1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 32 #include <linux/percpu.h> 33 #include <linux/rculist.h> 34 #include <linux/workqueue.h> 35 #include <linux/dynamic_queue_limits.h> 36 37 #include <net/net_namespace.h> 38 #ifdef CONFIG_DCB 39 #include <net/dcbnl.h> 40 #endif 41 #include <net/netprio_cgroup.h> 42 #include <net/xdp.h> 43 44 #include <linux/netdev_features.h> 45 #include <linux/neighbour.h> 46 #include <uapi/linux/netdevice.h> 47 #include <uapi/linux/if_bonding.h> 48 #include <uapi/linux/pkt_cls.h> 49 #include <linux/hashtable.h> 50 51 struct netpoll_info; 52 struct device; 53 struct ethtool_ops; 54 struct phy_device; 55 struct dsa_port; 56 struct ip_tunnel_parm; 57 struct macsec_context; 58 struct macsec_ops; 59 60 struct sfp_bus; 61 /* 802.11 specific */ 62 struct wireless_dev; 63 /* 802.15.4 specific */ 64 struct wpan_dev; 65 struct mpls_dev; 66 /* UDP Tunnel offloads */ 67 struct udp_tunnel_info; 68 struct udp_tunnel_nic_info; 69 struct udp_tunnel_nic; 70 struct bpf_prog; 71 struct xdp_buff; 72 73 void synchronize_net(void); 74 void netdev_set_default_ethtool_ops(struct net_device *dev, 75 const struct ethtool_ops *ops); 76 77 /* Backlog congestion levels */ 78 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 79 #define NET_RX_DROP 1 /* packet dropped */ 80 81 #define MAX_NEST_DEV 8 82 83 /* 84 * Transmit return codes: transmit return codes originate from three different 85 * namespaces: 86 * 87 * - qdisc return codes 88 * - driver transmit return codes 89 * - errno values 90 * 91 * Drivers are allowed to return any one of those in their hard_start_xmit() 92 * function. Real network devices commonly used with qdiscs should only return 93 * the driver transmit return codes though - when qdiscs are used, the actual 94 * transmission happens asynchronously, so the value is not propagated to 95 * higher layers. Virtual network devices transmit synchronously; in this case 96 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 97 * others are propagated to higher layers. 98 */ 99 100 /* qdisc ->enqueue() return codes. */ 101 #define NET_XMIT_SUCCESS 0x00 102 #define NET_XMIT_DROP 0x01 /* skb dropped */ 103 #define NET_XMIT_CN 0x02 /* congestion notification */ 104 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 105 106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 107 * indicates that the device will soon be dropping packets, or already drops 108 * some packets of the same priority; prompting us to send less aggressively. */ 109 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 110 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 111 112 /* Driver transmit return codes */ 113 #define NETDEV_TX_MASK 0xf0 114 115 enum netdev_tx { 116 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 117 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 118 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 119 }; 120 typedef enum netdev_tx netdev_tx_t; 121 122 /* 123 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 124 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 125 */ 126 static inline bool dev_xmit_complete(int rc) 127 { 128 /* 129 * Positive cases with an skb consumed by a driver: 130 * - successful transmission (rc == NETDEV_TX_OK) 131 * - error while transmitting (rc < 0) 132 * - error while queueing to a different device (rc & NET_XMIT_MASK) 133 */ 134 if (likely(rc < NET_XMIT_MASK)) 135 return true; 136 137 return false; 138 } 139 140 /* 141 * Compute the worst-case header length according to the protocols 142 * used. 143 */ 144 145 #if defined(CONFIG_HYPERV_NET) 146 # define LL_MAX_HEADER 128 147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 148 # if defined(CONFIG_MAC80211_MESH) 149 # define LL_MAX_HEADER 128 150 # else 151 # define LL_MAX_HEADER 96 152 # endif 153 #else 154 # define LL_MAX_HEADER 32 155 #endif 156 157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 158 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 159 #define MAX_HEADER LL_MAX_HEADER 160 #else 161 #define MAX_HEADER (LL_MAX_HEADER + 48) 162 #endif 163 164 /* 165 * Old network device statistics. Fields are native words 166 * (unsigned long) so they can be read and written atomically. 167 */ 168 169 struct net_device_stats { 170 unsigned long rx_packets; 171 unsigned long tx_packets; 172 unsigned long rx_bytes; 173 unsigned long tx_bytes; 174 unsigned long rx_errors; 175 unsigned long tx_errors; 176 unsigned long rx_dropped; 177 unsigned long tx_dropped; 178 unsigned long multicast; 179 unsigned long collisions; 180 unsigned long rx_length_errors; 181 unsigned long rx_over_errors; 182 unsigned long rx_crc_errors; 183 unsigned long rx_frame_errors; 184 unsigned long rx_fifo_errors; 185 unsigned long rx_missed_errors; 186 unsigned long tx_aborted_errors; 187 unsigned long tx_carrier_errors; 188 unsigned long tx_fifo_errors; 189 unsigned long tx_heartbeat_errors; 190 unsigned long tx_window_errors; 191 unsigned long rx_compressed; 192 unsigned long tx_compressed; 193 }; 194 195 196 #include <linux/cache.h> 197 #include <linux/skbuff.h> 198 199 #ifdef CONFIG_RPS 200 #include <linux/static_key.h> 201 extern struct static_key_false rps_needed; 202 extern struct static_key_false rfs_needed; 203 #endif 204 205 struct neighbour; 206 struct neigh_parms; 207 struct sk_buff; 208 209 struct netdev_hw_addr { 210 struct list_head list; 211 unsigned char addr[MAX_ADDR_LEN]; 212 unsigned char type; 213 #define NETDEV_HW_ADDR_T_LAN 1 214 #define NETDEV_HW_ADDR_T_SAN 2 215 #define NETDEV_HW_ADDR_T_UNICAST 3 216 #define NETDEV_HW_ADDR_T_MULTICAST 4 217 bool global_use; 218 int sync_cnt; 219 int refcount; 220 int synced; 221 struct rcu_head rcu_head; 222 }; 223 224 struct netdev_hw_addr_list { 225 struct list_head list; 226 int count; 227 }; 228 229 #define netdev_hw_addr_list_count(l) ((l)->count) 230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 231 #define netdev_hw_addr_list_for_each(ha, l) \ 232 list_for_each_entry(ha, &(l)->list, list) 233 234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 236 #define netdev_for_each_uc_addr(ha, dev) \ 237 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 238 239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 241 #define netdev_for_each_mc_addr(ha, dev) \ 242 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 243 244 struct hh_cache { 245 unsigned int hh_len; 246 seqlock_t hh_lock; 247 248 /* cached hardware header; allow for machine alignment needs. */ 249 #define HH_DATA_MOD 16 250 #define HH_DATA_OFF(__len) \ 251 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 252 #define HH_DATA_ALIGN(__len) \ 253 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 254 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 255 }; 256 257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 258 * Alternative is: 259 * dev->hard_header_len ? (dev->hard_header_len + 260 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 261 * 262 * We could use other alignment values, but we must maintain the 263 * relationship HH alignment <= LL alignment. 264 */ 265 #define LL_RESERVED_SPACE(dev) \ 266 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 268 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 269 270 struct header_ops { 271 int (*create) (struct sk_buff *skb, struct net_device *dev, 272 unsigned short type, const void *daddr, 273 const void *saddr, unsigned int len); 274 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 275 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 276 void (*cache_update)(struct hh_cache *hh, 277 const struct net_device *dev, 278 const unsigned char *haddr); 279 bool (*validate)(const char *ll_header, unsigned int len); 280 __be16 (*parse_protocol)(const struct sk_buff *skb); 281 }; 282 283 /* These flag bits are private to the generic network queueing 284 * layer; they may not be explicitly referenced by any other 285 * code. 286 */ 287 288 enum netdev_state_t { 289 __LINK_STATE_START, 290 __LINK_STATE_PRESENT, 291 __LINK_STATE_NOCARRIER, 292 __LINK_STATE_LINKWATCH_PENDING, 293 __LINK_STATE_DORMANT, 294 __LINK_STATE_TESTING, 295 }; 296 297 298 struct gro_list { 299 struct list_head list; 300 int count; 301 }; 302 303 /* 304 * size of gro hash buckets, must less than bit number of 305 * napi_struct::gro_bitmask 306 */ 307 #define GRO_HASH_BUCKETS 8 308 309 /* 310 * Structure for NAPI scheduling similar to tasklet but with weighting 311 */ 312 struct napi_struct { 313 /* The poll_list must only be managed by the entity which 314 * changes the state of the NAPI_STATE_SCHED bit. This means 315 * whoever atomically sets that bit can add this napi_struct 316 * to the per-CPU poll_list, and whoever clears that bit 317 * can remove from the list right before clearing the bit. 318 */ 319 struct list_head poll_list; 320 321 unsigned long state; 322 int weight; 323 int defer_hard_irqs_count; 324 unsigned long gro_bitmask; 325 int (*poll)(struct napi_struct *, int); 326 #ifdef CONFIG_NETPOLL 327 int poll_owner; 328 #endif 329 struct net_device *dev; 330 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 331 struct sk_buff *skb; 332 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 333 int rx_count; /* length of rx_list */ 334 struct hrtimer timer; 335 struct list_head dev_list; 336 struct hlist_node napi_hash_node; 337 unsigned int napi_id; 338 struct task_struct *thread; 339 }; 340 341 enum { 342 NAPI_STATE_SCHED, /* Poll is scheduled */ 343 NAPI_STATE_MISSED, /* reschedule a napi */ 344 NAPI_STATE_DISABLE, /* Disable pending */ 345 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 346 NAPI_STATE_LISTED, /* NAPI added to system lists */ 347 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 348 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 349 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 350 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 351 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 352 }; 353 354 enum { 355 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 356 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 357 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 358 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 359 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 360 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 361 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 362 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 363 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 364 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 365 }; 366 367 enum gro_result { 368 GRO_MERGED, 369 GRO_MERGED_FREE, 370 GRO_HELD, 371 GRO_NORMAL, 372 GRO_CONSUMED, 373 }; 374 typedef enum gro_result gro_result_t; 375 376 /* 377 * enum rx_handler_result - Possible return values for rx_handlers. 378 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 379 * further. 380 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 381 * case skb->dev was changed by rx_handler. 382 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 383 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 384 * 385 * rx_handlers are functions called from inside __netif_receive_skb(), to do 386 * special processing of the skb, prior to delivery to protocol handlers. 387 * 388 * Currently, a net_device can only have a single rx_handler registered. Trying 389 * to register a second rx_handler will return -EBUSY. 390 * 391 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 392 * To unregister a rx_handler on a net_device, use 393 * netdev_rx_handler_unregister(). 394 * 395 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 396 * do with the skb. 397 * 398 * If the rx_handler consumed the skb in some way, it should return 399 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 400 * the skb to be delivered in some other way. 401 * 402 * If the rx_handler changed skb->dev, to divert the skb to another 403 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 404 * new device will be called if it exists. 405 * 406 * If the rx_handler decides the skb should be ignored, it should return 407 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 408 * are registered on exact device (ptype->dev == skb->dev). 409 * 410 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 411 * delivered, it should return RX_HANDLER_PASS. 412 * 413 * A device without a registered rx_handler will behave as if rx_handler 414 * returned RX_HANDLER_PASS. 415 */ 416 417 enum rx_handler_result { 418 RX_HANDLER_CONSUMED, 419 RX_HANDLER_ANOTHER, 420 RX_HANDLER_EXACT, 421 RX_HANDLER_PASS, 422 }; 423 typedef enum rx_handler_result rx_handler_result_t; 424 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 425 426 void __napi_schedule(struct napi_struct *n); 427 void __napi_schedule_irqoff(struct napi_struct *n); 428 429 static inline bool napi_disable_pending(struct napi_struct *n) 430 { 431 return test_bit(NAPI_STATE_DISABLE, &n->state); 432 } 433 434 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 435 { 436 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 437 } 438 439 bool napi_schedule_prep(struct napi_struct *n); 440 441 /** 442 * napi_schedule - schedule NAPI poll 443 * @n: NAPI context 444 * 445 * Schedule NAPI poll routine to be called if it is not already 446 * running. 447 */ 448 static inline void napi_schedule(struct napi_struct *n) 449 { 450 if (napi_schedule_prep(n)) 451 __napi_schedule(n); 452 } 453 454 /** 455 * napi_schedule_irqoff - schedule NAPI poll 456 * @n: NAPI context 457 * 458 * Variant of napi_schedule(), assuming hard irqs are masked. 459 */ 460 static inline void napi_schedule_irqoff(struct napi_struct *n) 461 { 462 if (napi_schedule_prep(n)) 463 __napi_schedule_irqoff(n); 464 } 465 466 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 467 static inline bool napi_reschedule(struct napi_struct *napi) 468 { 469 if (napi_schedule_prep(napi)) { 470 __napi_schedule(napi); 471 return true; 472 } 473 return false; 474 } 475 476 bool napi_complete_done(struct napi_struct *n, int work_done); 477 /** 478 * napi_complete - NAPI processing complete 479 * @n: NAPI context 480 * 481 * Mark NAPI processing as complete. 482 * Consider using napi_complete_done() instead. 483 * Return false if device should avoid rearming interrupts. 484 */ 485 static inline bool napi_complete(struct napi_struct *n) 486 { 487 return napi_complete_done(n, 0); 488 } 489 490 int dev_set_threaded(struct net_device *dev, bool threaded); 491 492 /** 493 * napi_disable - prevent NAPI from scheduling 494 * @n: NAPI context 495 * 496 * Stop NAPI from being scheduled on this context. 497 * Waits till any outstanding processing completes. 498 */ 499 void napi_disable(struct napi_struct *n); 500 501 void napi_enable(struct napi_struct *n); 502 503 /** 504 * napi_synchronize - wait until NAPI is not running 505 * @n: NAPI context 506 * 507 * Wait until NAPI is done being scheduled on this context. 508 * Waits till any outstanding processing completes but 509 * does not disable future activations. 510 */ 511 static inline void napi_synchronize(const struct napi_struct *n) 512 { 513 if (IS_ENABLED(CONFIG_SMP)) 514 while (test_bit(NAPI_STATE_SCHED, &n->state)) 515 msleep(1); 516 else 517 barrier(); 518 } 519 520 /** 521 * napi_if_scheduled_mark_missed - if napi is running, set the 522 * NAPIF_STATE_MISSED 523 * @n: NAPI context 524 * 525 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 526 * NAPI is scheduled. 527 **/ 528 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 529 { 530 unsigned long val, new; 531 532 do { 533 val = READ_ONCE(n->state); 534 if (val & NAPIF_STATE_DISABLE) 535 return true; 536 537 if (!(val & NAPIF_STATE_SCHED)) 538 return false; 539 540 new = val | NAPIF_STATE_MISSED; 541 } while (cmpxchg(&n->state, val, new) != val); 542 543 return true; 544 } 545 546 enum netdev_queue_state_t { 547 __QUEUE_STATE_DRV_XOFF, 548 __QUEUE_STATE_STACK_XOFF, 549 __QUEUE_STATE_FROZEN, 550 }; 551 552 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 553 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 554 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 555 556 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 557 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 558 QUEUE_STATE_FROZEN) 559 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 560 QUEUE_STATE_FROZEN) 561 562 /* 563 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 564 * netif_tx_* functions below are used to manipulate this flag. The 565 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 566 * queue independently. The netif_xmit_*stopped functions below are called 567 * to check if the queue has been stopped by the driver or stack (either 568 * of the XOFF bits are set in the state). Drivers should not need to call 569 * netif_xmit*stopped functions, they should only be using netif_tx_*. 570 */ 571 572 struct netdev_queue { 573 /* 574 * read-mostly part 575 */ 576 struct net_device *dev; 577 struct Qdisc __rcu *qdisc; 578 struct Qdisc *qdisc_sleeping; 579 #ifdef CONFIG_SYSFS 580 struct kobject kobj; 581 #endif 582 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 583 int numa_node; 584 #endif 585 unsigned long tx_maxrate; 586 /* 587 * Number of TX timeouts for this queue 588 * (/sys/class/net/DEV/Q/trans_timeout) 589 */ 590 unsigned long trans_timeout; 591 592 /* Subordinate device that the queue has been assigned to */ 593 struct net_device *sb_dev; 594 #ifdef CONFIG_XDP_SOCKETS 595 struct xsk_buff_pool *pool; 596 #endif 597 /* 598 * write-mostly part 599 */ 600 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 601 int xmit_lock_owner; 602 /* 603 * Time (in jiffies) of last Tx 604 */ 605 unsigned long trans_start; 606 607 unsigned long state; 608 609 #ifdef CONFIG_BQL 610 struct dql dql; 611 #endif 612 } ____cacheline_aligned_in_smp; 613 614 extern int sysctl_fb_tunnels_only_for_init_net; 615 extern int sysctl_devconf_inherit_init_net; 616 617 /* 618 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 619 * == 1 : For initns only 620 * == 2 : For none. 621 */ 622 static inline bool net_has_fallback_tunnels(const struct net *net) 623 { 624 return !IS_ENABLED(CONFIG_SYSCTL) || 625 !sysctl_fb_tunnels_only_for_init_net || 626 (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1); 627 } 628 629 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 630 { 631 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 632 return q->numa_node; 633 #else 634 return NUMA_NO_NODE; 635 #endif 636 } 637 638 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 639 { 640 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 641 q->numa_node = node; 642 #endif 643 } 644 645 #ifdef CONFIG_RPS 646 /* 647 * This structure holds an RPS map which can be of variable length. The 648 * map is an array of CPUs. 649 */ 650 struct rps_map { 651 unsigned int len; 652 struct rcu_head rcu; 653 u16 cpus[]; 654 }; 655 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 656 657 /* 658 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 659 * tail pointer for that CPU's input queue at the time of last enqueue, and 660 * a hardware filter index. 661 */ 662 struct rps_dev_flow { 663 u16 cpu; 664 u16 filter; 665 unsigned int last_qtail; 666 }; 667 #define RPS_NO_FILTER 0xffff 668 669 /* 670 * The rps_dev_flow_table structure contains a table of flow mappings. 671 */ 672 struct rps_dev_flow_table { 673 unsigned int mask; 674 struct rcu_head rcu; 675 struct rps_dev_flow flows[]; 676 }; 677 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 678 ((_num) * sizeof(struct rps_dev_flow))) 679 680 /* 681 * The rps_sock_flow_table contains mappings of flows to the last CPU 682 * on which they were processed by the application (set in recvmsg). 683 * Each entry is a 32bit value. Upper part is the high-order bits 684 * of flow hash, lower part is CPU number. 685 * rps_cpu_mask is used to partition the space, depending on number of 686 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 687 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 688 * meaning we use 32-6=26 bits for the hash. 689 */ 690 struct rps_sock_flow_table { 691 u32 mask; 692 693 u32 ents[] ____cacheline_aligned_in_smp; 694 }; 695 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 696 697 #define RPS_NO_CPU 0xffff 698 699 extern u32 rps_cpu_mask; 700 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 701 702 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 703 u32 hash) 704 { 705 if (table && hash) { 706 unsigned int index = hash & table->mask; 707 u32 val = hash & ~rps_cpu_mask; 708 709 /* We only give a hint, preemption can change CPU under us */ 710 val |= raw_smp_processor_id(); 711 712 if (table->ents[index] != val) 713 table->ents[index] = val; 714 } 715 } 716 717 #ifdef CONFIG_RFS_ACCEL 718 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 719 u16 filter_id); 720 #endif 721 #endif /* CONFIG_RPS */ 722 723 /* This structure contains an instance of an RX queue. */ 724 struct netdev_rx_queue { 725 #ifdef CONFIG_RPS 726 struct rps_map __rcu *rps_map; 727 struct rps_dev_flow_table __rcu *rps_flow_table; 728 #endif 729 struct kobject kobj; 730 struct net_device *dev; 731 struct xdp_rxq_info xdp_rxq; 732 #ifdef CONFIG_XDP_SOCKETS 733 struct xsk_buff_pool *pool; 734 #endif 735 } ____cacheline_aligned_in_smp; 736 737 /* 738 * RX queue sysfs structures and functions. 739 */ 740 struct rx_queue_attribute { 741 struct attribute attr; 742 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 743 ssize_t (*store)(struct netdev_rx_queue *queue, 744 const char *buf, size_t len); 745 }; 746 747 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 748 enum xps_map_type { 749 XPS_CPUS = 0, 750 XPS_RXQS, 751 XPS_MAPS_MAX, 752 }; 753 754 #ifdef CONFIG_XPS 755 /* 756 * This structure holds an XPS map which can be of variable length. The 757 * map is an array of queues. 758 */ 759 struct xps_map { 760 unsigned int len; 761 unsigned int alloc_len; 762 struct rcu_head rcu; 763 u16 queues[]; 764 }; 765 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 766 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 767 - sizeof(struct xps_map)) / sizeof(u16)) 768 769 /* 770 * This structure holds all XPS maps for device. Maps are indexed by CPU. 771 * 772 * We keep track of the number of cpus/rxqs used when the struct is allocated, 773 * in nr_ids. This will help not accessing out-of-bound memory. 774 * 775 * We keep track of the number of traffic classes used when the struct is 776 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 777 * not crossing its upper bound, as the original dev->num_tc can be updated in 778 * the meantime. 779 */ 780 struct xps_dev_maps { 781 struct rcu_head rcu; 782 unsigned int nr_ids; 783 s16 num_tc; 784 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 785 }; 786 787 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 788 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 789 790 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 791 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 792 793 #endif /* CONFIG_XPS */ 794 795 #define TC_MAX_QUEUE 16 796 #define TC_BITMASK 15 797 /* HW offloaded queuing disciplines txq count and offset maps */ 798 struct netdev_tc_txq { 799 u16 count; 800 u16 offset; 801 }; 802 803 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 804 /* 805 * This structure is to hold information about the device 806 * configured to run FCoE protocol stack. 807 */ 808 struct netdev_fcoe_hbainfo { 809 char manufacturer[64]; 810 char serial_number[64]; 811 char hardware_version[64]; 812 char driver_version[64]; 813 char optionrom_version[64]; 814 char firmware_version[64]; 815 char model[256]; 816 char model_description[256]; 817 }; 818 #endif 819 820 #define MAX_PHYS_ITEM_ID_LEN 32 821 822 /* This structure holds a unique identifier to identify some 823 * physical item (port for example) used by a netdevice. 824 */ 825 struct netdev_phys_item_id { 826 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 827 unsigned char id_len; 828 }; 829 830 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 831 struct netdev_phys_item_id *b) 832 { 833 return a->id_len == b->id_len && 834 memcmp(a->id, b->id, a->id_len) == 0; 835 } 836 837 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 838 struct sk_buff *skb, 839 struct net_device *sb_dev); 840 841 enum net_device_path_type { 842 DEV_PATH_ETHERNET = 0, 843 DEV_PATH_VLAN, 844 DEV_PATH_BRIDGE, 845 DEV_PATH_PPPOE, 846 DEV_PATH_DSA, 847 }; 848 849 struct net_device_path { 850 enum net_device_path_type type; 851 const struct net_device *dev; 852 union { 853 struct { 854 u16 id; 855 __be16 proto; 856 u8 h_dest[ETH_ALEN]; 857 } encap; 858 struct { 859 enum { 860 DEV_PATH_BR_VLAN_KEEP, 861 DEV_PATH_BR_VLAN_TAG, 862 DEV_PATH_BR_VLAN_UNTAG, 863 DEV_PATH_BR_VLAN_UNTAG_HW, 864 } vlan_mode; 865 u16 vlan_id; 866 __be16 vlan_proto; 867 } bridge; 868 struct { 869 int port; 870 u16 proto; 871 } dsa; 872 }; 873 }; 874 875 #define NET_DEVICE_PATH_STACK_MAX 5 876 #define NET_DEVICE_PATH_VLAN_MAX 2 877 878 struct net_device_path_stack { 879 int num_paths; 880 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 881 }; 882 883 struct net_device_path_ctx { 884 const struct net_device *dev; 885 const u8 *daddr; 886 887 int num_vlans; 888 struct { 889 u16 id; 890 __be16 proto; 891 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 892 }; 893 894 enum tc_setup_type { 895 TC_SETUP_QDISC_MQPRIO, 896 TC_SETUP_CLSU32, 897 TC_SETUP_CLSFLOWER, 898 TC_SETUP_CLSMATCHALL, 899 TC_SETUP_CLSBPF, 900 TC_SETUP_BLOCK, 901 TC_SETUP_QDISC_CBS, 902 TC_SETUP_QDISC_RED, 903 TC_SETUP_QDISC_PRIO, 904 TC_SETUP_QDISC_MQ, 905 TC_SETUP_QDISC_ETF, 906 TC_SETUP_ROOT_QDISC, 907 TC_SETUP_QDISC_GRED, 908 TC_SETUP_QDISC_TAPRIO, 909 TC_SETUP_FT, 910 TC_SETUP_QDISC_ETS, 911 TC_SETUP_QDISC_TBF, 912 TC_SETUP_QDISC_FIFO, 913 TC_SETUP_QDISC_HTB, 914 }; 915 916 /* These structures hold the attributes of bpf state that are being passed 917 * to the netdevice through the bpf op. 918 */ 919 enum bpf_netdev_command { 920 /* Set or clear a bpf program used in the earliest stages of packet 921 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 922 * is responsible for calling bpf_prog_put on any old progs that are 923 * stored. In case of error, the callee need not release the new prog 924 * reference, but on success it takes ownership and must bpf_prog_put 925 * when it is no longer used. 926 */ 927 XDP_SETUP_PROG, 928 XDP_SETUP_PROG_HW, 929 /* BPF program for offload callbacks, invoked at program load time. */ 930 BPF_OFFLOAD_MAP_ALLOC, 931 BPF_OFFLOAD_MAP_FREE, 932 XDP_SETUP_XSK_POOL, 933 }; 934 935 struct bpf_prog_offload_ops; 936 struct netlink_ext_ack; 937 struct xdp_umem; 938 struct xdp_dev_bulk_queue; 939 struct bpf_xdp_link; 940 941 enum bpf_xdp_mode { 942 XDP_MODE_SKB = 0, 943 XDP_MODE_DRV = 1, 944 XDP_MODE_HW = 2, 945 __MAX_XDP_MODE 946 }; 947 948 struct bpf_xdp_entity { 949 struct bpf_prog *prog; 950 struct bpf_xdp_link *link; 951 }; 952 953 struct netdev_bpf { 954 enum bpf_netdev_command command; 955 union { 956 /* XDP_SETUP_PROG */ 957 struct { 958 u32 flags; 959 struct bpf_prog *prog; 960 struct netlink_ext_ack *extack; 961 }; 962 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 963 struct { 964 struct bpf_offloaded_map *offmap; 965 }; 966 /* XDP_SETUP_XSK_POOL */ 967 struct { 968 struct xsk_buff_pool *pool; 969 u16 queue_id; 970 } xsk; 971 }; 972 }; 973 974 /* Flags for ndo_xsk_wakeup. */ 975 #define XDP_WAKEUP_RX (1 << 0) 976 #define XDP_WAKEUP_TX (1 << 1) 977 978 #ifdef CONFIG_XFRM_OFFLOAD 979 struct xfrmdev_ops { 980 int (*xdo_dev_state_add) (struct xfrm_state *x); 981 void (*xdo_dev_state_delete) (struct xfrm_state *x); 982 void (*xdo_dev_state_free) (struct xfrm_state *x); 983 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 984 struct xfrm_state *x); 985 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 986 }; 987 #endif 988 989 struct dev_ifalias { 990 struct rcu_head rcuhead; 991 char ifalias[]; 992 }; 993 994 struct devlink; 995 struct tlsdev_ops; 996 997 struct netdev_name_node { 998 struct hlist_node hlist; 999 struct list_head list; 1000 struct net_device *dev; 1001 const char *name; 1002 }; 1003 1004 int netdev_name_node_alt_create(struct net_device *dev, const char *name); 1005 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name); 1006 1007 struct netdev_net_notifier { 1008 struct list_head list; 1009 struct notifier_block *nb; 1010 }; 1011 1012 /* 1013 * This structure defines the management hooks for network devices. 1014 * The following hooks can be defined; unless noted otherwise, they are 1015 * optional and can be filled with a null pointer. 1016 * 1017 * int (*ndo_init)(struct net_device *dev); 1018 * This function is called once when a network device is registered. 1019 * The network device can use this for any late stage initialization 1020 * or semantic validation. It can fail with an error code which will 1021 * be propagated back to register_netdev. 1022 * 1023 * void (*ndo_uninit)(struct net_device *dev); 1024 * This function is called when device is unregistered or when registration 1025 * fails. It is not called if init fails. 1026 * 1027 * int (*ndo_open)(struct net_device *dev); 1028 * This function is called when a network device transitions to the up 1029 * state. 1030 * 1031 * int (*ndo_stop)(struct net_device *dev); 1032 * This function is called when a network device transitions to the down 1033 * state. 1034 * 1035 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1036 * struct net_device *dev); 1037 * Called when a packet needs to be transmitted. 1038 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1039 * the queue before that can happen; it's for obsolete devices and weird 1040 * corner cases, but the stack really does a non-trivial amount 1041 * of useless work if you return NETDEV_TX_BUSY. 1042 * Required; cannot be NULL. 1043 * 1044 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1045 * struct net_device *dev 1046 * netdev_features_t features); 1047 * Called by core transmit path to determine if device is capable of 1048 * performing offload operations on a given packet. This is to give 1049 * the device an opportunity to implement any restrictions that cannot 1050 * be otherwise expressed by feature flags. The check is called with 1051 * the set of features that the stack has calculated and it returns 1052 * those the driver believes to be appropriate. 1053 * 1054 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1055 * struct net_device *sb_dev); 1056 * Called to decide which queue to use when device supports multiple 1057 * transmit queues. 1058 * 1059 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1060 * This function is called to allow device receiver to make 1061 * changes to configuration when multicast or promiscuous is enabled. 1062 * 1063 * void (*ndo_set_rx_mode)(struct net_device *dev); 1064 * This function is called device changes address list filtering. 1065 * If driver handles unicast address filtering, it should set 1066 * IFF_UNICAST_FLT in its priv_flags. 1067 * 1068 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1069 * This function is called when the Media Access Control address 1070 * needs to be changed. If this interface is not defined, the 1071 * MAC address can not be changed. 1072 * 1073 * int (*ndo_validate_addr)(struct net_device *dev); 1074 * Test if Media Access Control address is valid for the device. 1075 * 1076 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1077 * Old-style ioctl entry point. This is used internally by the 1078 * appletalk and ieee802154 subsystems but is no longer called by 1079 * the device ioctl handler. 1080 * 1081 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1082 * Used by the bonding driver for its device specific ioctls: 1083 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1084 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1085 * 1086 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1087 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1088 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1089 * 1090 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1091 * Used to set network devices bus interface parameters. This interface 1092 * is retained for legacy reasons; new devices should use the bus 1093 * interface (PCI) for low level management. 1094 * 1095 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1096 * Called when a user wants to change the Maximum Transfer Unit 1097 * of a device. 1098 * 1099 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1100 * Callback used when the transmitter has not made any progress 1101 * for dev->watchdog ticks. 1102 * 1103 * void (*ndo_get_stats64)(struct net_device *dev, 1104 * struct rtnl_link_stats64 *storage); 1105 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1106 * Called when a user wants to get the network device usage 1107 * statistics. Drivers must do one of the following: 1108 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1109 * rtnl_link_stats64 structure passed by the caller. 1110 * 2. Define @ndo_get_stats to update a net_device_stats structure 1111 * (which should normally be dev->stats) and return a pointer to 1112 * it. The structure may be changed asynchronously only if each 1113 * field is written atomically. 1114 * 3. Update dev->stats asynchronously and atomically, and define 1115 * neither operation. 1116 * 1117 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1118 * Return true if this device supports offload stats of this attr_id. 1119 * 1120 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1121 * void *attr_data) 1122 * Get statistics for offload operations by attr_id. Write it into the 1123 * attr_data pointer. 1124 * 1125 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1126 * If device supports VLAN filtering this function is called when a 1127 * VLAN id is registered. 1128 * 1129 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1130 * If device supports VLAN filtering this function is called when a 1131 * VLAN id is unregistered. 1132 * 1133 * void (*ndo_poll_controller)(struct net_device *dev); 1134 * 1135 * SR-IOV management functions. 1136 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1137 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1138 * u8 qos, __be16 proto); 1139 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1140 * int max_tx_rate); 1141 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1142 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1143 * int (*ndo_get_vf_config)(struct net_device *dev, 1144 * int vf, struct ifla_vf_info *ivf); 1145 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1146 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1147 * struct nlattr *port[]); 1148 * 1149 * Enable or disable the VF ability to query its RSS Redirection Table and 1150 * Hash Key. This is needed since on some devices VF share this information 1151 * with PF and querying it may introduce a theoretical security risk. 1152 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1153 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1154 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1155 * void *type_data); 1156 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1157 * This is always called from the stack with the rtnl lock held and netif 1158 * tx queues stopped. This allows the netdevice to perform queue 1159 * management safely. 1160 * 1161 * Fiber Channel over Ethernet (FCoE) offload functions. 1162 * int (*ndo_fcoe_enable)(struct net_device *dev); 1163 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1164 * so the underlying device can perform whatever needed configuration or 1165 * initialization to support acceleration of FCoE traffic. 1166 * 1167 * int (*ndo_fcoe_disable)(struct net_device *dev); 1168 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1169 * so the underlying device can perform whatever needed clean-ups to 1170 * stop supporting acceleration of FCoE traffic. 1171 * 1172 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1173 * struct scatterlist *sgl, unsigned int sgc); 1174 * Called when the FCoE Initiator wants to initialize an I/O that 1175 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1176 * perform necessary setup and returns 1 to indicate the device is set up 1177 * successfully to perform DDP on this I/O, otherwise this returns 0. 1178 * 1179 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1180 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1181 * indicated by the FC exchange id 'xid', so the underlying device can 1182 * clean up and reuse resources for later DDP requests. 1183 * 1184 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1185 * struct scatterlist *sgl, unsigned int sgc); 1186 * Called when the FCoE Target wants to initialize an I/O that 1187 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1188 * perform necessary setup and returns 1 to indicate the device is set up 1189 * successfully to perform DDP on this I/O, otherwise this returns 0. 1190 * 1191 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1192 * struct netdev_fcoe_hbainfo *hbainfo); 1193 * Called when the FCoE Protocol stack wants information on the underlying 1194 * device. This information is utilized by the FCoE protocol stack to 1195 * register attributes with Fiber Channel management service as per the 1196 * FC-GS Fabric Device Management Information(FDMI) specification. 1197 * 1198 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1199 * Called when the underlying device wants to override default World Wide 1200 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1201 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1202 * protocol stack to use. 1203 * 1204 * RFS acceleration. 1205 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1206 * u16 rxq_index, u32 flow_id); 1207 * Set hardware filter for RFS. rxq_index is the target queue index; 1208 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1209 * Return the filter ID on success, or a negative error code. 1210 * 1211 * Slave management functions (for bridge, bonding, etc). 1212 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1213 * Called to make another netdev an underling. 1214 * 1215 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1216 * Called to release previously enslaved netdev. 1217 * 1218 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1219 * struct sk_buff *skb, 1220 * bool all_slaves); 1221 * Get the xmit slave of master device. If all_slaves is true, function 1222 * assume all the slaves can transmit. 1223 * 1224 * Feature/offload setting functions. 1225 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1226 * netdev_features_t features); 1227 * Adjusts the requested feature flags according to device-specific 1228 * constraints, and returns the resulting flags. Must not modify 1229 * the device state. 1230 * 1231 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1232 * Called to update device configuration to new features. Passed 1233 * feature set might be less than what was returned by ndo_fix_features()). 1234 * Must return >0 or -errno if it changed dev->features itself. 1235 * 1236 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1237 * struct net_device *dev, 1238 * const unsigned char *addr, u16 vid, u16 flags, 1239 * struct netlink_ext_ack *extack); 1240 * Adds an FDB entry to dev for addr. 1241 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1242 * struct net_device *dev, 1243 * const unsigned char *addr, u16 vid) 1244 * Deletes the FDB entry from dev coresponding to addr. 1245 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1246 * struct net_device *dev, struct net_device *filter_dev, 1247 * int *idx) 1248 * Used to add FDB entries to dump requests. Implementers should add 1249 * entries to skb and update idx with the number of entries. 1250 * 1251 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1252 * u16 flags, struct netlink_ext_ack *extack) 1253 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1254 * struct net_device *dev, u32 filter_mask, 1255 * int nlflags) 1256 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1257 * u16 flags); 1258 * 1259 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1260 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1261 * which do not represent real hardware may define this to allow their 1262 * userspace components to manage their virtual carrier state. Devices 1263 * that determine carrier state from physical hardware properties (eg 1264 * network cables) or protocol-dependent mechanisms (eg 1265 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1266 * 1267 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1268 * struct netdev_phys_item_id *ppid); 1269 * Called to get ID of physical port of this device. If driver does 1270 * not implement this, it is assumed that the hw is not able to have 1271 * multiple net devices on single physical port. 1272 * 1273 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1274 * struct netdev_phys_item_id *ppid) 1275 * Called to get the parent ID of the physical port of this device. 1276 * 1277 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1278 * struct net_device *dev) 1279 * Called by upper layer devices to accelerate switching or other 1280 * station functionality into hardware. 'pdev is the lowerdev 1281 * to use for the offload and 'dev' is the net device that will 1282 * back the offload. Returns a pointer to the private structure 1283 * the upper layer will maintain. 1284 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1285 * Called by upper layer device to delete the station created 1286 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1287 * the station and priv is the structure returned by the add 1288 * operation. 1289 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1290 * int queue_index, u32 maxrate); 1291 * Called when a user wants to set a max-rate limitation of specific 1292 * TX queue. 1293 * int (*ndo_get_iflink)(const struct net_device *dev); 1294 * Called to get the iflink value of this device. 1295 * void (*ndo_change_proto_down)(struct net_device *dev, 1296 * bool proto_down); 1297 * This function is used to pass protocol port error state information 1298 * to the switch driver. The switch driver can react to the proto_down 1299 * by doing a phys down on the associated switch port. 1300 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1301 * This function is used to get egress tunnel information for given skb. 1302 * This is useful for retrieving outer tunnel header parameters while 1303 * sampling packet. 1304 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1305 * This function is used to specify the headroom that the skb must 1306 * consider when allocation skb during packet reception. Setting 1307 * appropriate rx headroom value allows avoiding skb head copy on 1308 * forward. Setting a negative value resets the rx headroom to the 1309 * default value. 1310 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1311 * This function is used to set or query state related to XDP on the 1312 * netdevice and manage BPF offload. See definition of 1313 * enum bpf_netdev_command for details. 1314 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1315 * u32 flags); 1316 * This function is used to submit @n XDP packets for transmit on a 1317 * netdevice. Returns number of frames successfully transmitted, frames 1318 * that got dropped are freed/returned via xdp_return_frame(). 1319 * Returns negative number, means general error invoking ndo, meaning 1320 * no frames were xmit'ed and core-caller will free all frames. 1321 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1322 * struct xdp_buff *xdp); 1323 * Get the xmit slave of master device based on the xdp_buff. 1324 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1325 * This function is used to wake up the softirq, ksoftirqd or kthread 1326 * responsible for sending and/or receiving packets on a specific 1327 * queue id bound to an AF_XDP socket. The flags field specifies if 1328 * only RX, only Tx, or both should be woken up using the flags 1329 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1330 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1331 * Get devlink port instance associated with a given netdev. 1332 * Called with a reference on the netdevice and devlink locks only, 1333 * rtnl_lock is not held. 1334 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1335 * int cmd); 1336 * Add, change, delete or get information on an IPv4 tunnel. 1337 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1338 * If a device is paired with a peer device, return the peer instance. 1339 * The caller must be under RCU read context. 1340 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1341 * Get the forwarding path to reach the real device from the HW destination address 1342 */ 1343 struct net_device_ops { 1344 int (*ndo_init)(struct net_device *dev); 1345 void (*ndo_uninit)(struct net_device *dev); 1346 int (*ndo_open)(struct net_device *dev); 1347 int (*ndo_stop)(struct net_device *dev); 1348 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1349 struct net_device *dev); 1350 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1351 struct net_device *dev, 1352 netdev_features_t features); 1353 u16 (*ndo_select_queue)(struct net_device *dev, 1354 struct sk_buff *skb, 1355 struct net_device *sb_dev); 1356 void (*ndo_change_rx_flags)(struct net_device *dev, 1357 int flags); 1358 void (*ndo_set_rx_mode)(struct net_device *dev); 1359 int (*ndo_set_mac_address)(struct net_device *dev, 1360 void *addr); 1361 int (*ndo_validate_addr)(struct net_device *dev); 1362 int (*ndo_do_ioctl)(struct net_device *dev, 1363 struct ifreq *ifr, int cmd); 1364 int (*ndo_eth_ioctl)(struct net_device *dev, 1365 struct ifreq *ifr, int cmd); 1366 int (*ndo_siocbond)(struct net_device *dev, 1367 struct ifreq *ifr, int cmd); 1368 int (*ndo_siocwandev)(struct net_device *dev, 1369 struct if_settings *ifs); 1370 int (*ndo_siocdevprivate)(struct net_device *dev, 1371 struct ifreq *ifr, 1372 void __user *data, int cmd); 1373 int (*ndo_set_config)(struct net_device *dev, 1374 struct ifmap *map); 1375 int (*ndo_change_mtu)(struct net_device *dev, 1376 int new_mtu); 1377 int (*ndo_neigh_setup)(struct net_device *dev, 1378 struct neigh_parms *); 1379 void (*ndo_tx_timeout) (struct net_device *dev, 1380 unsigned int txqueue); 1381 1382 void (*ndo_get_stats64)(struct net_device *dev, 1383 struct rtnl_link_stats64 *storage); 1384 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1385 int (*ndo_get_offload_stats)(int attr_id, 1386 const struct net_device *dev, 1387 void *attr_data); 1388 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1389 1390 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1391 __be16 proto, u16 vid); 1392 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1393 __be16 proto, u16 vid); 1394 #ifdef CONFIG_NET_POLL_CONTROLLER 1395 void (*ndo_poll_controller)(struct net_device *dev); 1396 int (*ndo_netpoll_setup)(struct net_device *dev, 1397 struct netpoll_info *info); 1398 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1399 #endif 1400 int (*ndo_set_vf_mac)(struct net_device *dev, 1401 int queue, u8 *mac); 1402 int (*ndo_set_vf_vlan)(struct net_device *dev, 1403 int queue, u16 vlan, 1404 u8 qos, __be16 proto); 1405 int (*ndo_set_vf_rate)(struct net_device *dev, 1406 int vf, int min_tx_rate, 1407 int max_tx_rate); 1408 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1409 int vf, bool setting); 1410 int (*ndo_set_vf_trust)(struct net_device *dev, 1411 int vf, bool setting); 1412 int (*ndo_get_vf_config)(struct net_device *dev, 1413 int vf, 1414 struct ifla_vf_info *ivf); 1415 int (*ndo_set_vf_link_state)(struct net_device *dev, 1416 int vf, int link_state); 1417 int (*ndo_get_vf_stats)(struct net_device *dev, 1418 int vf, 1419 struct ifla_vf_stats 1420 *vf_stats); 1421 int (*ndo_set_vf_port)(struct net_device *dev, 1422 int vf, 1423 struct nlattr *port[]); 1424 int (*ndo_get_vf_port)(struct net_device *dev, 1425 int vf, struct sk_buff *skb); 1426 int (*ndo_get_vf_guid)(struct net_device *dev, 1427 int vf, 1428 struct ifla_vf_guid *node_guid, 1429 struct ifla_vf_guid *port_guid); 1430 int (*ndo_set_vf_guid)(struct net_device *dev, 1431 int vf, u64 guid, 1432 int guid_type); 1433 int (*ndo_set_vf_rss_query_en)( 1434 struct net_device *dev, 1435 int vf, bool setting); 1436 int (*ndo_setup_tc)(struct net_device *dev, 1437 enum tc_setup_type type, 1438 void *type_data); 1439 #if IS_ENABLED(CONFIG_FCOE) 1440 int (*ndo_fcoe_enable)(struct net_device *dev); 1441 int (*ndo_fcoe_disable)(struct net_device *dev); 1442 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1443 u16 xid, 1444 struct scatterlist *sgl, 1445 unsigned int sgc); 1446 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1447 u16 xid); 1448 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1449 u16 xid, 1450 struct scatterlist *sgl, 1451 unsigned int sgc); 1452 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1453 struct netdev_fcoe_hbainfo *hbainfo); 1454 #endif 1455 1456 #if IS_ENABLED(CONFIG_LIBFCOE) 1457 #define NETDEV_FCOE_WWNN 0 1458 #define NETDEV_FCOE_WWPN 1 1459 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1460 u64 *wwn, int type); 1461 #endif 1462 1463 #ifdef CONFIG_RFS_ACCEL 1464 int (*ndo_rx_flow_steer)(struct net_device *dev, 1465 const struct sk_buff *skb, 1466 u16 rxq_index, 1467 u32 flow_id); 1468 #endif 1469 int (*ndo_add_slave)(struct net_device *dev, 1470 struct net_device *slave_dev, 1471 struct netlink_ext_ack *extack); 1472 int (*ndo_del_slave)(struct net_device *dev, 1473 struct net_device *slave_dev); 1474 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1475 struct sk_buff *skb, 1476 bool all_slaves); 1477 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1478 struct sock *sk); 1479 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1480 netdev_features_t features); 1481 int (*ndo_set_features)(struct net_device *dev, 1482 netdev_features_t features); 1483 int (*ndo_neigh_construct)(struct net_device *dev, 1484 struct neighbour *n); 1485 void (*ndo_neigh_destroy)(struct net_device *dev, 1486 struct neighbour *n); 1487 1488 int (*ndo_fdb_add)(struct ndmsg *ndm, 1489 struct nlattr *tb[], 1490 struct net_device *dev, 1491 const unsigned char *addr, 1492 u16 vid, 1493 u16 flags, 1494 struct netlink_ext_ack *extack); 1495 int (*ndo_fdb_del)(struct ndmsg *ndm, 1496 struct nlattr *tb[], 1497 struct net_device *dev, 1498 const unsigned char *addr, 1499 u16 vid); 1500 int (*ndo_fdb_dump)(struct sk_buff *skb, 1501 struct netlink_callback *cb, 1502 struct net_device *dev, 1503 struct net_device *filter_dev, 1504 int *idx); 1505 int (*ndo_fdb_get)(struct sk_buff *skb, 1506 struct nlattr *tb[], 1507 struct net_device *dev, 1508 const unsigned char *addr, 1509 u16 vid, u32 portid, u32 seq, 1510 struct netlink_ext_ack *extack); 1511 int (*ndo_bridge_setlink)(struct net_device *dev, 1512 struct nlmsghdr *nlh, 1513 u16 flags, 1514 struct netlink_ext_ack *extack); 1515 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1516 u32 pid, u32 seq, 1517 struct net_device *dev, 1518 u32 filter_mask, 1519 int nlflags); 1520 int (*ndo_bridge_dellink)(struct net_device *dev, 1521 struct nlmsghdr *nlh, 1522 u16 flags); 1523 int (*ndo_change_carrier)(struct net_device *dev, 1524 bool new_carrier); 1525 int (*ndo_get_phys_port_id)(struct net_device *dev, 1526 struct netdev_phys_item_id *ppid); 1527 int (*ndo_get_port_parent_id)(struct net_device *dev, 1528 struct netdev_phys_item_id *ppid); 1529 int (*ndo_get_phys_port_name)(struct net_device *dev, 1530 char *name, size_t len); 1531 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1532 struct net_device *dev); 1533 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1534 void *priv); 1535 1536 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1537 int queue_index, 1538 u32 maxrate); 1539 int (*ndo_get_iflink)(const struct net_device *dev); 1540 int (*ndo_change_proto_down)(struct net_device *dev, 1541 bool proto_down); 1542 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1543 struct sk_buff *skb); 1544 void (*ndo_set_rx_headroom)(struct net_device *dev, 1545 int needed_headroom); 1546 int (*ndo_bpf)(struct net_device *dev, 1547 struct netdev_bpf *bpf); 1548 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1549 struct xdp_frame **xdp, 1550 u32 flags); 1551 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1552 struct xdp_buff *xdp); 1553 int (*ndo_xsk_wakeup)(struct net_device *dev, 1554 u32 queue_id, u32 flags); 1555 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1556 int (*ndo_tunnel_ctl)(struct net_device *dev, 1557 struct ip_tunnel_parm *p, int cmd); 1558 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1559 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1560 struct net_device_path *path); 1561 }; 1562 1563 /** 1564 * enum netdev_priv_flags - &struct net_device priv_flags 1565 * 1566 * These are the &struct net_device, they are only set internally 1567 * by drivers and used in the kernel. These flags are invisible to 1568 * userspace; this means that the order of these flags can change 1569 * during any kernel release. 1570 * 1571 * You should have a pretty good reason to be extending these flags. 1572 * 1573 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1574 * @IFF_EBRIDGE: Ethernet bridging device 1575 * @IFF_BONDING: bonding master or slave 1576 * @IFF_ISATAP: ISATAP interface (RFC4214) 1577 * @IFF_WAN_HDLC: WAN HDLC device 1578 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1579 * release skb->dst 1580 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1581 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1582 * @IFF_MACVLAN_PORT: device used as macvlan port 1583 * @IFF_BRIDGE_PORT: device used as bridge port 1584 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1585 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1586 * @IFF_UNICAST_FLT: Supports unicast filtering 1587 * @IFF_TEAM_PORT: device used as team port 1588 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1589 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1590 * change when it's running 1591 * @IFF_MACVLAN: Macvlan device 1592 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1593 * underlying stacked devices 1594 * @IFF_L3MDEV_MASTER: device is an L3 master device 1595 * @IFF_NO_QUEUE: device can run without qdisc attached 1596 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1597 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1598 * @IFF_TEAM: device is a team device 1599 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1600 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1601 * entity (i.e. the master device for bridged veth) 1602 * @IFF_MACSEC: device is a MACsec device 1603 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1604 * @IFF_FAILOVER: device is a failover master device 1605 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1606 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1607 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1608 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1609 * skb_headlen(skb) == 0 (data starts from frag0) 1610 */ 1611 enum netdev_priv_flags { 1612 IFF_802_1Q_VLAN = 1<<0, 1613 IFF_EBRIDGE = 1<<1, 1614 IFF_BONDING = 1<<2, 1615 IFF_ISATAP = 1<<3, 1616 IFF_WAN_HDLC = 1<<4, 1617 IFF_XMIT_DST_RELEASE = 1<<5, 1618 IFF_DONT_BRIDGE = 1<<6, 1619 IFF_DISABLE_NETPOLL = 1<<7, 1620 IFF_MACVLAN_PORT = 1<<8, 1621 IFF_BRIDGE_PORT = 1<<9, 1622 IFF_OVS_DATAPATH = 1<<10, 1623 IFF_TX_SKB_SHARING = 1<<11, 1624 IFF_UNICAST_FLT = 1<<12, 1625 IFF_TEAM_PORT = 1<<13, 1626 IFF_SUPP_NOFCS = 1<<14, 1627 IFF_LIVE_ADDR_CHANGE = 1<<15, 1628 IFF_MACVLAN = 1<<16, 1629 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1630 IFF_L3MDEV_MASTER = 1<<18, 1631 IFF_NO_QUEUE = 1<<19, 1632 IFF_OPENVSWITCH = 1<<20, 1633 IFF_L3MDEV_SLAVE = 1<<21, 1634 IFF_TEAM = 1<<22, 1635 IFF_RXFH_CONFIGURED = 1<<23, 1636 IFF_PHONY_HEADROOM = 1<<24, 1637 IFF_MACSEC = 1<<25, 1638 IFF_NO_RX_HANDLER = 1<<26, 1639 IFF_FAILOVER = 1<<27, 1640 IFF_FAILOVER_SLAVE = 1<<28, 1641 IFF_L3MDEV_RX_HANDLER = 1<<29, 1642 IFF_LIVE_RENAME_OK = 1<<30, 1643 IFF_TX_SKB_NO_LINEAR = 1<<31, 1644 }; 1645 1646 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1647 #define IFF_EBRIDGE IFF_EBRIDGE 1648 #define IFF_BONDING IFF_BONDING 1649 #define IFF_ISATAP IFF_ISATAP 1650 #define IFF_WAN_HDLC IFF_WAN_HDLC 1651 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1652 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1653 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1654 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1655 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1656 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1657 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1658 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1659 #define IFF_TEAM_PORT IFF_TEAM_PORT 1660 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1661 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1662 #define IFF_MACVLAN IFF_MACVLAN 1663 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1664 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1665 #define IFF_NO_QUEUE IFF_NO_QUEUE 1666 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1667 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1668 #define IFF_TEAM IFF_TEAM 1669 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1670 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1671 #define IFF_MACSEC IFF_MACSEC 1672 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1673 #define IFF_FAILOVER IFF_FAILOVER 1674 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1675 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1676 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1677 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1678 1679 /* Specifies the type of the struct net_device::ml_priv pointer */ 1680 enum netdev_ml_priv_type { 1681 ML_PRIV_NONE, 1682 ML_PRIV_CAN, 1683 }; 1684 1685 /** 1686 * struct net_device - The DEVICE structure. 1687 * 1688 * Actually, this whole structure is a big mistake. It mixes I/O 1689 * data with strictly "high-level" data, and it has to know about 1690 * almost every data structure used in the INET module. 1691 * 1692 * @name: This is the first field of the "visible" part of this structure 1693 * (i.e. as seen by users in the "Space.c" file). It is the name 1694 * of the interface. 1695 * 1696 * @name_node: Name hashlist node 1697 * @ifalias: SNMP alias 1698 * @mem_end: Shared memory end 1699 * @mem_start: Shared memory start 1700 * @base_addr: Device I/O address 1701 * @irq: Device IRQ number 1702 * 1703 * @state: Generic network queuing layer state, see netdev_state_t 1704 * @dev_list: The global list of network devices 1705 * @napi_list: List entry used for polling NAPI devices 1706 * @unreg_list: List entry when we are unregistering the 1707 * device; see the function unregister_netdev 1708 * @close_list: List entry used when we are closing the device 1709 * @ptype_all: Device-specific packet handlers for all protocols 1710 * @ptype_specific: Device-specific, protocol-specific packet handlers 1711 * 1712 * @adj_list: Directly linked devices, like slaves for bonding 1713 * @features: Currently active device features 1714 * @hw_features: User-changeable features 1715 * 1716 * @wanted_features: User-requested features 1717 * @vlan_features: Mask of features inheritable by VLAN devices 1718 * 1719 * @hw_enc_features: Mask of features inherited by encapsulating devices 1720 * This field indicates what encapsulation 1721 * offloads the hardware is capable of doing, 1722 * and drivers will need to set them appropriately. 1723 * 1724 * @mpls_features: Mask of features inheritable by MPLS 1725 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1726 * 1727 * @ifindex: interface index 1728 * @group: The group the device belongs to 1729 * 1730 * @stats: Statistics struct, which was left as a legacy, use 1731 * rtnl_link_stats64 instead 1732 * 1733 * @rx_dropped: Dropped packets by core network, 1734 * do not use this in drivers 1735 * @tx_dropped: Dropped packets by core network, 1736 * do not use this in drivers 1737 * @rx_nohandler: nohandler dropped packets by core network on 1738 * inactive devices, do not use this in drivers 1739 * @carrier_up_count: Number of times the carrier has been up 1740 * @carrier_down_count: Number of times the carrier has been down 1741 * 1742 * @wireless_handlers: List of functions to handle Wireless Extensions, 1743 * instead of ioctl, 1744 * see <net/iw_handler.h> for details. 1745 * @wireless_data: Instance data managed by the core of wireless extensions 1746 * 1747 * @netdev_ops: Includes several pointers to callbacks, 1748 * if one wants to override the ndo_*() functions 1749 * @ethtool_ops: Management operations 1750 * @l3mdev_ops: Layer 3 master device operations 1751 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1752 * discovery handling. Necessary for e.g. 6LoWPAN. 1753 * @xfrmdev_ops: Transformation offload operations 1754 * @tlsdev_ops: Transport Layer Security offload operations 1755 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1756 * of Layer 2 headers. 1757 * 1758 * @flags: Interface flags (a la BSD) 1759 * @priv_flags: Like 'flags' but invisible to userspace, 1760 * see if.h for the definitions 1761 * @gflags: Global flags ( kept as legacy ) 1762 * @padded: How much padding added by alloc_netdev() 1763 * @operstate: RFC2863 operstate 1764 * @link_mode: Mapping policy to operstate 1765 * @if_port: Selectable AUI, TP, ... 1766 * @dma: DMA channel 1767 * @mtu: Interface MTU value 1768 * @min_mtu: Interface Minimum MTU value 1769 * @max_mtu: Interface Maximum MTU value 1770 * @type: Interface hardware type 1771 * @hard_header_len: Maximum hardware header length. 1772 * @min_header_len: Minimum hardware header length 1773 * 1774 * @needed_headroom: Extra headroom the hardware may need, but not in all 1775 * cases can this be guaranteed 1776 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1777 * cases can this be guaranteed. Some cases also use 1778 * LL_MAX_HEADER instead to allocate the skb 1779 * 1780 * interface address info: 1781 * 1782 * @perm_addr: Permanent hw address 1783 * @addr_assign_type: Hw address assignment type 1784 * @addr_len: Hardware address length 1785 * @upper_level: Maximum depth level of upper devices. 1786 * @lower_level: Maximum depth level of lower devices. 1787 * @neigh_priv_len: Used in neigh_alloc() 1788 * @dev_id: Used to differentiate devices that share 1789 * the same link layer address 1790 * @dev_port: Used to differentiate devices that share 1791 * the same function 1792 * @addr_list_lock: XXX: need comments on this one 1793 * @name_assign_type: network interface name assignment type 1794 * @uc_promisc: Counter that indicates promiscuous mode 1795 * has been enabled due to the need to listen to 1796 * additional unicast addresses in a device that 1797 * does not implement ndo_set_rx_mode() 1798 * @uc: unicast mac addresses 1799 * @mc: multicast mac addresses 1800 * @dev_addrs: list of device hw addresses 1801 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1802 * @promiscuity: Number of times the NIC is told to work in 1803 * promiscuous mode; if it becomes 0 the NIC will 1804 * exit promiscuous mode 1805 * @allmulti: Counter, enables or disables allmulticast mode 1806 * 1807 * @vlan_info: VLAN info 1808 * @dsa_ptr: dsa specific data 1809 * @tipc_ptr: TIPC specific data 1810 * @atalk_ptr: AppleTalk link 1811 * @ip_ptr: IPv4 specific data 1812 * @dn_ptr: DECnet specific data 1813 * @ip6_ptr: IPv6 specific data 1814 * @ax25_ptr: AX.25 specific data 1815 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1816 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1817 * device struct 1818 * @mpls_ptr: mpls_dev struct pointer 1819 * @mctp_ptr: MCTP specific data 1820 * 1821 * @dev_addr: Hw address (before bcast, 1822 * because most packets are unicast) 1823 * 1824 * @_rx: Array of RX queues 1825 * @num_rx_queues: Number of RX queues 1826 * allocated at register_netdev() time 1827 * @real_num_rx_queues: Number of RX queues currently active in device 1828 * @xdp_prog: XDP sockets filter program pointer 1829 * @gro_flush_timeout: timeout for GRO layer in NAPI 1830 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1831 * allow to avoid NIC hard IRQ, on busy queues. 1832 * 1833 * @rx_handler: handler for received packets 1834 * @rx_handler_data: XXX: need comments on this one 1835 * @miniq_ingress: ingress/clsact qdisc specific data for 1836 * ingress processing 1837 * @ingress_queue: XXX: need comments on this one 1838 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1839 * @broadcast: hw bcast address 1840 * 1841 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1842 * indexed by RX queue number. Assigned by driver. 1843 * This must only be set if the ndo_rx_flow_steer 1844 * operation is defined 1845 * @index_hlist: Device index hash chain 1846 * 1847 * @_tx: Array of TX queues 1848 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1849 * @real_num_tx_queues: Number of TX queues currently active in device 1850 * @qdisc: Root qdisc from userspace point of view 1851 * @tx_queue_len: Max frames per queue allowed 1852 * @tx_global_lock: XXX: need comments on this one 1853 * @xdp_bulkq: XDP device bulk queue 1854 * @xps_maps: all CPUs/RXQs maps for XPS device 1855 * 1856 * @xps_maps: XXX: need comments on this one 1857 * @miniq_egress: clsact qdisc specific data for 1858 * egress processing 1859 * @qdisc_hash: qdisc hash table 1860 * @watchdog_timeo: Represents the timeout that is used by 1861 * the watchdog (see dev_watchdog()) 1862 * @watchdog_timer: List of timers 1863 * 1864 * @proto_down_reason: reason a netdev interface is held down 1865 * @pcpu_refcnt: Number of references to this device 1866 * @dev_refcnt: Number of references to this device 1867 * @todo_list: Delayed register/unregister 1868 * @link_watch_list: XXX: need comments on this one 1869 * 1870 * @reg_state: Register/unregister state machine 1871 * @dismantle: Device is going to be freed 1872 * @rtnl_link_state: This enum represents the phases of creating 1873 * a new link 1874 * 1875 * @needs_free_netdev: Should unregister perform free_netdev? 1876 * @priv_destructor: Called from unregister 1877 * @npinfo: XXX: need comments on this one 1878 * @nd_net: Network namespace this network device is inside 1879 * 1880 * @ml_priv: Mid-layer private 1881 * @ml_priv_type: Mid-layer private type 1882 * @lstats: Loopback statistics 1883 * @tstats: Tunnel statistics 1884 * @dstats: Dummy statistics 1885 * @vstats: Virtual ethernet statistics 1886 * 1887 * @garp_port: GARP 1888 * @mrp_port: MRP 1889 * 1890 * @dev: Class/net/name entry 1891 * @sysfs_groups: Space for optional device, statistics and wireless 1892 * sysfs groups 1893 * 1894 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1895 * @rtnl_link_ops: Rtnl_link_ops 1896 * 1897 * @gso_max_size: Maximum size of generic segmentation offload 1898 * @gso_max_segs: Maximum number of segments that can be passed to the 1899 * NIC for GSO 1900 * 1901 * @dcbnl_ops: Data Center Bridging netlink ops 1902 * @num_tc: Number of traffic classes in the net device 1903 * @tc_to_txq: XXX: need comments on this one 1904 * @prio_tc_map: XXX: need comments on this one 1905 * 1906 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1907 * 1908 * @priomap: XXX: need comments on this one 1909 * @phydev: Physical device may attach itself 1910 * for hardware timestamping 1911 * @sfp_bus: attached &struct sfp_bus structure. 1912 * 1913 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1914 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1915 * 1916 * @proto_down: protocol port state information can be sent to the 1917 * switch driver and used to set the phys state of the 1918 * switch port. 1919 * 1920 * @wol_enabled: Wake-on-LAN is enabled 1921 * 1922 * @threaded: napi threaded mode is enabled 1923 * 1924 * @net_notifier_list: List of per-net netdev notifier block 1925 * that follow this device when it is moved 1926 * to another network namespace. 1927 * 1928 * @macsec_ops: MACsec offloading ops 1929 * 1930 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 1931 * offload capabilities of the device 1932 * @udp_tunnel_nic: UDP tunnel offload state 1933 * @xdp_state: stores info on attached XDP BPF programs 1934 * 1935 * @nested_level: Used as as a parameter of spin_lock_nested() of 1936 * dev->addr_list_lock. 1937 * @unlink_list: As netif_addr_lock() can be called recursively, 1938 * keep a list of interfaces to be deleted. 1939 * 1940 * FIXME: cleanup struct net_device such that network protocol info 1941 * moves out. 1942 */ 1943 1944 struct net_device { 1945 char name[IFNAMSIZ]; 1946 struct netdev_name_node *name_node; 1947 struct dev_ifalias __rcu *ifalias; 1948 /* 1949 * I/O specific fields 1950 * FIXME: Merge these and struct ifmap into one 1951 */ 1952 unsigned long mem_end; 1953 unsigned long mem_start; 1954 unsigned long base_addr; 1955 1956 /* 1957 * Some hardware also needs these fields (state,dev_list, 1958 * napi_list,unreg_list,close_list) but they are not 1959 * part of the usual set specified in Space.c. 1960 */ 1961 1962 unsigned long state; 1963 1964 struct list_head dev_list; 1965 struct list_head napi_list; 1966 struct list_head unreg_list; 1967 struct list_head close_list; 1968 struct list_head ptype_all; 1969 struct list_head ptype_specific; 1970 1971 struct { 1972 struct list_head upper; 1973 struct list_head lower; 1974 } adj_list; 1975 1976 /* Read-mostly cache-line for fast-path access */ 1977 unsigned int flags; 1978 unsigned int priv_flags; 1979 const struct net_device_ops *netdev_ops; 1980 int ifindex; 1981 unsigned short gflags; 1982 unsigned short hard_header_len; 1983 1984 /* Note : dev->mtu is often read without holding a lock. 1985 * Writers usually hold RTNL. 1986 * It is recommended to use READ_ONCE() to annotate the reads, 1987 * and to use WRITE_ONCE() to annotate the writes. 1988 */ 1989 unsigned int mtu; 1990 unsigned short needed_headroom; 1991 unsigned short needed_tailroom; 1992 1993 netdev_features_t features; 1994 netdev_features_t hw_features; 1995 netdev_features_t wanted_features; 1996 netdev_features_t vlan_features; 1997 netdev_features_t hw_enc_features; 1998 netdev_features_t mpls_features; 1999 netdev_features_t gso_partial_features; 2000 2001 unsigned int min_mtu; 2002 unsigned int max_mtu; 2003 unsigned short type; 2004 unsigned char min_header_len; 2005 unsigned char name_assign_type; 2006 2007 int group; 2008 2009 struct net_device_stats stats; /* not used by modern drivers */ 2010 2011 atomic_long_t rx_dropped; 2012 atomic_long_t tx_dropped; 2013 atomic_long_t rx_nohandler; 2014 2015 /* Stats to monitor link on/off, flapping */ 2016 atomic_t carrier_up_count; 2017 atomic_t carrier_down_count; 2018 2019 #ifdef CONFIG_WIRELESS_EXT 2020 const struct iw_handler_def *wireless_handlers; 2021 struct iw_public_data *wireless_data; 2022 #endif 2023 const struct ethtool_ops *ethtool_ops; 2024 #ifdef CONFIG_NET_L3_MASTER_DEV 2025 const struct l3mdev_ops *l3mdev_ops; 2026 #endif 2027 #if IS_ENABLED(CONFIG_IPV6) 2028 const struct ndisc_ops *ndisc_ops; 2029 #endif 2030 2031 #ifdef CONFIG_XFRM_OFFLOAD 2032 const struct xfrmdev_ops *xfrmdev_ops; 2033 #endif 2034 2035 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2036 const struct tlsdev_ops *tlsdev_ops; 2037 #endif 2038 2039 const struct header_ops *header_ops; 2040 2041 unsigned char operstate; 2042 unsigned char link_mode; 2043 2044 unsigned char if_port; 2045 unsigned char dma; 2046 2047 /* Interface address info. */ 2048 unsigned char perm_addr[MAX_ADDR_LEN]; 2049 unsigned char addr_assign_type; 2050 unsigned char addr_len; 2051 unsigned char upper_level; 2052 unsigned char lower_level; 2053 2054 unsigned short neigh_priv_len; 2055 unsigned short dev_id; 2056 unsigned short dev_port; 2057 unsigned short padded; 2058 2059 spinlock_t addr_list_lock; 2060 int irq; 2061 2062 struct netdev_hw_addr_list uc; 2063 struct netdev_hw_addr_list mc; 2064 struct netdev_hw_addr_list dev_addrs; 2065 2066 #ifdef CONFIG_SYSFS 2067 struct kset *queues_kset; 2068 #endif 2069 #ifdef CONFIG_LOCKDEP 2070 struct list_head unlink_list; 2071 #endif 2072 unsigned int promiscuity; 2073 unsigned int allmulti; 2074 bool uc_promisc; 2075 #ifdef CONFIG_LOCKDEP 2076 unsigned char nested_level; 2077 #endif 2078 2079 2080 /* Protocol-specific pointers */ 2081 2082 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2083 struct vlan_info __rcu *vlan_info; 2084 #endif 2085 #if IS_ENABLED(CONFIG_NET_DSA) 2086 struct dsa_port *dsa_ptr; 2087 #endif 2088 #if IS_ENABLED(CONFIG_TIPC) 2089 struct tipc_bearer __rcu *tipc_ptr; 2090 #endif 2091 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 2092 void *atalk_ptr; 2093 #endif 2094 struct in_device __rcu *ip_ptr; 2095 #if IS_ENABLED(CONFIG_DECNET) 2096 struct dn_dev __rcu *dn_ptr; 2097 #endif 2098 struct inet6_dev __rcu *ip6_ptr; 2099 #if IS_ENABLED(CONFIG_AX25) 2100 void *ax25_ptr; 2101 #endif 2102 struct wireless_dev *ieee80211_ptr; 2103 struct wpan_dev *ieee802154_ptr; 2104 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2105 struct mpls_dev __rcu *mpls_ptr; 2106 #endif 2107 #if IS_ENABLED(CONFIG_MCTP) 2108 struct mctp_dev __rcu *mctp_ptr; 2109 #endif 2110 2111 /* 2112 * Cache lines mostly used on receive path (including eth_type_trans()) 2113 */ 2114 /* Interface address info used in eth_type_trans() */ 2115 unsigned char *dev_addr; 2116 2117 struct netdev_rx_queue *_rx; 2118 unsigned int num_rx_queues; 2119 unsigned int real_num_rx_queues; 2120 2121 struct bpf_prog __rcu *xdp_prog; 2122 unsigned long gro_flush_timeout; 2123 int napi_defer_hard_irqs; 2124 rx_handler_func_t __rcu *rx_handler; 2125 void __rcu *rx_handler_data; 2126 2127 #ifdef CONFIG_NET_CLS_ACT 2128 struct mini_Qdisc __rcu *miniq_ingress; 2129 #endif 2130 struct netdev_queue __rcu *ingress_queue; 2131 #ifdef CONFIG_NETFILTER_INGRESS 2132 struct nf_hook_entries __rcu *nf_hooks_ingress; 2133 #endif 2134 2135 unsigned char broadcast[MAX_ADDR_LEN]; 2136 #ifdef CONFIG_RFS_ACCEL 2137 struct cpu_rmap *rx_cpu_rmap; 2138 #endif 2139 struct hlist_node index_hlist; 2140 2141 /* 2142 * Cache lines mostly used on transmit path 2143 */ 2144 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2145 unsigned int num_tx_queues; 2146 unsigned int real_num_tx_queues; 2147 struct Qdisc *qdisc; 2148 unsigned int tx_queue_len; 2149 spinlock_t tx_global_lock; 2150 2151 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2152 2153 #ifdef CONFIG_XPS 2154 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2155 #endif 2156 #ifdef CONFIG_NET_CLS_ACT 2157 struct mini_Qdisc __rcu *miniq_egress; 2158 #endif 2159 2160 #ifdef CONFIG_NET_SCHED 2161 DECLARE_HASHTABLE (qdisc_hash, 4); 2162 #endif 2163 /* These may be needed for future network-power-down code. */ 2164 struct timer_list watchdog_timer; 2165 int watchdog_timeo; 2166 2167 u32 proto_down_reason; 2168 2169 struct list_head todo_list; 2170 2171 #ifdef CONFIG_PCPU_DEV_REFCNT 2172 int __percpu *pcpu_refcnt; 2173 #else 2174 refcount_t dev_refcnt; 2175 #endif 2176 2177 struct list_head link_watch_list; 2178 2179 enum { NETREG_UNINITIALIZED=0, 2180 NETREG_REGISTERED, /* completed register_netdevice */ 2181 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2182 NETREG_UNREGISTERED, /* completed unregister todo */ 2183 NETREG_RELEASED, /* called free_netdev */ 2184 NETREG_DUMMY, /* dummy device for NAPI poll */ 2185 } reg_state:8; 2186 2187 bool dismantle; 2188 2189 enum { 2190 RTNL_LINK_INITIALIZED, 2191 RTNL_LINK_INITIALIZING, 2192 } rtnl_link_state:16; 2193 2194 bool needs_free_netdev; 2195 void (*priv_destructor)(struct net_device *dev); 2196 2197 #ifdef CONFIG_NETPOLL 2198 struct netpoll_info __rcu *npinfo; 2199 #endif 2200 2201 possible_net_t nd_net; 2202 2203 /* mid-layer private */ 2204 void *ml_priv; 2205 enum netdev_ml_priv_type ml_priv_type; 2206 2207 union { 2208 struct pcpu_lstats __percpu *lstats; 2209 struct pcpu_sw_netstats __percpu *tstats; 2210 struct pcpu_dstats __percpu *dstats; 2211 }; 2212 2213 #if IS_ENABLED(CONFIG_GARP) 2214 struct garp_port __rcu *garp_port; 2215 #endif 2216 #if IS_ENABLED(CONFIG_MRP) 2217 struct mrp_port __rcu *mrp_port; 2218 #endif 2219 2220 struct device dev; 2221 const struct attribute_group *sysfs_groups[4]; 2222 const struct attribute_group *sysfs_rx_queue_group; 2223 2224 const struct rtnl_link_ops *rtnl_link_ops; 2225 2226 /* for setting kernel sock attribute on TCP connection setup */ 2227 #define GSO_MAX_SIZE 65536 2228 unsigned int gso_max_size; 2229 #define GSO_MAX_SEGS 65535 2230 u16 gso_max_segs; 2231 2232 #ifdef CONFIG_DCB 2233 const struct dcbnl_rtnl_ops *dcbnl_ops; 2234 #endif 2235 s16 num_tc; 2236 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2237 u8 prio_tc_map[TC_BITMASK + 1]; 2238 2239 #if IS_ENABLED(CONFIG_FCOE) 2240 unsigned int fcoe_ddp_xid; 2241 #endif 2242 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2243 struct netprio_map __rcu *priomap; 2244 #endif 2245 struct phy_device *phydev; 2246 struct sfp_bus *sfp_bus; 2247 struct lock_class_key *qdisc_tx_busylock; 2248 struct lock_class_key *qdisc_running_key; 2249 bool proto_down; 2250 unsigned wol_enabled:1; 2251 unsigned threaded:1; 2252 2253 struct list_head net_notifier_list; 2254 2255 #if IS_ENABLED(CONFIG_MACSEC) 2256 /* MACsec management functions */ 2257 const struct macsec_ops *macsec_ops; 2258 #endif 2259 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2260 struct udp_tunnel_nic *udp_tunnel_nic; 2261 2262 /* protected by rtnl_lock */ 2263 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2264 }; 2265 #define to_net_dev(d) container_of(d, struct net_device, dev) 2266 2267 static inline bool netif_elide_gro(const struct net_device *dev) 2268 { 2269 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2270 return true; 2271 return false; 2272 } 2273 2274 #define NETDEV_ALIGN 32 2275 2276 static inline 2277 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2278 { 2279 return dev->prio_tc_map[prio & TC_BITMASK]; 2280 } 2281 2282 static inline 2283 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2284 { 2285 if (tc >= dev->num_tc) 2286 return -EINVAL; 2287 2288 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2289 return 0; 2290 } 2291 2292 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2293 void netdev_reset_tc(struct net_device *dev); 2294 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2295 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2296 2297 static inline 2298 int netdev_get_num_tc(struct net_device *dev) 2299 { 2300 return dev->num_tc; 2301 } 2302 2303 static inline void net_prefetch(void *p) 2304 { 2305 prefetch(p); 2306 #if L1_CACHE_BYTES < 128 2307 prefetch((u8 *)p + L1_CACHE_BYTES); 2308 #endif 2309 } 2310 2311 static inline void net_prefetchw(void *p) 2312 { 2313 prefetchw(p); 2314 #if L1_CACHE_BYTES < 128 2315 prefetchw((u8 *)p + L1_CACHE_BYTES); 2316 #endif 2317 } 2318 2319 void netdev_unbind_sb_channel(struct net_device *dev, 2320 struct net_device *sb_dev); 2321 int netdev_bind_sb_channel_queue(struct net_device *dev, 2322 struct net_device *sb_dev, 2323 u8 tc, u16 count, u16 offset); 2324 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2325 static inline int netdev_get_sb_channel(struct net_device *dev) 2326 { 2327 return max_t(int, -dev->num_tc, 0); 2328 } 2329 2330 static inline 2331 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2332 unsigned int index) 2333 { 2334 return &dev->_tx[index]; 2335 } 2336 2337 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2338 const struct sk_buff *skb) 2339 { 2340 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2341 } 2342 2343 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2344 void (*f)(struct net_device *, 2345 struct netdev_queue *, 2346 void *), 2347 void *arg) 2348 { 2349 unsigned int i; 2350 2351 for (i = 0; i < dev->num_tx_queues; i++) 2352 f(dev, &dev->_tx[i], arg); 2353 } 2354 2355 #define netdev_lockdep_set_classes(dev) \ 2356 { \ 2357 static struct lock_class_key qdisc_tx_busylock_key; \ 2358 static struct lock_class_key qdisc_running_key; \ 2359 static struct lock_class_key qdisc_xmit_lock_key; \ 2360 static struct lock_class_key dev_addr_list_lock_key; \ 2361 unsigned int i; \ 2362 \ 2363 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2364 (dev)->qdisc_running_key = &qdisc_running_key; \ 2365 lockdep_set_class(&(dev)->addr_list_lock, \ 2366 &dev_addr_list_lock_key); \ 2367 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2368 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2369 &qdisc_xmit_lock_key); \ 2370 } 2371 2372 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2373 struct net_device *sb_dev); 2374 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2375 struct sk_buff *skb, 2376 struct net_device *sb_dev); 2377 2378 /* returns the headroom that the master device needs to take in account 2379 * when forwarding to this dev 2380 */ 2381 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2382 { 2383 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2384 } 2385 2386 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2387 { 2388 if (dev->netdev_ops->ndo_set_rx_headroom) 2389 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2390 } 2391 2392 /* set the device rx headroom to the dev's default */ 2393 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2394 { 2395 netdev_set_rx_headroom(dev, -1); 2396 } 2397 2398 static inline void *netdev_get_ml_priv(struct net_device *dev, 2399 enum netdev_ml_priv_type type) 2400 { 2401 if (dev->ml_priv_type != type) 2402 return NULL; 2403 2404 return dev->ml_priv; 2405 } 2406 2407 static inline void netdev_set_ml_priv(struct net_device *dev, 2408 void *ml_priv, 2409 enum netdev_ml_priv_type type) 2410 { 2411 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2412 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2413 dev->ml_priv_type, type); 2414 WARN(!dev->ml_priv_type && dev->ml_priv, 2415 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2416 2417 dev->ml_priv = ml_priv; 2418 dev->ml_priv_type = type; 2419 } 2420 2421 /* 2422 * Net namespace inlines 2423 */ 2424 static inline 2425 struct net *dev_net(const struct net_device *dev) 2426 { 2427 return read_pnet(&dev->nd_net); 2428 } 2429 2430 static inline 2431 void dev_net_set(struct net_device *dev, struct net *net) 2432 { 2433 write_pnet(&dev->nd_net, net); 2434 } 2435 2436 /** 2437 * netdev_priv - access network device private data 2438 * @dev: network device 2439 * 2440 * Get network device private data 2441 */ 2442 static inline void *netdev_priv(const struct net_device *dev) 2443 { 2444 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2445 } 2446 2447 /* Set the sysfs physical device reference for the network logical device 2448 * if set prior to registration will cause a symlink during initialization. 2449 */ 2450 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2451 2452 /* Set the sysfs device type for the network logical device to allow 2453 * fine-grained identification of different network device types. For 2454 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2455 */ 2456 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2457 2458 /* Default NAPI poll() weight 2459 * Device drivers are strongly advised to not use bigger value 2460 */ 2461 #define NAPI_POLL_WEIGHT 64 2462 2463 /** 2464 * netif_napi_add - initialize a NAPI context 2465 * @dev: network device 2466 * @napi: NAPI context 2467 * @poll: polling function 2468 * @weight: default weight 2469 * 2470 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2471 * *any* of the other NAPI-related functions. 2472 */ 2473 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2474 int (*poll)(struct napi_struct *, int), int weight); 2475 2476 /** 2477 * netif_tx_napi_add - initialize a NAPI context 2478 * @dev: network device 2479 * @napi: NAPI context 2480 * @poll: polling function 2481 * @weight: default weight 2482 * 2483 * This variant of netif_napi_add() should be used from drivers using NAPI 2484 * to exclusively poll a TX queue. 2485 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2486 */ 2487 static inline void netif_tx_napi_add(struct net_device *dev, 2488 struct napi_struct *napi, 2489 int (*poll)(struct napi_struct *, int), 2490 int weight) 2491 { 2492 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2493 netif_napi_add(dev, napi, poll, weight); 2494 } 2495 2496 /** 2497 * __netif_napi_del - remove a NAPI context 2498 * @napi: NAPI context 2499 * 2500 * Warning: caller must observe RCU grace period before freeing memory 2501 * containing @napi. Drivers might want to call this helper to combine 2502 * all the needed RCU grace periods into a single one. 2503 */ 2504 void __netif_napi_del(struct napi_struct *napi); 2505 2506 /** 2507 * netif_napi_del - remove a NAPI context 2508 * @napi: NAPI context 2509 * 2510 * netif_napi_del() removes a NAPI context from the network device NAPI list 2511 */ 2512 static inline void netif_napi_del(struct napi_struct *napi) 2513 { 2514 __netif_napi_del(napi); 2515 synchronize_net(); 2516 } 2517 2518 struct napi_gro_cb { 2519 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2520 void *frag0; 2521 2522 /* Length of frag0. */ 2523 unsigned int frag0_len; 2524 2525 /* This indicates where we are processing relative to skb->data. */ 2526 int data_offset; 2527 2528 /* This is non-zero if the packet cannot be merged with the new skb. */ 2529 u16 flush; 2530 2531 /* Save the IP ID here and check when we get to the transport layer */ 2532 u16 flush_id; 2533 2534 /* Number of segments aggregated. */ 2535 u16 count; 2536 2537 /* Start offset for remote checksum offload */ 2538 u16 gro_remcsum_start; 2539 2540 /* jiffies when first packet was created/queued */ 2541 unsigned long age; 2542 2543 /* Used in ipv6_gro_receive() and foo-over-udp */ 2544 u16 proto; 2545 2546 /* This is non-zero if the packet may be of the same flow. */ 2547 u8 same_flow:1; 2548 2549 /* Used in tunnel GRO receive */ 2550 u8 encap_mark:1; 2551 2552 /* GRO checksum is valid */ 2553 u8 csum_valid:1; 2554 2555 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2556 u8 csum_cnt:3; 2557 2558 /* Free the skb? */ 2559 u8 free:2; 2560 #define NAPI_GRO_FREE 1 2561 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2562 2563 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2564 u8 is_ipv6:1; 2565 2566 /* Used in GRE, set in fou/gue_gro_receive */ 2567 u8 is_fou:1; 2568 2569 /* Used to determine if flush_id can be ignored */ 2570 u8 is_atomic:1; 2571 2572 /* Number of gro_receive callbacks this packet already went through */ 2573 u8 recursion_counter:4; 2574 2575 /* GRO is done by frag_list pointer chaining. */ 2576 u8 is_flist:1; 2577 2578 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2579 __wsum csum; 2580 2581 /* used in skb_gro_receive() slow path */ 2582 struct sk_buff *last; 2583 }; 2584 2585 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2586 2587 #define GRO_RECURSION_LIMIT 15 2588 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2589 { 2590 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2591 } 2592 2593 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2594 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2595 struct list_head *head, 2596 struct sk_buff *skb) 2597 { 2598 if (unlikely(gro_recursion_inc_test(skb))) { 2599 NAPI_GRO_CB(skb)->flush |= 1; 2600 return NULL; 2601 } 2602 2603 return cb(head, skb); 2604 } 2605 2606 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2607 struct sk_buff *); 2608 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2609 struct sock *sk, 2610 struct list_head *head, 2611 struct sk_buff *skb) 2612 { 2613 if (unlikely(gro_recursion_inc_test(skb))) { 2614 NAPI_GRO_CB(skb)->flush |= 1; 2615 return NULL; 2616 } 2617 2618 return cb(sk, head, skb); 2619 } 2620 2621 struct packet_type { 2622 __be16 type; /* This is really htons(ether_type). */ 2623 bool ignore_outgoing; 2624 struct net_device *dev; /* NULL is wildcarded here */ 2625 int (*func) (struct sk_buff *, 2626 struct net_device *, 2627 struct packet_type *, 2628 struct net_device *); 2629 void (*list_func) (struct list_head *, 2630 struct packet_type *, 2631 struct net_device *); 2632 bool (*id_match)(struct packet_type *ptype, 2633 struct sock *sk); 2634 void *af_packet_priv; 2635 struct list_head list; 2636 }; 2637 2638 struct offload_callbacks { 2639 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2640 netdev_features_t features); 2641 struct sk_buff *(*gro_receive)(struct list_head *head, 2642 struct sk_buff *skb); 2643 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2644 }; 2645 2646 struct packet_offload { 2647 __be16 type; /* This is really htons(ether_type). */ 2648 u16 priority; 2649 struct offload_callbacks callbacks; 2650 struct list_head list; 2651 }; 2652 2653 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2654 struct pcpu_sw_netstats { 2655 u64 rx_packets; 2656 u64 rx_bytes; 2657 u64 tx_packets; 2658 u64 tx_bytes; 2659 struct u64_stats_sync syncp; 2660 } __aligned(4 * sizeof(u64)); 2661 2662 struct pcpu_lstats { 2663 u64_stats_t packets; 2664 u64_stats_t bytes; 2665 struct u64_stats_sync syncp; 2666 } __aligned(2 * sizeof(u64)); 2667 2668 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2669 2670 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2671 { 2672 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2673 2674 u64_stats_update_begin(&tstats->syncp); 2675 tstats->rx_bytes += len; 2676 tstats->rx_packets++; 2677 u64_stats_update_end(&tstats->syncp); 2678 } 2679 2680 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2681 unsigned int packets, 2682 unsigned int len) 2683 { 2684 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2685 2686 u64_stats_update_begin(&tstats->syncp); 2687 tstats->tx_bytes += len; 2688 tstats->tx_packets += packets; 2689 u64_stats_update_end(&tstats->syncp); 2690 } 2691 2692 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2693 { 2694 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2695 2696 u64_stats_update_begin(&lstats->syncp); 2697 u64_stats_add(&lstats->bytes, len); 2698 u64_stats_inc(&lstats->packets); 2699 u64_stats_update_end(&lstats->syncp); 2700 } 2701 2702 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2703 ({ \ 2704 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2705 if (pcpu_stats) { \ 2706 int __cpu; \ 2707 for_each_possible_cpu(__cpu) { \ 2708 typeof(type) *stat; \ 2709 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2710 u64_stats_init(&stat->syncp); \ 2711 } \ 2712 } \ 2713 pcpu_stats; \ 2714 }) 2715 2716 #define netdev_alloc_pcpu_stats(type) \ 2717 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2718 2719 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2720 ({ \ 2721 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2722 if (pcpu_stats) { \ 2723 int __cpu; \ 2724 for_each_possible_cpu(__cpu) { \ 2725 typeof(type) *stat; \ 2726 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2727 u64_stats_init(&stat->syncp); \ 2728 } \ 2729 } \ 2730 pcpu_stats; \ 2731 }) 2732 2733 enum netdev_lag_tx_type { 2734 NETDEV_LAG_TX_TYPE_UNKNOWN, 2735 NETDEV_LAG_TX_TYPE_RANDOM, 2736 NETDEV_LAG_TX_TYPE_BROADCAST, 2737 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2738 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2739 NETDEV_LAG_TX_TYPE_HASH, 2740 }; 2741 2742 enum netdev_lag_hash { 2743 NETDEV_LAG_HASH_NONE, 2744 NETDEV_LAG_HASH_L2, 2745 NETDEV_LAG_HASH_L34, 2746 NETDEV_LAG_HASH_L23, 2747 NETDEV_LAG_HASH_E23, 2748 NETDEV_LAG_HASH_E34, 2749 NETDEV_LAG_HASH_VLAN_SRCMAC, 2750 NETDEV_LAG_HASH_UNKNOWN, 2751 }; 2752 2753 struct netdev_lag_upper_info { 2754 enum netdev_lag_tx_type tx_type; 2755 enum netdev_lag_hash hash_type; 2756 }; 2757 2758 struct netdev_lag_lower_state_info { 2759 u8 link_up : 1, 2760 tx_enabled : 1; 2761 }; 2762 2763 #include <linux/notifier.h> 2764 2765 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2766 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2767 * adding new types. 2768 */ 2769 enum netdev_cmd { 2770 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2771 NETDEV_DOWN, 2772 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2773 detected a hardware crash and restarted 2774 - we can use this eg to kick tcp sessions 2775 once done */ 2776 NETDEV_CHANGE, /* Notify device state change */ 2777 NETDEV_REGISTER, 2778 NETDEV_UNREGISTER, 2779 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2780 NETDEV_CHANGEADDR, /* notify after the address change */ 2781 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2782 NETDEV_GOING_DOWN, 2783 NETDEV_CHANGENAME, 2784 NETDEV_FEAT_CHANGE, 2785 NETDEV_BONDING_FAILOVER, 2786 NETDEV_PRE_UP, 2787 NETDEV_PRE_TYPE_CHANGE, 2788 NETDEV_POST_TYPE_CHANGE, 2789 NETDEV_POST_INIT, 2790 NETDEV_RELEASE, 2791 NETDEV_NOTIFY_PEERS, 2792 NETDEV_JOIN, 2793 NETDEV_CHANGEUPPER, 2794 NETDEV_RESEND_IGMP, 2795 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2796 NETDEV_CHANGEINFODATA, 2797 NETDEV_BONDING_INFO, 2798 NETDEV_PRECHANGEUPPER, 2799 NETDEV_CHANGELOWERSTATE, 2800 NETDEV_UDP_TUNNEL_PUSH_INFO, 2801 NETDEV_UDP_TUNNEL_DROP_INFO, 2802 NETDEV_CHANGE_TX_QUEUE_LEN, 2803 NETDEV_CVLAN_FILTER_PUSH_INFO, 2804 NETDEV_CVLAN_FILTER_DROP_INFO, 2805 NETDEV_SVLAN_FILTER_PUSH_INFO, 2806 NETDEV_SVLAN_FILTER_DROP_INFO, 2807 }; 2808 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2809 2810 int register_netdevice_notifier(struct notifier_block *nb); 2811 int unregister_netdevice_notifier(struct notifier_block *nb); 2812 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2813 int unregister_netdevice_notifier_net(struct net *net, 2814 struct notifier_block *nb); 2815 int register_netdevice_notifier_dev_net(struct net_device *dev, 2816 struct notifier_block *nb, 2817 struct netdev_net_notifier *nn); 2818 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2819 struct notifier_block *nb, 2820 struct netdev_net_notifier *nn); 2821 2822 struct netdev_notifier_info { 2823 struct net_device *dev; 2824 struct netlink_ext_ack *extack; 2825 }; 2826 2827 struct netdev_notifier_info_ext { 2828 struct netdev_notifier_info info; /* must be first */ 2829 union { 2830 u32 mtu; 2831 } ext; 2832 }; 2833 2834 struct netdev_notifier_change_info { 2835 struct netdev_notifier_info info; /* must be first */ 2836 unsigned int flags_changed; 2837 }; 2838 2839 struct netdev_notifier_changeupper_info { 2840 struct netdev_notifier_info info; /* must be first */ 2841 struct net_device *upper_dev; /* new upper dev */ 2842 bool master; /* is upper dev master */ 2843 bool linking; /* is the notification for link or unlink */ 2844 void *upper_info; /* upper dev info */ 2845 }; 2846 2847 struct netdev_notifier_changelowerstate_info { 2848 struct netdev_notifier_info info; /* must be first */ 2849 void *lower_state_info; /* is lower dev state */ 2850 }; 2851 2852 struct netdev_notifier_pre_changeaddr_info { 2853 struct netdev_notifier_info info; /* must be first */ 2854 const unsigned char *dev_addr; 2855 }; 2856 2857 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2858 struct net_device *dev) 2859 { 2860 info->dev = dev; 2861 info->extack = NULL; 2862 } 2863 2864 static inline struct net_device * 2865 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2866 { 2867 return info->dev; 2868 } 2869 2870 static inline struct netlink_ext_ack * 2871 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2872 { 2873 return info->extack; 2874 } 2875 2876 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2877 2878 2879 extern rwlock_t dev_base_lock; /* Device list lock */ 2880 2881 #define for_each_netdev(net, d) \ 2882 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2883 #define for_each_netdev_reverse(net, d) \ 2884 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2885 #define for_each_netdev_rcu(net, d) \ 2886 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2887 #define for_each_netdev_safe(net, d, n) \ 2888 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2889 #define for_each_netdev_continue(net, d) \ 2890 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2891 #define for_each_netdev_continue_reverse(net, d) \ 2892 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 2893 dev_list) 2894 #define for_each_netdev_continue_rcu(net, d) \ 2895 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2896 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2897 for_each_netdev_rcu(&init_net, slave) \ 2898 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2899 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2900 2901 static inline struct net_device *next_net_device(struct net_device *dev) 2902 { 2903 struct list_head *lh; 2904 struct net *net; 2905 2906 net = dev_net(dev); 2907 lh = dev->dev_list.next; 2908 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2909 } 2910 2911 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2912 { 2913 struct list_head *lh; 2914 struct net *net; 2915 2916 net = dev_net(dev); 2917 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2918 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2919 } 2920 2921 static inline struct net_device *first_net_device(struct net *net) 2922 { 2923 return list_empty(&net->dev_base_head) ? NULL : 2924 net_device_entry(net->dev_base_head.next); 2925 } 2926 2927 static inline struct net_device *first_net_device_rcu(struct net *net) 2928 { 2929 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2930 2931 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2932 } 2933 2934 int netdev_boot_setup_check(struct net_device *dev); 2935 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2936 const char *hwaddr); 2937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2938 void dev_add_pack(struct packet_type *pt); 2939 void dev_remove_pack(struct packet_type *pt); 2940 void __dev_remove_pack(struct packet_type *pt); 2941 void dev_add_offload(struct packet_offload *po); 2942 void dev_remove_offload(struct packet_offload *po); 2943 2944 int dev_get_iflink(const struct net_device *dev); 2945 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2946 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 2947 struct net_device_path_stack *stack); 2948 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2949 unsigned short mask); 2950 struct net_device *dev_get_by_name(struct net *net, const char *name); 2951 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2952 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2953 int dev_alloc_name(struct net_device *dev, const char *name); 2954 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2955 void dev_close(struct net_device *dev); 2956 void dev_close_many(struct list_head *head, bool unlink); 2957 void dev_disable_lro(struct net_device *dev); 2958 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2959 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2960 struct net_device *sb_dev); 2961 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2962 struct net_device *sb_dev); 2963 2964 int dev_queue_xmit(struct sk_buff *skb); 2965 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2966 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2967 2968 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 2969 { 2970 int ret; 2971 2972 ret = __dev_direct_xmit(skb, queue_id); 2973 if (!dev_xmit_complete(ret)) 2974 kfree_skb(skb); 2975 return ret; 2976 } 2977 2978 int register_netdevice(struct net_device *dev); 2979 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2980 void unregister_netdevice_many(struct list_head *head); 2981 static inline void unregister_netdevice(struct net_device *dev) 2982 { 2983 unregister_netdevice_queue(dev, NULL); 2984 } 2985 2986 int netdev_refcnt_read(const struct net_device *dev); 2987 void free_netdev(struct net_device *dev); 2988 void netdev_freemem(struct net_device *dev); 2989 int init_dummy_netdev(struct net_device *dev); 2990 2991 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 2992 struct sk_buff *skb, 2993 bool all_slaves); 2994 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 2995 struct sock *sk); 2996 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2997 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2998 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2999 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3000 int netdev_get_name(struct net *net, char *name, int ifindex); 3001 int dev_restart(struct net_device *dev); 3002 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 3003 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb); 3004 3005 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 3006 { 3007 return NAPI_GRO_CB(skb)->data_offset; 3008 } 3009 3010 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 3011 { 3012 return skb->len - NAPI_GRO_CB(skb)->data_offset; 3013 } 3014 3015 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 3016 { 3017 NAPI_GRO_CB(skb)->data_offset += len; 3018 } 3019 3020 static inline void *skb_gro_header_fast(struct sk_buff *skb, 3021 unsigned int offset) 3022 { 3023 return NAPI_GRO_CB(skb)->frag0 + offset; 3024 } 3025 3026 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 3027 { 3028 return NAPI_GRO_CB(skb)->frag0_len < hlen; 3029 } 3030 3031 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 3032 { 3033 NAPI_GRO_CB(skb)->frag0 = NULL; 3034 NAPI_GRO_CB(skb)->frag0_len = 0; 3035 } 3036 3037 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 3038 unsigned int offset) 3039 { 3040 if (!pskb_may_pull(skb, hlen)) 3041 return NULL; 3042 3043 skb_gro_frag0_invalidate(skb); 3044 return skb->data + offset; 3045 } 3046 3047 static inline void *skb_gro_network_header(struct sk_buff *skb) 3048 { 3049 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 3050 skb_network_offset(skb); 3051 } 3052 3053 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 3054 const void *start, unsigned int len) 3055 { 3056 if (NAPI_GRO_CB(skb)->csum_valid) 3057 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 3058 csum_partial(start, len, 0)); 3059 } 3060 3061 /* GRO checksum functions. These are logical equivalents of the normal 3062 * checksum functions (in skbuff.h) except that they operate on the GRO 3063 * offsets and fields in sk_buff. 3064 */ 3065 3066 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 3067 3068 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 3069 { 3070 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 3071 } 3072 3073 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 3074 bool zero_okay, 3075 __sum16 check) 3076 { 3077 return ((skb->ip_summed != CHECKSUM_PARTIAL || 3078 skb_checksum_start_offset(skb) < 3079 skb_gro_offset(skb)) && 3080 !skb_at_gro_remcsum_start(skb) && 3081 NAPI_GRO_CB(skb)->csum_cnt == 0 && 3082 (!zero_okay || check)); 3083 } 3084 3085 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 3086 __wsum psum) 3087 { 3088 if (NAPI_GRO_CB(skb)->csum_valid && 3089 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 3090 return 0; 3091 3092 NAPI_GRO_CB(skb)->csum = psum; 3093 3094 return __skb_gro_checksum_complete(skb); 3095 } 3096 3097 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 3098 { 3099 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 3100 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 3101 NAPI_GRO_CB(skb)->csum_cnt--; 3102 } else { 3103 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 3104 * verified a new top level checksum or an encapsulated one 3105 * during GRO. This saves work if we fallback to normal path. 3106 */ 3107 __skb_incr_checksum_unnecessary(skb); 3108 } 3109 } 3110 3111 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 3112 compute_pseudo) \ 3113 ({ \ 3114 __sum16 __ret = 0; \ 3115 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 3116 __ret = __skb_gro_checksum_validate_complete(skb, \ 3117 compute_pseudo(skb, proto)); \ 3118 if (!__ret) \ 3119 skb_gro_incr_csum_unnecessary(skb); \ 3120 __ret; \ 3121 }) 3122 3123 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 3124 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 3125 3126 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 3127 compute_pseudo) \ 3128 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 3129 3130 #define skb_gro_checksum_simple_validate(skb) \ 3131 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 3132 3133 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 3134 { 3135 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 3136 !NAPI_GRO_CB(skb)->csum_valid); 3137 } 3138 3139 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 3140 __wsum pseudo) 3141 { 3142 NAPI_GRO_CB(skb)->csum = ~pseudo; 3143 NAPI_GRO_CB(skb)->csum_valid = 1; 3144 } 3145 3146 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \ 3147 do { \ 3148 if (__skb_gro_checksum_convert_check(skb)) \ 3149 __skb_gro_checksum_convert(skb, \ 3150 compute_pseudo(skb, proto)); \ 3151 } while (0) 3152 3153 struct gro_remcsum { 3154 int offset; 3155 __wsum delta; 3156 }; 3157 3158 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 3159 { 3160 grc->offset = 0; 3161 grc->delta = 0; 3162 } 3163 3164 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 3165 unsigned int off, size_t hdrlen, 3166 int start, int offset, 3167 struct gro_remcsum *grc, 3168 bool nopartial) 3169 { 3170 __wsum delta; 3171 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 3172 3173 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 3174 3175 if (!nopartial) { 3176 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 3177 return ptr; 3178 } 3179 3180 ptr = skb_gro_header_fast(skb, off); 3181 if (skb_gro_header_hard(skb, off + plen)) { 3182 ptr = skb_gro_header_slow(skb, off + plen, off); 3183 if (!ptr) 3184 return NULL; 3185 } 3186 3187 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 3188 start, offset); 3189 3190 /* Adjust skb->csum since we changed the packet */ 3191 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 3192 3193 grc->offset = off + hdrlen + offset; 3194 grc->delta = delta; 3195 3196 return ptr; 3197 } 3198 3199 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 3200 struct gro_remcsum *grc) 3201 { 3202 void *ptr; 3203 size_t plen = grc->offset + sizeof(u16); 3204 3205 if (!grc->delta) 3206 return; 3207 3208 ptr = skb_gro_header_fast(skb, grc->offset); 3209 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 3210 ptr = skb_gro_header_slow(skb, plen, grc->offset); 3211 if (!ptr) 3212 return; 3213 } 3214 3215 remcsum_unadjust((__sum16 *)ptr, grc->delta); 3216 } 3217 3218 #ifdef CONFIG_XFRM_OFFLOAD 3219 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 3220 { 3221 if (PTR_ERR(pp) != -EINPROGRESS) 3222 NAPI_GRO_CB(skb)->flush |= flush; 3223 } 3224 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 3225 struct sk_buff *pp, 3226 int flush, 3227 struct gro_remcsum *grc) 3228 { 3229 if (PTR_ERR(pp) != -EINPROGRESS) { 3230 NAPI_GRO_CB(skb)->flush |= flush; 3231 skb_gro_remcsum_cleanup(skb, grc); 3232 skb->remcsum_offload = 0; 3233 } 3234 } 3235 #else 3236 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 3237 { 3238 NAPI_GRO_CB(skb)->flush |= flush; 3239 } 3240 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 3241 struct sk_buff *pp, 3242 int flush, 3243 struct gro_remcsum *grc) 3244 { 3245 NAPI_GRO_CB(skb)->flush |= flush; 3246 skb_gro_remcsum_cleanup(skb, grc); 3247 skb->remcsum_offload = 0; 3248 } 3249 #endif 3250 3251 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3252 unsigned short type, 3253 const void *daddr, const void *saddr, 3254 unsigned int len) 3255 { 3256 if (!dev->header_ops || !dev->header_ops->create) 3257 return 0; 3258 3259 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3260 } 3261 3262 static inline int dev_parse_header(const struct sk_buff *skb, 3263 unsigned char *haddr) 3264 { 3265 const struct net_device *dev = skb->dev; 3266 3267 if (!dev->header_ops || !dev->header_ops->parse) 3268 return 0; 3269 return dev->header_ops->parse(skb, haddr); 3270 } 3271 3272 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3273 { 3274 const struct net_device *dev = skb->dev; 3275 3276 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3277 return 0; 3278 return dev->header_ops->parse_protocol(skb); 3279 } 3280 3281 /* ll_header must have at least hard_header_len allocated */ 3282 static inline bool dev_validate_header(const struct net_device *dev, 3283 char *ll_header, int len) 3284 { 3285 if (likely(len >= dev->hard_header_len)) 3286 return true; 3287 if (len < dev->min_header_len) 3288 return false; 3289 3290 if (capable(CAP_SYS_RAWIO)) { 3291 memset(ll_header + len, 0, dev->hard_header_len - len); 3292 return true; 3293 } 3294 3295 if (dev->header_ops && dev->header_ops->validate) 3296 return dev->header_ops->validate(ll_header, len); 3297 3298 return false; 3299 } 3300 3301 static inline bool dev_has_header(const struct net_device *dev) 3302 { 3303 return dev->header_ops && dev->header_ops->create; 3304 } 3305 3306 #ifdef CONFIG_NET_FLOW_LIMIT 3307 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 3308 struct sd_flow_limit { 3309 u64 count; 3310 unsigned int num_buckets; 3311 unsigned int history_head; 3312 u16 history[FLOW_LIMIT_HISTORY]; 3313 u8 buckets[]; 3314 }; 3315 3316 extern int netdev_flow_limit_table_len; 3317 #endif /* CONFIG_NET_FLOW_LIMIT */ 3318 3319 /* 3320 * Incoming packets are placed on per-CPU queues 3321 */ 3322 struct softnet_data { 3323 struct list_head poll_list; 3324 struct sk_buff_head process_queue; 3325 3326 /* stats */ 3327 unsigned int processed; 3328 unsigned int time_squeeze; 3329 unsigned int received_rps; 3330 #ifdef CONFIG_RPS 3331 struct softnet_data *rps_ipi_list; 3332 #endif 3333 #ifdef CONFIG_NET_FLOW_LIMIT 3334 struct sd_flow_limit __rcu *flow_limit; 3335 #endif 3336 struct Qdisc *output_queue; 3337 struct Qdisc **output_queue_tailp; 3338 struct sk_buff *completion_queue; 3339 #ifdef CONFIG_XFRM_OFFLOAD 3340 struct sk_buff_head xfrm_backlog; 3341 #endif 3342 /* written and read only by owning cpu: */ 3343 struct { 3344 u16 recursion; 3345 u8 more; 3346 } xmit; 3347 #ifdef CONFIG_RPS 3348 /* input_queue_head should be written by cpu owning this struct, 3349 * and only read by other cpus. Worth using a cache line. 3350 */ 3351 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3352 3353 /* Elements below can be accessed between CPUs for RPS/RFS */ 3354 call_single_data_t csd ____cacheline_aligned_in_smp; 3355 struct softnet_data *rps_ipi_next; 3356 unsigned int cpu; 3357 unsigned int input_queue_tail; 3358 #endif 3359 unsigned int dropped; 3360 struct sk_buff_head input_pkt_queue; 3361 struct napi_struct backlog; 3362 3363 }; 3364 3365 static inline void input_queue_head_incr(struct softnet_data *sd) 3366 { 3367 #ifdef CONFIG_RPS 3368 sd->input_queue_head++; 3369 #endif 3370 } 3371 3372 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3373 unsigned int *qtail) 3374 { 3375 #ifdef CONFIG_RPS 3376 *qtail = ++sd->input_queue_tail; 3377 #endif 3378 } 3379 3380 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3381 3382 static inline int dev_recursion_level(void) 3383 { 3384 return this_cpu_read(softnet_data.xmit.recursion); 3385 } 3386 3387 #define XMIT_RECURSION_LIMIT 8 3388 static inline bool dev_xmit_recursion(void) 3389 { 3390 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3391 XMIT_RECURSION_LIMIT); 3392 } 3393 3394 static inline void dev_xmit_recursion_inc(void) 3395 { 3396 __this_cpu_inc(softnet_data.xmit.recursion); 3397 } 3398 3399 static inline void dev_xmit_recursion_dec(void) 3400 { 3401 __this_cpu_dec(softnet_data.xmit.recursion); 3402 } 3403 3404 void __netif_schedule(struct Qdisc *q); 3405 void netif_schedule_queue(struct netdev_queue *txq); 3406 3407 static inline void netif_tx_schedule_all(struct net_device *dev) 3408 { 3409 unsigned int i; 3410 3411 for (i = 0; i < dev->num_tx_queues; i++) 3412 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3413 } 3414 3415 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3416 { 3417 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3418 } 3419 3420 /** 3421 * netif_start_queue - allow transmit 3422 * @dev: network device 3423 * 3424 * Allow upper layers to call the device hard_start_xmit routine. 3425 */ 3426 static inline void netif_start_queue(struct net_device *dev) 3427 { 3428 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3429 } 3430 3431 static inline void netif_tx_start_all_queues(struct net_device *dev) 3432 { 3433 unsigned int i; 3434 3435 for (i = 0; i < dev->num_tx_queues; i++) { 3436 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3437 netif_tx_start_queue(txq); 3438 } 3439 } 3440 3441 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3442 3443 /** 3444 * netif_wake_queue - restart transmit 3445 * @dev: network device 3446 * 3447 * Allow upper layers to call the device hard_start_xmit routine. 3448 * Used for flow control when transmit resources are available. 3449 */ 3450 static inline void netif_wake_queue(struct net_device *dev) 3451 { 3452 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3453 } 3454 3455 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3456 { 3457 unsigned int i; 3458 3459 for (i = 0; i < dev->num_tx_queues; i++) { 3460 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3461 netif_tx_wake_queue(txq); 3462 } 3463 } 3464 3465 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3466 { 3467 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3468 } 3469 3470 /** 3471 * netif_stop_queue - stop transmitted packets 3472 * @dev: network device 3473 * 3474 * Stop upper layers calling the device hard_start_xmit routine. 3475 * Used for flow control when transmit resources are unavailable. 3476 */ 3477 static inline void netif_stop_queue(struct net_device *dev) 3478 { 3479 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3480 } 3481 3482 void netif_tx_stop_all_queues(struct net_device *dev); 3483 3484 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3485 { 3486 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3487 } 3488 3489 /** 3490 * netif_queue_stopped - test if transmit queue is flowblocked 3491 * @dev: network device 3492 * 3493 * Test if transmit queue on device is currently unable to send. 3494 */ 3495 static inline bool netif_queue_stopped(const struct net_device *dev) 3496 { 3497 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3498 } 3499 3500 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3501 { 3502 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3503 } 3504 3505 static inline bool 3506 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3507 { 3508 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3509 } 3510 3511 static inline bool 3512 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3513 { 3514 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3515 } 3516 3517 /** 3518 * netdev_queue_set_dql_min_limit - set dql minimum limit 3519 * @dev_queue: pointer to transmit queue 3520 * @min_limit: dql minimum limit 3521 * 3522 * Forces xmit_more() to return true until the minimum threshold 3523 * defined by @min_limit is reached (or until the tx queue is 3524 * empty). Warning: to be use with care, misuse will impact the 3525 * latency. 3526 */ 3527 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3528 unsigned int min_limit) 3529 { 3530 #ifdef CONFIG_BQL 3531 dev_queue->dql.min_limit = min_limit; 3532 #endif 3533 } 3534 3535 /** 3536 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3537 * @dev_queue: pointer to transmit queue 3538 * 3539 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3540 * to give appropriate hint to the CPU. 3541 */ 3542 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3543 { 3544 #ifdef CONFIG_BQL 3545 prefetchw(&dev_queue->dql.num_queued); 3546 #endif 3547 } 3548 3549 /** 3550 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3551 * @dev_queue: pointer to transmit queue 3552 * 3553 * BQL enabled drivers might use this helper in their TX completion path, 3554 * to give appropriate hint to the CPU. 3555 */ 3556 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3557 { 3558 #ifdef CONFIG_BQL 3559 prefetchw(&dev_queue->dql.limit); 3560 #endif 3561 } 3562 3563 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3564 unsigned int bytes) 3565 { 3566 #ifdef CONFIG_BQL 3567 dql_queued(&dev_queue->dql, bytes); 3568 3569 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3570 return; 3571 3572 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3573 3574 /* 3575 * The XOFF flag must be set before checking the dql_avail below, 3576 * because in netdev_tx_completed_queue we update the dql_completed 3577 * before checking the XOFF flag. 3578 */ 3579 smp_mb(); 3580 3581 /* check again in case another CPU has just made room avail */ 3582 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3583 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3584 #endif 3585 } 3586 3587 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3588 * that they should not test BQL status themselves. 3589 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3590 * skb of a batch. 3591 * Returns true if the doorbell must be used to kick the NIC. 3592 */ 3593 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3594 unsigned int bytes, 3595 bool xmit_more) 3596 { 3597 if (xmit_more) { 3598 #ifdef CONFIG_BQL 3599 dql_queued(&dev_queue->dql, bytes); 3600 #endif 3601 return netif_tx_queue_stopped(dev_queue); 3602 } 3603 netdev_tx_sent_queue(dev_queue, bytes); 3604 return true; 3605 } 3606 3607 /** 3608 * netdev_sent_queue - report the number of bytes queued to hardware 3609 * @dev: network device 3610 * @bytes: number of bytes queued to the hardware device queue 3611 * 3612 * Report the number of bytes queued for sending/completion to the network 3613 * device hardware queue. @bytes should be a good approximation and should 3614 * exactly match netdev_completed_queue() @bytes 3615 */ 3616 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3617 { 3618 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3619 } 3620 3621 static inline bool __netdev_sent_queue(struct net_device *dev, 3622 unsigned int bytes, 3623 bool xmit_more) 3624 { 3625 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3626 xmit_more); 3627 } 3628 3629 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3630 unsigned int pkts, unsigned int bytes) 3631 { 3632 #ifdef CONFIG_BQL 3633 if (unlikely(!bytes)) 3634 return; 3635 3636 dql_completed(&dev_queue->dql, bytes); 3637 3638 /* 3639 * Without the memory barrier there is a small possiblity that 3640 * netdev_tx_sent_queue will miss the update and cause the queue to 3641 * be stopped forever 3642 */ 3643 smp_mb(); 3644 3645 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3646 return; 3647 3648 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3649 netif_schedule_queue(dev_queue); 3650 #endif 3651 } 3652 3653 /** 3654 * netdev_completed_queue - report bytes and packets completed by device 3655 * @dev: network device 3656 * @pkts: actual number of packets sent over the medium 3657 * @bytes: actual number of bytes sent over the medium 3658 * 3659 * Report the number of bytes and packets transmitted by the network device 3660 * hardware queue over the physical medium, @bytes must exactly match the 3661 * @bytes amount passed to netdev_sent_queue() 3662 */ 3663 static inline void netdev_completed_queue(struct net_device *dev, 3664 unsigned int pkts, unsigned int bytes) 3665 { 3666 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3667 } 3668 3669 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3670 { 3671 #ifdef CONFIG_BQL 3672 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3673 dql_reset(&q->dql); 3674 #endif 3675 } 3676 3677 /** 3678 * netdev_reset_queue - reset the packets and bytes count of a network device 3679 * @dev_queue: network device 3680 * 3681 * Reset the bytes and packet count of a network device and clear the 3682 * software flow control OFF bit for this network device 3683 */ 3684 static inline void netdev_reset_queue(struct net_device *dev_queue) 3685 { 3686 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3687 } 3688 3689 /** 3690 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3691 * @dev: network device 3692 * @queue_index: given tx queue index 3693 * 3694 * Returns 0 if given tx queue index >= number of device tx queues, 3695 * otherwise returns the originally passed tx queue index. 3696 */ 3697 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3698 { 3699 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3700 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3701 dev->name, queue_index, 3702 dev->real_num_tx_queues); 3703 return 0; 3704 } 3705 3706 return queue_index; 3707 } 3708 3709 /** 3710 * netif_running - test if up 3711 * @dev: network device 3712 * 3713 * Test if the device has been brought up. 3714 */ 3715 static inline bool netif_running(const struct net_device *dev) 3716 { 3717 return test_bit(__LINK_STATE_START, &dev->state); 3718 } 3719 3720 /* 3721 * Routines to manage the subqueues on a device. We only need start, 3722 * stop, and a check if it's stopped. All other device management is 3723 * done at the overall netdevice level. 3724 * Also test the device if we're multiqueue. 3725 */ 3726 3727 /** 3728 * netif_start_subqueue - allow sending packets on subqueue 3729 * @dev: network device 3730 * @queue_index: sub queue index 3731 * 3732 * Start individual transmit queue of a device with multiple transmit queues. 3733 */ 3734 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3735 { 3736 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3737 3738 netif_tx_start_queue(txq); 3739 } 3740 3741 /** 3742 * netif_stop_subqueue - stop sending packets on subqueue 3743 * @dev: network device 3744 * @queue_index: sub queue index 3745 * 3746 * Stop individual transmit queue of a device with multiple transmit queues. 3747 */ 3748 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3749 { 3750 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3751 netif_tx_stop_queue(txq); 3752 } 3753 3754 /** 3755 * __netif_subqueue_stopped - test status of subqueue 3756 * @dev: network device 3757 * @queue_index: sub queue index 3758 * 3759 * Check individual transmit queue of a device with multiple transmit queues. 3760 */ 3761 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3762 u16 queue_index) 3763 { 3764 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3765 3766 return netif_tx_queue_stopped(txq); 3767 } 3768 3769 /** 3770 * netif_subqueue_stopped - test status of subqueue 3771 * @dev: network device 3772 * @skb: sub queue buffer pointer 3773 * 3774 * Check individual transmit queue of a device with multiple transmit queues. 3775 */ 3776 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3777 struct sk_buff *skb) 3778 { 3779 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3780 } 3781 3782 /** 3783 * netif_wake_subqueue - allow sending packets on subqueue 3784 * @dev: network device 3785 * @queue_index: sub queue index 3786 * 3787 * Resume individual transmit queue of a device with multiple transmit queues. 3788 */ 3789 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3790 { 3791 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3792 3793 netif_tx_wake_queue(txq); 3794 } 3795 3796 #ifdef CONFIG_XPS 3797 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3798 u16 index); 3799 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3800 u16 index, enum xps_map_type type); 3801 3802 /** 3803 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3804 * @j: CPU/Rx queue index 3805 * @mask: bitmask of all cpus/rx queues 3806 * @nr_bits: number of bits in the bitmask 3807 * 3808 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3809 */ 3810 static inline bool netif_attr_test_mask(unsigned long j, 3811 const unsigned long *mask, 3812 unsigned int nr_bits) 3813 { 3814 cpu_max_bits_warn(j, nr_bits); 3815 return test_bit(j, mask); 3816 } 3817 3818 /** 3819 * netif_attr_test_online - Test for online CPU/Rx queue 3820 * @j: CPU/Rx queue index 3821 * @online_mask: bitmask for CPUs/Rx queues that are online 3822 * @nr_bits: number of bits in the bitmask 3823 * 3824 * Returns true if a CPU/Rx queue is online. 3825 */ 3826 static inline bool netif_attr_test_online(unsigned long j, 3827 const unsigned long *online_mask, 3828 unsigned int nr_bits) 3829 { 3830 cpu_max_bits_warn(j, nr_bits); 3831 3832 if (online_mask) 3833 return test_bit(j, online_mask); 3834 3835 return (j < nr_bits); 3836 } 3837 3838 /** 3839 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3840 * @n: CPU/Rx queue index 3841 * @srcp: the cpumask/Rx queue mask pointer 3842 * @nr_bits: number of bits in the bitmask 3843 * 3844 * Returns >= nr_bits if no further CPUs/Rx queues set. 3845 */ 3846 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3847 unsigned int nr_bits) 3848 { 3849 /* -1 is a legal arg here. */ 3850 if (n != -1) 3851 cpu_max_bits_warn(n, nr_bits); 3852 3853 if (srcp) 3854 return find_next_bit(srcp, nr_bits, n + 1); 3855 3856 return n + 1; 3857 } 3858 3859 /** 3860 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3861 * @n: CPU/Rx queue index 3862 * @src1p: the first CPUs/Rx queues mask pointer 3863 * @src2p: the second CPUs/Rx queues mask pointer 3864 * @nr_bits: number of bits in the bitmask 3865 * 3866 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3867 */ 3868 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3869 const unsigned long *src2p, 3870 unsigned int nr_bits) 3871 { 3872 /* -1 is a legal arg here. */ 3873 if (n != -1) 3874 cpu_max_bits_warn(n, nr_bits); 3875 3876 if (src1p && src2p) 3877 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3878 else if (src1p) 3879 return find_next_bit(src1p, nr_bits, n + 1); 3880 else if (src2p) 3881 return find_next_bit(src2p, nr_bits, n + 1); 3882 3883 return n + 1; 3884 } 3885 #else 3886 static inline int netif_set_xps_queue(struct net_device *dev, 3887 const struct cpumask *mask, 3888 u16 index) 3889 { 3890 return 0; 3891 } 3892 3893 static inline int __netif_set_xps_queue(struct net_device *dev, 3894 const unsigned long *mask, 3895 u16 index, enum xps_map_type type) 3896 { 3897 return 0; 3898 } 3899 #endif 3900 3901 /** 3902 * netif_is_multiqueue - test if device has multiple transmit queues 3903 * @dev: network device 3904 * 3905 * Check if device has multiple transmit queues 3906 */ 3907 static inline bool netif_is_multiqueue(const struct net_device *dev) 3908 { 3909 return dev->num_tx_queues > 1; 3910 } 3911 3912 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3913 3914 #ifdef CONFIG_SYSFS 3915 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3916 #else 3917 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3918 unsigned int rxqs) 3919 { 3920 dev->real_num_rx_queues = rxqs; 3921 return 0; 3922 } 3923 #endif 3924 int netif_set_real_num_queues(struct net_device *dev, 3925 unsigned int txq, unsigned int rxq); 3926 3927 static inline struct netdev_rx_queue * 3928 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3929 { 3930 return dev->_rx + rxq; 3931 } 3932 3933 #ifdef CONFIG_SYSFS 3934 static inline unsigned int get_netdev_rx_queue_index( 3935 struct netdev_rx_queue *queue) 3936 { 3937 struct net_device *dev = queue->dev; 3938 int index = queue - dev->_rx; 3939 3940 BUG_ON(index >= dev->num_rx_queues); 3941 return index; 3942 } 3943 #endif 3944 3945 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3946 int netif_get_num_default_rss_queues(void); 3947 3948 enum skb_free_reason { 3949 SKB_REASON_CONSUMED, 3950 SKB_REASON_DROPPED, 3951 }; 3952 3953 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3954 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3955 3956 /* 3957 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3958 * interrupt context or with hardware interrupts being disabled. 3959 * (in_irq() || irqs_disabled()) 3960 * 3961 * We provide four helpers that can be used in following contexts : 3962 * 3963 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3964 * replacing kfree_skb(skb) 3965 * 3966 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3967 * Typically used in place of consume_skb(skb) in TX completion path 3968 * 3969 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3970 * replacing kfree_skb(skb) 3971 * 3972 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3973 * and consumed a packet. Used in place of consume_skb(skb) 3974 */ 3975 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3976 { 3977 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3978 } 3979 3980 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3981 { 3982 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3983 } 3984 3985 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3986 { 3987 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3988 } 3989 3990 static inline void dev_consume_skb_any(struct sk_buff *skb) 3991 { 3992 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3993 } 3994 3995 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3996 struct bpf_prog *xdp_prog); 3997 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3998 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3999 int netif_rx(struct sk_buff *skb); 4000 int netif_rx_ni(struct sk_buff *skb); 4001 int netif_rx_any_context(struct sk_buff *skb); 4002 int netif_receive_skb(struct sk_buff *skb); 4003 int netif_receive_skb_core(struct sk_buff *skb); 4004 void netif_receive_skb_list(struct list_head *head); 4005 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 4006 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 4007 struct sk_buff *napi_get_frags(struct napi_struct *napi); 4008 gro_result_t napi_gro_frags(struct napi_struct *napi); 4009 struct packet_offload *gro_find_receive_by_type(__be16 type); 4010 struct packet_offload *gro_find_complete_by_type(__be16 type); 4011 4012 static inline void napi_free_frags(struct napi_struct *napi) 4013 { 4014 kfree_skb(napi->skb); 4015 napi->skb = NULL; 4016 } 4017 4018 bool netdev_is_rx_handler_busy(struct net_device *dev); 4019 int netdev_rx_handler_register(struct net_device *dev, 4020 rx_handler_func_t *rx_handler, 4021 void *rx_handler_data); 4022 void netdev_rx_handler_unregister(struct net_device *dev); 4023 4024 bool dev_valid_name(const char *name); 4025 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 4026 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 4027 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 4028 void __user *data, bool *need_copyout); 4029 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 4030 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 4031 unsigned int dev_get_flags(const struct net_device *); 4032 int __dev_change_flags(struct net_device *dev, unsigned int flags, 4033 struct netlink_ext_ack *extack); 4034 int dev_change_flags(struct net_device *dev, unsigned int flags, 4035 struct netlink_ext_ack *extack); 4036 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 4037 unsigned int gchanges); 4038 int dev_change_name(struct net_device *, const char *); 4039 int dev_set_alias(struct net_device *, const char *, size_t); 4040 int dev_get_alias(const struct net_device *, char *, size_t); 4041 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 4042 const char *pat, int new_ifindex); 4043 static inline 4044 int dev_change_net_namespace(struct net_device *dev, struct net *net, 4045 const char *pat) 4046 { 4047 return __dev_change_net_namespace(dev, net, pat, 0); 4048 } 4049 int __dev_set_mtu(struct net_device *, int); 4050 int dev_validate_mtu(struct net_device *dev, int mtu, 4051 struct netlink_ext_ack *extack); 4052 int dev_set_mtu_ext(struct net_device *dev, int mtu, 4053 struct netlink_ext_ack *extack); 4054 int dev_set_mtu(struct net_device *, int); 4055 int dev_change_tx_queue_len(struct net_device *, unsigned long); 4056 void dev_set_group(struct net_device *, int); 4057 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 4058 struct netlink_ext_ack *extack); 4059 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 4060 struct netlink_ext_ack *extack); 4061 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 4062 struct netlink_ext_ack *extack); 4063 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 4064 int dev_change_carrier(struct net_device *, bool new_carrier); 4065 int dev_get_phys_port_id(struct net_device *dev, 4066 struct netdev_phys_item_id *ppid); 4067 int dev_get_phys_port_name(struct net_device *dev, 4068 char *name, size_t len); 4069 int dev_get_port_parent_id(struct net_device *dev, 4070 struct netdev_phys_item_id *ppid, bool recurse); 4071 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 4072 int dev_change_proto_down(struct net_device *dev, bool proto_down); 4073 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down); 4074 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 4075 u32 value); 4076 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 4077 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 4078 struct netdev_queue *txq, int *ret); 4079 4080 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 4081 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 4082 int fd, int expected_fd, u32 flags); 4083 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 4084 u8 dev_xdp_prog_count(struct net_device *dev); 4085 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 4086 4087 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4088 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4089 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 4090 bool is_skb_forwardable(const struct net_device *dev, 4091 const struct sk_buff *skb); 4092 4093 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 4094 const struct sk_buff *skb, 4095 const bool check_mtu) 4096 { 4097 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 4098 unsigned int len; 4099 4100 if (!(dev->flags & IFF_UP)) 4101 return false; 4102 4103 if (!check_mtu) 4104 return true; 4105 4106 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 4107 if (skb->len <= len) 4108 return true; 4109 4110 /* if TSO is enabled, we don't care about the length as the packet 4111 * could be forwarded without being segmented before 4112 */ 4113 if (skb_is_gso(skb)) 4114 return true; 4115 4116 return false; 4117 } 4118 4119 static __always_inline int ____dev_forward_skb(struct net_device *dev, 4120 struct sk_buff *skb, 4121 const bool check_mtu) 4122 { 4123 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4124 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4125 atomic_long_inc(&dev->rx_dropped); 4126 kfree_skb(skb); 4127 return NET_RX_DROP; 4128 } 4129 4130 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4131 skb->priority = 0; 4132 return 0; 4133 } 4134 4135 bool dev_nit_active(struct net_device *dev); 4136 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4137 4138 extern int netdev_budget; 4139 extern unsigned int netdev_budget_usecs; 4140 4141 /* Called by rtnetlink.c:rtnl_unlock() */ 4142 void netdev_run_todo(void); 4143 4144 /** 4145 * dev_put - release reference to device 4146 * @dev: network device 4147 * 4148 * Release reference to device to allow it to be freed. 4149 */ 4150 static inline void dev_put(struct net_device *dev) 4151 { 4152 if (dev) { 4153 #ifdef CONFIG_PCPU_DEV_REFCNT 4154 this_cpu_dec(*dev->pcpu_refcnt); 4155 #else 4156 refcount_dec(&dev->dev_refcnt); 4157 #endif 4158 } 4159 } 4160 4161 /** 4162 * dev_hold - get reference to device 4163 * @dev: network device 4164 * 4165 * Hold reference to device to keep it from being freed. 4166 */ 4167 static inline void dev_hold(struct net_device *dev) 4168 { 4169 if (dev) { 4170 #ifdef CONFIG_PCPU_DEV_REFCNT 4171 this_cpu_inc(*dev->pcpu_refcnt); 4172 #else 4173 refcount_inc(&dev->dev_refcnt); 4174 #endif 4175 } 4176 } 4177 4178 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4179 * and _off may be called from IRQ context, but it is caller 4180 * who is responsible for serialization of these calls. 4181 * 4182 * The name carrier is inappropriate, these functions should really be 4183 * called netif_lowerlayer_*() because they represent the state of any 4184 * kind of lower layer not just hardware media. 4185 */ 4186 4187 void linkwatch_init_dev(struct net_device *dev); 4188 void linkwatch_fire_event(struct net_device *dev); 4189 void linkwatch_forget_dev(struct net_device *dev); 4190 4191 /** 4192 * netif_carrier_ok - test if carrier present 4193 * @dev: network device 4194 * 4195 * Check if carrier is present on device 4196 */ 4197 static inline bool netif_carrier_ok(const struct net_device *dev) 4198 { 4199 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4200 } 4201 4202 unsigned long dev_trans_start(struct net_device *dev); 4203 4204 void __netdev_watchdog_up(struct net_device *dev); 4205 4206 void netif_carrier_on(struct net_device *dev); 4207 void netif_carrier_off(struct net_device *dev); 4208 void netif_carrier_event(struct net_device *dev); 4209 4210 /** 4211 * netif_dormant_on - mark device as dormant. 4212 * @dev: network device 4213 * 4214 * Mark device as dormant (as per RFC2863). 4215 * 4216 * The dormant state indicates that the relevant interface is not 4217 * actually in a condition to pass packets (i.e., it is not 'up') but is 4218 * in a "pending" state, waiting for some external event. For "on- 4219 * demand" interfaces, this new state identifies the situation where the 4220 * interface is waiting for events to place it in the up state. 4221 */ 4222 static inline void netif_dormant_on(struct net_device *dev) 4223 { 4224 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4225 linkwatch_fire_event(dev); 4226 } 4227 4228 /** 4229 * netif_dormant_off - set device as not dormant. 4230 * @dev: network device 4231 * 4232 * Device is not in dormant state. 4233 */ 4234 static inline void netif_dormant_off(struct net_device *dev) 4235 { 4236 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4237 linkwatch_fire_event(dev); 4238 } 4239 4240 /** 4241 * netif_dormant - test if device is dormant 4242 * @dev: network device 4243 * 4244 * Check if device is dormant. 4245 */ 4246 static inline bool netif_dormant(const struct net_device *dev) 4247 { 4248 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4249 } 4250 4251 4252 /** 4253 * netif_testing_on - mark device as under test. 4254 * @dev: network device 4255 * 4256 * Mark device as under test (as per RFC2863). 4257 * 4258 * The testing state indicates that some test(s) must be performed on 4259 * the interface. After completion, of the test, the interface state 4260 * will change to up, dormant, or down, as appropriate. 4261 */ 4262 static inline void netif_testing_on(struct net_device *dev) 4263 { 4264 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4265 linkwatch_fire_event(dev); 4266 } 4267 4268 /** 4269 * netif_testing_off - set device as not under test. 4270 * @dev: network device 4271 * 4272 * Device is not in testing state. 4273 */ 4274 static inline void netif_testing_off(struct net_device *dev) 4275 { 4276 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4277 linkwatch_fire_event(dev); 4278 } 4279 4280 /** 4281 * netif_testing - test if device is under test 4282 * @dev: network device 4283 * 4284 * Check if device is under test 4285 */ 4286 static inline bool netif_testing(const struct net_device *dev) 4287 { 4288 return test_bit(__LINK_STATE_TESTING, &dev->state); 4289 } 4290 4291 4292 /** 4293 * netif_oper_up - test if device is operational 4294 * @dev: network device 4295 * 4296 * Check if carrier is operational 4297 */ 4298 static inline bool netif_oper_up(const struct net_device *dev) 4299 { 4300 return (dev->operstate == IF_OPER_UP || 4301 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4302 } 4303 4304 /** 4305 * netif_device_present - is device available or removed 4306 * @dev: network device 4307 * 4308 * Check if device has not been removed from system. 4309 */ 4310 static inline bool netif_device_present(const struct net_device *dev) 4311 { 4312 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4313 } 4314 4315 void netif_device_detach(struct net_device *dev); 4316 4317 void netif_device_attach(struct net_device *dev); 4318 4319 /* 4320 * Network interface message level settings 4321 */ 4322 4323 enum { 4324 NETIF_MSG_DRV_BIT, 4325 NETIF_MSG_PROBE_BIT, 4326 NETIF_MSG_LINK_BIT, 4327 NETIF_MSG_TIMER_BIT, 4328 NETIF_MSG_IFDOWN_BIT, 4329 NETIF_MSG_IFUP_BIT, 4330 NETIF_MSG_RX_ERR_BIT, 4331 NETIF_MSG_TX_ERR_BIT, 4332 NETIF_MSG_TX_QUEUED_BIT, 4333 NETIF_MSG_INTR_BIT, 4334 NETIF_MSG_TX_DONE_BIT, 4335 NETIF_MSG_RX_STATUS_BIT, 4336 NETIF_MSG_PKTDATA_BIT, 4337 NETIF_MSG_HW_BIT, 4338 NETIF_MSG_WOL_BIT, 4339 4340 /* When you add a new bit above, update netif_msg_class_names array 4341 * in net/ethtool/common.c 4342 */ 4343 NETIF_MSG_CLASS_COUNT, 4344 }; 4345 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4346 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4347 4348 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4349 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4350 4351 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4352 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4353 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4354 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4355 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4356 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4357 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4358 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4359 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4360 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4361 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4362 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4363 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4364 #define NETIF_MSG_HW __NETIF_MSG(HW) 4365 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4366 4367 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4368 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4369 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4370 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4371 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4372 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4373 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4374 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4375 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4376 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4377 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4378 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4379 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4380 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4381 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4382 4383 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4384 { 4385 /* use default */ 4386 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4387 return default_msg_enable_bits; 4388 if (debug_value == 0) /* no output */ 4389 return 0; 4390 /* set low N bits */ 4391 return (1U << debug_value) - 1; 4392 } 4393 4394 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4395 { 4396 spin_lock(&txq->_xmit_lock); 4397 txq->xmit_lock_owner = cpu; 4398 } 4399 4400 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4401 { 4402 __acquire(&txq->_xmit_lock); 4403 return true; 4404 } 4405 4406 static inline void __netif_tx_release(struct netdev_queue *txq) 4407 { 4408 __release(&txq->_xmit_lock); 4409 } 4410 4411 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4412 { 4413 spin_lock_bh(&txq->_xmit_lock); 4414 txq->xmit_lock_owner = smp_processor_id(); 4415 } 4416 4417 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4418 { 4419 bool ok = spin_trylock(&txq->_xmit_lock); 4420 if (likely(ok)) 4421 txq->xmit_lock_owner = smp_processor_id(); 4422 return ok; 4423 } 4424 4425 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4426 { 4427 txq->xmit_lock_owner = -1; 4428 spin_unlock(&txq->_xmit_lock); 4429 } 4430 4431 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4432 { 4433 txq->xmit_lock_owner = -1; 4434 spin_unlock_bh(&txq->_xmit_lock); 4435 } 4436 4437 static inline void txq_trans_update(struct netdev_queue *txq) 4438 { 4439 if (txq->xmit_lock_owner != -1) 4440 txq->trans_start = jiffies; 4441 } 4442 4443 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4444 static inline void netif_trans_update(struct net_device *dev) 4445 { 4446 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4447 4448 if (txq->trans_start != jiffies) 4449 txq->trans_start = jiffies; 4450 } 4451 4452 /** 4453 * netif_tx_lock - grab network device transmit lock 4454 * @dev: network device 4455 * 4456 * Get network device transmit lock 4457 */ 4458 static inline void netif_tx_lock(struct net_device *dev) 4459 { 4460 unsigned int i; 4461 int cpu; 4462 4463 spin_lock(&dev->tx_global_lock); 4464 cpu = smp_processor_id(); 4465 for (i = 0; i < dev->num_tx_queues; i++) { 4466 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4467 4468 /* We are the only thread of execution doing a 4469 * freeze, but we have to grab the _xmit_lock in 4470 * order to synchronize with threads which are in 4471 * the ->hard_start_xmit() handler and already 4472 * checked the frozen bit. 4473 */ 4474 __netif_tx_lock(txq, cpu); 4475 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 4476 __netif_tx_unlock(txq); 4477 } 4478 } 4479 4480 static inline void netif_tx_lock_bh(struct net_device *dev) 4481 { 4482 local_bh_disable(); 4483 netif_tx_lock(dev); 4484 } 4485 4486 static inline void netif_tx_unlock(struct net_device *dev) 4487 { 4488 unsigned int i; 4489 4490 for (i = 0; i < dev->num_tx_queues; i++) { 4491 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4492 4493 /* No need to grab the _xmit_lock here. If the 4494 * queue is not stopped for another reason, we 4495 * force a schedule. 4496 */ 4497 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 4498 netif_schedule_queue(txq); 4499 } 4500 spin_unlock(&dev->tx_global_lock); 4501 } 4502 4503 static inline void netif_tx_unlock_bh(struct net_device *dev) 4504 { 4505 netif_tx_unlock(dev); 4506 local_bh_enable(); 4507 } 4508 4509 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4510 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4511 __netif_tx_lock(txq, cpu); \ 4512 } else { \ 4513 __netif_tx_acquire(txq); \ 4514 } \ 4515 } 4516 4517 #define HARD_TX_TRYLOCK(dev, txq) \ 4518 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4519 __netif_tx_trylock(txq) : \ 4520 __netif_tx_acquire(txq)) 4521 4522 #define HARD_TX_UNLOCK(dev, txq) { \ 4523 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4524 __netif_tx_unlock(txq); \ 4525 } else { \ 4526 __netif_tx_release(txq); \ 4527 } \ 4528 } 4529 4530 static inline void netif_tx_disable(struct net_device *dev) 4531 { 4532 unsigned int i; 4533 int cpu; 4534 4535 local_bh_disable(); 4536 cpu = smp_processor_id(); 4537 spin_lock(&dev->tx_global_lock); 4538 for (i = 0; i < dev->num_tx_queues; i++) { 4539 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4540 4541 __netif_tx_lock(txq, cpu); 4542 netif_tx_stop_queue(txq); 4543 __netif_tx_unlock(txq); 4544 } 4545 spin_unlock(&dev->tx_global_lock); 4546 local_bh_enable(); 4547 } 4548 4549 static inline void netif_addr_lock(struct net_device *dev) 4550 { 4551 unsigned char nest_level = 0; 4552 4553 #ifdef CONFIG_LOCKDEP 4554 nest_level = dev->nested_level; 4555 #endif 4556 spin_lock_nested(&dev->addr_list_lock, nest_level); 4557 } 4558 4559 static inline void netif_addr_lock_bh(struct net_device *dev) 4560 { 4561 unsigned char nest_level = 0; 4562 4563 #ifdef CONFIG_LOCKDEP 4564 nest_level = dev->nested_level; 4565 #endif 4566 local_bh_disable(); 4567 spin_lock_nested(&dev->addr_list_lock, nest_level); 4568 } 4569 4570 static inline void netif_addr_unlock(struct net_device *dev) 4571 { 4572 spin_unlock(&dev->addr_list_lock); 4573 } 4574 4575 static inline void netif_addr_unlock_bh(struct net_device *dev) 4576 { 4577 spin_unlock_bh(&dev->addr_list_lock); 4578 } 4579 4580 /* 4581 * dev_addrs walker. Should be used only for read access. Call with 4582 * rcu_read_lock held. 4583 */ 4584 #define for_each_dev_addr(dev, ha) \ 4585 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4586 4587 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4588 4589 void ether_setup(struct net_device *dev); 4590 4591 /* Support for loadable net-drivers */ 4592 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4593 unsigned char name_assign_type, 4594 void (*setup)(struct net_device *), 4595 unsigned int txqs, unsigned int rxqs); 4596 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4597 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4598 4599 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4600 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4601 count) 4602 4603 int register_netdev(struct net_device *dev); 4604 void unregister_netdev(struct net_device *dev); 4605 4606 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4607 4608 /* General hardware address lists handling functions */ 4609 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4610 struct netdev_hw_addr_list *from_list, int addr_len); 4611 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4612 struct netdev_hw_addr_list *from_list, int addr_len); 4613 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4614 struct net_device *dev, 4615 int (*sync)(struct net_device *, const unsigned char *), 4616 int (*unsync)(struct net_device *, 4617 const unsigned char *)); 4618 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4619 struct net_device *dev, 4620 int (*sync)(struct net_device *, 4621 const unsigned char *, int), 4622 int (*unsync)(struct net_device *, 4623 const unsigned char *, int)); 4624 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4625 struct net_device *dev, 4626 int (*unsync)(struct net_device *, 4627 const unsigned char *, int)); 4628 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4629 struct net_device *dev, 4630 int (*unsync)(struct net_device *, 4631 const unsigned char *)); 4632 void __hw_addr_init(struct netdev_hw_addr_list *list); 4633 4634 /* Functions used for device addresses handling */ 4635 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4636 unsigned char addr_type); 4637 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4638 unsigned char addr_type); 4639 void dev_addr_flush(struct net_device *dev); 4640 int dev_addr_init(struct net_device *dev); 4641 4642 /* Functions used for unicast addresses handling */ 4643 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4644 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4645 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4646 int dev_uc_sync(struct net_device *to, struct net_device *from); 4647 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4648 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4649 void dev_uc_flush(struct net_device *dev); 4650 void dev_uc_init(struct net_device *dev); 4651 4652 /** 4653 * __dev_uc_sync - Synchonize device's unicast list 4654 * @dev: device to sync 4655 * @sync: function to call if address should be added 4656 * @unsync: function to call if address should be removed 4657 * 4658 * Add newly added addresses to the interface, and release 4659 * addresses that have been deleted. 4660 */ 4661 static inline int __dev_uc_sync(struct net_device *dev, 4662 int (*sync)(struct net_device *, 4663 const unsigned char *), 4664 int (*unsync)(struct net_device *, 4665 const unsigned char *)) 4666 { 4667 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4668 } 4669 4670 /** 4671 * __dev_uc_unsync - Remove synchronized addresses from device 4672 * @dev: device to sync 4673 * @unsync: function to call if address should be removed 4674 * 4675 * Remove all addresses that were added to the device by dev_uc_sync(). 4676 */ 4677 static inline void __dev_uc_unsync(struct net_device *dev, 4678 int (*unsync)(struct net_device *, 4679 const unsigned char *)) 4680 { 4681 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4682 } 4683 4684 /* Functions used for multicast addresses handling */ 4685 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4686 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4687 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4688 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4689 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4690 int dev_mc_sync(struct net_device *to, struct net_device *from); 4691 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4692 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4693 void dev_mc_flush(struct net_device *dev); 4694 void dev_mc_init(struct net_device *dev); 4695 4696 /** 4697 * __dev_mc_sync - Synchonize device's multicast list 4698 * @dev: device to sync 4699 * @sync: function to call if address should be added 4700 * @unsync: function to call if address should be removed 4701 * 4702 * Add newly added addresses to the interface, and release 4703 * addresses that have been deleted. 4704 */ 4705 static inline int __dev_mc_sync(struct net_device *dev, 4706 int (*sync)(struct net_device *, 4707 const unsigned char *), 4708 int (*unsync)(struct net_device *, 4709 const unsigned char *)) 4710 { 4711 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4712 } 4713 4714 /** 4715 * __dev_mc_unsync - Remove synchronized addresses from device 4716 * @dev: device to sync 4717 * @unsync: function to call if address should be removed 4718 * 4719 * Remove all addresses that were added to the device by dev_mc_sync(). 4720 */ 4721 static inline void __dev_mc_unsync(struct net_device *dev, 4722 int (*unsync)(struct net_device *, 4723 const unsigned char *)) 4724 { 4725 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4726 } 4727 4728 /* Functions used for secondary unicast and multicast support */ 4729 void dev_set_rx_mode(struct net_device *dev); 4730 void __dev_set_rx_mode(struct net_device *dev); 4731 int dev_set_promiscuity(struct net_device *dev, int inc); 4732 int dev_set_allmulti(struct net_device *dev, int inc); 4733 void netdev_state_change(struct net_device *dev); 4734 void __netdev_notify_peers(struct net_device *dev); 4735 void netdev_notify_peers(struct net_device *dev); 4736 void netdev_features_change(struct net_device *dev); 4737 /* Load a device via the kmod */ 4738 void dev_load(struct net *net, const char *name); 4739 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4740 struct rtnl_link_stats64 *storage); 4741 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4742 const struct net_device_stats *netdev_stats); 4743 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4744 const struct pcpu_sw_netstats __percpu *netstats); 4745 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4746 4747 extern int netdev_max_backlog; 4748 extern int netdev_tstamp_prequeue; 4749 extern int netdev_unregister_timeout_secs; 4750 extern int weight_p; 4751 extern int dev_weight_rx_bias; 4752 extern int dev_weight_tx_bias; 4753 extern int dev_rx_weight; 4754 extern int dev_tx_weight; 4755 extern int gro_normal_batch; 4756 4757 enum { 4758 NESTED_SYNC_IMM_BIT, 4759 NESTED_SYNC_TODO_BIT, 4760 }; 4761 4762 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4763 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4764 4765 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4766 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4767 4768 struct netdev_nested_priv { 4769 unsigned char flags; 4770 void *data; 4771 }; 4772 4773 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4774 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4775 struct list_head **iter); 4776 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4777 struct list_head **iter); 4778 4779 #ifdef CONFIG_LOCKDEP 4780 static LIST_HEAD(net_unlink_list); 4781 4782 static inline void net_unlink_todo(struct net_device *dev) 4783 { 4784 if (list_empty(&dev->unlink_list)) 4785 list_add_tail(&dev->unlink_list, &net_unlink_list); 4786 } 4787 #endif 4788 4789 /* iterate through upper list, must be called under RCU read lock */ 4790 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4791 for (iter = &(dev)->adj_list.upper, \ 4792 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4793 updev; \ 4794 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4795 4796 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4797 int (*fn)(struct net_device *upper_dev, 4798 struct netdev_nested_priv *priv), 4799 struct netdev_nested_priv *priv); 4800 4801 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4802 struct net_device *upper_dev); 4803 4804 bool netdev_has_any_upper_dev(struct net_device *dev); 4805 4806 void *netdev_lower_get_next_private(struct net_device *dev, 4807 struct list_head **iter); 4808 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4809 struct list_head **iter); 4810 4811 #define netdev_for_each_lower_private(dev, priv, iter) \ 4812 for (iter = (dev)->adj_list.lower.next, \ 4813 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4814 priv; \ 4815 priv = netdev_lower_get_next_private(dev, &(iter))) 4816 4817 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4818 for (iter = &(dev)->adj_list.lower, \ 4819 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4820 priv; \ 4821 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4822 4823 void *netdev_lower_get_next(struct net_device *dev, 4824 struct list_head **iter); 4825 4826 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4827 for (iter = (dev)->adj_list.lower.next, \ 4828 ldev = netdev_lower_get_next(dev, &(iter)); \ 4829 ldev; \ 4830 ldev = netdev_lower_get_next(dev, &(iter))) 4831 4832 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4833 struct list_head **iter); 4834 int netdev_walk_all_lower_dev(struct net_device *dev, 4835 int (*fn)(struct net_device *lower_dev, 4836 struct netdev_nested_priv *priv), 4837 struct netdev_nested_priv *priv); 4838 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4839 int (*fn)(struct net_device *lower_dev, 4840 struct netdev_nested_priv *priv), 4841 struct netdev_nested_priv *priv); 4842 4843 void *netdev_adjacent_get_private(struct list_head *adj_list); 4844 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4845 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4846 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4847 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4848 struct netlink_ext_ack *extack); 4849 int netdev_master_upper_dev_link(struct net_device *dev, 4850 struct net_device *upper_dev, 4851 void *upper_priv, void *upper_info, 4852 struct netlink_ext_ack *extack); 4853 void netdev_upper_dev_unlink(struct net_device *dev, 4854 struct net_device *upper_dev); 4855 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4856 struct net_device *new_dev, 4857 struct net_device *dev, 4858 struct netlink_ext_ack *extack); 4859 void netdev_adjacent_change_commit(struct net_device *old_dev, 4860 struct net_device *new_dev, 4861 struct net_device *dev); 4862 void netdev_adjacent_change_abort(struct net_device *old_dev, 4863 struct net_device *new_dev, 4864 struct net_device *dev); 4865 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4866 void *netdev_lower_dev_get_private(struct net_device *dev, 4867 struct net_device *lower_dev); 4868 void netdev_lower_state_changed(struct net_device *lower_dev, 4869 void *lower_state_info); 4870 4871 /* RSS keys are 40 or 52 bytes long */ 4872 #define NETDEV_RSS_KEY_LEN 52 4873 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4874 void netdev_rss_key_fill(void *buffer, size_t len); 4875 4876 int skb_checksum_help(struct sk_buff *skb); 4877 int skb_crc32c_csum_help(struct sk_buff *skb); 4878 int skb_csum_hwoffload_help(struct sk_buff *skb, 4879 const netdev_features_t features); 4880 4881 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4882 netdev_features_t features, bool tx_path); 4883 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4884 netdev_features_t features); 4885 4886 struct netdev_bonding_info { 4887 ifslave slave; 4888 ifbond master; 4889 }; 4890 4891 struct netdev_notifier_bonding_info { 4892 struct netdev_notifier_info info; /* must be first */ 4893 struct netdev_bonding_info bonding_info; 4894 }; 4895 4896 void netdev_bonding_info_change(struct net_device *dev, 4897 struct netdev_bonding_info *bonding_info); 4898 4899 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4900 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4901 #else 4902 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4903 const void *data) 4904 { 4905 } 4906 #endif 4907 4908 static inline 4909 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4910 { 4911 return __skb_gso_segment(skb, features, true); 4912 } 4913 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4914 4915 static inline bool can_checksum_protocol(netdev_features_t features, 4916 __be16 protocol) 4917 { 4918 if (protocol == htons(ETH_P_FCOE)) 4919 return !!(features & NETIF_F_FCOE_CRC); 4920 4921 /* Assume this is an IP checksum (not SCTP CRC) */ 4922 4923 if (features & NETIF_F_HW_CSUM) { 4924 /* Can checksum everything */ 4925 return true; 4926 } 4927 4928 switch (protocol) { 4929 case htons(ETH_P_IP): 4930 return !!(features & NETIF_F_IP_CSUM); 4931 case htons(ETH_P_IPV6): 4932 return !!(features & NETIF_F_IPV6_CSUM); 4933 default: 4934 return false; 4935 } 4936 } 4937 4938 #ifdef CONFIG_BUG 4939 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4940 #else 4941 static inline void netdev_rx_csum_fault(struct net_device *dev, 4942 struct sk_buff *skb) 4943 { 4944 } 4945 #endif 4946 /* rx skb timestamps */ 4947 void net_enable_timestamp(void); 4948 void net_disable_timestamp(void); 4949 4950 #ifdef CONFIG_PROC_FS 4951 int __init dev_proc_init(void); 4952 #else 4953 #define dev_proc_init() 0 4954 #endif 4955 4956 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4957 struct sk_buff *skb, struct net_device *dev, 4958 bool more) 4959 { 4960 __this_cpu_write(softnet_data.xmit.more, more); 4961 return ops->ndo_start_xmit(skb, dev); 4962 } 4963 4964 static inline bool netdev_xmit_more(void) 4965 { 4966 return __this_cpu_read(softnet_data.xmit.more); 4967 } 4968 4969 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4970 struct netdev_queue *txq, bool more) 4971 { 4972 const struct net_device_ops *ops = dev->netdev_ops; 4973 netdev_tx_t rc; 4974 4975 rc = __netdev_start_xmit(ops, skb, dev, more); 4976 if (rc == NETDEV_TX_OK) 4977 txq_trans_update(txq); 4978 4979 return rc; 4980 } 4981 4982 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4983 const void *ns); 4984 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4985 const void *ns); 4986 4987 extern const struct kobj_ns_type_operations net_ns_type_operations; 4988 4989 const char *netdev_drivername(const struct net_device *dev); 4990 4991 void linkwatch_run_queue(void); 4992 4993 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4994 netdev_features_t f2) 4995 { 4996 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4997 if (f1 & NETIF_F_HW_CSUM) 4998 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4999 else 5000 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5001 } 5002 5003 return f1 & f2; 5004 } 5005 5006 static inline netdev_features_t netdev_get_wanted_features( 5007 struct net_device *dev) 5008 { 5009 return (dev->features & ~dev->hw_features) | dev->wanted_features; 5010 } 5011 netdev_features_t netdev_increment_features(netdev_features_t all, 5012 netdev_features_t one, netdev_features_t mask); 5013 5014 /* Allow TSO being used on stacked device : 5015 * Performing the GSO segmentation before last device 5016 * is a performance improvement. 5017 */ 5018 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 5019 netdev_features_t mask) 5020 { 5021 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 5022 } 5023 5024 int __netdev_update_features(struct net_device *dev); 5025 void netdev_update_features(struct net_device *dev); 5026 void netdev_change_features(struct net_device *dev); 5027 5028 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5029 struct net_device *dev); 5030 5031 netdev_features_t passthru_features_check(struct sk_buff *skb, 5032 struct net_device *dev, 5033 netdev_features_t features); 5034 netdev_features_t netif_skb_features(struct sk_buff *skb); 5035 5036 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 5037 { 5038 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 5039 5040 /* check flags correspondence */ 5041 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 5042 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 5043 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 5044 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 5045 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 5046 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 5047 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 5048 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 5049 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 5050 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 5051 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 5052 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 5053 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 5054 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 5055 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 5056 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 5057 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 5058 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5059 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5060 5061 return (features & feature) == feature; 5062 } 5063 5064 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5065 { 5066 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5067 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5068 } 5069 5070 static inline bool netif_needs_gso(struct sk_buff *skb, 5071 netdev_features_t features) 5072 { 5073 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5074 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5075 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5076 } 5077 5078 static inline void netif_set_gso_max_size(struct net_device *dev, 5079 unsigned int size) 5080 { 5081 dev->gso_max_size = size; 5082 } 5083 5084 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 5085 int pulled_hlen, u16 mac_offset, 5086 int mac_len) 5087 { 5088 skb->protocol = protocol; 5089 skb->encapsulation = 1; 5090 skb_push(skb, pulled_hlen); 5091 skb_reset_transport_header(skb); 5092 skb->mac_header = mac_offset; 5093 skb->network_header = skb->mac_header + mac_len; 5094 skb->mac_len = mac_len; 5095 } 5096 5097 static inline bool netif_is_macsec(const struct net_device *dev) 5098 { 5099 return dev->priv_flags & IFF_MACSEC; 5100 } 5101 5102 static inline bool netif_is_macvlan(const struct net_device *dev) 5103 { 5104 return dev->priv_flags & IFF_MACVLAN; 5105 } 5106 5107 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5108 { 5109 return dev->priv_flags & IFF_MACVLAN_PORT; 5110 } 5111 5112 static inline bool netif_is_bond_master(const struct net_device *dev) 5113 { 5114 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5115 } 5116 5117 static inline bool netif_is_bond_slave(const struct net_device *dev) 5118 { 5119 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5120 } 5121 5122 static inline bool netif_supports_nofcs(struct net_device *dev) 5123 { 5124 return dev->priv_flags & IFF_SUPP_NOFCS; 5125 } 5126 5127 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5128 { 5129 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5130 } 5131 5132 static inline bool netif_is_l3_master(const struct net_device *dev) 5133 { 5134 return dev->priv_flags & IFF_L3MDEV_MASTER; 5135 } 5136 5137 static inline bool netif_is_l3_slave(const struct net_device *dev) 5138 { 5139 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5140 } 5141 5142 static inline bool netif_is_bridge_master(const struct net_device *dev) 5143 { 5144 return dev->priv_flags & IFF_EBRIDGE; 5145 } 5146 5147 static inline bool netif_is_bridge_port(const struct net_device *dev) 5148 { 5149 return dev->priv_flags & IFF_BRIDGE_PORT; 5150 } 5151 5152 static inline bool netif_is_ovs_master(const struct net_device *dev) 5153 { 5154 return dev->priv_flags & IFF_OPENVSWITCH; 5155 } 5156 5157 static inline bool netif_is_ovs_port(const struct net_device *dev) 5158 { 5159 return dev->priv_flags & IFF_OVS_DATAPATH; 5160 } 5161 5162 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5163 { 5164 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5165 } 5166 5167 static inline bool netif_is_team_master(const struct net_device *dev) 5168 { 5169 return dev->priv_flags & IFF_TEAM; 5170 } 5171 5172 static inline bool netif_is_team_port(const struct net_device *dev) 5173 { 5174 return dev->priv_flags & IFF_TEAM_PORT; 5175 } 5176 5177 static inline bool netif_is_lag_master(const struct net_device *dev) 5178 { 5179 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5180 } 5181 5182 static inline bool netif_is_lag_port(const struct net_device *dev) 5183 { 5184 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5185 } 5186 5187 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5188 { 5189 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5190 } 5191 5192 static inline bool netif_is_failover(const struct net_device *dev) 5193 { 5194 return dev->priv_flags & IFF_FAILOVER; 5195 } 5196 5197 static inline bool netif_is_failover_slave(const struct net_device *dev) 5198 { 5199 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5200 } 5201 5202 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5203 static inline void netif_keep_dst(struct net_device *dev) 5204 { 5205 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5206 } 5207 5208 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5209 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5210 { 5211 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5212 return dev->priv_flags & IFF_MACSEC; 5213 } 5214 5215 extern struct pernet_operations __net_initdata loopback_net_ops; 5216 5217 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5218 5219 /* netdev_printk helpers, similar to dev_printk */ 5220 5221 static inline const char *netdev_name(const struct net_device *dev) 5222 { 5223 if (!dev->name[0] || strchr(dev->name, '%')) 5224 return "(unnamed net_device)"; 5225 return dev->name; 5226 } 5227 5228 static inline bool netdev_unregistering(const struct net_device *dev) 5229 { 5230 return dev->reg_state == NETREG_UNREGISTERING; 5231 } 5232 5233 static inline const char *netdev_reg_state(const struct net_device *dev) 5234 { 5235 switch (dev->reg_state) { 5236 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5237 case NETREG_REGISTERED: return ""; 5238 case NETREG_UNREGISTERING: return " (unregistering)"; 5239 case NETREG_UNREGISTERED: return " (unregistered)"; 5240 case NETREG_RELEASED: return " (released)"; 5241 case NETREG_DUMMY: return " (dummy)"; 5242 } 5243 5244 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5245 return " (unknown)"; 5246 } 5247 5248 __printf(3, 4) __cold 5249 void netdev_printk(const char *level, const struct net_device *dev, 5250 const char *format, ...); 5251 __printf(2, 3) __cold 5252 void netdev_emerg(const struct net_device *dev, const char *format, ...); 5253 __printf(2, 3) __cold 5254 void netdev_alert(const struct net_device *dev, const char *format, ...); 5255 __printf(2, 3) __cold 5256 void netdev_crit(const struct net_device *dev, const char *format, ...); 5257 __printf(2, 3) __cold 5258 void netdev_err(const struct net_device *dev, const char *format, ...); 5259 __printf(2, 3) __cold 5260 void netdev_warn(const struct net_device *dev, const char *format, ...); 5261 __printf(2, 3) __cold 5262 void netdev_notice(const struct net_device *dev, const char *format, ...); 5263 __printf(2, 3) __cold 5264 void netdev_info(const struct net_device *dev, const char *format, ...); 5265 5266 #define netdev_level_once(level, dev, fmt, ...) \ 5267 do { \ 5268 static bool __print_once __read_mostly; \ 5269 \ 5270 if (!__print_once) { \ 5271 __print_once = true; \ 5272 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 5273 } \ 5274 } while (0) 5275 5276 #define netdev_emerg_once(dev, fmt, ...) \ 5277 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 5278 #define netdev_alert_once(dev, fmt, ...) \ 5279 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 5280 #define netdev_crit_once(dev, fmt, ...) \ 5281 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 5282 #define netdev_err_once(dev, fmt, ...) \ 5283 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 5284 #define netdev_warn_once(dev, fmt, ...) \ 5285 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 5286 #define netdev_notice_once(dev, fmt, ...) \ 5287 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 5288 #define netdev_info_once(dev, fmt, ...) \ 5289 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 5290 5291 #define MODULE_ALIAS_NETDEV(device) \ 5292 MODULE_ALIAS("netdev-" device) 5293 5294 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 5295 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 5296 #define netdev_dbg(__dev, format, args...) \ 5297 do { \ 5298 dynamic_netdev_dbg(__dev, format, ##args); \ 5299 } while (0) 5300 #elif defined(DEBUG) 5301 #define netdev_dbg(__dev, format, args...) \ 5302 netdev_printk(KERN_DEBUG, __dev, format, ##args) 5303 #else 5304 #define netdev_dbg(__dev, format, args...) \ 5305 ({ \ 5306 if (0) \ 5307 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 5308 }) 5309 #endif 5310 5311 #if defined(VERBOSE_DEBUG) 5312 #define netdev_vdbg netdev_dbg 5313 #else 5314 5315 #define netdev_vdbg(dev, format, args...) \ 5316 ({ \ 5317 if (0) \ 5318 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 5319 0; \ 5320 }) 5321 #endif 5322 5323 /* 5324 * netdev_WARN() acts like dev_printk(), but with the key difference 5325 * of using a WARN/WARN_ON to get the message out, including the 5326 * file/line information and a backtrace. 5327 */ 5328 #define netdev_WARN(dev, format, args...) \ 5329 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5330 netdev_reg_state(dev), ##args) 5331 5332 #define netdev_WARN_ONCE(dev, format, args...) \ 5333 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5334 netdev_reg_state(dev), ##args) 5335 5336 /* netif printk helpers, similar to netdev_printk */ 5337 5338 #define netif_printk(priv, type, level, dev, fmt, args...) \ 5339 do { \ 5340 if (netif_msg_##type(priv)) \ 5341 netdev_printk(level, (dev), fmt, ##args); \ 5342 } while (0) 5343 5344 #define netif_level(level, priv, type, dev, fmt, args...) \ 5345 do { \ 5346 if (netif_msg_##type(priv)) \ 5347 netdev_##level(dev, fmt, ##args); \ 5348 } while (0) 5349 5350 #define netif_emerg(priv, type, dev, fmt, args...) \ 5351 netif_level(emerg, priv, type, dev, fmt, ##args) 5352 #define netif_alert(priv, type, dev, fmt, args...) \ 5353 netif_level(alert, priv, type, dev, fmt, ##args) 5354 #define netif_crit(priv, type, dev, fmt, args...) \ 5355 netif_level(crit, priv, type, dev, fmt, ##args) 5356 #define netif_err(priv, type, dev, fmt, args...) \ 5357 netif_level(err, priv, type, dev, fmt, ##args) 5358 #define netif_warn(priv, type, dev, fmt, args...) \ 5359 netif_level(warn, priv, type, dev, fmt, ##args) 5360 #define netif_notice(priv, type, dev, fmt, args...) \ 5361 netif_level(notice, priv, type, dev, fmt, ##args) 5362 #define netif_info(priv, type, dev, fmt, args...) \ 5363 netif_level(info, priv, type, dev, fmt, ##args) 5364 5365 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 5366 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 5367 #define netif_dbg(priv, type, netdev, format, args...) \ 5368 do { \ 5369 if (netif_msg_##type(priv)) \ 5370 dynamic_netdev_dbg(netdev, format, ##args); \ 5371 } while (0) 5372 #elif defined(DEBUG) 5373 #define netif_dbg(priv, type, dev, format, args...) \ 5374 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 5375 #else 5376 #define netif_dbg(priv, type, dev, format, args...) \ 5377 ({ \ 5378 if (0) \ 5379 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 5380 0; \ 5381 }) 5382 #endif 5383 5384 /* if @cond then downgrade to debug, else print at @level */ 5385 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 5386 do { \ 5387 if (cond) \ 5388 netif_dbg(priv, type, netdev, fmt, ##args); \ 5389 else \ 5390 netif_ ## level(priv, type, netdev, fmt, ##args); \ 5391 } while (0) 5392 5393 #if defined(VERBOSE_DEBUG) 5394 #define netif_vdbg netif_dbg 5395 #else 5396 #define netif_vdbg(priv, type, dev, format, args...) \ 5397 ({ \ 5398 if (0) \ 5399 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 5400 0; \ 5401 }) 5402 #endif 5403 5404 /* 5405 * The list of packet types we will receive (as opposed to discard) 5406 * and the routines to invoke. 5407 * 5408 * Why 16. Because with 16 the only overlap we get on a hash of the 5409 * low nibble of the protocol value is RARP/SNAP/X.25. 5410 * 5411 * 0800 IP 5412 * 0001 802.3 5413 * 0002 AX.25 5414 * 0004 802.2 5415 * 8035 RARP 5416 * 0005 SNAP 5417 * 0805 X.25 5418 * 0806 ARP 5419 * 8137 IPX 5420 * 0009 Localtalk 5421 * 86DD IPv6 5422 */ 5423 #define PTYPE_HASH_SIZE (16) 5424 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5425 5426 extern struct list_head ptype_all __read_mostly; 5427 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5428 5429 extern struct net_device *blackhole_netdev; 5430 5431 #endif /* _LINUX_NETDEVICE_H */ 5432