xref: /openbmc/linux/include/linux/netdevice.h (revision f4083a752a3b7dc2076432129c8469d02c25318e)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <net/net_namespace.h>
38 #ifdef CONFIG_DCB
39 #include <net/dcbnl.h>
40 #endif
41 #include <net/netprio_cgroup.h>
42 #include <net/xdp.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <linux/hashtable.h>
50 
51 struct netpoll_info;
52 struct device;
53 struct ethtool_ops;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 				    const struct ethtool_ops *ops);
76 
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
79 #define NET_RX_DROP		1	/* packet dropped */
80 
81 #define MAX_NEST_DEV 8
82 
83 /*
84  * Transmit return codes: transmit return codes originate from three different
85  * namespaces:
86  *
87  * - qdisc return codes
88  * - driver transmit return codes
89  * - errno values
90  *
91  * Drivers are allowed to return any one of those in their hard_start_xmit()
92  * function. Real network devices commonly used with qdiscs should only return
93  * the driver transmit return codes though - when qdiscs are used, the actual
94  * transmission happens asynchronously, so the value is not propagated to
95  * higher layers. Virtual network devices transmit synchronously; in this case
96  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97  * others are propagated to higher layers.
98  */
99 
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS	0x00
102 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
103 #define NET_XMIT_CN		0x02	/* congestion notification	*/
104 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
105 
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107  * indicates that the device will soon be dropping packets, or already drops
108  * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111 
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK		0xf0
114 
115 enum netdev_tx {
116 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
117 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
118 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121 
122 /*
123  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125  */
126 static inline bool dev_xmit_complete(int rc)
127 {
128 	/*
129 	 * Positive cases with an skb consumed by a driver:
130 	 * - successful transmission (rc == NETDEV_TX_OK)
131 	 * - error while transmitting (rc < 0)
132 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 	 */
134 	if (likely(rc < NET_XMIT_MASK))
135 		return true;
136 
137 	return false;
138 }
139 
140 /*
141  *	Compute the worst-case header length according to the protocols
142  *	used.
143  */
144 
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156 
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163 
164 /*
165  *	Old network device statistics. Fields are native words
166  *	(unsigned long) so they can be read and written atomically.
167  */
168 
169 struct net_device_stats {
170 	unsigned long	rx_packets;
171 	unsigned long	tx_packets;
172 	unsigned long	rx_bytes;
173 	unsigned long	tx_bytes;
174 	unsigned long	rx_errors;
175 	unsigned long	tx_errors;
176 	unsigned long	rx_dropped;
177 	unsigned long	tx_dropped;
178 	unsigned long	multicast;
179 	unsigned long	collisions;
180 	unsigned long	rx_length_errors;
181 	unsigned long	rx_over_errors;
182 	unsigned long	rx_crc_errors;
183 	unsigned long	rx_frame_errors;
184 	unsigned long	rx_fifo_errors;
185 	unsigned long	rx_missed_errors;
186 	unsigned long	tx_aborted_errors;
187 	unsigned long	tx_carrier_errors;
188 	unsigned long	tx_fifo_errors;
189 	unsigned long	tx_heartbeat_errors;
190 	unsigned long	tx_window_errors;
191 	unsigned long	rx_compressed;
192 	unsigned long	tx_compressed;
193 };
194 
195 
196 #include <linux/cache.h>
197 #include <linux/skbuff.h>
198 
199 #ifdef CONFIG_RPS
200 #include <linux/static_key.h>
201 extern struct static_key_false rps_needed;
202 extern struct static_key_false rfs_needed;
203 #endif
204 
205 struct neighbour;
206 struct neigh_parms;
207 struct sk_buff;
208 
209 struct netdev_hw_addr {
210 	struct list_head	list;
211 	unsigned char		addr[MAX_ADDR_LEN];
212 	unsigned char		type;
213 #define NETDEV_HW_ADDR_T_LAN		1
214 #define NETDEV_HW_ADDR_T_SAN		2
215 #define NETDEV_HW_ADDR_T_UNICAST	3
216 #define NETDEV_HW_ADDR_T_MULTICAST	4
217 	bool			global_use;
218 	int			sync_cnt;
219 	int			refcount;
220 	int			synced;
221 	struct rcu_head		rcu_head;
222 };
223 
224 struct netdev_hw_addr_list {
225 	struct list_head	list;
226 	int			count;
227 };
228 
229 #define netdev_hw_addr_list_count(l) ((l)->count)
230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231 #define netdev_hw_addr_list_for_each(ha, l) \
232 	list_for_each_entry(ha, &(l)->list, list)
233 
234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236 #define netdev_for_each_uc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238 
239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241 #define netdev_for_each_mc_addr(ha, dev) \
242 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243 
244 struct hh_cache {
245 	unsigned int	hh_len;
246 	seqlock_t	hh_lock;
247 
248 	/* cached hardware header; allow for machine alignment needs.        */
249 #define HH_DATA_MOD	16
250 #define HH_DATA_OFF(__len) \
251 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252 #define HH_DATA_ALIGN(__len) \
253 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255 };
256 
257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258  * Alternative is:
259  *   dev->hard_header_len ? (dev->hard_header_len +
260  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261  *
262  * We could use other alignment values, but we must maintain the
263  * relationship HH alignment <= LL alignment.
264  */
265 #define LL_RESERVED_SPACE(dev) \
266 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269 
270 struct header_ops {
271 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
272 			   unsigned short type, const void *daddr,
273 			   const void *saddr, unsigned int len);
274 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 	void	(*cache_update)(struct hh_cache *hh,
277 				const struct net_device *dev,
278 				const unsigned char *haddr);
279 	bool	(*validate)(const char *ll_header, unsigned int len);
280 	__be16	(*parse_protocol)(const struct sk_buff *skb);
281 };
282 
283 /* These flag bits are private to the generic network queueing
284  * layer; they may not be explicitly referenced by any other
285  * code.
286  */
287 
288 enum netdev_state_t {
289 	__LINK_STATE_START,
290 	__LINK_STATE_PRESENT,
291 	__LINK_STATE_NOCARRIER,
292 	__LINK_STATE_LINKWATCH_PENDING,
293 	__LINK_STATE_DORMANT,
294 	__LINK_STATE_TESTING,
295 };
296 
297 
298 struct gro_list {
299 	struct list_head	list;
300 	int			count;
301 };
302 
303 /*
304  * size of gro hash buckets, must less than bit number of
305  * napi_struct::gro_bitmask
306  */
307 #define GRO_HASH_BUCKETS	8
308 
309 /*
310  * Structure for NAPI scheduling similar to tasklet but with weighting
311  */
312 struct napi_struct {
313 	/* The poll_list must only be managed by the entity which
314 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
315 	 * whoever atomically sets that bit can add this napi_struct
316 	 * to the per-CPU poll_list, and whoever clears that bit
317 	 * can remove from the list right before clearing the bit.
318 	 */
319 	struct list_head	poll_list;
320 
321 	unsigned long		state;
322 	int			weight;
323 	int			defer_hard_irqs_count;
324 	unsigned long		gro_bitmask;
325 	int			(*poll)(struct napi_struct *, int);
326 #ifdef CONFIG_NETPOLL
327 	int			poll_owner;
328 #endif
329 	struct net_device	*dev;
330 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
331 	struct sk_buff		*skb;
332 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
333 	int			rx_count; /* length of rx_list */
334 	struct hrtimer		timer;
335 	struct list_head	dev_list;
336 	struct hlist_node	napi_hash_node;
337 	unsigned int		napi_id;
338 	struct task_struct	*thread;
339 };
340 
341 enum {
342 	NAPI_STATE_SCHED,		/* Poll is scheduled */
343 	NAPI_STATE_MISSED,		/* reschedule a napi */
344 	NAPI_STATE_DISABLE,		/* Disable pending */
345 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
346 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
347 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
348 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
349 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
350 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
351 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
352 };
353 
354 enum {
355 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
356 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
357 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
358 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
359 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
360 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
361 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
362 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
363 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
364 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
365 };
366 
367 enum gro_result {
368 	GRO_MERGED,
369 	GRO_MERGED_FREE,
370 	GRO_HELD,
371 	GRO_NORMAL,
372 	GRO_CONSUMED,
373 };
374 typedef enum gro_result gro_result_t;
375 
376 /*
377  * enum rx_handler_result - Possible return values for rx_handlers.
378  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
379  * further.
380  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
381  * case skb->dev was changed by rx_handler.
382  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
383  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
384  *
385  * rx_handlers are functions called from inside __netif_receive_skb(), to do
386  * special processing of the skb, prior to delivery to protocol handlers.
387  *
388  * Currently, a net_device can only have a single rx_handler registered. Trying
389  * to register a second rx_handler will return -EBUSY.
390  *
391  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
392  * To unregister a rx_handler on a net_device, use
393  * netdev_rx_handler_unregister().
394  *
395  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
396  * do with the skb.
397  *
398  * If the rx_handler consumed the skb in some way, it should return
399  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
400  * the skb to be delivered in some other way.
401  *
402  * If the rx_handler changed skb->dev, to divert the skb to another
403  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
404  * new device will be called if it exists.
405  *
406  * If the rx_handler decides the skb should be ignored, it should return
407  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
408  * are registered on exact device (ptype->dev == skb->dev).
409  *
410  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
411  * delivered, it should return RX_HANDLER_PASS.
412  *
413  * A device without a registered rx_handler will behave as if rx_handler
414  * returned RX_HANDLER_PASS.
415  */
416 
417 enum rx_handler_result {
418 	RX_HANDLER_CONSUMED,
419 	RX_HANDLER_ANOTHER,
420 	RX_HANDLER_EXACT,
421 	RX_HANDLER_PASS,
422 };
423 typedef enum rx_handler_result rx_handler_result_t;
424 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
425 
426 void __napi_schedule(struct napi_struct *n);
427 void __napi_schedule_irqoff(struct napi_struct *n);
428 
429 static inline bool napi_disable_pending(struct napi_struct *n)
430 {
431 	return test_bit(NAPI_STATE_DISABLE, &n->state);
432 }
433 
434 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
435 {
436 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
437 }
438 
439 bool napi_schedule_prep(struct napi_struct *n);
440 
441 /**
442  *	napi_schedule - schedule NAPI poll
443  *	@n: NAPI context
444  *
445  * Schedule NAPI poll routine to be called if it is not already
446  * running.
447  */
448 static inline void napi_schedule(struct napi_struct *n)
449 {
450 	if (napi_schedule_prep(n))
451 		__napi_schedule(n);
452 }
453 
454 /**
455  *	napi_schedule_irqoff - schedule NAPI poll
456  *	@n: NAPI context
457  *
458  * Variant of napi_schedule(), assuming hard irqs are masked.
459  */
460 static inline void napi_schedule_irqoff(struct napi_struct *n)
461 {
462 	if (napi_schedule_prep(n))
463 		__napi_schedule_irqoff(n);
464 }
465 
466 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
467 static inline bool napi_reschedule(struct napi_struct *napi)
468 {
469 	if (napi_schedule_prep(napi)) {
470 		__napi_schedule(napi);
471 		return true;
472 	}
473 	return false;
474 }
475 
476 bool napi_complete_done(struct napi_struct *n, int work_done);
477 /**
478  *	napi_complete - NAPI processing complete
479  *	@n: NAPI context
480  *
481  * Mark NAPI processing as complete.
482  * Consider using napi_complete_done() instead.
483  * Return false if device should avoid rearming interrupts.
484  */
485 static inline bool napi_complete(struct napi_struct *n)
486 {
487 	return napi_complete_done(n, 0);
488 }
489 
490 int dev_set_threaded(struct net_device *dev, bool threaded);
491 
492 /**
493  *	napi_disable - prevent NAPI from scheduling
494  *	@n: NAPI context
495  *
496  * Stop NAPI from being scheduled on this context.
497  * Waits till any outstanding processing completes.
498  */
499 void napi_disable(struct napi_struct *n);
500 
501 void napi_enable(struct napi_struct *n);
502 
503 /**
504  *	napi_synchronize - wait until NAPI is not running
505  *	@n: NAPI context
506  *
507  * Wait until NAPI is done being scheduled on this context.
508  * Waits till any outstanding processing completes but
509  * does not disable future activations.
510  */
511 static inline void napi_synchronize(const struct napi_struct *n)
512 {
513 	if (IS_ENABLED(CONFIG_SMP))
514 		while (test_bit(NAPI_STATE_SCHED, &n->state))
515 			msleep(1);
516 	else
517 		barrier();
518 }
519 
520 /**
521  *	napi_if_scheduled_mark_missed - if napi is running, set the
522  *	NAPIF_STATE_MISSED
523  *	@n: NAPI context
524  *
525  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
526  * NAPI is scheduled.
527  **/
528 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
529 {
530 	unsigned long val, new;
531 
532 	do {
533 		val = READ_ONCE(n->state);
534 		if (val & NAPIF_STATE_DISABLE)
535 			return true;
536 
537 		if (!(val & NAPIF_STATE_SCHED))
538 			return false;
539 
540 		new = val | NAPIF_STATE_MISSED;
541 	} while (cmpxchg(&n->state, val, new) != val);
542 
543 	return true;
544 }
545 
546 enum netdev_queue_state_t {
547 	__QUEUE_STATE_DRV_XOFF,
548 	__QUEUE_STATE_STACK_XOFF,
549 	__QUEUE_STATE_FROZEN,
550 };
551 
552 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
553 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
554 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
555 
556 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
557 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
558 					QUEUE_STATE_FROZEN)
559 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
560 					QUEUE_STATE_FROZEN)
561 
562 /*
563  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
564  * netif_tx_* functions below are used to manipulate this flag.  The
565  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
566  * queue independently.  The netif_xmit_*stopped functions below are called
567  * to check if the queue has been stopped by the driver or stack (either
568  * of the XOFF bits are set in the state).  Drivers should not need to call
569  * netif_xmit*stopped functions, they should only be using netif_tx_*.
570  */
571 
572 struct netdev_queue {
573 /*
574  * read-mostly part
575  */
576 	struct net_device	*dev;
577 	struct Qdisc __rcu	*qdisc;
578 	struct Qdisc		*qdisc_sleeping;
579 #ifdef CONFIG_SYSFS
580 	struct kobject		kobj;
581 #endif
582 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
583 	int			numa_node;
584 #endif
585 	unsigned long		tx_maxrate;
586 	/*
587 	 * Number of TX timeouts for this queue
588 	 * (/sys/class/net/DEV/Q/trans_timeout)
589 	 */
590 	unsigned long		trans_timeout;
591 
592 	/* Subordinate device that the queue has been assigned to */
593 	struct net_device	*sb_dev;
594 #ifdef CONFIG_XDP_SOCKETS
595 	struct xsk_buff_pool    *pool;
596 #endif
597 /*
598  * write-mostly part
599  */
600 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
601 	int			xmit_lock_owner;
602 	/*
603 	 * Time (in jiffies) of last Tx
604 	 */
605 	unsigned long		trans_start;
606 
607 	unsigned long		state;
608 
609 #ifdef CONFIG_BQL
610 	struct dql		dql;
611 #endif
612 } ____cacheline_aligned_in_smp;
613 
614 extern int sysctl_fb_tunnels_only_for_init_net;
615 extern int sysctl_devconf_inherit_init_net;
616 
617 /*
618  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
619  *                                     == 1 : For initns only
620  *                                     == 2 : For none.
621  */
622 static inline bool net_has_fallback_tunnels(const struct net *net)
623 {
624 	return !IS_ENABLED(CONFIG_SYSCTL) ||
625 	       !sysctl_fb_tunnels_only_for_init_net ||
626 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
627 }
628 
629 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
630 {
631 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
632 	return q->numa_node;
633 #else
634 	return NUMA_NO_NODE;
635 #endif
636 }
637 
638 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
639 {
640 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
641 	q->numa_node = node;
642 #endif
643 }
644 
645 #ifdef CONFIG_RPS
646 /*
647  * This structure holds an RPS map which can be of variable length.  The
648  * map is an array of CPUs.
649  */
650 struct rps_map {
651 	unsigned int len;
652 	struct rcu_head rcu;
653 	u16 cpus[];
654 };
655 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
656 
657 /*
658  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
659  * tail pointer for that CPU's input queue at the time of last enqueue, and
660  * a hardware filter index.
661  */
662 struct rps_dev_flow {
663 	u16 cpu;
664 	u16 filter;
665 	unsigned int last_qtail;
666 };
667 #define RPS_NO_FILTER 0xffff
668 
669 /*
670  * The rps_dev_flow_table structure contains a table of flow mappings.
671  */
672 struct rps_dev_flow_table {
673 	unsigned int mask;
674 	struct rcu_head rcu;
675 	struct rps_dev_flow flows[];
676 };
677 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
678     ((_num) * sizeof(struct rps_dev_flow)))
679 
680 /*
681  * The rps_sock_flow_table contains mappings of flows to the last CPU
682  * on which they were processed by the application (set in recvmsg).
683  * Each entry is a 32bit value. Upper part is the high-order bits
684  * of flow hash, lower part is CPU number.
685  * rps_cpu_mask is used to partition the space, depending on number of
686  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
687  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
688  * meaning we use 32-6=26 bits for the hash.
689  */
690 struct rps_sock_flow_table {
691 	u32	mask;
692 
693 	u32	ents[] ____cacheline_aligned_in_smp;
694 };
695 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
696 
697 #define RPS_NO_CPU 0xffff
698 
699 extern u32 rps_cpu_mask;
700 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
701 
702 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
703 					u32 hash)
704 {
705 	if (table && hash) {
706 		unsigned int index = hash & table->mask;
707 		u32 val = hash & ~rps_cpu_mask;
708 
709 		/* We only give a hint, preemption can change CPU under us */
710 		val |= raw_smp_processor_id();
711 
712 		if (table->ents[index] != val)
713 			table->ents[index] = val;
714 	}
715 }
716 
717 #ifdef CONFIG_RFS_ACCEL
718 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
719 			 u16 filter_id);
720 #endif
721 #endif /* CONFIG_RPS */
722 
723 /* This structure contains an instance of an RX queue. */
724 struct netdev_rx_queue {
725 #ifdef CONFIG_RPS
726 	struct rps_map __rcu		*rps_map;
727 	struct rps_dev_flow_table __rcu	*rps_flow_table;
728 #endif
729 	struct kobject			kobj;
730 	struct net_device		*dev;
731 	struct xdp_rxq_info		xdp_rxq;
732 #ifdef CONFIG_XDP_SOCKETS
733 	struct xsk_buff_pool            *pool;
734 #endif
735 } ____cacheline_aligned_in_smp;
736 
737 /*
738  * RX queue sysfs structures and functions.
739  */
740 struct rx_queue_attribute {
741 	struct attribute attr;
742 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
743 	ssize_t (*store)(struct netdev_rx_queue *queue,
744 			 const char *buf, size_t len);
745 };
746 
747 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
748 enum xps_map_type {
749 	XPS_CPUS = 0,
750 	XPS_RXQS,
751 	XPS_MAPS_MAX,
752 };
753 
754 #ifdef CONFIG_XPS
755 /*
756  * This structure holds an XPS map which can be of variable length.  The
757  * map is an array of queues.
758  */
759 struct xps_map {
760 	unsigned int len;
761 	unsigned int alloc_len;
762 	struct rcu_head rcu;
763 	u16 queues[];
764 };
765 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
766 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
767        - sizeof(struct xps_map)) / sizeof(u16))
768 
769 /*
770  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
771  *
772  * We keep track of the number of cpus/rxqs used when the struct is allocated,
773  * in nr_ids. This will help not accessing out-of-bound memory.
774  *
775  * We keep track of the number of traffic classes used when the struct is
776  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
777  * not crossing its upper bound, as the original dev->num_tc can be updated in
778  * the meantime.
779  */
780 struct xps_dev_maps {
781 	struct rcu_head rcu;
782 	unsigned int nr_ids;
783 	s16 num_tc;
784 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
785 };
786 
787 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
788 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
789 
790 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
791 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
792 
793 #endif /* CONFIG_XPS */
794 
795 #define TC_MAX_QUEUE	16
796 #define TC_BITMASK	15
797 /* HW offloaded queuing disciplines txq count and offset maps */
798 struct netdev_tc_txq {
799 	u16 count;
800 	u16 offset;
801 };
802 
803 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
804 /*
805  * This structure is to hold information about the device
806  * configured to run FCoE protocol stack.
807  */
808 struct netdev_fcoe_hbainfo {
809 	char	manufacturer[64];
810 	char	serial_number[64];
811 	char	hardware_version[64];
812 	char	driver_version[64];
813 	char	optionrom_version[64];
814 	char	firmware_version[64];
815 	char	model[256];
816 	char	model_description[256];
817 };
818 #endif
819 
820 #define MAX_PHYS_ITEM_ID_LEN 32
821 
822 /* This structure holds a unique identifier to identify some
823  * physical item (port for example) used by a netdevice.
824  */
825 struct netdev_phys_item_id {
826 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
827 	unsigned char id_len;
828 };
829 
830 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
831 					    struct netdev_phys_item_id *b)
832 {
833 	return a->id_len == b->id_len &&
834 	       memcmp(a->id, b->id, a->id_len) == 0;
835 }
836 
837 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
838 				       struct sk_buff *skb,
839 				       struct net_device *sb_dev);
840 
841 enum net_device_path_type {
842 	DEV_PATH_ETHERNET = 0,
843 	DEV_PATH_VLAN,
844 	DEV_PATH_BRIDGE,
845 	DEV_PATH_PPPOE,
846 	DEV_PATH_DSA,
847 };
848 
849 struct net_device_path {
850 	enum net_device_path_type	type;
851 	const struct net_device		*dev;
852 	union {
853 		struct {
854 			u16		id;
855 			__be16		proto;
856 			u8		h_dest[ETH_ALEN];
857 		} encap;
858 		struct {
859 			enum {
860 				DEV_PATH_BR_VLAN_KEEP,
861 				DEV_PATH_BR_VLAN_TAG,
862 				DEV_PATH_BR_VLAN_UNTAG,
863 				DEV_PATH_BR_VLAN_UNTAG_HW,
864 			}		vlan_mode;
865 			u16		vlan_id;
866 			__be16		vlan_proto;
867 		} bridge;
868 		struct {
869 			int port;
870 			u16 proto;
871 		} dsa;
872 	};
873 };
874 
875 #define NET_DEVICE_PATH_STACK_MAX	5
876 #define NET_DEVICE_PATH_VLAN_MAX	2
877 
878 struct net_device_path_stack {
879 	int			num_paths;
880 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
881 };
882 
883 struct net_device_path_ctx {
884 	const struct net_device *dev;
885 	const u8		*daddr;
886 
887 	int			num_vlans;
888 	struct {
889 		u16		id;
890 		__be16		proto;
891 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
892 };
893 
894 enum tc_setup_type {
895 	TC_SETUP_QDISC_MQPRIO,
896 	TC_SETUP_CLSU32,
897 	TC_SETUP_CLSFLOWER,
898 	TC_SETUP_CLSMATCHALL,
899 	TC_SETUP_CLSBPF,
900 	TC_SETUP_BLOCK,
901 	TC_SETUP_QDISC_CBS,
902 	TC_SETUP_QDISC_RED,
903 	TC_SETUP_QDISC_PRIO,
904 	TC_SETUP_QDISC_MQ,
905 	TC_SETUP_QDISC_ETF,
906 	TC_SETUP_ROOT_QDISC,
907 	TC_SETUP_QDISC_GRED,
908 	TC_SETUP_QDISC_TAPRIO,
909 	TC_SETUP_FT,
910 	TC_SETUP_QDISC_ETS,
911 	TC_SETUP_QDISC_TBF,
912 	TC_SETUP_QDISC_FIFO,
913 	TC_SETUP_QDISC_HTB,
914 };
915 
916 /* These structures hold the attributes of bpf state that are being passed
917  * to the netdevice through the bpf op.
918  */
919 enum bpf_netdev_command {
920 	/* Set or clear a bpf program used in the earliest stages of packet
921 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
922 	 * is responsible for calling bpf_prog_put on any old progs that are
923 	 * stored. In case of error, the callee need not release the new prog
924 	 * reference, but on success it takes ownership and must bpf_prog_put
925 	 * when it is no longer used.
926 	 */
927 	XDP_SETUP_PROG,
928 	XDP_SETUP_PROG_HW,
929 	/* BPF program for offload callbacks, invoked at program load time. */
930 	BPF_OFFLOAD_MAP_ALLOC,
931 	BPF_OFFLOAD_MAP_FREE,
932 	XDP_SETUP_XSK_POOL,
933 };
934 
935 struct bpf_prog_offload_ops;
936 struct netlink_ext_ack;
937 struct xdp_umem;
938 struct xdp_dev_bulk_queue;
939 struct bpf_xdp_link;
940 
941 enum bpf_xdp_mode {
942 	XDP_MODE_SKB = 0,
943 	XDP_MODE_DRV = 1,
944 	XDP_MODE_HW = 2,
945 	__MAX_XDP_MODE
946 };
947 
948 struct bpf_xdp_entity {
949 	struct bpf_prog *prog;
950 	struct bpf_xdp_link *link;
951 };
952 
953 struct netdev_bpf {
954 	enum bpf_netdev_command command;
955 	union {
956 		/* XDP_SETUP_PROG */
957 		struct {
958 			u32 flags;
959 			struct bpf_prog *prog;
960 			struct netlink_ext_ack *extack;
961 		};
962 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
963 		struct {
964 			struct bpf_offloaded_map *offmap;
965 		};
966 		/* XDP_SETUP_XSK_POOL */
967 		struct {
968 			struct xsk_buff_pool *pool;
969 			u16 queue_id;
970 		} xsk;
971 	};
972 };
973 
974 /* Flags for ndo_xsk_wakeup. */
975 #define XDP_WAKEUP_RX (1 << 0)
976 #define XDP_WAKEUP_TX (1 << 1)
977 
978 #ifdef CONFIG_XFRM_OFFLOAD
979 struct xfrmdev_ops {
980 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
981 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
982 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
983 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
984 				       struct xfrm_state *x);
985 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
986 };
987 #endif
988 
989 struct dev_ifalias {
990 	struct rcu_head rcuhead;
991 	char ifalias[];
992 };
993 
994 struct devlink;
995 struct tlsdev_ops;
996 
997 struct netdev_name_node {
998 	struct hlist_node hlist;
999 	struct list_head list;
1000 	struct net_device *dev;
1001 	const char *name;
1002 };
1003 
1004 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
1005 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
1006 
1007 struct netdev_net_notifier {
1008 	struct list_head list;
1009 	struct notifier_block *nb;
1010 };
1011 
1012 /*
1013  * This structure defines the management hooks for network devices.
1014  * The following hooks can be defined; unless noted otherwise, they are
1015  * optional and can be filled with a null pointer.
1016  *
1017  * int (*ndo_init)(struct net_device *dev);
1018  *     This function is called once when a network device is registered.
1019  *     The network device can use this for any late stage initialization
1020  *     or semantic validation. It can fail with an error code which will
1021  *     be propagated back to register_netdev.
1022  *
1023  * void (*ndo_uninit)(struct net_device *dev);
1024  *     This function is called when device is unregistered or when registration
1025  *     fails. It is not called if init fails.
1026  *
1027  * int (*ndo_open)(struct net_device *dev);
1028  *     This function is called when a network device transitions to the up
1029  *     state.
1030  *
1031  * int (*ndo_stop)(struct net_device *dev);
1032  *     This function is called when a network device transitions to the down
1033  *     state.
1034  *
1035  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1036  *                               struct net_device *dev);
1037  *	Called when a packet needs to be transmitted.
1038  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1039  *	the queue before that can happen; it's for obsolete devices and weird
1040  *	corner cases, but the stack really does a non-trivial amount
1041  *	of useless work if you return NETDEV_TX_BUSY.
1042  *	Required; cannot be NULL.
1043  *
1044  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1045  *					   struct net_device *dev
1046  *					   netdev_features_t features);
1047  *	Called by core transmit path to determine if device is capable of
1048  *	performing offload operations on a given packet. This is to give
1049  *	the device an opportunity to implement any restrictions that cannot
1050  *	be otherwise expressed by feature flags. The check is called with
1051  *	the set of features that the stack has calculated and it returns
1052  *	those the driver believes to be appropriate.
1053  *
1054  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1055  *                         struct net_device *sb_dev);
1056  *	Called to decide which queue to use when device supports multiple
1057  *	transmit queues.
1058  *
1059  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1060  *	This function is called to allow device receiver to make
1061  *	changes to configuration when multicast or promiscuous is enabled.
1062  *
1063  * void (*ndo_set_rx_mode)(struct net_device *dev);
1064  *	This function is called device changes address list filtering.
1065  *	If driver handles unicast address filtering, it should set
1066  *	IFF_UNICAST_FLT in its priv_flags.
1067  *
1068  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1069  *	This function  is called when the Media Access Control address
1070  *	needs to be changed. If this interface is not defined, the
1071  *	MAC address can not be changed.
1072  *
1073  * int (*ndo_validate_addr)(struct net_device *dev);
1074  *	Test if Media Access Control address is valid for the device.
1075  *
1076  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1077  *	Old-style ioctl entry point. This is used internally by the
1078  *	appletalk and ieee802154 subsystems but is no longer called by
1079  *	the device ioctl handler.
1080  *
1081  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1082  *	Used by the bonding driver for its device specific ioctls:
1083  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1084  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1085  *
1086  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1087  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1088  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1089  *
1090  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1091  *	Used to set network devices bus interface parameters. This interface
1092  *	is retained for legacy reasons; new devices should use the bus
1093  *	interface (PCI) for low level management.
1094  *
1095  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1096  *	Called when a user wants to change the Maximum Transfer Unit
1097  *	of a device.
1098  *
1099  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1100  *	Callback used when the transmitter has not made any progress
1101  *	for dev->watchdog ticks.
1102  *
1103  * void (*ndo_get_stats64)(struct net_device *dev,
1104  *                         struct rtnl_link_stats64 *storage);
1105  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1106  *	Called when a user wants to get the network device usage
1107  *	statistics. Drivers must do one of the following:
1108  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1109  *	   rtnl_link_stats64 structure passed by the caller.
1110  *	2. Define @ndo_get_stats to update a net_device_stats structure
1111  *	   (which should normally be dev->stats) and return a pointer to
1112  *	   it. The structure may be changed asynchronously only if each
1113  *	   field is written atomically.
1114  *	3. Update dev->stats asynchronously and atomically, and define
1115  *	   neither operation.
1116  *
1117  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1118  *	Return true if this device supports offload stats of this attr_id.
1119  *
1120  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1121  *	void *attr_data)
1122  *	Get statistics for offload operations by attr_id. Write it into the
1123  *	attr_data pointer.
1124  *
1125  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1126  *	If device supports VLAN filtering this function is called when a
1127  *	VLAN id is registered.
1128  *
1129  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1130  *	If device supports VLAN filtering this function is called when a
1131  *	VLAN id is unregistered.
1132  *
1133  * void (*ndo_poll_controller)(struct net_device *dev);
1134  *
1135  *	SR-IOV management functions.
1136  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1137  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1138  *			  u8 qos, __be16 proto);
1139  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1140  *			  int max_tx_rate);
1141  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1142  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1143  * int (*ndo_get_vf_config)(struct net_device *dev,
1144  *			    int vf, struct ifla_vf_info *ivf);
1145  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1146  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1147  *			  struct nlattr *port[]);
1148  *
1149  *      Enable or disable the VF ability to query its RSS Redirection Table and
1150  *      Hash Key. This is needed since on some devices VF share this information
1151  *      with PF and querying it may introduce a theoretical security risk.
1152  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1153  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1154  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1155  *		       void *type_data);
1156  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1157  *	This is always called from the stack with the rtnl lock held and netif
1158  *	tx queues stopped. This allows the netdevice to perform queue
1159  *	management safely.
1160  *
1161  *	Fiber Channel over Ethernet (FCoE) offload functions.
1162  * int (*ndo_fcoe_enable)(struct net_device *dev);
1163  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1164  *	so the underlying device can perform whatever needed configuration or
1165  *	initialization to support acceleration of FCoE traffic.
1166  *
1167  * int (*ndo_fcoe_disable)(struct net_device *dev);
1168  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1169  *	so the underlying device can perform whatever needed clean-ups to
1170  *	stop supporting acceleration of FCoE traffic.
1171  *
1172  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1173  *			     struct scatterlist *sgl, unsigned int sgc);
1174  *	Called when the FCoE Initiator wants to initialize an I/O that
1175  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1176  *	perform necessary setup and returns 1 to indicate the device is set up
1177  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1178  *
1179  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1180  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1181  *	indicated by the FC exchange id 'xid', so the underlying device can
1182  *	clean up and reuse resources for later DDP requests.
1183  *
1184  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1185  *			      struct scatterlist *sgl, unsigned int sgc);
1186  *	Called when the FCoE Target wants to initialize an I/O that
1187  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1188  *	perform necessary setup and returns 1 to indicate the device is set up
1189  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1190  *
1191  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1192  *			       struct netdev_fcoe_hbainfo *hbainfo);
1193  *	Called when the FCoE Protocol stack wants information on the underlying
1194  *	device. This information is utilized by the FCoE protocol stack to
1195  *	register attributes with Fiber Channel management service as per the
1196  *	FC-GS Fabric Device Management Information(FDMI) specification.
1197  *
1198  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1199  *	Called when the underlying device wants to override default World Wide
1200  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1201  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1202  *	protocol stack to use.
1203  *
1204  *	RFS acceleration.
1205  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1206  *			    u16 rxq_index, u32 flow_id);
1207  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1208  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1209  *	Return the filter ID on success, or a negative error code.
1210  *
1211  *	Slave management functions (for bridge, bonding, etc).
1212  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1213  *	Called to make another netdev an underling.
1214  *
1215  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1216  *	Called to release previously enslaved netdev.
1217  *
1218  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1219  *					    struct sk_buff *skb,
1220  *					    bool all_slaves);
1221  *	Get the xmit slave of master device. If all_slaves is true, function
1222  *	assume all the slaves can transmit.
1223  *
1224  *      Feature/offload setting functions.
1225  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1226  *		netdev_features_t features);
1227  *	Adjusts the requested feature flags according to device-specific
1228  *	constraints, and returns the resulting flags. Must not modify
1229  *	the device state.
1230  *
1231  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1232  *	Called to update device configuration to new features. Passed
1233  *	feature set might be less than what was returned by ndo_fix_features()).
1234  *	Must return >0 or -errno if it changed dev->features itself.
1235  *
1236  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1237  *		      struct net_device *dev,
1238  *		      const unsigned char *addr, u16 vid, u16 flags,
1239  *		      struct netlink_ext_ack *extack);
1240  *	Adds an FDB entry to dev for addr.
1241  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1242  *		      struct net_device *dev,
1243  *		      const unsigned char *addr, u16 vid)
1244  *	Deletes the FDB entry from dev coresponding to addr.
1245  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1246  *		       struct net_device *dev, struct net_device *filter_dev,
1247  *		       int *idx)
1248  *	Used to add FDB entries to dump requests. Implementers should add
1249  *	entries to skb and update idx with the number of entries.
1250  *
1251  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1252  *			     u16 flags, struct netlink_ext_ack *extack)
1253  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1254  *			     struct net_device *dev, u32 filter_mask,
1255  *			     int nlflags)
1256  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1257  *			     u16 flags);
1258  *
1259  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1260  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1261  *	which do not represent real hardware may define this to allow their
1262  *	userspace components to manage their virtual carrier state. Devices
1263  *	that determine carrier state from physical hardware properties (eg
1264  *	network cables) or protocol-dependent mechanisms (eg
1265  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1266  *
1267  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1268  *			       struct netdev_phys_item_id *ppid);
1269  *	Called to get ID of physical port of this device. If driver does
1270  *	not implement this, it is assumed that the hw is not able to have
1271  *	multiple net devices on single physical port.
1272  *
1273  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1274  *				 struct netdev_phys_item_id *ppid)
1275  *	Called to get the parent ID of the physical port of this device.
1276  *
1277  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1278  *				 struct net_device *dev)
1279  *	Called by upper layer devices to accelerate switching or other
1280  *	station functionality into hardware. 'pdev is the lowerdev
1281  *	to use for the offload and 'dev' is the net device that will
1282  *	back the offload. Returns a pointer to the private structure
1283  *	the upper layer will maintain.
1284  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1285  *	Called by upper layer device to delete the station created
1286  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1287  *	the station and priv is the structure returned by the add
1288  *	operation.
1289  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1290  *			     int queue_index, u32 maxrate);
1291  *	Called when a user wants to set a max-rate limitation of specific
1292  *	TX queue.
1293  * int (*ndo_get_iflink)(const struct net_device *dev);
1294  *	Called to get the iflink value of this device.
1295  * void (*ndo_change_proto_down)(struct net_device *dev,
1296  *				 bool proto_down);
1297  *	This function is used to pass protocol port error state information
1298  *	to the switch driver. The switch driver can react to the proto_down
1299  *      by doing a phys down on the associated switch port.
1300  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1301  *	This function is used to get egress tunnel information for given skb.
1302  *	This is useful for retrieving outer tunnel header parameters while
1303  *	sampling packet.
1304  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1305  *	This function is used to specify the headroom that the skb must
1306  *	consider when allocation skb during packet reception. Setting
1307  *	appropriate rx headroom value allows avoiding skb head copy on
1308  *	forward. Setting a negative value resets the rx headroom to the
1309  *	default value.
1310  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1311  *	This function is used to set or query state related to XDP on the
1312  *	netdevice and manage BPF offload. See definition of
1313  *	enum bpf_netdev_command for details.
1314  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1315  *			u32 flags);
1316  *	This function is used to submit @n XDP packets for transmit on a
1317  *	netdevice. Returns number of frames successfully transmitted, frames
1318  *	that got dropped are freed/returned via xdp_return_frame().
1319  *	Returns negative number, means general error invoking ndo, meaning
1320  *	no frames were xmit'ed and core-caller will free all frames.
1321  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1322  *					        struct xdp_buff *xdp);
1323  *      Get the xmit slave of master device based on the xdp_buff.
1324  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1325  *      This function is used to wake up the softirq, ksoftirqd or kthread
1326  *	responsible for sending and/or receiving packets on a specific
1327  *	queue id bound to an AF_XDP socket. The flags field specifies if
1328  *	only RX, only Tx, or both should be woken up using the flags
1329  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1330  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1331  *	Get devlink port instance associated with a given netdev.
1332  *	Called with a reference on the netdevice and devlink locks only,
1333  *	rtnl_lock is not held.
1334  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1335  *			 int cmd);
1336  *	Add, change, delete or get information on an IPv4 tunnel.
1337  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1338  *	If a device is paired with a peer device, return the peer instance.
1339  *	The caller must be under RCU read context.
1340  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1341  *     Get the forwarding path to reach the real device from the HW destination address
1342  */
1343 struct net_device_ops {
1344 	int			(*ndo_init)(struct net_device *dev);
1345 	void			(*ndo_uninit)(struct net_device *dev);
1346 	int			(*ndo_open)(struct net_device *dev);
1347 	int			(*ndo_stop)(struct net_device *dev);
1348 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1349 						  struct net_device *dev);
1350 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1351 						      struct net_device *dev,
1352 						      netdev_features_t features);
1353 	u16			(*ndo_select_queue)(struct net_device *dev,
1354 						    struct sk_buff *skb,
1355 						    struct net_device *sb_dev);
1356 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1357 						       int flags);
1358 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1359 	int			(*ndo_set_mac_address)(struct net_device *dev,
1360 						       void *addr);
1361 	int			(*ndo_validate_addr)(struct net_device *dev);
1362 	int			(*ndo_do_ioctl)(struct net_device *dev,
1363 					        struct ifreq *ifr, int cmd);
1364 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1365 						 struct ifreq *ifr, int cmd);
1366 	int			(*ndo_siocbond)(struct net_device *dev,
1367 						struct ifreq *ifr, int cmd);
1368 	int			(*ndo_siocwandev)(struct net_device *dev,
1369 						  struct if_settings *ifs);
1370 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1371 						      struct ifreq *ifr,
1372 						      void __user *data, int cmd);
1373 	int			(*ndo_set_config)(struct net_device *dev,
1374 					          struct ifmap *map);
1375 	int			(*ndo_change_mtu)(struct net_device *dev,
1376 						  int new_mtu);
1377 	int			(*ndo_neigh_setup)(struct net_device *dev,
1378 						   struct neigh_parms *);
1379 	void			(*ndo_tx_timeout) (struct net_device *dev,
1380 						   unsigned int txqueue);
1381 
1382 	void			(*ndo_get_stats64)(struct net_device *dev,
1383 						   struct rtnl_link_stats64 *storage);
1384 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1385 	int			(*ndo_get_offload_stats)(int attr_id,
1386 							 const struct net_device *dev,
1387 							 void *attr_data);
1388 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1389 
1390 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1391 						       __be16 proto, u16 vid);
1392 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1393 						        __be16 proto, u16 vid);
1394 #ifdef CONFIG_NET_POLL_CONTROLLER
1395 	void                    (*ndo_poll_controller)(struct net_device *dev);
1396 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1397 						     struct netpoll_info *info);
1398 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1399 #endif
1400 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1401 						  int queue, u8 *mac);
1402 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1403 						   int queue, u16 vlan,
1404 						   u8 qos, __be16 proto);
1405 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1406 						   int vf, int min_tx_rate,
1407 						   int max_tx_rate);
1408 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1409 						       int vf, bool setting);
1410 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1411 						    int vf, bool setting);
1412 	int			(*ndo_get_vf_config)(struct net_device *dev,
1413 						     int vf,
1414 						     struct ifla_vf_info *ivf);
1415 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1416 							 int vf, int link_state);
1417 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1418 						    int vf,
1419 						    struct ifla_vf_stats
1420 						    *vf_stats);
1421 	int			(*ndo_set_vf_port)(struct net_device *dev,
1422 						   int vf,
1423 						   struct nlattr *port[]);
1424 	int			(*ndo_get_vf_port)(struct net_device *dev,
1425 						   int vf, struct sk_buff *skb);
1426 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1427 						   int vf,
1428 						   struct ifla_vf_guid *node_guid,
1429 						   struct ifla_vf_guid *port_guid);
1430 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1431 						   int vf, u64 guid,
1432 						   int guid_type);
1433 	int			(*ndo_set_vf_rss_query_en)(
1434 						   struct net_device *dev,
1435 						   int vf, bool setting);
1436 	int			(*ndo_setup_tc)(struct net_device *dev,
1437 						enum tc_setup_type type,
1438 						void *type_data);
1439 #if IS_ENABLED(CONFIG_FCOE)
1440 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1441 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1442 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1443 						      u16 xid,
1444 						      struct scatterlist *sgl,
1445 						      unsigned int sgc);
1446 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1447 						     u16 xid);
1448 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1449 						       u16 xid,
1450 						       struct scatterlist *sgl,
1451 						       unsigned int sgc);
1452 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1453 							struct netdev_fcoe_hbainfo *hbainfo);
1454 #endif
1455 
1456 #if IS_ENABLED(CONFIG_LIBFCOE)
1457 #define NETDEV_FCOE_WWNN 0
1458 #define NETDEV_FCOE_WWPN 1
1459 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1460 						    u64 *wwn, int type);
1461 #endif
1462 
1463 #ifdef CONFIG_RFS_ACCEL
1464 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1465 						     const struct sk_buff *skb,
1466 						     u16 rxq_index,
1467 						     u32 flow_id);
1468 #endif
1469 	int			(*ndo_add_slave)(struct net_device *dev,
1470 						 struct net_device *slave_dev,
1471 						 struct netlink_ext_ack *extack);
1472 	int			(*ndo_del_slave)(struct net_device *dev,
1473 						 struct net_device *slave_dev);
1474 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1475 						      struct sk_buff *skb,
1476 						      bool all_slaves);
1477 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1478 							struct sock *sk);
1479 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1480 						    netdev_features_t features);
1481 	int			(*ndo_set_features)(struct net_device *dev,
1482 						    netdev_features_t features);
1483 	int			(*ndo_neigh_construct)(struct net_device *dev,
1484 						       struct neighbour *n);
1485 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1486 						     struct neighbour *n);
1487 
1488 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1489 					       struct nlattr *tb[],
1490 					       struct net_device *dev,
1491 					       const unsigned char *addr,
1492 					       u16 vid,
1493 					       u16 flags,
1494 					       struct netlink_ext_ack *extack);
1495 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1496 					       struct nlattr *tb[],
1497 					       struct net_device *dev,
1498 					       const unsigned char *addr,
1499 					       u16 vid);
1500 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1501 						struct netlink_callback *cb,
1502 						struct net_device *dev,
1503 						struct net_device *filter_dev,
1504 						int *idx);
1505 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1506 					       struct nlattr *tb[],
1507 					       struct net_device *dev,
1508 					       const unsigned char *addr,
1509 					       u16 vid, u32 portid, u32 seq,
1510 					       struct netlink_ext_ack *extack);
1511 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1512 						      struct nlmsghdr *nlh,
1513 						      u16 flags,
1514 						      struct netlink_ext_ack *extack);
1515 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1516 						      u32 pid, u32 seq,
1517 						      struct net_device *dev,
1518 						      u32 filter_mask,
1519 						      int nlflags);
1520 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1521 						      struct nlmsghdr *nlh,
1522 						      u16 flags);
1523 	int			(*ndo_change_carrier)(struct net_device *dev,
1524 						      bool new_carrier);
1525 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1526 							struct netdev_phys_item_id *ppid);
1527 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1528 							  struct netdev_phys_item_id *ppid);
1529 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1530 							  char *name, size_t len);
1531 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1532 							struct net_device *dev);
1533 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1534 							void *priv);
1535 
1536 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1537 						      int queue_index,
1538 						      u32 maxrate);
1539 	int			(*ndo_get_iflink)(const struct net_device *dev);
1540 	int			(*ndo_change_proto_down)(struct net_device *dev,
1541 							 bool proto_down);
1542 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1543 						       struct sk_buff *skb);
1544 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1545 						       int needed_headroom);
1546 	int			(*ndo_bpf)(struct net_device *dev,
1547 					   struct netdev_bpf *bpf);
1548 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1549 						struct xdp_frame **xdp,
1550 						u32 flags);
1551 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1552 							  struct xdp_buff *xdp);
1553 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1554 						  u32 queue_id, u32 flags);
1555 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1556 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1557 						  struct ip_tunnel_parm *p, int cmd);
1558 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1559 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1560                                                          struct net_device_path *path);
1561 };
1562 
1563 /**
1564  * enum netdev_priv_flags - &struct net_device priv_flags
1565  *
1566  * These are the &struct net_device, they are only set internally
1567  * by drivers and used in the kernel. These flags are invisible to
1568  * userspace; this means that the order of these flags can change
1569  * during any kernel release.
1570  *
1571  * You should have a pretty good reason to be extending these flags.
1572  *
1573  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1574  * @IFF_EBRIDGE: Ethernet bridging device
1575  * @IFF_BONDING: bonding master or slave
1576  * @IFF_ISATAP: ISATAP interface (RFC4214)
1577  * @IFF_WAN_HDLC: WAN HDLC device
1578  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1579  *	release skb->dst
1580  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1581  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1582  * @IFF_MACVLAN_PORT: device used as macvlan port
1583  * @IFF_BRIDGE_PORT: device used as bridge port
1584  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1585  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1586  * @IFF_UNICAST_FLT: Supports unicast filtering
1587  * @IFF_TEAM_PORT: device used as team port
1588  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1589  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1590  *	change when it's running
1591  * @IFF_MACVLAN: Macvlan device
1592  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1593  *	underlying stacked devices
1594  * @IFF_L3MDEV_MASTER: device is an L3 master device
1595  * @IFF_NO_QUEUE: device can run without qdisc attached
1596  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1597  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1598  * @IFF_TEAM: device is a team device
1599  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1600  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1601  *	entity (i.e. the master device for bridged veth)
1602  * @IFF_MACSEC: device is a MACsec device
1603  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1604  * @IFF_FAILOVER: device is a failover master device
1605  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1606  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1607  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1608  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1609  *	skb_headlen(skb) == 0 (data starts from frag0)
1610  */
1611 enum netdev_priv_flags {
1612 	IFF_802_1Q_VLAN			= 1<<0,
1613 	IFF_EBRIDGE			= 1<<1,
1614 	IFF_BONDING			= 1<<2,
1615 	IFF_ISATAP			= 1<<3,
1616 	IFF_WAN_HDLC			= 1<<4,
1617 	IFF_XMIT_DST_RELEASE		= 1<<5,
1618 	IFF_DONT_BRIDGE			= 1<<6,
1619 	IFF_DISABLE_NETPOLL		= 1<<7,
1620 	IFF_MACVLAN_PORT		= 1<<8,
1621 	IFF_BRIDGE_PORT			= 1<<9,
1622 	IFF_OVS_DATAPATH		= 1<<10,
1623 	IFF_TX_SKB_SHARING		= 1<<11,
1624 	IFF_UNICAST_FLT			= 1<<12,
1625 	IFF_TEAM_PORT			= 1<<13,
1626 	IFF_SUPP_NOFCS			= 1<<14,
1627 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1628 	IFF_MACVLAN			= 1<<16,
1629 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1630 	IFF_L3MDEV_MASTER		= 1<<18,
1631 	IFF_NO_QUEUE			= 1<<19,
1632 	IFF_OPENVSWITCH			= 1<<20,
1633 	IFF_L3MDEV_SLAVE		= 1<<21,
1634 	IFF_TEAM			= 1<<22,
1635 	IFF_RXFH_CONFIGURED		= 1<<23,
1636 	IFF_PHONY_HEADROOM		= 1<<24,
1637 	IFF_MACSEC			= 1<<25,
1638 	IFF_NO_RX_HANDLER		= 1<<26,
1639 	IFF_FAILOVER			= 1<<27,
1640 	IFF_FAILOVER_SLAVE		= 1<<28,
1641 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1642 	IFF_LIVE_RENAME_OK		= 1<<30,
1643 	IFF_TX_SKB_NO_LINEAR		= 1<<31,
1644 };
1645 
1646 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1647 #define IFF_EBRIDGE			IFF_EBRIDGE
1648 #define IFF_BONDING			IFF_BONDING
1649 #define IFF_ISATAP			IFF_ISATAP
1650 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1651 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1652 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1653 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1654 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1655 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1656 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1657 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1658 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1659 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1660 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1661 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1662 #define IFF_MACVLAN			IFF_MACVLAN
1663 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1664 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1665 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1666 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1667 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1668 #define IFF_TEAM			IFF_TEAM
1669 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1670 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1671 #define IFF_MACSEC			IFF_MACSEC
1672 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1673 #define IFF_FAILOVER			IFF_FAILOVER
1674 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1675 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1676 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1677 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1678 
1679 /* Specifies the type of the struct net_device::ml_priv pointer */
1680 enum netdev_ml_priv_type {
1681 	ML_PRIV_NONE,
1682 	ML_PRIV_CAN,
1683 };
1684 
1685 /**
1686  *	struct net_device - The DEVICE structure.
1687  *
1688  *	Actually, this whole structure is a big mistake.  It mixes I/O
1689  *	data with strictly "high-level" data, and it has to know about
1690  *	almost every data structure used in the INET module.
1691  *
1692  *	@name:	This is the first field of the "visible" part of this structure
1693  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1694  *		of the interface.
1695  *
1696  *	@name_node:	Name hashlist node
1697  *	@ifalias:	SNMP alias
1698  *	@mem_end:	Shared memory end
1699  *	@mem_start:	Shared memory start
1700  *	@base_addr:	Device I/O address
1701  *	@irq:		Device IRQ number
1702  *
1703  *	@state:		Generic network queuing layer state, see netdev_state_t
1704  *	@dev_list:	The global list of network devices
1705  *	@napi_list:	List entry used for polling NAPI devices
1706  *	@unreg_list:	List entry  when we are unregistering the
1707  *			device; see the function unregister_netdev
1708  *	@close_list:	List entry used when we are closing the device
1709  *	@ptype_all:     Device-specific packet handlers for all protocols
1710  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1711  *
1712  *	@adj_list:	Directly linked devices, like slaves for bonding
1713  *	@features:	Currently active device features
1714  *	@hw_features:	User-changeable features
1715  *
1716  *	@wanted_features:	User-requested features
1717  *	@vlan_features:		Mask of features inheritable by VLAN devices
1718  *
1719  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1720  *				This field indicates what encapsulation
1721  *				offloads the hardware is capable of doing,
1722  *				and drivers will need to set them appropriately.
1723  *
1724  *	@mpls_features:	Mask of features inheritable by MPLS
1725  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1726  *
1727  *	@ifindex:	interface index
1728  *	@group:		The group the device belongs to
1729  *
1730  *	@stats:		Statistics struct, which was left as a legacy, use
1731  *			rtnl_link_stats64 instead
1732  *
1733  *	@rx_dropped:	Dropped packets by core network,
1734  *			do not use this in drivers
1735  *	@tx_dropped:	Dropped packets by core network,
1736  *			do not use this in drivers
1737  *	@rx_nohandler:	nohandler dropped packets by core network on
1738  *			inactive devices, do not use this in drivers
1739  *	@carrier_up_count:	Number of times the carrier has been up
1740  *	@carrier_down_count:	Number of times the carrier has been down
1741  *
1742  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1743  *				instead of ioctl,
1744  *				see <net/iw_handler.h> for details.
1745  *	@wireless_data:	Instance data managed by the core of wireless extensions
1746  *
1747  *	@netdev_ops:	Includes several pointers to callbacks,
1748  *			if one wants to override the ndo_*() functions
1749  *	@ethtool_ops:	Management operations
1750  *	@l3mdev_ops:	Layer 3 master device operations
1751  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1752  *			discovery handling. Necessary for e.g. 6LoWPAN.
1753  *	@xfrmdev_ops:	Transformation offload operations
1754  *	@tlsdev_ops:	Transport Layer Security offload operations
1755  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1756  *			of Layer 2 headers.
1757  *
1758  *	@flags:		Interface flags (a la BSD)
1759  *	@priv_flags:	Like 'flags' but invisible to userspace,
1760  *			see if.h for the definitions
1761  *	@gflags:	Global flags ( kept as legacy )
1762  *	@padded:	How much padding added by alloc_netdev()
1763  *	@operstate:	RFC2863 operstate
1764  *	@link_mode:	Mapping policy to operstate
1765  *	@if_port:	Selectable AUI, TP, ...
1766  *	@dma:		DMA channel
1767  *	@mtu:		Interface MTU value
1768  *	@min_mtu:	Interface Minimum MTU value
1769  *	@max_mtu:	Interface Maximum MTU value
1770  *	@type:		Interface hardware type
1771  *	@hard_header_len: Maximum hardware header length.
1772  *	@min_header_len:  Minimum hardware header length
1773  *
1774  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1775  *			  cases can this be guaranteed
1776  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1777  *			  cases can this be guaranteed. Some cases also use
1778  *			  LL_MAX_HEADER instead to allocate the skb
1779  *
1780  *	interface address info:
1781  *
1782  * 	@perm_addr:		Permanent hw address
1783  * 	@addr_assign_type:	Hw address assignment type
1784  * 	@addr_len:		Hardware address length
1785  *	@upper_level:		Maximum depth level of upper devices.
1786  *	@lower_level:		Maximum depth level of lower devices.
1787  *	@neigh_priv_len:	Used in neigh_alloc()
1788  * 	@dev_id:		Used to differentiate devices that share
1789  * 				the same link layer address
1790  * 	@dev_port:		Used to differentiate devices that share
1791  * 				the same function
1792  *	@addr_list_lock:	XXX: need comments on this one
1793  *	@name_assign_type:	network interface name assignment type
1794  *	@uc_promisc:		Counter that indicates promiscuous mode
1795  *				has been enabled due to the need to listen to
1796  *				additional unicast addresses in a device that
1797  *				does not implement ndo_set_rx_mode()
1798  *	@uc:			unicast mac addresses
1799  *	@mc:			multicast mac addresses
1800  *	@dev_addrs:		list of device hw addresses
1801  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1802  *	@promiscuity:		Number of times the NIC is told to work in
1803  *				promiscuous mode; if it becomes 0 the NIC will
1804  *				exit promiscuous mode
1805  *	@allmulti:		Counter, enables or disables allmulticast mode
1806  *
1807  *	@vlan_info:	VLAN info
1808  *	@dsa_ptr:	dsa specific data
1809  *	@tipc_ptr:	TIPC specific data
1810  *	@atalk_ptr:	AppleTalk link
1811  *	@ip_ptr:	IPv4 specific data
1812  *	@dn_ptr:	DECnet specific data
1813  *	@ip6_ptr:	IPv6 specific data
1814  *	@ax25_ptr:	AX.25 specific data
1815  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1816  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1817  *			 device struct
1818  *	@mpls_ptr:	mpls_dev struct pointer
1819  *	@mctp_ptr:	MCTP specific data
1820  *
1821  *	@dev_addr:	Hw address (before bcast,
1822  *			because most packets are unicast)
1823  *
1824  *	@_rx:			Array of RX queues
1825  *	@num_rx_queues:		Number of RX queues
1826  *				allocated at register_netdev() time
1827  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1828  *	@xdp_prog:		XDP sockets filter program pointer
1829  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1830  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1831  *				allow to avoid NIC hard IRQ, on busy queues.
1832  *
1833  *	@rx_handler:		handler for received packets
1834  *	@rx_handler_data: 	XXX: need comments on this one
1835  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1836  *				ingress processing
1837  *	@ingress_queue:		XXX: need comments on this one
1838  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1839  *	@broadcast:		hw bcast address
1840  *
1841  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1842  *			indexed by RX queue number. Assigned by driver.
1843  *			This must only be set if the ndo_rx_flow_steer
1844  *			operation is defined
1845  *	@index_hlist:		Device index hash chain
1846  *
1847  *	@_tx:			Array of TX queues
1848  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1849  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1850  *	@qdisc:			Root qdisc from userspace point of view
1851  *	@tx_queue_len:		Max frames per queue allowed
1852  *	@tx_global_lock: 	XXX: need comments on this one
1853  *	@xdp_bulkq:		XDP device bulk queue
1854  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1855  *
1856  *	@xps_maps:	XXX: need comments on this one
1857  *	@miniq_egress:		clsact qdisc specific data for
1858  *				egress processing
1859  *	@qdisc_hash:		qdisc hash table
1860  *	@watchdog_timeo:	Represents the timeout that is used by
1861  *				the watchdog (see dev_watchdog())
1862  *	@watchdog_timer:	List of timers
1863  *
1864  *	@proto_down_reason:	reason a netdev interface is held down
1865  *	@pcpu_refcnt:		Number of references to this device
1866  *	@dev_refcnt:		Number of references to this device
1867  *	@todo_list:		Delayed register/unregister
1868  *	@link_watch_list:	XXX: need comments on this one
1869  *
1870  *	@reg_state:		Register/unregister state machine
1871  *	@dismantle:		Device is going to be freed
1872  *	@rtnl_link_state:	This enum represents the phases of creating
1873  *				a new link
1874  *
1875  *	@needs_free_netdev:	Should unregister perform free_netdev?
1876  *	@priv_destructor:	Called from unregister
1877  *	@npinfo:		XXX: need comments on this one
1878  * 	@nd_net:		Network namespace this network device is inside
1879  *
1880  * 	@ml_priv:	Mid-layer private
1881  *	@ml_priv_type:  Mid-layer private type
1882  * 	@lstats:	Loopback statistics
1883  * 	@tstats:	Tunnel statistics
1884  * 	@dstats:	Dummy statistics
1885  * 	@vstats:	Virtual ethernet statistics
1886  *
1887  *	@garp_port:	GARP
1888  *	@mrp_port:	MRP
1889  *
1890  *	@dev:		Class/net/name entry
1891  *	@sysfs_groups:	Space for optional device, statistics and wireless
1892  *			sysfs groups
1893  *
1894  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1895  *	@rtnl_link_ops:	Rtnl_link_ops
1896  *
1897  *	@gso_max_size:	Maximum size of generic segmentation offload
1898  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1899  *			NIC for GSO
1900  *
1901  *	@dcbnl_ops:	Data Center Bridging netlink ops
1902  *	@num_tc:	Number of traffic classes in the net device
1903  *	@tc_to_txq:	XXX: need comments on this one
1904  *	@prio_tc_map:	XXX: need comments on this one
1905  *
1906  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1907  *
1908  *	@priomap:	XXX: need comments on this one
1909  *	@phydev:	Physical device may attach itself
1910  *			for hardware timestamping
1911  *	@sfp_bus:	attached &struct sfp_bus structure.
1912  *
1913  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1914  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1915  *
1916  *	@proto_down:	protocol port state information can be sent to the
1917  *			switch driver and used to set the phys state of the
1918  *			switch port.
1919  *
1920  *	@wol_enabled:	Wake-on-LAN is enabled
1921  *
1922  *	@threaded:	napi threaded mode is enabled
1923  *
1924  *	@net_notifier_list:	List of per-net netdev notifier block
1925  *				that follow this device when it is moved
1926  *				to another network namespace.
1927  *
1928  *	@macsec_ops:    MACsec offloading ops
1929  *
1930  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1931  *				offload capabilities of the device
1932  *	@udp_tunnel_nic:	UDP tunnel offload state
1933  *	@xdp_state:		stores info on attached XDP BPF programs
1934  *
1935  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1936  *			dev->addr_list_lock.
1937  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1938  *			keep a list of interfaces to be deleted.
1939  *
1940  *	FIXME: cleanup struct net_device such that network protocol info
1941  *	moves out.
1942  */
1943 
1944 struct net_device {
1945 	char			name[IFNAMSIZ];
1946 	struct netdev_name_node	*name_node;
1947 	struct dev_ifalias	__rcu *ifalias;
1948 	/*
1949 	 *	I/O specific fields
1950 	 *	FIXME: Merge these and struct ifmap into one
1951 	 */
1952 	unsigned long		mem_end;
1953 	unsigned long		mem_start;
1954 	unsigned long		base_addr;
1955 
1956 	/*
1957 	 *	Some hardware also needs these fields (state,dev_list,
1958 	 *	napi_list,unreg_list,close_list) but they are not
1959 	 *	part of the usual set specified in Space.c.
1960 	 */
1961 
1962 	unsigned long		state;
1963 
1964 	struct list_head	dev_list;
1965 	struct list_head	napi_list;
1966 	struct list_head	unreg_list;
1967 	struct list_head	close_list;
1968 	struct list_head	ptype_all;
1969 	struct list_head	ptype_specific;
1970 
1971 	struct {
1972 		struct list_head upper;
1973 		struct list_head lower;
1974 	} adj_list;
1975 
1976 	/* Read-mostly cache-line for fast-path access */
1977 	unsigned int		flags;
1978 	unsigned int		priv_flags;
1979 	const struct net_device_ops *netdev_ops;
1980 	int			ifindex;
1981 	unsigned short		gflags;
1982 	unsigned short		hard_header_len;
1983 
1984 	/* Note : dev->mtu is often read without holding a lock.
1985 	 * Writers usually hold RTNL.
1986 	 * It is recommended to use READ_ONCE() to annotate the reads,
1987 	 * and to use WRITE_ONCE() to annotate the writes.
1988 	 */
1989 	unsigned int		mtu;
1990 	unsigned short		needed_headroom;
1991 	unsigned short		needed_tailroom;
1992 
1993 	netdev_features_t	features;
1994 	netdev_features_t	hw_features;
1995 	netdev_features_t	wanted_features;
1996 	netdev_features_t	vlan_features;
1997 	netdev_features_t	hw_enc_features;
1998 	netdev_features_t	mpls_features;
1999 	netdev_features_t	gso_partial_features;
2000 
2001 	unsigned int		min_mtu;
2002 	unsigned int		max_mtu;
2003 	unsigned short		type;
2004 	unsigned char		min_header_len;
2005 	unsigned char		name_assign_type;
2006 
2007 	int			group;
2008 
2009 	struct net_device_stats	stats; /* not used by modern drivers */
2010 
2011 	atomic_long_t		rx_dropped;
2012 	atomic_long_t		tx_dropped;
2013 	atomic_long_t		rx_nohandler;
2014 
2015 	/* Stats to monitor link on/off, flapping */
2016 	atomic_t		carrier_up_count;
2017 	atomic_t		carrier_down_count;
2018 
2019 #ifdef CONFIG_WIRELESS_EXT
2020 	const struct iw_handler_def *wireless_handlers;
2021 	struct iw_public_data	*wireless_data;
2022 #endif
2023 	const struct ethtool_ops *ethtool_ops;
2024 #ifdef CONFIG_NET_L3_MASTER_DEV
2025 	const struct l3mdev_ops	*l3mdev_ops;
2026 #endif
2027 #if IS_ENABLED(CONFIG_IPV6)
2028 	const struct ndisc_ops *ndisc_ops;
2029 #endif
2030 
2031 #ifdef CONFIG_XFRM_OFFLOAD
2032 	const struct xfrmdev_ops *xfrmdev_ops;
2033 #endif
2034 
2035 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2036 	const struct tlsdev_ops *tlsdev_ops;
2037 #endif
2038 
2039 	const struct header_ops *header_ops;
2040 
2041 	unsigned char		operstate;
2042 	unsigned char		link_mode;
2043 
2044 	unsigned char		if_port;
2045 	unsigned char		dma;
2046 
2047 	/* Interface address info. */
2048 	unsigned char		perm_addr[MAX_ADDR_LEN];
2049 	unsigned char		addr_assign_type;
2050 	unsigned char		addr_len;
2051 	unsigned char		upper_level;
2052 	unsigned char		lower_level;
2053 
2054 	unsigned short		neigh_priv_len;
2055 	unsigned short          dev_id;
2056 	unsigned short          dev_port;
2057 	unsigned short		padded;
2058 
2059 	spinlock_t		addr_list_lock;
2060 	int			irq;
2061 
2062 	struct netdev_hw_addr_list	uc;
2063 	struct netdev_hw_addr_list	mc;
2064 	struct netdev_hw_addr_list	dev_addrs;
2065 
2066 #ifdef CONFIG_SYSFS
2067 	struct kset		*queues_kset;
2068 #endif
2069 #ifdef CONFIG_LOCKDEP
2070 	struct list_head	unlink_list;
2071 #endif
2072 	unsigned int		promiscuity;
2073 	unsigned int		allmulti;
2074 	bool			uc_promisc;
2075 #ifdef CONFIG_LOCKDEP
2076 	unsigned char		nested_level;
2077 #endif
2078 
2079 
2080 	/* Protocol-specific pointers */
2081 
2082 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2083 	struct vlan_info __rcu	*vlan_info;
2084 #endif
2085 #if IS_ENABLED(CONFIG_NET_DSA)
2086 	struct dsa_port		*dsa_ptr;
2087 #endif
2088 #if IS_ENABLED(CONFIG_TIPC)
2089 	struct tipc_bearer __rcu *tipc_ptr;
2090 #endif
2091 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2092 	void 			*atalk_ptr;
2093 #endif
2094 	struct in_device __rcu	*ip_ptr;
2095 #if IS_ENABLED(CONFIG_DECNET)
2096 	struct dn_dev __rcu     *dn_ptr;
2097 #endif
2098 	struct inet6_dev __rcu	*ip6_ptr;
2099 #if IS_ENABLED(CONFIG_AX25)
2100 	void			*ax25_ptr;
2101 #endif
2102 	struct wireless_dev	*ieee80211_ptr;
2103 	struct wpan_dev		*ieee802154_ptr;
2104 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2105 	struct mpls_dev __rcu	*mpls_ptr;
2106 #endif
2107 #if IS_ENABLED(CONFIG_MCTP)
2108 	struct mctp_dev __rcu	*mctp_ptr;
2109 #endif
2110 
2111 /*
2112  * Cache lines mostly used on receive path (including eth_type_trans())
2113  */
2114 	/* Interface address info used in eth_type_trans() */
2115 	unsigned char		*dev_addr;
2116 
2117 	struct netdev_rx_queue	*_rx;
2118 	unsigned int		num_rx_queues;
2119 	unsigned int		real_num_rx_queues;
2120 
2121 	struct bpf_prog __rcu	*xdp_prog;
2122 	unsigned long		gro_flush_timeout;
2123 	int			napi_defer_hard_irqs;
2124 	rx_handler_func_t __rcu	*rx_handler;
2125 	void __rcu		*rx_handler_data;
2126 
2127 #ifdef CONFIG_NET_CLS_ACT
2128 	struct mini_Qdisc __rcu	*miniq_ingress;
2129 #endif
2130 	struct netdev_queue __rcu *ingress_queue;
2131 #ifdef CONFIG_NETFILTER_INGRESS
2132 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2133 #endif
2134 
2135 	unsigned char		broadcast[MAX_ADDR_LEN];
2136 #ifdef CONFIG_RFS_ACCEL
2137 	struct cpu_rmap		*rx_cpu_rmap;
2138 #endif
2139 	struct hlist_node	index_hlist;
2140 
2141 /*
2142  * Cache lines mostly used on transmit path
2143  */
2144 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2145 	unsigned int		num_tx_queues;
2146 	unsigned int		real_num_tx_queues;
2147 	struct Qdisc		*qdisc;
2148 	unsigned int		tx_queue_len;
2149 	spinlock_t		tx_global_lock;
2150 
2151 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2152 
2153 #ifdef CONFIG_XPS
2154 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2155 #endif
2156 #ifdef CONFIG_NET_CLS_ACT
2157 	struct mini_Qdisc __rcu	*miniq_egress;
2158 #endif
2159 
2160 #ifdef CONFIG_NET_SCHED
2161 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2162 #endif
2163 	/* These may be needed for future network-power-down code. */
2164 	struct timer_list	watchdog_timer;
2165 	int			watchdog_timeo;
2166 
2167 	u32                     proto_down_reason;
2168 
2169 	struct list_head	todo_list;
2170 
2171 #ifdef CONFIG_PCPU_DEV_REFCNT
2172 	int __percpu		*pcpu_refcnt;
2173 #else
2174 	refcount_t		dev_refcnt;
2175 #endif
2176 
2177 	struct list_head	link_watch_list;
2178 
2179 	enum { NETREG_UNINITIALIZED=0,
2180 	       NETREG_REGISTERED,	/* completed register_netdevice */
2181 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2182 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2183 	       NETREG_RELEASED,		/* called free_netdev */
2184 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2185 	} reg_state:8;
2186 
2187 	bool dismantle;
2188 
2189 	enum {
2190 		RTNL_LINK_INITIALIZED,
2191 		RTNL_LINK_INITIALIZING,
2192 	} rtnl_link_state:16;
2193 
2194 	bool needs_free_netdev;
2195 	void (*priv_destructor)(struct net_device *dev);
2196 
2197 #ifdef CONFIG_NETPOLL
2198 	struct netpoll_info __rcu	*npinfo;
2199 #endif
2200 
2201 	possible_net_t			nd_net;
2202 
2203 	/* mid-layer private */
2204 	void				*ml_priv;
2205 	enum netdev_ml_priv_type	ml_priv_type;
2206 
2207 	union {
2208 		struct pcpu_lstats __percpu		*lstats;
2209 		struct pcpu_sw_netstats __percpu	*tstats;
2210 		struct pcpu_dstats __percpu		*dstats;
2211 	};
2212 
2213 #if IS_ENABLED(CONFIG_GARP)
2214 	struct garp_port __rcu	*garp_port;
2215 #endif
2216 #if IS_ENABLED(CONFIG_MRP)
2217 	struct mrp_port __rcu	*mrp_port;
2218 #endif
2219 
2220 	struct device		dev;
2221 	const struct attribute_group *sysfs_groups[4];
2222 	const struct attribute_group *sysfs_rx_queue_group;
2223 
2224 	const struct rtnl_link_ops *rtnl_link_ops;
2225 
2226 	/* for setting kernel sock attribute on TCP connection setup */
2227 #define GSO_MAX_SIZE		65536
2228 	unsigned int		gso_max_size;
2229 #define GSO_MAX_SEGS		65535
2230 	u16			gso_max_segs;
2231 
2232 #ifdef CONFIG_DCB
2233 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2234 #endif
2235 	s16			num_tc;
2236 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2237 	u8			prio_tc_map[TC_BITMASK + 1];
2238 
2239 #if IS_ENABLED(CONFIG_FCOE)
2240 	unsigned int		fcoe_ddp_xid;
2241 #endif
2242 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2243 	struct netprio_map __rcu *priomap;
2244 #endif
2245 	struct phy_device	*phydev;
2246 	struct sfp_bus		*sfp_bus;
2247 	struct lock_class_key	*qdisc_tx_busylock;
2248 	struct lock_class_key	*qdisc_running_key;
2249 	bool			proto_down;
2250 	unsigned		wol_enabled:1;
2251 	unsigned		threaded:1;
2252 
2253 	struct list_head	net_notifier_list;
2254 
2255 #if IS_ENABLED(CONFIG_MACSEC)
2256 	/* MACsec management functions */
2257 	const struct macsec_ops *macsec_ops;
2258 #endif
2259 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2260 	struct udp_tunnel_nic	*udp_tunnel_nic;
2261 
2262 	/* protected by rtnl_lock */
2263 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2264 };
2265 #define to_net_dev(d) container_of(d, struct net_device, dev)
2266 
2267 static inline bool netif_elide_gro(const struct net_device *dev)
2268 {
2269 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2270 		return true;
2271 	return false;
2272 }
2273 
2274 #define	NETDEV_ALIGN		32
2275 
2276 static inline
2277 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2278 {
2279 	return dev->prio_tc_map[prio & TC_BITMASK];
2280 }
2281 
2282 static inline
2283 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2284 {
2285 	if (tc >= dev->num_tc)
2286 		return -EINVAL;
2287 
2288 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2289 	return 0;
2290 }
2291 
2292 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2293 void netdev_reset_tc(struct net_device *dev);
2294 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2295 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2296 
2297 static inline
2298 int netdev_get_num_tc(struct net_device *dev)
2299 {
2300 	return dev->num_tc;
2301 }
2302 
2303 static inline void net_prefetch(void *p)
2304 {
2305 	prefetch(p);
2306 #if L1_CACHE_BYTES < 128
2307 	prefetch((u8 *)p + L1_CACHE_BYTES);
2308 #endif
2309 }
2310 
2311 static inline void net_prefetchw(void *p)
2312 {
2313 	prefetchw(p);
2314 #if L1_CACHE_BYTES < 128
2315 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2316 #endif
2317 }
2318 
2319 void netdev_unbind_sb_channel(struct net_device *dev,
2320 			      struct net_device *sb_dev);
2321 int netdev_bind_sb_channel_queue(struct net_device *dev,
2322 				 struct net_device *sb_dev,
2323 				 u8 tc, u16 count, u16 offset);
2324 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2325 static inline int netdev_get_sb_channel(struct net_device *dev)
2326 {
2327 	return max_t(int, -dev->num_tc, 0);
2328 }
2329 
2330 static inline
2331 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2332 					 unsigned int index)
2333 {
2334 	return &dev->_tx[index];
2335 }
2336 
2337 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2338 						    const struct sk_buff *skb)
2339 {
2340 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2341 }
2342 
2343 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2344 					    void (*f)(struct net_device *,
2345 						      struct netdev_queue *,
2346 						      void *),
2347 					    void *arg)
2348 {
2349 	unsigned int i;
2350 
2351 	for (i = 0; i < dev->num_tx_queues; i++)
2352 		f(dev, &dev->_tx[i], arg);
2353 }
2354 
2355 #define netdev_lockdep_set_classes(dev)				\
2356 {								\
2357 	static struct lock_class_key qdisc_tx_busylock_key;	\
2358 	static struct lock_class_key qdisc_running_key;		\
2359 	static struct lock_class_key qdisc_xmit_lock_key;	\
2360 	static struct lock_class_key dev_addr_list_lock_key;	\
2361 	unsigned int i;						\
2362 								\
2363 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2364 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2365 	lockdep_set_class(&(dev)->addr_list_lock,		\
2366 			  &dev_addr_list_lock_key);		\
2367 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2368 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2369 				  &qdisc_xmit_lock_key);	\
2370 }
2371 
2372 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2373 		     struct net_device *sb_dev);
2374 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2375 					 struct sk_buff *skb,
2376 					 struct net_device *sb_dev);
2377 
2378 /* returns the headroom that the master device needs to take in account
2379  * when forwarding to this dev
2380  */
2381 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2382 {
2383 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2384 }
2385 
2386 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2387 {
2388 	if (dev->netdev_ops->ndo_set_rx_headroom)
2389 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2390 }
2391 
2392 /* set the device rx headroom to the dev's default */
2393 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2394 {
2395 	netdev_set_rx_headroom(dev, -1);
2396 }
2397 
2398 static inline void *netdev_get_ml_priv(struct net_device *dev,
2399 				       enum netdev_ml_priv_type type)
2400 {
2401 	if (dev->ml_priv_type != type)
2402 		return NULL;
2403 
2404 	return dev->ml_priv;
2405 }
2406 
2407 static inline void netdev_set_ml_priv(struct net_device *dev,
2408 				      void *ml_priv,
2409 				      enum netdev_ml_priv_type type)
2410 {
2411 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2412 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2413 	     dev->ml_priv_type, type);
2414 	WARN(!dev->ml_priv_type && dev->ml_priv,
2415 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2416 
2417 	dev->ml_priv = ml_priv;
2418 	dev->ml_priv_type = type;
2419 }
2420 
2421 /*
2422  * Net namespace inlines
2423  */
2424 static inline
2425 struct net *dev_net(const struct net_device *dev)
2426 {
2427 	return read_pnet(&dev->nd_net);
2428 }
2429 
2430 static inline
2431 void dev_net_set(struct net_device *dev, struct net *net)
2432 {
2433 	write_pnet(&dev->nd_net, net);
2434 }
2435 
2436 /**
2437  *	netdev_priv - access network device private data
2438  *	@dev: network device
2439  *
2440  * Get network device private data
2441  */
2442 static inline void *netdev_priv(const struct net_device *dev)
2443 {
2444 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2445 }
2446 
2447 /* Set the sysfs physical device reference for the network logical device
2448  * if set prior to registration will cause a symlink during initialization.
2449  */
2450 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2451 
2452 /* Set the sysfs device type for the network logical device to allow
2453  * fine-grained identification of different network device types. For
2454  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2455  */
2456 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2457 
2458 /* Default NAPI poll() weight
2459  * Device drivers are strongly advised to not use bigger value
2460  */
2461 #define NAPI_POLL_WEIGHT 64
2462 
2463 /**
2464  *	netif_napi_add - initialize a NAPI context
2465  *	@dev:  network device
2466  *	@napi: NAPI context
2467  *	@poll: polling function
2468  *	@weight: default weight
2469  *
2470  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2471  * *any* of the other NAPI-related functions.
2472  */
2473 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2474 		    int (*poll)(struct napi_struct *, int), int weight);
2475 
2476 /**
2477  *	netif_tx_napi_add - initialize a NAPI context
2478  *	@dev:  network device
2479  *	@napi: NAPI context
2480  *	@poll: polling function
2481  *	@weight: default weight
2482  *
2483  * This variant of netif_napi_add() should be used from drivers using NAPI
2484  * to exclusively poll a TX queue.
2485  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2486  */
2487 static inline void netif_tx_napi_add(struct net_device *dev,
2488 				     struct napi_struct *napi,
2489 				     int (*poll)(struct napi_struct *, int),
2490 				     int weight)
2491 {
2492 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2493 	netif_napi_add(dev, napi, poll, weight);
2494 }
2495 
2496 /**
2497  *  __netif_napi_del - remove a NAPI context
2498  *  @napi: NAPI context
2499  *
2500  * Warning: caller must observe RCU grace period before freeing memory
2501  * containing @napi. Drivers might want to call this helper to combine
2502  * all the needed RCU grace periods into a single one.
2503  */
2504 void __netif_napi_del(struct napi_struct *napi);
2505 
2506 /**
2507  *  netif_napi_del - remove a NAPI context
2508  *  @napi: NAPI context
2509  *
2510  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2511  */
2512 static inline void netif_napi_del(struct napi_struct *napi)
2513 {
2514 	__netif_napi_del(napi);
2515 	synchronize_net();
2516 }
2517 
2518 struct napi_gro_cb {
2519 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2520 	void	*frag0;
2521 
2522 	/* Length of frag0. */
2523 	unsigned int frag0_len;
2524 
2525 	/* This indicates where we are processing relative to skb->data. */
2526 	int	data_offset;
2527 
2528 	/* This is non-zero if the packet cannot be merged with the new skb. */
2529 	u16	flush;
2530 
2531 	/* Save the IP ID here and check when we get to the transport layer */
2532 	u16	flush_id;
2533 
2534 	/* Number of segments aggregated. */
2535 	u16	count;
2536 
2537 	/* Start offset for remote checksum offload */
2538 	u16	gro_remcsum_start;
2539 
2540 	/* jiffies when first packet was created/queued */
2541 	unsigned long age;
2542 
2543 	/* Used in ipv6_gro_receive() and foo-over-udp */
2544 	u16	proto;
2545 
2546 	/* This is non-zero if the packet may be of the same flow. */
2547 	u8	same_flow:1;
2548 
2549 	/* Used in tunnel GRO receive */
2550 	u8	encap_mark:1;
2551 
2552 	/* GRO checksum is valid */
2553 	u8	csum_valid:1;
2554 
2555 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2556 	u8	csum_cnt:3;
2557 
2558 	/* Free the skb? */
2559 	u8	free:2;
2560 #define NAPI_GRO_FREE		  1
2561 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2562 
2563 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2564 	u8	is_ipv6:1;
2565 
2566 	/* Used in GRE, set in fou/gue_gro_receive */
2567 	u8	is_fou:1;
2568 
2569 	/* Used to determine if flush_id can be ignored */
2570 	u8	is_atomic:1;
2571 
2572 	/* Number of gro_receive callbacks this packet already went through */
2573 	u8 recursion_counter:4;
2574 
2575 	/* GRO is done by frag_list pointer chaining. */
2576 	u8	is_flist:1;
2577 
2578 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2579 	__wsum	csum;
2580 
2581 	/* used in skb_gro_receive() slow path */
2582 	struct sk_buff *last;
2583 };
2584 
2585 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2586 
2587 #define GRO_RECURSION_LIMIT 15
2588 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2589 {
2590 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2591 }
2592 
2593 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2594 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2595 					       struct list_head *head,
2596 					       struct sk_buff *skb)
2597 {
2598 	if (unlikely(gro_recursion_inc_test(skb))) {
2599 		NAPI_GRO_CB(skb)->flush |= 1;
2600 		return NULL;
2601 	}
2602 
2603 	return cb(head, skb);
2604 }
2605 
2606 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2607 					    struct sk_buff *);
2608 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2609 						  struct sock *sk,
2610 						  struct list_head *head,
2611 						  struct sk_buff *skb)
2612 {
2613 	if (unlikely(gro_recursion_inc_test(skb))) {
2614 		NAPI_GRO_CB(skb)->flush |= 1;
2615 		return NULL;
2616 	}
2617 
2618 	return cb(sk, head, skb);
2619 }
2620 
2621 struct packet_type {
2622 	__be16			type;	/* This is really htons(ether_type). */
2623 	bool			ignore_outgoing;
2624 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2625 	int			(*func) (struct sk_buff *,
2626 					 struct net_device *,
2627 					 struct packet_type *,
2628 					 struct net_device *);
2629 	void			(*list_func) (struct list_head *,
2630 					      struct packet_type *,
2631 					      struct net_device *);
2632 	bool			(*id_match)(struct packet_type *ptype,
2633 					    struct sock *sk);
2634 	void			*af_packet_priv;
2635 	struct list_head	list;
2636 };
2637 
2638 struct offload_callbacks {
2639 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2640 						netdev_features_t features);
2641 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2642 						struct sk_buff *skb);
2643 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2644 };
2645 
2646 struct packet_offload {
2647 	__be16			 type;	/* This is really htons(ether_type). */
2648 	u16			 priority;
2649 	struct offload_callbacks callbacks;
2650 	struct list_head	 list;
2651 };
2652 
2653 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2654 struct pcpu_sw_netstats {
2655 	u64     rx_packets;
2656 	u64     rx_bytes;
2657 	u64     tx_packets;
2658 	u64     tx_bytes;
2659 	struct u64_stats_sync   syncp;
2660 } __aligned(4 * sizeof(u64));
2661 
2662 struct pcpu_lstats {
2663 	u64_stats_t packets;
2664 	u64_stats_t bytes;
2665 	struct u64_stats_sync syncp;
2666 } __aligned(2 * sizeof(u64));
2667 
2668 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2669 
2670 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2671 {
2672 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2673 
2674 	u64_stats_update_begin(&tstats->syncp);
2675 	tstats->rx_bytes += len;
2676 	tstats->rx_packets++;
2677 	u64_stats_update_end(&tstats->syncp);
2678 }
2679 
2680 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2681 					  unsigned int packets,
2682 					  unsigned int len)
2683 {
2684 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2685 
2686 	u64_stats_update_begin(&tstats->syncp);
2687 	tstats->tx_bytes += len;
2688 	tstats->tx_packets += packets;
2689 	u64_stats_update_end(&tstats->syncp);
2690 }
2691 
2692 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2693 {
2694 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2695 
2696 	u64_stats_update_begin(&lstats->syncp);
2697 	u64_stats_add(&lstats->bytes, len);
2698 	u64_stats_inc(&lstats->packets);
2699 	u64_stats_update_end(&lstats->syncp);
2700 }
2701 
2702 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2703 ({									\
2704 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2705 	if (pcpu_stats)	{						\
2706 		int __cpu;						\
2707 		for_each_possible_cpu(__cpu) {				\
2708 			typeof(type) *stat;				\
2709 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2710 			u64_stats_init(&stat->syncp);			\
2711 		}							\
2712 	}								\
2713 	pcpu_stats;							\
2714 })
2715 
2716 #define netdev_alloc_pcpu_stats(type)					\
2717 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2718 
2719 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2720 ({									\
2721 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2722 	if (pcpu_stats) {						\
2723 		int __cpu;						\
2724 		for_each_possible_cpu(__cpu) {				\
2725 			typeof(type) *stat;				\
2726 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2727 			u64_stats_init(&stat->syncp);			\
2728 		}							\
2729 	}								\
2730 	pcpu_stats;							\
2731 })
2732 
2733 enum netdev_lag_tx_type {
2734 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2735 	NETDEV_LAG_TX_TYPE_RANDOM,
2736 	NETDEV_LAG_TX_TYPE_BROADCAST,
2737 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2738 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2739 	NETDEV_LAG_TX_TYPE_HASH,
2740 };
2741 
2742 enum netdev_lag_hash {
2743 	NETDEV_LAG_HASH_NONE,
2744 	NETDEV_LAG_HASH_L2,
2745 	NETDEV_LAG_HASH_L34,
2746 	NETDEV_LAG_HASH_L23,
2747 	NETDEV_LAG_HASH_E23,
2748 	NETDEV_LAG_HASH_E34,
2749 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2750 	NETDEV_LAG_HASH_UNKNOWN,
2751 };
2752 
2753 struct netdev_lag_upper_info {
2754 	enum netdev_lag_tx_type tx_type;
2755 	enum netdev_lag_hash hash_type;
2756 };
2757 
2758 struct netdev_lag_lower_state_info {
2759 	u8 link_up : 1,
2760 	   tx_enabled : 1;
2761 };
2762 
2763 #include <linux/notifier.h>
2764 
2765 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2766  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2767  * adding new types.
2768  */
2769 enum netdev_cmd {
2770 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2771 	NETDEV_DOWN,
2772 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2773 				   detected a hardware crash and restarted
2774 				   - we can use this eg to kick tcp sessions
2775 				   once done */
2776 	NETDEV_CHANGE,		/* Notify device state change */
2777 	NETDEV_REGISTER,
2778 	NETDEV_UNREGISTER,
2779 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2780 	NETDEV_CHANGEADDR,	/* notify after the address change */
2781 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2782 	NETDEV_GOING_DOWN,
2783 	NETDEV_CHANGENAME,
2784 	NETDEV_FEAT_CHANGE,
2785 	NETDEV_BONDING_FAILOVER,
2786 	NETDEV_PRE_UP,
2787 	NETDEV_PRE_TYPE_CHANGE,
2788 	NETDEV_POST_TYPE_CHANGE,
2789 	NETDEV_POST_INIT,
2790 	NETDEV_RELEASE,
2791 	NETDEV_NOTIFY_PEERS,
2792 	NETDEV_JOIN,
2793 	NETDEV_CHANGEUPPER,
2794 	NETDEV_RESEND_IGMP,
2795 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2796 	NETDEV_CHANGEINFODATA,
2797 	NETDEV_BONDING_INFO,
2798 	NETDEV_PRECHANGEUPPER,
2799 	NETDEV_CHANGELOWERSTATE,
2800 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2801 	NETDEV_UDP_TUNNEL_DROP_INFO,
2802 	NETDEV_CHANGE_TX_QUEUE_LEN,
2803 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2804 	NETDEV_CVLAN_FILTER_DROP_INFO,
2805 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2806 	NETDEV_SVLAN_FILTER_DROP_INFO,
2807 };
2808 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2809 
2810 int register_netdevice_notifier(struct notifier_block *nb);
2811 int unregister_netdevice_notifier(struct notifier_block *nb);
2812 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2813 int unregister_netdevice_notifier_net(struct net *net,
2814 				      struct notifier_block *nb);
2815 int register_netdevice_notifier_dev_net(struct net_device *dev,
2816 					struct notifier_block *nb,
2817 					struct netdev_net_notifier *nn);
2818 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2819 					  struct notifier_block *nb,
2820 					  struct netdev_net_notifier *nn);
2821 
2822 struct netdev_notifier_info {
2823 	struct net_device	*dev;
2824 	struct netlink_ext_ack	*extack;
2825 };
2826 
2827 struct netdev_notifier_info_ext {
2828 	struct netdev_notifier_info info; /* must be first */
2829 	union {
2830 		u32 mtu;
2831 	} ext;
2832 };
2833 
2834 struct netdev_notifier_change_info {
2835 	struct netdev_notifier_info info; /* must be first */
2836 	unsigned int flags_changed;
2837 };
2838 
2839 struct netdev_notifier_changeupper_info {
2840 	struct netdev_notifier_info info; /* must be first */
2841 	struct net_device *upper_dev; /* new upper dev */
2842 	bool master; /* is upper dev master */
2843 	bool linking; /* is the notification for link or unlink */
2844 	void *upper_info; /* upper dev info */
2845 };
2846 
2847 struct netdev_notifier_changelowerstate_info {
2848 	struct netdev_notifier_info info; /* must be first */
2849 	void *lower_state_info; /* is lower dev state */
2850 };
2851 
2852 struct netdev_notifier_pre_changeaddr_info {
2853 	struct netdev_notifier_info info; /* must be first */
2854 	const unsigned char *dev_addr;
2855 };
2856 
2857 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2858 					     struct net_device *dev)
2859 {
2860 	info->dev = dev;
2861 	info->extack = NULL;
2862 }
2863 
2864 static inline struct net_device *
2865 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2866 {
2867 	return info->dev;
2868 }
2869 
2870 static inline struct netlink_ext_ack *
2871 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2872 {
2873 	return info->extack;
2874 }
2875 
2876 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2877 
2878 
2879 extern rwlock_t				dev_base_lock;		/* Device list lock */
2880 
2881 #define for_each_netdev(net, d)		\
2882 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2883 #define for_each_netdev_reverse(net, d)	\
2884 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2885 #define for_each_netdev_rcu(net, d)		\
2886 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2887 #define for_each_netdev_safe(net, d, n)	\
2888 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2889 #define for_each_netdev_continue(net, d)		\
2890 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2891 #define for_each_netdev_continue_reverse(net, d)		\
2892 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2893 						     dev_list)
2894 #define for_each_netdev_continue_rcu(net, d)		\
2895 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2896 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2897 		for_each_netdev_rcu(&init_net, slave)	\
2898 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2899 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2900 
2901 static inline struct net_device *next_net_device(struct net_device *dev)
2902 {
2903 	struct list_head *lh;
2904 	struct net *net;
2905 
2906 	net = dev_net(dev);
2907 	lh = dev->dev_list.next;
2908 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2909 }
2910 
2911 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2912 {
2913 	struct list_head *lh;
2914 	struct net *net;
2915 
2916 	net = dev_net(dev);
2917 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2918 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2919 }
2920 
2921 static inline struct net_device *first_net_device(struct net *net)
2922 {
2923 	return list_empty(&net->dev_base_head) ? NULL :
2924 		net_device_entry(net->dev_base_head.next);
2925 }
2926 
2927 static inline struct net_device *first_net_device_rcu(struct net *net)
2928 {
2929 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2930 
2931 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2932 }
2933 
2934 int netdev_boot_setup_check(struct net_device *dev);
2935 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2936 				       const char *hwaddr);
2937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2938 void dev_add_pack(struct packet_type *pt);
2939 void dev_remove_pack(struct packet_type *pt);
2940 void __dev_remove_pack(struct packet_type *pt);
2941 void dev_add_offload(struct packet_offload *po);
2942 void dev_remove_offload(struct packet_offload *po);
2943 
2944 int dev_get_iflink(const struct net_device *dev);
2945 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2946 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2947 			  struct net_device_path_stack *stack);
2948 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2949 				      unsigned short mask);
2950 struct net_device *dev_get_by_name(struct net *net, const char *name);
2951 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2952 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2953 int dev_alloc_name(struct net_device *dev, const char *name);
2954 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2955 void dev_close(struct net_device *dev);
2956 void dev_close_many(struct list_head *head, bool unlink);
2957 void dev_disable_lro(struct net_device *dev);
2958 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2959 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2960 		     struct net_device *sb_dev);
2961 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2962 		       struct net_device *sb_dev);
2963 
2964 int dev_queue_xmit(struct sk_buff *skb);
2965 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2966 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2967 
2968 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2969 {
2970 	int ret;
2971 
2972 	ret = __dev_direct_xmit(skb, queue_id);
2973 	if (!dev_xmit_complete(ret))
2974 		kfree_skb(skb);
2975 	return ret;
2976 }
2977 
2978 int register_netdevice(struct net_device *dev);
2979 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2980 void unregister_netdevice_many(struct list_head *head);
2981 static inline void unregister_netdevice(struct net_device *dev)
2982 {
2983 	unregister_netdevice_queue(dev, NULL);
2984 }
2985 
2986 int netdev_refcnt_read(const struct net_device *dev);
2987 void free_netdev(struct net_device *dev);
2988 void netdev_freemem(struct net_device *dev);
2989 int init_dummy_netdev(struct net_device *dev);
2990 
2991 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2992 					 struct sk_buff *skb,
2993 					 bool all_slaves);
2994 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
2995 					    struct sock *sk);
2996 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2997 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2998 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2999 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3000 int netdev_get_name(struct net *net, char *name, int ifindex);
3001 int dev_restart(struct net_device *dev);
3002 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
3003 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
3004 
3005 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
3006 {
3007 	return NAPI_GRO_CB(skb)->data_offset;
3008 }
3009 
3010 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
3011 {
3012 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
3013 }
3014 
3015 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
3016 {
3017 	NAPI_GRO_CB(skb)->data_offset += len;
3018 }
3019 
3020 static inline void *skb_gro_header_fast(struct sk_buff *skb,
3021 					unsigned int offset)
3022 {
3023 	return NAPI_GRO_CB(skb)->frag0 + offset;
3024 }
3025 
3026 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
3027 {
3028 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
3029 }
3030 
3031 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
3032 {
3033 	NAPI_GRO_CB(skb)->frag0 = NULL;
3034 	NAPI_GRO_CB(skb)->frag0_len = 0;
3035 }
3036 
3037 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
3038 					unsigned int offset)
3039 {
3040 	if (!pskb_may_pull(skb, hlen))
3041 		return NULL;
3042 
3043 	skb_gro_frag0_invalidate(skb);
3044 	return skb->data + offset;
3045 }
3046 
3047 static inline void *skb_gro_network_header(struct sk_buff *skb)
3048 {
3049 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
3050 	       skb_network_offset(skb);
3051 }
3052 
3053 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
3054 					const void *start, unsigned int len)
3055 {
3056 	if (NAPI_GRO_CB(skb)->csum_valid)
3057 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
3058 						  csum_partial(start, len, 0));
3059 }
3060 
3061 /* GRO checksum functions. These are logical equivalents of the normal
3062  * checksum functions (in skbuff.h) except that they operate on the GRO
3063  * offsets and fields in sk_buff.
3064  */
3065 
3066 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
3067 
3068 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
3069 {
3070 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
3071 }
3072 
3073 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
3074 						      bool zero_okay,
3075 						      __sum16 check)
3076 {
3077 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
3078 		skb_checksum_start_offset(skb) <
3079 		 skb_gro_offset(skb)) &&
3080 		!skb_at_gro_remcsum_start(skb) &&
3081 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3082 		(!zero_okay || check));
3083 }
3084 
3085 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
3086 							   __wsum psum)
3087 {
3088 	if (NAPI_GRO_CB(skb)->csum_valid &&
3089 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
3090 		return 0;
3091 
3092 	NAPI_GRO_CB(skb)->csum = psum;
3093 
3094 	return __skb_gro_checksum_complete(skb);
3095 }
3096 
3097 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
3098 {
3099 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
3100 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
3101 		NAPI_GRO_CB(skb)->csum_cnt--;
3102 	} else {
3103 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
3104 		 * verified a new top level checksum or an encapsulated one
3105 		 * during GRO. This saves work if we fallback to normal path.
3106 		 */
3107 		__skb_incr_checksum_unnecessary(skb);
3108 	}
3109 }
3110 
3111 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
3112 				    compute_pseudo)			\
3113 ({									\
3114 	__sum16 __ret = 0;						\
3115 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
3116 		__ret = __skb_gro_checksum_validate_complete(skb,	\
3117 				compute_pseudo(skb, proto));		\
3118 	if (!__ret)							\
3119 		skb_gro_incr_csum_unnecessary(skb);			\
3120 	__ret;								\
3121 })
3122 
3123 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
3124 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
3125 
3126 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
3127 					     compute_pseudo)		\
3128 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
3129 
3130 #define skb_gro_checksum_simple_validate(skb)				\
3131 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
3132 
3133 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3134 {
3135 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3136 		!NAPI_GRO_CB(skb)->csum_valid);
3137 }
3138 
3139 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3140 					      __wsum pseudo)
3141 {
3142 	NAPI_GRO_CB(skb)->csum = ~pseudo;
3143 	NAPI_GRO_CB(skb)->csum_valid = 1;
3144 }
3145 
3146 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
3147 do {									\
3148 	if (__skb_gro_checksum_convert_check(skb))			\
3149 		__skb_gro_checksum_convert(skb, 			\
3150 					   compute_pseudo(skb, proto));	\
3151 } while (0)
3152 
3153 struct gro_remcsum {
3154 	int offset;
3155 	__wsum delta;
3156 };
3157 
3158 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3159 {
3160 	grc->offset = 0;
3161 	grc->delta = 0;
3162 }
3163 
3164 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3165 					    unsigned int off, size_t hdrlen,
3166 					    int start, int offset,
3167 					    struct gro_remcsum *grc,
3168 					    bool nopartial)
3169 {
3170 	__wsum delta;
3171 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3172 
3173 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3174 
3175 	if (!nopartial) {
3176 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3177 		return ptr;
3178 	}
3179 
3180 	ptr = skb_gro_header_fast(skb, off);
3181 	if (skb_gro_header_hard(skb, off + plen)) {
3182 		ptr = skb_gro_header_slow(skb, off + plen, off);
3183 		if (!ptr)
3184 			return NULL;
3185 	}
3186 
3187 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3188 			       start, offset);
3189 
3190 	/* Adjust skb->csum since we changed the packet */
3191 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3192 
3193 	grc->offset = off + hdrlen + offset;
3194 	grc->delta = delta;
3195 
3196 	return ptr;
3197 }
3198 
3199 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3200 					   struct gro_remcsum *grc)
3201 {
3202 	void *ptr;
3203 	size_t plen = grc->offset + sizeof(u16);
3204 
3205 	if (!grc->delta)
3206 		return;
3207 
3208 	ptr = skb_gro_header_fast(skb, grc->offset);
3209 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3210 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3211 		if (!ptr)
3212 			return;
3213 	}
3214 
3215 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3216 }
3217 
3218 #ifdef CONFIG_XFRM_OFFLOAD
3219 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3220 {
3221 	if (PTR_ERR(pp) != -EINPROGRESS)
3222 		NAPI_GRO_CB(skb)->flush |= flush;
3223 }
3224 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3225 					       struct sk_buff *pp,
3226 					       int flush,
3227 					       struct gro_remcsum *grc)
3228 {
3229 	if (PTR_ERR(pp) != -EINPROGRESS) {
3230 		NAPI_GRO_CB(skb)->flush |= flush;
3231 		skb_gro_remcsum_cleanup(skb, grc);
3232 		skb->remcsum_offload = 0;
3233 	}
3234 }
3235 #else
3236 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3237 {
3238 	NAPI_GRO_CB(skb)->flush |= flush;
3239 }
3240 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3241 					       struct sk_buff *pp,
3242 					       int flush,
3243 					       struct gro_remcsum *grc)
3244 {
3245 	NAPI_GRO_CB(skb)->flush |= flush;
3246 	skb_gro_remcsum_cleanup(skb, grc);
3247 	skb->remcsum_offload = 0;
3248 }
3249 #endif
3250 
3251 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3252 				  unsigned short type,
3253 				  const void *daddr, const void *saddr,
3254 				  unsigned int len)
3255 {
3256 	if (!dev->header_ops || !dev->header_ops->create)
3257 		return 0;
3258 
3259 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3260 }
3261 
3262 static inline int dev_parse_header(const struct sk_buff *skb,
3263 				   unsigned char *haddr)
3264 {
3265 	const struct net_device *dev = skb->dev;
3266 
3267 	if (!dev->header_ops || !dev->header_ops->parse)
3268 		return 0;
3269 	return dev->header_ops->parse(skb, haddr);
3270 }
3271 
3272 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3273 {
3274 	const struct net_device *dev = skb->dev;
3275 
3276 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3277 		return 0;
3278 	return dev->header_ops->parse_protocol(skb);
3279 }
3280 
3281 /* ll_header must have at least hard_header_len allocated */
3282 static inline bool dev_validate_header(const struct net_device *dev,
3283 				       char *ll_header, int len)
3284 {
3285 	if (likely(len >= dev->hard_header_len))
3286 		return true;
3287 	if (len < dev->min_header_len)
3288 		return false;
3289 
3290 	if (capable(CAP_SYS_RAWIO)) {
3291 		memset(ll_header + len, 0, dev->hard_header_len - len);
3292 		return true;
3293 	}
3294 
3295 	if (dev->header_ops && dev->header_ops->validate)
3296 		return dev->header_ops->validate(ll_header, len);
3297 
3298 	return false;
3299 }
3300 
3301 static inline bool dev_has_header(const struct net_device *dev)
3302 {
3303 	return dev->header_ops && dev->header_ops->create;
3304 }
3305 
3306 #ifdef CONFIG_NET_FLOW_LIMIT
3307 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3308 struct sd_flow_limit {
3309 	u64			count;
3310 	unsigned int		num_buckets;
3311 	unsigned int		history_head;
3312 	u16			history[FLOW_LIMIT_HISTORY];
3313 	u8			buckets[];
3314 };
3315 
3316 extern int netdev_flow_limit_table_len;
3317 #endif /* CONFIG_NET_FLOW_LIMIT */
3318 
3319 /*
3320  * Incoming packets are placed on per-CPU queues
3321  */
3322 struct softnet_data {
3323 	struct list_head	poll_list;
3324 	struct sk_buff_head	process_queue;
3325 
3326 	/* stats */
3327 	unsigned int		processed;
3328 	unsigned int		time_squeeze;
3329 	unsigned int		received_rps;
3330 #ifdef CONFIG_RPS
3331 	struct softnet_data	*rps_ipi_list;
3332 #endif
3333 #ifdef CONFIG_NET_FLOW_LIMIT
3334 	struct sd_flow_limit __rcu *flow_limit;
3335 #endif
3336 	struct Qdisc		*output_queue;
3337 	struct Qdisc		**output_queue_tailp;
3338 	struct sk_buff		*completion_queue;
3339 #ifdef CONFIG_XFRM_OFFLOAD
3340 	struct sk_buff_head	xfrm_backlog;
3341 #endif
3342 	/* written and read only by owning cpu: */
3343 	struct {
3344 		u16 recursion;
3345 		u8  more;
3346 	} xmit;
3347 #ifdef CONFIG_RPS
3348 	/* input_queue_head should be written by cpu owning this struct,
3349 	 * and only read by other cpus. Worth using a cache line.
3350 	 */
3351 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3352 
3353 	/* Elements below can be accessed between CPUs for RPS/RFS */
3354 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3355 	struct softnet_data	*rps_ipi_next;
3356 	unsigned int		cpu;
3357 	unsigned int		input_queue_tail;
3358 #endif
3359 	unsigned int		dropped;
3360 	struct sk_buff_head	input_pkt_queue;
3361 	struct napi_struct	backlog;
3362 
3363 };
3364 
3365 static inline void input_queue_head_incr(struct softnet_data *sd)
3366 {
3367 #ifdef CONFIG_RPS
3368 	sd->input_queue_head++;
3369 #endif
3370 }
3371 
3372 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3373 					      unsigned int *qtail)
3374 {
3375 #ifdef CONFIG_RPS
3376 	*qtail = ++sd->input_queue_tail;
3377 #endif
3378 }
3379 
3380 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3381 
3382 static inline int dev_recursion_level(void)
3383 {
3384 	return this_cpu_read(softnet_data.xmit.recursion);
3385 }
3386 
3387 #define XMIT_RECURSION_LIMIT	8
3388 static inline bool dev_xmit_recursion(void)
3389 {
3390 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3391 			XMIT_RECURSION_LIMIT);
3392 }
3393 
3394 static inline void dev_xmit_recursion_inc(void)
3395 {
3396 	__this_cpu_inc(softnet_data.xmit.recursion);
3397 }
3398 
3399 static inline void dev_xmit_recursion_dec(void)
3400 {
3401 	__this_cpu_dec(softnet_data.xmit.recursion);
3402 }
3403 
3404 void __netif_schedule(struct Qdisc *q);
3405 void netif_schedule_queue(struct netdev_queue *txq);
3406 
3407 static inline void netif_tx_schedule_all(struct net_device *dev)
3408 {
3409 	unsigned int i;
3410 
3411 	for (i = 0; i < dev->num_tx_queues; i++)
3412 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3413 }
3414 
3415 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3416 {
3417 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3418 }
3419 
3420 /**
3421  *	netif_start_queue - allow transmit
3422  *	@dev: network device
3423  *
3424  *	Allow upper layers to call the device hard_start_xmit routine.
3425  */
3426 static inline void netif_start_queue(struct net_device *dev)
3427 {
3428 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3429 }
3430 
3431 static inline void netif_tx_start_all_queues(struct net_device *dev)
3432 {
3433 	unsigned int i;
3434 
3435 	for (i = 0; i < dev->num_tx_queues; i++) {
3436 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3437 		netif_tx_start_queue(txq);
3438 	}
3439 }
3440 
3441 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3442 
3443 /**
3444  *	netif_wake_queue - restart transmit
3445  *	@dev: network device
3446  *
3447  *	Allow upper layers to call the device hard_start_xmit routine.
3448  *	Used for flow control when transmit resources are available.
3449  */
3450 static inline void netif_wake_queue(struct net_device *dev)
3451 {
3452 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3453 }
3454 
3455 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3456 {
3457 	unsigned int i;
3458 
3459 	for (i = 0; i < dev->num_tx_queues; i++) {
3460 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3461 		netif_tx_wake_queue(txq);
3462 	}
3463 }
3464 
3465 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3466 {
3467 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3468 }
3469 
3470 /**
3471  *	netif_stop_queue - stop transmitted packets
3472  *	@dev: network device
3473  *
3474  *	Stop upper layers calling the device hard_start_xmit routine.
3475  *	Used for flow control when transmit resources are unavailable.
3476  */
3477 static inline void netif_stop_queue(struct net_device *dev)
3478 {
3479 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3480 }
3481 
3482 void netif_tx_stop_all_queues(struct net_device *dev);
3483 
3484 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3485 {
3486 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3487 }
3488 
3489 /**
3490  *	netif_queue_stopped - test if transmit queue is flowblocked
3491  *	@dev: network device
3492  *
3493  *	Test if transmit queue on device is currently unable to send.
3494  */
3495 static inline bool netif_queue_stopped(const struct net_device *dev)
3496 {
3497 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3498 }
3499 
3500 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3501 {
3502 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3503 }
3504 
3505 static inline bool
3506 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3507 {
3508 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3509 }
3510 
3511 static inline bool
3512 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3513 {
3514 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3515 }
3516 
3517 /**
3518  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3519  *	@dev_queue: pointer to transmit queue
3520  *	@min_limit: dql minimum limit
3521  *
3522  * Forces xmit_more() to return true until the minimum threshold
3523  * defined by @min_limit is reached (or until the tx queue is
3524  * empty). Warning: to be use with care, misuse will impact the
3525  * latency.
3526  */
3527 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3528 						  unsigned int min_limit)
3529 {
3530 #ifdef CONFIG_BQL
3531 	dev_queue->dql.min_limit = min_limit;
3532 #endif
3533 }
3534 
3535 /**
3536  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3537  *	@dev_queue: pointer to transmit queue
3538  *
3539  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3540  * to give appropriate hint to the CPU.
3541  */
3542 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3543 {
3544 #ifdef CONFIG_BQL
3545 	prefetchw(&dev_queue->dql.num_queued);
3546 #endif
3547 }
3548 
3549 /**
3550  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3551  *	@dev_queue: pointer to transmit queue
3552  *
3553  * BQL enabled drivers might use this helper in their TX completion path,
3554  * to give appropriate hint to the CPU.
3555  */
3556 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3557 {
3558 #ifdef CONFIG_BQL
3559 	prefetchw(&dev_queue->dql.limit);
3560 #endif
3561 }
3562 
3563 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3564 					unsigned int bytes)
3565 {
3566 #ifdef CONFIG_BQL
3567 	dql_queued(&dev_queue->dql, bytes);
3568 
3569 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3570 		return;
3571 
3572 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3573 
3574 	/*
3575 	 * The XOFF flag must be set before checking the dql_avail below,
3576 	 * because in netdev_tx_completed_queue we update the dql_completed
3577 	 * before checking the XOFF flag.
3578 	 */
3579 	smp_mb();
3580 
3581 	/* check again in case another CPU has just made room avail */
3582 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3583 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3584 #endif
3585 }
3586 
3587 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3588  * that they should not test BQL status themselves.
3589  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3590  * skb of a batch.
3591  * Returns true if the doorbell must be used to kick the NIC.
3592  */
3593 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3594 					  unsigned int bytes,
3595 					  bool xmit_more)
3596 {
3597 	if (xmit_more) {
3598 #ifdef CONFIG_BQL
3599 		dql_queued(&dev_queue->dql, bytes);
3600 #endif
3601 		return netif_tx_queue_stopped(dev_queue);
3602 	}
3603 	netdev_tx_sent_queue(dev_queue, bytes);
3604 	return true;
3605 }
3606 
3607 /**
3608  * 	netdev_sent_queue - report the number of bytes queued to hardware
3609  * 	@dev: network device
3610  * 	@bytes: number of bytes queued to the hardware device queue
3611  *
3612  * 	Report the number of bytes queued for sending/completion to the network
3613  * 	device hardware queue. @bytes should be a good approximation and should
3614  * 	exactly match netdev_completed_queue() @bytes
3615  */
3616 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3617 {
3618 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3619 }
3620 
3621 static inline bool __netdev_sent_queue(struct net_device *dev,
3622 				       unsigned int bytes,
3623 				       bool xmit_more)
3624 {
3625 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3626 				      xmit_more);
3627 }
3628 
3629 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3630 					     unsigned int pkts, unsigned int bytes)
3631 {
3632 #ifdef CONFIG_BQL
3633 	if (unlikely(!bytes))
3634 		return;
3635 
3636 	dql_completed(&dev_queue->dql, bytes);
3637 
3638 	/*
3639 	 * Without the memory barrier there is a small possiblity that
3640 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3641 	 * be stopped forever
3642 	 */
3643 	smp_mb();
3644 
3645 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3646 		return;
3647 
3648 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3649 		netif_schedule_queue(dev_queue);
3650 #endif
3651 }
3652 
3653 /**
3654  * 	netdev_completed_queue - report bytes and packets completed by device
3655  * 	@dev: network device
3656  * 	@pkts: actual number of packets sent over the medium
3657  * 	@bytes: actual number of bytes sent over the medium
3658  *
3659  * 	Report the number of bytes and packets transmitted by the network device
3660  * 	hardware queue over the physical medium, @bytes must exactly match the
3661  * 	@bytes amount passed to netdev_sent_queue()
3662  */
3663 static inline void netdev_completed_queue(struct net_device *dev,
3664 					  unsigned int pkts, unsigned int bytes)
3665 {
3666 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3667 }
3668 
3669 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3670 {
3671 #ifdef CONFIG_BQL
3672 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3673 	dql_reset(&q->dql);
3674 #endif
3675 }
3676 
3677 /**
3678  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3679  * 	@dev_queue: network device
3680  *
3681  * 	Reset the bytes and packet count of a network device and clear the
3682  * 	software flow control OFF bit for this network device
3683  */
3684 static inline void netdev_reset_queue(struct net_device *dev_queue)
3685 {
3686 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3687 }
3688 
3689 /**
3690  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3691  * 	@dev: network device
3692  * 	@queue_index: given tx queue index
3693  *
3694  * 	Returns 0 if given tx queue index >= number of device tx queues,
3695  * 	otherwise returns the originally passed tx queue index.
3696  */
3697 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3698 {
3699 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3700 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3701 				     dev->name, queue_index,
3702 				     dev->real_num_tx_queues);
3703 		return 0;
3704 	}
3705 
3706 	return queue_index;
3707 }
3708 
3709 /**
3710  *	netif_running - test if up
3711  *	@dev: network device
3712  *
3713  *	Test if the device has been brought up.
3714  */
3715 static inline bool netif_running(const struct net_device *dev)
3716 {
3717 	return test_bit(__LINK_STATE_START, &dev->state);
3718 }
3719 
3720 /*
3721  * Routines to manage the subqueues on a device.  We only need start,
3722  * stop, and a check if it's stopped.  All other device management is
3723  * done at the overall netdevice level.
3724  * Also test the device if we're multiqueue.
3725  */
3726 
3727 /**
3728  *	netif_start_subqueue - allow sending packets on subqueue
3729  *	@dev: network device
3730  *	@queue_index: sub queue index
3731  *
3732  * Start individual transmit queue of a device with multiple transmit queues.
3733  */
3734 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3735 {
3736 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3737 
3738 	netif_tx_start_queue(txq);
3739 }
3740 
3741 /**
3742  *	netif_stop_subqueue - stop sending packets on subqueue
3743  *	@dev: network device
3744  *	@queue_index: sub queue index
3745  *
3746  * Stop individual transmit queue of a device with multiple transmit queues.
3747  */
3748 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3749 {
3750 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3751 	netif_tx_stop_queue(txq);
3752 }
3753 
3754 /**
3755  *	__netif_subqueue_stopped - test status of subqueue
3756  *	@dev: network device
3757  *	@queue_index: sub queue index
3758  *
3759  * Check individual transmit queue of a device with multiple transmit queues.
3760  */
3761 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3762 					    u16 queue_index)
3763 {
3764 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3765 
3766 	return netif_tx_queue_stopped(txq);
3767 }
3768 
3769 /**
3770  *	netif_subqueue_stopped - test status of subqueue
3771  *	@dev: network device
3772  *	@skb: sub queue buffer pointer
3773  *
3774  * Check individual transmit queue of a device with multiple transmit queues.
3775  */
3776 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3777 					  struct sk_buff *skb)
3778 {
3779 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3780 }
3781 
3782 /**
3783  *	netif_wake_subqueue - allow sending packets on subqueue
3784  *	@dev: network device
3785  *	@queue_index: sub queue index
3786  *
3787  * Resume individual transmit queue of a device with multiple transmit queues.
3788  */
3789 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3790 {
3791 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3792 
3793 	netif_tx_wake_queue(txq);
3794 }
3795 
3796 #ifdef CONFIG_XPS
3797 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3798 			u16 index);
3799 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3800 			  u16 index, enum xps_map_type type);
3801 
3802 /**
3803  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3804  *	@j: CPU/Rx queue index
3805  *	@mask: bitmask of all cpus/rx queues
3806  *	@nr_bits: number of bits in the bitmask
3807  *
3808  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3809  */
3810 static inline bool netif_attr_test_mask(unsigned long j,
3811 					const unsigned long *mask,
3812 					unsigned int nr_bits)
3813 {
3814 	cpu_max_bits_warn(j, nr_bits);
3815 	return test_bit(j, mask);
3816 }
3817 
3818 /**
3819  *	netif_attr_test_online - Test for online CPU/Rx queue
3820  *	@j: CPU/Rx queue index
3821  *	@online_mask: bitmask for CPUs/Rx queues that are online
3822  *	@nr_bits: number of bits in the bitmask
3823  *
3824  * Returns true if a CPU/Rx queue is online.
3825  */
3826 static inline bool netif_attr_test_online(unsigned long j,
3827 					  const unsigned long *online_mask,
3828 					  unsigned int nr_bits)
3829 {
3830 	cpu_max_bits_warn(j, nr_bits);
3831 
3832 	if (online_mask)
3833 		return test_bit(j, online_mask);
3834 
3835 	return (j < nr_bits);
3836 }
3837 
3838 /**
3839  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3840  *	@n: CPU/Rx queue index
3841  *	@srcp: the cpumask/Rx queue mask pointer
3842  *	@nr_bits: number of bits in the bitmask
3843  *
3844  * Returns >= nr_bits if no further CPUs/Rx queues set.
3845  */
3846 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3847 					       unsigned int nr_bits)
3848 {
3849 	/* -1 is a legal arg here. */
3850 	if (n != -1)
3851 		cpu_max_bits_warn(n, nr_bits);
3852 
3853 	if (srcp)
3854 		return find_next_bit(srcp, nr_bits, n + 1);
3855 
3856 	return n + 1;
3857 }
3858 
3859 /**
3860  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3861  *	@n: CPU/Rx queue index
3862  *	@src1p: the first CPUs/Rx queues mask pointer
3863  *	@src2p: the second CPUs/Rx queues mask pointer
3864  *	@nr_bits: number of bits in the bitmask
3865  *
3866  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3867  */
3868 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3869 					  const unsigned long *src2p,
3870 					  unsigned int nr_bits)
3871 {
3872 	/* -1 is a legal arg here. */
3873 	if (n != -1)
3874 		cpu_max_bits_warn(n, nr_bits);
3875 
3876 	if (src1p && src2p)
3877 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3878 	else if (src1p)
3879 		return find_next_bit(src1p, nr_bits, n + 1);
3880 	else if (src2p)
3881 		return find_next_bit(src2p, nr_bits, n + 1);
3882 
3883 	return n + 1;
3884 }
3885 #else
3886 static inline int netif_set_xps_queue(struct net_device *dev,
3887 				      const struct cpumask *mask,
3888 				      u16 index)
3889 {
3890 	return 0;
3891 }
3892 
3893 static inline int __netif_set_xps_queue(struct net_device *dev,
3894 					const unsigned long *mask,
3895 					u16 index, enum xps_map_type type)
3896 {
3897 	return 0;
3898 }
3899 #endif
3900 
3901 /**
3902  *	netif_is_multiqueue - test if device has multiple transmit queues
3903  *	@dev: network device
3904  *
3905  * Check if device has multiple transmit queues
3906  */
3907 static inline bool netif_is_multiqueue(const struct net_device *dev)
3908 {
3909 	return dev->num_tx_queues > 1;
3910 }
3911 
3912 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3913 
3914 #ifdef CONFIG_SYSFS
3915 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3916 #else
3917 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3918 						unsigned int rxqs)
3919 {
3920 	dev->real_num_rx_queues = rxqs;
3921 	return 0;
3922 }
3923 #endif
3924 int netif_set_real_num_queues(struct net_device *dev,
3925 			      unsigned int txq, unsigned int rxq);
3926 
3927 static inline struct netdev_rx_queue *
3928 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3929 {
3930 	return dev->_rx + rxq;
3931 }
3932 
3933 #ifdef CONFIG_SYSFS
3934 static inline unsigned int get_netdev_rx_queue_index(
3935 		struct netdev_rx_queue *queue)
3936 {
3937 	struct net_device *dev = queue->dev;
3938 	int index = queue - dev->_rx;
3939 
3940 	BUG_ON(index >= dev->num_rx_queues);
3941 	return index;
3942 }
3943 #endif
3944 
3945 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3946 int netif_get_num_default_rss_queues(void);
3947 
3948 enum skb_free_reason {
3949 	SKB_REASON_CONSUMED,
3950 	SKB_REASON_DROPPED,
3951 };
3952 
3953 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3954 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3955 
3956 /*
3957  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3958  * interrupt context or with hardware interrupts being disabled.
3959  * (in_irq() || irqs_disabled())
3960  *
3961  * We provide four helpers that can be used in following contexts :
3962  *
3963  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3964  *  replacing kfree_skb(skb)
3965  *
3966  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3967  *  Typically used in place of consume_skb(skb) in TX completion path
3968  *
3969  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3970  *  replacing kfree_skb(skb)
3971  *
3972  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3973  *  and consumed a packet. Used in place of consume_skb(skb)
3974  */
3975 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3976 {
3977 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3978 }
3979 
3980 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3981 {
3982 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3983 }
3984 
3985 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3986 {
3987 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3988 }
3989 
3990 static inline void dev_consume_skb_any(struct sk_buff *skb)
3991 {
3992 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3993 }
3994 
3995 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3996 			     struct bpf_prog *xdp_prog);
3997 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3998 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3999 int netif_rx(struct sk_buff *skb);
4000 int netif_rx_ni(struct sk_buff *skb);
4001 int netif_rx_any_context(struct sk_buff *skb);
4002 int netif_receive_skb(struct sk_buff *skb);
4003 int netif_receive_skb_core(struct sk_buff *skb);
4004 void netif_receive_skb_list(struct list_head *head);
4005 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
4006 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
4007 struct sk_buff *napi_get_frags(struct napi_struct *napi);
4008 gro_result_t napi_gro_frags(struct napi_struct *napi);
4009 struct packet_offload *gro_find_receive_by_type(__be16 type);
4010 struct packet_offload *gro_find_complete_by_type(__be16 type);
4011 
4012 static inline void napi_free_frags(struct napi_struct *napi)
4013 {
4014 	kfree_skb(napi->skb);
4015 	napi->skb = NULL;
4016 }
4017 
4018 bool netdev_is_rx_handler_busy(struct net_device *dev);
4019 int netdev_rx_handler_register(struct net_device *dev,
4020 			       rx_handler_func_t *rx_handler,
4021 			       void *rx_handler_data);
4022 void netdev_rx_handler_unregister(struct net_device *dev);
4023 
4024 bool dev_valid_name(const char *name);
4025 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
4026 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
4027 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
4028 		void __user *data, bool *need_copyout);
4029 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
4030 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
4031 unsigned int dev_get_flags(const struct net_device *);
4032 int __dev_change_flags(struct net_device *dev, unsigned int flags,
4033 		       struct netlink_ext_ack *extack);
4034 int dev_change_flags(struct net_device *dev, unsigned int flags,
4035 		     struct netlink_ext_ack *extack);
4036 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
4037 			unsigned int gchanges);
4038 int dev_change_name(struct net_device *, const char *);
4039 int dev_set_alias(struct net_device *, const char *, size_t);
4040 int dev_get_alias(const struct net_device *, char *, size_t);
4041 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
4042 			       const char *pat, int new_ifindex);
4043 static inline
4044 int dev_change_net_namespace(struct net_device *dev, struct net *net,
4045 			     const char *pat)
4046 {
4047 	return __dev_change_net_namespace(dev, net, pat, 0);
4048 }
4049 int __dev_set_mtu(struct net_device *, int);
4050 int dev_validate_mtu(struct net_device *dev, int mtu,
4051 		     struct netlink_ext_ack *extack);
4052 int dev_set_mtu_ext(struct net_device *dev, int mtu,
4053 		    struct netlink_ext_ack *extack);
4054 int dev_set_mtu(struct net_device *, int);
4055 int dev_change_tx_queue_len(struct net_device *, unsigned long);
4056 void dev_set_group(struct net_device *, int);
4057 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4058 			      struct netlink_ext_ack *extack);
4059 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
4060 			struct netlink_ext_ack *extack);
4061 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
4062 			     struct netlink_ext_ack *extack);
4063 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4064 int dev_change_carrier(struct net_device *, bool new_carrier);
4065 int dev_get_phys_port_id(struct net_device *dev,
4066 			 struct netdev_phys_item_id *ppid);
4067 int dev_get_phys_port_name(struct net_device *dev,
4068 			   char *name, size_t len);
4069 int dev_get_port_parent_id(struct net_device *dev,
4070 			   struct netdev_phys_item_id *ppid, bool recurse);
4071 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4072 int dev_change_proto_down(struct net_device *dev, bool proto_down);
4073 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
4074 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
4075 				  u32 value);
4076 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4077 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4078 				    struct netdev_queue *txq, int *ret);
4079 
4080 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
4081 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
4082 		      int fd, int expected_fd, u32 flags);
4083 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4084 u8 dev_xdp_prog_count(struct net_device *dev);
4085 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4086 
4087 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4088 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4089 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4090 bool is_skb_forwardable(const struct net_device *dev,
4091 			const struct sk_buff *skb);
4092 
4093 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4094 						 const struct sk_buff *skb,
4095 						 const bool check_mtu)
4096 {
4097 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4098 	unsigned int len;
4099 
4100 	if (!(dev->flags & IFF_UP))
4101 		return false;
4102 
4103 	if (!check_mtu)
4104 		return true;
4105 
4106 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4107 	if (skb->len <= len)
4108 		return true;
4109 
4110 	/* if TSO is enabled, we don't care about the length as the packet
4111 	 * could be forwarded without being segmented before
4112 	 */
4113 	if (skb_is_gso(skb))
4114 		return true;
4115 
4116 	return false;
4117 }
4118 
4119 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4120 					       struct sk_buff *skb,
4121 					       const bool check_mtu)
4122 {
4123 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4124 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4125 		atomic_long_inc(&dev->rx_dropped);
4126 		kfree_skb(skb);
4127 		return NET_RX_DROP;
4128 	}
4129 
4130 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4131 	skb->priority = 0;
4132 	return 0;
4133 }
4134 
4135 bool dev_nit_active(struct net_device *dev);
4136 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4137 
4138 extern int		netdev_budget;
4139 extern unsigned int	netdev_budget_usecs;
4140 
4141 /* Called by rtnetlink.c:rtnl_unlock() */
4142 void netdev_run_todo(void);
4143 
4144 /**
4145  *	dev_put - release reference to device
4146  *	@dev: network device
4147  *
4148  * Release reference to device to allow it to be freed.
4149  */
4150 static inline void dev_put(struct net_device *dev)
4151 {
4152 	if (dev) {
4153 #ifdef CONFIG_PCPU_DEV_REFCNT
4154 		this_cpu_dec(*dev->pcpu_refcnt);
4155 #else
4156 		refcount_dec(&dev->dev_refcnt);
4157 #endif
4158 	}
4159 }
4160 
4161 /**
4162  *	dev_hold - get reference to device
4163  *	@dev: network device
4164  *
4165  * Hold reference to device to keep it from being freed.
4166  */
4167 static inline void dev_hold(struct net_device *dev)
4168 {
4169 	if (dev) {
4170 #ifdef CONFIG_PCPU_DEV_REFCNT
4171 		this_cpu_inc(*dev->pcpu_refcnt);
4172 #else
4173 		refcount_inc(&dev->dev_refcnt);
4174 #endif
4175 	}
4176 }
4177 
4178 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4179  * and _off may be called from IRQ context, but it is caller
4180  * who is responsible for serialization of these calls.
4181  *
4182  * The name carrier is inappropriate, these functions should really be
4183  * called netif_lowerlayer_*() because they represent the state of any
4184  * kind of lower layer not just hardware media.
4185  */
4186 
4187 void linkwatch_init_dev(struct net_device *dev);
4188 void linkwatch_fire_event(struct net_device *dev);
4189 void linkwatch_forget_dev(struct net_device *dev);
4190 
4191 /**
4192  *	netif_carrier_ok - test if carrier present
4193  *	@dev: network device
4194  *
4195  * Check if carrier is present on device
4196  */
4197 static inline bool netif_carrier_ok(const struct net_device *dev)
4198 {
4199 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4200 }
4201 
4202 unsigned long dev_trans_start(struct net_device *dev);
4203 
4204 void __netdev_watchdog_up(struct net_device *dev);
4205 
4206 void netif_carrier_on(struct net_device *dev);
4207 void netif_carrier_off(struct net_device *dev);
4208 void netif_carrier_event(struct net_device *dev);
4209 
4210 /**
4211  *	netif_dormant_on - mark device as dormant.
4212  *	@dev: network device
4213  *
4214  * Mark device as dormant (as per RFC2863).
4215  *
4216  * The dormant state indicates that the relevant interface is not
4217  * actually in a condition to pass packets (i.e., it is not 'up') but is
4218  * in a "pending" state, waiting for some external event.  For "on-
4219  * demand" interfaces, this new state identifies the situation where the
4220  * interface is waiting for events to place it in the up state.
4221  */
4222 static inline void netif_dormant_on(struct net_device *dev)
4223 {
4224 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4225 		linkwatch_fire_event(dev);
4226 }
4227 
4228 /**
4229  *	netif_dormant_off - set device as not dormant.
4230  *	@dev: network device
4231  *
4232  * Device is not in dormant state.
4233  */
4234 static inline void netif_dormant_off(struct net_device *dev)
4235 {
4236 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4237 		linkwatch_fire_event(dev);
4238 }
4239 
4240 /**
4241  *	netif_dormant - test if device is dormant
4242  *	@dev: network device
4243  *
4244  * Check if device is dormant.
4245  */
4246 static inline bool netif_dormant(const struct net_device *dev)
4247 {
4248 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4249 }
4250 
4251 
4252 /**
4253  *	netif_testing_on - mark device as under test.
4254  *	@dev: network device
4255  *
4256  * Mark device as under test (as per RFC2863).
4257  *
4258  * The testing state indicates that some test(s) must be performed on
4259  * the interface. After completion, of the test, the interface state
4260  * will change to up, dormant, or down, as appropriate.
4261  */
4262 static inline void netif_testing_on(struct net_device *dev)
4263 {
4264 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4265 		linkwatch_fire_event(dev);
4266 }
4267 
4268 /**
4269  *	netif_testing_off - set device as not under test.
4270  *	@dev: network device
4271  *
4272  * Device is not in testing state.
4273  */
4274 static inline void netif_testing_off(struct net_device *dev)
4275 {
4276 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4277 		linkwatch_fire_event(dev);
4278 }
4279 
4280 /**
4281  *	netif_testing - test if device is under test
4282  *	@dev: network device
4283  *
4284  * Check if device is under test
4285  */
4286 static inline bool netif_testing(const struct net_device *dev)
4287 {
4288 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4289 }
4290 
4291 
4292 /**
4293  *	netif_oper_up - test if device is operational
4294  *	@dev: network device
4295  *
4296  * Check if carrier is operational
4297  */
4298 static inline bool netif_oper_up(const struct net_device *dev)
4299 {
4300 	return (dev->operstate == IF_OPER_UP ||
4301 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4302 }
4303 
4304 /**
4305  *	netif_device_present - is device available or removed
4306  *	@dev: network device
4307  *
4308  * Check if device has not been removed from system.
4309  */
4310 static inline bool netif_device_present(const struct net_device *dev)
4311 {
4312 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4313 }
4314 
4315 void netif_device_detach(struct net_device *dev);
4316 
4317 void netif_device_attach(struct net_device *dev);
4318 
4319 /*
4320  * Network interface message level settings
4321  */
4322 
4323 enum {
4324 	NETIF_MSG_DRV_BIT,
4325 	NETIF_MSG_PROBE_BIT,
4326 	NETIF_MSG_LINK_BIT,
4327 	NETIF_MSG_TIMER_BIT,
4328 	NETIF_MSG_IFDOWN_BIT,
4329 	NETIF_MSG_IFUP_BIT,
4330 	NETIF_MSG_RX_ERR_BIT,
4331 	NETIF_MSG_TX_ERR_BIT,
4332 	NETIF_MSG_TX_QUEUED_BIT,
4333 	NETIF_MSG_INTR_BIT,
4334 	NETIF_MSG_TX_DONE_BIT,
4335 	NETIF_MSG_RX_STATUS_BIT,
4336 	NETIF_MSG_PKTDATA_BIT,
4337 	NETIF_MSG_HW_BIT,
4338 	NETIF_MSG_WOL_BIT,
4339 
4340 	/* When you add a new bit above, update netif_msg_class_names array
4341 	 * in net/ethtool/common.c
4342 	 */
4343 	NETIF_MSG_CLASS_COUNT,
4344 };
4345 /* Both ethtool_ops interface and internal driver implementation use u32 */
4346 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4347 
4348 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4349 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4350 
4351 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4352 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4353 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4354 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4355 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4356 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4357 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4358 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4359 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4360 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4361 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4362 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4363 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4364 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4365 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4366 
4367 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4368 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4369 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4370 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4371 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4372 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4373 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4374 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4375 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4376 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4377 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4378 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4379 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4380 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4381 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4382 
4383 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4384 {
4385 	/* use default */
4386 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4387 		return default_msg_enable_bits;
4388 	if (debug_value == 0)	/* no output */
4389 		return 0;
4390 	/* set low N bits */
4391 	return (1U << debug_value) - 1;
4392 }
4393 
4394 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4395 {
4396 	spin_lock(&txq->_xmit_lock);
4397 	txq->xmit_lock_owner = cpu;
4398 }
4399 
4400 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4401 {
4402 	__acquire(&txq->_xmit_lock);
4403 	return true;
4404 }
4405 
4406 static inline void __netif_tx_release(struct netdev_queue *txq)
4407 {
4408 	__release(&txq->_xmit_lock);
4409 }
4410 
4411 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4412 {
4413 	spin_lock_bh(&txq->_xmit_lock);
4414 	txq->xmit_lock_owner = smp_processor_id();
4415 }
4416 
4417 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4418 {
4419 	bool ok = spin_trylock(&txq->_xmit_lock);
4420 	if (likely(ok))
4421 		txq->xmit_lock_owner = smp_processor_id();
4422 	return ok;
4423 }
4424 
4425 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4426 {
4427 	txq->xmit_lock_owner = -1;
4428 	spin_unlock(&txq->_xmit_lock);
4429 }
4430 
4431 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4432 {
4433 	txq->xmit_lock_owner = -1;
4434 	spin_unlock_bh(&txq->_xmit_lock);
4435 }
4436 
4437 static inline void txq_trans_update(struct netdev_queue *txq)
4438 {
4439 	if (txq->xmit_lock_owner != -1)
4440 		txq->trans_start = jiffies;
4441 }
4442 
4443 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4444 static inline void netif_trans_update(struct net_device *dev)
4445 {
4446 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4447 
4448 	if (txq->trans_start != jiffies)
4449 		txq->trans_start = jiffies;
4450 }
4451 
4452 /**
4453  *	netif_tx_lock - grab network device transmit lock
4454  *	@dev: network device
4455  *
4456  * Get network device transmit lock
4457  */
4458 static inline void netif_tx_lock(struct net_device *dev)
4459 {
4460 	unsigned int i;
4461 	int cpu;
4462 
4463 	spin_lock(&dev->tx_global_lock);
4464 	cpu = smp_processor_id();
4465 	for (i = 0; i < dev->num_tx_queues; i++) {
4466 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4467 
4468 		/* We are the only thread of execution doing a
4469 		 * freeze, but we have to grab the _xmit_lock in
4470 		 * order to synchronize with threads which are in
4471 		 * the ->hard_start_xmit() handler and already
4472 		 * checked the frozen bit.
4473 		 */
4474 		__netif_tx_lock(txq, cpu);
4475 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4476 		__netif_tx_unlock(txq);
4477 	}
4478 }
4479 
4480 static inline void netif_tx_lock_bh(struct net_device *dev)
4481 {
4482 	local_bh_disable();
4483 	netif_tx_lock(dev);
4484 }
4485 
4486 static inline void netif_tx_unlock(struct net_device *dev)
4487 {
4488 	unsigned int i;
4489 
4490 	for (i = 0; i < dev->num_tx_queues; i++) {
4491 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4492 
4493 		/* No need to grab the _xmit_lock here.  If the
4494 		 * queue is not stopped for another reason, we
4495 		 * force a schedule.
4496 		 */
4497 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4498 		netif_schedule_queue(txq);
4499 	}
4500 	spin_unlock(&dev->tx_global_lock);
4501 }
4502 
4503 static inline void netif_tx_unlock_bh(struct net_device *dev)
4504 {
4505 	netif_tx_unlock(dev);
4506 	local_bh_enable();
4507 }
4508 
4509 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4510 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4511 		__netif_tx_lock(txq, cpu);		\
4512 	} else {					\
4513 		__netif_tx_acquire(txq);		\
4514 	}						\
4515 }
4516 
4517 #define HARD_TX_TRYLOCK(dev, txq)			\
4518 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4519 		__netif_tx_trylock(txq) :		\
4520 		__netif_tx_acquire(txq))
4521 
4522 #define HARD_TX_UNLOCK(dev, txq) {			\
4523 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4524 		__netif_tx_unlock(txq);			\
4525 	} else {					\
4526 		__netif_tx_release(txq);		\
4527 	}						\
4528 }
4529 
4530 static inline void netif_tx_disable(struct net_device *dev)
4531 {
4532 	unsigned int i;
4533 	int cpu;
4534 
4535 	local_bh_disable();
4536 	cpu = smp_processor_id();
4537 	spin_lock(&dev->tx_global_lock);
4538 	for (i = 0; i < dev->num_tx_queues; i++) {
4539 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4540 
4541 		__netif_tx_lock(txq, cpu);
4542 		netif_tx_stop_queue(txq);
4543 		__netif_tx_unlock(txq);
4544 	}
4545 	spin_unlock(&dev->tx_global_lock);
4546 	local_bh_enable();
4547 }
4548 
4549 static inline void netif_addr_lock(struct net_device *dev)
4550 {
4551 	unsigned char nest_level = 0;
4552 
4553 #ifdef CONFIG_LOCKDEP
4554 	nest_level = dev->nested_level;
4555 #endif
4556 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4557 }
4558 
4559 static inline void netif_addr_lock_bh(struct net_device *dev)
4560 {
4561 	unsigned char nest_level = 0;
4562 
4563 #ifdef CONFIG_LOCKDEP
4564 	nest_level = dev->nested_level;
4565 #endif
4566 	local_bh_disable();
4567 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4568 }
4569 
4570 static inline void netif_addr_unlock(struct net_device *dev)
4571 {
4572 	spin_unlock(&dev->addr_list_lock);
4573 }
4574 
4575 static inline void netif_addr_unlock_bh(struct net_device *dev)
4576 {
4577 	spin_unlock_bh(&dev->addr_list_lock);
4578 }
4579 
4580 /*
4581  * dev_addrs walker. Should be used only for read access. Call with
4582  * rcu_read_lock held.
4583  */
4584 #define for_each_dev_addr(dev, ha) \
4585 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4586 
4587 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4588 
4589 void ether_setup(struct net_device *dev);
4590 
4591 /* Support for loadable net-drivers */
4592 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4593 				    unsigned char name_assign_type,
4594 				    void (*setup)(struct net_device *),
4595 				    unsigned int txqs, unsigned int rxqs);
4596 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4597 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4598 
4599 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4600 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4601 			 count)
4602 
4603 int register_netdev(struct net_device *dev);
4604 void unregister_netdev(struct net_device *dev);
4605 
4606 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4607 
4608 /* General hardware address lists handling functions */
4609 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4610 		   struct netdev_hw_addr_list *from_list, int addr_len);
4611 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4612 		      struct netdev_hw_addr_list *from_list, int addr_len);
4613 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4614 		       struct net_device *dev,
4615 		       int (*sync)(struct net_device *, const unsigned char *),
4616 		       int (*unsync)(struct net_device *,
4617 				     const unsigned char *));
4618 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4619 			   struct net_device *dev,
4620 			   int (*sync)(struct net_device *,
4621 				       const unsigned char *, int),
4622 			   int (*unsync)(struct net_device *,
4623 					 const unsigned char *, int));
4624 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4625 			      struct net_device *dev,
4626 			      int (*unsync)(struct net_device *,
4627 					    const unsigned char *, int));
4628 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4629 			  struct net_device *dev,
4630 			  int (*unsync)(struct net_device *,
4631 					const unsigned char *));
4632 void __hw_addr_init(struct netdev_hw_addr_list *list);
4633 
4634 /* Functions used for device addresses handling */
4635 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4636 		 unsigned char addr_type);
4637 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4638 		 unsigned char addr_type);
4639 void dev_addr_flush(struct net_device *dev);
4640 int dev_addr_init(struct net_device *dev);
4641 
4642 /* Functions used for unicast addresses handling */
4643 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4644 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4645 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4646 int dev_uc_sync(struct net_device *to, struct net_device *from);
4647 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4648 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4649 void dev_uc_flush(struct net_device *dev);
4650 void dev_uc_init(struct net_device *dev);
4651 
4652 /**
4653  *  __dev_uc_sync - Synchonize device's unicast list
4654  *  @dev:  device to sync
4655  *  @sync: function to call if address should be added
4656  *  @unsync: function to call if address should be removed
4657  *
4658  *  Add newly added addresses to the interface, and release
4659  *  addresses that have been deleted.
4660  */
4661 static inline int __dev_uc_sync(struct net_device *dev,
4662 				int (*sync)(struct net_device *,
4663 					    const unsigned char *),
4664 				int (*unsync)(struct net_device *,
4665 					      const unsigned char *))
4666 {
4667 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4668 }
4669 
4670 /**
4671  *  __dev_uc_unsync - Remove synchronized addresses from device
4672  *  @dev:  device to sync
4673  *  @unsync: function to call if address should be removed
4674  *
4675  *  Remove all addresses that were added to the device by dev_uc_sync().
4676  */
4677 static inline void __dev_uc_unsync(struct net_device *dev,
4678 				   int (*unsync)(struct net_device *,
4679 						 const unsigned char *))
4680 {
4681 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4682 }
4683 
4684 /* Functions used for multicast addresses handling */
4685 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4686 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4687 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4688 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4689 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4690 int dev_mc_sync(struct net_device *to, struct net_device *from);
4691 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4692 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4693 void dev_mc_flush(struct net_device *dev);
4694 void dev_mc_init(struct net_device *dev);
4695 
4696 /**
4697  *  __dev_mc_sync - Synchonize device's multicast list
4698  *  @dev:  device to sync
4699  *  @sync: function to call if address should be added
4700  *  @unsync: function to call if address should be removed
4701  *
4702  *  Add newly added addresses to the interface, and release
4703  *  addresses that have been deleted.
4704  */
4705 static inline int __dev_mc_sync(struct net_device *dev,
4706 				int (*sync)(struct net_device *,
4707 					    const unsigned char *),
4708 				int (*unsync)(struct net_device *,
4709 					      const unsigned char *))
4710 {
4711 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4712 }
4713 
4714 /**
4715  *  __dev_mc_unsync - Remove synchronized addresses from device
4716  *  @dev:  device to sync
4717  *  @unsync: function to call if address should be removed
4718  *
4719  *  Remove all addresses that were added to the device by dev_mc_sync().
4720  */
4721 static inline void __dev_mc_unsync(struct net_device *dev,
4722 				   int (*unsync)(struct net_device *,
4723 						 const unsigned char *))
4724 {
4725 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4726 }
4727 
4728 /* Functions used for secondary unicast and multicast support */
4729 void dev_set_rx_mode(struct net_device *dev);
4730 void __dev_set_rx_mode(struct net_device *dev);
4731 int dev_set_promiscuity(struct net_device *dev, int inc);
4732 int dev_set_allmulti(struct net_device *dev, int inc);
4733 void netdev_state_change(struct net_device *dev);
4734 void __netdev_notify_peers(struct net_device *dev);
4735 void netdev_notify_peers(struct net_device *dev);
4736 void netdev_features_change(struct net_device *dev);
4737 /* Load a device via the kmod */
4738 void dev_load(struct net *net, const char *name);
4739 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4740 					struct rtnl_link_stats64 *storage);
4741 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4742 			     const struct net_device_stats *netdev_stats);
4743 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4744 			   const struct pcpu_sw_netstats __percpu *netstats);
4745 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4746 
4747 extern int		netdev_max_backlog;
4748 extern int		netdev_tstamp_prequeue;
4749 extern int		netdev_unregister_timeout_secs;
4750 extern int		weight_p;
4751 extern int		dev_weight_rx_bias;
4752 extern int		dev_weight_tx_bias;
4753 extern int		dev_rx_weight;
4754 extern int		dev_tx_weight;
4755 extern int		gro_normal_batch;
4756 
4757 enum {
4758 	NESTED_SYNC_IMM_BIT,
4759 	NESTED_SYNC_TODO_BIT,
4760 };
4761 
4762 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4763 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4764 
4765 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4766 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4767 
4768 struct netdev_nested_priv {
4769 	unsigned char flags;
4770 	void *data;
4771 };
4772 
4773 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4774 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4775 						     struct list_head **iter);
4776 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4777 						     struct list_head **iter);
4778 
4779 #ifdef CONFIG_LOCKDEP
4780 static LIST_HEAD(net_unlink_list);
4781 
4782 static inline void net_unlink_todo(struct net_device *dev)
4783 {
4784 	if (list_empty(&dev->unlink_list))
4785 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4786 }
4787 #endif
4788 
4789 /* iterate through upper list, must be called under RCU read lock */
4790 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4791 	for (iter = &(dev)->adj_list.upper, \
4792 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4793 	     updev; \
4794 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4795 
4796 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4797 				  int (*fn)(struct net_device *upper_dev,
4798 					    struct netdev_nested_priv *priv),
4799 				  struct netdev_nested_priv *priv);
4800 
4801 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4802 				  struct net_device *upper_dev);
4803 
4804 bool netdev_has_any_upper_dev(struct net_device *dev);
4805 
4806 void *netdev_lower_get_next_private(struct net_device *dev,
4807 				    struct list_head **iter);
4808 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4809 					struct list_head **iter);
4810 
4811 #define netdev_for_each_lower_private(dev, priv, iter) \
4812 	for (iter = (dev)->adj_list.lower.next, \
4813 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4814 	     priv; \
4815 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4816 
4817 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4818 	for (iter = &(dev)->adj_list.lower, \
4819 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4820 	     priv; \
4821 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4822 
4823 void *netdev_lower_get_next(struct net_device *dev,
4824 				struct list_head **iter);
4825 
4826 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4827 	for (iter = (dev)->adj_list.lower.next, \
4828 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4829 	     ldev; \
4830 	     ldev = netdev_lower_get_next(dev, &(iter)))
4831 
4832 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4833 					     struct list_head **iter);
4834 int netdev_walk_all_lower_dev(struct net_device *dev,
4835 			      int (*fn)(struct net_device *lower_dev,
4836 					struct netdev_nested_priv *priv),
4837 			      struct netdev_nested_priv *priv);
4838 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4839 				  int (*fn)(struct net_device *lower_dev,
4840 					    struct netdev_nested_priv *priv),
4841 				  struct netdev_nested_priv *priv);
4842 
4843 void *netdev_adjacent_get_private(struct list_head *adj_list);
4844 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4845 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4846 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4847 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4848 			  struct netlink_ext_ack *extack);
4849 int netdev_master_upper_dev_link(struct net_device *dev,
4850 				 struct net_device *upper_dev,
4851 				 void *upper_priv, void *upper_info,
4852 				 struct netlink_ext_ack *extack);
4853 void netdev_upper_dev_unlink(struct net_device *dev,
4854 			     struct net_device *upper_dev);
4855 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4856 				   struct net_device *new_dev,
4857 				   struct net_device *dev,
4858 				   struct netlink_ext_ack *extack);
4859 void netdev_adjacent_change_commit(struct net_device *old_dev,
4860 				   struct net_device *new_dev,
4861 				   struct net_device *dev);
4862 void netdev_adjacent_change_abort(struct net_device *old_dev,
4863 				  struct net_device *new_dev,
4864 				  struct net_device *dev);
4865 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4866 void *netdev_lower_dev_get_private(struct net_device *dev,
4867 				   struct net_device *lower_dev);
4868 void netdev_lower_state_changed(struct net_device *lower_dev,
4869 				void *lower_state_info);
4870 
4871 /* RSS keys are 40 or 52 bytes long */
4872 #define NETDEV_RSS_KEY_LEN 52
4873 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4874 void netdev_rss_key_fill(void *buffer, size_t len);
4875 
4876 int skb_checksum_help(struct sk_buff *skb);
4877 int skb_crc32c_csum_help(struct sk_buff *skb);
4878 int skb_csum_hwoffload_help(struct sk_buff *skb,
4879 			    const netdev_features_t features);
4880 
4881 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4882 				  netdev_features_t features, bool tx_path);
4883 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4884 				    netdev_features_t features);
4885 
4886 struct netdev_bonding_info {
4887 	ifslave	slave;
4888 	ifbond	master;
4889 };
4890 
4891 struct netdev_notifier_bonding_info {
4892 	struct netdev_notifier_info info; /* must be first */
4893 	struct netdev_bonding_info  bonding_info;
4894 };
4895 
4896 void netdev_bonding_info_change(struct net_device *dev,
4897 				struct netdev_bonding_info *bonding_info);
4898 
4899 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4900 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4901 #else
4902 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4903 				  const void *data)
4904 {
4905 }
4906 #endif
4907 
4908 static inline
4909 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4910 {
4911 	return __skb_gso_segment(skb, features, true);
4912 }
4913 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4914 
4915 static inline bool can_checksum_protocol(netdev_features_t features,
4916 					 __be16 protocol)
4917 {
4918 	if (protocol == htons(ETH_P_FCOE))
4919 		return !!(features & NETIF_F_FCOE_CRC);
4920 
4921 	/* Assume this is an IP checksum (not SCTP CRC) */
4922 
4923 	if (features & NETIF_F_HW_CSUM) {
4924 		/* Can checksum everything */
4925 		return true;
4926 	}
4927 
4928 	switch (protocol) {
4929 	case htons(ETH_P_IP):
4930 		return !!(features & NETIF_F_IP_CSUM);
4931 	case htons(ETH_P_IPV6):
4932 		return !!(features & NETIF_F_IPV6_CSUM);
4933 	default:
4934 		return false;
4935 	}
4936 }
4937 
4938 #ifdef CONFIG_BUG
4939 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4940 #else
4941 static inline void netdev_rx_csum_fault(struct net_device *dev,
4942 					struct sk_buff *skb)
4943 {
4944 }
4945 #endif
4946 /* rx skb timestamps */
4947 void net_enable_timestamp(void);
4948 void net_disable_timestamp(void);
4949 
4950 #ifdef CONFIG_PROC_FS
4951 int __init dev_proc_init(void);
4952 #else
4953 #define dev_proc_init() 0
4954 #endif
4955 
4956 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4957 					      struct sk_buff *skb, struct net_device *dev,
4958 					      bool more)
4959 {
4960 	__this_cpu_write(softnet_data.xmit.more, more);
4961 	return ops->ndo_start_xmit(skb, dev);
4962 }
4963 
4964 static inline bool netdev_xmit_more(void)
4965 {
4966 	return __this_cpu_read(softnet_data.xmit.more);
4967 }
4968 
4969 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4970 					    struct netdev_queue *txq, bool more)
4971 {
4972 	const struct net_device_ops *ops = dev->netdev_ops;
4973 	netdev_tx_t rc;
4974 
4975 	rc = __netdev_start_xmit(ops, skb, dev, more);
4976 	if (rc == NETDEV_TX_OK)
4977 		txq_trans_update(txq);
4978 
4979 	return rc;
4980 }
4981 
4982 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4983 				const void *ns);
4984 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4985 				 const void *ns);
4986 
4987 extern const struct kobj_ns_type_operations net_ns_type_operations;
4988 
4989 const char *netdev_drivername(const struct net_device *dev);
4990 
4991 void linkwatch_run_queue(void);
4992 
4993 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4994 							  netdev_features_t f2)
4995 {
4996 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4997 		if (f1 & NETIF_F_HW_CSUM)
4998 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4999 		else
5000 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5001 	}
5002 
5003 	return f1 & f2;
5004 }
5005 
5006 static inline netdev_features_t netdev_get_wanted_features(
5007 	struct net_device *dev)
5008 {
5009 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
5010 }
5011 netdev_features_t netdev_increment_features(netdev_features_t all,
5012 	netdev_features_t one, netdev_features_t mask);
5013 
5014 /* Allow TSO being used on stacked device :
5015  * Performing the GSO segmentation before last device
5016  * is a performance improvement.
5017  */
5018 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5019 							netdev_features_t mask)
5020 {
5021 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5022 }
5023 
5024 int __netdev_update_features(struct net_device *dev);
5025 void netdev_update_features(struct net_device *dev);
5026 void netdev_change_features(struct net_device *dev);
5027 
5028 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5029 					struct net_device *dev);
5030 
5031 netdev_features_t passthru_features_check(struct sk_buff *skb,
5032 					  struct net_device *dev,
5033 					  netdev_features_t features);
5034 netdev_features_t netif_skb_features(struct sk_buff *skb);
5035 
5036 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5037 {
5038 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5039 
5040 	/* check flags correspondence */
5041 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5042 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5043 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5044 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5045 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5046 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5047 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5048 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5049 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5050 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5051 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5052 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5053 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5054 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5055 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5056 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5057 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5058 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5059 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5060 
5061 	return (features & feature) == feature;
5062 }
5063 
5064 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5065 {
5066 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5067 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5068 }
5069 
5070 static inline bool netif_needs_gso(struct sk_buff *skb,
5071 				   netdev_features_t features)
5072 {
5073 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5074 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5075 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5076 }
5077 
5078 static inline void netif_set_gso_max_size(struct net_device *dev,
5079 					  unsigned int size)
5080 {
5081 	dev->gso_max_size = size;
5082 }
5083 
5084 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
5085 					int pulled_hlen, u16 mac_offset,
5086 					int mac_len)
5087 {
5088 	skb->protocol = protocol;
5089 	skb->encapsulation = 1;
5090 	skb_push(skb, pulled_hlen);
5091 	skb_reset_transport_header(skb);
5092 	skb->mac_header = mac_offset;
5093 	skb->network_header = skb->mac_header + mac_len;
5094 	skb->mac_len = mac_len;
5095 }
5096 
5097 static inline bool netif_is_macsec(const struct net_device *dev)
5098 {
5099 	return dev->priv_flags & IFF_MACSEC;
5100 }
5101 
5102 static inline bool netif_is_macvlan(const struct net_device *dev)
5103 {
5104 	return dev->priv_flags & IFF_MACVLAN;
5105 }
5106 
5107 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5108 {
5109 	return dev->priv_flags & IFF_MACVLAN_PORT;
5110 }
5111 
5112 static inline bool netif_is_bond_master(const struct net_device *dev)
5113 {
5114 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5115 }
5116 
5117 static inline bool netif_is_bond_slave(const struct net_device *dev)
5118 {
5119 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5120 }
5121 
5122 static inline bool netif_supports_nofcs(struct net_device *dev)
5123 {
5124 	return dev->priv_flags & IFF_SUPP_NOFCS;
5125 }
5126 
5127 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5128 {
5129 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5130 }
5131 
5132 static inline bool netif_is_l3_master(const struct net_device *dev)
5133 {
5134 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5135 }
5136 
5137 static inline bool netif_is_l3_slave(const struct net_device *dev)
5138 {
5139 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5140 }
5141 
5142 static inline bool netif_is_bridge_master(const struct net_device *dev)
5143 {
5144 	return dev->priv_flags & IFF_EBRIDGE;
5145 }
5146 
5147 static inline bool netif_is_bridge_port(const struct net_device *dev)
5148 {
5149 	return dev->priv_flags & IFF_BRIDGE_PORT;
5150 }
5151 
5152 static inline bool netif_is_ovs_master(const struct net_device *dev)
5153 {
5154 	return dev->priv_flags & IFF_OPENVSWITCH;
5155 }
5156 
5157 static inline bool netif_is_ovs_port(const struct net_device *dev)
5158 {
5159 	return dev->priv_flags & IFF_OVS_DATAPATH;
5160 }
5161 
5162 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5163 {
5164 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5165 }
5166 
5167 static inline bool netif_is_team_master(const struct net_device *dev)
5168 {
5169 	return dev->priv_flags & IFF_TEAM;
5170 }
5171 
5172 static inline bool netif_is_team_port(const struct net_device *dev)
5173 {
5174 	return dev->priv_flags & IFF_TEAM_PORT;
5175 }
5176 
5177 static inline bool netif_is_lag_master(const struct net_device *dev)
5178 {
5179 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5180 }
5181 
5182 static inline bool netif_is_lag_port(const struct net_device *dev)
5183 {
5184 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5185 }
5186 
5187 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5188 {
5189 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5190 }
5191 
5192 static inline bool netif_is_failover(const struct net_device *dev)
5193 {
5194 	return dev->priv_flags & IFF_FAILOVER;
5195 }
5196 
5197 static inline bool netif_is_failover_slave(const struct net_device *dev)
5198 {
5199 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5200 }
5201 
5202 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5203 static inline void netif_keep_dst(struct net_device *dev)
5204 {
5205 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5206 }
5207 
5208 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5209 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5210 {
5211 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5212 	return dev->priv_flags & IFF_MACSEC;
5213 }
5214 
5215 extern struct pernet_operations __net_initdata loopback_net_ops;
5216 
5217 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5218 
5219 /* netdev_printk helpers, similar to dev_printk */
5220 
5221 static inline const char *netdev_name(const struct net_device *dev)
5222 {
5223 	if (!dev->name[0] || strchr(dev->name, '%'))
5224 		return "(unnamed net_device)";
5225 	return dev->name;
5226 }
5227 
5228 static inline bool netdev_unregistering(const struct net_device *dev)
5229 {
5230 	return dev->reg_state == NETREG_UNREGISTERING;
5231 }
5232 
5233 static inline const char *netdev_reg_state(const struct net_device *dev)
5234 {
5235 	switch (dev->reg_state) {
5236 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5237 	case NETREG_REGISTERED: return "";
5238 	case NETREG_UNREGISTERING: return " (unregistering)";
5239 	case NETREG_UNREGISTERED: return " (unregistered)";
5240 	case NETREG_RELEASED: return " (released)";
5241 	case NETREG_DUMMY: return " (dummy)";
5242 	}
5243 
5244 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5245 	return " (unknown)";
5246 }
5247 
5248 __printf(3, 4) __cold
5249 void netdev_printk(const char *level, const struct net_device *dev,
5250 		   const char *format, ...);
5251 __printf(2, 3) __cold
5252 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5253 __printf(2, 3) __cold
5254 void netdev_alert(const struct net_device *dev, const char *format, ...);
5255 __printf(2, 3) __cold
5256 void netdev_crit(const struct net_device *dev, const char *format, ...);
5257 __printf(2, 3) __cold
5258 void netdev_err(const struct net_device *dev, const char *format, ...);
5259 __printf(2, 3) __cold
5260 void netdev_warn(const struct net_device *dev, const char *format, ...);
5261 __printf(2, 3) __cold
5262 void netdev_notice(const struct net_device *dev, const char *format, ...);
5263 __printf(2, 3) __cold
5264 void netdev_info(const struct net_device *dev, const char *format, ...);
5265 
5266 #define netdev_level_once(level, dev, fmt, ...)			\
5267 do {								\
5268 	static bool __print_once __read_mostly;			\
5269 								\
5270 	if (!__print_once) {					\
5271 		__print_once = true;				\
5272 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5273 	}							\
5274 } while (0)
5275 
5276 #define netdev_emerg_once(dev, fmt, ...) \
5277 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5278 #define netdev_alert_once(dev, fmt, ...) \
5279 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5280 #define netdev_crit_once(dev, fmt, ...) \
5281 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5282 #define netdev_err_once(dev, fmt, ...) \
5283 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5284 #define netdev_warn_once(dev, fmt, ...) \
5285 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5286 #define netdev_notice_once(dev, fmt, ...) \
5287 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5288 #define netdev_info_once(dev, fmt, ...) \
5289 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5290 
5291 #define MODULE_ALIAS_NETDEV(device) \
5292 	MODULE_ALIAS("netdev-" device)
5293 
5294 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5295 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5296 #define netdev_dbg(__dev, format, args...)			\
5297 do {								\
5298 	dynamic_netdev_dbg(__dev, format, ##args);		\
5299 } while (0)
5300 #elif defined(DEBUG)
5301 #define netdev_dbg(__dev, format, args...)			\
5302 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5303 #else
5304 #define netdev_dbg(__dev, format, args...)			\
5305 ({								\
5306 	if (0)							\
5307 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5308 })
5309 #endif
5310 
5311 #if defined(VERBOSE_DEBUG)
5312 #define netdev_vdbg	netdev_dbg
5313 #else
5314 
5315 #define netdev_vdbg(dev, format, args...)			\
5316 ({								\
5317 	if (0)							\
5318 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5319 	0;							\
5320 })
5321 #endif
5322 
5323 /*
5324  * netdev_WARN() acts like dev_printk(), but with the key difference
5325  * of using a WARN/WARN_ON to get the message out, including the
5326  * file/line information and a backtrace.
5327  */
5328 #define netdev_WARN(dev, format, args...)			\
5329 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5330 	     netdev_reg_state(dev), ##args)
5331 
5332 #define netdev_WARN_ONCE(dev, format, args...)				\
5333 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5334 		  netdev_reg_state(dev), ##args)
5335 
5336 /* netif printk helpers, similar to netdev_printk */
5337 
5338 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5339 do {					  			\
5340 	if (netif_msg_##type(priv))				\
5341 		netdev_printk(level, (dev), fmt, ##args);	\
5342 } while (0)
5343 
5344 #define netif_level(level, priv, type, dev, fmt, args...)	\
5345 do {								\
5346 	if (netif_msg_##type(priv))				\
5347 		netdev_##level(dev, fmt, ##args);		\
5348 } while (0)
5349 
5350 #define netif_emerg(priv, type, dev, fmt, args...)		\
5351 	netif_level(emerg, priv, type, dev, fmt, ##args)
5352 #define netif_alert(priv, type, dev, fmt, args...)		\
5353 	netif_level(alert, priv, type, dev, fmt, ##args)
5354 #define netif_crit(priv, type, dev, fmt, args...)		\
5355 	netif_level(crit, priv, type, dev, fmt, ##args)
5356 #define netif_err(priv, type, dev, fmt, args...)		\
5357 	netif_level(err, priv, type, dev, fmt, ##args)
5358 #define netif_warn(priv, type, dev, fmt, args...)		\
5359 	netif_level(warn, priv, type, dev, fmt, ##args)
5360 #define netif_notice(priv, type, dev, fmt, args...)		\
5361 	netif_level(notice, priv, type, dev, fmt, ##args)
5362 #define netif_info(priv, type, dev, fmt, args...)		\
5363 	netif_level(info, priv, type, dev, fmt, ##args)
5364 
5365 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5366 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5367 #define netif_dbg(priv, type, netdev, format, args...)		\
5368 do {								\
5369 	if (netif_msg_##type(priv))				\
5370 		dynamic_netdev_dbg(netdev, format, ##args);	\
5371 } while (0)
5372 #elif defined(DEBUG)
5373 #define netif_dbg(priv, type, dev, format, args...)		\
5374 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5375 #else
5376 #define netif_dbg(priv, type, dev, format, args...)			\
5377 ({									\
5378 	if (0)								\
5379 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5380 	0;								\
5381 })
5382 #endif
5383 
5384 /* if @cond then downgrade to debug, else print at @level */
5385 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5386 	do {                                                              \
5387 		if (cond)                                                 \
5388 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5389 		else                                                      \
5390 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5391 	} while (0)
5392 
5393 #if defined(VERBOSE_DEBUG)
5394 #define netif_vdbg	netif_dbg
5395 #else
5396 #define netif_vdbg(priv, type, dev, format, args...)		\
5397 ({								\
5398 	if (0)							\
5399 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5400 	0;							\
5401 })
5402 #endif
5403 
5404 /*
5405  *	The list of packet types we will receive (as opposed to discard)
5406  *	and the routines to invoke.
5407  *
5408  *	Why 16. Because with 16 the only overlap we get on a hash of the
5409  *	low nibble of the protocol value is RARP/SNAP/X.25.
5410  *
5411  *		0800	IP
5412  *		0001	802.3
5413  *		0002	AX.25
5414  *		0004	802.2
5415  *		8035	RARP
5416  *		0005	SNAP
5417  *		0805	X.25
5418  *		0806	ARP
5419  *		8137	IPX
5420  *		0009	Localtalk
5421  *		86DD	IPv6
5422  */
5423 #define PTYPE_HASH_SIZE	(16)
5424 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5425 
5426 extern struct list_head ptype_all __read_mostly;
5427 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5428 
5429 extern struct net_device *blackhole_netdev;
5430 
5431 #endif	/* _LINUX_NETDEVICE_H */
5432