * a hardware filter index.
700  */
701 struct rps_dev_flow {
702 	u16 cpu;
703 	u16 filter;
704 	unsigned int last_qtail;
705 };
706 #define RPS_NO_FILTER 0xffff
707 
708 /*
709  * The rps_dev_flow_table structure contains a table of flow mappings.
710  */
711 struct rps_dev_flow_table {
712 	unsigned int mask;
713 	struct rcu_head rcu;
714 	struct rps_dev_flow flows[];
715 };
716 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
717     ((_num) * sizeof(struct rps_dev_flow)))
718 
719 /*
720  * The rps_sock_flow_table contains mappings of flows to the last CPU
721  * on which they were processed by the application (set in recvmsg).
722  * Each entry is a 32bit value. Upper part is the high-order bits
723  * of flow hash, lower part is CPU number.
724  * rps_cpu_mask is used to partition the space, depending on number of
725  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
726  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
727  * meaning we use 32-6=26 bits for the hash.
728  */
729 struct rps_sock_flow_table {
730 	u32	mask;
731 
732 	u32	ents[] ____cacheline_aligned_in_smp;
733 };
734 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
735 
736 #define RPS_NO_CPU 0xffff
737 
738 extern u32 rps_cpu_mask;
739 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
740 
741 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
742 					u32 hash)
743 {
744 	if (table && hash) {
745 		unsigned int index = hash & table->mask;
746 		u32 val = hash & ~rps_cpu_mask;
747 
748 		/* We only give a hint, preemption can change CPU under us */
749 		val |= raw_smp_processor_id();
750 
751 		if (table->ents[index] != val)
752 			table->ents[index] = val;
753 	}
754 }
755 
756 #ifdef CONFIG_RFS_ACCEL
757 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
758 			 u16 filter_id);
759 #endif
760 #endif /* CONFIG_RPS */
761 
762 /* This structure contains an instance of an RX queue. */
763 struct netdev_rx_queue {
764 	struct xdp_rxq_info		xdp_rxq;
765 #ifdef CONFIG_RPS
766 	struct rps_map __rcu		*rps_map;
767 	struct rps_dev_flow_table __rcu	*rps_flow_table;
768 #endif
769 	struct kobject			kobj;
770 	struct net_device		*dev;
771 	netdevice_tracker		dev_tracker;
772 
773 #ifdef CONFIG_XDP_SOCKETS
774 	struct xsk_buff_pool            *pool;
775 #endif
776 } ____cacheline_aligned_in_smp;
777 
778 /*
779  * RX queue sysfs structures and functions.
780  */
781 struct rx_queue_attribute {
782 	struct attribute attr;
783 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
784 	ssize_t (*store)(struct netdev_rx_queue *queue,
785 			 const char *buf, size_t len);
786 };
787 
788 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
789 enum xps_map_type {
790 	XPS_CPUS = 0,
791 	XPS_RXQS,
792 	XPS_MAPS_MAX,
793 };
794 
795 #ifdef CONFIG_XPS
796 /*
797  * This structure holds an XPS map which can be of variable length.  The
798  * map is an array of queues.
799  */
800 struct xps_map {
801 	unsigned int len;
802 	unsigned int alloc_len;
803 	struct rcu_head rcu;
804 	u16 queues[];
805 };
806 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
807 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
808        - sizeof(struct xps_map)) / sizeof(u16))
809 
810 /*
811  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
812  *
813  * We keep track of the number of cpus/rxqs used when the struct is allocated,
814  * in nr_ids. This will help not accessing out-of-bound memory.
815  *
816  * We keep track of the number of traffic classes used when the struct is
817  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
818  * not crossing its upper bound, as the original dev->num_tc can be updated in
819  * the meantime.
820  */
821 struct xps_dev_maps {
822 	struct rcu_head rcu;
823 	unsigned int nr_ids;
824 	s16 num_tc;
825 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
826 };
827 
828 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
829 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
830 
831 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
832 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
833 
834 #endif /* CONFIG_XPS */
835 
836 #define TC_MAX_QUEUE	16
837 #define TC_BITMASK	15
838 /* HW offloaded queuing disciplines txq count and offset maps */
839 struct netdev_tc_txq {
840 	u16 count;
841 	u16 offset;
842 };
843 
844 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
845 /*
846  * This structure is to hold information about the device
847  * configured to run FCoE protocol stack.
848  */
849 struct netdev_fcoe_hbainfo {
850 	char	manufacturer[64];
851 	char	serial_number[64];
852 	char	hardware_version[64];
853 	char	driver_version[64];
854 	char	optionrom_version[64];
855 	char	firmware_version[64];
856 	char	model[256];
857 	char	model_description[256];
858 };
859 #endif
860 
861 #define MAX_PHYS_ITEM_ID_LEN 32
862 
863 /* This structure holds a unique identifier to identify some
864  * physical item (port for example) used by a netdevice.
865  */
866 struct netdev_phys_item_id {
867 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
868 	unsigned char id_len;
869 };
870 
871 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
872 					    struct netdev_phys_item_id *b)
873 {
874 	return a->id_len == b->id_len &&
875 	       memcmp(a->id, b->id, a->id_len) == 0;
876 }
877 
878 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
879 				       struct sk_buff *skb,
880 				       struct net_device *sb_dev);
881 
882 enum net_device_path_type {
883 	DEV_PATH_ETHERNET = 0,
884 	DEV_PATH_VLAN,
885 	DEV_PATH_BRIDGE,
886 	DEV_PATH_PPPOE,
887 	DEV_PATH_DSA,
888 	DEV_PATH_MTK_WDMA,
889 };
890 
891 struct net_device_path {
892 	enum net_device_path_type	type;
893 	const struct net_device		*dev;
894 	union {
895 		struct {
896 			u16		id;
897 			__be16		proto;
898 			u8		h_dest[ETH_ALEN];
899 		} encap;
900 		struct {
901 			enum {
902 				DEV_PATH_BR_VLAN_KEEP,
903 				DEV_PATH_BR_VLAN_TAG,
904 				DEV_PATH_BR_VLAN_UNTAG,
905 				DEV_PATH_BR_VLAN_UNTAG_HW,
906 			}		vlan_mode;
907 			u16		vlan_id;
908 			__be16		vlan_proto;
909 		} bridge;
910 		struct {
911 			int port;
912 			u16 proto;
913 		} dsa;
914 		struct {
915 			u8 wdma_idx;
916 			u8 queue;
917 			u16 wcid;
918 			u8 bss;
919 		} mtk_wdma;
920 	};
921 };
922 
923 #define NET_DEVICE_PATH_STACK_MAX	5
924 #define NET_DEVICE_PATH_VLAN_MAX	2
925 
926 struct net_device_path_stack {
927 	int			num_paths;
928 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
929 };
930 
931 struct net_device_path_ctx {
932 	const struct net_device *dev;
933 	u8			daddr[ETH_ALEN];
934 
935 	int			num_vlans;
936 	struct {
937 		u16		id;
938 		__be16		proto;
939 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
940 };
941 
942 enum tc_setup_type {
943 	TC_QUERY_CAPS,
944 	TC_SETUP_QDISC_MQPRIO,
945 	TC_SETUP_CLSU32,
946 	TC_SETUP_CLSFLOWER,
947 	TC_SETUP_CLSMATCHALL,
948 	TC_SETUP_CLSBPF,
949 	TC_SETUP_BLOCK,
950 	TC_SETUP_QDISC_CBS,
951 	TC_SETUP_QDISC_RED,
952 	TC_SETUP_QDISC_PRIO,
953 	TC_SETUP_QDISC_MQ,
954 	TC_SETUP_QDISC_ETF,
955 	TC_SETUP_ROOT_QDISC,
956 	TC_SETUP_QDISC_GRED,
957 	TC_SETUP_QDISC_TAPRIO,
958 	TC_SETUP_FT,
959 	TC_SETUP_QDISC_ETS,
960 	TC_SETUP_QDISC_TBF,
961 	TC_SETUP_QDISC_FIFO,
962 	TC_SETUP_QDISC_HTB,
963 	TC_SETUP_ACT,
964 };
965 
966 /* These structures hold the attributes of bpf state that are being passed
967  * to the netdevice through the bpf op.
968  */
969 enum bpf_netdev_command {
970 	/* Set or clear a bpf program used in the earliest stages of packet
971 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
972 	 * is responsible for calling bpf_prog_put on any old progs that are
973 	 * stored. In case of error, the callee need not release the new prog
974 	 * reference, but on success it takes ownership and must bpf_prog_put
975 	 * when it is no longer used.
976 	 */
977 	XDP_SETUP_PROG,
978 	XDP_SETUP_PROG_HW,
979 	/* BPF program for offload callbacks, invoked at program load time. */
980 	BPF_OFFLOAD_MAP_ALLOC,
981 	BPF_OFFLOAD_MAP_FREE,
982 	XDP_SETUP_XSK_POOL,
983 };
984 
985 struct bpf_prog_offload_ops;
986 struct netlink_ext_ack;
987 struct xdp_umem;
988 struct xdp_dev_bulk_queue;
989 struct bpf_xdp_link;
990 
991 enum bpf_xdp_mode {
992 	XDP_MODE_SKB = 0,
993 	XDP_MODE_DRV = 1,
994 	XDP_MODE_HW = 2,
995 	__MAX_XDP_MODE
996 };
997 
998 struct bpf_xdp_entity {
999 	struct bpf_prog *prog;
1000 	struct bpf_xdp_link *link;
1001 };
1002 
1003 struct netdev_bpf {
1004 	enum bpf_netdev_command command;
1005 	union {
1006 		/* XDP_SETUP_PROG */
1007 		struct {
1008 			u32 flags;
1009 			struct bpf_prog *prog;
1010 			struct netlink_ext_ack *extack;
1011 		};
1012 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1013 		struct {
1014 			struct bpf_offloaded_map *offmap;
1015 		};
1016 		/* XDP_SETUP_XSK_POOL */
1017 		struct {
1018 			struct xsk_buff_pool *pool;
1019 			u16 queue_id;
1020 		} xsk;
1021 	};
1022 };
1023 
1024 /* Flags for ndo_xsk_wakeup. */
1025 #define XDP_WAKEUP_RX (1 << 0)
1026 #define XDP_WAKEUP_TX (1 << 1)
1027 
1028 #ifdef CONFIG_XFRM_OFFLOAD
1029 struct xfrmdev_ops {
1030 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
1031 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1032 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1033 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1034 				       struct xfrm_state *x);
1035 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1036 };
1037 #endif
1038 
1039 struct dev_ifalias {
1040 	struct rcu_head rcuhead;
1041 	char ifalias[];
1042 };
1043 
1044 struct devlink;
1045 struct tlsdev_ops;
1046 
1047 struct netdev_net_notifier {
1048 	struct list_head list;
1049 	struct notifier_block *nb;
1050 };
1051 
1052 /*
1053  * This structure defines the management hooks for network devices.
1054  * The following hooks can be defined; unless noted otherwise, they are
1055  * optional and can be filled with a null pointer.
1056  *
1057  * int (*ndo_init)(struct net_device *dev);
1058  *     This function is called once when a network device is registered.
1059  *     The network device can use this for any late stage initialization
1060  *     or semantic validation. It can fail with an error code which will
1061  *     be propagated back to register_netdev.
1062  *
1063  * void (*ndo_uninit)(struct net_device *dev);
1064  *     This function is called when device is unregistered or when registration
1065  *     fails. It is not called if init fails.
1066  *
1067  * int (*ndo_open)(struct net_device *dev);
1068  *     This function is called when a network device transitions to the up
1069  *     state.
1070  *
1071  * int (*ndo_stop)(struct net_device *dev);
1072  *     This function is called when a network device transitions to the down
1073  *     state.
1074  *
1075  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1076  *                               struct net_device *dev);
1077  *	Called when a packet needs to be transmitted.
1078  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1079  *	the queue before that can happen; it's for obsolete devices and weird
1080  *	corner cases, but the stack really does a non-trivial amount
1081  *	of useless work if you return NETDEV_TX_BUSY.
1082  *	Required; cannot be NULL.
1083  *
1084  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1085  *					   struct net_device *dev
1086  *					   netdev_features_t features);
1087  *	Called by core transmit path to determine if device is capable of
1088  *	performing offload operations on a given packet. This is to give
1089  *	the device an opportunity to implement any restrictions that cannot
1090  *	be otherwise expressed by feature flags. The check is called with
1091  *	the set of features that the stack has calculated and it returns
1092  *	those the driver believes to be appropriate.
1093  *
1094  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1095  *                         struct net_device *sb_dev);
1096  *	Called to decide which queue to use when device supports multiple
1097  *	transmit queues.
1098  *
1099  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1100  *	This function is called to allow device receiver to make
1101  *	changes to configuration when multicast or promiscuous is enabled.
1102  *
1103  * void (*ndo_set_rx_mode)(struct net_device *dev);
1104  *	This function is called device changes address list filtering.
1105  *	If driver handles unicast address filtering, it should set
1106  *	IFF_UNICAST_FLT in its priv_flags.
1107  *
1108  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1109  *	This function  is called when the Media Access Control address
1110  *	needs to be changed. If this interface is not defined, the
1111  *	MAC address can not be changed.
1112  *
1113  * int (*ndo_validate_addr)(struct net_device *dev);
1114  *	Test if Media Access Control address is valid for the device.
1115  *
1116  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1117  *	Old-style ioctl entry point. This is used internally by the
1118  *	appletalk and ieee802154 subsystems but is no longer called by
1119  *	the device ioctl handler.
1120  *
1121  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1122  *	Used by the bonding driver for its device specific ioctls:
1123  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1124  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1125  *
1126  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1127  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1128  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1129  *
1130  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1131  *	Used to set network devices bus interface parameters. This interface
1132  *	is retained for legacy reasons; new devices should use the bus
1133  *	interface (PCI) for low level management.
1134  *
1135  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1136  *	Called when a user wants to change the Maximum Transfer Unit
1137  *	of a device.
1138  *
1139  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1140  *	Callback used when the transmitter has not made any progress
1141  *	for dev->watchdog ticks.
1142  *
1143  * void (*ndo_get_stats64)(struct net_device *dev,
1144  *                         struct rtnl_link_stats64 *storage);
1145  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1146  *	Called when a user wants to get the network device usage
1147  *	statistics. Drivers must do one of the following:
1148  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1149  *	   rtnl_link_stats64 structure passed by the caller.
1150  *	2. Define @ndo_get_stats to update a net_device_stats structure
1151  *	   (which should normally be dev->stats) and return a pointer to
1152  *	   it. The structure may be changed asynchronously only if each
1153  *	   field is written atomically.
1154  *	3. Update dev->stats asynchronously and atomically, and define
1155  *	   neither operation.
1156  *
1157  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1158  *	Return true if this device supports offload stats of this attr_id.
1159  *
1160  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1161  *	void *attr_data)
1162  *	Get statistics for offload operations by attr_id. Write it into the
1163  *	attr_data pointer.
1164  *
1165  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1166  *	If device supports VLAN filtering this function is called when a
1167  *	VLAN id is registered.
1168  *
1169  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1170  *	If device supports VLAN filtering this function is called when a
1171  *	VLAN id is unregistered.
1172  *
1173  * void (*ndo_poll_controller)(struct net_device *dev);
1174  *
1175  *	SR-IOV management functions.
1176  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1177  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1178  *			  u8 qos, __be16 proto);
1179  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1180  *			  int max_tx_rate);
1181  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1182  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1183  * int (*ndo_get_vf_config)(struct net_device *dev,
1184  *			    int vf, struct ifla_vf_info *ivf);
1185  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1186  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1187  *			  struct nlattr *port[]);
1188  *
1189  *      Enable or disable the VF ability to query its RSS Redirection Table and
1190  *      Hash Key. This is needed since on some devices VF share this information
1191  *      with PF and querying it may introduce a theoretical security risk.
1192  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1193  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1194  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1195  *		       void *type_data);
1196  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1197  *	This is always called from the stack with the rtnl lock held and netif
1198  *	tx queues stopped. This allows the netdevice to perform queue
1199  *	management safely.
1200  *
1201  *	Fiber Channel over Ethernet (FCoE) offload functions.
1202  * int (*ndo_fcoe_enable)(struct net_device *dev);
1203  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1204  *	so the underlying device can perform whatever needed configuration or
1205  *	initialization to support acceleration of FCoE traffic.
1206  *
1207  * int (*ndo_fcoe_disable)(struct net_device *dev);
1208  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1209  *	so the underlying device can perform whatever needed clean-ups to
1210  *	stop supporting acceleration of FCoE traffic.
1211  *
1212  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1213  *			     struct scatterlist *sgl, unsigned int sgc);
1214  *	Called when the FCoE Initiator wants to initialize an I/O that
1215  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1216  *	perform necessary setup and returns 1 to indicate the device is set up
1217  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1218  *
1219  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1220  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1221  *	indicated by the FC exchange id 'xid', so the underlying device can
1222  *	clean up and reuse resources for later DDP requests.
1223  *
1224  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1225  *			      struct scatterlist *sgl, unsigned int sgc);
1226  *	Called when the FCoE Target wants to initialize an I/O that
1227  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1228  *	perform necessary setup and returns 1 to indicate the device is set up
1229  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1230  *
1231  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1232  *			       struct netdev_fcoe_hbainfo *hbainfo);
1233  *	Called when the FCoE Protocol stack wants information on the underlying
1234  *	device. This information is utilized by the FCoE protocol stack to
1235  *	register attributes with Fiber Channel management service as per the
1236  *	FC-GS Fabric Device Management Information(FDMI) specification.
1237  *
1238  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1239  *	Called when the underlying device wants to override default World Wide
1240  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1241  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1242  *	protocol stack to use.
1243  *
1244  *	RFS acceleration.
1245  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1246  *			    u16 rxq_index, u32 flow_id);
1247  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1248  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1249  *	Return the filter ID on success, or a negative error code.
1250  *
1251  *	Slave management functions (for bridge, bonding, etc).
1252  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1253  *	Called to make another netdev an underling.
1254  *
1255  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1256  *	Called to release previously enslaved netdev.
1257  *
1258  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1259  *					    struct sk_buff *skb,
1260  *					    bool all_slaves);
1261  *	Get the xmit slave of master device. If all_slaves is true, function
1262  *	assume all the slaves can transmit.
1263  *
1264  *      Feature/offload setting functions.
1265  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1266  *		netdev_features_t features);
1267  *	Adjusts the requested feature flags according to device-specific
1268  *	constraints, and returns the resulting flags. Must not modify
1269  *	the device state.
1270  *
1271  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1272  *	Called to update device configuration to new features. Passed
1273  *	feature set might be less than what was returned by ndo_fix_features()).
1274  *	Must return >0 or -errno if it changed dev->features itself.
1275  *
1276  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1277  *		      struct net_device *dev,
1278  *		      const unsigned char *addr, u16 vid, u16 flags,
1279  *		      struct netlink_ext_ack *extack);
1280  *	Adds an FDB entry to dev for addr.
1281  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1282  *		      struct net_device *dev,
1283  *		      const unsigned char *addr, u16 vid)
1284  *	Deletes the FDB entry from dev coresponding to addr.
1285  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1286  *			   struct net_device *dev,
1287  *			   u16 vid,
1288  *			   struct netlink_ext_ack *extack);
1289  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1290  *		       struct net_device *dev, struct net_device *filter_dev,
1291  *		       int *idx)
1292  *	Used to add FDB entries to dump requests. Implementers should add
1293  *	entries to skb and update idx with the number of entries.
1294  *
1295  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1296  *			     u16 flags, struct netlink_ext_ack *extack)
1297  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1298  *			     struct net_device *dev, u32 filter_mask,
1299  *			     int nlflags)
1300  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1301  *			     u16 flags);
1302  *
1303  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1304  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1305  *	which do not represent real hardware may define this to allow their
1306  *	userspace components to manage their virtual carrier state. Devices
1307  *	that determine carrier state from physical hardware properties (eg
1308  *	network cables) or protocol-dependent mechanisms (eg
1309  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1310  *
1311  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1312  *			       struct netdev_phys_item_id *ppid);
1313  *	Called to get ID of physical port of this device. If driver does
1314  *	not implement this, it is assumed that the hw is not able to have
1315  *	multiple net devices on single physical port.
1316  *
1317  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1318  *				 struct netdev_phys_item_id *ppid)
1319  *	Called to get the parent ID of the physical port of this device.
1320  *
1321  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1322  *				 struct net_device *dev)
1323  *	Called by upper layer devices to accelerate switching or other
1324  *	station functionality into hardware. 'pdev is the lowerdev
1325  *	to use for the offload and 'dev' is the net device that will
1326  *	back the offload. Returns a pointer to the private structure
1327  *	the upper layer will maintain.
1328  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1329  *	Called by upper layer device to delete the station created
1330  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1331  *	the station and priv is the structure returned by the add
1332  *	operation.
1333  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1334  *			     int queue_index, u32 maxrate);
1335  *	Called when a user wants to set a max-rate limitation of specific
1336  *	TX queue.
1337  * int (*ndo_get_iflink)(const struct net_device *dev);
1338  *	Called to get the iflink value of this device.
1339  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1340  *	This function is used to get egress tunnel information for given skb.
1341  *	This is useful for retrieving outer tunnel header parameters while
1342  *	sampling packet.
1343  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1344  *	This function is used to specify the headroom that the skb must
1345  *	consider when allocation skb during packet reception. Setting
1346  *	appropriate rx headroom value allows avoiding skb head copy on
1347  *	forward. Setting a negative value resets the rx headroom to the
1348  *	default value.
1349  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1350  *	This function is used to set or query state related to XDP on the
1351  *	netdevice and manage BPF offload. See definition of
1352  *	enum bpf_netdev_command for details.
1353  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1354  *			u32 flags);
1355  *	This function is used to submit @n XDP packets for transmit on a
1356  *	netdevice. Returns number of frames successfully transmitted, frames
1357  *	that got dropped are freed/returned via xdp_return_frame().
1358  *	Returns negative number, means general error invoking ndo, meaning
1359  *	no frames were xmit'ed and core-caller will free all frames.
1360  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1361  *					        struct xdp_buff *xdp);
1362  *      Get the xmit slave of master device based on the xdp_buff.
1363  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1364  *      This function is used to wake up the softirq, ksoftirqd or kthread
1365  *	responsible for sending and/or receiving packets on a specific
1366  *	queue id bound to an AF_XDP socket. The flags field specifies if
1367  *	only RX, only Tx, or both should be woken up using the flags
1368  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1369  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1370  *	Get devlink port instance associated with a given netdev.
1371  *	Called with a reference on the netdevice and devlink locks only,
1372  *	rtnl_lock is not held.
1373  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1374  *			 int cmd);
1375  *	Add, change, delete or get information on an IPv4 tunnel.
1376  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1377  *	If a device is paired with a peer device, return the peer instance.
1378  *	The caller must be under RCU read context.
1379  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1380  *     Get the forwarding path to reach the real device from the HW destination address
1381  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1382  *			     const struct skb_shared_hwtstamps *hwtstamps,
1383  *			     bool cycles);
1384  *	Get hardware timestamp based on normal/adjustable time or free running
1385  *	cycle counter. This function is required if physical clock supports a
1386  *	free running cycle counter.
1387  */
1388 struct net_device_ops {
1389 	int			(*ndo_init)(struct net_device *dev);
1390 	void			(*ndo_uninit)(struct net_device *dev);
1391 	int			(*ndo_open)(struct net_device *dev);
1392 	int			(*ndo_stop)(struct net_device *dev);
1393 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1394 						  struct net_device *dev);
1395 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1396 						      struct net_device *dev,
1397 						      netdev_features_t features);
1398 	u16			(*ndo_select_queue)(struct net_device *dev,
1399 						    struct sk_buff *skb,
1400 						    struct net_device *sb_dev);
1401 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1402 						       int flags);
1403 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1404 	int			(*ndo_set_mac_address)(struct net_device *dev,
1405 						       void *addr);
1406 	int			(*ndo_validate_addr)(struct net_device *dev);
1407 	int			(*ndo_do_ioctl)(struct net_device *dev,
1408 					        struct ifreq *ifr, int cmd);
1409 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1410 						 struct ifreq *ifr, int cmd);
1411 	int			(*ndo_siocbond)(struct net_device *dev,
1412 						struct ifreq *ifr, int cmd);
1413 	int			(*ndo_siocwandev)(struct net_device *dev,
1414 						  struct if_settings *ifs);
1415 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1416 						      struct ifreq *ifr,
1417 						      void __user *data, int cmd);
1418 	int			(*ndo_set_config)(struct net_device *dev,
1419 					          struct ifmap *map);
1420 	int			(*ndo_change_mtu)(struct net_device *dev,
1421 						  int new_mtu);
1422 	int			(*ndo_neigh_setup)(struct net_device *dev,
1423 						   struct neigh_parms *);
1424 	void			(*ndo_tx_timeout) (struct net_device *dev,
1425 						   unsigned int txqueue);
1426 
1427 	void			(*ndo_get_stats64)(struct net_device *dev,
1428 						   struct rtnl_link_stats64 *storage);
1429 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1430 	int			(*ndo_get_offload_stats)(int attr_id,
1431 							 const struct net_device *dev,
1432 							 void *attr_data);
1433 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1434 
1435 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1436 						       __be16 proto, u16 vid);
1437 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1438 						        __be16 proto, u16 vid);
1439 #ifdef CONFIG_NET_POLL_CONTROLLER
1440 	void                    (*ndo_poll_controller)(struct net_device *dev);
1441 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1442 						     struct netpoll_info *info);
1443 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1444 #endif
1445 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1446 						  int queue, u8 *mac);
1447 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1448 						   int queue, u16 vlan,
1449 						   u8 qos, __be16 proto);
1450 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1451 						   int vf, int min_tx_rate,
1452 						   int max_tx_rate);
1453 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1454 						       int vf, bool setting);
1455 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1456 						    int vf, bool setting);
1457 	int			(*ndo_get_vf_config)(struct net_device *dev,
1458 						     int vf,
1459 						     struct ifla_vf_info *ivf);
1460 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1461 							 int vf, int link_state);
1462 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1463 						    int vf,
1464 						    struct ifla_vf_stats
1465 						    *vf_stats);
1466 	int			(*ndo_set_vf_port)(struct net_device *dev,
1467 						   int vf,
1468 						   struct nlattr *port[]);
1469 	int			(*ndo_get_vf_port)(struct net_device *dev,
1470 						   int vf, struct sk_buff *skb);
1471 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1472 						   int vf,
1473 						   struct ifla_vf_guid *node_guid,
1474 						   struct ifla_vf_guid *port_guid);
1475 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1476 						   int vf, u64 guid,
1477 						   int guid_type);
1478 	int			(*ndo_set_vf_rss_query_en)(
1479 						   struct net_device *dev,
1480 						   int vf, bool setting);
1481 	int			(*ndo_setup_tc)(struct net_device *dev,
1482 						enum tc_setup_type type,
1483 						void *type_data);
1484 #if IS_ENABLED(CONFIG_FCOE)
1485 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1486 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1487 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1488 						      u16 xid,
1489 						      struct scatterlist *sgl,
1490 						      unsigned int sgc);
1491 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1492 						     u16 xid);
1493 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1494 						       u16 xid,
1495 						       struct scatterlist *sgl,
1496 						       unsigned int sgc);
1497 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1498 							struct netdev_fcoe_hbainfo *hbainfo);
1499 #endif
1500 
1501 #if IS_ENABLED(CONFIG_LIBFCOE)
1502 #define NETDEV_FCOE_WWNN 0
1503 #define NETDEV_FCOE_WWPN 1
1504 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1505 						    u64 *wwn, int type);
1506 #endif
1507 
1508 #ifdef CONFIG_RFS_ACCEL
1509 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1510 						     const struct sk_buff *skb,
1511 						     u16 rxq_index,
1512 						     u32 flow_id);
1513 #endif
1514 	int			(*ndo_add_slave)(struct net_device *dev,
1515 						 struct net_device *slave_dev,
1516 						 struct netlink_ext_ack *extack);
1517 	int			(*ndo_del_slave)(struct net_device *dev,
1518 						 struct net_device *slave_dev);
1519 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1520 						      struct sk_buff *skb,
1521 						      bool all_slaves);
1522 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1523 							struct sock *sk);
1524 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1525 						    netdev_features_t features);
1526 	int			(*ndo_set_features)(struct net_device *dev,
1527 						    netdev_features_t features);
1528 	int			(*ndo_neigh_construct)(struct net_device *dev,
1529 						       struct neighbour *n);
1530 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1531 						     struct neighbour *n);
1532 
1533 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1534 					       struct nlattr *tb[],
1535 					       struct net_device *dev,
1536 					       const unsigned char *addr,
1537 					       u16 vid,
1538 					       u16 flags,
1539 					       struct netlink_ext_ack *extack);
1540 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1541 					       struct nlattr *tb[],
1542 					       struct net_device *dev,
1543 					       const unsigned char *addr,
1544 					       u16 vid, struct netlink_ext_ack *extack);
1545 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1546 						    struct nlattr *tb[],
1547 						    struct net_device *dev,
1548 						    u16 vid,
1549 						    struct netlink_ext_ack *extack);
1550 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1551 						struct netlink_callback *cb,
1552 						struct net_device *dev,
1553 						struct net_device *filter_dev,
1554 						int *idx);
1555 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1556 					       struct nlattr *tb[],
1557 					       struct net_device *dev,
1558 					       const unsigned char *addr,
1559 					       u16 vid, u32 portid, u32 seq,
1560 					       struct netlink_ext_ack *extack);
1561 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1562 						      struct nlmsghdr *nlh,
1563 						      u16 flags,
1564 						      struct netlink_ext_ack *extack);
1565 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1566 						      u32 pid, u32 seq,
1567 						      struct net_device *dev,
1568 						      u32 filter_mask,
1569 						      int nlflags);
1570 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1571 						      struct nlmsghdr *nlh,
1572 						      u16 flags);
1573 	int			(*ndo_change_carrier)(struct net_device *dev,
1574 						      bool new_carrier);
1575 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1576 							struct netdev_phys_item_id *ppid);
1577 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1578 							  struct netdev_phys_item_id *ppid);
1579 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1580 							  char *name, size_t len);
1581 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1582 							struct net_device *dev);
1583 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1584 							void *priv);
1585 
1586 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1587 						      int queue_index,
1588 						      u32 maxrate);
1589 	int			(*ndo_get_iflink)(const struct net_device *dev);
1590 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1591 						       struct sk_buff *skb);
1592 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1593 						       int needed_headroom);
1594 	int			(*ndo_bpf)(struct net_device *dev,
1595 					   struct netdev_bpf *bpf);
1596 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1597 						struct xdp_frame **xdp,
1598 						u32 flags);
1599 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1600 							  struct xdp_buff *xdp);
1601 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1602 						  u32 queue_id, u32 flags);
1603 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1604 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1605 						  struct ip_tunnel_parm *p, int cmd);
1606 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1607 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1608                                                          struct net_device_path *path);
1609 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1610 						  const struct skb_shared_hwtstamps *hwtstamps,
1611 						  bool cycles);
1612 };
1613 
1614 /**
1615  * enum netdev_priv_flags - &struct net_device priv_flags
1616  *
1617  * These are the &struct net_device, they are only set internally
1618  * by drivers and used in the kernel. These flags are invisible to
1619  * userspace; this means that the order of these flags can change
1620  * during any kernel release.
1621  *
1622  * You should have a pretty good reason to be extending these flags.
1623  *
1624  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1625  * @IFF_EBRIDGE: Ethernet bridging device
1626  * @IFF_BONDING: bonding master or slave
1627  * @IFF_ISATAP: ISATAP interface (RFC4214)
1628  * @IFF_WAN_HDLC: WAN HDLC device
1629  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1630  *	release skb->dst
1631  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1632  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1633  * @IFF_MACVLAN_PORT: device used as macvlan port
1634  * @IFF_BRIDGE_PORT: device used as bridge port
1635  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1636  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1637  * @IFF_UNICAST_FLT: Supports unicast filtering
1638  * @IFF_TEAM_PORT: device used as team port
1639  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1640  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1641  *	change when it's running
1642  * @IFF_MACVLAN: Macvlan device
1643  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1644  *	underlying stacked devices
1645  * @IFF_L3MDEV_MASTER: device is an L3 master device
1646  * @IFF_NO_QUEUE: device can run without qdisc attached
1647  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1648  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1649  * @IFF_TEAM: device is a team device
1650  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1651  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1652  *	entity (i.e. the master device for bridged veth)
1653  * @IFF_MACSEC: device is a MACsec device
1654  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1655  * @IFF_FAILOVER: device is a failover master device
1656  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1657  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1658  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1659  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1660  *	skb_headlen(skb) == 0 (data starts from frag0)
1661  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1662  */
1663 enum netdev_priv_flags {
1664 	IFF_802_1Q_VLAN			= 1<<0,
1665 	IFF_EBRIDGE			= 1<<1,
1666 	IFF_BONDING			= 1<<2,
1667 	IFF_ISATAP			= 1<<3,
1668 	IFF_WAN_HDLC			= 1<<4,
1669 	IFF_XMIT_DST_RELEASE		= 1<<5,
1670 	IFF_DONT_BRIDGE			= 1<<6,
1671 	IFF_DISABLE_NETPOLL		= 1<<7,
1672 	IFF_MACVLAN_PORT		= 1<<8,
1673 	IFF_BRIDGE_PORT			= 1<<9,
1674 	IFF_OVS_DATAPATH		= 1<<10,
1675 	IFF_TX_SKB_SHARING		= 1<<11,
1676 	IFF_UNICAST_FLT			= 1<<12,
1677 	IFF_TEAM_PORT			= 1<<13,
1678 	IFF_SUPP_NOFCS			= 1<<14,
1679 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1680 	IFF_MACVLAN			= 1<<16,
1681 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1682 	IFF_L3MDEV_MASTER		= 1<<18,
1683 	IFF_NO_QUEUE			= 1<<19,
1684 	IFF_OPENVSWITCH			= 1<<20,
1685 	IFF_L3MDEV_SLAVE		= 1<<21,
1686 	IFF_TEAM			= 1<<22,
1687 	IFF_RXFH_CONFIGURED		= 1<<23,
1688 	IFF_PHONY_HEADROOM		= 1<<24,
1689 	IFF_MACSEC			= 1<<25,
1690 	IFF_NO_RX_HANDLER		= 1<<26,
1691 	IFF_FAILOVER			= 1<<27,
1692 	IFF_FAILOVER_SLAVE		= 1<<28,
1693 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1694 	IFF_LIVE_RENAME_OK		= 1<<30,
1695 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1696 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1697 };
1698 
1699 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1700 #define IFF_EBRIDGE			IFF_EBRIDGE
1701 #define IFF_BONDING			IFF_BONDING
1702 #define IFF_ISATAP			IFF_ISATAP
1703 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1704 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1705 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1706 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1707 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1708 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1709 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1710 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1711 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1712 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1713 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1714 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1715 #define IFF_MACVLAN			IFF_MACVLAN
1716 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1717 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1718 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1719 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1720 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1721 #define IFF_TEAM			IFF_TEAM
1722 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1723 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1724 #define IFF_MACSEC			IFF_MACSEC
1725 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1726 #define IFF_FAILOVER			IFF_FAILOVER
1727 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1728 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1729 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1730 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1731 
1732 /* Specifies the type of the struct net_device::ml_priv pointer */
1733 enum netdev_ml_priv_type {
1734 	ML_PRIV_NONE,
1735 	ML_PRIV_CAN,
1736 };
1737 
1738 /**
1739  *	struct net_device - The DEVICE structure.
1740  *
1741  *	Actually, this whole structure is a big mistake.  It mixes I/O
1742  *	data with strictly "high-level" data, and it has to know about
1743  *	almost every data structure used in the INET module.
1744  *
1745  *	@name:	This is the first field of the "visible" part of this structure
1746  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1747  *		of the interface.
1748  *
1749  *	@name_node:	Name hashlist node
1750  *	@ifalias:	SNMP alias
1751  *	@mem_end:	Shared memory end
1752  *	@mem_start:	Shared memory start
1753  *	@base_addr:	Device I/O address
1754  *	@irq:		Device IRQ number
1755  *
1756  *	@state:		Generic network queuing layer state, see netdev_state_t
1757  *	@dev_list:	The global list of network devices
1758  *	@napi_list:	List entry used for polling NAPI devices
1759  *	@unreg_list:	List entry  when we are unregistering the
1760  *			device; see the function unregister_netdev
1761  *	@close_list:	List entry used when we are closing the device
1762  *	@ptype_all:     Device-specific packet handlers for all protocols
1763  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1764  *
1765  *	@adj_list:	Directly linked devices, like slaves for bonding
1766  *	@features:	Currently active device features
1767  *	@hw_features:	User-changeable features
1768  *
1769  *	@wanted_features:	User-requested features
1770  *	@vlan_features:		Mask of features inheritable by VLAN devices
1771  *
1772  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1773  *				This field indicates what encapsulation
1774  *				offloads the hardware is capable of doing,
1775  *				and drivers will need to set them appropriately.
1776  *
1777  *	@mpls_features:	Mask of features inheritable by MPLS
1778  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1779  *
1780  *	@ifindex:	interface index
1781  *	@group:		The group the device belongs to
1782  *
1783  *	@stats:		Statistics struct, which was left as a legacy, use
1784  *			rtnl_link_stats64 instead
1785  *
1786  *	@core_stats:	core networking counters,
1787  *			do not use this in drivers
1788  *	@carrier_up_count:	Number of times the carrier has been up
1789  *	@carrier_down_count:	Number of times the carrier has been down
1790  *
1791  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1792  *				instead of ioctl,
1793  *				see <net/iw_handler.h> for details.
1794  *	@wireless_data:	Instance data managed by the core of wireless extensions
1795  *
1796  *	@netdev_ops:	Includes several pointers to callbacks,
1797  *			if one wants to override the ndo_*() functions
1798  *	@ethtool_ops:	Management operations
1799  *	@l3mdev_ops:	Layer 3 master device operations
1800  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1801  *			discovery handling. Necessary for e.g. 6LoWPAN.
1802  *	@xfrmdev_ops:	Transformation offload operations
1803  *	@tlsdev_ops:	Transport Layer Security offload operations
1804  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1805  *			of Layer 2 headers.
1806  *
1807  *	@flags:		Interface flags (a la BSD)
1808  *	@priv_flags:	Like 'flags' but invisible to userspace,
1809  *			see if.h for the definitions
1810  *	@gflags:	Global flags ( kept as legacy )
1811  *	@padded:	How much padding added by alloc_netdev()
1812  *	@operstate:	RFC2863 operstate
1813  *	@link_mode:	Mapping policy to operstate
1814  *	@if_port:	Selectable AUI, TP, ...
1815  *	@dma:		DMA channel
1816  *	@mtu:		Interface MTU value
1817  *	@min_mtu:	Interface Minimum MTU value
1818  *	@max_mtu:	Interface Maximum MTU value
1819  *	@type:		Interface hardware type
1820  *	@hard_header_len: Maximum hardware header length.
1821  *	@min_header_len:  Minimum hardware header length
1822  *
1823  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1824  *			  cases can this be guaranteed
1825  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1826  *			  cases can this be guaranteed. Some cases also use
1827  *			  LL_MAX_HEADER instead to allocate the skb
1828  *
1829  *	interface address info:
1830  *
1831  * 	@perm_addr:		Permanent hw address
1832  * 	@addr_assign_type:	Hw address assignment type
1833  * 	@addr_len:		Hardware address length
1834  *	@upper_level:		Maximum depth level of upper devices.
1835  *	@lower_level:		Maximum depth level of lower devices.
1836  *	@neigh_priv_len:	Used in neigh_alloc()
1837  * 	@dev_id:		Used to differentiate devices that share
1838  * 				the same link layer address
1839  * 	@dev_port:		Used to differentiate devices that share
1840  * 				the same function
1841  *	@addr_list_lock:	XXX: need comments on this one
1842  *	@name_assign_type:	network interface name assignment type
1843  *	@uc_promisc:		Counter that indicates promiscuous mode
1844  *				has been enabled due to the need to listen to
1845  *				additional unicast addresses in a device that
1846  *				does not implement ndo_set_rx_mode()
1847  *	@uc:			unicast mac addresses
1848  *	@mc:			multicast mac addresses
1849  *	@dev_addrs:		list of device hw addresses
1850  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1851  *	@promiscuity:		Number of times the NIC is told to work in
1852  *				promiscuous mode; if it becomes 0 the NIC will
1853  *				exit promiscuous mode
1854  *	@allmulti:		Counter, enables or disables allmulticast mode
1855  *
1856  *	@vlan_info:	VLAN info
1857  *	@dsa_ptr:	dsa specific data
1858  *	@tipc_ptr:	TIPC specific data
1859  *	@atalk_ptr:	AppleTalk link
1860  *	@ip_ptr:	IPv4 specific data
1861  *	@ip6_ptr:	IPv6 specific data
1862  *	@ax25_ptr:	AX.25 specific data
1863  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1864  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1865  *			 device struct
1866  *	@mpls_ptr:	mpls_dev struct pointer
1867  *	@mctp_ptr:	MCTP specific data
1868  *
1869  *	@dev_addr:	Hw address (before bcast,
1870  *			because most packets are unicast)
1871  *
1872  *	@_rx:			Array of RX queues
1873  *	@num_rx_queues:		Number of RX queues
1874  *				allocated at register_netdev() time
1875  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1876  *	@xdp_prog:		XDP sockets filter program pointer
1877  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1878  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1879  *				allow to avoid NIC hard IRQ, on busy queues.
1880  *
1881  *	@rx_handler:		handler for received packets
1882  *	@rx_handler_data: 	XXX: need comments on this one
1883  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1884  *				ingress processing
1885  *	@ingress_queue:		XXX: need comments on this one
1886  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1887  *	@broadcast:		hw bcast address
1888  *
1889  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1890  *			indexed by RX queue number. Assigned by driver.
1891  *			This must only be set if the ndo_rx_flow_steer
1892  *			operation is defined
1893  *	@index_hlist:		Device index hash chain
1894  *
1895  *	@_tx:			Array of TX queues
1896  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1897  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1898  *	@qdisc:			Root qdisc from userspace point of view
1899  *	@tx_queue_len:		Max frames per queue allowed
1900  *	@tx_global_lock: 	XXX: need comments on this one
1901  *	@xdp_bulkq:		XDP device bulk queue
1902  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1903  *
1904  *	@xps_maps:	XXX: need comments on this one
1905  *	@miniq_egress:		clsact qdisc specific data for
1906  *				egress processing
1907  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1908  *	@qdisc_hash:		qdisc hash table
1909  *	@watchdog_timeo:	Represents the timeout that is used by
1910  *				the watchdog (see dev_watchdog())
1911  *	@watchdog_timer:	List of timers
1912  *
1913  *	@proto_down_reason:	reason a netdev interface is held down
1914  *	@pcpu_refcnt:		Number of references to this device
1915  *	@dev_refcnt:		Number of references to this device
1916  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1917  *	@todo_list:		Delayed register/unregister
1918  *	@link_watch_list:	XXX: need comments on this one
1919  *
1920  *	@reg_state:		Register/unregister state machine
1921  *	@dismantle:		Device is going to be freed
1922  *	@rtnl_link_state:	This enum represents the phases of creating
1923  *				a new link
1924  *
1925  *	@needs_free_netdev:	Should unregister perform free_netdev?
1926  *	@priv_destructor:	Called from unregister
1927  *	@npinfo:		XXX: need comments on this one
1928  * 	@nd_net:		Network namespace this network device is inside
1929  *
1930  * 	@ml_priv:	Mid-layer private
1931  *	@ml_priv_type:  Mid-layer private type
1932  * 	@lstats:	Loopback statistics
1933  * 	@tstats:	Tunnel statistics
1934  * 	@dstats:	Dummy statistics
1935  * 	@vstats:	Virtual ethernet statistics
1936  *
1937  *	@garp_port:	GARP
1938  *	@mrp_port:	MRP
1939  *
1940  *	@dm_private:	Drop monitor private
1941  *
1942  *	@dev:		Class/net/name entry
1943  *	@sysfs_groups:	Space for optional device, statistics and wireless
1944  *			sysfs groups
1945  *
1946  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1947  *	@rtnl_link_ops:	Rtnl_link_ops
1948  *
1949  *	@gso_max_size:	Maximum size of generic segmentation offload
1950  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1951  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1952  *			NIC for GSO
1953  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1954  *
1955  *	@dcbnl_ops:	Data Center Bridging netlink ops
1956  *	@num_tc:	Number of traffic classes in the net device
1957  *	@tc_to_txq:	XXX: need comments on this one
1958  *	@prio_tc_map:	XXX: need comments on this one
1959  *
1960  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1961  *
1962  *	@priomap:	XXX: need comments on this one
1963  *	@phydev:	Physical device may attach itself
1964  *			for hardware timestamping
1965  *	@sfp_bus:	attached &struct sfp_bus structure.
1966  *
1967  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1968  *
1969  *	@proto_down:	protocol port state information can be sent to the
1970  *			switch driver and used to set the phys state of the
1971  *			switch port.
1972  *
1973  *	@wol_enabled:	Wake-on-LAN is enabled
1974  *
1975  *	@threaded:	napi threaded mode is enabled
1976  *
1977  *	@net_notifier_list:	List of per-net netdev notifier block
1978  *				that follow this device when it is moved
1979  *				to another network namespace.
1980  *
1981  *	@macsec_ops:    MACsec offloading ops
1982  *
1983  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1984  *				offload capabilities of the device
1985  *	@udp_tunnel_nic:	UDP tunnel offload state
1986  *	@xdp_state:		stores info on attached XDP BPF programs
1987  *
1988  *	@nested_level:	Used as a parameter of spin_lock_nested() of
1989  *			dev->addr_list_lock.
1990  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1991  *			keep a list of interfaces to be deleted.
1992  *	@gro_max_size:	Maximum size of aggregated packet in generic
1993  *			receive offload (GRO)
1994  *
1995  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
1996  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
1997  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
1998  *	@dev_registered_tracker:	tracker for reference held while
1999  *					registered
2000  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2001  *
2002  *	FIXME: cleanup struct net_device such that network protocol info
2003  *	moves out.
2004  */
2005 
2006 struct net_device {
2007 	char			name[IFNAMSIZ];
2008 	struct netdev_name_node	*name_node;
2009 	struct dev_ifalias	__rcu *ifalias;
2010 	/*
2011 	 *	I/O specific fields
2012 	 *	FIXME: Merge these and struct ifmap into one
2013 	 */
2014 	unsigned long		mem_end;
2015 	unsigned long		mem_start;
2016 	unsigned long		base_addr;
2017 
2018 	/*
2019 	 *	Some hardware also needs these fields (state,dev_list,
2020 	 *	napi_list,unreg_list,close_list) but they are not
2021 	 *	part of the usual set specified in Space.c.
2022 	 */
2023 
2024 	unsigned long		state;
2025 
2026 	struct list_head	dev_list;
2027 	struct list_head	napi_list;
2028 	struct list_head	unreg_list;
2029 	struct list_head	close_list;
2030 	struct list_head	ptype_all;
2031 	struct list_head	ptype_specific;
2032 
2033 	struct {
2034 		struct list_head upper;
2035 		struct list_head lower;
2036 	} adj_list;
2037 
2038 	/* Read-mostly cache-line for fast-path access */
2039 	unsigned int		flags;
2040 	unsigned long long	priv_flags;
2041 	const struct net_device_ops *netdev_ops;
2042 	int			ifindex;
2043 	unsigned short		gflags;
2044 	unsigned short		hard_header_len;
2045 
2046 	/* Note : dev->mtu is often read without holding a lock.
2047 	 * Writers usually hold RTNL.
2048 	 * It is recommended to use READ_ONCE() to annotate the reads,
2049 	 * and to use WRITE_ONCE() to annotate the writes.
2050 	 */
2051 	unsigned int		mtu;
2052 	unsigned short		needed_headroom;
2053 	unsigned short		needed_tailroom;
2054 
2055 	netdev_features_t	features;
2056 	netdev_features_t	hw_features;
2057 	netdev_features_t	wanted_features;
2058 	netdev_features_t	vlan_features;
2059 	netdev_features_t	hw_enc_features;
2060 	netdev_features_t	mpls_features;
2061 	netdev_features_t	gso_partial_features;
2062 
2063 	unsigned int		min_mtu;
2064 	unsigned int		max_mtu;
2065 	unsigned short		type;
2066 	unsigned char		min_header_len;
2067 	unsigned char		name_assign_type;
2068 
2069 	int			group;
2070 
2071 	struct net_device_stats	stats; /* not used by modern drivers */
2072 
2073 	struct net_device_core_stats __percpu *core_stats;
2074 
2075 	/* Stats to monitor link on/off, flapping */
2076 	atomic_t		carrier_up_count;
2077 	atomic_t		carrier_down_count;
2078 
2079 #ifdef CONFIG_WIRELESS_EXT
2080 	const struct iw_handler_def *wireless_handlers;
2081 	struct iw_public_data	*wireless_data;
2082 #endif
2083 	const struct ethtool_ops *ethtool_ops;
2084 #ifdef CONFIG_NET_L3_MASTER_DEV
2085 	const struct l3mdev_ops	*l3mdev_ops;
2086 #endif
2087 #if IS_ENABLED(CONFIG_IPV6)
2088 	const struct ndisc_ops *ndisc_ops;
2089 #endif
2090 
2091 #ifdef CONFIG_XFRM_OFFLOAD
2092 	const struct xfrmdev_ops *xfrmdev_ops;
2093 #endif
2094 
2095 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2096 	const struct tlsdev_ops *tlsdev_ops;
2097 #endif
2098 
2099 	const struct header_ops *header_ops;
2100 
2101 	unsigned char		operstate;
2102 	unsigned char		link_mode;
2103 
2104 	unsigned char		if_port;
2105 	unsigned char		dma;
2106 
2107 	/* Interface address info. */
2108 	unsigned char		perm_addr[MAX_ADDR_LEN];
2109 	unsigned char		addr_assign_type;
2110 	unsigned char		addr_len;
2111 	unsigned char		upper_level;
2112 	unsigned char		lower_level;
2113 
2114 	unsigned short		neigh_priv_len;
2115 	unsigned short          dev_id;
2116 	unsigned short          dev_port;
2117 	unsigned short		padded;
2118 
2119 	spinlock_t		addr_list_lock;
2120 	int			irq;
2121 
2122 	struct netdev_hw_addr_list	uc;
2123 	struct netdev_hw_addr_list	mc;
2124 	struct netdev_hw_addr_list	dev_addrs;
2125 
2126 #ifdef CONFIG_SYSFS
2127 	struct kset		*queues_kset;
2128 #endif
2129 #ifdef CONFIG_LOCKDEP
2130 	struct list_head	unlink_list;
2131 #endif
2132 	unsigned int		promiscuity;
2133 	unsigned int		allmulti;
2134 	bool			uc_promisc;
2135 #ifdef CONFIG_LOCKDEP
2136 	unsigned char		nested_level;
2137 #endif
2138 
2139 
2140 	/* Protocol-specific pointers */
2141 
2142 	struct in_device __rcu	*ip_ptr;
2143 	struct inet6_dev __rcu	*ip6_ptr;
2144 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2145 	struct vlan_info __rcu	*vlan_info;
2146 #endif
2147 #if IS_ENABLED(CONFIG_NET_DSA)
2148 	struct dsa_port		*dsa_ptr;
2149 #endif
2150 #if IS_ENABLED(CONFIG_TIPC)
2151 	struct tipc_bearer __rcu *tipc_ptr;
2152 #endif
2153 #if IS_ENABLED(CONFIG_ATALK)
2154 	void 			*atalk_ptr;
2155 #endif
2156 #if IS_ENABLED(CONFIG_AX25)
2157 	void			*ax25_ptr;
2158 #endif
2159 #if IS_ENABLED(CONFIG_CFG80211)
2160 	struct wireless_dev	*ieee80211_ptr;
2161 #endif
2162 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2163 	struct wpan_dev		*ieee802154_ptr;
2164 #endif
2165 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2166 	struct mpls_dev __rcu	*mpls_ptr;
2167 #endif
2168 #if IS_ENABLED(CONFIG_MCTP)
2169 	struct mctp_dev __rcu	*mctp_ptr;
2170 #endif
2171 
2172 /*
2173  * Cache lines mostly used on receive path (including eth_type_trans())
2174  */
2175 	/* Interface address info used in eth_type_trans() */
2176 	const unsigned char	*dev_addr;
2177 
2178 	struct netdev_rx_queue	*_rx;
2179 	unsigned int		num_rx_queues;
2180 	unsigned int		real_num_rx_queues;
2181 
2182 	struct bpf_prog __rcu	*xdp_prog;
2183 	unsigned long		gro_flush_timeout;
2184 	int			napi_defer_hard_irqs;
2185 #define GRO_LEGACY_MAX_SIZE	65536u
2186 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2187  * and shinfo->gso_segs is a 16bit field.
2188  */
2189 #define GRO_MAX_SIZE		(8 * 65535u)
2190 	unsigned int		gro_max_size;
2191 	rx_handler_func_t __rcu	*rx_handler;
2192 	void __rcu		*rx_handler_data;
2193 
2194 #ifdef CONFIG_NET_CLS_ACT
2195 	struct mini_Qdisc __rcu	*miniq_ingress;
2196 #endif
2197 	struct netdev_queue __rcu *ingress_queue;
2198 #ifdef CONFIG_NETFILTER_INGRESS
2199 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2200 #endif
2201 
2202 	unsigned char		broadcast[MAX_ADDR_LEN];
2203 #ifdef CONFIG_RFS_ACCEL
2204 	struct cpu_rmap		*rx_cpu_rmap;
2205 #endif
2206 	struct hlist_node	index_hlist;
2207 
2208 /*
2209  * Cache lines mostly used on transmit path
2210  */
2211 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2212 	unsigned int		num_tx_queues;
2213 	unsigned int		real_num_tx_queues;
2214 	struct Qdisc __rcu	*qdisc;
2215 	unsigned int		tx_queue_len;
2216 	spinlock_t		tx_global_lock;
2217 
2218 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2219 
2220 #ifdef CONFIG_XPS
2221 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2222 #endif
2223 #ifdef CONFIG_NET_CLS_ACT
2224 	struct mini_Qdisc __rcu	*miniq_egress;
2225 #endif
2226 #ifdef CONFIG_NETFILTER_EGRESS
2227 	struct nf_hook_entries __rcu *nf_hooks_egress;
2228 #endif
2229 
2230 #ifdef CONFIG_NET_SCHED
2231 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2232 #endif
2233 	/* These may be needed for future network-power-down code. */
2234 	struct timer_list	watchdog_timer;
2235 	int			watchdog_timeo;
2236 
2237 	u32                     proto_down_reason;
2238 
2239 	struct list_head	todo_list;
2240 
2241 #ifdef CONFIG_PCPU_DEV_REFCNT
2242 	int __percpu		*pcpu_refcnt;
2243 #else
2244 	refcount_t		dev_refcnt;
2245 #endif
2246 	struct ref_tracker_dir	refcnt_tracker;
2247 
2248 	struct list_head	link_watch_list;
2249 
2250 	enum { NETREG_UNINITIALIZED=0,
2251 	       NETREG_REGISTERED,	/* completed register_netdevice */
2252 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2253 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2254 	       NETREG_RELEASED,		/* called free_netdev */
2255 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2256 	} reg_state:8;
2257 
2258 	bool dismantle;
2259 
2260 	enum {
2261 		RTNL_LINK_INITIALIZED,
2262 		RTNL_LINK_INITIALIZING,
2263 	} rtnl_link_state:16;
2264 
2265 	bool needs_free_netdev;
2266 	void (*priv_destructor)(struct net_device *dev);
2267 
2268 #ifdef CONFIG_NETPOLL
2269 	struct netpoll_info __rcu	*npinfo;
2270 #endif
2271 
2272 	possible_net_t			nd_net;
2273 
2274 	/* mid-layer private */
2275 	void				*ml_priv;
2276 	enum netdev_ml_priv_type	ml_priv_type;
2277 
2278 	union {
2279 		struct pcpu_lstats __percpu		*lstats;
2280 		struct pcpu_sw_netstats __percpu	*tstats;
2281 		struct pcpu_dstats __percpu		*dstats;
2282 	};
2283 
2284 #if IS_ENABLED(CONFIG_GARP)
2285 	struct garp_port __rcu	*garp_port;
2286 #endif
2287 #if IS_ENABLED(CONFIG_MRP)
2288 	struct mrp_port __rcu	*mrp_port;
2289 #endif
2290 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2291 	struct dm_hw_stat_delta __rcu *dm_private;
2292 #endif
2293 	struct device		dev;
2294 	const struct attribute_group *sysfs_groups[4];
2295 	const struct attribute_group *sysfs_rx_queue_group;
2296 
2297 	const struct rtnl_link_ops *rtnl_link_ops;
2298 
2299 	/* for setting kernel sock attribute on TCP connection setup */
2300 #define GSO_MAX_SEGS		65535u
2301 #define GSO_LEGACY_MAX_SIZE	65536u
2302 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2303  * and shinfo->gso_segs is a 16bit field.
2304  */
2305 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2306 
2307 	unsigned int		gso_max_size;
2308 #define TSO_LEGACY_MAX_SIZE	65536
2309 #define TSO_MAX_SIZE		UINT_MAX
2310 	unsigned int		tso_max_size;
2311 	u16			gso_max_segs;
2312 #define TSO_MAX_SEGS		U16_MAX
2313 	u16			tso_max_segs;
2314 
2315 #ifdef CONFIG_DCB
2316 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2317 #endif
2318 	s16			num_tc;
2319 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2320 	u8			prio_tc_map[TC_BITMASK + 1];
2321 
2322 #if IS_ENABLED(CONFIG_FCOE)
2323 	unsigned int		fcoe_ddp_xid;
2324 #endif
2325 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2326 	struct netprio_map __rcu *priomap;
2327 #endif
2328 	struct phy_device	*phydev;
2329 	struct sfp_bus		*sfp_bus;
2330 	struct lock_class_key	*qdisc_tx_busylock;
2331 	bool			proto_down;
2332 	unsigned		wol_enabled:1;
2333 	unsigned		threaded:1;
2334 
2335 	struct list_head	net_notifier_list;
2336 
2337 #if IS_ENABLED(CONFIG_MACSEC)
2338 	/* MACsec management functions */
2339 	const struct macsec_ops *macsec_ops;
2340 #endif
2341 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2342 	struct udp_tunnel_nic	*udp_tunnel_nic;
2343 
2344 	/* protected by rtnl_lock */
2345 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2346 
2347 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2348 	netdevice_tracker	linkwatch_dev_tracker;
2349 	netdevice_tracker	watchdog_dev_tracker;
2350 	netdevice_tracker	dev_registered_tracker;
2351 	struct rtnl_hw_stats64	*offload_xstats_l3;
2352 };
2353 #define to_net_dev(d) container_of(d, struct net_device, dev)
2354 
2355 static inline bool netif_elide_gro(const struct net_device *dev)
2356 {
2357 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2358 		return true;
2359 	return false;
2360 }
2361 
2362 #define	NETDEV_ALIGN		32
2363 
2364 static inline
2365 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2366 {
2367 	return dev->prio_tc_map[prio & TC_BITMASK];
2368 }
2369 
2370 static inline
2371 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2372 {
2373 	if (tc >= dev->num_tc)
2374 		return -EINVAL;
2375 
2376 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2377 	return 0;
2378 }
2379 
2380 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2381 void netdev_reset_tc(struct net_device *dev);
2382 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2383 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2384 
2385 static inline
2386 int netdev_get_num_tc(struct net_device *dev)
2387 {
2388 	return dev->num_tc;
2389 }
2390 
2391 static inline void net_prefetch(void *p)
2392 {
2393 	prefetch(p);
2394 #if L1_CACHE_BYTES < 128
2395 	prefetch((u8 *)p + L1_CACHE_BYTES);
2396 #endif
2397 }
2398 
2399 static inline void net_prefetchw(void *p)
2400 {
2401 	prefetchw(p);
2402 #if L1_CACHE_BYTES < 128
2403 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2404 #endif
2405 }
2406 
2407 void netdev_unbind_sb_channel(struct net_device *dev,
2408 			      struct net_device *sb_dev);
2409 int netdev_bind_sb_channel_queue(struct net_device *dev,
2410 				 struct net_device *sb_dev,
2411 				 u8 tc, u16 count, u16 offset);
2412 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2413 static inline int netdev_get_sb_channel(struct net_device *dev)
2414 {
2415 	return max_t(int, -dev->num_tc, 0);
2416 }
2417 
2418 static inline
2419 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2420 					 unsigned int index)
2421 {
2422 	return &dev->_tx[index];
2423 }
2424 
2425 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2426 						    const struct sk_buff *skb)
2427 {
2428 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2429 }
2430 
2431 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2432 					    void (*f)(struct net_device *,
2433 						      struct netdev_queue *,
2434 						      void *),
2435 					    void *arg)
2436 {
2437 	unsigned int i;
2438 
2439 	for (i = 0; i < dev->num_tx_queues; i++)
2440 		f(dev, &dev->_tx[i], arg);
2441 }
2442 
2443 #define netdev_lockdep_set_classes(dev)				\
2444 {								\
2445 	static struct lock_class_key qdisc_tx_busylock_key;	\
2446 	static struct lock_class_key qdisc_xmit_lock_key;	\
2447 	static struct lock_class_key dev_addr_list_lock_key;	\
2448 	unsigned int i;						\
2449 								\
2450 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2451 	lockdep_set_class(&(dev)->addr_list_lock,		\
2452 			  &dev_addr_list_lock_key);		\
2453 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2454 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2455 				  &qdisc_xmit_lock_key);	\
2456 }
2457 
2458 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2459 		     struct net_device *sb_dev);
2460 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2461 					 struct sk_buff *skb,
2462 					 struct net_device *sb_dev);
2463 
2464 /* returns the headroom that the master device needs to take in account
2465  * when forwarding to this dev
2466  */
2467 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2468 {
2469 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2470 }
2471 
2472 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2473 {
2474 	if (dev->netdev_ops->ndo_set_rx_headroom)
2475 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2476 }
2477 
2478 /* set the device rx headroom to the dev's default */
2479 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2480 {
2481 	netdev_set_rx_headroom(dev, -1);
2482 }
2483 
2484 static inline void *netdev_get_ml_priv(struct net_device *dev,
2485 				       enum netdev_ml_priv_type type)
2486 {
2487 	if (dev->ml_priv_type != type)
2488 		return NULL;
2489 
2490 	return dev->ml_priv;
2491 }
2492 
2493 static inline void netdev_set_ml_priv(struct net_device *dev,
2494 				      void *ml_priv,
2495 				      enum netdev_ml_priv_type type)
2496 {
2497 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2498 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2499 	     dev->ml_priv_type, type);
2500 	WARN(!dev->ml_priv_type && dev->ml_priv,
2501 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2502 
2503 	dev->ml_priv = ml_priv;
2504 	dev->ml_priv_type = type;
2505 }
2506 
2507 /*
2508  * Net namespace inlines
2509  */
2510 static inline
2511 struct net *dev_net(const struct net_device *dev)
2512 {
2513 	return read_pnet(&dev->nd_net);
2514 }
2515 
2516 static inline
2517 void dev_net_set(struct net_device *dev, struct net *net)
2518 {
2519 	write_pnet(&dev->nd_net, net);
2520 }
2521 
2522 /**
2523  *	netdev_priv - access network device private data
2524  *	@dev: network device
2525  *
2526  * Get network device private data
2527  */
2528 static inline void *netdev_priv(const struct net_device *dev)
2529 {
2530 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2531 }
2532 
2533 /* Set the sysfs physical device reference for the network logical device
2534  * if set prior to registration will cause a symlink during initialization.
2535  */
2536 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2537 
2538 /* Set the sysfs device type for the network logical device to allow
2539  * fine-grained identification of different network device types. For
2540  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2541  */
2542 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2543 
2544 /* Default NAPI poll() weight
2545  * Device drivers are strongly advised to not use bigger value
2546  */
2547 #define NAPI_POLL_WEIGHT 64
2548 
2549 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2550 			   int (*poll)(struct napi_struct *, int), int weight);
2551 
2552 /**
2553  * netif_napi_add() - initialize a NAPI context
2554  * @dev:  network device
2555  * @napi: NAPI context
2556  * @poll: polling function
2557  *
2558  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2559  * *any* of the other NAPI-related functions.
2560  */
2561 static inline void
2562 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2563 	       int (*poll)(struct napi_struct *, int))
2564 {
2565 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2566 }
2567 
2568 static inline void
2569 netif_napi_add_tx_weight(struct net_device *dev,
2570 			 struct napi_struct *napi,
2571 			 int (*poll)(struct napi_struct *, int),
2572 			 int weight)
2573 {
2574 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2575 	netif_napi_add_weight(dev, napi, poll, weight);
2576 }
2577 
2578 /**
2579  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2580  * @dev:  network device
2581  * @napi: NAPI context
2582  * @poll: polling function
2583  *
2584  * This variant of netif_napi_add() should be used from drivers using NAPI
2585  * to exclusively poll a TX queue.
2586  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2587  */
2588 static inline void netif_napi_add_tx(struct net_device *dev,
2589 				     struct napi_struct *napi,
2590 				     int (*poll)(struct napi_struct *, int))
2591 {
2592 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2593 }
2594 
2595 /**
2596  *  __netif_napi_del - remove a NAPI context
2597  *  @napi: NAPI context
2598  *
2599  * Warning: caller must observe RCU grace period before freeing memory
2600  * containing @napi. Drivers might want to call this helper to combine
2601  * all the needed RCU grace periods into a single one.
2602  */
2603 void __netif_napi_del(struct napi_struct *napi);
2604 
2605 /**
2606  *  netif_napi_del - remove a NAPI context
2607  *  @napi: NAPI context
2608  *
2609  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2610  */
2611 static inline void netif_napi_del(struct napi_struct *napi)
2612 {
2613 	__netif_napi_del(napi);
2614 	synchronize_net();
2615 }
2616 
2617 struct packet_type {
2618 	__be16			type;	/* This is really htons(ether_type). */
2619 	bool			ignore_outgoing;
2620 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2621 	netdevice_tracker	dev_tracker;
2622 	int			(*func) (struct sk_buff *,
2623 					 struct net_device *,
2624 					 struct packet_type *,
2625 					 struct net_device *);
2626 	void			(*list_func) (struct list_head *,
2627 					      struct packet_type *,
2628 					      struct net_device *);
2629 	bool			(*id_match)(struct packet_type *ptype,
2630 					    struct sock *sk);
2631 	struct net		*af_packet_net;
2632 	void			*af_packet_priv;
2633 	struct list_head	list;
2634 };
2635 
2636 struct offload_callbacks {
2637 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2638 						netdev_features_t features);
2639 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2640 						struct sk_buff *skb);
2641 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2642 };
2643 
2644 struct packet_offload {
2645 	__be16			 type;	/* This is really htons(ether_type). */
2646 	u16			 priority;
2647 	struct offload_callbacks callbacks;
2648 	struct list_head	 list;
2649 };
2650 
2651 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2652 struct pcpu_sw_netstats {
2653 	u64_stats_t		rx_packets;
2654 	u64_stats_t		rx_bytes;
2655 	u64_stats_t		tx_packets;
2656 	u64_stats_t		tx_bytes;
2657 	struct u64_stats_sync   syncp;
2658 } __aligned(4 * sizeof(u64));
2659 
2660 struct pcpu_lstats {
2661 	u64_stats_t packets;
2662 	u64_stats_t bytes;
2663 	struct u64_stats_sync syncp;
2664 } __aligned(2 * sizeof(u64));
2665 
2666 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2667 
2668 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2669 {
2670 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2671 
2672 	u64_stats_update_begin(&tstats->syncp);
2673 	u64_stats_add(&tstats->rx_bytes, len);
2674 	u64_stats_inc(&tstats->rx_packets);
2675 	u64_stats_update_end(&tstats->syncp);
2676 }
2677 
2678 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2679 					  unsigned int packets,
2680 					  unsigned int len)
2681 {
2682 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2683 
2684 	u64_stats_update_begin(&tstats->syncp);
2685 	u64_stats_add(&tstats->tx_bytes, len);
2686 	u64_stats_add(&tstats->tx_packets, packets);
2687 	u64_stats_update_end(&tstats->syncp);
2688 }
2689 
2690 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2691 {
2692 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2693 
2694 	u64_stats_update_begin(&lstats->syncp);
2695 	u64_stats_add(&lstats->bytes, len);
2696 	u64_stats_inc(&lstats->packets);
2697 	u64_stats_update_end(&lstats->syncp);
2698 }
2699 
2700 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2701 ({									\
2702 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2703 	if (pcpu_stats)	{						\
2704 		int __cpu;						\
2705 		for_each_possible_cpu(__cpu) {				\
2706 			typeof(type) *stat;				\
2707 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2708 			u64_stats_init(&stat->syncp);			\
2709 		}							\
2710 	}								\
2711 	pcpu_stats;							\
2712 })
2713 
2714 #define netdev_alloc_pcpu_stats(type)					\
2715 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2716 
2717 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2718 ({									\
2719 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2720 	if (pcpu_stats) {						\
2721 		int __cpu;						\
2722 		for_each_possible_cpu(__cpu) {				\
2723 			typeof(type) *stat;				\
2724 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2725 			u64_stats_init(&stat->syncp);			\
2726 		}							\
2727 	}								\
2728 	pcpu_stats;							\
2729 })
2730 
2731 enum netdev_lag_tx_type {
2732 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2733 	NETDEV_LAG_TX_TYPE_RANDOM,
2734 	NETDEV_LAG_TX_TYPE_BROADCAST,
2735 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2736 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2737 	NETDEV_LAG_TX_TYPE_HASH,
2738 };
2739 
2740 enum netdev_lag_hash {
2741 	NETDEV_LAG_HASH_NONE,
2742 	NETDEV_LAG_HASH_L2,
2743 	NETDEV_LAG_HASH_L34,
2744 	NETDEV_LAG_HASH_L23,
2745 	NETDEV_LAG_HASH_E23,
2746 	NETDEV_LAG_HASH_E34,
2747 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2748 	NETDEV_LAG_HASH_UNKNOWN,
2749 };
2750 
2751 struct netdev_lag_upper_info {
2752 	enum netdev_lag_tx_type tx_type;
2753 	enum netdev_lag_hash hash_type;
2754 };
2755 
2756 struct netdev_lag_lower_state_info {
2757 	u8 link_up : 1,
2758 	   tx_enabled : 1;
2759 };
2760 
2761 #include <linux/notifier.h>
2762 
2763 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2764  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2765  * adding new types.
2766  */
2767 enum netdev_cmd {
2768 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2769 	NETDEV_DOWN,
2770 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2771 				   detected a hardware crash and restarted
2772 				   - we can use this eg to kick tcp sessions
2773 				   once done */
2774 	NETDEV_CHANGE,		/* Notify device state change */
2775 	NETDEV_REGISTER,
2776 	NETDEV_UNREGISTER,
2777 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2778 	NETDEV_CHANGEADDR,	/* notify after the address change */
2779 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2780 	NETDEV_GOING_DOWN,
2781 	NETDEV_CHANGENAME,
2782 	NETDEV_FEAT_CHANGE,
2783 	NETDEV_BONDING_FAILOVER,
2784 	NETDEV_PRE_UP,
2785 	NETDEV_PRE_TYPE_CHANGE,
2786 	NETDEV_POST_TYPE_CHANGE,
2787 	NETDEV_POST_INIT,
2788 	NETDEV_RELEASE,
2789 	NETDEV_NOTIFY_PEERS,
2790 	NETDEV_JOIN,
2791 	NETDEV_CHANGEUPPER,
2792 	NETDEV_RESEND_IGMP,
2793 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2794 	NETDEV_CHANGEINFODATA,
2795 	NETDEV_BONDING_INFO,
2796 	NETDEV_PRECHANGEUPPER,
2797 	NETDEV_CHANGELOWERSTATE,
2798 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2799 	NETDEV_UDP_TUNNEL_DROP_INFO,
2800 	NETDEV_CHANGE_TX_QUEUE_LEN,
2801 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2802 	NETDEV_CVLAN_FILTER_DROP_INFO,
2803 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2804 	NETDEV_SVLAN_FILTER_DROP_INFO,
2805 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2806 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2807 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2808 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2809 };
2810 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2811 
2812 int register_netdevice_notifier(struct notifier_block *nb);
2813 int unregister_netdevice_notifier(struct notifier_block *nb);
2814 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2815 int unregister_netdevice_notifier_net(struct net *net,
2816 				      struct notifier_block *nb);
2817 int register_netdevice_notifier_dev_net(struct net_device *dev,
2818 					struct notifier_block *nb,
2819 					struct netdev_net_notifier *nn);
2820 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2821 					  struct notifier_block *nb,
2822 					  struct netdev_net_notifier *nn);
2823 
2824 struct netdev_notifier_info {
2825 	struct net_device	*dev;
2826 	struct netlink_ext_ack	*extack;
2827 };
2828 
2829 struct netdev_notifier_info_ext {
2830 	struct netdev_notifier_info info; /* must be first */
2831 	union {
2832 		u32 mtu;
2833 	} ext;
2834 };
2835 
2836 struct netdev_notifier_change_info {
2837 	struct netdev_notifier_info info; /* must be first */
2838 	unsigned int flags_changed;
2839 };
2840 
2841 struct netdev_notifier_changeupper_info {
2842 	struct netdev_notifier_info info; /* must be first */
2843 	struct net_device *upper_dev; /* new upper dev */
2844 	bool master; /* is upper dev master */
2845 	bool linking; /* is the notification for link or unlink */
2846 	void *upper_info; /* upper dev info */
2847 };
2848 
2849 struct netdev_notifier_changelowerstate_info {
2850 	struct netdev_notifier_info info; /* must be first */
2851 	void *lower_state_info; /* is lower dev state */
2852 };
2853 
2854 struct netdev_notifier_pre_changeaddr_info {
2855 	struct netdev_notifier_info info; /* must be first */
2856 	const unsigned char *dev_addr;
2857 };
2858 
2859 enum netdev_offload_xstats_type {
2860 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2861 };
2862 
2863 struct netdev_notifier_offload_xstats_info {
2864 	struct netdev_notifier_info info; /* must be first */
2865 	enum netdev_offload_xstats_type type;
2866 
2867 	union {
2868 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2869 		struct netdev_notifier_offload_xstats_rd *report_delta;
2870 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2871 		struct netdev_notifier_offload_xstats_ru *report_used;
2872 	};
2873 };
2874 
2875 int netdev_offload_xstats_enable(struct net_device *dev,
2876 				 enum netdev_offload_xstats_type type,
2877 				 struct netlink_ext_ack *extack);
2878 int netdev_offload_xstats_disable(struct net_device *dev,
2879 				  enum netdev_offload_xstats_type type);
2880 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2881 				   enum netdev_offload_xstats_type type);
2882 int netdev_offload_xstats_get(struct net_device *dev,
2883 			      enum netdev_offload_xstats_type type,
2884 			      struct rtnl_hw_stats64 *stats, bool *used,
2885 			      struct netlink_ext_ack *extack);
2886 void
2887 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2888 				   const struct rtnl_hw_stats64 *stats);
2889 void
2890 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2891 void netdev_offload_xstats_push_delta(struct net_device *dev,
2892 				      enum netdev_offload_xstats_type type,
2893 				      const struct rtnl_hw_stats64 *stats);
2894 
2895 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2896 					     struct net_device *dev)
2897 {
2898 	info->dev = dev;
2899 	info->extack = NULL;
2900 }
2901 
2902 static inline struct net_device *
2903 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2904 {
2905 	return info->dev;
2906 }
2907 
2908 static inline struct netlink_ext_ack *
2909 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2910 {
2911 	return info->extack;
2912 }
2913 
2914 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2915 
2916 
2917 extern rwlock_t				dev_base_lock;		/* Device list lock */
2918 
2919 #define for_each_netdev(net, d)		\
2920 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2921 #define for_each_netdev_reverse(net, d)	\
2922 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2923 #define for_each_netdev_rcu(net, d)		\
2924 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2925 #define for_each_netdev_safe(net, d, n)	\
2926 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2927 #define for_each_netdev_continue(net, d)		\
2928 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2929 #define for_each_netdev_continue_reverse(net, d)		\
2930 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2931 						     dev_list)
2932 #define for_each_netdev_continue_rcu(net, d)		\
2933 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2934 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2935 		for_each_netdev_rcu(&init_net, slave)	\
2936 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2937 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2938 
2939 static inline struct net_device *next_net_device(struct net_device *dev)
2940 {
2941 	struct list_head *lh;
2942 	struct net *net;
2943 
2944 	net = dev_net(dev);
2945 	lh = dev->dev_list.next;
2946 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2947 }
2948 
2949 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2950 {
2951 	struct list_head *lh;
2952 	struct net *net;
2953 
2954 	net = dev_net(dev);
2955 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2956 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2957 }
2958 
2959 static inline struct net_device *first_net_device(struct net *net)
2960 {
2961 	return list_empty(&net->dev_base_head) ? NULL :
2962 		net_device_entry(net->dev_base_head.next);
2963 }
2964 
2965 static inline struct net_device *first_net_device_rcu(struct net *net)
2966 {
2967 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2968 
2969 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2970 }
2971 
2972 int netdev_boot_setup_check(struct net_device *dev);
2973 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2974 				       const char *hwaddr);
2975 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2976 void dev_add_pack(struct packet_type *pt);
2977 void dev_remove_pack(struct packet_type *pt);
2978 void __dev_remove_pack(struct packet_type *pt);
2979 void dev_add_offload(struct packet_offload *po);
2980 void dev_remove_offload(struct packet_offload *po);
2981 
2982 int dev_get_iflink(const struct net_device *dev);
2983 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2984 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2985 			  struct net_device_path_stack *stack);
2986 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2987 				      unsigned short mask);
2988 struct net_device *dev_get_by_name(struct net *net, const char *name);
2989 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2990 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2991 bool netdev_name_in_use(struct net *net, const char *name);
2992 int dev_alloc_name(struct net_device *dev, const char *name);
2993 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2994 void dev_close(struct net_device *dev);
2995 void dev_close_many(struct list_head *head, bool unlink);
2996 void dev_disable_lro(struct net_device *dev);
2997 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2998 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2999 		     struct net_device *sb_dev);
3000 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3001 		       struct net_device *sb_dev);
3002 
3003 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3004 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3005 
3006 static inline int dev_queue_xmit(struct sk_buff *skb)
3007 {
3008 	return __dev_queue_xmit(skb, NULL);
3009 }
3010 
3011 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3012 				       struct net_device *sb_dev)
3013 {
3014 	return __dev_queue_xmit(skb, sb_dev);
3015 }
3016 
3017 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3018 {
3019 	int ret;
3020 
3021 	ret = __dev_direct_xmit(skb, queue_id);
3022 	if (!dev_xmit_complete(ret))
3023 		kfree_skb(skb);
3024 	return ret;
3025 }
3026 
3027 int register_netdevice(struct net_device *dev);
3028 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3029 void unregister_netdevice_many(struct list_head *head);
3030 static inline void unregister_netdevice(struct net_device *dev)
3031 {
3032 	unregister_netdevice_queue(dev, NULL);
3033 }
3034 
3035 int netdev_refcnt_read(const struct net_device *dev);
3036 void free_netdev(struct net_device *dev);
3037 void netdev_freemem(struct net_device *dev);
3038 int init_dummy_netdev(struct net_device *dev);
3039 
3040 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3041 					 struct sk_buff *skb,
3042 					 bool all_slaves);
3043 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3044 					    struct sock *sk);
3045 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3046 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3047 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3048 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3049 int dev_restart(struct net_device *dev);
3050 
3051 
3052 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3053 				  unsigned short type,
3054 				  const void *daddr, const void *saddr,
3055 				  unsigned int len)
3056 {
3057 	if (!dev->header_ops || !dev->header_ops->create)
3058 		return 0;
3059 
3060 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3061 }
3062 
3063 static inline int dev_parse_header(const struct sk_buff *skb,
3064 				   unsigned char *haddr)
3065 {
3066 	const struct net_device *dev = skb->dev;
3067 
3068 	if (!dev->header_ops || !dev->header_ops->parse)
3069 		return 0;
3070 	return dev->header_ops->parse(skb, haddr);
3071 }
3072 
3073 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3074 {
3075 	const struct net_device *dev = skb->dev;
3076 
3077 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3078 		return 0;
3079 	return dev->header_ops->parse_protocol(skb);
3080 }
3081 
3082 /* ll_header must have at least hard_header_len allocated */
3083 static inline bool dev_validate_header(const struct net_device *dev,
3084 				       char *ll_header, int len)
3085 {
3086 	if (likely(len >= dev->hard_header_len))
3087 		return true;
3088 	if (len < dev->min_header_len)
3089 		return false;
3090 
3091 	if (capable(CAP_SYS_RAWIO)) {
3092 		memset(ll_header + len, 0, dev->hard_header_len - len);
3093 		return true;
3094 	}
3095 
3096 	if (dev->header_ops && dev->header_ops->validate)
3097 		return dev->header_ops->validate(ll_header, len);
3098 
3099 	return false;
3100 }
3101 
3102 static inline bool dev_has_header(const struct net_device *dev)
3103 {
3104 	return dev->header_ops && dev->header_ops->create;
3105 }
3106 
3107 /*
3108  * Incoming packets are placed on per-CPU queues
3109  */
3110 struct softnet_data {
3111 	struct list_head	poll_list;
3112 	struct sk_buff_head	process_queue;
3113 
3114 	/* stats */
3115 	unsigned int		processed;
3116 	unsigned int		time_squeeze;
3117 	unsigned int		received_rps;
3118 #ifdef CONFIG_RPS
3119 	struct softnet_data	*rps_ipi_list;
3120 #endif
3121 #ifdef CONFIG_NET_FLOW_LIMIT
3122 	struct sd_flow_limit __rcu *flow_limit;
3123 #endif
3124 	struct Qdisc		*output_queue;
3125 	struct Qdisc		**output_queue_tailp;
3126 	struct sk_buff		*completion_queue;
3127 #ifdef CONFIG_XFRM_OFFLOAD
3128 	struct sk_buff_head	xfrm_backlog;
3129 #endif
3130 	/* written and read only by owning cpu: */
3131 	struct {
3132 		u16 recursion;
3133 		u8  more;
3134 #ifdef CONFIG_NET_EGRESS
3135 		u8  skip_txqueue;
3136 #endif
3137 	} xmit;
3138 #ifdef CONFIG_RPS
3139 	/* input_queue_head should be written by cpu owning this struct,
3140 	 * and only read by other cpus. Worth using a cache line.
3141 	 */
3142 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3143 
3144 	/* Elements below can be accessed between CPUs for RPS/RFS */
3145 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3146 	struct softnet_data	*rps_ipi_next;
3147 	unsigned int		cpu;
3148 	unsigned int		input_queue_tail;
3149 #endif
3150 	unsigned int		dropped;
3151 	struct sk_buff_head	input_pkt_queue;
3152 	struct napi_struct	backlog;
3153 
3154 	/* Another possibly contended cache line */
3155 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3156 	int			defer_count;
3157 	int			defer_ipi_scheduled;
3158 	struct sk_buff		*defer_list;
3159 	call_single_data_t	defer_csd;
3160 };
3161 
3162 static inline void input_queue_head_incr(struct softnet_data *sd)
3163 {
3164 #ifdef CONFIG_RPS
3165 	sd->input_queue_head++;
3166 #endif
3167 }
3168 
3169 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3170 					      unsigned int *qtail)
3171 {
3172 #ifdef CONFIG_RPS
3173 	*qtail = ++sd->input_queue_tail;
3174 #endif
3175 }
3176 
3177 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3178 
3179 static inline int dev_recursion_level(void)
3180 {
3181 	return this_cpu_read(softnet_data.xmit.recursion);
3182 }
3183 
3184 #define XMIT_RECURSION_LIMIT	8
3185 static inline bool dev_xmit_recursion(void)
3186 {
3187 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3188 			XMIT_RECURSION_LIMIT);
3189 }
3190 
3191 static inline void dev_xmit_recursion_inc(void)
3192 {
3193 	__this_cpu_inc(softnet_data.xmit.recursion);
3194 }
3195 
3196 static inline void dev_xmit_recursion_dec(void)
3197 {
3198 	__this_cpu_dec(softnet_data.xmit.recursion);
3199 }
3200 
3201 void __netif_schedule(struct Qdisc *q);
3202 void netif_schedule_queue(struct netdev_queue *txq);
3203 
3204 static inline void netif_tx_schedule_all(struct net_device *dev)
3205 {
3206 	unsigned int i;
3207 
3208 	for (i = 0; i < dev->num_tx_queues; i++)
3209 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3210 }
3211 
3212 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3213 {
3214 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3215 }
3216 
3217 /**
3218  *	netif_start_queue - allow transmit
3219  *	@dev: network device
3220  *
3221  *	Allow upper layers to call the device hard_start_xmit routine.
3222  */
3223 static inline void netif_start_queue(struct net_device *dev)
3224 {
3225 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3226 }
3227 
3228 static inline void netif_tx_start_all_queues(struct net_device *dev)
3229 {
3230 	unsigned int i;
3231 
3232 	for (i = 0; i < dev->num_tx_queues; i++) {
3233 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3234 		netif_tx_start_queue(txq);
3235 	}
3236 }
3237 
3238 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3239 
3240 /**
3241  *	netif_wake_queue - restart transmit
3242  *	@dev: network device
3243  *
3244  *	Allow upper layers to call the device hard_start_xmit routine.
3245  *	Used for flow control when transmit resources are available.
3246  */
3247 static inline void netif_wake_queue(struct net_device *dev)
3248 {
3249 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3250 }
3251 
3252 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3253 {
3254 	unsigned int i;
3255 
3256 	for (i = 0; i < dev->num_tx_queues; i++) {
3257 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3258 		netif_tx_wake_queue(txq);
3259 	}
3260 }
3261 
3262 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3263 {
3264 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3265 }
3266 
3267 /**
3268  *	netif_stop_queue - stop transmitted packets
3269  *	@dev: network device
3270  *
3271  *	Stop upper layers calling the device hard_start_xmit routine.
3272  *	Used for flow control when transmit resources are unavailable.
3273  */
3274 static inline void netif_stop_queue(struct net_device *dev)
3275 {
3276 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3277 }
3278 
3279 void netif_tx_stop_all_queues(struct net_device *dev);
3280 
3281 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3282 {
3283 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3284 }
3285 
3286 /**
3287  *	netif_queue_stopped - test if transmit queue is flowblocked
3288  *	@dev: network device
3289  *
3290  *	Test if transmit queue on device is currently unable to send.
3291  */
3292 static inline bool netif_queue_stopped(const struct net_device *dev)
3293 {
3294 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3295 }
3296 
3297 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3298 {
3299 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3300 }
3301 
3302 static inline bool
3303 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3304 {
3305 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3306 }
3307 
3308 static inline bool
3309 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3310 {
3311 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3312 }
3313 
3314 /**
3315  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3316  *	@dev_queue: pointer to transmit queue
3317  *	@min_limit: dql minimum limit
3318  *
3319  * Forces xmit_more() to return true until the minimum threshold
3320  * defined by @min_limit is reached (or until the tx queue is
3321  * empty). Warning: to be use with care, misuse will impact the
3322  * latency.
3323  */
3324 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3325 						  unsigned int min_limit)
3326 {
3327 #ifdef CONFIG_BQL
3328 	dev_queue->dql.min_limit = min_limit;
3329 #endif
3330 }
3331 
3332 /**
3333  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3334  *	@dev_queue: pointer to transmit queue
3335  *
3336  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3337  * to give appropriate hint to the CPU.
3338  */
3339 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3340 {
3341 #ifdef CONFIG_BQL
3342 	prefetchw(&dev_queue->dql.num_queued);
3343 #endif
3344 }
3345 
3346 /**
3347  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3348  *	@dev_queue: pointer to transmit queue
3349  *
3350  * BQL enabled drivers might use this helper in their TX completion path,
3351  * to give appropriate hint to the CPU.
3352  */
3353 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3354 {
3355 #ifdef CONFIG_BQL
3356 	prefetchw(&dev_queue->dql.limit);
3357 #endif
3358 }
3359 
3360 /**
3361  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3362  *	@dev_queue: network device queue
3363  *	@bytes: number of bytes queued to the device queue
3364  *
3365  *	Report the number of bytes queued for sending/completion to the network
3366  *	device hardware queue. @bytes should be a good approximation and should
3367  *	exactly match netdev_completed_queue() @bytes.
3368  *	This is typically called once per packet, from ndo_start_xmit().
3369  */
3370 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3371 					unsigned int bytes)
3372 {
3373 #ifdef CONFIG_BQL
3374 	dql_queued(&dev_queue->dql, bytes);
3375 
3376 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3377 		return;
3378 
3379 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3380 
3381 	/*
3382 	 * The XOFF flag must be set before checking the dql_avail below,
3383 	 * because in netdev_tx_completed_queue we update the dql_completed
3384 	 * before checking the XOFF flag.
3385 	 */
3386 	smp_mb();
3387 
3388 	/* check again in case another CPU has just made room avail */
3389 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3390 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3391 #endif
3392 }
3393 
3394 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3395  * that they should not test BQL status themselves.
3396  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3397  * skb of a batch.
3398  * Returns true if the doorbell must be used to kick the NIC.
3399  */
3400 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3401 					  unsigned int bytes,
3402 					  bool xmit_more)
3403 {
3404 	if (xmit_more) {
3405 #ifdef CONFIG_BQL
3406 		dql_queued(&dev_queue->dql, bytes);
3407 #endif
3408 		return netif_tx_queue_stopped(dev_queue);
3409 	}
3410 	netdev_tx_sent_queue(dev_queue, bytes);
3411 	return true;
3412 }
3413 
3414 /**
3415  *	netdev_sent_queue - report the number of bytes queued to hardware
3416  *	@dev: network device
3417  *	@bytes: number of bytes queued to the hardware device queue
3418  *
3419  *	Report the number of bytes queued for sending/completion to the network
3420  *	device hardware queue#0. @bytes should be a good approximation and should
3421  *	exactly match netdev_completed_queue() @bytes.
3422  *	This is typically called once per packet, from ndo_start_xmit().
3423  */
3424 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3425 {
3426 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3427 }
3428 
3429 static inline bool __netdev_sent_queue(struct net_device *dev,
3430 				       unsigned int bytes,
3431 				       bool xmit_more)
3432 {
3433 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3434 				      xmit_more);
3435 }
3436 
3437 /**
3438  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3439  *	@dev_queue: network device queue
3440  *	@pkts: number of packets (currently ignored)
3441  *	@bytes: number of bytes dequeued from the device queue
3442  *
3443  *	Must be called at most once per TX completion round (and not per
3444  *	individual packet), so that BQL can adjust its limits appropriately.
3445  */
3446 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3447 					     unsigned int pkts, unsigned int bytes)
3448 {
3449 #ifdef CONFIG_BQL
3450 	if (unlikely(!bytes))
3451 		return;
3452 
3453 	dql_completed(&dev_queue->dql, bytes);
3454 
3455 	/*
3456 	 * Without the memory barrier there is a small possiblity that
3457 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3458 	 * be stopped forever
3459 	 */
3460 	smp_mb();
3461 
3462 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3463 		return;
3464 
3465 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3466 		netif_schedule_queue(dev_queue);
3467 #endif
3468 }
3469 
3470 /**
3471  * 	netdev_completed_queue - report bytes and packets completed by device
3472  * 	@dev: network device
3473  * 	@pkts: actual number of packets sent over the medium
3474  * 	@bytes: actual number of bytes sent over the medium
3475  *
3476  * 	Report the number of bytes and packets transmitted by the network device
3477  * 	hardware queue over the physical medium, @bytes must exactly match the
3478  * 	@bytes amount passed to netdev_sent_queue()
3479  */
3480 static inline void netdev_completed_queue(struct net_device *dev,
3481 					  unsigned int pkts, unsigned int bytes)
3482 {
3483 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3484 }
3485 
3486 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3487 {
3488 #ifdef CONFIG_BQL
3489 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3490 	dql_reset(&q->dql);
3491 #endif
3492 }
3493 
3494 /**
3495  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3496  * 	@dev_queue: network device
3497  *
3498  * 	Reset the bytes and packet count of a network device and clear the
3499  * 	software flow control OFF bit for this network device
3500  */
3501 static inline void netdev_reset_queue(struct net_device *dev_queue)
3502 {
3503 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3504 }
3505 
3506 /**
3507  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3508  * 	@dev: network device
3509  * 	@queue_index: given tx queue index
3510  *
3511  * 	Returns 0 if given tx queue index >= number of device tx queues,
3512  * 	otherwise returns the originally passed tx queue index.
3513  */
3514 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3515 {
3516 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3517 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3518 				     dev->name, queue_index,
3519 				     dev->real_num_tx_queues);
3520 		return 0;
3521 	}
3522 
3523 	return queue_index;
3524 }
3525 
3526 /**
3527  *	netif_running - test if up
3528  *	@dev: network device
3529  *
3530  *	Test if the device has been brought up.
3531  */
3532 static inline bool netif_running(const struct net_device *dev)
3533 {
3534 	return test_bit(__LINK_STATE_START, &dev->state);
3535 }
3536 
3537 /*
3538  * Routines to manage the subqueues on a device.  We only need start,
3539  * stop, and a check if it's stopped.  All other device management is
3540  * done at the overall netdevice level.
3541  * Also test the device if we're multiqueue.
3542  */
3543 
3544 /**
3545  *	netif_start_subqueue - allow sending packets on subqueue
3546  *	@dev: network device
3547  *	@queue_index: sub queue index
3548  *
3549  * Start individual transmit queue of a device with multiple transmit queues.
3550  */
3551 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3552 {
3553 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3554 
3555 	netif_tx_start_queue(txq);
3556 }
3557 
3558 /**
3559  *	netif_stop_subqueue - stop sending packets on subqueue
3560  *	@dev: network device
3561  *	@queue_index: sub queue index
3562  *
3563  * Stop individual transmit queue of a device with multiple transmit queues.
3564  */
3565 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3566 {
3567 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3568 	netif_tx_stop_queue(txq);
3569 }
3570 
3571 /**
3572  *	__netif_subqueue_stopped - test status of subqueue
3573  *	@dev: network device
3574  *	@queue_index: sub queue index
3575  *
3576  * Check individual transmit queue of a device with multiple transmit queues.
3577  */
3578 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3579 					    u16 queue_index)
3580 {
3581 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3582 
3583 	return netif_tx_queue_stopped(txq);
3584 }
3585 
3586 /**
3587  *	netif_subqueue_stopped - test status of subqueue
3588  *	@dev: network device
3589  *	@skb: sub queue buffer pointer
3590  *
3591  * Check individual transmit queue of a device with multiple transmit queues.
3592  */
3593 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3594 					  struct sk_buff *skb)
3595 {
3596 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3597 }
3598 
3599 /**
3600  *	netif_wake_subqueue - allow sending packets on subqueue
3601  *	@dev: network device
3602  *	@queue_index: sub queue index
3603  *
3604  * Resume individual transmit queue of a device with multiple transmit queues.
3605  */
3606 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3607 {
3608 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3609 
3610 	netif_tx_wake_queue(txq);
3611 }
3612 
3613 #ifdef CONFIG_XPS
3614 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3615 			u16 index);
3616 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3617 			  u16 index, enum xps_map_type type);
3618 
3619 /**
3620  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3621  *	@j: CPU/Rx queue index
3622  *	@mask: bitmask of all cpus/rx queues
3623  *	@nr_bits: number of bits in the bitmask
3624  *
3625  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3626  */
3627 static inline bool netif_attr_test_mask(unsigned long j,
3628 					const unsigned long *mask,
3629 					unsigned int nr_bits)
3630 {
3631 	cpu_max_bits_warn(j, nr_bits);
3632 	return test_bit(j, mask);
3633 }
3634 
3635 /**
3636  *	netif_attr_test_online - Test for online CPU/Rx queue
3637  *	@j: CPU/Rx queue index
3638  *	@online_mask: bitmask for CPUs/Rx queues that are online
3639  *	@nr_bits: number of bits in the bitmask
3640  *
3641  * Returns true if a CPU/Rx queue is online.
3642  */
3643 static inline bool netif_attr_test_online(unsigned long j,
3644 					  const unsigned long *online_mask,
3645 					  unsigned int nr_bits)
3646 {
3647 	cpu_max_bits_warn(j, nr_bits);
3648 
3649 	if (online_mask)
3650 		return test_bit(j, online_mask);
3651 
3652 	return (j < nr_bits);
3653 }
3654 
3655 /**
3656  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3657  *	@n: CPU/Rx queue index
3658  *	@srcp: the cpumask/Rx queue mask pointer
3659  *	@nr_bits: number of bits in the bitmask
3660  *
3661  * Returns >= nr_bits if no further CPUs/Rx queues set.
3662  */
3663 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3664 					       unsigned int nr_bits)
3665 {
3666 	/* -1 is a legal arg here. */
3667 	if (n != -1)
3668 		cpu_max_bits_warn(n, nr_bits);
3669 
3670 	if (srcp)
3671 		return find_next_bit(srcp, nr_bits, n + 1);
3672 
3673 	return n + 1;
3674 }
3675 
3676 /**
3677  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3678  *	@n: CPU/Rx queue index
3679  *	@src1p: the first CPUs/Rx queues mask pointer
3680  *	@src2p: the second CPUs/Rx queues mask pointer
3681  *	@nr_bits: number of bits in the bitmask
3682  *
3683  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3684  */
3685 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3686 					  const unsigned long *src2p,
3687 					  unsigned int nr_bits)
3688 {
3689 	/* -1 is a legal arg here. */
3690 	if (n != -1)
3691 		cpu_max_bits_warn(n, nr_bits);
3692 
3693 	if (src1p && src2p)
3694 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3695 	else if (src1p)
3696 		return find_next_bit(src1p, nr_bits, n + 1);
3697 	else if (src2p)
3698 		return find_next_bit(src2p, nr_bits, n + 1);
3699 
3700 	return n + 1;
3701 }
3702 #else
3703 static inline int netif_set_xps_queue(struct net_device *dev,
3704 				      const struct cpumask *mask,
3705 				      u16 index)
3706 {
3707 	return 0;
3708 }
3709 
3710 static inline int __netif_set_xps_queue(struct net_device *dev,
3711 					const unsigned long *mask,
3712 					u16 index, enum xps_map_type type)
3713 {
3714 	return 0;
3715 }
3716 #endif
3717 
3718 /**
3719  *	netif_is_multiqueue - test if device has multiple transmit queues
3720  *	@dev: network device
3721  *
3722  * Check if device has multiple transmit queues
3723  */
3724 static inline bool netif_is_multiqueue(const struct net_device *dev)
3725 {
3726 	return dev->num_tx_queues > 1;
3727 }
3728 
3729 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3730 
3731 #ifdef CONFIG_SYSFS
3732 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3733 #else
3734 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3735 						unsigned int rxqs)
3736 {
3737 	dev->real_num_rx_queues = rxqs;
3738 	return 0;
3739 }
3740 #endif
3741 int netif_set_real_num_queues(struct net_device *dev,
3742 			      unsigned int txq, unsigned int rxq);
3743 
3744 static inline struct netdev_rx_queue *
3745 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3746 {
3747 	return dev->_rx + rxq;
3748 }
3749 
3750 #ifdef CONFIG_SYSFS
3751 static inline unsigned int get_netdev_rx_queue_index(
3752 		struct netdev_rx_queue *queue)
3753 {
3754 	struct net_device *dev = queue->dev;
3755 	int index = queue - dev->_rx;
3756 
3757 	BUG_ON(index >= dev->num_rx_queues);
3758 	return index;
3759 }
3760 #endif
3761 
3762 int netif_get_num_default_rss_queues(void);
3763 
3764 enum skb_free_reason {
3765 	SKB_REASON_CONSUMED,
3766 	SKB_REASON_DROPPED,
3767 };
3768 
3769 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3770 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3771 
3772 /*
3773  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3774  * interrupt context or with hardware interrupts being disabled.
3775  * (in_hardirq() || irqs_disabled())
3776  *
3777  * We provide four helpers that can be used in following contexts :
3778  *
3779  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3780  *  replacing kfree_skb(skb)
3781  *
3782  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3783  *  Typically used in place of consume_skb(skb) in TX completion path
3784  *
3785  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3786  *  replacing kfree_skb(skb)
3787  *
3788  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3789  *  and consumed a packet. Used in place of consume_skb(skb)
3790  */
3791 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3792 {
3793 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3794 }
3795 
3796 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3797 {
3798 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3799 }
3800 
3801 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3802 {
3803 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3804 }
3805 
3806 static inline void dev_consume_skb_any(struct sk_buff *skb)
3807 {
3808 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3809 }
3810 
3811 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3812 			     struct bpf_prog *xdp_prog);
3813 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3814 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3815 int netif_rx(struct sk_buff *skb);
3816 int __netif_rx(struct sk_buff *skb);
3817 
3818 int netif_receive_skb(struct sk_buff *skb);
3819 int netif_receive_skb_core(struct sk_buff *skb);
3820 void netif_receive_skb_list_internal(struct list_head *head);
3821 void netif_receive_skb_list(struct list_head *head);
3822 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3823 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3824 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3825 void napi_get_frags_check(struct napi_struct *napi);
3826 gro_result_t napi_gro_frags(struct napi_struct *napi);
3827 struct packet_offload *gro_find_receive_by_type(__be16 type);
3828 struct packet_offload *gro_find_complete_by_type(__be16 type);
3829 
3830 static inline void napi_free_frags(struct napi_struct *napi)
3831 {
3832 	kfree_skb(napi->skb);
3833 	napi->skb = NULL;
3834 }
3835 
3836 bool netdev_is_rx_handler_busy(struct net_device *dev);
3837 int netdev_rx_handler_register(struct net_device *dev,
3838 			       rx_handler_func_t *rx_handler,
3839 			       void *rx_handler_data);
3840 void netdev_rx_handler_unregister(struct net_device *dev);
3841 
3842 bool dev_valid_name(const char *name);
3843 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3844 {
3845 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3846 }
3847 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3848 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3849 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3850 		void __user *data, bool *need_copyout);
3851 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3852 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3853 unsigned int dev_get_flags(const struct net_device *);
3854 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3855 		       struct netlink_ext_ack *extack);
3856 int dev_change_flags(struct net_device *dev, unsigned int flags,
3857 		     struct netlink_ext_ack *extack);
3858 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3859 			unsigned int gchanges);
3860 int dev_set_alias(struct net_device *, const char *, size_t);
3861 int dev_get_alias(const struct net_device *, char *, size_t);
3862 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3863 			       const char *pat, int new_ifindex);
3864 static inline
3865 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3866 			     const char *pat)
3867 {
3868 	return __dev_change_net_namespace(dev, net, pat, 0);
3869 }
3870 int __dev_set_mtu(struct net_device *, int);
3871 int dev_set_mtu(struct net_device *, int);
3872 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3873 			      struct netlink_ext_ack *extack);
3874 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3875 			struct netlink_ext_ack *extack);
3876 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3877 			     struct netlink_ext_ack *extack);
3878 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3879 int dev_get_port_parent_id(struct net_device *dev,
3880 			   struct netdev_phys_item_id *ppid, bool recurse);
3881 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3882 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3883 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3884 				    struct netdev_queue *txq, int *ret);
3885 
3886 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3887 u8 dev_xdp_prog_count(struct net_device *dev);
3888 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3889 
3890 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3891 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3892 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3893 bool is_skb_forwardable(const struct net_device *dev,
3894 			const struct sk_buff *skb);
3895 
3896 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3897 						 const struct sk_buff *skb,
3898 						 const bool check_mtu)
3899 {
3900 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3901 	unsigned int len;
3902 
3903 	if (!(dev->flags & IFF_UP))
3904 		return false;
3905 
3906 	if (!check_mtu)
3907 		return true;
3908 
3909 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3910 	if (skb->len <= len)
3911 		return true;
3912 
3913 	/* if TSO is enabled, we don't care about the length as the packet
3914 	 * could be forwarded without being segmented before
3915 	 */
3916 	if (skb_is_gso(skb))
3917 		return true;
3918 
3919 	return false;
3920 }
3921 
3922 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3923 
3924 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3925 {
3926 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3927 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3928 
3929 	if (likely(p))
3930 		return p;
3931 
3932 	return netdev_core_stats_alloc(dev);
3933 }
3934 
3935 #define DEV_CORE_STATS_INC(FIELD)						\
3936 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
3937 {										\
3938 	struct net_device_core_stats __percpu *p;				\
3939 										\
3940 	p = dev_core_stats(dev);						\
3941 	if (p)									\
3942 		this_cpu_inc(p->FIELD);						\
3943 }
3944 DEV_CORE_STATS_INC(rx_dropped)
3945 DEV_CORE_STATS_INC(tx_dropped)
3946 DEV_CORE_STATS_INC(rx_nohandler)
3947 DEV_CORE_STATS_INC(rx_otherhost_dropped)
3948 
3949 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3950 					       struct sk_buff *skb,
3951 					       const bool check_mtu)
3952 {
3953 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3954 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3955 		dev_core_stats_rx_dropped_inc(dev);
3956 		kfree_skb(skb);
3957 		return NET_RX_DROP;
3958 	}
3959 
3960 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3961 	skb->priority = 0;
3962 	return 0;
3963 }
3964 
3965 bool dev_nit_active(struct net_device *dev);
3966 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3967 
3968 static inline void __dev_put(struct net_device *dev)
3969 {
3970 	if (dev) {
3971 #ifdef CONFIG_PCPU_DEV_REFCNT
3972 		this_cpu_dec(*dev->pcpu_refcnt);
3973 #else
3974 		refcount_dec(&dev->dev_refcnt);
3975 #endif
3976 	}
3977 }
3978 
3979 static inline void __dev_hold(struct net_device *dev)
3980 {
3981 	if (dev) {
3982 #ifdef CONFIG_PCPU_DEV_REFCNT
3983 		this_cpu_inc(*dev->pcpu_refcnt);
3984 #else
3985 		refcount_inc(&dev->dev_refcnt);
3986 #endif
3987 	}
3988 }
3989 
3990 static inline void __netdev_tracker_alloc(struct net_device *dev,
3991 					  netdevice_tracker *tracker,
3992 					  gfp_t gfp)
3993 {
3994 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3995 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
3996 #endif
3997 }
3998 
3999 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4000  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4001  */
4002 static inline void netdev_tracker_alloc(struct net_device *dev,
4003 					netdevice_tracker *tracker, gfp_t gfp)
4004 {
4005 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4006 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4007 	__netdev_tracker_alloc(dev, tracker, gfp);
4008 #endif
4009 }
4010 
4011 static inline void netdev_tracker_free(struct net_device *dev,
4012 				       netdevice_tracker *tracker)
4013 {
4014 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4015 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4016 #endif
4017 }
4018 
4019 static inline void netdev_hold(struct net_device *dev,
4020 			       netdevice_tracker *tracker, gfp_t gfp)
4021 {
4022 	if (dev) {
4023 		__dev_hold(dev);
4024 		__netdev_tracker_alloc(dev, tracker, gfp);
4025 	}
4026 }
4027 
4028 static inline void netdev_put(struct net_device *dev,
4029 			      netdevice_tracker *tracker)
4030 {
4031 	if (dev) {
4032 		netdev_tracker_free(dev, tracker);
4033 		__dev_put(dev);
4034 	}
4035 }
4036 
4037 /**
4038  *	dev_hold - get reference to device
4039  *	@dev: network device
4040  *
4041  * Hold reference to device to keep it from being freed.
4042  * Try using netdev_hold() instead.
4043  */
4044 static inline void dev_hold(struct net_device *dev)
4045 {
4046 	netdev_hold(dev, NULL, GFP_ATOMIC);
4047 }
4048 
4049 /**
4050  *	dev_put - release reference to device
4051  *	@dev: network device
4052  *
4053  * Release reference to device to allow it to be freed.
4054  * Try using netdev_put() instead.
4055  */
4056 static inline void dev_put(struct net_device *dev)
4057 {
4058 	netdev_put(dev, NULL);
4059 }
4060 
4061 static inline void netdev_ref_replace(struct net_device *odev,
4062 				      struct net_device *ndev,
4063 				      netdevice_tracker *tracker,
4064 				      gfp_t gfp)
4065 {
4066 	if (odev)
4067 		netdev_tracker_free(odev, tracker);
4068 
4069 	__dev_hold(ndev);
4070 	__dev_put(odev);
4071 
4072 	if (ndev)
4073 		__netdev_tracker_alloc(ndev, tracker, gfp);
4074 }
4075 
4076 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4077  * and _off may be called from IRQ context, but it is caller
4078  * who is responsible for serialization of these calls.
4079  *
4080  * The name carrier is inappropriate, these functions should really be
4081  * called netif_lowerlayer_*() because they represent the state of any
4082  * kind of lower layer not just hardware media.
4083  */
4084 void linkwatch_fire_event(struct net_device *dev);
4085 
4086 /**
4087  *	netif_carrier_ok - test if carrier present
4088  *	@dev: network device
4089  *
4090  * Check if carrier is present on device
4091  */
4092 static inline bool netif_carrier_ok(const struct net_device *dev)
4093 {
4094 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4095 }
4096 
4097 unsigned long dev_trans_start(struct net_device *dev);
4098 
4099 void __netdev_watchdog_up(struct net_device *dev);
4100 
4101 void netif_carrier_on(struct net_device *dev);
4102 void netif_carrier_off(struct net_device *dev);
4103 void netif_carrier_event(struct net_device *dev);
4104 
4105 /**
4106  *	netif_dormant_on - mark device as dormant.
4107  *	@dev: network device
4108  *
4109  * Mark device as dormant (as per RFC2863).
4110  *
4111  * The dormant state indicates that the relevant interface is not
4112  * actually in a condition to pass packets (i.e., it is not 'up') but is
4113  * in a "pending" state, waiting for some external event.  For "on-
4114  * demand" interfaces, this new state identifies the situation where the
4115  * interface is waiting for events to place it in the up state.
4116  */
4117 static inline void netif_dormant_on(struct net_device *dev)
4118 {
4119 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4120 		linkwatch_fire_event(dev);
4121 }
4122 
4123 /**
4124  *	netif_dormant_off - set device as not dormant.
4125  *	@dev: network device
4126  *
4127  * Device is not in dormant state.
4128  */
4129 static inline void netif_dormant_off(struct net_device *dev)
4130 {
4131 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4132 		linkwatch_fire_event(dev);
4133 }
4134 
4135 /**
4136  *	netif_dormant - test if device is dormant
4137  *	@dev: network device
4138  *
4139  * Check if device is dormant.
4140  */
4141 static inline bool netif_dormant(const struct net_device *dev)
4142 {
4143 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4144 }
4145 
4146 
4147 /**
4148  *	netif_testing_on - mark device as under test.
4149  *	@dev: network device
4150  *
4151  * Mark device as under test (as per RFC2863).
4152  *
4153  * The testing state indicates that some test(s) must be performed on
4154  * the interface. After completion, of the test, the interface state
4155  * will change to up, dormant, or down, as appropriate.
4156  */
4157 static inline void netif_testing_on(struct net_device *dev)
4158 {
4159 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4160 		linkwatch_fire_event(dev);
4161 }
4162 
4163 /**
4164  *	netif_testing_off - set device as not under test.
4165  *	@dev: network device
4166  *
4167  * Device is not in testing state.
4168  */
4169 static inline void netif_testing_off(struct net_device *dev)
4170 {
4171 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4172 		linkwatch_fire_event(dev);
4173 }
4174 
4175 /**
4176  *	netif_testing - test if device is under test
4177  *	@dev: network device
4178  *
4179  * Check if device is under test
4180  */
4181 static inline bool netif_testing(const struct net_device *dev)
4182 {
4183 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4184 }
4185 
4186 
4187 /**
4188  *	netif_oper_up - test if device is operational
4189  *	@dev: network device
4190  *
4191  * Check if carrier is operational
4192  */
4193 static inline bool netif_oper_up(const struct net_device *dev)
4194 {
4195 	return (dev->operstate == IF_OPER_UP ||
4196 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4197 }
4198 
4199 /**
4200  *	netif_device_present - is device available or removed
4201  *	@dev: network device
4202  *
4203  * Check if device has not been removed from system.
4204  */
4205 static inline bool netif_device_present(const struct net_device *dev)
4206 {
4207 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4208 }
4209 
4210 void netif_device_detach(struct net_device *dev);
4211 
4212 void netif_device_attach(struct net_device *dev);
4213 
4214 /*
4215  * Network interface message level settings
4216  */
4217 
4218 enum {
4219 	NETIF_MSG_DRV_BIT,
4220 	NETIF_MSG_PROBE_BIT,
4221 	NETIF_MSG_LINK_BIT,
4222 	NETIF_MSG_TIMER_BIT,
4223 	NETIF_MSG_IFDOWN_BIT,
4224 	NETIF_MSG_IFUP_BIT,
4225 	NETIF_MSG_RX_ERR_BIT,
4226 	NETIF_MSG_TX_ERR_BIT,
4227 	NETIF_MSG_TX_QUEUED_BIT,
4228 	NETIF_MSG_INTR_BIT,
4229 	NETIF_MSG_TX_DONE_BIT,
4230 	NETIF_MSG_RX_STATUS_BIT,
4231 	NETIF_MSG_PKTDATA_BIT,
4232 	NETIF_MSG_HW_BIT,
4233 	NETIF_MSG_WOL_BIT,
4234 
4235 	/* When you add a new bit above, update netif_msg_class_names array
4236 	 * in net/ethtool/common.c
4237 	 */
4238 	NETIF_MSG_CLASS_COUNT,
4239 };
4240 /* Both ethtool_ops interface and internal driver implementation use u32 */
4241 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4242 
4243 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4244 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4245 
4246 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4247 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4248 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4249 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4250 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4251 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4252 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4253 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4254 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4255 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4256 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4257 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4258 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4259 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4260 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4261 
4262 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4263 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4264 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4265 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4266 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4267 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4268 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4269 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4270 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4271 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4272 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4273 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4274 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4275 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4276 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4277 
4278 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4279 {
4280 	/* use default */
4281 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4282 		return default_msg_enable_bits;
4283 	if (debug_value == 0)	/* no output */
4284 		return 0;
4285 	/* set low N bits */
4286 	return (1U << debug_value) - 1;
4287 }
4288 
4289 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4290 {
4291 	spin_lock(&txq->_xmit_lock);
4292 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4293 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4294 }
4295 
4296 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4297 {
4298 	__acquire(&txq->_xmit_lock);
4299 	return true;
4300 }
4301 
4302 static inline void __netif_tx_release(struct netdev_queue *txq)
4303 {
4304 	__release(&txq->_xmit_lock);
4305 }
4306 
4307 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4308 {
4309 	spin_lock_bh(&txq->_xmit_lock);
4310 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4311 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4312 }
4313 
4314 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4315 {
4316 	bool ok = spin_trylock(&txq->_xmit_lock);
4317 
4318 	if (likely(ok)) {
4319 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4320 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4321 	}
4322 	return ok;
4323 }
4324 
4325 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4326 {
4327 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4328 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4329 	spin_unlock(&txq->_xmit_lock);
4330 }
4331 
4332 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4333 {
4334 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4335 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4336 	spin_unlock_bh(&txq->_xmit_lock);
4337 }
4338 
4339 /*
4340  * txq->trans_start can be read locklessly from dev_watchdog()
4341  */
4342 static inline void txq_trans_update(struct netdev_queue *txq)
4343 {
4344 	if (txq->xmit_lock_owner != -1)
4345 		WRITE_ONCE(txq->trans_start, jiffies);
4346 }
4347 
4348 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4349 {
4350 	unsigned long now = jiffies;
4351 
4352 	if (READ_ONCE(txq->trans_start) != now)
4353 		WRITE_ONCE(txq->trans_start, now);
4354 }
4355 
4356 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4357 static inline void netif_trans_update(struct net_device *dev)
4358 {
4359 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4360 
4361 	txq_trans_cond_update(txq);
4362 }
4363 
4364 /**
4365  *	netif_tx_lock - grab network device transmit lock
4366  *	@dev: network device
4367  *
4368  * Get network device transmit lock
4369  */
4370 void netif_tx_lock(struct net_device *dev);
4371 
4372 static inline void netif_tx_lock_bh(struct net_device *dev)
4373 {
4374 	local_bh_disable();
4375 	netif_tx_lock(dev);
4376 }
4377 
4378 void netif_tx_unlock(struct net_device *dev);
4379 
4380 static inline void netif_tx_unlock_bh(struct net_device *dev)
4381 {
4382 	netif_tx_unlock(dev);
4383 	local_bh_enable();
4384 }
4385 
4386 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4387 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4388 		__netif_tx_lock(txq, cpu);		\
4389 	} else {					\
4390 		__netif_tx_acquire(txq);		\
4391 	}						\
4392 }
4393 
4394 #define HARD_TX_TRYLOCK(dev, txq)			\
4395 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4396 		__netif_tx_trylock(txq) :		\
4397 		__netif_tx_acquire(txq))
4398 
4399 #define HARD_TX_UNLOCK(dev, txq) {			\
4400 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4401 		__netif_tx_unlock(txq);			\
4402 	} else {					\
4403 		__netif_tx_release(txq);		\
4404 	}						\
4405 }
4406 
4407 static inline void netif_tx_disable(struct net_device *dev)
4408 {
4409 	unsigned int i;
4410 	int cpu;
4411 
4412 	local_bh_disable();
4413 	cpu = smp_processor_id();
4414 	spin_lock(&dev->tx_global_lock);
4415 	for (i = 0; i < dev->num_tx_queues; i++) {
4416 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4417 
4418 		__netif_tx_lock(txq, cpu);
4419 		netif_tx_stop_queue(txq);
4420 		__netif_tx_unlock(txq);
4421 	}
4422 	spin_unlock(&dev->tx_global_lock);
4423 	local_bh_enable();
4424 }
4425 
4426 static inline void netif_addr_lock(struct net_device *dev)
4427 {
4428 	unsigned char nest_level = 0;
4429 
4430 #ifdef CONFIG_LOCKDEP
4431 	nest_level = dev->nested_level;
4432 #endif
4433 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4434 }
4435 
4436 static inline void netif_addr_lock_bh(struct net_device *dev)
4437 {
4438 	unsigned char nest_level = 0;
4439 
4440 #ifdef CONFIG_LOCKDEP
4441 	nest_level = dev->nested_level;
4442 #endif
4443 	local_bh_disable();
4444 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4445 }
4446 
4447 static inline void netif_addr_unlock(struct net_device *dev)
4448 {
4449 	spin_unlock(&dev->addr_list_lock);
4450 }
4451 
4452 static inline void netif_addr_unlock_bh(struct net_device *dev)
4453 {
4454 	spin_unlock_bh(&dev->addr_list_lock);
4455 }
4456 
4457 /*
4458  * dev_addrs walker. Should be used only for read access. Call with
4459  * rcu_read_lock held.
4460  */
4461 #define for_each_dev_addr(dev, ha) \
4462 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4463 
4464 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4465 
4466 void ether_setup(struct net_device *dev);
4467 
4468 /* Support for loadable net-drivers */
4469 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4470 				    unsigned char name_assign_type,
4471 				    void (*setup)(struct net_device *),
4472 				    unsigned int txqs, unsigned int rxqs);
4473 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4474 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4475 
4476 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4477 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4478 			 count)
4479 
4480 int register_netdev(struct net_device *dev);
4481 void unregister_netdev(struct net_device *dev);
4482 
4483 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4484 
4485 /* General hardware address lists handling functions */
4486 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4487 		   struct netdev_hw_addr_list *from_list, int addr_len);
4488 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4489 		      struct netdev_hw_addr_list *from_list, int addr_len);
4490 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4491 		       struct net_device *dev,
4492 		       int (*sync)(struct net_device *, const unsigned char *),
4493 		       int (*unsync)(struct net_device *,
4494 				     const unsigned char *));
4495 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4496 			   struct net_device *dev,
4497 			   int (*sync)(struct net_device *,
4498 				       const unsigned char *, int),
4499 			   int (*unsync)(struct net_device *,
4500 					 const unsigned char *, int));
4501 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4502 			      struct net_device *dev,
4503 			      int (*unsync)(struct net_device *,
4504 					    const unsigned char *, int));
4505 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4506 			  struct net_device *dev,
4507 			  int (*unsync)(struct net_device *,
4508 					const unsigned char *));
4509 void __hw_addr_init(struct netdev_hw_addr_list *list);
4510 
4511 /* Functions used for device addresses handling */
4512 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4513 		  const void *addr, size_t len);
4514 
4515 static inline void
4516 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4517 {
4518 	dev_addr_mod(dev, 0, addr, len);
4519 }
4520 
4521 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4522 {
4523 	__dev_addr_set(dev, addr, dev->addr_len);
4524 }
4525 
4526 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4527 		 unsigned char addr_type);
4528 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4529 		 unsigned char addr_type);
4530 
4531 /* Functions used for unicast addresses handling */
4532 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4533 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4534 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4535 int dev_uc_sync(struct net_device *to, struct net_device *from);
4536 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4537 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4538 void dev_uc_flush(struct net_device *dev);
4539 void dev_uc_init(struct net_device *dev);
4540 
4541 /**
4542  *  __dev_uc_sync - Synchonize device's unicast list
4543  *  @dev:  device to sync
4544  *  @sync: function to call if address should be added
4545  *  @unsync: function to call if address should be removed
4546  *
4547  *  Add newly added addresses to the interface, and release
4548  *  addresses that have been deleted.
4549  */
4550 static inline int __dev_uc_sync(struct net_device *dev,
4551 				int (*sync)(struct net_device *,
4552 					    const unsigned char *),
4553 				int (*unsync)(struct net_device *,
4554 					      const unsigned char *))
4555 {
4556 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4557 }
4558 
4559 /**
4560  *  __dev_uc_unsync - Remove synchronized addresses from device
4561  *  @dev:  device to sync
4562  *  @unsync: function to call if address should be removed
4563  *
4564  *  Remove all addresses that were added to the device by dev_uc_sync().
4565  */
4566 static inline void __dev_uc_unsync(struct net_device *dev,
4567 				   int (*unsync)(struct net_device *,
4568 						 const unsigned char *))
4569 {
4570 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4571 }
4572 
4573 /* Functions used for multicast addresses handling */
4574 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4575 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4576 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4577 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4578 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4579 int dev_mc_sync(struct net_device *to, struct net_device *from);
4580 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4581 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4582 void dev_mc_flush(struct net_device *dev);
4583 void dev_mc_init(struct net_device *dev);
4584 
4585 /**
4586  *  __dev_mc_sync - Synchonize device's multicast list
4587  *  @dev:  device to sync
4588  *  @sync: function to call if address should be added
4589  *  @unsync: function to call if address should be removed
4590  *
4591  *  Add newly added addresses to the interface, and release
4592  *  addresses that have been deleted.
4593  */
4594 static inline int __dev_mc_sync(struct net_device *dev,
4595 				int (*sync)(struct net_device *,
4596 					    const unsigned char *),
4597 				int (*unsync)(struct net_device *,
4598 					      const unsigned char *))
4599 {
4600 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4601 }
4602 
4603 /**
4604  *  __dev_mc_unsync - Remove synchronized addresses from device
4605  *  @dev:  device to sync
4606  *  @unsync: function to call if address should be removed
4607  *
4608  *  Remove all addresses that were added to the device by dev_mc_sync().
4609  */
4610 static inline void __dev_mc_unsync(struct net_device *dev,
4611 				   int (*unsync)(struct net_device *,
4612 						 const unsigned char *))
4613 {
4614 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4615 }
4616 
4617 /* Functions used for secondary unicast and multicast support */
4618 void dev_set_rx_mode(struct net_device *dev);
4619 int dev_set_promiscuity(struct net_device *dev, int inc);
4620 int dev_set_allmulti(struct net_device *dev, int inc);
4621 void netdev_state_change(struct net_device *dev);
4622 void __netdev_notify_peers(struct net_device *dev);
4623 void netdev_notify_peers(struct net_device *dev);
4624 void netdev_features_change(struct net_device *dev);
4625 /* Load a device via the kmod */
4626 void dev_load(struct net *net, const char *name);
4627 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4628 					struct rtnl_link_stats64 *storage);
4629 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4630 			     const struct net_device_stats *netdev_stats);
4631 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4632 			   const struct pcpu_sw_netstats __percpu *netstats);
4633 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4634 
4635 extern int		netdev_max_backlog;
4636 extern int		dev_rx_weight;
4637 extern int		dev_tx_weight;
4638 extern int		gro_normal_batch;
4639 
4640 enum {
4641 	NESTED_SYNC_IMM_BIT,
4642 	NESTED_SYNC_TODO_BIT,
4643 };
4644 
4645 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4646 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4647 
4648 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4649 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4650 
4651 struct netdev_nested_priv {
4652 	unsigned char flags;
4653 	void *data;
4654 };
4655 
4656 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4657 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4658 						     struct list_head **iter);
4659 
4660 /* iterate through upper list, must be called under RCU read lock */
4661 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4662 	for (iter = &(dev)->adj_list.upper, \
4663 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4664 	     updev; \
4665 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4666 
4667 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4668 				  int (*fn)(struct net_device *upper_dev,
4669 					    struct netdev_nested_priv *priv),
4670 				  struct netdev_nested_priv *priv);
4671 
4672 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4673 				  struct net_device *upper_dev);
4674 
4675 bool netdev_has_any_upper_dev(struct net_device *dev);
4676 
4677 void *netdev_lower_get_next_private(struct net_device *dev,
4678 				    struct list_head **iter);
4679 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4680 					struct list_head **iter);
4681 
4682 #define netdev_for_each_lower_private(dev, priv, iter) \
4683 	for (iter = (dev)->adj_list.lower.next, \
4684 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4685 	     priv; \
4686 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4687 
4688 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4689 	for (iter = &(dev)->adj_list.lower, \
4690 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4691 	     priv; \
4692 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4693 
4694 void *netdev_lower_get_next(struct net_device *dev,
4695 				struct list_head **iter);
4696 
4697 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4698 	for (iter = (dev)->adj_list.lower.next, \
4699 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4700 	     ldev; \
4701 	     ldev = netdev_lower_get_next(dev, &(iter)))
4702 
4703 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4704 					     struct list_head **iter);
4705 int netdev_walk_all_lower_dev(struct net_device *dev,
4706 			      int (*fn)(struct net_device *lower_dev,
4707 					struct netdev_nested_priv *priv),
4708 			      struct netdev_nested_priv *priv);
4709 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4710 				  int (*fn)(struct net_device *lower_dev,
4711 					    struct netdev_nested_priv *priv),
4712 				  struct netdev_nested_priv *priv);
4713 
4714 void *netdev_adjacent_get_private(struct list_head *adj_list);
4715 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4716 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4717 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4718 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4719 			  struct netlink_ext_ack *extack);
4720 int netdev_master_upper_dev_link(struct net_device *dev,
4721 				 struct net_device *upper_dev,
4722 				 void *upper_priv, void *upper_info,
4723 				 struct netlink_ext_ack *extack);
4724 void netdev_upper_dev_unlink(struct net_device *dev,
4725 			     struct net_device *upper_dev);
4726 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4727 				   struct net_device *new_dev,
4728 				   struct net_device *dev,
4729 				   struct netlink_ext_ack *extack);
4730 void netdev_adjacent_change_commit(struct net_device *old_dev,
4731 				   struct net_device *new_dev,
4732 				   struct net_device *dev);
4733 void netdev_adjacent_change_abort(struct net_device *old_dev,
4734 				  struct net_device *new_dev,
4735 				  struct net_device *dev);
4736 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4737 void *netdev_lower_dev_get_private(struct net_device *dev,
4738 				   struct net_device *lower_dev);
4739 void netdev_lower_state_changed(struct net_device *lower_dev,
4740 				void *lower_state_info);
4741 
4742 /* RSS keys are 40 or 52 bytes long */
4743 #define NETDEV_RSS_KEY_LEN 52
4744 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4745 void netdev_rss_key_fill(void *buffer, size_t len);
4746 
4747 int skb_checksum_help(struct sk_buff *skb);
4748 int skb_crc32c_csum_help(struct sk_buff *skb);
4749 int skb_csum_hwoffload_help(struct sk_buff *skb,
4750 			    const netdev_features_t features);
4751 
4752 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4753 				  netdev_features_t features, bool tx_path);
4754 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4755 				    netdev_features_t features, __be16 type);
4756 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4757 				    netdev_features_t features);
4758 
4759 struct netdev_bonding_info {
4760 	ifslave	slave;
4761 	ifbond	master;
4762 };
4763 
4764 struct netdev_notifier_bonding_info {
4765 	struct netdev_notifier_info info; /* must be first */
4766 	struct netdev_bonding_info  bonding_info;
4767 };
4768 
4769 void netdev_bonding_info_change(struct net_device *dev,
4770 				struct netdev_bonding_info *bonding_info);
4771 
4772 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4773 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4774 #else
4775 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4776 				  const void *data)
4777 {
4778 }
4779 #endif
4780 
4781 static inline
4782 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4783 {
4784 	return __skb_gso_segment(skb, features, true);
4785 }
4786 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4787 
4788 static inline bool can_checksum_protocol(netdev_features_t features,
4789 					 __be16 protocol)
4790 {
4791 	if (protocol == htons(ETH_P_FCOE))
4792 		return !!(features & NETIF_F_FCOE_CRC);
4793 
4794 	/* Assume this is an IP checksum (not SCTP CRC) */
4795 
4796 	if (features & NETIF_F_HW_CSUM) {
4797 		/* Can checksum everything */
4798 		return true;
4799 	}
4800 
4801 	switch (protocol) {
4802 	case htons(ETH_P_IP):
4803 		return !!(features & NETIF_F_IP_CSUM);
4804 	case htons(ETH_P_IPV6):
4805 		return !!(features & NETIF_F_IPV6_CSUM);
4806 	default:
4807 		return false;
4808 	}
4809 }
4810 
4811 #ifdef CONFIG_BUG
4812 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4813 #else
4814 static inline void netdev_rx_csum_fault(struct net_device *dev,
4815 					struct sk_buff *skb)
4816 {
4817 }
4818 #endif
4819 /* rx skb timestamps */
4820 void net_enable_timestamp(void);
4821 void net_disable_timestamp(void);
4822 
4823 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4824 					const struct skb_shared_hwtstamps *hwtstamps,
4825 					bool cycles)
4826 {
4827 	const struct net_device_ops *ops = dev->netdev_ops;
4828 
4829 	if (ops->ndo_get_tstamp)
4830 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4831 
4832 	return hwtstamps->hwtstamp;
4833 }
4834 
4835 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4836 					      struct sk_buff *skb, struct net_device *dev,
4837 					      bool more)
4838 {
4839 	__this_cpu_write(softnet_data.xmit.more, more);
4840 	return ops->ndo_start_xmit(skb, dev);
4841 }
4842 
4843 static inline bool netdev_xmit_more(void)
4844 {
4845 	return __this_cpu_read(softnet_data.xmit.more);
4846 }
4847 
4848 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4849 					    struct netdev_queue *txq, bool more)
4850 {
4851 	const struct net_device_ops *ops = dev->netdev_ops;
4852 	netdev_tx_t rc;
4853 
4854 	rc = __netdev_start_xmit(ops, skb, dev, more);
4855 	if (rc == NETDEV_TX_OK)
4856 		txq_trans_update(txq);
4857 
4858 	return rc;
4859 }
4860 
4861 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4862 				const void *ns);
4863 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4864 				 const void *ns);
4865 
4866 extern const struct kobj_ns_type_operations net_ns_type_operations;
4867 
4868 const char *netdev_drivername(const struct net_device *dev);
4869 
4870 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4871 							  netdev_features_t f2)
4872 {
4873 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4874 		if (f1 & NETIF_F_HW_CSUM)
4875 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4876 		else
4877 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4878 	}
4879 
4880 	return f1 & f2;
4881 }
4882 
4883 static inline netdev_features_t netdev_get_wanted_features(
4884 	struct net_device *dev)
4885 {
4886 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4887 }
4888 netdev_features_t netdev_increment_features(netdev_features_t all,
4889 	netdev_features_t one, netdev_features_t mask);
4890 
4891 /* Allow TSO being used on stacked device :
4892  * Performing the GSO segmentation before last device
4893  * is a performance improvement.
4894  */
4895 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4896 							netdev_features_t mask)
4897 {
4898 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4899 }
4900 
4901 int __netdev_update_features(struct net_device *dev);
4902 void netdev_update_features(struct net_device *dev);
4903 void netdev_change_features(struct net_device *dev);
4904 
4905 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4906 					struct net_device *dev);
4907 
4908 netdev_features_t passthru_features_check(struct sk_buff *skb,
4909 					  struct net_device *dev,
4910 					  netdev_features_t features);
4911 netdev_features_t netif_skb_features(struct sk_buff *skb);
4912 
4913 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4914 {
4915 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4916 
4917 	/* check flags correspondence */
4918 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4919 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4920 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4921 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4922 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4923 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4924 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4925 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4926 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4927 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4928 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4929 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4930 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4931 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4932 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4933 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4934 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4935 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4936 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4937 
4938 	return (features & feature) == feature;
4939 }
4940 
4941 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4942 {
4943 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4944 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4945 }
4946 
4947 static inline bool netif_needs_gso(struct sk_buff *skb,
4948 				   netdev_features_t features)
4949 {
4950 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4951 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4952 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4953 }
4954 
4955 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
4956 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
4957 void netif_inherit_tso_max(struct net_device *to,
4958 			   const struct net_device *from);
4959 
4960 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4961 					int pulled_hlen, u16 mac_offset,
4962 					int mac_len)
4963 {
4964 	skb->protocol = protocol;
4965 	skb->encapsulation = 1;
4966 	skb_push(skb, pulled_hlen);
4967 	skb_reset_transport_header(skb);
4968 	skb->mac_header = mac_offset;
4969 	skb->network_header = skb->mac_header + mac_len;
4970 	skb->mac_len = mac_len;
4971 }
4972 
4973 static inline bool netif_is_macsec(const struct net_device *dev)
4974 {
4975 	return dev->priv_flags & IFF_MACSEC;
4976 }
4977 
4978 static inline bool netif_is_macvlan(const struct net_device *dev)
4979 {
4980 	return dev->priv_flags & IFF_MACVLAN;
4981 }
4982 
4983 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4984 {
4985 	return dev->priv_flags & IFF_MACVLAN_PORT;
4986 }
4987 
4988 static inline bool netif_is_bond_master(const struct net_device *dev)
4989 {
4990 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4991 }
4992 
4993 static inline bool netif_is_bond_slave(const struct net_device *dev)
4994 {
4995 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4996 }
4997 
4998 static inline bool netif_supports_nofcs(struct net_device *dev)
4999 {
5000 	return dev->priv_flags & IFF_SUPP_NOFCS;
5001 }
5002 
5003 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5004 {
5005 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5006 }
5007 
5008 static inline bool netif_is_l3_master(const struct net_device *dev)
5009 {
5010 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5011 }
5012 
5013 static inline bool netif_is_l3_slave(const struct net_device *dev)
5014 {
5015 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5016 }
5017 
5018 static inline bool netif_is_bridge_master(const struct net_device *dev)
5019 {
5020 	return dev->priv_flags & IFF_EBRIDGE;
5021 }
5022 
5023 static inline bool netif_is_bridge_port(const struct net_device *dev)
5024 {
5025 	return dev->priv_flags & IFF_BRIDGE_PORT;
5026 }
5027 
5028 static inline bool netif_is_ovs_master(const struct net_device *dev)
5029 {
5030 	return dev->priv_flags & IFF_OPENVSWITCH;
5031 }
5032 
5033 static inline bool netif_is_ovs_port(const struct net_device *dev)
5034 {
5035 	return dev->priv_flags & IFF_OVS_DATAPATH;
5036 }
5037 
5038 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5039 {
5040 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5041 }
5042 
5043 static inline bool netif_is_team_master(const struct net_device *dev)
5044 {
5045 	return dev->priv_flags & IFF_TEAM;
5046 }
5047 
5048 static inline bool netif_is_team_port(const struct net_device *dev)
5049 {
5050 	return dev->priv_flags & IFF_TEAM_PORT;
5051 }
5052 
5053 static inline bool netif_is_lag_master(const struct net_device *dev)
5054 {
5055 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5056 }
5057 
5058 static inline bool netif_is_lag_port(const struct net_device *dev)
5059 {
5060 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5061 }
5062 
5063 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5064 {
5065 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5066 }
5067 
5068 static inline bool netif_is_failover(const struct net_device *dev)
5069 {
5070 	return dev->priv_flags & IFF_FAILOVER;
5071 }
5072 
5073 static inline bool netif_is_failover_slave(const struct net_device *dev)
5074 {
5075 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5076 }
5077 
5078 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5079 static inline void netif_keep_dst(struct net_device *dev)
5080 {
5081 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5082 }
5083 
5084 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5085 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5086 {
5087 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5088 	return netif_is_macsec(dev);
5089 }
5090 
5091 extern struct pernet_operations __net_initdata loopback_net_ops;
5092 
5093 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5094 
5095 /* netdev_printk helpers, similar to dev_printk */
5096 
5097 static inline const char *netdev_name(const struct net_device *dev)
5098 {
5099 	if (!dev->name[0] || strchr(dev->name, '%'))
5100 		return "(unnamed net_device)";
5101 	return dev->name;
5102 }
5103 
5104 static inline bool netdev_unregistering(const struct net_device *dev)
5105 {
5106 	return dev->reg_state == NETREG_UNREGISTERING;
5107 }
5108 
5109 static inline const char *netdev_reg_state(const struct net_device *dev)
5110 {
5111 	switch (dev->reg_state) {
5112 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5113 	case NETREG_REGISTERED: return "";
5114 	case NETREG_UNREGISTERING: return " (unregistering)";
5115 	case NETREG_UNREGISTERED: return " (unregistered)";
5116 	case NETREG_RELEASED: return " (released)";
5117 	case NETREG_DUMMY: return " (dummy)";
5118 	}
5119 
5120 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5121 	return " (unknown)";
5122 }
5123 
5124 #define MODULE_ALIAS_NETDEV(device) \
5125 	MODULE_ALIAS("netdev-" device)
5126 
5127 /*
5128  * netdev_WARN() acts like dev_printk(), but with the key difference
5129  * of using a WARN/WARN_ON to get the message out, including the
5130  * file/line information and a backtrace.
5131  */
5132 #define netdev_WARN(dev, format, args...)			\
5133 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5134 	     netdev_reg_state(dev), ##args)
5135 
5136 #define netdev_WARN_ONCE(dev, format, args...)				\
5137 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5138 		  netdev_reg_state(dev), ##args)
5139 
5140 /*
5141  *	The list of packet types we will receive (as opposed to discard)
5142  *	and the routines to invoke.
5143  *
5144  *	Why 16. Because with 16 the only overlap we get on a hash of the
5145  *	low nibble of the protocol value is RARP/SNAP/X.25.
5146  *
5147  *		0800	IP
5148  *		0001	802.3
5149  *		0002	AX.25
5150  *		0004	802.2
5151  *		8035	RARP
5152  *		0005	SNAP
5153  *		0805	X.25
5154  *		0806	ARP
5155  *		8137	IPX
5156  *		0009	Localtalk
5157  *		86DD	IPv6
5158  */
5159 #define PTYPE_HASH_SIZE	(16)
5160 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5161 
5162 extern struct list_head ptype_all __read_mostly;
5163 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5164 
5165 extern struct net_device *blackhole_netdev;
5166 
5167 #endif	/* _LINUX_NETDEVICE_H */
5168