xref: /openbmc/linux/include/linux/netdevice.h (revision f17f06a0)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 
57 struct sfp_bus;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 /* UDP Tunnel offloads */
64 struct udp_tunnel_info;
65 struct bpf_prog;
66 struct xdp_buff;
67 
68 void netdev_set_default_ethtool_ops(struct net_device *dev,
69 				    const struct ethtool_ops *ops);
70 
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
73 #define NET_RX_DROP		1	/* packet dropped */
74 
75 #define MAX_NEST_DEV 8
76 
77 /*
78  * Transmit return codes: transmit return codes originate from three different
79  * namespaces:
80  *
81  * - qdisc return codes
82  * - driver transmit return codes
83  * - errno values
84  *
85  * Drivers are allowed to return any one of those in their hard_start_xmit()
86  * function. Real network devices commonly used with qdiscs should only return
87  * the driver transmit return codes though - when qdiscs are used, the actual
88  * transmission happens asynchronously, so the value is not propagated to
89  * higher layers. Virtual network devices transmit synchronously; in this case
90  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
91  * others are propagated to higher layers.
92  */
93 
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS	0x00
96 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
97 #define NET_XMIT_CN		0x02	/* congestion notification	*/
98 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
99 
100 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
101  * indicates that the device will soon be dropping packets, or already drops
102  * some packets of the same priority; prompting us to send less aggressively. */
103 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
104 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
105 
106 /* Driver transmit return codes */
107 #define NETDEV_TX_MASK		0xf0
108 
109 enum netdev_tx {
110 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
111 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
112 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
113 };
114 typedef enum netdev_tx netdev_tx_t;
115 
116 /*
117  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119  */
120 static inline bool dev_xmit_complete(int rc)
121 {
122 	/*
123 	 * Positive cases with an skb consumed by a driver:
124 	 * - successful transmission (rc == NETDEV_TX_OK)
125 	 * - error while transmitting (rc < 0)
126 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
127 	 */
128 	if (likely(rc < NET_XMIT_MASK))
129 		return true;
130 
131 	return false;
132 }
133 
134 /*
135  *	Compute the worst-case header length according to the protocols
136  *	used.
137  */
138 
139 #if defined(CONFIG_HYPERV_NET)
140 # define LL_MAX_HEADER 128
141 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 #  define LL_MAX_HEADER 128
144 # else
145 #  define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150 
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157 
158 /*
159  *	Old network device statistics. Fields are native words
160  *	(unsigned long) so they can be read and written atomically.
161  */
162 
163 struct net_device_stats {
164 	unsigned long	rx_packets;
165 	unsigned long	tx_packets;
166 	unsigned long	rx_bytes;
167 	unsigned long	tx_bytes;
168 	unsigned long	rx_errors;
169 	unsigned long	tx_errors;
170 	unsigned long	rx_dropped;
171 	unsigned long	tx_dropped;
172 	unsigned long	multicast;
173 	unsigned long	collisions;
174 	unsigned long	rx_length_errors;
175 	unsigned long	rx_over_errors;
176 	unsigned long	rx_crc_errors;
177 	unsigned long	rx_frame_errors;
178 	unsigned long	rx_fifo_errors;
179 	unsigned long	rx_missed_errors;
180 	unsigned long	tx_aborted_errors;
181 	unsigned long	tx_carrier_errors;
182 	unsigned long	tx_fifo_errors;
183 	unsigned long	tx_heartbeat_errors;
184 	unsigned long	tx_window_errors;
185 	unsigned long	rx_compressed;
186 	unsigned long	tx_compressed;
187 };
188 
189 
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192 
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key_false rps_needed;
196 extern struct static_key_false rfs_needed;
197 #endif
198 
199 struct neighbour;
200 struct neigh_parms;
201 struct sk_buff;
202 
203 struct netdev_hw_addr {
204 	struct list_head	list;
205 	unsigned char		addr[MAX_ADDR_LEN];
206 	unsigned char		type;
207 #define NETDEV_HW_ADDR_T_LAN		1
208 #define NETDEV_HW_ADDR_T_SAN		2
209 #define NETDEV_HW_ADDR_T_SLAVE		3
210 #define NETDEV_HW_ADDR_T_UNICAST	4
211 #define NETDEV_HW_ADDR_T_MULTICAST	5
212 	bool			global_use;
213 	int			sync_cnt;
214 	int			refcount;
215 	int			synced;
216 	struct rcu_head		rcu_head;
217 };
218 
219 struct netdev_hw_addr_list {
220 	struct list_head	list;
221 	int			count;
222 };
223 
224 #define netdev_hw_addr_list_count(l) ((l)->count)
225 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
226 #define netdev_hw_addr_list_for_each(ha, l) \
227 	list_for_each_entry(ha, &(l)->list, list)
228 
229 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
230 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
231 #define netdev_for_each_uc_addr(ha, dev) \
232 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
233 
234 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
235 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
236 #define netdev_for_each_mc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
238 
239 struct hh_cache {
240 	unsigned int	hh_len;
241 	seqlock_t	hh_lock;
242 
243 	/* cached hardware header; allow for machine alignment needs.        */
244 #define HH_DATA_MOD	16
245 #define HH_DATA_OFF(__len) \
246 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251 
252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
253  * Alternative is:
254  *   dev->hard_header_len ? (dev->hard_header_len +
255  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256  *
257  * We could use other alignment values, but we must maintain the
258  * relationship HH alignment <= LL alignment.
259  */
260 #define LL_RESERVED_SPACE(dev) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 
265 struct header_ops {
266 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
267 			   unsigned short type, const void *daddr,
268 			   const void *saddr, unsigned int len);
269 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271 	void	(*cache_update)(struct hh_cache *hh,
272 				const struct net_device *dev,
273 				const unsigned char *haddr);
274 	bool	(*validate)(const char *ll_header, unsigned int len);
275 	__be16	(*parse_protocol)(const struct sk_buff *skb);
276 };
277 
278 /* These flag bits are private to the generic network queueing
279  * layer; they may not be explicitly referenced by any other
280  * code.
281  */
282 
283 enum netdev_state_t {
284 	__LINK_STATE_START,
285 	__LINK_STATE_PRESENT,
286 	__LINK_STATE_NOCARRIER,
287 	__LINK_STATE_LINKWATCH_PENDING,
288 	__LINK_STATE_DORMANT,
289 };
290 
291 
292 /*
293  * This structure holds boot-time configured netdevice settings. They
294  * are then used in the device probing.
295  */
296 struct netdev_boot_setup {
297 	char name[IFNAMSIZ];
298 	struct ifmap map;
299 };
300 #define NETDEV_BOOT_SETUP_MAX 8
301 
302 int __init netdev_boot_setup(char *str);
303 
304 struct gro_list {
305 	struct list_head	list;
306 	int			count;
307 };
308 
309 /*
310  * size of gro hash buckets, must less than bit number of
311  * napi_struct::gro_bitmask
312  */
313 #define GRO_HASH_BUCKETS	8
314 
315 /*
316  * Structure for NAPI scheduling similar to tasklet but with weighting
317  */
318 struct napi_struct {
319 	/* The poll_list must only be managed by the entity which
320 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
321 	 * whoever atomically sets that bit can add this napi_struct
322 	 * to the per-CPU poll_list, and whoever clears that bit
323 	 * can remove from the list right before clearing the bit.
324 	 */
325 	struct list_head	poll_list;
326 
327 	unsigned long		state;
328 	int			weight;
329 	unsigned long		gro_bitmask;
330 	int			(*poll)(struct napi_struct *, int);
331 #ifdef CONFIG_NETPOLL
332 	int			poll_owner;
333 #endif
334 	struct net_device	*dev;
335 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
336 	struct sk_buff		*skb;
337 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
338 	int			rx_count; /* length of rx_list */
339 	struct hrtimer		timer;
340 	struct list_head	dev_list;
341 	struct hlist_node	napi_hash_node;
342 	unsigned int		napi_id;
343 };
344 
345 enum {
346 	NAPI_STATE_SCHED,	/* Poll is scheduled */
347 	NAPI_STATE_MISSED,	/* reschedule a napi */
348 	NAPI_STATE_DISABLE,	/* Disable pending */
349 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
350 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
351 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
352 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
353 };
354 
355 enum {
356 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
357 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
358 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
359 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
360 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
361 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
362 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
363 };
364 
365 enum gro_result {
366 	GRO_MERGED,
367 	GRO_MERGED_FREE,
368 	GRO_HELD,
369 	GRO_NORMAL,
370 	GRO_DROP,
371 	GRO_CONSUMED,
372 };
373 typedef enum gro_result gro_result_t;
374 
375 /*
376  * enum rx_handler_result - Possible return values for rx_handlers.
377  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
378  * further.
379  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
380  * case skb->dev was changed by rx_handler.
381  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
382  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
383  *
384  * rx_handlers are functions called from inside __netif_receive_skb(), to do
385  * special processing of the skb, prior to delivery to protocol handlers.
386  *
387  * Currently, a net_device can only have a single rx_handler registered. Trying
388  * to register a second rx_handler will return -EBUSY.
389  *
390  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
391  * To unregister a rx_handler on a net_device, use
392  * netdev_rx_handler_unregister().
393  *
394  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
395  * do with the skb.
396  *
397  * If the rx_handler consumed the skb in some way, it should return
398  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
399  * the skb to be delivered in some other way.
400  *
401  * If the rx_handler changed skb->dev, to divert the skb to another
402  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
403  * new device will be called if it exists.
404  *
405  * If the rx_handler decides the skb should be ignored, it should return
406  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
407  * are registered on exact device (ptype->dev == skb->dev).
408  *
409  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
410  * delivered, it should return RX_HANDLER_PASS.
411  *
412  * A device without a registered rx_handler will behave as if rx_handler
413  * returned RX_HANDLER_PASS.
414  */
415 
416 enum rx_handler_result {
417 	RX_HANDLER_CONSUMED,
418 	RX_HANDLER_ANOTHER,
419 	RX_HANDLER_EXACT,
420 	RX_HANDLER_PASS,
421 };
422 typedef enum rx_handler_result rx_handler_result_t;
423 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
424 
425 void __napi_schedule(struct napi_struct *n);
426 void __napi_schedule_irqoff(struct napi_struct *n);
427 
428 static inline bool napi_disable_pending(struct napi_struct *n)
429 {
430 	return test_bit(NAPI_STATE_DISABLE, &n->state);
431 }
432 
433 bool napi_schedule_prep(struct napi_struct *n);
434 
435 /**
436  *	napi_schedule - schedule NAPI poll
437  *	@n: NAPI context
438  *
439  * Schedule NAPI poll routine to be called if it is not already
440  * running.
441  */
442 static inline void napi_schedule(struct napi_struct *n)
443 {
444 	if (napi_schedule_prep(n))
445 		__napi_schedule(n);
446 }
447 
448 /**
449  *	napi_schedule_irqoff - schedule NAPI poll
450  *	@n: NAPI context
451  *
452  * Variant of napi_schedule(), assuming hard irqs are masked.
453  */
454 static inline void napi_schedule_irqoff(struct napi_struct *n)
455 {
456 	if (napi_schedule_prep(n))
457 		__napi_schedule_irqoff(n);
458 }
459 
460 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
461 static inline bool napi_reschedule(struct napi_struct *napi)
462 {
463 	if (napi_schedule_prep(napi)) {
464 		__napi_schedule(napi);
465 		return true;
466 	}
467 	return false;
468 }
469 
470 bool napi_complete_done(struct napi_struct *n, int work_done);
471 /**
472  *	napi_complete - NAPI processing complete
473  *	@n: NAPI context
474  *
475  * Mark NAPI processing as complete.
476  * Consider using napi_complete_done() instead.
477  * Return false if device should avoid rearming interrupts.
478  */
479 static inline bool napi_complete(struct napi_struct *n)
480 {
481 	return napi_complete_done(n, 0);
482 }
483 
484 /**
485  *	napi_hash_del - remove a NAPI from global table
486  *	@napi: NAPI context
487  *
488  * Warning: caller must observe RCU grace period
489  * before freeing memory containing @napi, if
490  * this function returns true.
491  * Note: core networking stack automatically calls it
492  * from netif_napi_del().
493  * Drivers might want to call this helper to combine all
494  * the needed RCU grace periods into a single one.
495  */
496 bool napi_hash_del(struct napi_struct *napi);
497 
498 /**
499  *	napi_disable - prevent NAPI from scheduling
500  *	@n: NAPI context
501  *
502  * Stop NAPI from being scheduled on this context.
503  * Waits till any outstanding processing completes.
504  */
505 void napi_disable(struct napi_struct *n);
506 
507 /**
508  *	napi_enable - enable NAPI scheduling
509  *	@n: NAPI context
510  *
511  * Resume NAPI from being scheduled on this context.
512  * Must be paired with napi_disable.
513  */
514 static inline void napi_enable(struct napi_struct *n)
515 {
516 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
517 	smp_mb__before_atomic();
518 	clear_bit(NAPI_STATE_SCHED, &n->state);
519 	clear_bit(NAPI_STATE_NPSVC, &n->state);
520 }
521 
522 /**
523  *	napi_synchronize - wait until NAPI is not running
524  *	@n: NAPI context
525  *
526  * Wait until NAPI is done being scheduled on this context.
527  * Waits till any outstanding processing completes but
528  * does not disable future activations.
529  */
530 static inline void napi_synchronize(const struct napi_struct *n)
531 {
532 	if (IS_ENABLED(CONFIG_SMP))
533 		while (test_bit(NAPI_STATE_SCHED, &n->state))
534 			msleep(1);
535 	else
536 		barrier();
537 }
538 
539 /**
540  *	napi_if_scheduled_mark_missed - if napi is running, set the
541  *	NAPIF_STATE_MISSED
542  *	@n: NAPI context
543  *
544  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
545  * NAPI is scheduled.
546  **/
547 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
548 {
549 	unsigned long val, new;
550 
551 	do {
552 		val = READ_ONCE(n->state);
553 		if (val & NAPIF_STATE_DISABLE)
554 			return true;
555 
556 		if (!(val & NAPIF_STATE_SCHED))
557 			return false;
558 
559 		new = val | NAPIF_STATE_MISSED;
560 	} while (cmpxchg(&n->state, val, new) != val);
561 
562 	return true;
563 }
564 
565 enum netdev_queue_state_t {
566 	__QUEUE_STATE_DRV_XOFF,
567 	__QUEUE_STATE_STACK_XOFF,
568 	__QUEUE_STATE_FROZEN,
569 };
570 
571 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
572 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
573 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
574 
575 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
576 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
577 					QUEUE_STATE_FROZEN)
578 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
579 					QUEUE_STATE_FROZEN)
580 
581 /*
582  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
583  * netif_tx_* functions below are used to manipulate this flag.  The
584  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
585  * queue independently.  The netif_xmit_*stopped functions below are called
586  * to check if the queue has been stopped by the driver or stack (either
587  * of the XOFF bits are set in the state).  Drivers should not need to call
588  * netif_xmit*stopped functions, they should only be using netif_tx_*.
589  */
590 
591 struct netdev_queue {
592 /*
593  * read-mostly part
594  */
595 	struct net_device	*dev;
596 	struct Qdisc __rcu	*qdisc;
597 	struct Qdisc		*qdisc_sleeping;
598 #ifdef CONFIG_SYSFS
599 	struct kobject		kobj;
600 #endif
601 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
602 	int			numa_node;
603 #endif
604 	unsigned long		tx_maxrate;
605 	/*
606 	 * Number of TX timeouts for this queue
607 	 * (/sys/class/net/DEV/Q/trans_timeout)
608 	 */
609 	unsigned long		trans_timeout;
610 
611 	/* Subordinate device that the queue has been assigned to */
612 	struct net_device	*sb_dev;
613 #ifdef CONFIG_XDP_SOCKETS
614 	struct xdp_umem         *umem;
615 #endif
616 /*
617  * write-mostly part
618  */
619 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
620 	int			xmit_lock_owner;
621 	/*
622 	 * Time (in jiffies) of last Tx
623 	 */
624 	unsigned long		trans_start;
625 
626 	unsigned long		state;
627 
628 #ifdef CONFIG_BQL
629 	struct dql		dql;
630 #endif
631 } ____cacheline_aligned_in_smp;
632 
633 extern int sysctl_fb_tunnels_only_for_init_net;
634 extern int sysctl_devconf_inherit_init_net;
635 
636 static inline bool net_has_fallback_tunnels(const struct net *net)
637 {
638 	return net == &init_net ||
639 	       !IS_ENABLED(CONFIG_SYSCTL) ||
640 	       !sysctl_fb_tunnels_only_for_init_net;
641 }
642 
643 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
644 {
645 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
646 	return q->numa_node;
647 #else
648 	return NUMA_NO_NODE;
649 #endif
650 }
651 
652 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
653 {
654 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
655 	q->numa_node = node;
656 #endif
657 }
658 
659 #ifdef CONFIG_RPS
660 /*
661  * This structure holds an RPS map which can be of variable length.  The
662  * map is an array of CPUs.
663  */
664 struct rps_map {
665 	unsigned int len;
666 	struct rcu_head rcu;
667 	u16 cpus[0];
668 };
669 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
670 
671 /*
672  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
673  * tail pointer for that CPU's input queue at the time of last enqueue, and
674  * a hardware filter index.
675  */
676 struct rps_dev_flow {
677 	u16 cpu;
678 	u16 filter;
679 	unsigned int last_qtail;
680 };
681 #define RPS_NO_FILTER 0xffff
682 
683 /*
684  * The rps_dev_flow_table structure contains a table of flow mappings.
685  */
686 struct rps_dev_flow_table {
687 	unsigned int mask;
688 	struct rcu_head rcu;
689 	struct rps_dev_flow flows[0];
690 };
691 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
692     ((_num) * sizeof(struct rps_dev_flow)))
693 
694 /*
695  * The rps_sock_flow_table contains mappings of flows to the last CPU
696  * on which they were processed by the application (set in recvmsg).
697  * Each entry is a 32bit value. Upper part is the high-order bits
698  * of flow hash, lower part is CPU number.
699  * rps_cpu_mask is used to partition the space, depending on number of
700  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
701  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
702  * meaning we use 32-6=26 bits for the hash.
703  */
704 struct rps_sock_flow_table {
705 	u32	mask;
706 
707 	u32	ents[0] ____cacheline_aligned_in_smp;
708 };
709 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
710 
711 #define RPS_NO_CPU 0xffff
712 
713 extern u32 rps_cpu_mask;
714 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
715 
716 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
717 					u32 hash)
718 {
719 	if (table && hash) {
720 		unsigned int index = hash & table->mask;
721 		u32 val = hash & ~rps_cpu_mask;
722 
723 		/* We only give a hint, preemption can change CPU under us */
724 		val |= raw_smp_processor_id();
725 
726 		if (table->ents[index] != val)
727 			table->ents[index] = val;
728 	}
729 }
730 
731 #ifdef CONFIG_RFS_ACCEL
732 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
733 			 u16 filter_id);
734 #endif
735 #endif /* CONFIG_RPS */
736 
737 /* This structure contains an instance of an RX queue. */
738 struct netdev_rx_queue {
739 #ifdef CONFIG_RPS
740 	struct rps_map __rcu		*rps_map;
741 	struct rps_dev_flow_table __rcu	*rps_flow_table;
742 #endif
743 	struct kobject			kobj;
744 	struct net_device		*dev;
745 	struct xdp_rxq_info		xdp_rxq;
746 #ifdef CONFIG_XDP_SOCKETS
747 	struct xdp_umem                 *umem;
748 #endif
749 } ____cacheline_aligned_in_smp;
750 
751 /*
752  * RX queue sysfs structures and functions.
753  */
754 struct rx_queue_attribute {
755 	struct attribute attr;
756 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
757 	ssize_t (*store)(struct netdev_rx_queue *queue,
758 			 const char *buf, size_t len);
759 };
760 
761 #ifdef CONFIG_XPS
762 /*
763  * This structure holds an XPS map which can be of variable length.  The
764  * map is an array of queues.
765  */
766 struct xps_map {
767 	unsigned int len;
768 	unsigned int alloc_len;
769 	struct rcu_head rcu;
770 	u16 queues[0];
771 };
772 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
773 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
774        - sizeof(struct xps_map)) / sizeof(u16))
775 
776 /*
777  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
778  */
779 struct xps_dev_maps {
780 	struct rcu_head rcu;
781 	struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
782 };
783 
784 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
785 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
786 
787 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
788 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
789 
790 #endif /* CONFIG_XPS */
791 
792 #define TC_MAX_QUEUE	16
793 #define TC_BITMASK	15
794 /* HW offloaded queuing disciplines txq count and offset maps */
795 struct netdev_tc_txq {
796 	u16 count;
797 	u16 offset;
798 };
799 
800 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
801 /*
802  * This structure is to hold information about the device
803  * configured to run FCoE protocol stack.
804  */
805 struct netdev_fcoe_hbainfo {
806 	char	manufacturer[64];
807 	char	serial_number[64];
808 	char	hardware_version[64];
809 	char	driver_version[64];
810 	char	optionrom_version[64];
811 	char	firmware_version[64];
812 	char	model[256];
813 	char	model_description[256];
814 };
815 #endif
816 
817 #define MAX_PHYS_ITEM_ID_LEN 32
818 
819 /* This structure holds a unique identifier to identify some
820  * physical item (port for example) used by a netdevice.
821  */
822 struct netdev_phys_item_id {
823 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
824 	unsigned char id_len;
825 };
826 
827 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
828 					    struct netdev_phys_item_id *b)
829 {
830 	return a->id_len == b->id_len &&
831 	       memcmp(a->id, b->id, a->id_len) == 0;
832 }
833 
834 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
835 				       struct sk_buff *skb,
836 				       struct net_device *sb_dev);
837 
838 enum tc_setup_type {
839 	TC_SETUP_QDISC_MQPRIO,
840 	TC_SETUP_CLSU32,
841 	TC_SETUP_CLSFLOWER,
842 	TC_SETUP_CLSMATCHALL,
843 	TC_SETUP_CLSBPF,
844 	TC_SETUP_BLOCK,
845 	TC_SETUP_QDISC_CBS,
846 	TC_SETUP_QDISC_RED,
847 	TC_SETUP_QDISC_PRIO,
848 	TC_SETUP_QDISC_MQ,
849 	TC_SETUP_QDISC_ETF,
850 	TC_SETUP_ROOT_QDISC,
851 	TC_SETUP_QDISC_GRED,
852 	TC_SETUP_QDISC_TAPRIO,
853 	TC_SETUP_FT,
854 	TC_SETUP_QDISC_ETS,
855 	TC_SETUP_QDISC_TBF,
856 };
857 
858 /* These structures hold the attributes of bpf state that are being passed
859  * to the netdevice through the bpf op.
860  */
861 enum bpf_netdev_command {
862 	/* Set or clear a bpf program used in the earliest stages of packet
863 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
864 	 * is responsible for calling bpf_prog_put on any old progs that are
865 	 * stored. In case of error, the callee need not release the new prog
866 	 * reference, but on success it takes ownership and must bpf_prog_put
867 	 * when it is no longer used.
868 	 */
869 	XDP_SETUP_PROG,
870 	XDP_SETUP_PROG_HW,
871 	XDP_QUERY_PROG,
872 	XDP_QUERY_PROG_HW,
873 	/* BPF program for offload callbacks, invoked at program load time. */
874 	BPF_OFFLOAD_MAP_ALLOC,
875 	BPF_OFFLOAD_MAP_FREE,
876 	XDP_SETUP_XSK_UMEM,
877 };
878 
879 struct bpf_prog_offload_ops;
880 struct netlink_ext_ack;
881 struct xdp_umem;
882 struct xdp_dev_bulk_queue;
883 
884 struct netdev_bpf {
885 	enum bpf_netdev_command command;
886 	union {
887 		/* XDP_SETUP_PROG */
888 		struct {
889 			u32 flags;
890 			struct bpf_prog *prog;
891 			struct netlink_ext_ack *extack;
892 		};
893 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
894 		struct {
895 			u32 prog_id;
896 			/* flags with which program was installed */
897 			u32 prog_flags;
898 		};
899 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
900 		struct {
901 			struct bpf_offloaded_map *offmap;
902 		};
903 		/* XDP_SETUP_XSK_UMEM */
904 		struct {
905 			struct xdp_umem *umem;
906 			u16 queue_id;
907 		} xsk;
908 	};
909 };
910 
911 /* Flags for ndo_xsk_wakeup. */
912 #define XDP_WAKEUP_RX (1 << 0)
913 #define XDP_WAKEUP_TX (1 << 1)
914 
915 #ifdef CONFIG_XFRM_OFFLOAD
916 struct xfrmdev_ops {
917 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
918 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
919 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
920 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
921 				       struct xfrm_state *x);
922 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
923 };
924 #endif
925 
926 struct dev_ifalias {
927 	struct rcu_head rcuhead;
928 	char ifalias[];
929 };
930 
931 struct devlink;
932 struct tlsdev_ops;
933 
934 struct netdev_name_node {
935 	struct hlist_node hlist;
936 	struct list_head list;
937 	struct net_device *dev;
938 	const char *name;
939 };
940 
941 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
942 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
943 
944 struct netdev_net_notifier {
945 	struct list_head list;
946 	struct notifier_block *nb;
947 };
948 
949 /*
950  * This structure defines the management hooks for network devices.
951  * The following hooks can be defined; unless noted otherwise, they are
952  * optional and can be filled with a null pointer.
953  *
954  * int (*ndo_init)(struct net_device *dev);
955  *     This function is called once when a network device is registered.
956  *     The network device can use this for any late stage initialization
957  *     or semantic validation. It can fail with an error code which will
958  *     be propagated back to register_netdev.
959  *
960  * void (*ndo_uninit)(struct net_device *dev);
961  *     This function is called when device is unregistered or when registration
962  *     fails. It is not called if init fails.
963  *
964  * int (*ndo_open)(struct net_device *dev);
965  *     This function is called when a network device transitions to the up
966  *     state.
967  *
968  * int (*ndo_stop)(struct net_device *dev);
969  *     This function is called when a network device transitions to the down
970  *     state.
971  *
972  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
973  *                               struct net_device *dev);
974  *	Called when a packet needs to be transmitted.
975  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
976  *	the queue before that can happen; it's for obsolete devices and weird
977  *	corner cases, but the stack really does a non-trivial amount
978  *	of useless work if you return NETDEV_TX_BUSY.
979  *	Required; cannot be NULL.
980  *
981  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
982  *					   struct net_device *dev
983  *					   netdev_features_t features);
984  *	Called by core transmit path to determine if device is capable of
985  *	performing offload operations on a given packet. This is to give
986  *	the device an opportunity to implement any restrictions that cannot
987  *	be otherwise expressed by feature flags. The check is called with
988  *	the set of features that the stack has calculated and it returns
989  *	those the driver believes to be appropriate.
990  *
991  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
992  *                         struct net_device *sb_dev);
993  *	Called to decide which queue to use when device supports multiple
994  *	transmit queues.
995  *
996  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
997  *	This function is called to allow device receiver to make
998  *	changes to configuration when multicast or promiscuous is enabled.
999  *
1000  * void (*ndo_set_rx_mode)(struct net_device *dev);
1001  *	This function is called device changes address list filtering.
1002  *	If driver handles unicast address filtering, it should set
1003  *	IFF_UNICAST_FLT in its priv_flags.
1004  *
1005  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1006  *	This function  is called when the Media Access Control address
1007  *	needs to be changed. If this interface is not defined, the
1008  *	MAC address can not be changed.
1009  *
1010  * int (*ndo_validate_addr)(struct net_device *dev);
1011  *	Test if Media Access Control address is valid for the device.
1012  *
1013  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1014  *	Called when a user requests an ioctl which can't be handled by
1015  *	the generic interface code. If not defined ioctls return
1016  *	not supported error code.
1017  *
1018  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1019  *	Used to set network devices bus interface parameters. This interface
1020  *	is retained for legacy reasons; new devices should use the bus
1021  *	interface (PCI) for low level management.
1022  *
1023  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1024  *	Called when a user wants to change the Maximum Transfer Unit
1025  *	of a device.
1026  *
1027  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1028  *	Callback used when the transmitter has not made any progress
1029  *	for dev->watchdog ticks.
1030  *
1031  * void (*ndo_get_stats64)(struct net_device *dev,
1032  *                         struct rtnl_link_stats64 *storage);
1033  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1034  *	Called when a user wants to get the network device usage
1035  *	statistics. Drivers must do one of the following:
1036  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1037  *	   rtnl_link_stats64 structure passed by the caller.
1038  *	2. Define @ndo_get_stats to update a net_device_stats structure
1039  *	   (which should normally be dev->stats) and return a pointer to
1040  *	   it. The structure may be changed asynchronously only if each
1041  *	   field is written atomically.
1042  *	3. Update dev->stats asynchronously and atomically, and define
1043  *	   neither operation.
1044  *
1045  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1046  *	Return true if this device supports offload stats of this attr_id.
1047  *
1048  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1049  *	void *attr_data)
1050  *	Get statistics for offload operations by attr_id. Write it into the
1051  *	attr_data pointer.
1052  *
1053  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1054  *	If device supports VLAN filtering this function is called when a
1055  *	VLAN id is registered.
1056  *
1057  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1058  *	If device supports VLAN filtering this function is called when a
1059  *	VLAN id is unregistered.
1060  *
1061  * void (*ndo_poll_controller)(struct net_device *dev);
1062  *
1063  *	SR-IOV management functions.
1064  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1065  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1066  *			  u8 qos, __be16 proto);
1067  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1068  *			  int max_tx_rate);
1069  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1070  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1071  * int (*ndo_get_vf_config)(struct net_device *dev,
1072  *			    int vf, struct ifla_vf_info *ivf);
1073  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1074  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1075  *			  struct nlattr *port[]);
1076  *
1077  *      Enable or disable the VF ability to query its RSS Redirection Table and
1078  *      Hash Key. This is needed since on some devices VF share this information
1079  *      with PF and querying it may introduce a theoretical security risk.
1080  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1081  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1082  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1083  *		       void *type_data);
1084  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1085  *	This is always called from the stack with the rtnl lock held and netif
1086  *	tx queues stopped. This allows the netdevice to perform queue
1087  *	management safely.
1088  *
1089  *	Fiber Channel over Ethernet (FCoE) offload functions.
1090  * int (*ndo_fcoe_enable)(struct net_device *dev);
1091  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1092  *	so the underlying device can perform whatever needed configuration or
1093  *	initialization to support acceleration of FCoE traffic.
1094  *
1095  * int (*ndo_fcoe_disable)(struct net_device *dev);
1096  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1097  *	so the underlying device can perform whatever needed clean-ups to
1098  *	stop supporting acceleration of FCoE traffic.
1099  *
1100  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1101  *			     struct scatterlist *sgl, unsigned int sgc);
1102  *	Called when the FCoE Initiator wants to initialize an I/O that
1103  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1104  *	perform necessary setup and returns 1 to indicate the device is set up
1105  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1106  *
1107  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1108  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1109  *	indicated by the FC exchange id 'xid', so the underlying device can
1110  *	clean up and reuse resources for later DDP requests.
1111  *
1112  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1113  *			      struct scatterlist *sgl, unsigned int sgc);
1114  *	Called when the FCoE Target wants to initialize an I/O that
1115  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1116  *	perform necessary setup and returns 1 to indicate the device is set up
1117  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1118  *
1119  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1120  *			       struct netdev_fcoe_hbainfo *hbainfo);
1121  *	Called when the FCoE Protocol stack wants information on the underlying
1122  *	device. This information is utilized by the FCoE protocol stack to
1123  *	register attributes with Fiber Channel management service as per the
1124  *	FC-GS Fabric Device Management Information(FDMI) specification.
1125  *
1126  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1127  *	Called when the underlying device wants to override default World Wide
1128  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1129  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1130  *	protocol stack to use.
1131  *
1132  *	RFS acceleration.
1133  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1134  *			    u16 rxq_index, u32 flow_id);
1135  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1136  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1137  *	Return the filter ID on success, or a negative error code.
1138  *
1139  *	Slave management functions (for bridge, bonding, etc).
1140  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1141  *	Called to make another netdev an underling.
1142  *
1143  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1144  *	Called to release previously enslaved netdev.
1145  *
1146  *      Feature/offload setting functions.
1147  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1148  *		netdev_features_t features);
1149  *	Adjusts the requested feature flags according to device-specific
1150  *	constraints, and returns the resulting flags. Must not modify
1151  *	the device state.
1152  *
1153  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1154  *	Called to update device configuration to new features. Passed
1155  *	feature set might be less than what was returned by ndo_fix_features()).
1156  *	Must return >0 or -errno if it changed dev->features itself.
1157  *
1158  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1159  *		      struct net_device *dev,
1160  *		      const unsigned char *addr, u16 vid, u16 flags,
1161  *		      struct netlink_ext_ack *extack);
1162  *	Adds an FDB entry to dev for addr.
1163  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1164  *		      struct net_device *dev,
1165  *		      const unsigned char *addr, u16 vid)
1166  *	Deletes the FDB entry from dev coresponding to addr.
1167  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1168  *		       struct net_device *dev, struct net_device *filter_dev,
1169  *		       int *idx)
1170  *	Used to add FDB entries to dump requests. Implementers should add
1171  *	entries to skb and update idx with the number of entries.
1172  *
1173  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1174  *			     u16 flags, struct netlink_ext_ack *extack)
1175  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1176  *			     struct net_device *dev, u32 filter_mask,
1177  *			     int nlflags)
1178  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1179  *			     u16 flags);
1180  *
1181  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1182  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1183  *	which do not represent real hardware may define this to allow their
1184  *	userspace components to manage their virtual carrier state. Devices
1185  *	that determine carrier state from physical hardware properties (eg
1186  *	network cables) or protocol-dependent mechanisms (eg
1187  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1188  *
1189  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1190  *			       struct netdev_phys_item_id *ppid);
1191  *	Called to get ID of physical port of this device. If driver does
1192  *	not implement this, it is assumed that the hw is not able to have
1193  *	multiple net devices on single physical port.
1194  *
1195  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1196  *				 struct netdev_phys_item_id *ppid)
1197  *	Called to get the parent ID of the physical port of this device.
1198  *
1199  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1200  *			      struct udp_tunnel_info *ti);
1201  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1202  *	address family that a UDP tunnel is listnening to. It is called only
1203  *	when a new port starts listening. The operation is protected by the
1204  *	RTNL.
1205  *
1206  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1207  *			      struct udp_tunnel_info *ti);
1208  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1209  *	address family that the UDP tunnel is not listening to anymore. The
1210  *	operation is protected by the RTNL.
1211  *
1212  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1213  *				 struct net_device *dev)
1214  *	Called by upper layer devices to accelerate switching or other
1215  *	station functionality into hardware. 'pdev is the lowerdev
1216  *	to use for the offload and 'dev' is the net device that will
1217  *	back the offload. Returns a pointer to the private structure
1218  *	the upper layer will maintain.
1219  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1220  *	Called by upper layer device to delete the station created
1221  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1222  *	the station and priv is the structure returned by the add
1223  *	operation.
1224  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1225  *			     int queue_index, u32 maxrate);
1226  *	Called when a user wants to set a max-rate limitation of specific
1227  *	TX queue.
1228  * int (*ndo_get_iflink)(const struct net_device *dev);
1229  *	Called to get the iflink value of this device.
1230  * void (*ndo_change_proto_down)(struct net_device *dev,
1231  *				 bool proto_down);
1232  *	This function is used to pass protocol port error state information
1233  *	to the switch driver. The switch driver can react to the proto_down
1234  *      by doing a phys down on the associated switch port.
1235  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1236  *	This function is used to get egress tunnel information for given skb.
1237  *	This is useful for retrieving outer tunnel header parameters while
1238  *	sampling packet.
1239  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1240  *	This function is used to specify the headroom that the skb must
1241  *	consider when allocation skb during packet reception. Setting
1242  *	appropriate rx headroom value allows avoiding skb head copy on
1243  *	forward. Setting a negative value resets the rx headroom to the
1244  *	default value.
1245  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1246  *	This function is used to set or query state related to XDP on the
1247  *	netdevice and manage BPF offload. See definition of
1248  *	enum bpf_netdev_command for details.
1249  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1250  *			u32 flags);
1251  *	This function is used to submit @n XDP packets for transmit on a
1252  *	netdevice. Returns number of frames successfully transmitted, frames
1253  *	that got dropped are freed/returned via xdp_return_frame().
1254  *	Returns negative number, means general error invoking ndo, meaning
1255  *	no frames were xmit'ed and core-caller will free all frames.
1256  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1257  *      This function is used to wake up the softirq, ksoftirqd or kthread
1258  *	responsible for sending and/or receiving packets on a specific
1259  *	queue id bound to an AF_XDP socket. The flags field specifies if
1260  *	only RX, only Tx, or both should be woken up using the flags
1261  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1262  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1263  *	Get devlink port instance associated with a given netdev.
1264  *	Called with a reference on the netdevice and devlink locks only,
1265  *	rtnl_lock is not held.
1266  */
1267 struct net_device_ops {
1268 	int			(*ndo_init)(struct net_device *dev);
1269 	void			(*ndo_uninit)(struct net_device *dev);
1270 	int			(*ndo_open)(struct net_device *dev);
1271 	int			(*ndo_stop)(struct net_device *dev);
1272 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1273 						  struct net_device *dev);
1274 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1275 						      struct net_device *dev,
1276 						      netdev_features_t features);
1277 	u16			(*ndo_select_queue)(struct net_device *dev,
1278 						    struct sk_buff *skb,
1279 						    struct net_device *sb_dev);
1280 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1281 						       int flags);
1282 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1283 	int			(*ndo_set_mac_address)(struct net_device *dev,
1284 						       void *addr);
1285 	int			(*ndo_validate_addr)(struct net_device *dev);
1286 	int			(*ndo_do_ioctl)(struct net_device *dev,
1287 					        struct ifreq *ifr, int cmd);
1288 	int			(*ndo_set_config)(struct net_device *dev,
1289 					          struct ifmap *map);
1290 	int			(*ndo_change_mtu)(struct net_device *dev,
1291 						  int new_mtu);
1292 	int			(*ndo_neigh_setup)(struct net_device *dev,
1293 						   struct neigh_parms *);
1294 	void			(*ndo_tx_timeout) (struct net_device *dev,
1295 						   unsigned int txqueue);
1296 
1297 	void			(*ndo_get_stats64)(struct net_device *dev,
1298 						   struct rtnl_link_stats64 *storage);
1299 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1300 	int			(*ndo_get_offload_stats)(int attr_id,
1301 							 const struct net_device *dev,
1302 							 void *attr_data);
1303 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1304 
1305 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1306 						       __be16 proto, u16 vid);
1307 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1308 						        __be16 proto, u16 vid);
1309 #ifdef CONFIG_NET_POLL_CONTROLLER
1310 	void                    (*ndo_poll_controller)(struct net_device *dev);
1311 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1312 						     struct netpoll_info *info);
1313 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1314 #endif
1315 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1316 						  int queue, u8 *mac);
1317 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1318 						   int queue, u16 vlan,
1319 						   u8 qos, __be16 proto);
1320 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1321 						   int vf, int min_tx_rate,
1322 						   int max_tx_rate);
1323 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1324 						       int vf, bool setting);
1325 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1326 						    int vf, bool setting);
1327 	int			(*ndo_get_vf_config)(struct net_device *dev,
1328 						     int vf,
1329 						     struct ifla_vf_info *ivf);
1330 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1331 							 int vf, int link_state);
1332 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1333 						    int vf,
1334 						    struct ifla_vf_stats
1335 						    *vf_stats);
1336 	int			(*ndo_set_vf_port)(struct net_device *dev,
1337 						   int vf,
1338 						   struct nlattr *port[]);
1339 	int			(*ndo_get_vf_port)(struct net_device *dev,
1340 						   int vf, struct sk_buff *skb);
1341 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1342 						   int vf,
1343 						   struct ifla_vf_guid *node_guid,
1344 						   struct ifla_vf_guid *port_guid);
1345 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1346 						   int vf, u64 guid,
1347 						   int guid_type);
1348 	int			(*ndo_set_vf_rss_query_en)(
1349 						   struct net_device *dev,
1350 						   int vf, bool setting);
1351 	int			(*ndo_setup_tc)(struct net_device *dev,
1352 						enum tc_setup_type type,
1353 						void *type_data);
1354 #if IS_ENABLED(CONFIG_FCOE)
1355 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1356 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1357 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1358 						      u16 xid,
1359 						      struct scatterlist *sgl,
1360 						      unsigned int sgc);
1361 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1362 						     u16 xid);
1363 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1364 						       u16 xid,
1365 						       struct scatterlist *sgl,
1366 						       unsigned int sgc);
1367 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1368 							struct netdev_fcoe_hbainfo *hbainfo);
1369 #endif
1370 
1371 #if IS_ENABLED(CONFIG_LIBFCOE)
1372 #define NETDEV_FCOE_WWNN 0
1373 #define NETDEV_FCOE_WWPN 1
1374 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1375 						    u64 *wwn, int type);
1376 #endif
1377 
1378 #ifdef CONFIG_RFS_ACCEL
1379 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1380 						     const struct sk_buff *skb,
1381 						     u16 rxq_index,
1382 						     u32 flow_id);
1383 #endif
1384 	int			(*ndo_add_slave)(struct net_device *dev,
1385 						 struct net_device *slave_dev,
1386 						 struct netlink_ext_ack *extack);
1387 	int			(*ndo_del_slave)(struct net_device *dev,
1388 						 struct net_device *slave_dev);
1389 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1390 						    netdev_features_t features);
1391 	int			(*ndo_set_features)(struct net_device *dev,
1392 						    netdev_features_t features);
1393 	int			(*ndo_neigh_construct)(struct net_device *dev,
1394 						       struct neighbour *n);
1395 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1396 						     struct neighbour *n);
1397 
1398 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1399 					       struct nlattr *tb[],
1400 					       struct net_device *dev,
1401 					       const unsigned char *addr,
1402 					       u16 vid,
1403 					       u16 flags,
1404 					       struct netlink_ext_ack *extack);
1405 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1406 					       struct nlattr *tb[],
1407 					       struct net_device *dev,
1408 					       const unsigned char *addr,
1409 					       u16 vid);
1410 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1411 						struct netlink_callback *cb,
1412 						struct net_device *dev,
1413 						struct net_device *filter_dev,
1414 						int *idx);
1415 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1416 					       struct nlattr *tb[],
1417 					       struct net_device *dev,
1418 					       const unsigned char *addr,
1419 					       u16 vid, u32 portid, u32 seq,
1420 					       struct netlink_ext_ack *extack);
1421 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1422 						      struct nlmsghdr *nlh,
1423 						      u16 flags,
1424 						      struct netlink_ext_ack *extack);
1425 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1426 						      u32 pid, u32 seq,
1427 						      struct net_device *dev,
1428 						      u32 filter_mask,
1429 						      int nlflags);
1430 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1431 						      struct nlmsghdr *nlh,
1432 						      u16 flags);
1433 	int			(*ndo_change_carrier)(struct net_device *dev,
1434 						      bool new_carrier);
1435 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1436 							struct netdev_phys_item_id *ppid);
1437 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1438 							  struct netdev_phys_item_id *ppid);
1439 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1440 							  char *name, size_t len);
1441 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1442 						      struct udp_tunnel_info *ti);
1443 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1444 						      struct udp_tunnel_info *ti);
1445 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1446 							struct net_device *dev);
1447 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1448 							void *priv);
1449 
1450 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1451 						      int queue_index,
1452 						      u32 maxrate);
1453 	int			(*ndo_get_iflink)(const struct net_device *dev);
1454 	int			(*ndo_change_proto_down)(struct net_device *dev,
1455 							 bool proto_down);
1456 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1457 						       struct sk_buff *skb);
1458 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1459 						       int needed_headroom);
1460 	int			(*ndo_bpf)(struct net_device *dev,
1461 					   struct netdev_bpf *bpf);
1462 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1463 						struct xdp_frame **xdp,
1464 						u32 flags);
1465 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1466 						  u32 queue_id, u32 flags);
1467 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1468 };
1469 
1470 /**
1471  * enum net_device_priv_flags - &struct net_device priv_flags
1472  *
1473  * These are the &struct net_device, they are only set internally
1474  * by drivers and used in the kernel. These flags are invisible to
1475  * userspace; this means that the order of these flags can change
1476  * during any kernel release.
1477  *
1478  * You should have a pretty good reason to be extending these flags.
1479  *
1480  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1481  * @IFF_EBRIDGE: Ethernet bridging device
1482  * @IFF_BONDING: bonding master or slave
1483  * @IFF_ISATAP: ISATAP interface (RFC4214)
1484  * @IFF_WAN_HDLC: WAN HDLC device
1485  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1486  *	release skb->dst
1487  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1488  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1489  * @IFF_MACVLAN_PORT: device used as macvlan port
1490  * @IFF_BRIDGE_PORT: device used as bridge port
1491  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1492  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1493  * @IFF_UNICAST_FLT: Supports unicast filtering
1494  * @IFF_TEAM_PORT: device used as team port
1495  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1496  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1497  *	change when it's running
1498  * @IFF_MACVLAN: Macvlan device
1499  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1500  *	underlying stacked devices
1501  * @IFF_L3MDEV_MASTER: device is an L3 master device
1502  * @IFF_NO_QUEUE: device can run without qdisc attached
1503  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1504  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1505  * @IFF_TEAM: device is a team device
1506  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1507  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1508  *	entity (i.e. the master device for bridged veth)
1509  * @IFF_MACSEC: device is a MACsec device
1510  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1511  * @IFF_FAILOVER: device is a failover master device
1512  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1513  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1514  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1515  */
1516 enum netdev_priv_flags {
1517 	IFF_802_1Q_VLAN			= 1<<0,
1518 	IFF_EBRIDGE			= 1<<1,
1519 	IFF_BONDING			= 1<<2,
1520 	IFF_ISATAP			= 1<<3,
1521 	IFF_WAN_HDLC			= 1<<4,
1522 	IFF_XMIT_DST_RELEASE		= 1<<5,
1523 	IFF_DONT_BRIDGE			= 1<<6,
1524 	IFF_DISABLE_NETPOLL		= 1<<7,
1525 	IFF_MACVLAN_PORT		= 1<<8,
1526 	IFF_BRIDGE_PORT			= 1<<9,
1527 	IFF_OVS_DATAPATH		= 1<<10,
1528 	IFF_TX_SKB_SHARING		= 1<<11,
1529 	IFF_UNICAST_FLT			= 1<<12,
1530 	IFF_TEAM_PORT			= 1<<13,
1531 	IFF_SUPP_NOFCS			= 1<<14,
1532 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1533 	IFF_MACVLAN			= 1<<16,
1534 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1535 	IFF_L3MDEV_MASTER		= 1<<18,
1536 	IFF_NO_QUEUE			= 1<<19,
1537 	IFF_OPENVSWITCH			= 1<<20,
1538 	IFF_L3MDEV_SLAVE		= 1<<21,
1539 	IFF_TEAM			= 1<<22,
1540 	IFF_RXFH_CONFIGURED		= 1<<23,
1541 	IFF_PHONY_HEADROOM		= 1<<24,
1542 	IFF_MACSEC			= 1<<25,
1543 	IFF_NO_RX_HANDLER		= 1<<26,
1544 	IFF_FAILOVER			= 1<<27,
1545 	IFF_FAILOVER_SLAVE		= 1<<28,
1546 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1547 	IFF_LIVE_RENAME_OK		= 1<<30,
1548 };
1549 
1550 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1551 #define IFF_EBRIDGE			IFF_EBRIDGE
1552 #define IFF_BONDING			IFF_BONDING
1553 #define IFF_ISATAP			IFF_ISATAP
1554 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1555 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1556 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1557 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1558 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1559 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1560 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1561 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1562 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1563 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1564 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1565 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1566 #define IFF_MACVLAN			IFF_MACVLAN
1567 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1568 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1569 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1570 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1571 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1572 #define IFF_TEAM			IFF_TEAM
1573 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1574 #define IFF_MACSEC			IFF_MACSEC
1575 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1576 #define IFF_FAILOVER			IFF_FAILOVER
1577 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1578 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1579 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1580 
1581 /**
1582  *	struct net_device - The DEVICE structure.
1583  *
1584  *	Actually, this whole structure is a big mistake.  It mixes I/O
1585  *	data with strictly "high-level" data, and it has to know about
1586  *	almost every data structure used in the INET module.
1587  *
1588  *	@name:	This is the first field of the "visible" part of this structure
1589  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1590  *		of the interface.
1591  *
1592  *	@name_node:	Name hashlist node
1593  *	@ifalias:	SNMP alias
1594  *	@mem_end:	Shared memory end
1595  *	@mem_start:	Shared memory start
1596  *	@base_addr:	Device I/O address
1597  *	@irq:		Device IRQ number
1598  *
1599  *	@state:		Generic network queuing layer state, see netdev_state_t
1600  *	@dev_list:	The global list of network devices
1601  *	@napi_list:	List entry used for polling NAPI devices
1602  *	@unreg_list:	List entry  when we are unregistering the
1603  *			device; see the function unregister_netdev
1604  *	@close_list:	List entry used when we are closing the device
1605  *	@ptype_all:     Device-specific packet handlers for all protocols
1606  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1607  *
1608  *	@adj_list:	Directly linked devices, like slaves for bonding
1609  *	@features:	Currently active device features
1610  *	@hw_features:	User-changeable features
1611  *
1612  *	@wanted_features:	User-requested features
1613  *	@vlan_features:		Mask of features inheritable by VLAN devices
1614  *
1615  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1616  *				This field indicates what encapsulation
1617  *				offloads the hardware is capable of doing,
1618  *				and drivers will need to set them appropriately.
1619  *
1620  *	@mpls_features:	Mask of features inheritable by MPLS
1621  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1622  *
1623  *	@ifindex:	interface index
1624  *	@group:		The group the device belongs to
1625  *
1626  *	@stats:		Statistics struct, which was left as a legacy, use
1627  *			rtnl_link_stats64 instead
1628  *
1629  *	@rx_dropped:	Dropped packets by core network,
1630  *			do not use this in drivers
1631  *	@tx_dropped:	Dropped packets by core network,
1632  *			do not use this in drivers
1633  *	@rx_nohandler:	nohandler dropped packets by core network on
1634  *			inactive devices, do not use this in drivers
1635  *	@carrier_up_count:	Number of times the carrier has been up
1636  *	@carrier_down_count:	Number of times the carrier has been down
1637  *
1638  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1639  *				instead of ioctl,
1640  *				see <net/iw_handler.h> for details.
1641  *	@wireless_data:	Instance data managed by the core of wireless extensions
1642  *
1643  *	@netdev_ops:	Includes several pointers to callbacks,
1644  *			if one wants to override the ndo_*() functions
1645  *	@ethtool_ops:	Management operations
1646  *	@l3mdev_ops:	Layer 3 master device operations
1647  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1648  *			discovery handling. Necessary for e.g. 6LoWPAN.
1649  *	@xfrmdev_ops:	Transformation offload operations
1650  *	@tlsdev_ops:	Transport Layer Security offload operations
1651  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1652  *			of Layer 2 headers.
1653  *
1654  *	@flags:		Interface flags (a la BSD)
1655  *	@priv_flags:	Like 'flags' but invisible to userspace,
1656  *			see if.h for the definitions
1657  *	@gflags:	Global flags ( kept as legacy )
1658  *	@padded:	How much padding added by alloc_netdev()
1659  *	@operstate:	RFC2863 operstate
1660  *	@link_mode:	Mapping policy to operstate
1661  *	@if_port:	Selectable AUI, TP, ...
1662  *	@dma:		DMA channel
1663  *	@mtu:		Interface MTU value
1664  *	@min_mtu:	Interface Minimum MTU value
1665  *	@max_mtu:	Interface Maximum MTU value
1666  *	@type:		Interface hardware type
1667  *	@hard_header_len: Maximum hardware header length.
1668  *	@min_header_len:  Minimum hardware header length
1669  *
1670  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1671  *			  cases can this be guaranteed
1672  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1673  *			  cases can this be guaranteed. Some cases also use
1674  *			  LL_MAX_HEADER instead to allocate the skb
1675  *
1676  *	interface address info:
1677  *
1678  * 	@perm_addr:		Permanent hw address
1679  * 	@addr_assign_type:	Hw address assignment type
1680  * 	@addr_len:		Hardware address length
1681  *	@upper_level:		Maximum depth level of upper devices.
1682  *	@lower_level:		Maximum depth level of lower devices.
1683  *	@neigh_priv_len:	Used in neigh_alloc()
1684  * 	@dev_id:		Used to differentiate devices that share
1685  * 				the same link layer address
1686  * 	@dev_port:		Used to differentiate devices that share
1687  * 				the same function
1688  *	@addr_list_lock:	XXX: need comments on this one
1689  *	@name_assign_type:	network interface name assignment type
1690  *	@uc_promisc:		Counter that indicates promiscuous mode
1691  *				has been enabled due to the need to listen to
1692  *				additional unicast addresses in a device that
1693  *				does not implement ndo_set_rx_mode()
1694  *	@uc:			unicast mac addresses
1695  *	@mc:			multicast mac addresses
1696  *	@dev_addrs:		list of device hw addresses
1697  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1698  *	@promiscuity:		Number of times the NIC is told to work in
1699  *				promiscuous mode; if it becomes 0 the NIC will
1700  *				exit promiscuous mode
1701  *	@allmulti:		Counter, enables or disables allmulticast mode
1702  *
1703  *	@vlan_info:	VLAN info
1704  *	@dsa_ptr:	dsa specific data
1705  *	@tipc_ptr:	TIPC specific data
1706  *	@atalk_ptr:	AppleTalk link
1707  *	@ip_ptr:	IPv4 specific data
1708  *	@dn_ptr:	DECnet specific data
1709  *	@ip6_ptr:	IPv6 specific data
1710  *	@ax25_ptr:	AX.25 specific data
1711  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1712  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1713  *			 device struct
1714  *	@mpls_ptr:	mpls_dev struct pointer
1715  *
1716  *	@dev_addr:	Hw address (before bcast,
1717  *			because most packets are unicast)
1718  *
1719  *	@_rx:			Array of RX queues
1720  *	@num_rx_queues:		Number of RX queues
1721  *				allocated at register_netdev() time
1722  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1723  *	@xdp_prog:		XDP sockets filter program pointer
1724  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1725  *
1726  *	@rx_handler:		handler for received packets
1727  *	@rx_handler_data: 	XXX: need comments on this one
1728  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1729  *				ingress processing
1730  *	@ingress_queue:		XXX: need comments on this one
1731  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1732  *	@broadcast:		hw bcast address
1733  *
1734  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1735  *			indexed by RX queue number. Assigned by driver.
1736  *			This must only be set if the ndo_rx_flow_steer
1737  *			operation is defined
1738  *	@index_hlist:		Device index hash chain
1739  *
1740  *	@_tx:			Array of TX queues
1741  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1742  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1743  *	@qdisc:			Root qdisc from userspace point of view
1744  *	@tx_queue_len:		Max frames per queue allowed
1745  *	@tx_global_lock: 	XXX: need comments on this one
1746  *	@xdp_bulkq:		XDP device bulk queue
1747  *	@xps_cpus_map:		all CPUs map for XPS device
1748  *	@xps_rxqs_map:		all RXQs map for XPS device
1749  *
1750  *	@xps_maps:	XXX: need comments on this one
1751  *	@miniq_egress:		clsact qdisc specific data for
1752  *				egress processing
1753  *	@qdisc_hash:		qdisc hash table
1754  *	@watchdog_timeo:	Represents the timeout that is used by
1755  *				the watchdog (see dev_watchdog())
1756  *	@watchdog_timer:	List of timers
1757  *
1758  *	@pcpu_refcnt:		Number of references to this device
1759  *	@todo_list:		Delayed register/unregister
1760  *	@link_watch_list:	XXX: need comments on this one
1761  *
1762  *	@reg_state:		Register/unregister state machine
1763  *	@dismantle:		Device is going to be freed
1764  *	@rtnl_link_state:	This enum represents the phases of creating
1765  *				a new link
1766  *
1767  *	@needs_free_netdev:	Should unregister perform free_netdev?
1768  *	@priv_destructor:	Called from unregister
1769  *	@npinfo:		XXX: need comments on this one
1770  * 	@nd_net:		Network namespace this network device is inside
1771  *
1772  * 	@ml_priv:	Mid-layer private
1773  * 	@lstats:	Loopback statistics
1774  * 	@tstats:	Tunnel statistics
1775  * 	@dstats:	Dummy statistics
1776  * 	@vstats:	Virtual ethernet statistics
1777  *
1778  *	@garp_port:	GARP
1779  *	@mrp_port:	MRP
1780  *
1781  *	@dev:		Class/net/name entry
1782  *	@sysfs_groups:	Space for optional device, statistics and wireless
1783  *			sysfs groups
1784  *
1785  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1786  *	@rtnl_link_ops:	Rtnl_link_ops
1787  *
1788  *	@gso_max_size:	Maximum size of generic segmentation offload
1789  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1790  *			NIC for GSO
1791  *
1792  *	@dcbnl_ops:	Data Center Bridging netlink ops
1793  *	@num_tc:	Number of traffic classes in the net device
1794  *	@tc_to_txq:	XXX: need comments on this one
1795  *	@prio_tc_map:	XXX: need comments on this one
1796  *
1797  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1798  *
1799  *	@priomap:	XXX: need comments on this one
1800  *	@phydev:	Physical device may attach itself
1801  *			for hardware timestamping
1802  *	@sfp_bus:	attached &struct sfp_bus structure.
1803  *	@qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock
1804  *				spinlock
1805  *	@qdisc_running_key:	lockdep class annotating Qdisc->running seqcount
1806  *	@qdisc_xmit_lock_key:	lockdep class annotating
1807  *				netdev_queue->_xmit_lock spinlock
1808  *	@addr_list_lock_key:	lockdep class annotating
1809  *				net_device->addr_list_lock spinlock
1810  *
1811  *	@proto_down:	protocol port state information can be sent to the
1812  *			switch driver and used to set the phys state of the
1813  *			switch port.
1814  *
1815  *	@wol_enabled:	Wake-on-LAN is enabled
1816  *
1817  *	@net_notifier_list:	List of per-net netdev notifier block
1818  *				that follow this device when it is moved
1819  *				to another network namespace.
1820  *
1821  *	FIXME: cleanup struct net_device such that network protocol info
1822  *	moves out.
1823  */
1824 
1825 struct net_device {
1826 	char			name[IFNAMSIZ];
1827 	struct netdev_name_node	*name_node;
1828 	struct dev_ifalias	__rcu *ifalias;
1829 	/*
1830 	 *	I/O specific fields
1831 	 *	FIXME: Merge these and struct ifmap into one
1832 	 */
1833 	unsigned long		mem_end;
1834 	unsigned long		mem_start;
1835 	unsigned long		base_addr;
1836 	int			irq;
1837 
1838 	/*
1839 	 *	Some hardware also needs these fields (state,dev_list,
1840 	 *	napi_list,unreg_list,close_list) but they are not
1841 	 *	part of the usual set specified in Space.c.
1842 	 */
1843 
1844 	unsigned long		state;
1845 
1846 	struct list_head	dev_list;
1847 	struct list_head	napi_list;
1848 	struct list_head	unreg_list;
1849 	struct list_head	close_list;
1850 	struct list_head	ptype_all;
1851 	struct list_head	ptype_specific;
1852 
1853 	struct {
1854 		struct list_head upper;
1855 		struct list_head lower;
1856 	} adj_list;
1857 
1858 	netdev_features_t	features;
1859 	netdev_features_t	hw_features;
1860 	netdev_features_t	wanted_features;
1861 	netdev_features_t	vlan_features;
1862 	netdev_features_t	hw_enc_features;
1863 	netdev_features_t	mpls_features;
1864 	netdev_features_t	gso_partial_features;
1865 
1866 	int			ifindex;
1867 	int			group;
1868 
1869 	struct net_device_stats	stats;
1870 
1871 	atomic_long_t		rx_dropped;
1872 	atomic_long_t		tx_dropped;
1873 	atomic_long_t		rx_nohandler;
1874 
1875 	/* Stats to monitor link on/off, flapping */
1876 	atomic_t		carrier_up_count;
1877 	atomic_t		carrier_down_count;
1878 
1879 #ifdef CONFIG_WIRELESS_EXT
1880 	const struct iw_handler_def *wireless_handlers;
1881 	struct iw_public_data	*wireless_data;
1882 #endif
1883 	const struct net_device_ops *netdev_ops;
1884 	const struct ethtool_ops *ethtool_ops;
1885 #ifdef CONFIG_NET_L3_MASTER_DEV
1886 	const struct l3mdev_ops	*l3mdev_ops;
1887 #endif
1888 #if IS_ENABLED(CONFIG_IPV6)
1889 	const struct ndisc_ops *ndisc_ops;
1890 #endif
1891 
1892 #ifdef CONFIG_XFRM_OFFLOAD
1893 	const struct xfrmdev_ops *xfrmdev_ops;
1894 #endif
1895 
1896 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1897 	const struct tlsdev_ops *tlsdev_ops;
1898 #endif
1899 
1900 	const struct header_ops *header_ops;
1901 
1902 	unsigned int		flags;
1903 	unsigned int		priv_flags;
1904 
1905 	unsigned short		gflags;
1906 	unsigned short		padded;
1907 
1908 	unsigned char		operstate;
1909 	unsigned char		link_mode;
1910 
1911 	unsigned char		if_port;
1912 	unsigned char		dma;
1913 
1914 	/* Note : dev->mtu is often read without holding a lock.
1915 	 * Writers usually hold RTNL.
1916 	 * It is recommended to use READ_ONCE() to annotate the reads,
1917 	 * and to use WRITE_ONCE() to annotate the writes.
1918 	 */
1919 	unsigned int		mtu;
1920 	unsigned int		min_mtu;
1921 	unsigned int		max_mtu;
1922 	unsigned short		type;
1923 	unsigned short		hard_header_len;
1924 	unsigned char		min_header_len;
1925 
1926 	unsigned short		needed_headroom;
1927 	unsigned short		needed_tailroom;
1928 
1929 	/* Interface address info. */
1930 	unsigned char		perm_addr[MAX_ADDR_LEN];
1931 	unsigned char		addr_assign_type;
1932 	unsigned char		addr_len;
1933 	unsigned char		upper_level;
1934 	unsigned char		lower_level;
1935 	unsigned short		neigh_priv_len;
1936 	unsigned short          dev_id;
1937 	unsigned short          dev_port;
1938 	spinlock_t		addr_list_lock;
1939 	unsigned char		name_assign_type;
1940 	bool			uc_promisc;
1941 	struct netdev_hw_addr_list	uc;
1942 	struct netdev_hw_addr_list	mc;
1943 	struct netdev_hw_addr_list	dev_addrs;
1944 
1945 #ifdef CONFIG_SYSFS
1946 	struct kset		*queues_kset;
1947 #endif
1948 	unsigned int		promiscuity;
1949 	unsigned int		allmulti;
1950 
1951 
1952 	/* Protocol-specific pointers */
1953 
1954 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1955 	struct vlan_info __rcu	*vlan_info;
1956 #endif
1957 #if IS_ENABLED(CONFIG_NET_DSA)
1958 	struct dsa_port		*dsa_ptr;
1959 #endif
1960 #if IS_ENABLED(CONFIG_TIPC)
1961 	struct tipc_bearer __rcu *tipc_ptr;
1962 #endif
1963 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1964 	void 			*atalk_ptr;
1965 #endif
1966 	struct in_device __rcu	*ip_ptr;
1967 #if IS_ENABLED(CONFIG_DECNET)
1968 	struct dn_dev __rcu     *dn_ptr;
1969 #endif
1970 	struct inet6_dev __rcu	*ip6_ptr;
1971 #if IS_ENABLED(CONFIG_AX25)
1972 	void			*ax25_ptr;
1973 #endif
1974 	struct wireless_dev	*ieee80211_ptr;
1975 	struct wpan_dev		*ieee802154_ptr;
1976 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1977 	struct mpls_dev __rcu	*mpls_ptr;
1978 #endif
1979 
1980 /*
1981  * Cache lines mostly used on receive path (including eth_type_trans())
1982  */
1983 	/* Interface address info used in eth_type_trans() */
1984 	unsigned char		*dev_addr;
1985 
1986 	struct netdev_rx_queue	*_rx;
1987 	unsigned int		num_rx_queues;
1988 	unsigned int		real_num_rx_queues;
1989 
1990 	struct bpf_prog __rcu	*xdp_prog;
1991 	unsigned long		gro_flush_timeout;
1992 	rx_handler_func_t __rcu	*rx_handler;
1993 	void __rcu		*rx_handler_data;
1994 
1995 #ifdef CONFIG_NET_CLS_ACT
1996 	struct mini_Qdisc __rcu	*miniq_ingress;
1997 #endif
1998 	struct netdev_queue __rcu *ingress_queue;
1999 #ifdef CONFIG_NETFILTER_INGRESS
2000 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2001 #endif
2002 
2003 	unsigned char		broadcast[MAX_ADDR_LEN];
2004 #ifdef CONFIG_RFS_ACCEL
2005 	struct cpu_rmap		*rx_cpu_rmap;
2006 #endif
2007 	struct hlist_node	index_hlist;
2008 
2009 /*
2010  * Cache lines mostly used on transmit path
2011  */
2012 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2013 	unsigned int		num_tx_queues;
2014 	unsigned int		real_num_tx_queues;
2015 	struct Qdisc		*qdisc;
2016 	unsigned int		tx_queue_len;
2017 	spinlock_t		tx_global_lock;
2018 
2019 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2020 
2021 #ifdef CONFIG_XPS
2022 	struct xps_dev_maps __rcu *xps_cpus_map;
2023 	struct xps_dev_maps __rcu *xps_rxqs_map;
2024 #endif
2025 #ifdef CONFIG_NET_CLS_ACT
2026 	struct mini_Qdisc __rcu	*miniq_egress;
2027 #endif
2028 
2029 #ifdef CONFIG_NET_SCHED
2030 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2031 #endif
2032 	/* These may be needed for future network-power-down code. */
2033 	struct timer_list	watchdog_timer;
2034 	int			watchdog_timeo;
2035 
2036 	struct list_head	todo_list;
2037 	int __percpu		*pcpu_refcnt;
2038 
2039 	struct list_head	link_watch_list;
2040 
2041 	enum { NETREG_UNINITIALIZED=0,
2042 	       NETREG_REGISTERED,	/* completed register_netdevice */
2043 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2044 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2045 	       NETREG_RELEASED,		/* called free_netdev */
2046 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2047 	} reg_state:8;
2048 
2049 	bool dismantle;
2050 
2051 	enum {
2052 		RTNL_LINK_INITIALIZED,
2053 		RTNL_LINK_INITIALIZING,
2054 	} rtnl_link_state:16;
2055 
2056 	bool needs_free_netdev;
2057 	void (*priv_destructor)(struct net_device *dev);
2058 
2059 #ifdef CONFIG_NETPOLL
2060 	struct netpoll_info __rcu	*npinfo;
2061 #endif
2062 
2063 	possible_net_t			nd_net;
2064 
2065 	/* mid-layer private */
2066 	union {
2067 		void					*ml_priv;
2068 		struct pcpu_lstats __percpu		*lstats;
2069 		struct pcpu_sw_netstats __percpu	*tstats;
2070 		struct pcpu_dstats __percpu		*dstats;
2071 	};
2072 
2073 #if IS_ENABLED(CONFIG_GARP)
2074 	struct garp_port __rcu	*garp_port;
2075 #endif
2076 #if IS_ENABLED(CONFIG_MRP)
2077 	struct mrp_port __rcu	*mrp_port;
2078 #endif
2079 
2080 	struct device		dev;
2081 	const struct attribute_group *sysfs_groups[4];
2082 	const struct attribute_group *sysfs_rx_queue_group;
2083 
2084 	const struct rtnl_link_ops *rtnl_link_ops;
2085 
2086 	/* for setting kernel sock attribute on TCP connection setup */
2087 #define GSO_MAX_SIZE		65536
2088 	unsigned int		gso_max_size;
2089 #define GSO_MAX_SEGS		65535
2090 	u16			gso_max_segs;
2091 
2092 #ifdef CONFIG_DCB
2093 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2094 #endif
2095 	s16			num_tc;
2096 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2097 	u8			prio_tc_map[TC_BITMASK + 1];
2098 
2099 #if IS_ENABLED(CONFIG_FCOE)
2100 	unsigned int		fcoe_ddp_xid;
2101 #endif
2102 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2103 	struct netprio_map __rcu *priomap;
2104 #endif
2105 	struct phy_device	*phydev;
2106 	struct sfp_bus		*sfp_bus;
2107 	struct lock_class_key	qdisc_tx_busylock_key;
2108 	struct lock_class_key	qdisc_running_key;
2109 	struct lock_class_key	qdisc_xmit_lock_key;
2110 	struct lock_class_key	addr_list_lock_key;
2111 	bool			proto_down;
2112 	unsigned		wol_enabled:1;
2113 
2114 	struct list_head	net_notifier_list;
2115 };
2116 #define to_net_dev(d) container_of(d, struct net_device, dev)
2117 
2118 static inline bool netif_elide_gro(const struct net_device *dev)
2119 {
2120 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2121 		return true;
2122 	return false;
2123 }
2124 
2125 #define	NETDEV_ALIGN		32
2126 
2127 static inline
2128 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2129 {
2130 	return dev->prio_tc_map[prio & TC_BITMASK];
2131 }
2132 
2133 static inline
2134 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2135 {
2136 	if (tc >= dev->num_tc)
2137 		return -EINVAL;
2138 
2139 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2140 	return 0;
2141 }
2142 
2143 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2144 void netdev_reset_tc(struct net_device *dev);
2145 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2146 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2147 
2148 static inline
2149 int netdev_get_num_tc(struct net_device *dev)
2150 {
2151 	return dev->num_tc;
2152 }
2153 
2154 void netdev_unbind_sb_channel(struct net_device *dev,
2155 			      struct net_device *sb_dev);
2156 int netdev_bind_sb_channel_queue(struct net_device *dev,
2157 				 struct net_device *sb_dev,
2158 				 u8 tc, u16 count, u16 offset);
2159 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2160 static inline int netdev_get_sb_channel(struct net_device *dev)
2161 {
2162 	return max_t(int, -dev->num_tc, 0);
2163 }
2164 
2165 static inline
2166 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2167 					 unsigned int index)
2168 {
2169 	return &dev->_tx[index];
2170 }
2171 
2172 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2173 						    const struct sk_buff *skb)
2174 {
2175 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2176 }
2177 
2178 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2179 					    void (*f)(struct net_device *,
2180 						      struct netdev_queue *,
2181 						      void *),
2182 					    void *arg)
2183 {
2184 	unsigned int i;
2185 
2186 	for (i = 0; i < dev->num_tx_queues; i++)
2187 		f(dev, &dev->_tx[i], arg);
2188 }
2189 
2190 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2191 		     struct net_device *sb_dev);
2192 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2193 					 struct sk_buff *skb,
2194 					 struct net_device *sb_dev);
2195 
2196 /* returns the headroom that the master device needs to take in account
2197  * when forwarding to this dev
2198  */
2199 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2200 {
2201 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2202 }
2203 
2204 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2205 {
2206 	if (dev->netdev_ops->ndo_set_rx_headroom)
2207 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2208 }
2209 
2210 /* set the device rx headroom to the dev's default */
2211 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2212 {
2213 	netdev_set_rx_headroom(dev, -1);
2214 }
2215 
2216 /*
2217  * Net namespace inlines
2218  */
2219 static inline
2220 struct net *dev_net(const struct net_device *dev)
2221 {
2222 	return read_pnet(&dev->nd_net);
2223 }
2224 
2225 static inline
2226 void dev_net_set(struct net_device *dev, struct net *net)
2227 {
2228 	write_pnet(&dev->nd_net, net);
2229 }
2230 
2231 /**
2232  *	netdev_priv - access network device private data
2233  *	@dev: network device
2234  *
2235  * Get network device private data
2236  */
2237 static inline void *netdev_priv(const struct net_device *dev)
2238 {
2239 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2240 }
2241 
2242 /* Set the sysfs physical device reference for the network logical device
2243  * if set prior to registration will cause a symlink during initialization.
2244  */
2245 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2246 
2247 /* Set the sysfs device type for the network logical device to allow
2248  * fine-grained identification of different network device types. For
2249  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2250  */
2251 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2252 
2253 /* Default NAPI poll() weight
2254  * Device drivers are strongly advised to not use bigger value
2255  */
2256 #define NAPI_POLL_WEIGHT 64
2257 
2258 /**
2259  *	netif_napi_add - initialize a NAPI context
2260  *	@dev:  network device
2261  *	@napi: NAPI context
2262  *	@poll: polling function
2263  *	@weight: default weight
2264  *
2265  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2266  * *any* of the other NAPI-related functions.
2267  */
2268 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2269 		    int (*poll)(struct napi_struct *, int), int weight);
2270 
2271 /**
2272  *	netif_tx_napi_add - initialize a NAPI context
2273  *	@dev:  network device
2274  *	@napi: NAPI context
2275  *	@poll: polling function
2276  *	@weight: default weight
2277  *
2278  * This variant of netif_napi_add() should be used from drivers using NAPI
2279  * to exclusively poll a TX queue.
2280  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2281  */
2282 static inline void netif_tx_napi_add(struct net_device *dev,
2283 				     struct napi_struct *napi,
2284 				     int (*poll)(struct napi_struct *, int),
2285 				     int weight)
2286 {
2287 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2288 	netif_napi_add(dev, napi, poll, weight);
2289 }
2290 
2291 /**
2292  *  netif_napi_del - remove a NAPI context
2293  *  @napi: NAPI context
2294  *
2295  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2296  */
2297 void netif_napi_del(struct napi_struct *napi);
2298 
2299 struct napi_gro_cb {
2300 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2301 	void	*frag0;
2302 
2303 	/* Length of frag0. */
2304 	unsigned int frag0_len;
2305 
2306 	/* This indicates where we are processing relative to skb->data. */
2307 	int	data_offset;
2308 
2309 	/* This is non-zero if the packet cannot be merged with the new skb. */
2310 	u16	flush;
2311 
2312 	/* Save the IP ID here and check when we get to the transport layer */
2313 	u16	flush_id;
2314 
2315 	/* Number of segments aggregated. */
2316 	u16	count;
2317 
2318 	/* Start offset for remote checksum offload */
2319 	u16	gro_remcsum_start;
2320 
2321 	/* jiffies when first packet was created/queued */
2322 	unsigned long age;
2323 
2324 	/* Used in ipv6_gro_receive() and foo-over-udp */
2325 	u16	proto;
2326 
2327 	/* This is non-zero if the packet may be of the same flow. */
2328 	u8	same_flow:1;
2329 
2330 	/* Used in tunnel GRO receive */
2331 	u8	encap_mark:1;
2332 
2333 	/* GRO checksum is valid */
2334 	u8	csum_valid:1;
2335 
2336 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2337 	u8	csum_cnt:3;
2338 
2339 	/* Free the skb? */
2340 	u8	free:2;
2341 #define NAPI_GRO_FREE		  1
2342 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2343 
2344 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2345 	u8	is_ipv6:1;
2346 
2347 	/* Used in GRE, set in fou/gue_gro_receive */
2348 	u8	is_fou:1;
2349 
2350 	/* Used to determine if flush_id can be ignored */
2351 	u8	is_atomic:1;
2352 
2353 	/* Number of gro_receive callbacks this packet already went through */
2354 	u8 recursion_counter:4;
2355 
2356 	/* GRO is done by frag_list pointer chaining. */
2357 	u8	is_flist:1;
2358 
2359 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2360 	__wsum	csum;
2361 
2362 	/* used in skb_gro_receive() slow path */
2363 	struct sk_buff *last;
2364 };
2365 
2366 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2367 
2368 #define GRO_RECURSION_LIMIT 15
2369 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2370 {
2371 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2372 }
2373 
2374 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2375 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2376 					       struct list_head *head,
2377 					       struct sk_buff *skb)
2378 {
2379 	if (unlikely(gro_recursion_inc_test(skb))) {
2380 		NAPI_GRO_CB(skb)->flush |= 1;
2381 		return NULL;
2382 	}
2383 
2384 	return cb(head, skb);
2385 }
2386 
2387 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2388 					    struct sk_buff *);
2389 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2390 						  struct sock *sk,
2391 						  struct list_head *head,
2392 						  struct sk_buff *skb)
2393 {
2394 	if (unlikely(gro_recursion_inc_test(skb))) {
2395 		NAPI_GRO_CB(skb)->flush |= 1;
2396 		return NULL;
2397 	}
2398 
2399 	return cb(sk, head, skb);
2400 }
2401 
2402 struct packet_type {
2403 	__be16			type;	/* This is really htons(ether_type). */
2404 	bool			ignore_outgoing;
2405 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2406 	int			(*func) (struct sk_buff *,
2407 					 struct net_device *,
2408 					 struct packet_type *,
2409 					 struct net_device *);
2410 	void			(*list_func) (struct list_head *,
2411 					      struct packet_type *,
2412 					      struct net_device *);
2413 	bool			(*id_match)(struct packet_type *ptype,
2414 					    struct sock *sk);
2415 	void			*af_packet_priv;
2416 	struct list_head	list;
2417 };
2418 
2419 struct offload_callbacks {
2420 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2421 						netdev_features_t features);
2422 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2423 						struct sk_buff *skb);
2424 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2425 };
2426 
2427 struct packet_offload {
2428 	__be16			 type;	/* This is really htons(ether_type). */
2429 	u16			 priority;
2430 	struct offload_callbacks callbacks;
2431 	struct list_head	 list;
2432 };
2433 
2434 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2435 struct pcpu_sw_netstats {
2436 	u64     rx_packets;
2437 	u64     rx_bytes;
2438 	u64     tx_packets;
2439 	u64     tx_bytes;
2440 	struct u64_stats_sync   syncp;
2441 } __aligned(4 * sizeof(u64));
2442 
2443 struct pcpu_lstats {
2444 	u64_stats_t packets;
2445 	u64_stats_t bytes;
2446 	struct u64_stats_sync syncp;
2447 } __aligned(2 * sizeof(u64));
2448 
2449 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2450 
2451 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2452 {
2453 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2454 
2455 	u64_stats_update_begin(&lstats->syncp);
2456 	u64_stats_add(&lstats->bytes, len);
2457 	u64_stats_inc(&lstats->packets);
2458 	u64_stats_update_end(&lstats->syncp);
2459 }
2460 
2461 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2462 ({									\
2463 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2464 	if (pcpu_stats)	{						\
2465 		int __cpu;						\
2466 		for_each_possible_cpu(__cpu) {				\
2467 			typeof(type) *stat;				\
2468 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2469 			u64_stats_init(&stat->syncp);			\
2470 		}							\
2471 	}								\
2472 	pcpu_stats;							\
2473 })
2474 
2475 #define netdev_alloc_pcpu_stats(type)					\
2476 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2477 
2478 enum netdev_lag_tx_type {
2479 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2480 	NETDEV_LAG_TX_TYPE_RANDOM,
2481 	NETDEV_LAG_TX_TYPE_BROADCAST,
2482 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2483 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2484 	NETDEV_LAG_TX_TYPE_HASH,
2485 };
2486 
2487 enum netdev_lag_hash {
2488 	NETDEV_LAG_HASH_NONE,
2489 	NETDEV_LAG_HASH_L2,
2490 	NETDEV_LAG_HASH_L34,
2491 	NETDEV_LAG_HASH_L23,
2492 	NETDEV_LAG_HASH_E23,
2493 	NETDEV_LAG_HASH_E34,
2494 	NETDEV_LAG_HASH_UNKNOWN,
2495 };
2496 
2497 struct netdev_lag_upper_info {
2498 	enum netdev_lag_tx_type tx_type;
2499 	enum netdev_lag_hash hash_type;
2500 };
2501 
2502 struct netdev_lag_lower_state_info {
2503 	u8 link_up : 1,
2504 	   tx_enabled : 1;
2505 };
2506 
2507 #include <linux/notifier.h>
2508 
2509 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2510  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2511  * adding new types.
2512  */
2513 enum netdev_cmd {
2514 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2515 	NETDEV_DOWN,
2516 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2517 				   detected a hardware crash and restarted
2518 				   - we can use this eg to kick tcp sessions
2519 				   once done */
2520 	NETDEV_CHANGE,		/* Notify device state change */
2521 	NETDEV_REGISTER,
2522 	NETDEV_UNREGISTER,
2523 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2524 	NETDEV_CHANGEADDR,	/* notify after the address change */
2525 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2526 	NETDEV_GOING_DOWN,
2527 	NETDEV_CHANGENAME,
2528 	NETDEV_FEAT_CHANGE,
2529 	NETDEV_BONDING_FAILOVER,
2530 	NETDEV_PRE_UP,
2531 	NETDEV_PRE_TYPE_CHANGE,
2532 	NETDEV_POST_TYPE_CHANGE,
2533 	NETDEV_POST_INIT,
2534 	NETDEV_RELEASE,
2535 	NETDEV_NOTIFY_PEERS,
2536 	NETDEV_JOIN,
2537 	NETDEV_CHANGEUPPER,
2538 	NETDEV_RESEND_IGMP,
2539 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2540 	NETDEV_CHANGEINFODATA,
2541 	NETDEV_BONDING_INFO,
2542 	NETDEV_PRECHANGEUPPER,
2543 	NETDEV_CHANGELOWERSTATE,
2544 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2545 	NETDEV_UDP_TUNNEL_DROP_INFO,
2546 	NETDEV_CHANGE_TX_QUEUE_LEN,
2547 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2548 	NETDEV_CVLAN_FILTER_DROP_INFO,
2549 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2550 	NETDEV_SVLAN_FILTER_DROP_INFO,
2551 };
2552 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2553 
2554 int register_netdevice_notifier(struct notifier_block *nb);
2555 int unregister_netdevice_notifier(struct notifier_block *nb);
2556 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2557 int unregister_netdevice_notifier_net(struct net *net,
2558 				      struct notifier_block *nb);
2559 int register_netdevice_notifier_dev_net(struct net_device *dev,
2560 					struct notifier_block *nb,
2561 					struct netdev_net_notifier *nn);
2562 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2563 					  struct notifier_block *nb,
2564 					  struct netdev_net_notifier *nn);
2565 
2566 struct netdev_notifier_info {
2567 	struct net_device	*dev;
2568 	struct netlink_ext_ack	*extack;
2569 };
2570 
2571 struct netdev_notifier_info_ext {
2572 	struct netdev_notifier_info info; /* must be first */
2573 	union {
2574 		u32 mtu;
2575 	} ext;
2576 };
2577 
2578 struct netdev_notifier_change_info {
2579 	struct netdev_notifier_info info; /* must be first */
2580 	unsigned int flags_changed;
2581 };
2582 
2583 struct netdev_notifier_changeupper_info {
2584 	struct netdev_notifier_info info; /* must be first */
2585 	struct net_device *upper_dev; /* new upper dev */
2586 	bool master; /* is upper dev master */
2587 	bool linking; /* is the notification for link or unlink */
2588 	void *upper_info; /* upper dev info */
2589 };
2590 
2591 struct netdev_notifier_changelowerstate_info {
2592 	struct netdev_notifier_info info; /* must be first */
2593 	void *lower_state_info; /* is lower dev state */
2594 };
2595 
2596 struct netdev_notifier_pre_changeaddr_info {
2597 	struct netdev_notifier_info info; /* must be first */
2598 	const unsigned char *dev_addr;
2599 };
2600 
2601 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2602 					     struct net_device *dev)
2603 {
2604 	info->dev = dev;
2605 	info->extack = NULL;
2606 }
2607 
2608 static inline struct net_device *
2609 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2610 {
2611 	return info->dev;
2612 }
2613 
2614 static inline struct netlink_ext_ack *
2615 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2616 {
2617 	return info->extack;
2618 }
2619 
2620 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2621 
2622 
2623 extern rwlock_t				dev_base_lock;		/* Device list lock */
2624 
2625 #define for_each_netdev(net, d)		\
2626 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2627 #define for_each_netdev_reverse(net, d)	\
2628 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2629 #define for_each_netdev_rcu(net, d)		\
2630 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2631 #define for_each_netdev_safe(net, d, n)	\
2632 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2633 #define for_each_netdev_continue(net, d)		\
2634 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2635 #define for_each_netdev_continue_reverse(net, d)		\
2636 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2637 						     dev_list)
2638 #define for_each_netdev_continue_rcu(net, d)		\
2639 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2640 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2641 		for_each_netdev_rcu(&init_net, slave)	\
2642 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2643 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2644 
2645 static inline struct net_device *next_net_device(struct net_device *dev)
2646 {
2647 	struct list_head *lh;
2648 	struct net *net;
2649 
2650 	net = dev_net(dev);
2651 	lh = dev->dev_list.next;
2652 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2653 }
2654 
2655 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2656 {
2657 	struct list_head *lh;
2658 	struct net *net;
2659 
2660 	net = dev_net(dev);
2661 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2662 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2663 }
2664 
2665 static inline struct net_device *first_net_device(struct net *net)
2666 {
2667 	return list_empty(&net->dev_base_head) ? NULL :
2668 		net_device_entry(net->dev_base_head.next);
2669 }
2670 
2671 static inline struct net_device *first_net_device_rcu(struct net *net)
2672 {
2673 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2674 
2675 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2676 }
2677 
2678 int netdev_boot_setup_check(struct net_device *dev);
2679 unsigned long netdev_boot_base(const char *prefix, int unit);
2680 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2681 				       const char *hwaddr);
2682 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2683 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2684 void dev_add_pack(struct packet_type *pt);
2685 void dev_remove_pack(struct packet_type *pt);
2686 void __dev_remove_pack(struct packet_type *pt);
2687 void dev_add_offload(struct packet_offload *po);
2688 void dev_remove_offload(struct packet_offload *po);
2689 
2690 int dev_get_iflink(const struct net_device *dev);
2691 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2692 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2693 				      unsigned short mask);
2694 struct net_device *dev_get_by_name(struct net *net, const char *name);
2695 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2696 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2697 int dev_alloc_name(struct net_device *dev, const char *name);
2698 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2699 void dev_close(struct net_device *dev);
2700 void dev_close_many(struct list_head *head, bool unlink);
2701 void dev_disable_lro(struct net_device *dev);
2702 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2703 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2704 		     struct net_device *sb_dev);
2705 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2706 		       struct net_device *sb_dev);
2707 int dev_queue_xmit(struct sk_buff *skb);
2708 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2709 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2710 int register_netdevice(struct net_device *dev);
2711 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2712 void unregister_netdevice_many(struct list_head *head);
2713 static inline void unregister_netdevice(struct net_device *dev)
2714 {
2715 	unregister_netdevice_queue(dev, NULL);
2716 }
2717 
2718 int netdev_refcnt_read(const struct net_device *dev);
2719 void free_netdev(struct net_device *dev);
2720 void netdev_freemem(struct net_device *dev);
2721 void synchronize_net(void);
2722 int init_dummy_netdev(struct net_device *dev);
2723 
2724 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2725 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2726 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2727 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2728 int netdev_get_name(struct net *net, char *name, int ifindex);
2729 int dev_restart(struct net_device *dev);
2730 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2731 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2732 
2733 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2734 {
2735 	return NAPI_GRO_CB(skb)->data_offset;
2736 }
2737 
2738 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2739 {
2740 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2741 }
2742 
2743 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2744 {
2745 	NAPI_GRO_CB(skb)->data_offset += len;
2746 }
2747 
2748 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2749 					unsigned int offset)
2750 {
2751 	return NAPI_GRO_CB(skb)->frag0 + offset;
2752 }
2753 
2754 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2755 {
2756 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2757 }
2758 
2759 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2760 {
2761 	NAPI_GRO_CB(skb)->frag0 = NULL;
2762 	NAPI_GRO_CB(skb)->frag0_len = 0;
2763 }
2764 
2765 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2766 					unsigned int offset)
2767 {
2768 	if (!pskb_may_pull(skb, hlen))
2769 		return NULL;
2770 
2771 	skb_gro_frag0_invalidate(skb);
2772 	return skb->data + offset;
2773 }
2774 
2775 static inline void *skb_gro_network_header(struct sk_buff *skb)
2776 {
2777 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2778 	       skb_network_offset(skb);
2779 }
2780 
2781 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2782 					const void *start, unsigned int len)
2783 {
2784 	if (NAPI_GRO_CB(skb)->csum_valid)
2785 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2786 						  csum_partial(start, len, 0));
2787 }
2788 
2789 /* GRO checksum functions. These are logical equivalents of the normal
2790  * checksum functions (in skbuff.h) except that they operate on the GRO
2791  * offsets and fields in sk_buff.
2792  */
2793 
2794 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2795 
2796 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2797 {
2798 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2799 }
2800 
2801 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2802 						      bool zero_okay,
2803 						      __sum16 check)
2804 {
2805 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2806 		skb_checksum_start_offset(skb) <
2807 		 skb_gro_offset(skb)) &&
2808 		!skb_at_gro_remcsum_start(skb) &&
2809 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2810 		(!zero_okay || check));
2811 }
2812 
2813 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2814 							   __wsum psum)
2815 {
2816 	if (NAPI_GRO_CB(skb)->csum_valid &&
2817 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2818 		return 0;
2819 
2820 	NAPI_GRO_CB(skb)->csum = psum;
2821 
2822 	return __skb_gro_checksum_complete(skb);
2823 }
2824 
2825 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2826 {
2827 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2828 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2829 		NAPI_GRO_CB(skb)->csum_cnt--;
2830 	} else {
2831 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2832 		 * verified a new top level checksum or an encapsulated one
2833 		 * during GRO. This saves work if we fallback to normal path.
2834 		 */
2835 		__skb_incr_checksum_unnecessary(skb);
2836 	}
2837 }
2838 
2839 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2840 				    compute_pseudo)			\
2841 ({									\
2842 	__sum16 __ret = 0;						\
2843 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2844 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2845 				compute_pseudo(skb, proto));		\
2846 	if (!__ret)							\
2847 		skb_gro_incr_csum_unnecessary(skb);			\
2848 	__ret;								\
2849 })
2850 
2851 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2852 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2853 
2854 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2855 					     compute_pseudo)		\
2856 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2857 
2858 #define skb_gro_checksum_simple_validate(skb)				\
2859 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2860 
2861 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2862 {
2863 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2864 		!NAPI_GRO_CB(skb)->csum_valid);
2865 }
2866 
2867 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2868 					      __wsum pseudo)
2869 {
2870 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2871 	NAPI_GRO_CB(skb)->csum_valid = 1;
2872 }
2873 
2874 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
2875 do {									\
2876 	if (__skb_gro_checksum_convert_check(skb))			\
2877 		__skb_gro_checksum_convert(skb, 			\
2878 					   compute_pseudo(skb, proto));	\
2879 } while (0)
2880 
2881 struct gro_remcsum {
2882 	int offset;
2883 	__wsum delta;
2884 };
2885 
2886 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2887 {
2888 	grc->offset = 0;
2889 	grc->delta = 0;
2890 }
2891 
2892 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2893 					    unsigned int off, size_t hdrlen,
2894 					    int start, int offset,
2895 					    struct gro_remcsum *grc,
2896 					    bool nopartial)
2897 {
2898 	__wsum delta;
2899 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2900 
2901 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2902 
2903 	if (!nopartial) {
2904 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2905 		return ptr;
2906 	}
2907 
2908 	ptr = skb_gro_header_fast(skb, off);
2909 	if (skb_gro_header_hard(skb, off + plen)) {
2910 		ptr = skb_gro_header_slow(skb, off + plen, off);
2911 		if (!ptr)
2912 			return NULL;
2913 	}
2914 
2915 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2916 			       start, offset);
2917 
2918 	/* Adjust skb->csum since we changed the packet */
2919 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2920 
2921 	grc->offset = off + hdrlen + offset;
2922 	grc->delta = delta;
2923 
2924 	return ptr;
2925 }
2926 
2927 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2928 					   struct gro_remcsum *grc)
2929 {
2930 	void *ptr;
2931 	size_t plen = grc->offset + sizeof(u16);
2932 
2933 	if (!grc->delta)
2934 		return;
2935 
2936 	ptr = skb_gro_header_fast(skb, grc->offset);
2937 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2938 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2939 		if (!ptr)
2940 			return;
2941 	}
2942 
2943 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2944 }
2945 
2946 #ifdef CONFIG_XFRM_OFFLOAD
2947 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2948 {
2949 	if (PTR_ERR(pp) != -EINPROGRESS)
2950 		NAPI_GRO_CB(skb)->flush |= flush;
2951 }
2952 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2953 					       struct sk_buff *pp,
2954 					       int flush,
2955 					       struct gro_remcsum *grc)
2956 {
2957 	if (PTR_ERR(pp) != -EINPROGRESS) {
2958 		NAPI_GRO_CB(skb)->flush |= flush;
2959 		skb_gro_remcsum_cleanup(skb, grc);
2960 		skb->remcsum_offload = 0;
2961 	}
2962 }
2963 #else
2964 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2965 {
2966 	NAPI_GRO_CB(skb)->flush |= flush;
2967 }
2968 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2969 					       struct sk_buff *pp,
2970 					       int flush,
2971 					       struct gro_remcsum *grc)
2972 {
2973 	NAPI_GRO_CB(skb)->flush |= flush;
2974 	skb_gro_remcsum_cleanup(skb, grc);
2975 	skb->remcsum_offload = 0;
2976 }
2977 #endif
2978 
2979 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2980 				  unsigned short type,
2981 				  const void *daddr, const void *saddr,
2982 				  unsigned int len)
2983 {
2984 	if (!dev->header_ops || !dev->header_ops->create)
2985 		return 0;
2986 
2987 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2988 }
2989 
2990 static inline int dev_parse_header(const struct sk_buff *skb,
2991 				   unsigned char *haddr)
2992 {
2993 	const struct net_device *dev = skb->dev;
2994 
2995 	if (!dev->header_ops || !dev->header_ops->parse)
2996 		return 0;
2997 	return dev->header_ops->parse(skb, haddr);
2998 }
2999 
3000 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3001 {
3002 	const struct net_device *dev = skb->dev;
3003 
3004 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3005 		return 0;
3006 	return dev->header_ops->parse_protocol(skb);
3007 }
3008 
3009 /* ll_header must have at least hard_header_len allocated */
3010 static inline bool dev_validate_header(const struct net_device *dev,
3011 				       char *ll_header, int len)
3012 {
3013 	if (likely(len >= dev->hard_header_len))
3014 		return true;
3015 	if (len < dev->min_header_len)
3016 		return false;
3017 
3018 	if (capable(CAP_SYS_RAWIO)) {
3019 		memset(ll_header + len, 0, dev->hard_header_len - len);
3020 		return true;
3021 	}
3022 
3023 	if (dev->header_ops && dev->header_ops->validate)
3024 		return dev->header_ops->validate(ll_header, len);
3025 
3026 	return false;
3027 }
3028 
3029 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3030 			   int len, int size);
3031 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3032 static inline int unregister_gifconf(unsigned int family)
3033 {
3034 	return register_gifconf(family, NULL);
3035 }
3036 
3037 #ifdef CONFIG_NET_FLOW_LIMIT
3038 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3039 struct sd_flow_limit {
3040 	u64			count;
3041 	unsigned int		num_buckets;
3042 	unsigned int		history_head;
3043 	u16			history[FLOW_LIMIT_HISTORY];
3044 	u8			buckets[];
3045 };
3046 
3047 extern int netdev_flow_limit_table_len;
3048 #endif /* CONFIG_NET_FLOW_LIMIT */
3049 
3050 /*
3051  * Incoming packets are placed on per-CPU queues
3052  */
3053 struct softnet_data {
3054 	struct list_head	poll_list;
3055 	struct sk_buff_head	process_queue;
3056 
3057 	/* stats */
3058 	unsigned int		processed;
3059 	unsigned int		time_squeeze;
3060 	unsigned int		received_rps;
3061 #ifdef CONFIG_RPS
3062 	struct softnet_data	*rps_ipi_list;
3063 #endif
3064 #ifdef CONFIG_NET_FLOW_LIMIT
3065 	struct sd_flow_limit __rcu *flow_limit;
3066 #endif
3067 	struct Qdisc		*output_queue;
3068 	struct Qdisc		**output_queue_tailp;
3069 	struct sk_buff		*completion_queue;
3070 #ifdef CONFIG_XFRM_OFFLOAD
3071 	struct sk_buff_head	xfrm_backlog;
3072 #endif
3073 	/* written and read only by owning cpu: */
3074 	struct {
3075 		u16 recursion;
3076 		u8  more;
3077 	} xmit;
3078 #ifdef CONFIG_RPS
3079 	/* input_queue_head should be written by cpu owning this struct,
3080 	 * and only read by other cpus. Worth using a cache line.
3081 	 */
3082 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3083 
3084 	/* Elements below can be accessed between CPUs for RPS/RFS */
3085 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3086 	struct softnet_data	*rps_ipi_next;
3087 	unsigned int		cpu;
3088 	unsigned int		input_queue_tail;
3089 #endif
3090 	unsigned int		dropped;
3091 	struct sk_buff_head	input_pkt_queue;
3092 	struct napi_struct	backlog;
3093 
3094 };
3095 
3096 static inline void input_queue_head_incr(struct softnet_data *sd)
3097 {
3098 #ifdef CONFIG_RPS
3099 	sd->input_queue_head++;
3100 #endif
3101 }
3102 
3103 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3104 					      unsigned int *qtail)
3105 {
3106 #ifdef CONFIG_RPS
3107 	*qtail = ++sd->input_queue_tail;
3108 #endif
3109 }
3110 
3111 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3112 
3113 static inline int dev_recursion_level(void)
3114 {
3115 	return this_cpu_read(softnet_data.xmit.recursion);
3116 }
3117 
3118 #define XMIT_RECURSION_LIMIT	10
3119 static inline bool dev_xmit_recursion(void)
3120 {
3121 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3122 			XMIT_RECURSION_LIMIT);
3123 }
3124 
3125 static inline void dev_xmit_recursion_inc(void)
3126 {
3127 	__this_cpu_inc(softnet_data.xmit.recursion);
3128 }
3129 
3130 static inline void dev_xmit_recursion_dec(void)
3131 {
3132 	__this_cpu_dec(softnet_data.xmit.recursion);
3133 }
3134 
3135 void __netif_schedule(struct Qdisc *q);
3136 void netif_schedule_queue(struct netdev_queue *txq);
3137 
3138 static inline void netif_tx_schedule_all(struct net_device *dev)
3139 {
3140 	unsigned int i;
3141 
3142 	for (i = 0; i < dev->num_tx_queues; i++)
3143 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3144 }
3145 
3146 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3147 {
3148 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3149 }
3150 
3151 /**
3152  *	netif_start_queue - allow transmit
3153  *	@dev: network device
3154  *
3155  *	Allow upper layers to call the device hard_start_xmit routine.
3156  */
3157 static inline void netif_start_queue(struct net_device *dev)
3158 {
3159 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3160 }
3161 
3162 static inline void netif_tx_start_all_queues(struct net_device *dev)
3163 {
3164 	unsigned int i;
3165 
3166 	for (i = 0; i < dev->num_tx_queues; i++) {
3167 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3168 		netif_tx_start_queue(txq);
3169 	}
3170 }
3171 
3172 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3173 
3174 /**
3175  *	netif_wake_queue - restart transmit
3176  *	@dev: network device
3177  *
3178  *	Allow upper layers to call the device hard_start_xmit routine.
3179  *	Used for flow control when transmit resources are available.
3180  */
3181 static inline void netif_wake_queue(struct net_device *dev)
3182 {
3183 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3184 }
3185 
3186 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3187 {
3188 	unsigned int i;
3189 
3190 	for (i = 0; i < dev->num_tx_queues; i++) {
3191 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3192 		netif_tx_wake_queue(txq);
3193 	}
3194 }
3195 
3196 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3197 {
3198 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3199 }
3200 
3201 /**
3202  *	netif_stop_queue - stop transmitted packets
3203  *	@dev: network device
3204  *
3205  *	Stop upper layers calling the device hard_start_xmit routine.
3206  *	Used for flow control when transmit resources are unavailable.
3207  */
3208 static inline void netif_stop_queue(struct net_device *dev)
3209 {
3210 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3211 }
3212 
3213 void netif_tx_stop_all_queues(struct net_device *dev);
3214 void netdev_update_lockdep_key(struct net_device *dev);
3215 
3216 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3217 {
3218 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3219 }
3220 
3221 /**
3222  *	netif_queue_stopped - test if transmit queue is flowblocked
3223  *	@dev: network device
3224  *
3225  *	Test if transmit queue on device is currently unable to send.
3226  */
3227 static inline bool netif_queue_stopped(const struct net_device *dev)
3228 {
3229 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3230 }
3231 
3232 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3233 {
3234 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3235 }
3236 
3237 static inline bool
3238 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3239 {
3240 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3241 }
3242 
3243 static inline bool
3244 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3245 {
3246 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3247 }
3248 
3249 /**
3250  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3251  *	@dev_queue: pointer to transmit queue
3252  *
3253  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3254  * to give appropriate hint to the CPU.
3255  */
3256 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3257 {
3258 #ifdef CONFIG_BQL
3259 	prefetchw(&dev_queue->dql.num_queued);
3260 #endif
3261 }
3262 
3263 /**
3264  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3265  *	@dev_queue: pointer to transmit queue
3266  *
3267  * BQL enabled drivers might use this helper in their TX completion path,
3268  * to give appropriate hint to the CPU.
3269  */
3270 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3271 {
3272 #ifdef CONFIG_BQL
3273 	prefetchw(&dev_queue->dql.limit);
3274 #endif
3275 }
3276 
3277 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3278 					unsigned int bytes)
3279 {
3280 #ifdef CONFIG_BQL
3281 	dql_queued(&dev_queue->dql, bytes);
3282 
3283 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3284 		return;
3285 
3286 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3287 
3288 	/*
3289 	 * The XOFF flag must be set before checking the dql_avail below,
3290 	 * because in netdev_tx_completed_queue we update the dql_completed
3291 	 * before checking the XOFF flag.
3292 	 */
3293 	smp_mb();
3294 
3295 	/* check again in case another CPU has just made room avail */
3296 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3297 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3298 #endif
3299 }
3300 
3301 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3302  * that they should not test BQL status themselves.
3303  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3304  * skb of a batch.
3305  * Returns true if the doorbell must be used to kick the NIC.
3306  */
3307 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3308 					  unsigned int bytes,
3309 					  bool xmit_more)
3310 {
3311 	if (xmit_more) {
3312 #ifdef CONFIG_BQL
3313 		dql_queued(&dev_queue->dql, bytes);
3314 #endif
3315 		return netif_tx_queue_stopped(dev_queue);
3316 	}
3317 	netdev_tx_sent_queue(dev_queue, bytes);
3318 	return true;
3319 }
3320 
3321 /**
3322  * 	netdev_sent_queue - report the number of bytes queued to hardware
3323  * 	@dev: network device
3324  * 	@bytes: number of bytes queued to the hardware device queue
3325  *
3326  * 	Report the number of bytes queued for sending/completion to the network
3327  * 	device hardware queue. @bytes should be a good approximation and should
3328  * 	exactly match netdev_completed_queue() @bytes
3329  */
3330 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3331 {
3332 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3333 }
3334 
3335 static inline bool __netdev_sent_queue(struct net_device *dev,
3336 				       unsigned int bytes,
3337 				       bool xmit_more)
3338 {
3339 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3340 				      xmit_more);
3341 }
3342 
3343 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3344 					     unsigned int pkts, unsigned int bytes)
3345 {
3346 #ifdef CONFIG_BQL
3347 	if (unlikely(!bytes))
3348 		return;
3349 
3350 	dql_completed(&dev_queue->dql, bytes);
3351 
3352 	/*
3353 	 * Without the memory barrier there is a small possiblity that
3354 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3355 	 * be stopped forever
3356 	 */
3357 	smp_mb();
3358 
3359 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3360 		return;
3361 
3362 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3363 		netif_schedule_queue(dev_queue);
3364 #endif
3365 }
3366 
3367 /**
3368  * 	netdev_completed_queue - report bytes and packets completed by device
3369  * 	@dev: network device
3370  * 	@pkts: actual number of packets sent over the medium
3371  * 	@bytes: actual number of bytes sent over the medium
3372  *
3373  * 	Report the number of bytes and packets transmitted by the network device
3374  * 	hardware queue over the physical medium, @bytes must exactly match the
3375  * 	@bytes amount passed to netdev_sent_queue()
3376  */
3377 static inline void netdev_completed_queue(struct net_device *dev,
3378 					  unsigned int pkts, unsigned int bytes)
3379 {
3380 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3381 }
3382 
3383 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3384 {
3385 #ifdef CONFIG_BQL
3386 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3387 	dql_reset(&q->dql);
3388 #endif
3389 }
3390 
3391 /**
3392  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3393  * 	@dev_queue: network device
3394  *
3395  * 	Reset the bytes and packet count of a network device and clear the
3396  * 	software flow control OFF bit for this network device
3397  */
3398 static inline void netdev_reset_queue(struct net_device *dev_queue)
3399 {
3400 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3401 }
3402 
3403 /**
3404  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3405  * 	@dev: network device
3406  * 	@queue_index: given tx queue index
3407  *
3408  * 	Returns 0 if given tx queue index >= number of device tx queues,
3409  * 	otherwise returns the originally passed tx queue index.
3410  */
3411 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3412 {
3413 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3414 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3415 				     dev->name, queue_index,
3416 				     dev->real_num_tx_queues);
3417 		return 0;
3418 	}
3419 
3420 	return queue_index;
3421 }
3422 
3423 /**
3424  *	netif_running - test if up
3425  *	@dev: network device
3426  *
3427  *	Test if the device has been brought up.
3428  */
3429 static inline bool netif_running(const struct net_device *dev)
3430 {
3431 	return test_bit(__LINK_STATE_START, &dev->state);
3432 }
3433 
3434 /*
3435  * Routines to manage the subqueues on a device.  We only need start,
3436  * stop, and a check if it's stopped.  All other device management is
3437  * done at the overall netdevice level.
3438  * Also test the device if we're multiqueue.
3439  */
3440 
3441 /**
3442  *	netif_start_subqueue - allow sending packets on subqueue
3443  *	@dev: network device
3444  *	@queue_index: sub queue index
3445  *
3446  * Start individual transmit queue of a device with multiple transmit queues.
3447  */
3448 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3449 {
3450 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3451 
3452 	netif_tx_start_queue(txq);
3453 }
3454 
3455 /**
3456  *	netif_stop_subqueue - stop sending packets on subqueue
3457  *	@dev: network device
3458  *	@queue_index: sub queue index
3459  *
3460  * Stop individual transmit queue of a device with multiple transmit queues.
3461  */
3462 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3463 {
3464 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3465 	netif_tx_stop_queue(txq);
3466 }
3467 
3468 /**
3469  *	netif_subqueue_stopped - test status of subqueue
3470  *	@dev: network device
3471  *	@queue_index: sub queue index
3472  *
3473  * Check individual transmit queue of a device with multiple transmit queues.
3474  */
3475 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3476 					    u16 queue_index)
3477 {
3478 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3479 
3480 	return netif_tx_queue_stopped(txq);
3481 }
3482 
3483 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3484 					  struct sk_buff *skb)
3485 {
3486 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3487 }
3488 
3489 /**
3490  *	netif_wake_subqueue - allow sending packets on subqueue
3491  *	@dev: network device
3492  *	@queue_index: sub queue index
3493  *
3494  * Resume individual transmit queue of a device with multiple transmit queues.
3495  */
3496 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3497 {
3498 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3499 
3500 	netif_tx_wake_queue(txq);
3501 }
3502 
3503 #ifdef CONFIG_XPS
3504 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3505 			u16 index);
3506 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3507 			  u16 index, bool is_rxqs_map);
3508 
3509 /**
3510  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3511  *	@j: CPU/Rx queue index
3512  *	@mask: bitmask of all cpus/rx queues
3513  *	@nr_bits: number of bits in the bitmask
3514  *
3515  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3516  */
3517 static inline bool netif_attr_test_mask(unsigned long j,
3518 					const unsigned long *mask,
3519 					unsigned int nr_bits)
3520 {
3521 	cpu_max_bits_warn(j, nr_bits);
3522 	return test_bit(j, mask);
3523 }
3524 
3525 /**
3526  *	netif_attr_test_online - Test for online CPU/Rx queue
3527  *	@j: CPU/Rx queue index
3528  *	@online_mask: bitmask for CPUs/Rx queues that are online
3529  *	@nr_bits: number of bits in the bitmask
3530  *
3531  * Returns true if a CPU/Rx queue is online.
3532  */
3533 static inline bool netif_attr_test_online(unsigned long j,
3534 					  const unsigned long *online_mask,
3535 					  unsigned int nr_bits)
3536 {
3537 	cpu_max_bits_warn(j, nr_bits);
3538 
3539 	if (online_mask)
3540 		return test_bit(j, online_mask);
3541 
3542 	return (j < nr_bits);
3543 }
3544 
3545 /**
3546  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3547  *	@n: CPU/Rx queue index
3548  *	@srcp: the cpumask/Rx queue mask pointer
3549  *	@nr_bits: number of bits in the bitmask
3550  *
3551  * Returns >= nr_bits if no further CPUs/Rx queues set.
3552  */
3553 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3554 					       unsigned int nr_bits)
3555 {
3556 	/* -1 is a legal arg here. */
3557 	if (n != -1)
3558 		cpu_max_bits_warn(n, nr_bits);
3559 
3560 	if (srcp)
3561 		return find_next_bit(srcp, nr_bits, n + 1);
3562 
3563 	return n + 1;
3564 }
3565 
3566 /**
3567  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3568  *	@n: CPU/Rx queue index
3569  *	@src1p: the first CPUs/Rx queues mask pointer
3570  *	@src2p: the second CPUs/Rx queues mask pointer
3571  *	@nr_bits: number of bits in the bitmask
3572  *
3573  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3574  */
3575 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3576 					  const unsigned long *src2p,
3577 					  unsigned int nr_bits)
3578 {
3579 	/* -1 is a legal arg here. */
3580 	if (n != -1)
3581 		cpu_max_bits_warn(n, nr_bits);
3582 
3583 	if (src1p && src2p)
3584 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3585 	else if (src1p)
3586 		return find_next_bit(src1p, nr_bits, n + 1);
3587 	else if (src2p)
3588 		return find_next_bit(src2p, nr_bits, n + 1);
3589 
3590 	return n + 1;
3591 }
3592 #else
3593 static inline int netif_set_xps_queue(struct net_device *dev,
3594 				      const struct cpumask *mask,
3595 				      u16 index)
3596 {
3597 	return 0;
3598 }
3599 
3600 static inline int __netif_set_xps_queue(struct net_device *dev,
3601 					const unsigned long *mask,
3602 					u16 index, bool is_rxqs_map)
3603 {
3604 	return 0;
3605 }
3606 #endif
3607 
3608 /**
3609  *	netif_is_multiqueue - test if device has multiple transmit queues
3610  *	@dev: network device
3611  *
3612  * Check if device has multiple transmit queues
3613  */
3614 static inline bool netif_is_multiqueue(const struct net_device *dev)
3615 {
3616 	return dev->num_tx_queues > 1;
3617 }
3618 
3619 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3620 
3621 #ifdef CONFIG_SYSFS
3622 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3623 #else
3624 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3625 						unsigned int rxqs)
3626 {
3627 	dev->real_num_rx_queues = rxqs;
3628 	return 0;
3629 }
3630 #endif
3631 
3632 static inline struct netdev_rx_queue *
3633 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3634 {
3635 	return dev->_rx + rxq;
3636 }
3637 
3638 #ifdef CONFIG_SYSFS
3639 static inline unsigned int get_netdev_rx_queue_index(
3640 		struct netdev_rx_queue *queue)
3641 {
3642 	struct net_device *dev = queue->dev;
3643 	int index = queue - dev->_rx;
3644 
3645 	BUG_ON(index >= dev->num_rx_queues);
3646 	return index;
3647 }
3648 #endif
3649 
3650 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3651 int netif_get_num_default_rss_queues(void);
3652 
3653 enum skb_free_reason {
3654 	SKB_REASON_CONSUMED,
3655 	SKB_REASON_DROPPED,
3656 };
3657 
3658 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3659 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3660 
3661 /*
3662  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3663  * interrupt context or with hardware interrupts being disabled.
3664  * (in_irq() || irqs_disabled())
3665  *
3666  * We provide four helpers that can be used in following contexts :
3667  *
3668  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3669  *  replacing kfree_skb(skb)
3670  *
3671  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3672  *  Typically used in place of consume_skb(skb) in TX completion path
3673  *
3674  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3675  *  replacing kfree_skb(skb)
3676  *
3677  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3678  *  and consumed a packet. Used in place of consume_skb(skb)
3679  */
3680 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3681 {
3682 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3683 }
3684 
3685 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3686 {
3687 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3688 }
3689 
3690 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3691 {
3692 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3693 }
3694 
3695 static inline void dev_consume_skb_any(struct sk_buff *skb)
3696 {
3697 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3698 }
3699 
3700 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3701 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3702 int netif_rx(struct sk_buff *skb);
3703 int netif_rx_ni(struct sk_buff *skb);
3704 int netif_receive_skb(struct sk_buff *skb);
3705 int netif_receive_skb_core(struct sk_buff *skb);
3706 void netif_receive_skb_list(struct list_head *head);
3707 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3708 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3709 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3710 gro_result_t napi_gro_frags(struct napi_struct *napi);
3711 struct packet_offload *gro_find_receive_by_type(__be16 type);
3712 struct packet_offload *gro_find_complete_by_type(__be16 type);
3713 
3714 static inline void napi_free_frags(struct napi_struct *napi)
3715 {
3716 	kfree_skb(napi->skb);
3717 	napi->skb = NULL;
3718 }
3719 
3720 bool netdev_is_rx_handler_busy(struct net_device *dev);
3721 int netdev_rx_handler_register(struct net_device *dev,
3722 			       rx_handler_func_t *rx_handler,
3723 			       void *rx_handler_data);
3724 void netdev_rx_handler_unregister(struct net_device *dev);
3725 
3726 bool dev_valid_name(const char *name);
3727 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3728 		bool *need_copyout);
3729 int dev_ifconf(struct net *net, struct ifconf *, int);
3730 int dev_ethtool(struct net *net, struct ifreq *);
3731 unsigned int dev_get_flags(const struct net_device *);
3732 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3733 		       struct netlink_ext_ack *extack);
3734 int dev_change_flags(struct net_device *dev, unsigned int flags,
3735 		     struct netlink_ext_ack *extack);
3736 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3737 			unsigned int gchanges);
3738 int dev_change_name(struct net_device *, const char *);
3739 int dev_set_alias(struct net_device *, const char *, size_t);
3740 int dev_get_alias(const struct net_device *, char *, size_t);
3741 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3742 int __dev_set_mtu(struct net_device *, int);
3743 int dev_validate_mtu(struct net_device *dev, int mtu,
3744 		     struct netlink_ext_ack *extack);
3745 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3746 		    struct netlink_ext_ack *extack);
3747 int dev_set_mtu(struct net_device *, int);
3748 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3749 void dev_set_group(struct net_device *, int);
3750 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3751 			      struct netlink_ext_ack *extack);
3752 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3753 			struct netlink_ext_ack *extack);
3754 int dev_change_carrier(struct net_device *, bool new_carrier);
3755 int dev_get_phys_port_id(struct net_device *dev,
3756 			 struct netdev_phys_item_id *ppid);
3757 int dev_get_phys_port_name(struct net_device *dev,
3758 			   char *name, size_t len);
3759 int dev_get_port_parent_id(struct net_device *dev,
3760 			   struct netdev_phys_item_id *ppid, bool recurse);
3761 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3762 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3763 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3764 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3765 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3766 				    struct netdev_queue *txq, int *ret);
3767 
3768 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3769 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3770 		      int fd, u32 flags);
3771 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3772 		    enum bpf_netdev_command cmd);
3773 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3774 
3775 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3776 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3777 bool is_skb_forwardable(const struct net_device *dev,
3778 			const struct sk_buff *skb);
3779 
3780 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3781 					       struct sk_buff *skb)
3782 {
3783 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3784 	    unlikely(!is_skb_forwardable(dev, skb))) {
3785 		atomic_long_inc(&dev->rx_dropped);
3786 		kfree_skb(skb);
3787 		return NET_RX_DROP;
3788 	}
3789 
3790 	skb_scrub_packet(skb, true);
3791 	skb->priority = 0;
3792 	return 0;
3793 }
3794 
3795 bool dev_nit_active(struct net_device *dev);
3796 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3797 
3798 extern int		netdev_budget;
3799 extern unsigned int	netdev_budget_usecs;
3800 
3801 /* Called by rtnetlink.c:rtnl_unlock() */
3802 void netdev_run_todo(void);
3803 
3804 /**
3805  *	dev_put - release reference to device
3806  *	@dev: network device
3807  *
3808  * Release reference to device to allow it to be freed.
3809  */
3810 static inline void dev_put(struct net_device *dev)
3811 {
3812 	this_cpu_dec(*dev->pcpu_refcnt);
3813 }
3814 
3815 /**
3816  *	dev_hold - get reference to device
3817  *	@dev: network device
3818  *
3819  * Hold reference to device to keep it from being freed.
3820  */
3821 static inline void dev_hold(struct net_device *dev)
3822 {
3823 	this_cpu_inc(*dev->pcpu_refcnt);
3824 }
3825 
3826 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3827  * and _off may be called from IRQ context, but it is caller
3828  * who is responsible for serialization of these calls.
3829  *
3830  * The name carrier is inappropriate, these functions should really be
3831  * called netif_lowerlayer_*() because they represent the state of any
3832  * kind of lower layer not just hardware media.
3833  */
3834 
3835 void linkwatch_init_dev(struct net_device *dev);
3836 void linkwatch_fire_event(struct net_device *dev);
3837 void linkwatch_forget_dev(struct net_device *dev);
3838 
3839 /**
3840  *	netif_carrier_ok - test if carrier present
3841  *	@dev: network device
3842  *
3843  * Check if carrier is present on device
3844  */
3845 static inline bool netif_carrier_ok(const struct net_device *dev)
3846 {
3847 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3848 }
3849 
3850 unsigned long dev_trans_start(struct net_device *dev);
3851 
3852 void __netdev_watchdog_up(struct net_device *dev);
3853 
3854 void netif_carrier_on(struct net_device *dev);
3855 
3856 void netif_carrier_off(struct net_device *dev);
3857 
3858 /**
3859  *	netif_dormant_on - mark device as dormant.
3860  *	@dev: network device
3861  *
3862  * Mark device as dormant (as per RFC2863).
3863  *
3864  * The dormant state indicates that the relevant interface is not
3865  * actually in a condition to pass packets (i.e., it is not 'up') but is
3866  * in a "pending" state, waiting for some external event.  For "on-
3867  * demand" interfaces, this new state identifies the situation where the
3868  * interface is waiting for events to place it in the up state.
3869  */
3870 static inline void netif_dormant_on(struct net_device *dev)
3871 {
3872 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3873 		linkwatch_fire_event(dev);
3874 }
3875 
3876 /**
3877  *	netif_dormant_off - set device as not dormant.
3878  *	@dev: network device
3879  *
3880  * Device is not in dormant state.
3881  */
3882 static inline void netif_dormant_off(struct net_device *dev)
3883 {
3884 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3885 		linkwatch_fire_event(dev);
3886 }
3887 
3888 /**
3889  *	netif_dormant - test if device is dormant
3890  *	@dev: network device
3891  *
3892  * Check if device is dormant.
3893  */
3894 static inline bool netif_dormant(const struct net_device *dev)
3895 {
3896 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3897 }
3898 
3899 
3900 /**
3901  *	netif_oper_up - test if device is operational
3902  *	@dev: network device
3903  *
3904  * Check if carrier is operational
3905  */
3906 static inline bool netif_oper_up(const struct net_device *dev)
3907 {
3908 	return (dev->operstate == IF_OPER_UP ||
3909 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3910 }
3911 
3912 /**
3913  *	netif_device_present - is device available or removed
3914  *	@dev: network device
3915  *
3916  * Check if device has not been removed from system.
3917  */
3918 static inline bool netif_device_present(struct net_device *dev)
3919 {
3920 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3921 }
3922 
3923 void netif_device_detach(struct net_device *dev);
3924 
3925 void netif_device_attach(struct net_device *dev);
3926 
3927 /*
3928  * Network interface message level settings
3929  */
3930 
3931 enum {
3932 	NETIF_MSG_DRV_BIT,
3933 	NETIF_MSG_PROBE_BIT,
3934 	NETIF_MSG_LINK_BIT,
3935 	NETIF_MSG_TIMER_BIT,
3936 	NETIF_MSG_IFDOWN_BIT,
3937 	NETIF_MSG_IFUP_BIT,
3938 	NETIF_MSG_RX_ERR_BIT,
3939 	NETIF_MSG_TX_ERR_BIT,
3940 	NETIF_MSG_TX_QUEUED_BIT,
3941 	NETIF_MSG_INTR_BIT,
3942 	NETIF_MSG_TX_DONE_BIT,
3943 	NETIF_MSG_RX_STATUS_BIT,
3944 	NETIF_MSG_PKTDATA_BIT,
3945 	NETIF_MSG_HW_BIT,
3946 	NETIF_MSG_WOL_BIT,
3947 
3948 	/* When you add a new bit above, update netif_msg_class_names array
3949 	 * in net/ethtool/common.c
3950 	 */
3951 	NETIF_MSG_CLASS_COUNT,
3952 };
3953 /* Both ethtool_ops interface and internal driver implementation use u32 */
3954 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
3955 
3956 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
3957 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
3958 
3959 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
3960 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
3961 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
3962 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
3963 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
3964 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
3965 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
3966 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
3967 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
3968 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
3969 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
3970 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
3971 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
3972 #define NETIF_MSG_HW		__NETIF_MSG(HW)
3973 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
3974 
3975 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3976 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3977 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3978 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3979 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3980 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3981 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3982 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3983 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3984 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3985 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3986 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3987 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3988 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3989 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3990 
3991 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3992 {
3993 	/* use default */
3994 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3995 		return default_msg_enable_bits;
3996 	if (debug_value == 0)	/* no output */
3997 		return 0;
3998 	/* set low N bits */
3999 	return (1U << debug_value) - 1;
4000 }
4001 
4002 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4003 {
4004 	spin_lock(&txq->_xmit_lock);
4005 	txq->xmit_lock_owner = cpu;
4006 }
4007 
4008 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4009 {
4010 	__acquire(&txq->_xmit_lock);
4011 	return true;
4012 }
4013 
4014 static inline void __netif_tx_release(struct netdev_queue *txq)
4015 {
4016 	__release(&txq->_xmit_lock);
4017 }
4018 
4019 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4020 {
4021 	spin_lock_bh(&txq->_xmit_lock);
4022 	txq->xmit_lock_owner = smp_processor_id();
4023 }
4024 
4025 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4026 {
4027 	bool ok = spin_trylock(&txq->_xmit_lock);
4028 	if (likely(ok))
4029 		txq->xmit_lock_owner = smp_processor_id();
4030 	return ok;
4031 }
4032 
4033 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4034 {
4035 	txq->xmit_lock_owner = -1;
4036 	spin_unlock(&txq->_xmit_lock);
4037 }
4038 
4039 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4040 {
4041 	txq->xmit_lock_owner = -1;
4042 	spin_unlock_bh(&txq->_xmit_lock);
4043 }
4044 
4045 static inline void txq_trans_update(struct netdev_queue *txq)
4046 {
4047 	if (txq->xmit_lock_owner != -1)
4048 		txq->trans_start = jiffies;
4049 }
4050 
4051 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4052 static inline void netif_trans_update(struct net_device *dev)
4053 {
4054 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4055 
4056 	if (txq->trans_start != jiffies)
4057 		txq->trans_start = jiffies;
4058 }
4059 
4060 /**
4061  *	netif_tx_lock - grab network device transmit lock
4062  *	@dev: network device
4063  *
4064  * Get network device transmit lock
4065  */
4066 static inline void netif_tx_lock(struct net_device *dev)
4067 {
4068 	unsigned int i;
4069 	int cpu;
4070 
4071 	spin_lock(&dev->tx_global_lock);
4072 	cpu = smp_processor_id();
4073 	for (i = 0; i < dev->num_tx_queues; i++) {
4074 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4075 
4076 		/* We are the only thread of execution doing a
4077 		 * freeze, but we have to grab the _xmit_lock in
4078 		 * order to synchronize with threads which are in
4079 		 * the ->hard_start_xmit() handler and already
4080 		 * checked the frozen bit.
4081 		 */
4082 		__netif_tx_lock(txq, cpu);
4083 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4084 		__netif_tx_unlock(txq);
4085 	}
4086 }
4087 
4088 static inline void netif_tx_lock_bh(struct net_device *dev)
4089 {
4090 	local_bh_disable();
4091 	netif_tx_lock(dev);
4092 }
4093 
4094 static inline void netif_tx_unlock(struct net_device *dev)
4095 {
4096 	unsigned int i;
4097 
4098 	for (i = 0; i < dev->num_tx_queues; i++) {
4099 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4100 
4101 		/* No need to grab the _xmit_lock here.  If the
4102 		 * queue is not stopped for another reason, we
4103 		 * force a schedule.
4104 		 */
4105 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4106 		netif_schedule_queue(txq);
4107 	}
4108 	spin_unlock(&dev->tx_global_lock);
4109 }
4110 
4111 static inline void netif_tx_unlock_bh(struct net_device *dev)
4112 {
4113 	netif_tx_unlock(dev);
4114 	local_bh_enable();
4115 }
4116 
4117 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4118 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4119 		__netif_tx_lock(txq, cpu);		\
4120 	} else {					\
4121 		__netif_tx_acquire(txq);		\
4122 	}						\
4123 }
4124 
4125 #define HARD_TX_TRYLOCK(dev, txq)			\
4126 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4127 		__netif_tx_trylock(txq) :		\
4128 		__netif_tx_acquire(txq))
4129 
4130 #define HARD_TX_UNLOCK(dev, txq) {			\
4131 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4132 		__netif_tx_unlock(txq);			\
4133 	} else {					\
4134 		__netif_tx_release(txq);		\
4135 	}						\
4136 }
4137 
4138 static inline void netif_tx_disable(struct net_device *dev)
4139 {
4140 	unsigned int i;
4141 	int cpu;
4142 
4143 	local_bh_disable();
4144 	cpu = smp_processor_id();
4145 	for (i = 0; i < dev->num_tx_queues; i++) {
4146 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4147 
4148 		__netif_tx_lock(txq, cpu);
4149 		netif_tx_stop_queue(txq);
4150 		__netif_tx_unlock(txq);
4151 	}
4152 	local_bh_enable();
4153 }
4154 
4155 static inline void netif_addr_lock(struct net_device *dev)
4156 {
4157 	spin_lock(&dev->addr_list_lock);
4158 }
4159 
4160 static inline void netif_addr_lock_bh(struct net_device *dev)
4161 {
4162 	spin_lock_bh(&dev->addr_list_lock);
4163 }
4164 
4165 static inline void netif_addr_unlock(struct net_device *dev)
4166 {
4167 	spin_unlock(&dev->addr_list_lock);
4168 }
4169 
4170 static inline void netif_addr_unlock_bh(struct net_device *dev)
4171 {
4172 	spin_unlock_bh(&dev->addr_list_lock);
4173 }
4174 
4175 /*
4176  * dev_addrs walker. Should be used only for read access. Call with
4177  * rcu_read_lock held.
4178  */
4179 #define for_each_dev_addr(dev, ha) \
4180 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4181 
4182 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4183 
4184 void ether_setup(struct net_device *dev);
4185 
4186 /* Support for loadable net-drivers */
4187 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4188 				    unsigned char name_assign_type,
4189 				    void (*setup)(struct net_device *),
4190 				    unsigned int txqs, unsigned int rxqs);
4191 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4192 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4193 
4194 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4195 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4196 			 count)
4197 
4198 int register_netdev(struct net_device *dev);
4199 void unregister_netdev(struct net_device *dev);
4200 
4201 /* General hardware address lists handling functions */
4202 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4203 		   struct netdev_hw_addr_list *from_list, int addr_len);
4204 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4205 		      struct netdev_hw_addr_list *from_list, int addr_len);
4206 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4207 		       struct net_device *dev,
4208 		       int (*sync)(struct net_device *, const unsigned char *),
4209 		       int (*unsync)(struct net_device *,
4210 				     const unsigned char *));
4211 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4212 			   struct net_device *dev,
4213 			   int (*sync)(struct net_device *,
4214 				       const unsigned char *, int),
4215 			   int (*unsync)(struct net_device *,
4216 					 const unsigned char *, int));
4217 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4218 			      struct net_device *dev,
4219 			      int (*unsync)(struct net_device *,
4220 					    const unsigned char *, int));
4221 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4222 			  struct net_device *dev,
4223 			  int (*unsync)(struct net_device *,
4224 					const unsigned char *));
4225 void __hw_addr_init(struct netdev_hw_addr_list *list);
4226 
4227 /* Functions used for device addresses handling */
4228 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4229 		 unsigned char addr_type);
4230 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4231 		 unsigned char addr_type);
4232 void dev_addr_flush(struct net_device *dev);
4233 int dev_addr_init(struct net_device *dev);
4234 
4235 /* Functions used for unicast addresses handling */
4236 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4237 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4238 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4239 int dev_uc_sync(struct net_device *to, struct net_device *from);
4240 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4241 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4242 void dev_uc_flush(struct net_device *dev);
4243 void dev_uc_init(struct net_device *dev);
4244 
4245 /**
4246  *  __dev_uc_sync - Synchonize device's unicast list
4247  *  @dev:  device to sync
4248  *  @sync: function to call if address should be added
4249  *  @unsync: function to call if address should be removed
4250  *
4251  *  Add newly added addresses to the interface, and release
4252  *  addresses that have been deleted.
4253  */
4254 static inline int __dev_uc_sync(struct net_device *dev,
4255 				int (*sync)(struct net_device *,
4256 					    const unsigned char *),
4257 				int (*unsync)(struct net_device *,
4258 					      const unsigned char *))
4259 {
4260 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4261 }
4262 
4263 /**
4264  *  __dev_uc_unsync - Remove synchronized addresses from device
4265  *  @dev:  device to sync
4266  *  @unsync: function to call if address should be removed
4267  *
4268  *  Remove all addresses that were added to the device by dev_uc_sync().
4269  */
4270 static inline void __dev_uc_unsync(struct net_device *dev,
4271 				   int (*unsync)(struct net_device *,
4272 						 const unsigned char *))
4273 {
4274 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4275 }
4276 
4277 /* Functions used for multicast addresses handling */
4278 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4279 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4280 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4281 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4282 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4283 int dev_mc_sync(struct net_device *to, struct net_device *from);
4284 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4285 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4286 void dev_mc_flush(struct net_device *dev);
4287 void dev_mc_init(struct net_device *dev);
4288 
4289 /**
4290  *  __dev_mc_sync - Synchonize device's multicast list
4291  *  @dev:  device to sync
4292  *  @sync: function to call if address should be added
4293  *  @unsync: function to call if address should be removed
4294  *
4295  *  Add newly added addresses to the interface, and release
4296  *  addresses that have been deleted.
4297  */
4298 static inline int __dev_mc_sync(struct net_device *dev,
4299 				int (*sync)(struct net_device *,
4300 					    const unsigned char *),
4301 				int (*unsync)(struct net_device *,
4302 					      const unsigned char *))
4303 {
4304 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4305 }
4306 
4307 /**
4308  *  __dev_mc_unsync - Remove synchronized addresses from device
4309  *  @dev:  device to sync
4310  *  @unsync: function to call if address should be removed
4311  *
4312  *  Remove all addresses that were added to the device by dev_mc_sync().
4313  */
4314 static inline void __dev_mc_unsync(struct net_device *dev,
4315 				   int (*unsync)(struct net_device *,
4316 						 const unsigned char *))
4317 {
4318 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4319 }
4320 
4321 /* Functions used for secondary unicast and multicast support */
4322 void dev_set_rx_mode(struct net_device *dev);
4323 void __dev_set_rx_mode(struct net_device *dev);
4324 int dev_set_promiscuity(struct net_device *dev, int inc);
4325 int dev_set_allmulti(struct net_device *dev, int inc);
4326 void netdev_state_change(struct net_device *dev);
4327 void netdev_notify_peers(struct net_device *dev);
4328 void netdev_features_change(struct net_device *dev);
4329 /* Load a device via the kmod */
4330 void dev_load(struct net *net, const char *name);
4331 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4332 					struct rtnl_link_stats64 *storage);
4333 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4334 			     const struct net_device_stats *netdev_stats);
4335 
4336 extern int		netdev_max_backlog;
4337 extern int		netdev_tstamp_prequeue;
4338 extern int		weight_p;
4339 extern int		dev_weight_rx_bias;
4340 extern int		dev_weight_tx_bias;
4341 extern int		dev_rx_weight;
4342 extern int		dev_tx_weight;
4343 extern int		gro_normal_batch;
4344 
4345 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4346 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4347 						     struct list_head **iter);
4348 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4349 						     struct list_head **iter);
4350 
4351 /* iterate through upper list, must be called under RCU read lock */
4352 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4353 	for (iter = &(dev)->adj_list.upper, \
4354 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4355 	     updev; \
4356 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4357 
4358 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4359 				  int (*fn)(struct net_device *upper_dev,
4360 					    void *data),
4361 				  void *data);
4362 
4363 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4364 				  struct net_device *upper_dev);
4365 
4366 bool netdev_has_any_upper_dev(struct net_device *dev);
4367 
4368 void *netdev_lower_get_next_private(struct net_device *dev,
4369 				    struct list_head **iter);
4370 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4371 					struct list_head **iter);
4372 
4373 #define netdev_for_each_lower_private(dev, priv, iter) \
4374 	for (iter = (dev)->adj_list.lower.next, \
4375 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4376 	     priv; \
4377 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4378 
4379 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4380 	for (iter = &(dev)->adj_list.lower, \
4381 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4382 	     priv; \
4383 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4384 
4385 void *netdev_lower_get_next(struct net_device *dev,
4386 				struct list_head **iter);
4387 
4388 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4389 	for (iter = (dev)->adj_list.lower.next, \
4390 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4391 	     ldev; \
4392 	     ldev = netdev_lower_get_next(dev, &(iter)))
4393 
4394 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4395 					     struct list_head **iter);
4396 int netdev_walk_all_lower_dev(struct net_device *dev,
4397 			      int (*fn)(struct net_device *lower_dev,
4398 					void *data),
4399 			      void *data);
4400 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4401 				  int (*fn)(struct net_device *lower_dev,
4402 					    void *data),
4403 				  void *data);
4404 
4405 void *netdev_adjacent_get_private(struct list_head *adj_list);
4406 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4407 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4408 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4409 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4410 			  struct netlink_ext_ack *extack);
4411 int netdev_master_upper_dev_link(struct net_device *dev,
4412 				 struct net_device *upper_dev,
4413 				 void *upper_priv, void *upper_info,
4414 				 struct netlink_ext_ack *extack);
4415 void netdev_upper_dev_unlink(struct net_device *dev,
4416 			     struct net_device *upper_dev);
4417 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4418 				   struct net_device *new_dev,
4419 				   struct net_device *dev,
4420 				   struct netlink_ext_ack *extack);
4421 void netdev_adjacent_change_commit(struct net_device *old_dev,
4422 				   struct net_device *new_dev,
4423 				   struct net_device *dev);
4424 void netdev_adjacent_change_abort(struct net_device *old_dev,
4425 				  struct net_device *new_dev,
4426 				  struct net_device *dev);
4427 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4428 void *netdev_lower_dev_get_private(struct net_device *dev,
4429 				   struct net_device *lower_dev);
4430 void netdev_lower_state_changed(struct net_device *lower_dev,
4431 				void *lower_state_info);
4432 
4433 /* RSS keys are 40 or 52 bytes long */
4434 #define NETDEV_RSS_KEY_LEN 52
4435 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4436 void netdev_rss_key_fill(void *buffer, size_t len);
4437 
4438 int skb_checksum_help(struct sk_buff *skb);
4439 int skb_crc32c_csum_help(struct sk_buff *skb);
4440 int skb_csum_hwoffload_help(struct sk_buff *skb,
4441 			    const netdev_features_t features);
4442 
4443 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4444 				  netdev_features_t features, bool tx_path);
4445 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4446 				    netdev_features_t features);
4447 
4448 struct netdev_bonding_info {
4449 	ifslave	slave;
4450 	ifbond	master;
4451 };
4452 
4453 struct netdev_notifier_bonding_info {
4454 	struct netdev_notifier_info info; /* must be first */
4455 	struct netdev_bonding_info  bonding_info;
4456 };
4457 
4458 void netdev_bonding_info_change(struct net_device *dev,
4459 				struct netdev_bonding_info *bonding_info);
4460 
4461 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4462 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4463 #else
4464 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4465 				  const void *data)
4466 {
4467 }
4468 #endif
4469 
4470 static inline
4471 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4472 {
4473 	return __skb_gso_segment(skb, features, true);
4474 }
4475 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4476 
4477 static inline bool can_checksum_protocol(netdev_features_t features,
4478 					 __be16 protocol)
4479 {
4480 	if (protocol == htons(ETH_P_FCOE))
4481 		return !!(features & NETIF_F_FCOE_CRC);
4482 
4483 	/* Assume this is an IP checksum (not SCTP CRC) */
4484 
4485 	if (features & NETIF_F_HW_CSUM) {
4486 		/* Can checksum everything */
4487 		return true;
4488 	}
4489 
4490 	switch (protocol) {
4491 	case htons(ETH_P_IP):
4492 		return !!(features & NETIF_F_IP_CSUM);
4493 	case htons(ETH_P_IPV6):
4494 		return !!(features & NETIF_F_IPV6_CSUM);
4495 	default:
4496 		return false;
4497 	}
4498 }
4499 
4500 #ifdef CONFIG_BUG
4501 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4502 #else
4503 static inline void netdev_rx_csum_fault(struct net_device *dev,
4504 					struct sk_buff *skb)
4505 {
4506 }
4507 #endif
4508 /* rx skb timestamps */
4509 void net_enable_timestamp(void);
4510 void net_disable_timestamp(void);
4511 
4512 #ifdef CONFIG_PROC_FS
4513 int __init dev_proc_init(void);
4514 #else
4515 #define dev_proc_init() 0
4516 #endif
4517 
4518 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4519 					      struct sk_buff *skb, struct net_device *dev,
4520 					      bool more)
4521 {
4522 	__this_cpu_write(softnet_data.xmit.more, more);
4523 	return ops->ndo_start_xmit(skb, dev);
4524 }
4525 
4526 static inline bool netdev_xmit_more(void)
4527 {
4528 	return __this_cpu_read(softnet_data.xmit.more);
4529 }
4530 
4531 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4532 					    struct netdev_queue *txq, bool more)
4533 {
4534 	const struct net_device_ops *ops = dev->netdev_ops;
4535 	netdev_tx_t rc;
4536 
4537 	rc = __netdev_start_xmit(ops, skb, dev, more);
4538 	if (rc == NETDEV_TX_OK)
4539 		txq_trans_update(txq);
4540 
4541 	return rc;
4542 }
4543 
4544 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4545 				const void *ns);
4546 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4547 				 const void *ns);
4548 
4549 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4550 {
4551 	return netdev_class_create_file_ns(class_attr, NULL);
4552 }
4553 
4554 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4555 {
4556 	netdev_class_remove_file_ns(class_attr, NULL);
4557 }
4558 
4559 extern const struct kobj_ns_type_operations net_ns_type_operations;
4560 
4561 const char *netdev_drivername(const struct net_device *dev);
4562 
4563 void linkwatch_run_queue(void);
4564 
4565 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4566 							  netdev_features_t f2)
4567 {
4568 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4569 		if (f1 & NETIF_F_HW_CSUM)
4570 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4571 		else
4572 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4573 	}
4574 
4575 	return f1 & f2;
4576 }
4577 
4578 static inline netdev_features_t netdev_get_wanted_features(
4579 	struct net_device *dev)
4580 {
4581 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4582 }
4583 netdev_features_t netdev_increment_features(netdev_features_t all,
4584 	netdev_features_t one, netdev_features_t mask);
4585 
4586 /* Allow TSO being used on stacked device :
4587  * Performing the GSO segmentation before last device
4588  * is a performance improvement.
4589  */
4590 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4591 							netdev_features_t mask)
4592 {
4593 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4594 }
4595 
4596 int __netdev_update_features(struct net_device *dev);
4597 void netdev_update_features(struct net_device *dev);
4598 void netdev_change_features(struct net_device *dev);
4599 
4600 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4601 					struct net_device *dev);
4602 
4603 netdev_features_t passthru_features_check(struct sk_buff *skb,
4604 					  struct net_device *dev,
4605 					  netdev_features_t features);
4606 netdev_features_t netif_skb_features(struct sk_buff *skb);
4607 
4608 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4609 {
4610 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4611 
4612 	/* check flags correspondence */
4613 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4614 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4615 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4616 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4617 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4618 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4619 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4620 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4621 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4622 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4623 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4624 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4625 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4626 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4627 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4628 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4629 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4630 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4631 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4632 
4633 	return (features & feature) == feature;
4634 }
4635 
4636 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4637 {
4638 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4639 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4640 }
4641 
4642 static inline bool netif_needs_gso(struct sk_buff *skb,
4643 				   netdev_features_t features)
4644 {
4645 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4646 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4647 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4648 }
4649 
4650 static inline void netif_set_gso_max_size(struct net_device *dev,
4651 					  unsigned int size)
4652 {
4653 	dev->gso_max_size = size;
4654 }
4655 
4656 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4657 					int pulled_hlen, u16 mac_offset,
4658 					int mac_len)
4659 {
4660 	skb->protocol = protocol;
4661 	skb->encapsulation = 1;
4662 	skb_push(skb, pulled_hlen);
4663 	skb_reset_transport_header(skb);
4664 	skb->mac_header = mac_offset;
4665 	skb->network_header = skb->mac_header + mac_len;
4666 	skb->mac_len = mac_len;
4667 }
4668 
4669 static inline bool netif_is_macsec(const struct net_device *dev)
4670 {
4671 	return dev->priv_flags & IFF_MACSEC;
4672 }
4673 
4674 static inline bool netif_is_macvlan(const struct net_device *dev)
4675 {
4676 	return dev->priv_flags & IFF_MACVLAN;
4677 }
4678 
4679 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4680 {
4681 	return dev->priv_flags & IFF_MACVLAN_PORT;
4682 }
4683 
4684 static inline bool netif_is_bond_master(const struct net_device *dev)
4685 {
4686 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4687 }
4688 
4689 static inline bool netif_is_bond_slave(const struct net_device *dev)
4690 {
4691 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4692 }
4693 
4694 static inline bool netif_supports_nofcs(struct net_device *dev)
4695 {
4696 	return dev->priv_flags & IFF_SUPP_NOFCS;
4697 }
4698 
4699 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4700 {
4701 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4702 }
4703 
4704 static inline bool netif_is_l3_master(const struct net_device *dev)
4705 {
4706 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4707 }
4708 
4709 static inline bool netif_is_l3_slave(const struct net_device *dev)
4710 {
4711 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4712 }
4713 
4714 static inline bool netif_is_bridge_master(const struct net_device *dev)
4715 {
4716 	return dev->priv_flags & IFF_EBRIDGE;
4717 }
4718 
4719 static inline bool netif_is_bridge_port(const struct net_device *dev)
4720 {
4721 	return dev->priv_flags & IFF_BRIDGE_PORT;
4722 }
4723 
4724 static inline bool netif_is_ovs_master(const struct net_device *dev)
4725 {
4726 	return dev->priv_flags & IFF_OPENVSWITCH;
4727 }
4728 
4729 static inline bool netif_is_ovs_port(const struct net_device *dev)
4730 {
4731 	return dev->priv_flags & IFF_OVS_DATAPATH;
4732 }
4733 
4734 static inline bool netif_is_team_master(const struct net_device *dev)
4735 {
4736 	return dev->priv_flags & IFF_TEAM;
4737 }
4738 
4739 static inline bool netif_is_team_port(const struct net_device *dev)
4740 {
4741 	return dev->priv_flags & IFF_TEAM_PORT;
4742 }
4743 
4744 static inline bool netif_is_lag_master(const struct net_device *dev)
4745 {
4746 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4747 }
4748 
4749 static inline bool netif_is_lag_port(const struct net_device *dev)
4750 {
4751 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4752 }
4753 
4754 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4755 {
4756 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4757 }
4758 
4759 static inline bool netif_is_failover(const struct net_device *dev)
4760 {
4761 	return dev->priv_flags & IFF_FAILOVER;
4762 }
4763 
4764 static inline bool netif_is_failover_slave(const struct net_device *dev)
4765 {
4766 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4767 }
4768 
4769 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4770 static inline void netif_keep_dst(struct net_device *dev)
4771 {
4772 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4773 }
4774 
4775 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4776 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4777 {
4778 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4779 	return dev->priv_flags & IFF_MACSEC;
4780 }
4781 
4782 extern struct pernet_operations __net_initdata loopback_net_ops;
4783 
4784 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4785 
4786 /* netdev_printk helpers, similar to dev_printk */
4787 
4788 static inline const char *netdev_name(const struct net_device *dev)
4789 {
4790 	if (!dev->name[0] || strchr(dev->name, '%'))
4791 		return "(unnamed net_device)";
4792 	return dev->name;
4793 }
4794 
4795 static inline bool netdev_unregistering(const struct net_device *dev)
4796 {
4797 	return dev->reg_state == NETREG_UNREGISTERING;
4798 }
4799 
4800 static inline const char *netdev_reg_state(const struct net_device *dev)
4801 {
4802 	switch (dev->reg_state) {
4803 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4804 	case NETREG_REGISTERED: return "";
4805 	case NETREG_UNREGISTERING: return " (unregistering)";
4806 	case NETREG_UNREGISTERED: return " (unregistered)";
4807 	case NETREG_RELEASED: return " (released)";
4808 	case NETREG_DUMMY: return " (dummy)";
4809 	}
4810 
4811 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4812 	return " (unknown)";
4813 }
4814 
4815 __printf(3, 4) __cold
4816 void netdev_printk(const char *level, const struct net_device *dev,
4817 		   const char *format, ...);
4818 __printf(2, 3) __cold
4819 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4820 __printf(2, 3) __cold
4821 void netdev_alert(const struct net_device *dev, const char *format, ...);
4822 __printf(2, 3) __cold
4823 void netdev_crit(const struct net_device *dev, const char *format, ...);
4824 __printf(2, 3) __cold
4825 void netdev_err(const struct net_device *dev, const char *format, ...);
4826 __printf(2, 3) __cold
4827 void netdev_warn(const struct net_device *dev, const char *format, ...);
4828 __printf(2, 3) __cold
4829 void netdev_notice(const struct net_device *dev, const char *format, ...);
4830 __printf(2, 3) __cold
4831 void netdev_info(const struct net_device *dev, const char *format, ...);
4832 
4833 #define netdev_level_once(level, dev, fmt, ...)			\
4834 do {								\
4835 	static bool __print_once __read_mostly;			\
4836 								\
4837 	if (!__print_once) {					\
4838 		__print_once = true;				\
4839 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4840 	}							\
4841 } while (0)
4842 
4843 #define netdev_emerg_once(dev, fmt, ...) \
4844 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4845 #define netdev_alert_once(dev, fmt, ...) \
4846 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4847 #define netdev_crit_once(dev, fmt, ...) \
4848 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4849 #define netdev_err_once(dev, fmt, ...) \
4850 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4851 #define netdev_warn_once(dev, fmt, ...) \
4852 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4853 #define netdev_notice_once(dev, fmt, ...) \
4854 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4855 #define netdev_info_once(dev, fmt, ...) \
4856 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4857 
4858 #define MODULE_ALIAS_NETDEV(device) \
4859 	MODULE_ALIAS("netdev-" device)
4860 
4861 #if defined(CONFIG_DYNAMIC_DEBUG)
4862 #define netdev_dbg(__dev, format, args...)			\
4863 do {								\
4864 	dynamic_netdev_dbg(__dev, format, ##args);		\
4865 } while (0)
4866 #elif defined(DEBUG)
4867 #define netdev_dbg(__dev, format, args...)			\
4868 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4869 #else
4870 #define netdev_dbg(__dev, format, args...)			\
4871 ({								\
4872 	if (0)							\
4873 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4874 })
4875 #endif
4876 
4877 #if defined(VERBOSE_DEBUG)
4878 #define netdev_vdbg	netdev_dbg
4879 #else
4880 
4881 #define netdev_vdbg(dev, format, args...)			\
4882 ({								\
4883 	if (0)							\
4884 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4885 	0;							\
4886 })
4887 #endif
4888 
4889 /*
4890  * netdev_WARN() acts like dev_printk(), but with the key difference
4891  * of using a WARN/WARN_ON to get the message out, including the
4892  * file/line information and a backtrace.
4893  */
4894 #define netdev_WARN(dev, format, args...)			\
4895 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4896 	     netdev_reg_state(dev), ##args)
4897 
4898 #define netdev_WARN_ONCE(dev, format, args...)				\
4899 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4900 		  netdev_reg_state(dev), ##args)
4901 
4902 /* netif printk helpers, similar to netdev_printk */
4903 
4904 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4905 do {					  			\
4906 	if (netif_msg_##type(priv))				\
4907 		netdev_printk(level, (dev), fmt, ##args);	\
4908 } while (0)
4909 
4910 #define netif_level(level, priv, type, dev, fmt, args...)	\
4911 do {								\
4912 	if (netif_msg_##type(priv))				\
4913 		netdev_##level(dev, fmt, ##args);		\
4914 } while (0)
4915 
4916 #define netif_emerg(priv, type, dev, fmt, args...)		\
4917 	netif_level(emerg, priv, type, dev, fmt, ##args)
4918 #define netif_alert(priv, type, dev, fmt, args...)		\
4919 	netif_level(alert, priv, type, dev, fmt, ##args)
4920 #define netif_crit(priv, type, dev, fmt, args...)		\
4921 	netif_level(crit, priv, type, dev, fmt, ##args)
4922 #define netif_err(priv, type, dev, fmt, args...)		\
4923 	netif_level(err, priv, type, dev, fmt, ##args)
4924 #define netif_warn(priv, type, dev, fmt, args...)		\
4925 	netif_level(warn, priv, type, dev, fmt, ##args)
4926 #define netif_notice(priv, type, dev, fmt, args...)		\
4927 	netif_level(notice, priv, type, dev, fmt, ##args)
4928 #define netif_info(priv, type, dev, fmt, args...)		\
4929 	netif_level(info, priv, type, dev, fmt, ##args)
4930 
4931 #if defined(CONFIG_DYNAMIC_DEBUG)
4932 #define netif_dbg(priv, type, netdev, format, args...)		\
4933 do {								\
4934 	if (netif_msg_##type(priv))				\
4935 		dynamic_netdev_dbg(netdev, format, ##args);	\
4936 } while (0)
4937 #elif defined(DEBUG)
4938 #define netif_dbg(priv, type, dev, format, args...)		\
4939 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4940 #else
4941 #define netif_dbg(priv, type, dev, format, args...)			\
4942 ({									\
4943 	if (0)								\
4944 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4945 	0;								\
4946 })
4947 #endif
4948 
4949 /* if @cond then downgrade to debug, else print at @level */
4950 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4951 	do {                                                              \
4952 		if (cond)                                                 \
4953 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4954 		else                                                      \
4955 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4956 	} while (0)
4957 
4958 #if defined(VERBOSE_DEBUG)
4959 #define netif_vdbg	netif_dbg
4960 #else
4961 #define netif_vdbg(priv, type, dev, format, args...)		\
4962 ({								\
4963 	if (0)							\
4964 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4965 	0;							\
4966 })
4967 #endif
4968 
4969 /*
4970  *	The list of packet types we will receive (as opposed to discard)
4971  *	and the routines to invoke.
4972  *
4973  *	Why 16. Because with 16 the only overlap we get on a hash of the
4974  *	low nibble of the protocol value is RARP/SNAP/X.25.
4975  *
4976  *		0800	IP
4977  *		0001	802.3
4978  *		0002	AX.25
4979  *		0004	802.2
4980  *		8035	RARP
4981  *		0005	SNAP
4982  *		0805	X.25
4983  *		0806	ARP
4984  *		8137	IPX
4985  *		0009	Localtalk
4986  *		86DD	IPv6
4987  */
4988 #define PTYPE_HASH_SIZE	(16)
4989 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4990 
4991 extern struct net_device *blackhole_netdev;
4992 
4993 #endif	/* _LINUX_NETDEVICE_H */
4994