xref: /openbmc/linux/include/linux/netdevice.h (revision f3539c12)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 /* 802.11 specific */
60 struct wireless_dev;
61 /* 802.15.4 specific */
62 struct wpan_dev;
63 struct mpls_dev;
64 /* UDP Tunnel offloads */
65 struct udp_tunnel_info;
66 struct bpf_prog;
67 
68 void netdev_set_default_ethtool_ops(struct net_device *dev,
69 				    const struct ethtool_ops *ops);
70 
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
73 #define NET_RX_DROP		1	/* packet dropped */
74 
75 /*
76  * Transmit return codes: transmit return codes originate from three different
77  * namespaces:
78  *
79  * - qdisc return codes
80  * - driver transmit return codes
81  * - errno values
82  *
83  * Drivers are allowed to return any one of those in their hard_start_xmit()
84  * function. Real network devices commonly used with qdiscs should only return
85  * the driver transmit return codes though - when qdiscs are used, the actual
86  * transmission happens asynchronously, so the value is not propagated to
87  * higher layers. Virtual network devices transmit synchronously; in this case
88  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
89  * others are propagated to higher layers.
90  */
91 
92 /* qdisc ->enqueue() return codes. */
93 #define NET_XMIT_SUCCESS	0x00
94 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
95 #define NET_XMIT_CN		0x02	/* congestion notification	*/
96 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
97 
98 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
99  * indicates that the device will soon be dropping packets, or already drops
100  * some packets of the same priority; prompting us to send less aggressively. */
101 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
102 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
103 
104 /* Driver transmit return codes */
105 #define NETDEV_TX_MASK		0xf0
106 
107 enum netdev_tx {
108 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
109 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
110 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
111 };
112 typedef enum netdev_tx netdev_tx_t;
113 
114 /*
115  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
116  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
117  */
118 static inline bool dev_xmit_complete(int rc)
119 {
120 	/*
121 	 * Positive cases with an skb consumed by a driver:
122 	 * - successful transmission (rc == NETDEV_TX_OK)
123 	 * - error while transmitting (rc < 0)
124 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
125 	 */
126 	if (likely(rc < NET_XMIT_MASK))
127 		return true;
128 
129 	return false;
130 }
131 
132 /*
133  *	Compute the worst-case header length according to the protocols
134  *	used.
135  */
136 
137 #if defined(CONFIG_HYPERV_NET)
138 # define LL_MAX_HEADER 128
139 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
140 # if defined(CONFIG_MAC80211_MESH)
141 #  define LL_MAX_HEADER 128
142 # else
143 #  define LL_MAX_HEADER 96
144 # endif
145 #else
146 # define LL_MAX_HEADER 32
147 #endif
148 
149 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
150     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
151 #define MAX_HEADER LL_MAX_HEADER
152 #else
153 #define MAX_HEADER (LL_MAX_HEADER + 48)
154 #endif
155 
156 /*
157  *	Old network device statistics. Fields are native words
158  *	(unsigned long) so they can be read and written atomically.
159  */
160 
161 struct net_device_stats {
162 	unsigned long	rx_packets;
163 	unsigned long	tx_packets;
164 	unsigned long	rx_bytes;
165 	unsigned long	tx_bytes;
166 	unsigned long	rx_errors;
167 	unsigned long	tx_errors;
168 	unsigned long	rx_dropped;
169 	unsigned long	tx_dropped;
170 	unsigned long	multicast;
171 	unsigned long	collisions;
172 	unsigned long	rx_length_errors;
173 	unsigned long	rx_over_errors;
174 	unsigned long	rx_crc_errors;
175 	unsigned long	rx_frame_errors;
176 	unsigned long	rx_fifo_errors;
177 	unsigned long	rx_missed_errors;
178 	unsigned long	tx_aborted_errors;
179 	unsigned long	tx_carrier_errors;
180 	unsigned long	tx_fifo_errors;
181 	unsigned long	tx_heartbeat_errors;
182 	unsigned long	tx_window_errors;
183 	unsigned long	rx_compressed;
184 	unsigned long	tx_compressed;
185 };
186 
187 
188 #include <linux/cache.h>
189 #include <linux/skbuff.h>
190 
191 #ifdef CONFIG_RPS
192 #include <linux/static_key.h>
193 extern struct static_key rps_needed;
194 #endif
195 
196 struct neighbour;
197 struct neigh_parms;
198 struct sk_buff;
199 
200 struct netdev_hw_addr {
201 	struct list_head	list;
202 	unsigned char		addr[MAX_ADDR_LEN];
203 	unsigned char		type;
204 #define NETDEV_HW_ADDR_T_LAN		1
205 #define NETDEV_HW_ADDR_T_SAN		2
206 #define NETDEV_HW_ADDR_T_SLAVE		3
207 #define NETDEV_HW_ADDR_T_UNICAST	4
208 #define NETDEV_HW_ADDR_T_MULTICAST	5
209 	bool			global_use;
210 	int			sync_cnt;
211 	int			refcount;
212 	int			synced;
213 	struct rcu_head		rcu_head;
214 };
215 
216 struct netdev_hw_addr_list {
217 	struct list_head	list;
218 	int			count;
219 };
220 
221 #define netdev_hw_addr_list_count(l) ((l)->count)
222 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
223 #define netdev_hw_addr_list_for_each(ha, l) \
224 	list_for_each_entry(ha, &(l)->list, list)
225 
226 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
227 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
228 #define netdev_for_each_uc_addr(ha, dev) \
229 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
230 
231 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
232 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
233 #define netdev_for_each_mc_addr(ha, dev) \
234 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
235 
236 struct hh_cache {
237 	u16		hh_len;
238 	u16		__pad;
239 	seqlock_t	hh_lock;
240 
241 	/* cached hardware header; allow for machine alignment needs.        */
242 #define HH_DATA_MOD	16
243 #define HH_DATA_OFF(__len) \
244 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
245 #define HH_DATA_ALIGN(__len) \
246 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
247 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
248 };
249 
250 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
251  * Alternative is:
252  *   dev->hard_header_len ? (dev->hard_header_len +
253  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
254  *
255  * We could use other alignment values, but we must maintain the
256  * relationship HH alignment <= LL alignment.
257  */
258 #define LL_RESERVED_SPACE(dev) \
259 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 
263 struct header_ops {
264 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
265 			   unsigned short type, const void *daddr,
266 			   const void *saddr, unsigned int len);
267 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
268 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
269 	void	(*cache_update)(struct hh_cache *hh,
270 				const struct net_device *dev,
271 				const unsigned char *haddr);
272 	bool	(*validate)(const char *ll_header, unsigned int len);
273 };
274 
275 /* These flag bits are private to the generic network queueing
276  * layer; they may not be explicitly referenced by any other
277  * code.
278  */
279 
280 enum netdev_state_t {
281 	__LINK_STATE_START,
282 	__LINK_STATE_PRESENT,
283 	__LINK_STATE_NOCARRIER,
284 	__LINK_STATE_LINKWATCH_PENDING,
285 	__LINK_STATE_DORMANT,
286 };
287 
288 
289 /*
290  * This structure holds boot-time configured netdevice settings. They
291  * are then used in the device probing.
292  */
293 struct netdev_boot_setup {
294 	char name[IFNAMSIZ];
295 	struct ifmap map;
296 };
297 #define NETDEV_BOOT_SETUP_MAX 8
298 
299 int __init netdev_boot_setup(char *str);
300 
301 /*
302  * Structure for NAPI scheduling similar to tasklet but with weighting
303  */
304 struct napi_struct {
305 	/* The poll_list must only be managed by the entity which
306 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
307 	 * whoever atomically sets that bit can add this napi_struct
308 	 * to the per-CPU poll_list, and whoever clears that bit
309 	 * can remove from the list right before clearing the bit.
310 	 */
311 	struct list_head	poll_list;
312 
313 	unsigned long		state;
314 	int			weight;
315 	unsigned int		gro_count;
316 	int			(*poll)(struct napi_struct *, int);
317 #ifdef CONFIG_NETPOLL
318 	spinlock_t		poll_lock;
319 	int			poll_owner;
320 #endif
321 	struct net_device	*dev;
322 	struct sk_buff		*gro_list;
323 	struct sk_buff		*skb;
324 	struct hrtimer		timer;
325 	struct list_head	dev_list;
326 	struct hlist_node	napi_hash_node;
327 	unsigned int		napi_id;
328 };
329 
330 enum {
331 	NAPI_STATE_SCHED,	/* Poll is scheduled */
332 	NAPI_STATE_DISABLE,	/* Disable pending */
333 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
334 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
335 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
336 };
337 
338 enum gro_result {
339 	GRO_MERGED,
340 	GRO_MERGED_FREE,
341 	GRO_HELD,
342 	GRO_NORMAL,
343 	GRO_DROP,
344 };
345 typedef enum gro_result gro_result_t;
346 
347 /*
348  * enum rx_handler_result - Possible return values for rx_handlers.
349  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
350  * further.
351  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
352  * case skb->dev was changed by rx_handler.
353  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
354  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
355  *
356  * rx_handlers are functions called from inside __netif_receive_skb(), to do
357  * special processing of the skb, prior to delivery to protocol handlers.
358  *
359  * Currently, a net_device can only have a single rx_handler registered. Trying
360  * to register a second rx_handler will return -EBUSY.
361  *
362  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
363  * To unregister a rx_handler on a net_device, use
364  * netdev_rx_handler_unregister().
365  *
366  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
367  * do with the skb.
368  *
369  * If the rx_handler consumed the skb in some way, it should return
370  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
371  * the skb to be delivered in some other way.
372  *
373  * If the rx_handler changed skb->dev, to divert the skb to another
374  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
375  * new device will be called if it exists.
376  *
377  * If the rx_handler decides the skb should be ignored, it should return
378  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
379  * are registered on exact device (ptype->dev == skb->dev).
380  *
381  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
382  * delivered, it should return RX_HANDLER_PASS.
383  *
384  * A device without a registered rx_handler will behave as if rx_handler
385  * returned RX_HANDLER_PASS.
386  */
387 
388 enum rx_handler_result {
389 	RX_HANDLER_CONSUMED,
390 	RX_HANDLER_ANOTHER,
391 	RX_HANDLER_EXACT,
392 	RX_HANDLER_PASS,
393 };
394 typedef enum rx_handler_result rx_handler_result_t;
395 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
396 
397 void __napi_schedule(struct napi_struct *n);
398 void __napi_schedule_irqoff(struct napi_struct *n);
399 
400 static inline bool napi_disable_pending(struct napi_struct *n)
401 {
402 	return test_bit(NAPI_STATE_DISABLE, &n->state);
403 }
404 
405 /**
406  *	napi_schedule_prep - check if NAPI can be scheduled
407  *	@n: NAPI context
408  *
409  * Test if NAPI routine is already running, and if not mark
410  * it as running.  This is used as a condition variable to
411  * insure only one NAPI poll instance runs.  We also make
412  * sure there is no pending NAPI disable.
413  */
414 static inline bool napi_schedule_prep(struct napi_struct *n)
415 {
416 	return !napi_disable_pending(n) &&
417 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
418 }
419 
420 /**
421  *	napi_schedule - schedule NAPI poll
422  *	@n: NAPI context
423  *
424  * Schedule NAPI poll routine to be called if it is not already
425  * running.
426  */
427 static inline void napi_schedule(struct napi_struct *n)
428 {
429 	if (napi_schedule_prep(n))
430 		__napi_schedule(n);
431 }
432 
433 /**
434  *	napi_schedule_irqoff - schedule NAPI poll
435  *	@n: NAPI context
436  *
437  * Variant of napi_schedule(), assuming hard irqs are masked.
438  */
439 static inline void napi_schedule_irqoff(struct napi_struct *n)
440 {
441 	if (napi_schedule_prep(n))
442 		__napi_schedule_irqoff(n);
443 }
444 
445 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
446 static inline bool napi_reschedule(struct napi_struct *napi)
447 {
448 	if (napi_schedule_prep(napi)) {
449 		__napi_schedule(napi);
450 		return true;
451 	}
452 	return false;
453 }
454 
455 void __napi_complete(struct napi_struct *n);
456 void napi_complete_done(struct napi_struct *n, int work_done);
457 /**
458  *	napi_complete - NAPI processing complete
459  *	@n: NAPI context
460  *
461  * Mark NAPI processing as complete.
462  * Consider using napi_complete_done() instead.
463  */
464 static inline void napi_complete(struct napi_struct *n)
465 {
466 	return napi_complete_done(n, 0);
467 }
468 
469 /**
470  *	napi_hash_add - add a NAPI to global hashtable
471  *	@napi: NAPI context
472  *
473  * Generate a new napi_id and store a @napi under it in napi_hash.
474  * Used for busy polling (CONFIG_NET_RX_BUSY_POLL).
475  * Note: This is normally automatically done from netif_napi_add(),
476  * so might disappear in a future Linux version.
477  */
478 void napi_hash_add(struct napi_struct *napi);
479 
480 /**
481  *	napi_hash_del - remove a NAPI from global table
482  *	@napi: NAPI context
483  *
484  * Warning: caller must observe RCU grace period
485  * before freeing memory containing @napi, if
486  * this function returns true.
487  * Note: core networking stack automatically calls it
488  * from netif_napi_del().
489  * Drivers might want to call this helper to combine all
490  * the needed RCU grace periods into a single one.
491  */
492 bool napi_hash_del(struct napi_struct *napi);
493 
494 /**
495  *	napi_disable - prevent NAPI from scheduling
496  *	@n: NAPI context
497  *
498  * Stop NAPI from being scheduled on this context.
499  * Waits till any outstanding processing completes.
500  */
501 void napi_disable(struct napi_struct *n);
502 
503 /**
504  *	napi_enable - enable NAPI scheduling
505  *	@n: NAPI context
506  *
507  * Resume NAPI from being scheduled on this context.
508  * Must be paired with napi_disable.
509  */
510 static inline void napi_enable(struct napi_struct *n)
511 {
512 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
513 	smp_mb__before_atomic();
514 	clear_bit(NAPI_STATE_SCHED, &n->state);
515 	clear_bit(NAPI_STATE_NPSVC, &n->state);
516 }
517 
518 /**
519  *	napi_synchronize - wait until NAPI is not running
520  *	@n: NAPI context
521  *
522  * Wait until NAPI is done being scheduled on this context.
523  * Waits till any outstanding processing completes but
524  * does not disable future activations.
525  */
526 static inline void napi_synchronize(const struct napi_struct *n)
527 {
528 	if (IS_ENABLED(CONFIG_SMP))
529 		while (test_bit(NAPI_STATE_SCHED, &n->state))
530 			msleep(1);
531 	else
532 		barrier();
533 }
534 
535 enum netdev_queue_state_t {
536 	__QUEUE_STATE_DRV_XOFF,
537 	__QUEUE_STATE_STACK_XOFF,
538 	__QUEUE_STATE_FROZEN,
539 };
540 
541 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
542 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
543 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
544 
545 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
546 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
547 					QUEUE_STATE_FROZEN)
548 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
549 					QUEUE_STATE_FROZEN)
550 
551 /*
552  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
553  * netif_tx_* functions below are used to manipulate this flag.  The
554  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
555  * queue independently.  The netif_xmit_*stopped functions below are called
556  * to check if the queue has been stopped by the driver or stack (either
557  * of the XOFF bits are set in the state).  Drivers should not need to call
558  * netif_xmit*stopped functions, they should only be using netif_tx_*.
559  */
560 
561 struct netdev_queue {
562 /*
563  * read-mostly part
564  */
565 	struct net_device	*dev;
566 	struct Qdisc __rcu	*qdisc;
567 	struct Qdisc		*qdisc_sleeping;
568 #ifdef CONFIG_SYSFS
569 	struct kobject		kobj;
570 #endif
571 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
572 	int			numa_node;
573 #endif
574 	unsigned long		tx_maxrate;
575 	/*
576 	 * Number of TX timeouts for this queue
577 	 * (/sys/class/net/DEV/Q/trans_timeout)
578 	 */
579 	unsigned long		trans_timeout;
580 /*
581  * write-mostly part
582  */
583 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
584 	int			xmit_lock_owner;
585 	/*
586 	 * Time (in jiffies) of last Tx
587 	 */
588 	unsigned long		trans_start;
589 
590 	unsigned long		state;
591 
592 #ifdef CONFIG_BQL
593 	struct dql		dql;
594 #endif
595 } ____cacheline_aligned_in_smp;
596 
597 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
598 {
599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 	return q->numa_node;
601 #else
602 	return NUMA_NO_NODE;
603 #endif
604 }
605 
606 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
607 {
608 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
609 	q->numa_node = node;
610 #endif
611 }
612 
613 #ifdef CONFIG_RPS
614 /*
615  * This structure holds an RPS map which can be of variable length.  The
616  * map is an array of CPUs.
617  */
618 struct rps_map {
619 	unsigned int len;
620 	struct rcu_head rcu;
621 	u16 cpus[0];
622 };
623 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
624 
625 /*
626  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
627  * tail pointer for that CPU's input queue at the time of last enqueue, and
628  * a hardware filter index.
629  */
630 struct rps_dev_flow {
631 	u16 cpu;
632 	u16 filter;
633 	unsigned int last_qtail;
634 };
635 #define RPS_NO_FILTER 0xffff
636 
637 /*
638  * The rps_dev_flow_table structure contains a table of flow mappings.
639  */
640 struct rps_dev_flow_table {
641 	unsigned int mask;
642 	struct rcu_head rcu;
643 	struct rps_dev_flow flows[0];
644 };
645 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
646     ((_num) * sizeof(struct rps_dev_flow)))
647 
648 /*
649  * The rps_sock_flow_table contains mappings of flows to the last CPU
650  * on which they were processed by the application (set in recvmsg).
651  * Each entry is a 32bit value. Upper part is the high-order bits
652  * of flow hash, lower part is CPU number.
653  * rps_cpu_mask is used to partition the space, depending on number of
654  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
655  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
656  * meaning we use 32-6=26 bits for the hash.
657  */
658 struct rps_sock_flow_table {
659 	u32	mask;
660 
661 	u32	ents[0] ____cacheline_aligned_in_smp;
662 };
663 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
664 
665 #define RPS_NO_CPU 0xffff
666 
667 extern u32 rps_cpu_mask;
668 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
669 
670 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
671 					u32 hash)
672 {
673 	if (table && hash) {
674 		unsigned int index = hash & table->mask;
675 		u32 val = hash & ~rps_cpu_mask;
676 
677 		/* We only give a hint, preemption can change CPU under us */
678 		val |= raw_smp_processor_id();
679 
680 		if (table->ents[index] != val)
681 			table->ents[index] = val;
682 	}
683 }
684 
685 #ifdef CONFIG_RFS_ACCEL
686 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
687 			 u16 filter_id);
688 #endif
689 #endif /* CONFIG_RPS */
690 
691 /* This structure contains an instance of an RX queue. */
692 struct netdev_rx_queue {
693 #ifdef CONFIG_RPS
694 	struct rps_map __rcu		*rps_map;
695 	struct rps_dev_flow_table __rcu	*rps_flow_table;
696 #endif
697 	struct kobject			kobj;
698 	struct net_device		*dev;
699 } ____cacheline_aligned_in_smp;
700 
701 /*
702  * RX queue sysfs structures and functions.
703  */
704 struct rx_queue_attribute {
705 	struct attribute attr;
706 	ssize_t (*show)(struct netdev_rx_queue *queue,
707 	    struct rx_queue_attribute *attr, char *buf);
708 	ssize_t (*store)(struct netdev_rx_queue *queue,
709 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
710 };
711 
712 #ifdef CONFIG_XPS
713 /*
714  * This structure holds an XPS map which can be of variable length.  The
715  * map is an array of queues.
716  */
717 struct xps_map {
718 	unsigned int len;
719 	unsigned int alloc_len;
720 	struct rcu_head rcu;
721 	u16 queues[0];
722 };
723 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
724 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
725        - sizeof(struct xps_map)) / sizeof(u16))
726 
727 /*
728  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
729  */
730 struct xps_dev_maps {
731 	struct rcu_head rcu;
732 	struct xps_map __rcu *cpu_map[0];
733 };
734 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
735     (nr_cpu_ids * sizeof(struct xps_map *)))
736 #endif /* CONFIG_XPS */
737 
738 #define TC_MAX_QUEUE	16
739 #define TC_BITMASK	15
740 /* HW offloaded queuing disciplines txq count and offset maps */
741 struct netdev_tc_txq {
742 	u16 count;
743 	u16 offset;
744 };
745 
746 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
747 /*
748  * This structure is to hold information about the device
749  * configured to run FCoE protocol stack.
750  */
751 struct netdev_fcoe_hbainfo {
752 	char	manufacturer[64];
753 	char	serial_number[64];
754 	char	hardware_version[64];
755 	char	driver_version[64];
756 	char	optionrom_version[64];
757 	char	firmware_version[64];
758 	char	model[256];
759 	char	model_description[256];
760 };
761 #endif
762 
763 #define MAX_PHYS_ITEM_ID_LEN 32
764 
765 /* This structure holds a unique identifier to identify some
766  * physical item (port for example) used by a netdevice.
767  */
768 struct netdev_phys_item_id {
769 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
770 	unsigned char id_len;
771 };
772 
773 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
774 					    struct netdev_phys_item_id *b)
775 {
776 	return a->id_len == b->id_len &&
777 	       memcmp(a->id, b->id, a->id_len) == 0;
778 }
779 
780 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
781 				       struct sk_buff *skb);
782 
783 /* These structures hold the attributes of qdisc and classifiers
784  * that are being passed to the netdevice through the setup_tc op.
785  */
786 enum {
787 	TC_SETUP_MQPRIO,
788 	TC_SETUP_CLSU32,
789 	TC_SETUP_CLSFLOWER,
790 	TC_SETUP_MATCHALL,
791 };
792 
793 struct tc_cls_u32_offload;
794 
795 struct tc_to_netdev {
796 	unsigned int type;
797 	union {
798 		u8 tc;
799 		struct tc_cls_u32_offload *cls_u32;
800 		struct tc_cls_flower_offload *cls_flower;
801 		struct tc_cls_matchall_offload *cls_mall;
802 	};
803 };
804 
805 /* These structures hold the attributes of xdp state that are being passed
806  * to the netdevice through the xdp op.
807  */
808 enum xdp_netdev_command {
809 	/* Set or clear a bpf program used in the earliest stages of packet
810 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
811 	 * is responsible for calling bpf_prog_put on any old progs that are
812 	 * stored. In case of error, the callee need not release the new prog
813 	 * reference, but on success it takes ownership and must bpf_prog_put
814 	 * when it is no longer used.
815 	 */
816 	XDP_SETUP_PROG,
817 	/* Check if a bpf program is set on the device.  The callee should
818 	 * return true if a program is currently attached and running.
819 	 */
820 	XDP_QUERY_PROG,
821 };
822 
823 struct netdev_xdp {
824 	enum xdp_netdev_command command;
825 	union {
826 		/* XDP_SETUP_PROG */
827 		struct bpf_prog *prog;
828 		/* XDP_QUERY_PROG */
829 		bool prog_attached;
830 	};
831 };
832 
833 /*
834  * This structure defines the management hooks for network devices.
835  * The following hooks can be defined; unless noted otherwise, they are
836  * optional and can be filled with a null pointer.
837  *
838  * int (*ndo_init)(struct net_device *dev);
839  *     This function is called once when a network device is registered.
840  *     The network device can use this for any late stage initialization
841  *     or semantic validation. It can fail with an error code which will
842  *     be propagated back to register_netdev.
843  *
844  * void (*ndo_uninit)(struct net_device *dev);
845  *     This function is called when device is unregistered or when registration
846  *     fails. It is not called if init fails.
847  *
848  * int (*ndo_open)(struct net_device *dev);
849  *     This function is called when a network device transitions to the up
850  *     state.
851  *
852  * int (*ndo_stop)(struct net_device *dev);
853  *     This function is called when a network device transitions to the down
854  *     state.
855  *
856  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
857  *                               struct net_device *dev);
858  *	Called when a packet needs to be transmitted.
859  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
860  *	the queue before that can happen; it's for obsolete devices and weird
861  *	corner cases, but the stack really does a non-trivial amount
862  *	of useless work if you return NETDEV_TX_BUSY.
863  *	Required; cannot be NULL.
864  *
865  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
866  *		netdev_features_t features);
867  *	Adjusts the requested feature flags according to device-specific
868  *	constraints, and returns the resulting flags. Must not modify
869  *	the device state.
870  *
871  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
872  *                         void *accel_priv, select_queue_fallback_t fallback);
873  *	Called to decide which queue to use when device supports multiple
874  *	transmit queues.
875  *
876  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
877  *	This function is called to allow device receiver to make
878  *	changes to configuration when multicast or promiscuous is enabled.
879  *
880  * void (*ndo_set_rx_mode)(struct net_device *dev);
881  *	This function is called device changes address list filtering.
882  *	If driver handles unicast address filtering, it should set
883  *	IFF_UNICAST_FLT in its priv_flags.
884  *
885  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
886  *	This function  is called when the Media Access Control address
887  *	needs to be changed. If this interface is not defined, the
888  *	MAC address can not be changed.
889  *
890  * int (*ndo_validate_addr)(struct net_device *dev);
891  *	Test if Media Access Control address is valid for the device.
892  *
893  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
894  *	Called when a user requests an ioctl which can't be handled by
895  *	the generic interface code. If not defined ioctls return
896  *	not supported error code.
897  *
898  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
899  *	Used to set network devices bus interface parameters. This interface
900  *	is retained for legacy reasons; new devices should use the bus
901  *	interface (PCI) for low level management.
902  *
903  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
904  *	Called when a user wants to change the Maximum Transfer Unit
905  *	of a device. If not defined, any request to change MTU will
906  *	will return an error.
907  *
908  * void (*ndo_tx_timeout)(struct net_device *dev);
909  *	Callback used when the transmitter has not made any progress
910  *	for dev->watchdog ticks.
911  *
912  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
913  *                      struct rtnl_link_stats64 *storage);
914  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
915  *	Called when a user wants to get the network device usage
916  *	statistics. Drivers must do one of the following:
917  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
918  *	   rtnl_link_stats64 structure passed by the caller.
919  *	2. Define @ndo_get_stats to update a net_device_stats structure
920  *	   (which should normally be dev->stats) and return a pointer to
921  *	   it. The structure may be changed asynchronously only if each
922  *	   field is written atomically.
923  *	3. Update dev->stats asynchronously and atomically, and define
924  *	   neither operation.
925  *
926  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
927  *	If device supports VLAN filtering this function is called when a
928  *	VLAN id is registered.
929  *
930  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
931  *	If device supports VLAN filtering this function is called when a
932  *	VLAN id is unregistered.
933  *
934  * void (*ndo_poll_controller)(struct net_device *dev);
935  *
936  *	SR-IOV management functions.
937  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
938  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
939  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
940  *			  int max_tx_rate);
941  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
942  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
943  * int (*ndo_get_vf_config)(struct net_device *dev,
944  *			    int vf, struct ifla_vf_info *ivf);
945  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
946  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
947  *			  struct nlattr *port[]);
948  *
949  *      Enable or disable the VF ability to query its RSS Redirection Table and
950  *      Hash Key. This is needed since on some devices VF share this information
951  *      with PF and querying it may introduce a theoretical security risk.
952  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
953  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
954  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
955  * 	Called to setup 'tc' number of traffic classes in the net device. This
956  * 	is always called from the stack with the rtnl lock held and netif tx
957  * 	queues stopped. This allows the netdevice to perform queue management
958  * 	safely.
959  *
960  *	Fiber Channel over Ethernet (FCoE) offload functions.
961  * int (*ndo_fcoe_enable)(struct net_device *dev);
962  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
963  *	so the underlying device can perform whatever needed configuration or
964  *	initialization to support acceleration of FCoE traffic.
965  *
966  * int (*ndo_fcoe_disable)(struct net_device *dev);
967  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
968  *	so the underlying device can perform whatever needed clean-ups to
969  *	stop supporting acceleration of FCoE traffic.
970  *
971  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
972  *			     struct scatterlist *sgl, unsigned int sgc);
973  *	Called when the FCoE Initiator wants to initialize an I/O that
974  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
975  *	perform necessary setup and returns 1 to indicate the device is set up
976  *	successfully to perform DDP on this I/O, otherwise this returns 0.
977  *
978  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
979  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
980  *	indicated by the FC exchange id 'xid', so the underlying device can
981  *	clean up and reuse resources for later DDP requests.
982  *
983  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
984  *			      struct scatterlist *sgl, unsigned int sgc);
985  *	Called when the FCoE Target wants to initialize an I/O that
986  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
987  *	perform necessary setup and returns 1 to indicate the device is set up
988  *	successfully to perform DDP on this I/O, otherwise this returns 0.
989  *
990  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
991  *			       struct netdev_fcoe_hbainfo *hbainfo);
992  *	Called when the FCoE Protocol stack wants information on the underlying
993  *	device. This information is utilized by the FCoE protocol stack to
994  *	register attributes with Fiber Channel management service as per the
995  *	FC-GS Fabric Device Management Information(FDMI) specification.
996  *
997  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
998  *	Called when the underlying device wants to override default World Wide
999  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1000  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1001  *	protocol stack to use.
1002  *
1003  *	RFS acceleration.
1004  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1005  *			    u16 rxq_index, u32 flow_id);
1006  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1007  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1008  *	Return the filter ID on success, or a negative error code.
1009  *
1010  *	Slave management functions (for bridge, bonding, etc).
1011  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1012  *	Called to make another netdev an underling.
1013  *
1014  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1015  *	Called to release previously enslaved netdev.
1016  *
1017  *      Feature/offload setting functions.
1018  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1019  *	Called to update device configuration to new features. Passed
1020  *	feature set might be less than what was returned by ndo_fix_features()).
1021  *	Must return >0 or -errno if it changed dev->features itself.
1022  *
1023  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1024  *		      struct net_device *dev,
1025  *		      const unsigned char *addr, u16 vid, u16 flags)
1026  *	Adds an FDB entry to dev for addr.
1027  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1028  *		      struct net_device *dev,
1029  *		      const unsigned char *addr, u16 vid)
1030  *	Deletes the FDB entry from dev coresponding to addr.
1031  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1032  *		       struct net_device *dev, struct net_device *filter_dev,
1033  *		       int idx)
1034  *	Used to add FDB entries to dump requests. Implementers should add
1035  *	entries to skb and update idx with the number of entries.
1036  *
1037  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1038  *			     u16 flags)
1039  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1040  *			     struct net_device *dev, u32 filter_mask,
1041  *			     int nlflags)
1042  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1043  *			     u16 flags);
1044  *
1045  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1046  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1047  *	which do not represent real hardware may define this to allow their
1048  *	userspace components to manage their virtual carrier state. Devices
1049  *	that determine carrier state from physical hardware properties (eg
1050  *	network cables) or protocol-dependent mechanisms (eg
1051  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1052  *
1053  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1054  *			       struct netdev_phys_item_id *ppid);
1055  *	Called to get ID of physical port of this device. If driver does
1056  *	not implement this, it is assumed that the hw is not able to have
1057  *	multiple net devices on single physical port.
1058  *
1059  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1060  *			      struct udp_tunnel_info *ti);
1061  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1062  *	address family that a UDP tunnel is listnening to. It is called only
1063  *	when a new port starts listening. The operation is protected by the
1064  *	RTNL.
1065  *
1066  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1067  *			      struct udp_tunnel_info *ti);
1068  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1069  *	address family that the UDP tunnel is not listening to anymore. The
1070  *	operation is protected by the RTNL.
1071  *
1072  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1073  *				 struct net_device *dev)
1074  *	Called by upper layer devices to accelerate switching or other
1075  *	station functionality into hardware. 'pdev is the lowerdev
1076  *	to use for the offload and 'dev' is the net device that will
1077  *	back the offload. Returns a pointer to the private structure
1078  *	the upper layer will maintain.
1079  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1080  *	Called by upper layer device to delete the station created
1081  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1082  *	the station and priv is the structure returned by the add
1083  *	operation.
1084  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1085  *				      struct net_device *dev,
1086  *				      void *priv);
1087  *	Callback to use for xmit over the accelerated station. This
1088  *	is used in place of ndo_start_xmit on accelerated net
1089  *	devices.
1090  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1091  *					   struct net_device *dev
1092  *					   netdev_features_t features);
1093  *	Called by core transmit path to determine if device is capable of
1094  *	performing offload operations on a given packet. This is to give
1095  *	the device an opportunity to implement any restrictions that cannot
1096  *	be otherwise expressed by feature flags. The check is called with
1097  *	the set of features that the stack has calculated and it returns
1098  *	those the driver believes to be appropriate.
1099  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1100  *			     int queue_index, u32 maxrate);
1101  *	Called when a user wants to set a max-rate limitation of specific
1102  *	TX queue.
1103  * int (*ndo_get_iflink)(const struct net_device *dev);
1104  *	Called to get the iflink value of this device.
1105  * void (*ndo_change_proto_down)(struct net_device *dev,
1106  *				 bool proto_down);
1107  *	This function is used to pass protocol port error state information
1108  *	to the switch driver. The switch driver can react to the proto_down
1109  *      by doing a phys down on the associated switch port.
1110  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1111  *	This function is used to get egress tunnel information for given skb.
1112  *	This is useful for retrieving outer tunnel header parameters while
1113  *	sampling packet.
1114  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1115  *	This function is used to specify the headroom that the skb must
1116  *	consider when allocation skb during packet reception. Setting
1117  *	appropriate rx headroom value allows avoiding skb head copy on
1118  *	forward. Setting a negative value resets the rx headroom to the
1119  *	default value.
1120  * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1121  *	This function is used to set or query state related to XDP on the
1122  *	netdevice. See definition of enum xdp_netdev_command for details.
1123  *
1124  */
1125 struct net_device_ops {
1126 	int			(*ndo_init)(struct net_device *dev);
1127 	void			(*ndo_uninit)(struct net_device *dev);
1128 	int			(*ndo_open)(struct net_device *dev);
1129 	int			(*ndo_stop)(struct net_device *dev);
1130 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1131 						  struct net_device *dev);
1132 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1133 						      struct net_device *dev,
1134 						      netdev_features_t features);
1135 	u16			(*ndo_select_queue)(struct net_device *dev,
1136 						    struct sk_buff *skb,
1137 						    void *accel_priv,
1138 						    select_queue_fallback_t fallback);
1139 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1140 						       int flags);
1141 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1142 	int			(*ndo_set_mac_address)(struct net_device *dev,
1143 						       void *addr);
1144 	int			(*ndo_validate_addr)(struct net_device *dev);
1145 	int			(*ndo_do_ioctl)(struct net_device *dev,
1146 					        struct ifreq *ifr, int cmd);
1147 	int			(*ndo_set_config)(struct net_device *dev,
1148 					          struct ifmap *map);
1149 	int			(*ndo_change_mtu)(struct net_device *dev,
1150 						  int new_mtu);
1151 	int			(*ndo_neigh_setup)(struct net_device *dev,
1152 						   struct neigh_parms *);
1153 	void			(*ndo_tx_timeout) (struct net_device *dev);
1154 
1155 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1156 						     struct rtnl_link_stats64 *storage);
1157 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1158 
1159 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1160 						       __be16 proto, u16 vid);
1161 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1162 						        __be16 proto, u16 vid);
1163 #ifdef CONFIG_NET_POLL_CONTROLLER
1164 	void                    (*ndo_poll_controller)(struct net_device *dev);
1165 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1166 						     struct netpoll_info *info);
1167 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1168 #endif
1169 #ifdef CONFIG_NET_RX_BUSY_POLL
1170 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1171 #endif
1172 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1173 						  int queue, u8 *mac);
1174 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1175 						   int queue, u16 vlan, u8 qos);
1176 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1177 						   int vf, int min_tx_rate,
1178 						   int max_tx_rate);
1179 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1180 						       int vf, bool setting);
1181 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1182 						    int vf, bool setting);
1183 	int			(*ndo_get_vf_config)(struct net_device *dev,
1184 						     int vf,
1185 						     struct ifla_vf_info *ivf);
1186 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1187 							 int vf, int link_state);
1188 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1189 						    int vf,
1190 						    struct ifla_vf_stats
1191 						    *vf_stats);
1192 	int			(*ndo_set_vf_port)(struct net_device *dev,
1193 						   int vf,
1194 						   struct nlattr *port[]);
1195 	int			(*ndo_get_vf_port)(struct net_device *dev,
1196 						   int vf, struct sk_buff *skb);
1197 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1198 						   int vf, u64 guid,
1199 						   int guid_type);
1200 	int			(*ndo_set_vf_rss_query_en)(
1201 						   struct net_device *dev,
1202 						   int vf, bool setting);
1203 	int			(*ndo_setup_tc)(struct net_device *dev,
1204 						u32 handle,
1205 						__be16 protocol,
1206 						struct tc_to_netdev *tc);
1207 #if IS_ENABLED(CONFIG_FCOE)
1208 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1209 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1210 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1211 						      u16 xid,
1212 						      struct scatterlist *sgl,
1213 						      unsigned int sgc);
1214 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1215 						     u16 xid);
1216 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1217 						       u16 xid,
1218 						       struct scatterlist *sgl,
1219 						       unsigned int sgc);
1220 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1221 							struct netdev_fcoe_hbainfo *hbainfo);
1222 #endif
1223 
1224 #if IS_ENABLED(CONFIG_LIBFCOE)
1225 #define NETDEV_FCOE_WWNN 0
1226 #define NETDEV_FCOE_WWPN 1
1227 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1228 						    u64 *wwn, int type);
1229 #endif
1230 
1231 #ifdef CONFIG_RFS_ACCEL
1232 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1233 						     const struct sk_buff *skb,
1234 						     u16 rxq_index,
1235 						     u32 flow_id);
1236 #endif
1237 	int			(*ndo_add_slave)(struct net_device *dev,
1238 						 struct net_device *slave_dev);
1239 	int			(*ndo_del_slave)(struct net_device *dev,
1240 						 struct net_device *slave_dev);
1241 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1242 						    netdev_features_t features);
1243 	int			(*ndo_set_features)(struct net_device *dev,
1244 						    netdev_features_t features);
1245 	int			(*ndo_neigh_construct)(struct net_device *dev,
1246 						       struct neighbour *n);
1247 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1248 						     struct neighbour *n);
1249 
1250 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1251 					       struct nlattr *tb[],
1252 					       struct net_device *dev,
1253 					       const unsigned char *addr,
1254 					       u16 vid,
1255 					       u16 flags);
1256 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1257 					       struct nlattr *tb[],
1258 					       struct net_device *dev,
1259 					       const unsigned char *addr,
1260 					       u16 vid);
1261 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1262 						struct netlink_callback *cb,
1263 						struct net_device *dev,
1264 						struct net_device *filter_dev,
1265 						int idx);
1266 
1267 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1268 						      struct nlmsghdr *nlh,
1269 						      u16 flags);
1270 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1271 						      u32 pid, u32 seq,
1272 						      struct net_device *dev,
1273 						      u32 filter_mask,
1274 						      int nlflags);
1275 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1276 						      struct nlmsghdr *nlh,
1277 						      u16 flags);
1278 	int			(*ndo_change_carrier)(struct net_device *dev,
1279 						      bool new_carrier);
1280 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1281 							struct netdev_phys_item_id *ppid);
1282 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1283 							  char *name, size_t len);
1284 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1285 						      struct udp_tunnel_info *ti);
1286 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1287 						      struct udp_tunnel_info *ti);
1288 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1289 							struct net_device *dev);
1290 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1291 							void *priv);
1292 
1293 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1294 							struct net_device *dev,
1295 							void *priv);
1296 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1297 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1298 						      int queue_index,
1299 						      u32 maxrate);
1300 	int			(*ndo_get_iflink)(const struct net_device *dev);
1301 	int			(*ndo_change_proto_down)(struct net_device *dev,
1302 							 bool proto_down);
1303 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1304 						       struct sk_buff *skb);
1305 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1306 						       int needed_headroom);
1307 	int			(*ndo_xdp)(struct net_device *dev,
1308 					   struct netdev_xdp *xdp);
1309 };
1310 
1311 /**
1312  * enum net_device_priv_flags - &struct net_device priv_flags
1313  *
1314  * These are the &struct net_device, they are only set internally
1315  * by drivers and used in the kernel. These flags are invisible to
1316  * userspace; this means that the order of these flags can change
1317  * during any kernel release.
1318  *
1319  * You should have a pretty good reason to be extending these flags.
1320  *
1321  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1322  * @IFF_EBRIDGE: Ethernet bridging device
1323  * @IFF_BONDING: bonding master or slave
1324  * @IFF_ISATAP: ISATAP interface (RFC4214)
1325  * @IFF_WAN_HDLC: WAN HDLC device
1326  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1327  *	release skb->dst
1328  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1329  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1330  * @IFF_MACVLAN_PORT: device used as macvlan port
1331  * @IFF_BRIDGE_PORT: device used as bridge port
1332  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1333  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1334  * @IFF_UNICAST_FLT: Supports unicast filtering
1335  * @IFF_TEAM_PORT: device used as team port
1336  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1337  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1338  *	change when it's running
1339  * @IFF_MACVLAN: Macvlan device
1340  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1341  *	underlying stacked devices
1342  * @IFF_IPVLAN_MASTER: IPvlan master device
1343  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1344  * @IFF_L3MDEV_MASTER: device is an L3 master device
1345  * @IFF_NO_QUEUE: device can run without qdisc attached
1346  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1347  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1348  * @IFF_TEAM: device is a team device
1349  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1350  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1351  *	entity (i.e. the master device for bridged veth)
1352  * @IFF_MACSEC: device is a MACsec device
1353  */
1354 enum netdev_priv_flags {
1355 	IFF_802_1Q_VLAN			= 1<<0,
1356 	IFF_EBRIDGE			= 1<<1,
1357 	IFF_BONDING			= 1<<2,
1358 	IFF_ISATAP			= 1<<3,
1359 	IFF_WAN_HDLC			= 1<<4,
1360 	IFF_XMIT_DST_RELEASE		= 1<<5,
1361 	IFF_DONT_BRIDGE			= 1<<6,
1362 	IFF_DISABLE_NETPOLL		= 1<<7,
1363 	IFF_MACVLAN_PORT		= 1<<8,
1364 	IFF_BRIDGE_PORT			= 1<<9,
1365 	IFF_OVS_DATAPATH		= 1<<10,
1366 	IFF_TX_SKB_SHARING		= 1<<11,
1367 	IFF_UNICAST_FLT			= 1<<12,
1368 	IFF_TEAM_PORT			= 1<<13,
1369 	IFF_SUPP_NOFCS			= 1<<14,
1370 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1371 	IFF_MACVLAN			= 1<<16,
1372 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1373 	IFF_IPVLAN_MASTER		= 1<<18,
1374 	IFF_IPVLAN_SLAVE		= 1<<19,
1375 	IFF_L3MDEV_MASTER		= 1<<20,
1376 	IFF_NO_QUEUE			= 1<<21,
1377 	IFF_OPENVSWITCH			= 1<<22,
1378 	IFF_L3MDEV_SLAVE		= 1<<23,
1379 	IFF_TEAM			= 1<<24,
1380 	IFF_RXFH_CONFIGURED		= 1<<25,
1381 	IFF_PHONY_HEADROOM		= 1<<26,
1382 	IFF_MACSEC			= 1<<27,
1383 };
1384 
1385 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1386 #define IFF_EBRIDGE			IFF_EBRIDGE
1387 #define IFF_BONDING			IFF_BONDING
1388 #define IFF_ISATAP			IFF_ISATAP
1389 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1390 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1391 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1392 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1393 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1394 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1395 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1396 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1397 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1398 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1399 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1400 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1401 #define IFF_MACVLAN			IFF_MACVLAN
1402 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1403 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1404 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1405 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1406 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1407 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1408 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1409 #define IFF_TEAM			IFF_TEAM
1410 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1411 #define IFF_MACSEC			IFF_MACSEC
1412 
1413 /**
1414  *	struct net_device - The DEVICE structure.
1415  *		Actually, this whole structure is a big mistake.  It mixes I/O
1416  *		data with strictly "high-level" data, and it has to know about
1417  *		almost every data structure used in the INET module.
1418  *
1419  *	@name:	This is the first field of the "visible" part of this structure
1420  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1421  *	 	of the interface.
1422  *
1423  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1424  *	@ifalias:	SNMP alias
1425  *	@mem_end:	Shared memory end
1426  *	@mem_start:	Shared memory start
1427  *	@base_addr:	Device I/O address
1428  *	@irq:		Device IRQ number
1429  *
1430  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1431  *
1432  *	@state:		Generic network queuing layer state, see netdev_state_t
1433  *	@dev_list:	The global list of network devices
1434  *	@napi_list:	List entry used for polling NAPI devices
1435  *	@unreg_list:	List entry  when we are unregistering the
1436  *			device; see the function unregister_netdev
1437  *	@close_list:	List entry used when we are closing the device
1438  *	@ptype_all:     Device-specific packet handlers for all protocols
1439  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1440  *
1441  *	@adj_list:	Directly linked devices, like slaves for bonding
1442  *	@all_adj_list:	All linked devices, *including* neighbours
1443  *	@features:	Currently active device features
1444  *	@hw_features:	User-changeable features
1445  *
1446  *	@wanted_features:	User-requested features
1447  *	@vlan_features:		Mask of features inheritable by VLAN devices
1448  *
1449  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1450  *				This field indicates what encapsulation
1451  *				offloads the hardware is capable of doing,
1452  *				and drivers will need to set them appropriately.
1453  *
1454  *	@mpls_features:	Mask of features inheritable by MPLS
1455  *
1456  *	@ifindex:	interface index
1457  *	@group:		The group the device belongs to
1458  *
1459  *	@stats:		Statistics struct, which was left as a legacy, use
1460  *			rtnl_link_stats64 instead
1461  *
1462  *	@rx_dropped:	Dropped packets by core network,
1463  *			do not use this in drivers
1464  *	@tx_dropped:	Dropped packets by core network,
1465  *			do not use this in drivers
1466  *	@rx_nohandler:	nohandler dropped packets by core network on
1467  *			inactive devices, do not use this in drivers
1468  *
1469  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1470  *				instead of ioctl,
1471  *				see <net/iw_handler.h> for details.
1472  *	@wireless_data:	Instance data managed by the core of wireless extensions
1473  *
1474  *	@netdev_ops:	Includes several pointers to callbacks,
1475  *			if one wants to override the ndo_*() functions
1476  *	@ethtool_ops:	Management operations
1477  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1478  *			discovery handling. Necessary for e.g. 6LoWPAN.
1479  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1480  *			of Layer 2 headers.
1481  *
1482  *	@flags:		Interface flags (a la BSD)
1483  *	@priv_flags:	Like 'flags' but invisible to userspace,
1484  *			see if.h for the definitions
1485  *	@gflags:	Global flags ( kept as legacy )
1486  *	@padded:	How much padding added by alloc_netdev()
1487  *	@operstate:	RFC2863 operstate
1488  *	@link_mode:	Mapping policy to operstate
1489  *	@if_port:	Selectable AUI, TP, ...
1490  *	@dma:		DMA channel
1491  *	@mtu:		Interface MTU value
1492  *	@type:		Interface hardware type
1493  *	@hard_header_len: Maximum hardware header length.
1494  *
1495  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1496  *			  cases can this be guaranteed
1497  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1498  *			  cases can this be guaranteed. Some cases also use
1499  *			  LL_MAX_HEADER instead to allocate the skb
1500  *
1501  *	interface address info:
1502  *
1503  * 	@perm_addr:		Permanent hw address
1504  * 	@addr_assign_type:	Hw address assignment type
1505  * 	@addr_len:		Hardware address length
1506  *	@neigh_priv_len:	Used in neigh_alloc()
1507  * 	@dev_id:		Used to differentiate devices that share
1508  * 				the same link layer address
1509  * 	@dev_port:		Used to differentiate devices that share
1510  * 				the same function
1511  *	@addr_list_lock:	XXX: need comments on this one
1512  *	@uc_promisc:		Counter that indicates promiscuous mode
1513  *				has been enabled due to the need to listen to
1514  *				additional unicast addresses in a device that
1515  *				does not implement ndo_set_rx_mode()
1516  *	@uc:			unicast mac addresses
1517  *	@mc:			multicast mac addresses
1518  *	@dev_addrs:		list of device hw addresses
1519  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1520  *	@promiscuity:		Number of times the NIC is told to work in
1521  *				promiscuous mode; if it becomes 0 the NIC will
1522  *				exit promiscuous mode
1523  *	@allmulti:		Counter, enables or disables allmulticast mode
1524  *
1525  *	@vlan_info:	VLAN info
1526  *	@dsa_ptr:	dsa specific data
1527  *	@tipc_ptr:	TIPC specific data
1528  *	@atalk_ptr:	AppleTalk link
1529  *	@ip_ptr:	IPv4 specific data
1530  *	@dn_ptr:	DECnet specific data
1531  *	@ip6_ptr:	IPv6 specific data
1532  *	@ax25_ptr:	AX.25 specific data
1533  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1534  *
1535  *	@last_rx:	Time of last Rx
1536  *	@dev_addr:	Hw address (before bcast,
1537  *			because most packets are unicast)
1538  *
1539  *	@_rx:			Array of RX queues
1540  *	@num_rx_queues:		Number of RX queues
1541  *				allocated at register_netdev() time
1542  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1543  *
1544  *	@rx_handler:		handler for received packets
1545  *	@rx_handler_data: 	XXX: need comments on this one
1546  *	@ingress_queue:		XXX: need comments on this one
1547  *	@broadcast:		hw bcast address
1548  *
1549  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1550  *			indexed by RX queue number. Assigned by driver.
1551  *			This must only be set if the ndo_rx_flow_steer
1552  *			operation is defined
1553  *	@index_hlist:		Device index hash chain
1554  *
1555  *	@_tx:			Array of TX queues
1556  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1557  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1558  *	@qdisc:			Root qdisc from userspace point of view
1559  *	@tx_queue_len:		Max frames per queue allowed
1560  *	@tx_global_lock: 	XXX: need comments on this one
1561  *
1562  *	@xps_maps:	XXX: need comments on this one
1563  *
1564  *	@offload_fwd_mark:	Offload device fwding mark
1565  *
1566  *	@watchdog_timeo:	Represents the timeout that is used by
1567  *				the watchdog (see dev_watchdog())
1568  *	@watchdog_timer:	List of timers
1569  *
1570  *	@pcpu_refcnt:		Number of references to this device
1571  *	@todo_list:		Delayed register/unregister
1572  *	@link_watch_list:	XXX: need comments on this one
1573  *
1574  *	@reg_state:		Register/unregister state machine
1575  *	@dismantle:		Device is going to be freed
1576  *	@rtnl_link_state:	This enum represents the phases of creating
1577  *				a new link
1578  *
1579  *	@destructor:		Called from unregister,
1580  *				can be used to call free_netdev
1581  *	@npinfo:		XXX: need comments on this one
1582  * 	@nd_net:		Network namespace this network device is inside
1583  *
1584  * 	@ml_priv:	Mid-layer private
1585  * 	@lstats:	Loopback statistics
1586  * 	@tstats:	Tunnel statistics
1587  * 	@dstats:	Dummy statistics
1588  * 	@vstats:	Virtual ethernet statistics
1589  *
1590  *	@garp_port:	GARP
1591  *	@mrp_port:	MRP
1592  *
1593  *	@dev:		Class/net/name entry
1594  *	@sysfs_groups:	Space for optional device, statistics and wireless
1595  *			sysfs groups
1596  *
1597  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1598  *	@rtnl_link_ops:	Rtnl_link_ops
1599  *
1600  *	@gso_max_size:	Maximum size of generic segmentation offload
1601  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1602  *			NIC for GSO
1603  *
1604  *	@dcbnl_ops:	Data Center Bridging netlink ops
1605  *	@num_tc:	Number of traffic classes in the net device
1606  *	@tc_to_txq:	XXX: need comments on this one
1607  *	@prio_tc_map	XXX: need comments on this one
1608  *
1609  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1610  *
1611  *	@priomap:	XXX: need comments on this one
1612  *	@phydev:	Physical device may attach itself
1613  *			for hardware timestamping
1614  *
1615  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1616  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1617  *
1618  *	@proto_down:	protocol port state information can be sent to the
1619  *			switch driver and used to set the phys state of the
1620  *			switch port.
1621  *
1622  *	FIXME: cleanup struct net_device such that network protocol info
1623  *	moves out.
1624  */
1625 
1626 struct net_device {
1627 	char			name[IFNAMSIZ];
1628 	struct hlist_node	name_hlist;
1629 	char 			*ifalias;
1630 	/*
1631 	 *	I/O specific fields
1632 	 *	FIXME: Merge these and struct ifmap into one
1633 	 */
1634 	unsigned long		mem_end;
1635 	unsigned long		mem_start;
1636 	unsigned long		base_addr;
1637 	int			irq;
1638 
1639 	atomic_t		carrier_changes;
1640 
1641 	/*
1642 	 *	Some hardware also needs these fields (state,dev_list,
1643 	 *	napi_list,unreg_list,close_list) but they are not
1644 	 *	part of the usual set specified in Space.c.
1645 	 */
1646 
1647 	unsigned long		state;
1648 
1649 	struct list_head	dev_list;
1650 	struct list_head	napi_list;
1651 	struct list_head	unreg_list;
1652 	struct list_head	close_list;
1653 	struct list_head	ptype_all;
1654 	struct list_head	ptype_specific;
1655 
1656 	struct {
1657 		struct list_head upper;
1658 		struct list_head lower;
1659 	} adj_list;
1660 
1661 	struct {
1662 		struct list_head upper;
1663 		struct list_head lower;
1664 	} all_adj_list;
1665 
1666 	netdev_features_t	features;
1667 	netdev_features_t	hw_features;
1668 	netdev_features_t	wanted_features;
1669 	netdev_features_t	vlan_features;
1670 	netdev_features_t	hw_enc_features;
1671 	netdev_features_t	mpls_features;
1672 	netdev_features_t	gso_partial_features;
1673 
1674 	int			ifindex;
1675 	int			group;
1676 
1677 	struct net_device_stats	stats;
1678 
1679 	atomic_long_t		rx_dropped;
1680 	atomic_long_t		tx_dropped;
1681 	atomic_long_t		rx_nohandler;
1682 
1683 #ifdef CONFIG_WIRELESS_EXT
1684 	const struct iw_handler_def *wireless_handlers;
1685 	struct iw_public_data	*wireless_data;
1686 #endif
1687 	const struct net_device_ops *netdev_ops;
1688 	const struct ethtool_ops *ethtool_ops;
1689 #ifdef CONFIG_NET_SWITCHDEV
1690 	const struct switchdev_ops *switchdev_ops;
1691 #endif
1692 #ifdef CONFIG_NET_L3_MASTER_DEV
1693 	const struct l3mdev_ops	*l3mdev_ops;
1694 #endif
1695 #if IS_ENABLED(CONFIG_IPV6)
1696 	const struct ndisc_ops *ndisc_ops;
1697 #endif
1698 
1699 	const struct header_ops *header_ops;
1700 
1701 	unsigned int		flags;
1702 	unsigned int		priv_flags;
1703 
1704 	unsigned short		gflags;
1705 	unsigned short		padded;
1706 
1707 	unsigned char		operstate;
1708 	unsigned char		link_mode;
1709 
1710 	unsigned char		if_port;
1711 	unsigned char		dma;
1712 
1713 	unsigned int		mtu;
1714 	unsigned short		type;
1715 	unsigned short		hard_header_len;
1716 
1717 	unsigned short		needed_headroom;
1718 	unsigned short		needed_tailroom;
1719 
1720 	/* Interface address info. */
1721 	unsigned char		perm_addr[MAX_ADDR_LEN];
1722 	unsigned char		addr_assign_type;
1723 	unsigned char		addr_len;
1724 	unsigned short		neigh_priv_len;
1725 	unsigned short          dev_id;
1726 	unsigned short          dev_port;
1727 	spinlock_t		addr_list_lock;
1728 	unsigned char		name_assign_type;
1729 	bool			uc_promisc;
1730 	struct netdev_hw_addr_list	uc;
1731 	struct netdev_hw_addr_list	mc;
1732 	struct netdev_hw_addr_list	dev_addrs;
1733 
1734 #ifdef CONFIG_SYSFS
1735 	struct kset		*queues_kset;
1736 #endif
1737 	unsigned int		promiscuity;
1738 	unsigned int		allmulti;
1739 
1740 
1741 	/* Protocol-specific pointers */
1742 
1743 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1744 	struct vlan_info __rcu	*vlan_info;
1745 #endif
1746 #if IS_ENABLED(CONFIG_NET_DSA)
1747 	struct dsa_switch_tree	*dsa_ptr;
1748 #endif
1749 #if IS_ENABLED(CONFIG_TIPC)
1750 	struct tipc_bearer __rcu *tipc_ptr;
1751 #endif
1752 	void 			*atalk_ptr;
1753 	struct in_device __rcu	*ip_ptr;
1754 	struct dn_dev __rcu     *dn_ptr;
1755 	struct inet6_dev __rcu	*ip6_ptr;
1756 	void			*ax25_ptr;
1757 	struct wireless_dev	*ieee80211_ptr;
1758 	struct wpan_dev		*ieee802154_ptr;
1759 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1760 	struct mpls_dev __rcu	*mpls_ptr;
1761 #endif
1762 
1763 /*
1764  * Cache lines mostly used on receive path (including eth_type_trans())
1765  */
1766 	unsigned long		last_rx;
1767 
1768 	/* Interface address info used in eth_type_trans() */
1769 	unsigned char		*dev_addr;
1770 
1771 #ifdef CONFIG_SYSFS
1772 	struct netdev_rx_queue	*_rx;
1773 
1774 	unsigned int		num_rx_queues;
1775 	unsigned int		real_num_rx_queues;
1776 #endif
1777 
1778 	unsigned long		gro_flush_timeout;
1779 	rx_handler_func_t __rcu	*rx_handler;
1780 	void __rcu		*rx_handler_data;
1781 
1782 #ifdef CONFIG_NET_CLS_ACT
1783 	struct tcf_proto __rcu  *ingress_cl_list;
1784 #endif
1785 	struct netdev_queue __rcu *ingress_queue;
1786 #ifdef CONFIG_NETFILTER_INGRESS
1787 	struct list_head	nf_hooks_ingress;
1788 #endif
1789 
1790 	unsigned char		broadcast[MAX_ADDR_LEN];
1791 #ifdef CONFIG_RFS_ACCEL
1792 	struct cpu_rmap		*rx_cpu_rmap;
1793 #endif
1794 	struct hlist_node	index_hlist;
1795 
1796 /*
1797  * Cache lines mostly used on transmit path
1798  */
1799 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1800 	unsigned int		num_tx_queues;
1801 	unsigned int		real_num_tx_queues;
1802 	struct Qdisc		*qdisc;
1803 	unsigned long		tx_queue_len;
1804 	spinlock_t		tx_global_lock;
1805 	int			watchdog_timeo;
1806 
1807 #ifdef CONFIG_XPS
1808 	struct xps_dev_maps __rcu *xps_maps;
1809 #endif
1810 #ifdef CONFIG_NET_CLS_ACT
1811 	struct tcf_proto __rcu  *egress_cl_list;
1812 #endif
1813 #ifdef CONFIG_NET_SWITCHDEV
1814 	u32			offload_fwd_mark;
1815 #endif
1816 
1817 	/* These may be needed for future network-power-down code. */
1818 	struct timer_list	watchdog_timer;
1819 
1820 	int __percpu		*pcpu_refcnt;
1821 	struct list_head	todo_list;
1822 
1823 	struct list_head	link_watch_list;
1824 
1825 	enum { NETREG_UNINITIALIZED=0,
1826 	       NETREG_REGISTERED,	/* completed register_netdevice */
1827 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1828 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1829 	       NETREG_RELEASED,		/* called free_netdev */
1830 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1831 	} reg_state:8;
1832 
1833 	bool dismantle;
1834 
1835 	enum {
1836 		RTNL_LINK_INITIALIZED,
1837 		RTNL_LINK_INITIALIZING,
1838 	} rtnl_link_state:16;
1839 
1840 	void (*destructor)(struct net_device *dev);
1841 
1842 #ifdef CONFIG_NETPOLL
1843 	struct netpoll_info __rcu	*npinfo;
1844 #endif
1845 
1846 	possible_net_t			nd_net;
1847 
1848 	/* mid-layer private */
1849 	union {
1850 		void					*ml_priv;
1851 		struct pcpu_lstats __percpu		*lstats;
1852 		struct pcpu_sw_netstats __percpu	*tstats;
1853 		struct pcpu_dstats __percpu		*dstats;
1854 		struct pcpu_vstats __percpu		*vstats;
1855 	};
1856 
1857 	struct garp_port __rcu	*garp_port;
1858 	struct mrp_port __rcu	*mrp_port;
1859 
1860 	struct device		dev;
1861 	const struct attribute_group *sysfs_groups[4];
1862 	const struct attribute_group *sysfs_rx_queue_group;
1863 
1864 	const struct rtnl_link_ops *rtnl_link_ops;
1865 
1866 	/* for setting kernel sock attribute on TCP connection setup */
1867 #define GSO_MAX_SIZE		65536
1868 	unsigned int		gso_max_size;
1869 #define GSO_MAX_SEGS		65535
1870 	u16			gso_max_segs;
1871 
1872 #ifdef CONFIG_DCB
1873 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1874 #endif
1875 	u8			num_tc;
1876 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
1877 	u8			prio_tc_map[TC_BITMASK + 1];
1878 
1879 #if IS_ENABLED(CONFIG_FCOE)
1880 	unsigned int		fcoe_ddp_xid;
1881 #endif
1882 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1883 	struct netprio_map __rcu *priomap;
1884 #endif
1885 	struct phy_device	*phydev;
1886 	struct lock_class_key	*qdisc_tx_busylock;
1887 	struct lock_class_key	*qdisc_running_key;
1888 	bool			proto_down;
1889 };
1890 #define to_net_dev(d) container_of(d, struct net_device, dev)
1891 
1892 #define	NETDEV_ALIGN		32
1893 
1894 static inline
1895 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1896 {
1897 	return dev->prio_tc_map[prio & TC_BITMASK];
1898 }
1899 
1900 static inline
1901 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1902 {
1903 	if (tc >= dev->num_tc)
1904 		return -EINVAL;
1905 
1906 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1907 	return 0;
1908 }
1909 
1910 static inline
1911 void netdev_reset_tc(struct net_device *dev)
1912 {
1913 	dev->num_tc = 0;
1914 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1915 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1916 }
1917 
1918 static inline
1919 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1920 {
1921 	if (tc >= dev->num_tc)
1922 		return -EINVAL;
1923 
1924 	dev->tc_to_txq[tc].count = count;
1925 	dev->tc_to_txq[tc].offset = offset;
1926 	return 0;
1927 }
1928 
1929 static inline
1930 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1931 {
1932 	if (num_tc > TC_MAX_QUEUE)
1933 		return -EINVAL;
1934 
1935 	dev->num_tc = num_tc;
1936 	return 0;
1937 }
1938 
1939 static inline
1940 int netdev_get_num_tc(struct net_device *dev)
1941 {
1942 	return dev->num_tc;
1943 }
1944 
1945 static inline
1946 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1947 					 unsigned int index)
1948 {
1949 	return &dev->_tx[index];
1950 }
1951 
1952 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1953 						    const struct sk_buff *skb)
1954 {
1955 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1956 }
1957 
1958 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1959 					    void (*f)(struct net_device *,
1960 						      struct netdev_queue *,
1961 						      void *),
1962 					    void *arg)
1963 {
1964 	unsigned int i;
1965 
1966 	for (i = 0; i < dev->num_tx_queues; i++)
1967 		f(dev, &dev->_tx[i], arg);
1968 }
1969 
1970 #define netdev_lockdep_set_classes(dev)				\
1971 {								\
1972 	static struct lock_class_key qdisc_tx_busylock_key;	\
1973 	static struct lock_class_key qdisc_running_key;		\
1974 	static struct lock_class_key qdisc_xmit_lock_key;	\
1975 	static struct lock_class_key dev_addr_list_lock_key;	\
1976 	unsigned int i;						\
1977 								\
1978 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
1979 	(dev)->qdisc_running_key = &qdisc_running_key;		\
1980 	lockdep_set_class(&(dev)->addr_list_lock,		\
1981 			  &dev_addr_list_lock_key); 		\
1982 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
1983 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
1984 				  &qdisc_xmit_lock_key);	\
1985 }
1986 
1987 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1988 				    struct sk_buff *skb,
1989 				    void *accel_priv);
1990 
1991 /* returns the headroom that the master device needs to take in account
1992  * when forwarding to this dev
1993  */
1994 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1995 {
1996 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1997 }
1998 
1999 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2000 {
2001 	if (dev->netdev_ops->ndo_set_rx_headroom)
2002 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2003 }
2004 
2005 /* set the device rx headroom to the dev's default */
2006 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2007 {
2008 	netdev_set_rx_headroom(dev, -1);
2009 }
2010 
2011 /*
2012  * Net namespace inlines
2013  */
2014 static inline
2015 struct net *dev_net(const struct net_device *dev)
2016 {
2017 	return read_pnet(&dev->nd_net);
2018 }
2019 
2020 static inline
2021 void dev_net_set(struct net_device *dev, struct net *net)
2022 {
2023 	write_pnet(&dev->nd_net, net);
2024 }
2025 
2026 static inline bool netdev_uses_dsa(struct net_device *dev)
2027 {
2028 #if IS_ENABLED(CONFIG_NET_DSA)
2029 	if (dev->dsa_ptr != NULL)
2030 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
2031 #endif
2032 	return false;
2033 }
2034 
2035 /**
2036  *	netdev_priv - access network device private data
2037  *	@dev: network device
2038  *
2039  * Get network device private data
2040  */
2041 static inline void *netdev_priv(const struct net_device *dev)
2042 {
2043 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2044 }
2045 
2046 /* Set the sysfs physical device reference for the network logical device
2047  * if set prior to registration will cause a symlink during initialization.
2048  */
2049 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2050 
2051 /* Set the sysfs device type for the network logical device to allow
2052  * fine-grained identification of different network device types. For
2053  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2054  */
2055 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2056 
2057 /* Default NAPI poll() weight
2058  * Device drivers are strongly advised to not use bigger value
2059  */
2060 #define NAPI_POLL_WEIGHT 64
2061 
2062 /**
2063  *	netif_napi_add - initialize a NAPI context
2064  *	@dev:  network device
2065  *	@napi: NAPI context
2066  *	@poll: polling function
2067  *	@weight: default weight
2068  *
2069  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2070  * *any* of the other NAPI-related functions.
2071  */
2072 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2073 		    int (*poll)(struct napi_struct *, int), int weight);
2074 
2075 /**
2076  *	netif_tx_napi_add - initialize a NAPI context
2077  *	@dev:  network device
2078  *	@napi: NAPI context
2079  *	@poll: polling function
2080  *	@weight: default weight
2081  *
2082  * This variant of netif_napi_add() should be used from drivers using NAPI
2083  * to exclusively poll a TX queue.
2084  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2085  */
2086 static inline void netif_tx_napi_add(struct net_device *dev,
2087 				     struct napi_struct *napi,
2088 				     int (*poll)(struct napi_struct *, int),
2089 				     int weight)
2090 {
2091 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2092 	netif_napi_add(dev, napi, poll, weight);
2093 }
2094 
2095 /**
2096  *  netif_napi_del - remove a NAPI context
2097  *  @napi: NAPI context
2098  *
2099  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2100  */
2101 void netif_napi_del(struct napi_struct *napi);
2102 
2103 struct napi_gro_cb {
2104 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2105 	void	*frag0;
2106 
2107 	/* Length of frag0. */
2108 	unsigned int frag0_len;
2109 
2110 	/* This indicates where we are processing relative to skb->data. */
2111 	int	data_offset;
2112 
2113 	/* This is non-zero if the packet cannot be merged with the new skb. */
2114 	u16	flush;
2115 
2116 	/* Save the IP ID here and check when we get to the transport layer */
2117 	u16	flush_id;
2118 
2119 	/* Number of segments aggregated. */
2120 	u16	count;
2121 
2122 	/* Start offset for remote checksum offload */
2123 	u16	gro_remcsum_start;
2124 
2125 	/* jiffies when first packet was created/queued */
2126 	unsigned long age;
2127 
2128 	/* Used in ipv6_gro_receive() and foo-over-udp */
2129 	u16	proto;
2130 
2131 	/* This is non-zero if the packet may be of the same flow. */
2132 	u8	same_flow:1;
2133 
2134 	/* Used in tunnel GRO receive */
2135 	u8	encap_mark:1;
2136 
2137 	/* GRO checksum is valid */
2138 	u8	csum_valid:1;
2139 
2140 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2141 	u8	csum_cnt:3;
2142 
2143 	/* Free the skb? */
2144 	u8	free:2;
2145 #define NAPI_GRO_FREE		  1
2146 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2147 
2148 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2149 	u8	is_ipv6:1;
2150 
2151 	/* Used in GRE, set in fou/gue_gro_receive */
2152 	u8	is_fou:1;
2153 
2154 	/* Used to determine if flush_id can be ignored */
2155 	u8	is_atomic:1;
2156 
2157 	/* 5 bit hole */
2158 
2159 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2160 	__wsum	csum;
2161 
2162 	/* used in skb_gro_receive() slow path */
2163 	struct sk_buff *last;
2164 };
2165 
2166 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2167 
2168 struct packet_type {
2169 	__be16			type;	/* This is really htons(ether_type). */
2170 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2171 	int			(*func) (struct sk_buff *,
2172 					 struct net_device *,
2173 					 struct packet_type *,
2174 					 struct net_device *);
2175 	bool			(*id_match)(struct packet_type *ptype,
2176 					    struct sock *sk);
2177 	void			*af_packet_priv;
2178 	struct list_head	list;
2179 };
2180 
2181 struct offload_callbacks {
2182 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2183 						netdev_features_t features);
2184 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2185 						 struct sk_buff *skb);
2186 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2187 };
2188 
2189 struct packet_offload {
2190 	__be16			 type;	/* This is really htons(ether_type). */
2191 	u16			 priority;
2192 	struct offload_callbacks callbacks;
2193 	struct list_head	 list;
2194 };
2195 
2196 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2197 struct pcpu_sw_netstats {
2198 	u64     rx_packets;
2199 	u64     rx_bytes;
2200 	u64     tx_packets;
2201 	u64     tx_bytes;
2202 	struct u64_stats_sync   syncp;
2203 };
2204 
2205 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2206 ({									\
2207 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2208 	if (pcpu_stats)	{						\
2209 		int __cpu;						\
2210 		for_each_possible_cpu(__cpu) {				\
2211 			typeof(type) *stat;				\
2212 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2213 			u64_stats_init(&stat->syncp);			\
2214 		}							\
2215 	}								\
2216 	pcpu_stats;							\
2217 })
2218 
2219 #define netdev_alloc_pcpu_stats(type)					\
2220 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2221 
2222 enum netdev_lag_tx_type {
2223 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2224 	NETDEV_LAG_TX_TYPE_RANDOM,
2225 	NETDEV_LAG_TX_TYPE_BROADCAST,
2226 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2227 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2228 	NETDEV_LAG_TX_TYPE_HASH,
2229 };
2230 
2231 struct netdev_lag_upper_info {
2232 	enum netdev_lag_tx_type tx_type;
2233 };
2234 
2235 struct netdev_lag_lower_state_info {
2236 	u8 link_up : 1,
2237 	   tx_enabled : 1;
2238 };
2239 
2240 #include <linux/notifier.h>
2241 
2242 /* netdevice notifier chain. Please remember to update the rtnetlink
2243  * notification exclusion list in rtnetlink_event() when adding new
2244  * types.
2245  */
2246 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2247 #define NETDEV_DOWN	0x0002
2248 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2249 				   detected a hardware crash and restarted
2250 				   - we can use this eg to kick tcp sessions
2251 				   once done */
2252 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2253 #define NETDEV_REGISTER 0x0005
2254 #define NETDEV_UNREGISTER	0x0006
2255 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2256 #define NETDEV_CHANGEADDR	0x0008
2257 #define NETDEV_GOING_DOWN	0x0009
2258 #define NETDEV_CHANGENAME	0x000A
2259 #define NETDEV_FEAT_CHANGE	0x000B
2260 #define NETDEV_BONDING_FAILOVER 0x000C
2261 #define NETDEV_PRE_UP		0x000D
2262 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2263 #define NETDEV_POST_TYPE_CHANGE	0x000F
2264 #define NETDEV_POST_INIT	0x0010
2265 #define NETDEV_UNREGISTER_FINAL 0x0011
2266 #define NETDEV_RELEASE		0x0012
2267 #define NETDEV_NOTIFY_PEERS	0x0013
2268 #define NETDEV_JOIN		0x0014
2269 #define NETDEV_CHANGEUPPER	0x0015
2270 #define NETDEV_RESEND_IGMP	0x0016
2271 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2272 #define NETDEV_CHANGEINFODATA	0x0018
2273 #define NETDEV_BONDING_INFO	0x0019
2274 #define NETDEV_PRECHANGEUPPER	0x001A
2275 #define NETDEV_CHANGELOWERSTATE	0x001B
2276 #define NETDEV_UDP_TUNNEL_PUSH_INFO	0x001C
2277 #define NETDEV_CHANGE_TX_QUEUE_LEN	0x001E
2278 
2279 int register_netdevice_notifier(struct notifier_block *nb);
2280 int unregister_netdevice_notifier(struct notifier_block *nb);
2281 
2282 struct netdev_notifier_info {
2283 	struct net_device *dev;
2284 };
2285 
2286 struct netdev_notifier_change_info {
2287 	struct netdev_notifier_info info; /* must be first */
2288 	unsigned int flags_changed;
2289 };
2290 
2291 struct netdev_notifier_changeupper_info {
2292 	struct netdev_notifier_info info; /* must be first */
2293 	struct net_device *upper_dev; /* new upper dev */
2294 	bool master; /* is upper dev master */
2295 	bool linking; /* is the notification for link or unlink */
2296 	void *upper_info; /* upper dev info */
2297 };
2298 
2299 struct netdev_notifier_changelowerstate_info {
2300 	struct netdev_notifier_info info; /* must be first */
2301 	void *lower_state_info; /* is lower dev state */
2302 };
2303 
2304 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2305 					     struct net_device *dev)
2306 {
2307 	info->dev = dev;
2308 }
2309 
2310 static inline struct net_device *
2311 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2312 {
2313 	return info->dev;
2314 }
2315 
2316 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2317 
2318 
2319 extern rwlock_t				dev_base_lock;		/* Device list lock */
2320 
2321 #define for_each_netdev(net, d)		\
2322 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2323 #define for_each_netdev_reverse(net, d)	\
2324 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2325 #define for_each_netdev_rcu(net, d)		\
2326 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2327 #define for_each_netdev_safe(net, d, n)	\
2328 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2329 #define for_each_netdev_continue(net, d)		\
2330 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2331 #define for_each_netdev_continue_rcu(net, d)		\
2332 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2333 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2334 		for_each_netdev_rcu(&init_net, slave)	\
2335 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2336 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2337 
2338 static inline struct net_device *next_net_device(struct net_device *dev)
2339 {
2340 	struct list_head *lh;
2341 	struct net *net;
2342 
2343 	net = dev_net(dev);
2344 	lh = dev->dev_list.next;
2345 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2346 }
2347 
2348 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2349 {
2350 	struct list_head *lh;
2351 	struct net *net;
2352 
2353 	net = dev_net(dev);
2354 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2355 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2356 }
2357 
2358 static inline struct net_device *first_net_device(struct net *net)
2359 {
2360 	return list_empty(&net->dev_base_head) ? NULL :
2361 		net_device_entry(net->dev_base_head.next);
2362 }
2363 
2364 static inline struct net_device *first_net_device_rcu(struct net *net)
2365 {
2366 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2367 
2368 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2369 }
2370 
2371 int netdev_boot_setup_check(struct net_device *dev);
2372 unsigned long netdev_boot_base(const char *prefix, int unit);
2373 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2374 				       const char *hwaddr);
2375 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2376 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2377 void dev_add_pack(struct packet_type *pt);
2378 void dev_remove_pack(struct packet_type *pt);
2379 void __dev_remove_pack(struct packet_type *pt);
2380 void dev_add_offload(struct packet_offload *po);
2381 void dev_remove_offload(struct packet_offload *po);
2382 
2383 int dev_get_iflink(const struct net_device *dev);
2384 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2385 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2386 				      unsigned short mask);
2387 struct net_device *dev_get_by_name(struct net *net, const char *name);
2388 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2389 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2390 int dev_alloc_name(struct net_device *dev, const char *name);
2391 int dev_open(struct net_device *dev);
2392 int dev_close(struct net_device *dev);
2393 int dev_close_many(struct list_head *head, bool unlink);
2394 void dev_disable_lro(struct net_device *dev);
2395 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2396 int dev_queue_xmit(struct sk_buff *skb);
2397 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2398 int register_netdevice(struct net_device *dev);
2399 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2400 void unregister_netdevice_many(struct list_head *head);
2401 static inline void unregister_netdevice(struct net_device *dev)
2402 {
2403 	unregister_netdevice_queue(dev, NULL);
2404 }
2405 
2406 int netdev_refcnt_read(const struct net_device *dev);
2407 void free_netdev(struct net_device *dev);
2408 void netdev_freemem(struct net_device *dev);
2409 void synchronize_net(void);
2410 int init_dummy_netdev(struct net_device *dev);
2411 
2412 DECLARE_PER_CPU(int, xmit_recursion);
2413 #define XMIT_RECURSION_LIMIT	10
2414 
2415 static inline int dev_recursion_level(void)
2416 {
2417 	return this_cpu_read(xmit_recursion);
2418 }
2419 
2420 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2421 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2422 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2423 int netdev_get_name(struct net *net, char *name, int ifindex);
2424 int dev_restart(struct net_device *dev);
2425 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2426 
2427 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2428 {
2429 	return NAPI_GRO_CB(skb)->data_offset;
2430 }
2431 
2432 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2433 {
2434 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2435 }
2436 
2437 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2438 {
2439 	NAPI_GRO_CB(skb)->data_offset += len;
2440 }
2441 
2442 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2443 					unsigned int offset)
2444 {
2445 	return NAPI_GRO_CB(skb)->frag0 + offset;
2446 }
2447 
2448 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2449 {
2450 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2451 }
2452 
2453 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2454 					unsigned int offset)
2455 {
2456 	if (!pskb_may_pull(skb, hlen))
2457 		return NULL;
2458 
2459 	NAPI_GRO_CB(skb)->frag0 = NULL;
2460 	NAPI_GRO_CB(skb)->frag0_len = 0;
2461 	return skb->data + offset;
2462 }
2463 
2464 static inline void *skb_gro_network_header(struct sk_buff *skb)
2465 {
2466 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2467 	       skb_network_offset(skb);
2468 }
2469 
2470 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2471 					const void *start, unsigned int len)
2472 {
2473 	if (NAPI_GRO_CB(skb)->csum_valid)
2474 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2475 						  csum_partial(start, len, 0));
2476 }
2477 
2478 /* GRO checksum functions. These are logical equivalents of the normal
2479  * checksum functions (in skbuff.h) except that they operate on the GRO
2480  * offsets and fields in sk_buff.
2481  */
2482 
2483 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2484 
2485 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2486 {
2487 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2488 }
2489 
2490 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2491 						      bool zero_okay,
2492 						      __sum16 check)
2493 {
2494 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2495 		skb_checksum_start_offset(skb) <
2496 		 skb_gro_offset(skb)) &&
2497 		!skb_at_gro_remcsum_start(skb) &&
2498 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2499 		(!zero_okay || check));
2500 }
2501 
2502 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2503 							   __wsum psum)
2504 {
2505 	if (NAPI_GRO_CB(skb)->csum_valid &&
2506 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2507 		return 0;
2508 
2509 	NAPI_GRO_CB(skb)->csum = psum;
2510 
2511 	return __skb_gro_checksum_complete(skb);
2512 }
2513 
2514 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2515 {
2516 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2517 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2518 		NAPI_GRO_CB(skb)->csum_cnt--;
2519 	} else {
2520 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2521 		 * verified a new top level checksum or an encapsulated one
2522 		 * during GRO. This saves work if we fallback to normal path.
2523 		 */
2524 		__skb_incr_checksum_unnecessary(skb);
2525 	}
2526 }
2527 
2528 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2529 				    compute_pseudo)			\
2530 ({									\
2531 	__sum16 __ret = 0;						\
2532 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2533 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2534 				compute_pseudo(skb, proto));		\
2535 	if (__ret)							\
2536 		__skb_mark_checksum_bad(skb);				\
2537 	else								\
2538 		skb_gro_incr_csum_unnecessary(skb);			\
2539 	__ret;								\
2540 })
2541 
2542 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2543 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2544 
2545 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2546 					     compute_pseudo)		\
2547 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2548 
2549 #define skb_gro_checksum_simple_validate(skb)				\
2550 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2551 
2552 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2553 {
2554 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2555 		!NAPI_GRO_CB(skb)->csum_valid);
2556 }
2557 
2558 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2559 					      __sum16 check, __wsum pseudo)
2560 {
2561 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2562 	NAPI_GRO_CB(skb)->csum_valid = 1;
2563 }
2564 
2565 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2566 do {									\
2567 	if (__skb_gro_checksum_convert_check(skb))			\
2568 		__skb_gro_checksum_convert(skb, check,			\
2569 					   compute_pseudo(skb, proto));	\
2570 } while (0)
2571 
2572 struct gro_remcsum {
2573 	int offset;
2574 	__wsum delta;
2575 };
2576 
2577 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2578 {
2579 	grc->offset = 0;
2580 	grc->delta = 0;
2581 }
2582 
2583 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2584 					    unsigned int off, size_t hdrlen,
2585 					    int start, int offset,
2586 					    struct gro_remcsum *grc,
2587 					    bool nopartial)
2588 {
2589 	__wsum delta;
2590 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2591 
2592 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2593 
2594 	if (!nopartial) {
2595 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2596 		return ptr;
2597 	}
2598 
2599 	ptr = skb_gro_header_fast(skb, off);
2600 	if (skb_gro_header_hard(skb, off + plen)) {
2601 		ptr = skb_gro_header_slow(skb, off + plen, off);
2602 		if (!ptr)
2603 			return NULL;
2604 	}
2605 
2606 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2607 			       start, offset);
2608 
2609 	/* Adjust skb->csum since we changed the packet */
2610 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2611 
2612 	grc->offset = off + hdrlen + offset;
2613 	grc->delta = delta;
2614 
2615 	return ptr;
2616 }
2617 
2618 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2619 					   struct gro_remcsum *grc)
2620 {
2621 	void *ptr;
2622 	size_t plen = grc->offset + sizeof(u16);
2623 
2624 	if (!grc->delta)
2625 		return;
2626 
2627 	ptr = skb_gro_header_fast(skb, grc->offset);
2628 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2629 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2630 		if (!ptr)
2631 			return;
2632 	}
2633 
2634 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2635 }
2636 
2637 struct skb_csum_offl_spec {
2638 	__u16		ipv4_okay:1,
2639 			ipv6_okay:1,
2640 			encap_okay:1,
2641 			ip_options_okay:1,
2642 			ext_hdrs_okay:1,
2643 			tcp_okay:1,
2644 			udp_okay:1,
2645 			sctp_okay:1,
2646 			vlan_okay:1,
2647 			no_encapped_ipv6:1,
2648 			no_not_encapped:1;
2649 };
2650 
2651 bool __skb_csum_offload_chk(struct sk_buff *skb,
2652 			    const struct skb_csum_offl_spec *spec,
2653 			    bool *csum_encapped,
2654 			    bool csum_help);
2655 
2656 static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2657 					const struct skb_csum_offl_spec *spec,
2658 					bool *csum_encapped,
2659 					bool csum_help)
2660 {
2661 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2662 		return false;
2663 
2664 	return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2665 }
2666 
2667 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2668 					     const struct skb_csum_offl_spec *spec)
2669 {
2670 	bool csum_encapped;
2671 
2672 	return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2673 }
2674 
2675 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2676 {
2677 	static const struct skb_csum_offl_spec csum_offl_spec = {
2678 		.ipv4_okay = 1,
2679 		.ip_options_okay = 1,
2680 		.ipv6_okay = 1,
2681 		.vlan_okay = 1,
2682 		.tcp_okay = 1,
2683 		.udp_okay = 1,
2684 	};
2685 
2686 	return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2687 }
2688 
2689 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2690 {
2691 	static const struct skb_csum_offl_spec csum_offl_spec = {
2692 		.ipv4_okay = 1,
2693 		.ip_options_okay = 1,
2694 		.tcp_okay = 1,
2695 		.udp_okay = 1,
2696 		.vlan_okay = 1,
2697 	};
2698 
2699 	return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2700 }
2701 
2702 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2703 				  unsigned short type,
2704 				  const void *daddr, const void *saddr,
2705 				  unsigned int len)
2706 {
2707 	if (!dev->header_ops || !dev->header_ops->create)
2708 		return 0;
2709 
2710 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2711 }
2712 
2713 static inline int dev_parse_header(const struct sk_buff *skb,
2714 				   unsigned char *haddr)
2715 {
2716 	const struct net_device *dev = skb->dev;
2717 
2718 	if (!dev->header_ops || !dev->header_ops->parse)
2719 		return 0;
2720 	return dev->header_ops->parse(skb, haddr);
2721 }
2722 
2723 /* ll_header must have at least hard_header_len allocated */
2724 static inline bool dev_validate_header(const struct net_device *dev,
2725 				       char *ll_header, int len)
2726 {
2727 	if (likely(len >= dev->hard_header_len))
2728 		return true;
2729 
2730 	if (capable(CAP_SYS_RAWIO)) {
2731 		memset(ll_header + len, 0, dev->hard_header_len - len);
2732 		return true;
2733 	}
2734 
2735 	if (dev->header_ops && dev->header_ops->validate)
2736 		return dev->header_ops->validate(ll_header, len);
2737 
2738 	return false;
2739 }
2740 
2741 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2742 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2743 static inline int unregister_gifconf(unsigned int family)
2744 {
2745 	return register_gifconf(family, NULL);
2746 }
2747 
2748 #ifdef CONFIG_NET_FLOW_LIMIT
2749 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2750 struct sd_flow_limit {
2751 	u64			count;
2752 	unsigned int		num_buckets;
2753 	unsigned int		history_head;
2754 	u16			history[FLOW_LIMIT_HISTORY];
2755 	u8			buckets[];
2756 };
2757 
2758 extern int netdev_flow_limit_table_len;
2759 #endif /* CONFIG_NET_FLOW_LIMIT */
2760 
2761 /*
2762  * Incoming packets are placed on per-CPU queues
2763  */
2764 struct softnet_data {
2765 	struct list_head	poll_list;
2766 	struct sk_buff_head	process_queue;
2767 
2768 	/* stats */
2769 	unsigned int		processed;
2770 	unsigned int		time_squeeze;
2771 	unsigned int		received_rps;
2772 #ifdef CONFIG_RPS
2773 	struct softnet_data	*rps_ipi_list;
2774 #endif
2775 #ifdef CONFIG_NET_FLOW_LIMIT
2776 	struct sd_flow_limit __rcu *flow_limit;
2777 #endif
2778 	struct Qdisc		*output_queue;
2779 	struct Qdisc		**output_queue_tailp;
2780 	struct sk_buff		*completion_queue;
2781 
2782 #ifdef CONFIG_RPS
2783 	/* input_queue_head should be written by cpu owning this struct,
2784 	 * and only read by other cpus. Worth using a cache line.
2785 	 */
2786 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2787 
2788 	/* Elements below can be accessed between CPUs for RPS/RFS */
2789 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2790 	struct softnet_data	*rps_ipi_next;
2791 	unsigned int		cpu;
2792 	unsigned int		input_queue_tail;
2793 #endif
2794 	unsigned int		dropped;
2795 	struct sk_buff_head	input_pkt_queue;
2796 	struct napi_struct	backlog;
2797 
2798 };
2799 
2800 static inline void input_queue_head_incr(struct softnet_data *sd)
2801 {
2802 #ifdef CONFIG_RPS
2803 	sd->input_queue_head++;
2804 #endif
2805 }
2806 
2807 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2808 					      unsigned int *qtail)
2809 {
2810 #ifdef CONFIG_RPS
2811 	*qtail = ++sd->input_queue_tail;
2812 #endif
2813 }
2814 
2815 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2816 
2817 void __netif_schedule(struct Qdisc *q);
2818 void netif_schedule_queue(struct netdev_queue *txq);
2819 
2820 static inline void netif_tx_schedule_all(struct net_device *dev)
2821 {
2822 	unsigned int i;
2823 
2824 	for (i = 0; i < dev->num_tx_queues; i++)
2825 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2826 }
2827 
2828 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2829 {
2830 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2831 }
2832 
2833 /**
2834  *	netif_start_queue - allow transmit
2835  *	@dev: network device
2836  *
2837  *	Allow upper layers to call the device hard_start_xmit routine.
2838  */
2839 static inline void netif_start_queue(struct net_device *dev)
2840 {
2841 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2842 }
2843 
2844 static inline void netif_tx_start_all_queues(struct net_device *dev)
2845 {
2846 	unsigned int i;
2847 
2848 	for (i = 0; i < dev->num_tx_queues; i++) {
2849 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2850 		netif_tx_start_queue(txq);
2851 	}
2852 }
2853 
2854 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2855 
2856 /**
2857  *	netif_wake_queue - restart transmit
2858  *	@dev: network device
2859  *
2860  *	Allow upper layers to call the device hard_start_xmit routine.
2861  *	Used for flow control when transmit resources are available.
2862  */
2863 static inline void netif_wake_queue(struct net_device *dev)
2864 {
2865 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2866 }
2867 
2868 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2869 {
2870 	unsigned int i;
2871 
2872 	for (i = 0; i < dev->num_tx_queues; i++) {
2873 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2874 		netif_tx_wake_queue(txq);
2875 	}
2876 }
2877 
2878 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2879 {
2880 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2881 }
2882 
2883 /**
2884  *	netif_stop_queue - stop transmitted packets
2885  *	@dev: network device
2886  *
2887  *	Stop upper layers calling the device hard_start_xmit routine.
2888  *	Used for flow control when transmit resources are unavailable.
2889  */
2890 static inline void netif_stop_queue(struct net_device *dev)
2891 {
2892 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2893 }
2894 
2895 void netif_tx_stop_all_queues(struct net_device *dev);
2896 
2897 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2898 {
2899 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2900 }
2901 
2902 /**
2903  *	netif_queue_stopped - test if transmit queue is flowblocked
2904  *	@dev: network device
2905  *
2906  *	Test if transmit queue on device is currently unable to send.
2907  */
2908 static inline bool netif_queue_stopped(const struct net_device *dev)
2909 {
2910 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2911 }
2912 
2913 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2914 {
2915 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2916 }
2917 
2918 static inline bool
2919 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2920 {
2921 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2922 }
2923 
2924 static inline bool
2925 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2926 {
2927 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2928 }
2929 
2930 /**
2931  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2932  *	@dev_queue: pointer to transmit queue
2933  *
2934  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2935  * to give appropriate hint to the CPU.
2936  */
2937 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2938 {
2939 #ifdef CONFIG_BQL
2940 	prefetchw(&dev_queue->dql.num_queued);
2941 #endif
2942 }
2943 
2944 /**
2945  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2946  *	@dev_queue: pointer to transmit queue
2947  *
2948  * BQL enabled drivers might use this helper in their TX completion path,
2949  * to give appropriate hint to the CPU.
2950  */
2951 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2952 {
2953 #ifdef CONFIG_BQL
2954 	prefetchw(&dev_queue->dql.limit);
2955 #endif
2956 }
2957 
2958 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2959 					unsigned int bytes)
2960 {
2961 #ifdef CONFIG_BQL
2962 	dql_queued(&dev_queue->dql, bytes);
2963 
2964 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2965 		return;
2966 
2967 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2968 
2969 	/*
2970 	 * The XOFF flag must be set before checking the dql_avail below,
2971 	 * because in netdev_tx_completed_queue we update the dql_completed
2972 	 * before checking the XOFF flag.
2973 	 */
2974 	smp_mb();
2975 
2976 	/* check again in case another CPU has just made room avail */
2977 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2978 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2979 #endif
2980 }
2981 
2982 /**
2983  * 	netdev_sent_queue - report the number of bytes queued to hardware
2984  * 	@dev: network device
2985  * 	@bytes: number of bytes queued to the hardware device queue
2986  *
2987  * 	Report the number of bytes queued for sending/completion to the network
2988  * 	device hardware queue. @bytes should be a good approximation and should
2989  * 	exactly match netdev_completed_queue() @bytes
2990  */
2991 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2992 {
2993 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2994 }
2995 
2996 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2997 					     unsigned int pkts, unsigned int bytes)
2998 {
2999 #ifdef CONFIG_BQL
3000 	if (unlikely(!bytes))
3001 		return;
3002 
3003 	dql_completed(&dev_queue->dql, bytes);
3004 
3005 	/*
3006 	 * Without the memory barrier there is a small possiblity that
3007 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3008 	 * be stopped forever
3009 	 */
3010 	smp_mb();
3011 
3012 	if (dql_avail(&dev_queue->dql) < 0)
3013 		return;
3014 
3015 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3016 		netif_schedule_queue(dev_queue);
3017 #endif
3018 }
3019 
3020 /**
3021  * 	netdev_completed_queue - report bytes and packets completed by device
3022  * 	@dev: network device
3023  * 	@pkts: actual number of packets sent over the medium
3024  * 	@bytes: actual number of bytes sent over the medium
3025  *
3026  * 	Report the number of bytes and packets transmitted by the network device
3027  * 	hardware queue over the physical medium, @bytes must exactly match the
3028  * 	@bytes amount passed to netdev_sent_queue()
3029  */
3030 static inline void netdev_completed_queue(struct net_device *dev,
3031 					  unsigned int pkts, unsigned int bytes)
3032 {
3033 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3034 }
3035 
3036 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3037 {
3038 #ifdef CONFIG_BQL
3039 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3040 	dql_reset(&q->dql);
3041 #endif
3042 }
3043 
3044 /**
3045  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3046  * 	@dev_queue: network device
3047  *
3048  * 	Reset the bytes and packet count of a network device and clear the
3049  * 	software flow control OFF bit for this network device
3050  */
3051 static inline void netdev_reset_queue(struct net_device *dev_queue)
3052 {
3053 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3054 }
3055 
3056 /**
3057  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3058  * 	@dev: network device
3059  * 	@queue_index: given tx queue index
3060  *
3061  * 	Returns 0 if given tx queue index >= number of device tx queues,
3062  * 	otherwise returns the originally passed tx queue index.
3063  */
3064 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3065 {
3066 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3067 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3068 				     dev->name, queue_index,
3069 				     dev->real_num_tx_queues);
3070 		return 0;
3071 	}
3072 
3073 	return queue_index;
3074 }
3075 
3076 /**
3077  *	netif_running - test if up
3078  *	@dev: network device
3079  *
3080  *	Test if the device has been brought up.
3081  */
3082 static inline bool netif_running(const struct net_device *dev)
3083 {
3084 	return test_bit(__LINK_STATE_START, &dev->state);
3085 }
3086 
3087 /*
3088  * Routines to manage the subqueues on a device.  We only need start,
3089  * stop, and a check if it's stopped.  All other device management is
3090  * done at the overall netdevice level.
3091  * Also test the device if we're multiqueue.
3092  */
3093 
3094 /**
3095  *	netif_start_subqueue - allow sending packets on subqueue
3096  *	@dev: network device
3097  *	@queue_index: sub queue index
3098  *
3099  * Start individual transmit queue of a device with multiple transmit queues.
3100  */
3101 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3102 {
3103 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3104 
3105 	netif_tx_start_queue(txq);
3106 }
3107 
3108 /**
3109  *	netif_stop_subqueue - stop sending packets on subqueue
3110  *	@dev: network device
3111  *	@queue_index: sub queue index
3112  *
3113  * Stop individual transmit queue of a device with multiple transmit queues.
3114  */
3115 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3116 {
3117 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3118 	netif_tx_stop_queue(txq);
3119 }
3120 
3121 /**
3122  *	netif_subqueue_stopped - test status of subqueue
3123  *	@dev: network device
3124  *	@queue_index: sub queue index
3125  *
3126  * Check individual transmit queue of a device with multiple transmit queues.
3127  */
3128 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3129 					    u16 queue_index)
3130 {
3131 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3132 
3133 	return netif_tx_queue_stopped(txq);
3134 }
3135 
3136 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3137 					  struct sk_buff *skb)
3138 {
3139 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3140 }
3141 
3142 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3143 
3144 #ifdef CONFIG_XPS
3145 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3146 			u16 index);
3147 #else
3148 static inline int netif_set_xps_queue(struct net_device *dev,
3149 				      const struct cpumask *mask,
3150 				      u16 index)
3151 {
3152 	return 0;
3153 }
3154 #endif
3155 
3156 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3157 		  unsigned int num_tx_queues);
3158 
3159 /*
3160  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3161  * as a distribution range limit for the returned value.
3162  */
3163 static inline u16 skb_tx_hash(const struct net_device *dev,
3164 			      struct sk_buff *skb)
3165 {
3166 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3167 }
3168 
3169 /**
3170  *	netif_is_multiqueue - test if device has multiple transmit queues
3171  *	@dev: network device
3172  *
3173  * Check if device has multiple transmit queues
3174  */
3175 static inline bool netif_is_multiqueue(const struct net_device *dev)
3176 {
3177 	return dev->num_tx_queues > 1;
3178 }
3179 
3180 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3181 
3182 #ifdef CONFIG_SYSFS
3183 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3184 #else
3185 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3186 						unsigned int rxq)
3187 {
3188 	return 0;
3189 }
3190 #endif
3191 
3192 #ifdef CONFIG_SYSFS
3193 static inline unsigned int get_netdev_rx_queue_index(
3194 		struct netdev_rx_queue *queue)
3195 {
3196 	struct net_device *dev = queue->dev;
3197 	int index = queue - dev->_rx;
3198 
3199 	BUG_ON(index >= dev->num_rx_queues);
3200 	return index;
3201 }
3202 #endif
3203 
3204 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3205 int netif_get_num_default_rss_queues(void);
3206 
3207 enum skb_free_reason {
3208 	SKB_REASON_CONSUMED,
3209 	SKB_REASON_DROPPED,
3210 };
3211 
3212 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3213 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3214 
3215 /*
3216  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3217  * interrupt context or with hardware interrupts being disabled.
3218  * (in_irq() || irqs_disabled())
3219  *
3220  * We provide four helpers that can be used in following contexts :
3221  *
3222  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3223  *  replacing kfree_skb(skb)
3224  *
3225  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3226  *  Typically used in place of consume_skb(skb) in TX completion path
3227  *
3228  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3229  *  replacing kfree_skb(skb)
3230  *
3231  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3232  *  and consumed a packet. Used in place of consume_skb(skb)
3233  */
3234 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3235 {
3236 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3237 }
3238 
3239 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3240 {
3241 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3242 }
3243 
3244 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3245 {
3246 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3247 }
3248 
3249 static inline void dev_consume_skb_any(struct sk_buff *skb)
3250 {
3251 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3252 }
3253 
3254 int netif_rx(struct sk_buff *skb);
3255 int netif_rx_ni(struct sk_buff *skb);
3256 int netif_receive_skb(struct sk_buff *skb);
3257 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3258 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3259 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3260 gro_result_t napi_gro_frags(struct napi_struct *napi);
3261 struct packet_offload *gro_find_receive_by_type(__be16 type);
3262 struct packet_offload *gro_find_complete_by_type(__be16 type);
3263 
3264 static inline void napi_free_frags(struct napi_struct *napi)
3265 {
3266 	kfree_skb(napi->skb);
3267 	napi->skb = NULL;
3268 }
3269 
3270 int netdev_rx_handler_register(struct net_device *dev,
3271 			       rx_handler_func_t *rx_handler,
3272 			       void *rx_handler_data);
3273 void netdev_rx_handler_unregister(struct net_device *dev);
3274 
3275 bool dev_valid_name(const char *name);
3276 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3277 int dev_ethtool(struct net *net, struct ifreq *);
3278 unsigned int dev_get_flags(const struct net_device *);
3279 int __dev_change_flags(struct net_device *, unsigned int flags);
3280 int dev_change_flags(struct net_device *, unsigned int);
3281 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3282 			unsigned int gchanges);
3283 int dev_change_name(struct net_device *, const char *);
3284 int dev_set_alias(struct net_device *, const char *, size_t);
3285 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3286 int dev_set_mtu(struct net_device *, int);
3287 void dev_set_group(struct net_device *, int);
3288 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3289 int dev_change_carrier(struct net_device *, bool new_carrier);
3290 int dev_get_phys_port_id(struct net_device *dev,
3291 			 struct netdev_phys_item_id *ppid);
3292 int dev_get_phys_port_name(struct net_device *dev,
3293 			   char *name, size_t len);
3294 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3295 int dev_change_xdp_fd(struct net_device *dev, int fd);
3296 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3297 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3298 				    struct netdev_queue *txq, int *ret);
3299 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3300 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3301 bool is_skb_forwardable(const struct net_device *dev,
3302 			const struct sk_buff *skb);
3303 
3304 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3305 
3306 extern int		netdev_budget;
3307 
3308 /* Called by rtnetlink.c:rtnl_unlock() */
3309 void netdev_run_todo(void);
3310 
3311 /**
3312  *	dev_put - release reference to device
3313  *	@dev: network device
3314  *
3315  * Release reference to device to allow it to be freed.
3316  */
3317 static inline void dev_put(struct net_device *dev)
3318 {
3319 	this_cpu_dec(*dev->pcpu_refcnt);
3320 }
3321 
3322 /**
3323  *	dev_hold - get reference to device
3324  *	@dev: network device
3325  *
3326  * Hold reference to device to keep it from being freed.
3327  */
3328 static inline void dev_hold(struct net_device *dev)
3329 {
3330 	this_cpu_inc(*dev->pcpu_refcnt);
3331 }
3332 
3333 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3334  * and _off may be called from IRQ context, but it is caller
3335  * who is responsible for serialization of these calls.
3336  *
3337  * The name carrier is inappropriate, these functions should really be
3338  * called netif_lowerlayer_*() because they represent the state of any
3339  * kind of lower layer not just hardware media.
3340  */
3341 
3342 void linkwatch_init_dev(struct net_device *dev);
3343 void linkwatch_fire_event(struct net_device *dev);
3344 void linkwatch_forget_dev(struct net_device *dev);
3345 
3346 /**
3347  *	netif_carrier_ok - test if carrier present
3348  *	@dev: network device
3349  *
3350  * Check if carrier is present on device
3351  */
3352 static inline bool netif_carrier_ok(const struct net_device *dev)
3353 {
3354 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3355 }
3356 
3357 unsigned long dev_trans_start(struct net_device *dev);
3358 
3359 void __netdev_watchdog_up(struct net_device *dev);
3360 
3361 void netif_carrier_on(struct net_device *dev);
3362 
3363 void netif_carrier_off(struct net_device *dev);
3364 
3365 /**
3366  *	netif_dormant_on - mark device as dormant.
3367  *	@dev: network device
3368  *
3369  * Mark device as dormant (as per RFC2863).
3370  *
3371  * The dormant state indicates that the relevant interface is not
3372  * actually in a condition to pass packets (i.e., it is not 'up') but is
3373  * in a "pending" state, waiting for some external event.  For "on-
3374  * demand" interfaces, this new state identifies the situation where the
3375  * interface is waiting for events to place it in the up state.
3376  */
3377 static inline void netif_dormant_on(struct net_device *dev)
3378 {
3379 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3380 		linkwatch_fire_event(dev);
3381 }
3382 
3383 /**
3384  *	netif_dormant_off - set device as not dormant.
3385  *	@dev: network device
3386  *
3387  * Device is not in dormant state.
3388  */
3389 static inline void netif_dormant_off(struct net_device *dev)
3390 {
3391 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3392 		linkwatch_fire_event(dev);
3393 }
3394 
3395 /**
3396  *	netif_dormant - test if carrier present
3397  *	@dev: network device
3398  *
3399  * Check if carrier is present on device
3400  */
3401 static inline bool netif_dormant(const struct net_device *dev)
3402 {
3403 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3404 }
3405 
3406 
3407 /**
3408  *	netif_oper_up - test if device is operational
3409  *	@dev: network device
3410  *
3411  * Check if carrier is operational
3412  */
3413 static inline bool netif_oper_up(const struct net_device *dev)
3414 {
3415 	return (dev->operstate == IF_OPER_UP ||
3416 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3417 }
3418 
3419 /**
3420  *	netif_device_present - is device available or removed
3421  *	@dev: network device
3422  *
3423  * Check if device has not been removed from system.
3424  */
3425 static inline bool netif_device_present(struct net_device *dev)
3426 {
3427 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3428 }
3429 
3430 void netif_device_detach(struct net_device *dev);
3431 
3432 void netif_device_attach(struct net_device *dev);
3433 
3434 /*
3435  * Network interface message level settings
3436  */
3437 
3438 enum {
3439 	NETIF_MSG_DRV		= 0x0001,
3440 	NETIF_MSG_PROBE		= 0x0002,
3441 	NETIF_MSG_LINK		= 0x0004,
3442 	NETIF_MSG_TIMER		= 0x0008,
3443 	NETIF_MSG_IFDOWN	= 0x0010,
3444 	NETIF_MSG_IFUP		= 0x0020,
3445 	NETIF_MSG_RX_ERR	= 0x0040,
3446 	NETIF_MSG_TX_ERR	= 0x0080,
3447 	NETIF_MSG_TX_QUEUED	= 0x0100,
3448 	NETIF_MSG_INTR		= 0x0200,
3449 	NETIF_MSG_TX_DONE	= 0x0400,
3450 	NETIF_MSG_RX_STATUS	= 0x0800,
3451 	NETIF_MSG_PKTDATA	= 0x1000,
3452 	NETIF_MSG_HW		= 0x2000,
3453 	NETIF_MSG_WOL		= 0x4000,
3454 };
3455 
3456 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3457 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3458 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3459 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3460 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3461 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3462 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3463 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3464 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3465 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3466 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3467 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3468 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3469 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3470 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3471 
3472 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3473 {
3474 	/* use default */
3475 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3476 		return default_msg_enable_bits;
3477 	if (debug_value == 0)	/* no output */
3478 		return 0;
3479 	/* set low N bits */
3480 	return (1 << debug_value) - 1;
3481 }
3482 
3483 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3484 {
3485 	spin_lock(&txq->_xmit_lock);
3486 	txq->xmit_lock_owner = cpu;
3487 }
3488 
3489 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3490 {
3491 	spin_lock_bh(&txq->_xmit_lock);
3492 	txq->xmit_lock_owner = smp_processor_id();
3493 }
3494 
3495 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3496 {
3497 	bool ok = spin_trylock(&txq->_xmit_lock);
3498 	if (likely(ok))
3499 		txq->xmit_lock_owner = smp_processor_id();
3500 	return ok;
3501 }
3502 
3503 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3504 {
3505 	txq->xmit_lock_owner = -1;
3506 	spin_unlock(&txq->_xmit_lock);
3507 }
3508 
3509 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3510 {
3511 	txq->xmit_lock_owner = -1;
3512 	spin_unlock_bh(&txq->_xmit_lock);
3513 }
3514 
3515 static inline void txq_trans_update(struct netdev_queue *txq)
3516 {
3517 	if (txq->xmit_lock_owner != -1)
3518 		txq->trans_start = jiffies;
3519 }
3520 
3521 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3522 static inline void netif_trans_update(struct net_device *dev)
3523 {
3524 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3525 
3526 	if (txq->trans_start != jiffies)
3527 		txq->trans_start = jiffies;
3528 }
3529 
3530 /**
3531  *	netif_tx_lock - grab network device transmit lock
3532  *	@dev: network device
3533  *
3534  * Get network device transmit lock
3535  */
3536 static inline void netif_tx_lock(struct net_device *dev)
3537 {
3538 	unsigned int i;
3539 	int cpu;
3540 
3541 	spin_lock(&dev->tx_global_lock);
3542 	cpu = smp_processor_id();
3543 	for (i = 0; i < dev->num_tx_queues; i++) {
3544 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3545 
3546 		/* We are the only thread of execution doing a
3547 		 * freeze, but we have to grab the _xmit_lock in
3548 		 * order to synchronize with threads which are in
3549 		 * the ->hard_start_xmit() handler and already
3550 		 * checked the frozen bit.
3551 		 */
3552 		__netif_tx_lock(txq, cpu);
3553 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3554 		__netif_tx_unlock(txq);
3555 	}
3556 }
3557 
3558 static inline void netif_tx_lock_bh(struct net_device *dev)
3559 {
3560 	local_bh_disable();
3561 	netif_tx_lock(dev);
3562 }
3563 
3564 static inline void netif_tx_unlock(struct net_device *dev)
3565 {
3566 	unsigned int i;
3567 
3568 	for (i = 0; i < dev->num_tx_queues; i++) {
3569 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3570 
3571 		/* No need to grab the _xmit_lock here.  If the
3572 		 * queue is not stopped for another reason, we
3573 		 * force a schedule.
3574 		 */
3575 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3576 		netif_schedule_queue(txq);
3577 	}
3578 	spin_unlock(&dev->tx_global_lock);
3579 }
3580 
3581 static inline void netif_tx_unlock_bh(struct net_device *dev)
3582 {
3583 	netif_tx_unlock(dev);
3584 	local_bh_enable();
3585 }
3586 
3587 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3588 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3589 		__netif_tx_lock(txq, cpu);		\
3590 	}						\
3591 }
3592 
3593 #define HARD_TX_TRYLOCK(dev, txq)			\
3594 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3595 		__netif_tx_trylock(txq) :		\
3596 		true )
3597 
3598 #define HARD_TX_UNLOCK(dev, txq) {			\
3599 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3600 		__netif_tx_unlock(txq);			\
3601 	}						\
3602 }
3603 
3604 static inline void netif_tx_disable(struct net_device *dev)
3605 {
3606 	unsigned int i;
3607 	int cpu;
3608 
3609 	local_bh_disable();
3610 	cpu = smp_processor_id();
3611 	for (i = 0; i < dev->num_tx_queues; i++) {
3612 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3613 
3614 		__netif_tx_lock(txq, cpu);
3615 		netif_tx_stop_queue(txq);
3616 		__netif_tx_unlock(txq);
3617 	}
3618 	local_bh_enable();
3619 }
3620 
3621 static inline void netif_addr_lock(struct net_device *dev)
3622 {
3623 	spin_lock(&dev->addr_list_lock);
3624 }
3625 
3626 static inline void netif_addr_lock_nested(struct net_device *dev)
3627 {
3628 	int subclass = SINGLE_DEPTH_NESTING;
3629 
3630 	if (dev->netdev_ops->ndo_get_lock_subclass)
3631 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3632 
3633 	spin_lock_nested(&dev->addr_list_lock, subclass);
3634 }
3635 
3636 static inline void netif_addr_lock_bh(struct net_device *dev)
3637 {
3638 	spin_lock_bh(&dev->addr_list_lock);
3639 }
3640 
3641 static inline void netif_addr_unlock(struct net_device *dev)
3642 {
3643 	spin_unlock(&dev->addr_list_lock);
3644 }
3645 
3646 static inline void netif_addr_unlock_bh(struct net_device *dev)
3647 {
3648 	spin_unlock_bh(&dev->addr_list_lock);
3649 }
3650 
3651 /*
3652  * dev_addrs walker. Should be used only for read access. Call with
3653  * rcu_read_lock held.
3654  */
3655 #define for_each_dev_addr(dev, ha) \
3656 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3657 
3658 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3659 
3660 void ether_setup(struct net_device *dev);
3661 
3662 /* Support for loadable net-drivers */
3663 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3664 				    unsigned char name_assign_type,
3665 				    void (*setup)(struct net_device *),
3666 				    unsigned int txqs, unsigned int rxqs);
3667 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3668 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3669 
3670 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3671 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3672 			 count)
3673 
3674 int register_netdev(struct net_device *dev);
3675 void unregister_netdev(struct net_device *dev);
3676 
3677 /* General hardware address lists handling functions */
3678 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3679 		   struct netdev_hw_addr_list *from_list, int addr_len);
3680 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3681 		      struct netdev_hw_addr_list *from_list, int addr_len);
3682 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3683 		       struct net_device *dev,
3684 		       int (*sync)(struct net_device *, const unsigned char *),
3685 		       int (*unsync)(struct net_device *,
3686 				     const unsigned char *));
3687 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3688 			  struct net_device *dev,
3689 			  int (*unsync)(struct net_device *,
3690 					const unsigned char *));
3691 void __hw_addr_init(struct netdev_hw_addr_list *list);
3692 
3693 /* Functions used for device addresses handling */
3694 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3695 		 unsigned char addr_type);
3696 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3697 		 unsigned char addr_type);
3698 void dev_addr_flush(struct net_device *dev);
3699 int dev_addr_init(struct net_device *dev);
3700 
3701 /* Functions used for unicast addresses handling */
3702 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3703 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3704 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3705 int dev_uc_sync(struct net_device *to, struct net_device *from);
3706 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3707 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3708 void dev_uc_flush(struct net_device *dev);
3709 void dev_uc_init(struct net_device *dev);
3710 
3711 /**
3712  *  __dev_uc_sync - Synchonize device's unicast list
3713  *  @dev:  device to sync
3714  *  @sync: function to call if address should be added
3715  *  @unsync: function to call if address should be removed
3716  *
3717  *  Add newly added addresses to the interface, and release
3718  *  addresses that have been deleted.
3719  */
3720 static inline int __dev_uc_sync(struct net_device *dev,
3721 				int (*sync)(struct net_device *,
3722 					    const unsigned char *),
3723 				int (*unsync)(struct net_device *,
3724 					      const unsigned char *))
3725 {
3726 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3727 }
3728 
3729 /**
3730  *  __dev_uc_unsync - Remove synchronized addresses from device
3731  *  @dev:  device to sync
3732  *  @unsync: function to call if address should be removed
3733  *
3734  *  Remove all addresses that were added to the device by dev_uc_sync().
3735  */
3736 static inline void __dev_uc_unsync(struct net_device *dev,
3737 				   int (*unsync)(struct net_device *,
3738 						 const unsigned char *))
3739 {
3740 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3741 }
3742 
3743 /* Functions used for multicast addresses handling */
3744 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3745 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3746 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3747 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3748 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3749 int dev_mc_sync(struct net_device *to, struct net_device *from);
3750 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3751 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3752 void dev_mc_flush(struct net_device *dev);
3753 void dev_mc_init(struct net_device *dev);
3754 
3755 /**
3756  *  __dev_mc_sync - Synchonize device's multicast list
3757  *  @dev:  device to sync
3758  *  @sync: function to call if address should be added
3759  *  @unsync: function to call if address should be removed
3760  *
3761  *  Add newly added addresses to the interface, and release
3762  *  addresses that have been deleted.
3763  */
3764 static inline int __dev_mc_sync(struct net_device *dev,
3765 				int (*sync)(struct net_device *,
3766 					    const unsigned char *),
3767 				int (*unsync)(struct net_device *,
3768 					      const unsigned char *))
3769 {
3770 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3771 }
3772 
3773 /**
3774  *  __dev_mc_unsync - Remove synchronized addresses from device
3775  *  @dev:  device to sync
3776  *  @unsync: function to call if address should be removed
3777  *
3778  *  Remove all addresses that were added to the device by dev_mc_sync().
3779  */
3780 static inline void __dev_mc_unsync(struct net_device *dev,
3781 				   int (*unsync)(struct net_device *,
3782 						 const unsigned char *))
3783 {
3784 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3785 }
3786 
3787 /* Functions used for secondary unicast and multicast support */
3788 void dev_set_rx_mode(struct net_device *dev);
3789 void __dev_set_rx_mode(struct net_device *dev);
3790 int dev_set_promiscuity(struct net_device *dev, int inc);
3791 int dev_set_allmulti(struct net_device *dev, int inc);
3792 void netdev_state_change(struct net_device *dev);
3793 void netdev_notify_peers(struct net_device *dev);
3794 void netdev_features_change(struct net_device *dev);
3795 /* Load a device via the kmod */
3796 void dev_load(struct net *net, const char *name);
3797 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3798 					struct rtnl_link_stats64 *storage);
3799 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3800 			     const struct net_device_stats *netdev_stats);
3801 
3802 extern int		netdev_max_backlog;
3803 extern int		netdev_tstamp_prequeue;
3804 extern int		weight_p;
3805 
3806 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3807 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3808 						     struct list_head **iter);
3809 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3810 						     struct list_head **iter);
3811 
3812 /* iterate through upper list, must be called under RCU read lock */
3813 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3814 	for (iter = &(dev)->adj_list.upper, \
3815 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3816 	     updev; \
3817 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3818 
3819 /* iterate through upper list, must be called under RCU read lock */
3820 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3821 	for (iter = &(dev)->all_adj_list.upper, \
3822 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3823 	     updev; \
3824 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3825 
3826 void *netdev_lower_get_next_private(struct net_device *dev,
3827 				    struct list_head **iter);
3828 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3829 					struct list_head **iter);
3830 
3831 #define netdev_for_each_lower_private(dev, priv, iter) \
3832 	for (iter = (dev)->adj_list.lower.next, \
3833 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3834 	     priv; \
3835 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3836 
3837 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3838 	for (iter = &(dev)->adj_list.lower, \
3839 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3840 	     priv; \
3841 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3842 
3843 void *netdev_lower_get_next(struct net_device *dev,
3844 				struct list_head **iter);
3845 
3846 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3847 	for (iter = (dev)->adj_list.lower.next, \
3848 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3849 	     ldev; \
3850 	     ldev = netdev_lower_get_next(dev, &(iter)))
3851 
3852 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3853 					     struct list_head **iter);
3854 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3855 						 struct list_head **iter);
3856 
3857 #define netdev_for_each_all_lower_dev(dev, ldev, iter) \
3858 	for (iter = (dev)->all_adj_list.lower.next, \
3859 	     ldev = netdev_all_lower_get_next(dev, &(iter)); \
3860 	     ldev; \
3861 	     ldev = netdev_all_lower_get_next(dev, &(iter)))
3862 
3863 #define netdev_for_each_all_lower_dev_rcu(dev, ldev, iter) \
3864 	for (iter = (dev)->all_adj_list.lower.next, \
3865 	     ldev = netdev_all_lower_get_next_rcu(dev, &(iter)); \
3866 	     ldev; \
3867 	     ldev = netdev_all_lower_get_next_rcu(dev, &(iter)))
3868 
3869 void *netdev_adjacent_get_private(struct list_head *adj_list);
3870 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3871 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3872 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3873 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3874 int netdev_master_upper_dev_link(struct net_device *dev,
3875 				 struct net_device *upper_dev,
3876 				 void *upper_priv, void *upper_info);
3877 void netdev_upper_dev_unlink(struct net_device *dev,
3878 			     struct net_device *upper_dev);
3879 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3880 void *netdev_lower_dev_get_private(struct net_device *dev,
3881 				   struct net_device *lower_dev);
3882 void netdev_lower_state_changed(struct net_device *lower_dev,
3883 				void *lower_state_info);
3884 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
3885 					   struct neighbour *n);
3886 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
3887 					  struct neighbour *n);
3888 
3889 /* RSS keys are 40 or 52 bytes long */
3890 #define NETDEV_RSS_KEY_LEN 52
3891 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3892 void netdev_rss_key_fill(void *buffer, size_t len);
3893 
3894 int dev_get_nest_level(struct net_device *dev);
3895 int skb_checksum_help(struct sk_buff *skb);
3896 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3897 				  netdev_features_t features, bool tx_path);
3898 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3899 				    netdev_features_t features);
3900 
3901 struct netdev_bonding_info {
3902 	ifslave	slave;
3903 	ifbond	master;
3904 };
3905 
3906 struct netdev_notifier_bonding_info {
3907 	struct netdev_notifier_info info; /* must be first */
3908 	struct netdev_bonding_info  bonding_info;
3909 };
3910 
3911 void netdev_bonding_info_change(struct net_device *dev,
3912 				struct netdev_bonding_info *bonding_info);
3913 
3914 static inline
3915 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3916 {
3917 	return __skb_gso_segment(skb, features, true);
3918 }
3919 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3920 
3921 static inline bool can_checksum_protocol(netdev_features_t features,
3922 					 __be16 protocol)
3923 {
3924 	if (protocol == htons(ETH_P_FCOE))
3925 		return !!(features & NETIF_F_FCOE_CRC);
3926 
3927 	/* Assume this is an IP checksum (not SCTP CRC) */
3928 
3929 	if (features & NETIF_F_HW_CSUM) {
3930 		/* Can checksum everything */
3931 		return true;
3932 	}
3933 
3934 	switch (protocol) {
3935 	case htons(ETH_P_IP):
3936 		return !!(features & NETIF_F_IP_CSUM);
3937 	case htons(ETH_P_IPV6):
3938 		return !!(features & NETIF_F_IPV6_CSUM);
3939 	default:
3940 		return false;
3941 	}
3942 }
3943 
3944 /* Map an ethertype into IP protocol if possible */
3945 static inline int eproto_to_ipproto(int eproto)
3946 {
3947 	switch (eproto) {
3948 	case htons(ETH_P_IP):
3949 		return IPPROTO_IP;
3950 	case htons(ETH_P_IPV6):
3951 		return IPPROTO_IPV6;
3952 	default:
3953 		return -1;
3954 	}
3955 }
3956 
3957 #ifdef CONFIG_BUG
3958 void netdev_rx_csum_fault(struct net_device *dev);
3959 #else
3960 static inline void netdev_rx_csum_fault(struct net_device *dev)
3961 {
3962 }
3963 #endif
3964 /* rx skb timestamps */
3965 void net_enable_timestamp(void);
3966 void net_disable_timestamp(void);
3967 
3968 #ifdef CONFIG_PROC_FS
3969 int __init dev_proc_init(void);
3970 #else
3971 #define dev_proc_init() 0
3972 #endif
3973 
3974 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3975 					      struct sk_buff *skb, struct net_device *dev,
3976 					      bool more)
3977 {
3978 	skb->xmit_more = more ? 1 : 0;
3979 	return ops->ndo_start_xmit(skb, dev);
3980 }
3981 
3982 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3983 					    struct netdev_queue *txq, bool more)
3984 {
3985 	const struct net_device_ops *ops = dev->netdev_ops;
3986 	int rc;
3987 
3988 	rc = __netdev_start_xmit(ops, skb, dev, more);
3989 	if (rc == NETDEV_TX_OK)
3990 		txq_trans_update(txq);
3991 
3992 	return rc;
3993 }
3994 
3995 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3996 				const void *ns);
3997 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3998 				 const void *ns);
3999 
4000 static inline int netdev_class_create_file(struct class_attribute *class_attr)
4001 {
4002 	return netdev_class_create_file_ns(class_attr, NULL);
4003 }
4004 
4005 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
4006 {
4007 	netdev_class_remove_file_ns(class_attr, NULL);
4008 }
4009 
4010 extern struct kobj_ns_type_operations net_ns_type_operations;
4011 
4012 const char *netdev_drivername(const struct net_device *dev);
4013 
4014 void linkwatch_run_queue(void);
4015 
4016 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4017 							  netdev_features_t f2)
4018 {
4019 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4020 		if (f1 & NETIF_F_HW_CSUM)
4021 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4022 		else
4023 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4024 	}
4025 
4026 	return f1 & f2;
4027 }
4028 
4029 static inline netdev_features_t netdev_get_wanted_features(
4030 	struct net_device *dev)
4031 {
4032 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4033 }
4034 netdev_features_t netdev_increment_features(netdev_features_t all,
4035 	netdev_features_t one, netdev_features_t mask);
4036 
4037 /* Allow TSO being used on stacked device :
4038  * Performing the GSO segmentation before last device
4039  * is a performance improvement.
4040  */
4041 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4042 							netdev_features_t mask)
4043 {
4044 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4045 }
4046 
4047 int __netdev_update_features(struct net_device *dev);
4048 void netdev_update_features(struct net_device *dev);
4049 void netdev_change_features(struct net_device *dev);
4050 
4051 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4052 					struct net_device *dev);
4053 
4054 netdev_features_t passthru_features_check(struct sk_buff *skb,
4055 					  struct net_device *dev,
4056 					  netdev_features_t features);
4057 netdev_features_t netif_skb_features(struct sk_buff *skb);
4058 
4059 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4060 {
4061 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4062 
4063 	/* check flags correspondence */
4064 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4065 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4066 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4067 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4068 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4069 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4070 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4071 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4072 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4073 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4074 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4075 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4076 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4077 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4078 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4079 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4080 
4081 	return (features & feature) == feature;
4082 }
4083 
4084 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4085 {
4086 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4087 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4088 }
4089 
4090 static inline bool netif_needs_gso(struct sk_buff *skb,
4091 				   netdev_features_t features)
4092 {
4093 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4094 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4095 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4096 }
4097 
4098 static inline void netif_set_gso_max_size(struct net_device *dev,
4099 					  unsigned int size)
4100 {
4101 	dev->gso_max_size = size;
4102 }
4103 
4104 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4105 					int pulled_hlen, u16 mac_offset,
4106 					int mac_len)
4107 {
4108 	skb->protocol = protocol;
4109 	skb->encapsulation = 1;
4110 	skb_push(skb, pulled_hlen);
4111 	skb_reset_transport_header(skb);
4112 	skb->mac_header = mac_offset;
4113 	skb->network_header = skb->mac_header + mac_len;
4114 	skb->mac_len = mac_len;
4115 }
4116 
4117 static inline bool netif_is_macsec(const struct net_device *dev)
4118 {
4119 	return dev->priv_flags & IFF_MACSEC;
4120 }
4121 
4122 static inline bool netif_is_macvlan(const struct net_device *dev)
4123 {
4124 	return dev->priv_flags & IFF_MACVLAN;
4125 }
4126 
4127 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4128 {
4129 	return dev->priv_flags & IFF_MACVLAN_PORT;
4130 }
4131 
4132 static inline bool netif_is_ipvlan(const struct net_device *dev)
4133 {
4134 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
4135 }
4136 
4137 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4138 {
4139 	return dev->priv_flags & IFF_IPVLAN_MASTER;
4140 }
4141 
4142 static inline bool netif_is_bond_master(const struct net_device *dev)
4143 {
4144 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4145 }
4146 
4147 static inline bool netif_is_bond_slave(const struct net_device *dev)
4148 {
4149 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4150 }
4151 
4152 static inline bool netif_supports_nofcs(struct net_device *dev)
4153 {
4154 	return dev->priv_flags & IFF_SUPP_NOFCS;
4155 }
4156 
4157 static inline bool netif_is_l3_master(const struct net_device *dev)
4158 {
4159 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4160 }
4161 
4162 static inline bool netif_is_l3_slave(const struct net_device *dev)
4163 {
4164 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4165 }
4166 
4167 static inline bool netif_is_bridge_master(const struct net_device *dev)
4168 {
4169 	return dev->priv_flags & IFF_EBRIDGE;
4170 }
4171 
4172 static inline bool netif_is_bridge_port(const struct net_device *dev)
4173 {
4174 	return dev->priv_flags & IFF_BRIDGE_PORT;
4175 }
4176 
4177 static inline bool netif_is_ovs_master(const struct net_device *dev)
4178 {
4179 	return dev->priv_flags & IFF_OPENVSWITCH;
4180 }
4181 
4182 static inline bool netif_is_team_master(const struct net_device *dev)
4183 {
4184 	return dev->priv_flags & IFF_TEAM;
4185 }
4186 
4187 static inline bool netif_is_team_port(const struct net_device *dev)
4188 {
4189 	return dev->priv_flags & IFF_TEAM_PORT;
4190 }
4191 
4192 static inline bool netif_is_lag_master(const struct net_device *dev)
4193 {
4194 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4195 }
4196 
4197 static inline bool netif_is_lag_port(const struct net_device *dev)
4198 {
4199 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4200 }
4201 
4202 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4203 {
4204 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4205 }
4206 
4207 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4208 static inline void netif_keep_dst(struct net_device *dev)
4209 {
4210 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4211 }
4212 
4213 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4214 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4215 {
4216 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4217 	return dev->priv_flags & IFF_MACSEC;
4218 }
4219 
4220 extern struct pernet_operations __net_initdata loopback_net_ops;
4221 
4222 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4223 
4224 /* netdev_printk helpers, similar to dev_printk */
4225 
4226 static inline const char *netdev_name(const struct net_device *dev)
4227 {
4228 	if (!dev->name[0] || strchr(dev->name, '%'))
4229 		return "(unnamed net_device)";
4230 	return dev->name;
4231 }
4232 
4233 static inline const char *netdev_reg_state(const struct net_device *dev)
4234 {
4235 	switch (dev->reg_state) {
4236 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4237 	case NETREG_REGISTERED: return "";
4238 	case NETREG_UNREGISTERING: return " (unregistering)";
4239 	case NETREG_UNREGISTERED: return " (unregistered)";
4240 	case NETREG_RELEASED: return " (released)";
4241 	case NETREG_DUMMY: return " (dummy)";
4242 	}
4243 
4244 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4245 	return " (unknown)";
4246 }
4247 
4248 __printf(3, 4)
4249 void netdev_printk(const char *level, const struct net_device *dev,
4250 		   const char *format, ...);
4251 __printf(2, 3)
4252 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4253 __printf(2, 3)
4254 void netdev_alert(const struct net_device *dev, const char *format, ...);
4255 __printf(2, 3)
4256 void netdev_crit(const struct net_device *dev, const char *format, ...);
4257 __printf(2, 3)
4258 void netdev_err(const struct net_device *dev, const char *format, ...);
4259 __printf(2, 3)
4260 void netdev_warn(const struct net_device *dev, const char *format, ...);
4261 __printf(2, 3)
4262 void netdev_notice(const struct net_device *dev, const char *format, ...);
4263 __printf(2, 3)
4264 void netdev_info(const struct net_device *dev, const char *format, ...);
4265 
4266 #define MODULE_ALIAS_NETDEV(device) \
4267 	MODULE_ALIAS("netdev-" device)
4268 
4269 #if defined(CONFIG_DYNAMIC_DEBUG)
4270 #define netdev_dbg(__dev, format, args...)			\
4271 do {								\
4272 	dynamic_netdev_dbg(__dev, format, ##args);		\
4273 } while (0)
4274 #elif defined(DEBUG)
4275 #define netdev_dbg(__dev, format, args...)			\
4276 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4277 #else
4278 #define netdev_dbg(__dev, format, args...)			\
4279 ({								\
4280 	if (0)							\
4281 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4282 })
4283 #endif
4284 
4285 #if defined(VERBOSE_DEBUG)
4286 #define netdev_vdbg	netdev_dbg
4287 #else
4288 
4289 #define netdev_vdbg(dev, format, args...)			\
4290 ({								\
4291 	if (0)							\
4292 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4293 	0;							\
4294 })
4295 #endif
4296 
4297 /*
4298  * netdev_WARN() acts like dev_printk(), but with the key difference
4299  * of using a WARN/WARN_ON to get the message out, including the
4300  * file/line information and a backtrace.
4301  */
4302 #define netdev_WARN(dev, format, args...)			\
4303 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
4304 	     netdev_reg_state(dev), ##args)
4305 
4306 /* netif printk helpers, similar to netdev_printk */
4307 
4308 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4309 do {					  			\
4310 	if (netif_msg_##type(priv))				\
4311 		netdev_printk(level, (dev), fmt, ##args);	\
4312 } while (0)
4313 
4314 #define netif_level(level, priv, type, dev, fmt, args...)	\
4315 do {								\
4316 	if (netif_msg_##type(priv))				\
4317 		netdev_##level(dev, fmt, ##args);		\
4318 } while (0)
4319 
4320 #define netif_emerg(priv, type, dev, fmt, args...)		\
4321 	netif_level(emerg, priv, type, dev, fmt, ##args)
4322 #define netif_alert(priv, type, dev, fmt, args...)		\
4323 	netif_level(alert, priv, type, dev, fmt, ##args)
4324 #define netif_crit(priv, type, dev, fmt, args...)		\
4325 	netif_level(crit, priv, type, dev, fmt, ##args)
4326 #define netif_err(priv, type, dev, fmt, args...)		\
4327 	netif_level(err, priv, type, dev, fmt, ##args)
4328 #define netif_warn(priv, type, dev, fmt, args...)		\
4329 	netif_level(warn, priv, type, dev, fmt, ##args)
4330 #define netif_notice(priv, type, dev, fmt, args...)		\
4331 	netif_level(notice, priv, type, dev, fmt, ##args)
4332 #define netif_info(priv, type, dev, fmt, args...)		\
4333 	netif_level(info, priv, type, dev, fmt, ##args)
4334 
4335 #if defined(CONFIG_DYNAMIC_DEBUG)
4336 #define netif_dbg(priv, type, netdev, format, args...)		\
4337 do {								\
4338 	if (netif_msg_##type(priv))				\
4339 		dynamic_netdev_dbg(netdev, format, ##args);	\
4340 } while (0)
4341 #elif defined(DEBUG)
4342 #define netif_dbg(priv, type, dev, format, args...)		\
4343 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4344 #else
4345 #define netif_dbg(priv, type, dev, format, args...)			\
4346 ({									\
4347 	if (0)								\
4348 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4349 	0;								\
4350 })
4351 #endif
4352 
4353 #if defined(VERBOSE_DEBUG)
4354 #define netif_vdbg	netif_dbg
4355 #else
4356 #define netif_vdbg(priv, type, dev, format, args...)		\
4357 ({								\
4358 	if (0)							\
4359 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4360 	0;							\
4361 })
4362 #endif
4363 
4364 /*
4365  *	The list of packet types we will receive (as opposed to discard)
4366  *	and the routines to invoke.
4367  *
4368  *	Why 16. Because with 16 the only overlap we get on a hash of the
4369  *	low nibble of the protocol value is RARP/SNAP/X.25.
4370  *
4371  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4372  *             sure which should go first, but I bet it won't make much
4373  *             difference if we are running VLANs.  The good news is that
4374  *             this protocol won't be in the list unless compiled in, so
4375  *             the average user (w/out VLANs) will not be adversely affected.
4376  *             --BLG
4377  *
4378  *		0800	IP
4379  *		8100    802.1Q VLAN
4380  *		0001	802.3
4381  *		0002	AX.25
4382  *		0004	802.2
4383  *		8035	RARP
4384  *		0005	SNAP
4385  *		0805	X.25
4386  *		0806	ARP
4387  *		8137	IPX
4388  *		0009	Localtalk
4389  *		86DD	IPv6
4390  */
4391 #define PTYPE_HASH_SIZE	(16)
4392 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4393 
4394 #endif	/* _LINUX_NETDEVICE_H */
4395