1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <net/xdp.h> 44 45 #include <linux/netdev_features.h> 46 #include <linux/neighbour.h> 47 #include <uapi/linux/netdevice.h> 48 #include <uapi/linux/if_bonding.h> 49 #include <uapi/linux/pkt_cls.h> 50 #include <uapi/linux/netdev.h> 51 #include <linux/hashtable.h> 52 #include <linux/rbtree.h> 53 #include <net/net_trackers.h> 54 #include <net/net_debug.h> 55 56 struct netpoll_info; 57 struct device; 58 struct ethtool_ops; 59 struct phy_device; 60 struct dsa_port; 61 struct ip_tunnel_parm; 62 struct macsec_context; 63 struct macsec_ops; 64 struct netdev_name_node; 65 struct sd_flow_limit; 66 struct sfp_bus; 67 /* 802.11 specific */ 68 struct wireless_dev; 69 /* 802.15.4 specific */ 70 struct wpan_dev; 71 struct mpls_dev; 72 /* UDP Tunnel offloads */ 73 struct udp_tunnel_info; 74 struct udp_tunnel_nic_info; 75 struct udp_tunnel_nic; 76 struct bpf_prog; 77 struct xdp_buff; 78 struct xdp_md; 79 80 void synchronize_net(void); 81 void netdev_set_default_ethtool_ops(struct net_device *dev, 82 const struct ethtool_ops *ops); 83 void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 84 85 /* Backlog congestion levels */ 86 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 87 #define NET_RX_DROP 1 /* packet dropped */ 88 89 #define MAX_NEST_DEV 8 90 91 /* 92 * Transmit return codes: transmit return codes originate from three different 93 * namespaces: 94 * 95 * - qdisc return codes 96 * - driver transmit return codes 97 * - errno values 98 * 99 * Drivers are allowed to return any one of those in their hard_start_xmit() 100 * function. Real network devices commonly used with qdiscs should only return 101 * the driver transmit return codes though - when qdiscs are used, the actual 102 * transmission happens asynchronously, so the value is not propagated to 103 * higher layers. Virtual network devices transmit synchronously; in this case 104 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 105 * others are propagated to higher layers. 106 */ 107 108 /* qdisc ->enqueue() return codes. */ 109 #define NET_XMIT_SUCCESS 0x00 110 #define NET_XMIT_DROP 0x01 /* skb dropped */ 111 #define NET_XMIT_CN 0x02 /* congestion notification */ 112 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 113 114 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 115 * indicates that the device will soon be dropping packets, or already drops 116 * some packets of the same priority; prompting us to send less aggressively. */ 117 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 118 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 119 120 /* Driver transmit return codes */ 121 #define NETDEV_TX_MASK 0xf0 122 123 enum netdev_tx { 124 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 125 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 126 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 127 }; 128 typedef enum netdev_tx netdev_tx_t; 129 130 /* 131 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 132 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 133 */ 134 static inline bool dev_xmit_complete(int rc) 135 { 136 /* 137 * Positive cases with an skb consumed by a driver: 138 * - successful transmission (rc == NETDEV_TX_OK) 139 * - error while transmitting (rc < 0) 140 * - error while queueing to a different device (rc & NET_XMIT_MASK) 141 */ 142 if (likely(rc < NET_XMIT_MASK)) 143 return true; 144 145 return false; 146 } 147 148 /* 149 * Compute the worst-case header length according to the protocols 150 * used. 151 */ 152 153 #if defined(CONFIG_HYPERV_NET) 154 # define LL_MAX_HEADER 128 155 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 156 # if defined(CONFIG_MAC80211_MESH) 157 # define LL_MAX_HEADER 128 158 # else 159 # define LL_MAX_HEADER 96 160 # endif 161 #else 162 # define LL_MAX_HEADER 32 163 #endif 164 165 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 166 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 167 #define MAX_HEADER LL_MAX_HEADER 168 #else 169 #define MAX_HEADER (LL_MAX_HEADER + 48) 170 #endif 171 172 /* 173 * Old network device statistics. Fields are native words 174 * (unsigned long) so they can be read and written atomically. 175 */ 176 177 #define NET_DEV_STAT(FIELD) \ 178 union { \ 179 unsigned long FIELD; \ 180 atomic_long_t __##FIELD; \ 181 } 182 183 struct net_device_stats { 184 NET_DEV_STAT(rx_packets); 185 NET_DEV_STAT(tx_packets); 186 NET_DEV_STAT(rx_bytes); 187 NET_DEV_STAT(tx_bytes); 188 NET_DEV_STAT(rx_errors); 189 NET_DEV_STAT(tx_errors); 190 NET_DEV_STAT(rx_dropped); 191 NET_DEV_STAT(tx_dropped); 192 NET_DEV_STAT(multicast); 193 NET_DEV_STAT(collisions); 194 NET_DEV_STAT(rx_length_errors); 195 NET_DEV_STAT(rx_over_errors); 196 NET_DEV_STAT(rx_crc_errors); 197 NET_DEV_STAT(rx_frame_errors); 198 NET_DEV_STAT(rx_fifo_errors); 199 NET_DEV_STAT(rx_missed_errors); 200 NET_DEV_STAT(tx_aborted_errors); 201 NET_DEV_STAT(tx_carrier_errors); 202 NET_DEV_STAT(tx_fifo_errors); 203 NET_DEV_STAT(tx_heartbeat_errors); 204 NET_DEV_STAT(tx_window_errors); 205 NET_DEV_STAT(rx_compressed); 206 NET_DEV_STAT(tx_compressed); 207 }; 208 #undef NET_DEV_STAT 209 210 /* per-cpu stats, allocated on demand. 211 * Try to fit them in a single cache line, for dev_get_stats() sake. 212 */ 213 struct net_device_core_stats { 214 unsigned long rx_dropped; 215 unsigned long tx_dropped; 216 unsigned long rx_nohandler; 217 unsigned long rx_otherhost_dropped; 218 } __aligned(4 * sizeof(unsigned long)); 219 220 #include <linux/cache.h> 221 #include <linux/skbuff.h> 222 223 #ifdef CONFIG_RPS 224 #include <linux/static_key.h> 225 extern struct static_key_false rps_needed; 226 extern struct static_key_false rfs_needed; 227 #endif 228 229 struct neighbour; 230 struct neigh_parms; 231 struct sk_buff; 232 233 struct netdev_hw_addr { 234 struct list_head list; 235 struct rb_node node; 236 unsigned char addr[MAX_ADDR_LEN]; 237 unsigned char type; 238 #define NETDEV_HW_ADDR_T_LAN 1 239 #define NETDEV_HW_ADDR_T_SAN 2 240 #define NETDEV_HW_ADDR_T_UNICAST 3 241 #define NETDEV_HW_ADDR_T_MULTICAST 4 242 bool global_use; 243 int sync_cnt; 244 int refcount; 245 int synced; 246 struct rcu_head rcu_head; 247 }; 248 249 struct netdev_hw_addr_list { 250 struct list_head list; 251 int count; 252 253 /* Auxiliary tree for faster lookup on addition and deletion */ 254 struct rb_root tree; 255 }; 256 257 #define netdev_hw_addr_list_count(l) ((l)->count) 258 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 259 #define netdev_hw_addr_list_for_each(ha, l) \ 260 list_for_each_entry(ha, &(l)->list, list) 261 262 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 263 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 264 #define netdev_for_each_uc_addr(ha, dev) \ 265 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 266 #define netdev_for_each_synced_uc_addr(_ha, _dev) \ 267 netdev_for_each_uc_addr((_ha), (_dev)) \ 268 if ((_ha)->sync_cnt) 269 270 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 271 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 272 #define netdev_for_each_mc_addr(ha, dev) \ 273 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 274 #define netdev_for_each_synced_mc_addr(_ha, _dev) \ 275 netdev_for_each_mc_addr((_ha), (_dev)) \ 276 if ((_ha)->sync_cnt) 277 278 struct hh_cache { 279 unsigned int hh_len; 280 seqlock_t hh_lock; 281 282 /* cached hardware header; allow for machine alignment needs. */ 283 #define HH_DATA_MOD 16 284 #define HH_DATA_OFF(__len) \ 285 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 286 #define HH_DATA_ALIGN(__len) \ 287 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 288 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 289 }; 290 291 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 292 * Alternative is: 293 * dev->hard_header_len ? (dev->hard_header_len + 294 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 295 * 296 * We could use other alignment values, but we must maintain the 297 * relationship HH alignment <= LL alignment. 298 */ 299 #define LL_RESERVED_SPACE(dev) \ 300 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 301 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 302 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 303 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 304 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 305 306 struct header_ops { 307 int (*create) (struct sk_buff *skb, struct net_device *dev, 308 unsigned short type, const void *daddr, 309 const void *saddr, unsigned int len); 310 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 311 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 312 void (*cache_update)(struct hh_cache *hh, 313 const struct net_device *dev, 314 const unsigned char *haddr); 315 bool (*validate)(const char *ll_header, unsigned int len); 316 __be16 (*parse_protocol)(const struct sk_buff *skb); 317 }; 318 319 /* These flag bits are private to the generic network queueing 320 * layer; they may not be explicitly referenced by any other 321 * code. 322 */ 323 324 enum netdev_state_t { 325 __LINK_STATE_START, 326 __LINK_STATE_PRESENT, 327 __LINK_STATE_NOCARRIER, 328 __LINK_STATE_LINKWATCH_PENDING, 329 __LINK_STATE_DORMANT, 330 __LINK_STATE_TESTING, 331 }; 332 333 struct gro_list { 334 struct list_head list; 335 int count; 336 }; 337 338 /* 339 * size of gro hash buckets, must less than bit number of 340 * napi_struct::gro_bitmask 341 */ 342 #define GRO_HASH_BUCKETS 8 343 344 /* 345 * Structure for NAPI scheduling similar to tasklet but with weighting 346 */ 347 struct napi_struct { 348 /* The poll_list must only be managed by the entity which 349 * changes the state of the NAPI_STATE_SCHED bit. This means 350 * whoever atomically sets that bit can add this napi_struct 351 * to the per-CPU poll_list, and whoever clears that bit 352 * can remove from the list right before clearing the bit. 353 */ 354 struct list_head poll_list; 355 356 unsigned long state; 357 int weight; 358 int defer_hard_irqs_count; 359 unsigned long gro_bitmask; 360 int (*poll)(struct napi_struct *, int); 361 #ifdef CONFIG_NETPOLL 362 int poll_owner; 363 #endif 364 struct net_device *dev; 365 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 366 struct sk_buff *skb; 367 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 368 int rx_count; /* length of rx_list */ 369 struct hrtimer timer; 370 struct list_head dev_list; 371 struct hlist_node napi_hash_node; 372 unsigned int napi_id; 373 struct task_struct *thread; 374 }; 375 376 enum { 377 NAPI_STATE_SCHED, /* Poll is scheduled */ 378 NAPI_STATE_MISSED, /* reschedule a napi */ 379 NAPI_STATE_DISABLE, /* Disable pending */ 380 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 381 NAPI_STATE_LISTED, /* NAPI added to system lists */ 382 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 383 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 384 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 385 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 386 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 387 }; 388 389 enum { 390 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 391 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 392 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 393 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 394 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 395 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 396 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 397 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 398 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 399 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 400 }; 401 402 enum gro_result { 403 GRO_MERGED, 404 GRO_MERGED_FREE, 405 GRO_HELD, 406 GRO_NORMAL, 407 GRO_CONSUMED, 408 }; 409 typedef enum gro_result gro_result_t; 410 411 /* 412 * enum rx_handler_result - Possible return values for rx_handlers. 413 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 414 * further. 415 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 416 * case skb->dev was changed by rx_handler. 417 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 418 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 419 * 420 * rx_handlers are functions called from inside __netif_receive_skb(), to do 421 * special processing of the skb, prior to delivery to protocol handlers. 422 * 423 * Currently, a net_device can only have a single rx_handler registered. Trying 424 * to register a second rx_handler will return -EBUSY. 425 * 426 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 427 * To unregister a rx_handler on a net_device, use 428 * netdev_rx_handler_unregister(). 429 * 430 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 431 * do with the skb. 432 * 433 * If the rx_handler consumed the skb in some way, it should return 434 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 435 * the skb to be delivered in some other way. 436 * 437 * If the rx_handler changed skb->dev, to divert the skb to another 438 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 439 * new device will be called if it exists. 440 * 441 * If the rx_handler decides the skb should be ignored, it should return 442 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 443 * are registered on exact device (ptype->dev == skb->dev). 444 * 445 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 446 * delivered, it should return RX_HANDLER_PASS. 447 * 448 * A device without a registered rx_handler will behave as if rx_handler 449 * returned RX_HANDLER_PASS. 450 */ 451 452 enum rx_handler_result { 453 RX_HANDLER_CONSUMED, 454 RX_HANDLER_ANOTHER, 455 RX_HANDLER_EXACT, 456 RX_HANDLER_PASS, 457 }; 458 typedef enum rx_handler_result rx_handler_result_t; 459 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 460 461 void __napi_schedule(struct napi_struct *n); 462 void __napi_schedule_irqoff(struct napi_struct *n); 463 464 static inline bool napi_disable_pending(struct napi_struct *n) 465 { 466 return test_bit(NAPI_STATE_DISABLE, &n->state); 467 } 468 469 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 470 { 471 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 472 } 473 474 bool napi_schedule_prep(struct napi_struct *n); 475 476 /** 477 * napi_schedule - schedule NAPI poll 478 * @n: NAPI context 479 * 480 * Schedule NAPI poll routine to be called if it is not already 481 * running. 482 */ 483 static inline void napi_schedule(struct napi_struct *n) 484 { 485 if (napi_schedule_prep(n)) 486 __napi_schedule(n); 487 } 488 489 /** 490 * napi_schedule_irqoff - schedule NAPI poll 491 * @n: NAPI context 492 * 493 * Variant of napi_schedule(), assuming hard irqs are masked. 494 */ 495 static inline void napi_schedule_irqoff(struct napi_struct *n) 496 { 497 if (napi_schedule_prep(n)) 498 __napi_schedule_irqoff(n); 499 } 500 501 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 502 static inline bool napi_reschedule(struct napi_struct *napi) 503 { 504 if (napi_schedule_prep(napi)) { 505 __napi_schedule(napi); 506 return true; 507 } 508 return false; 509 } 510 511 bool napi_complete_done(struct napi_struct *n, int work_done); 512 /** 513 * napi_complete - NAPI processing complete 514 * @n: NAPI context 515 * 516 * Mark NAPI processing as complete. 517 * Consider using napi_complete_done() instead. 518 * Return false if device should avoid rearming interrupts. 519 */ 520 static inline bool napi_complete(struct napi_struct *n) 521 { 522 return napi_complete_done(n, 0); 523 } 524 525 int dev_set_threaded(struct net_device *dev, bool threaded); 526 527 /** 528 * napi_disable - prevent NAPI from scheduling 529 * @n: NAPI context 530 * 531 * Stop NAPI from being scheduled on this context. 532 * Waits till any outstanding processing completes. 533 */ 534 void napi_disable(struct napi_struct *n); 535 536 void napi_enable(struct napi_struct *n); 537 538 /** 539 * napi_synchronize - wait until NAPI is not running 540 * @n: NAPI context 541 * 542 * Wait until NAPI is done being scheduled on this context. 543 * Waits till any outstanding processing completes but 544 * does not disable future activations. 545 */ 546 static inline void napi_synchronize(const struct napi_struct *n) 547 { 548 if (IS_ENABLED(CONFIG_SMP)) 549 while (test_bit(NAPI_STATE_SCHED, &n->state)) 550 msleep(1); 551 else 552 barrier(); 553 } 554 555 /** 556 * napi_if_scheduled_mark_missed - if napi is running, set the 557 * NAPIF_STATE_MISSED 558 * @n: NAPI context 559 * 560 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 561 * NAPI is scheduled. 562 **/ 563 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 564 { 565 unsigned long val, new; 566 567 val = READ_ONCE(n->state); 568 do { 569 if (val & NAPIF_STATE_DISABLE) 570 return true; 571 572 if (!(val & NAPIF_STATE_SCHED)) 573 return false; 574 575 new = val | NAPIF_STATE_MISSED; 576 } while (!try_cmpxchg(&n->state, &val, new)); 577 578 return true; 579 } 580 581 enum netdev_queue_state_t { 582 __QUEUE_STATE_DRV_XOFF, 583 __QUEUE_STATE_STACK_XOFF, 584 __QUEUE_STATE_FROZEN, 585 }; 586 587 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 588 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 589 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 590 591 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 592 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 593 QUEUE_STATE_FROZEN) 594 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 595 QUEUE_STATE_FROZEN) 596 597 /* 598 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 599 * netif_tx_* functions below are used to manipulate this flag. The 600 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 601 * queue independently. The netif_xmit_*stopped functions below are called 602 * to check if the queue has been stopped by the driver or stack (either 603 * of the XOFF bits are set in the state). Drivers should not need to call 604 * netif_xmit*stopped functions, they should only be using netif_tx_*. 605 */ 606 607 struct netdev_queue { 608 /* 609 * read-mostly part 610 */ 611 struct net_device *dev; 612 netdevice_tracker dev_tracker; 613 614 struct Qdisc __rcu *qdisc; 615 struct Qdisc *qdisc_sleeping; 616 #ifdef CONFIG_SYSFS 617 struct kobject kobj; 618 #endif 619 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 620 int numa_node; 621 #endif 622 unsigned long tx_maxrate; 623 /* 624 * Number of TX timeouts for this queue 625 * (/sys/class/net/DEV/Q/trans_timeout) 626 */ 627 atomic_long_t trans_timeout; 628 629 /* Subordinate device that the queue has been assigned to */ 630 struct net_device *sb_dev; 631 #ifdef CONFIG_XDP_SOCKETS 632 struct xsk_buff_pool *pool; 633 #endif 634 /* 635 * write-mostly part 636 */ 637 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 638 int xmit_lock_owner; 639 /* 640 * Time (in jiffies) of last Tx 641 */ 642 unsigned long trans_start; 643 644 unsigned long state; 645 646 #ifdef CONFIG_BQL 647 struct dql dql; 648 #endif 649 } ____cacheline_aligned_in_smp; 650 651 extern int sysctl_fb_tunnels_only_for_init_net; 652 extern int sysctl_devconf_inherit_init_net; 653 654 /* 655 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 656 * == 1 : For initns only 657 * == 2 : For none. 658 */ 659 static inline bool net_has_fallback_tunnels(const struct net *net) 660 { 661 #if IS_ENABLED(CONFIG_SYSCTL) 662 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 663 664 return !fb_tunnels_only_for_init_net || 665 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 666 #else 667 return true; 668 #endif 669 } 670 671 static inline int net_inherit_devconf(void) 672 { 673 #if IS_ENABLED(CONFIG_SYSCTL) 674 return READ_ONCE(sysctl_devconf_inherit_init_net); 675 #else 676 return 0; 677 #endif 678 } 679 680 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 681 { 682 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 683 return q->numa_node; 684 #else 685 return NUMA_NO_NODE; 686 #endif 687 } 688 689 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 690 { 691 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 692 q->numa_node = node; 693 #endif 694 } 695 696 #ifdef CONFIG_RPS 697 /* 698 * This structure holds an RPS map which can be of variable length. The 699 * map is an array of CPUs. 700 */ 701 struct rps_map { 702 unsigned int len; 703 struct rcu_head rcu; 704 u16 cpus[]; 705 }; 706 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 707 708 /* 709 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 710 * tail pointer for that CPU's input queue at the time of last enqueue, and 711 * a hardware filter index. 712 */ 713 struct rps_dev_flow { 714 u16 cpu; 715 u16 filter; 716 unsigned int last_qtail; 717 }; 718 #define RPS_NO_FILTER 0xffff 719 720 /* 721 * The rps_dev_flow_table structure contains a table of flow mappings. 722 */ 723 struct rps_dev_flow_table { 724 unsigned int mask; 725 struct rcu_head rcu; 726 struct rps_dev_flow flows[]; 727 }; 728 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 729 ((_num) * sizeof(struct rps_dev_flow))) 730 731 /* 732 * The rps_sock_flow_table contains mappings of flows to the last CPU 733 * on which they were processed by the application (set in recvmsg). 734 * Each entry is a 32bit value. Upper part is the high-order bits 735 * of flow hash, lower part is CPU number. 736 * rps_cpu_mask is used to partition the space, depending on number of 737 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 738 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 739 * meaning we use 32-6=26 bits for the hash. 740 */ 741 struct rps_sock_flow_table { 742 u32 mask; 743 744 u32 ents[] ____cacheline_aligned_in_smp; 745 }; 746 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 747 748 #define RPS_NO_CPU 0xffff 749 750 extern u32 rps_cpu_mask; 751 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 752 753 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 754 u32 hash) 755 { 756 if (table && hash) { 757 unsigned int index = hash & table->mask; 758 u32 val = hash & ~rps_cpu_mask; 759 760 /* We only give a hint, preemption can change CPU under us */ 761 val |= raw_smp_processor_id(); 762 763 if (table->ents[index] != val) 764 table->ents[index] = val; 765 } 766 } 767 768 #ifdef CONFIG_RFS_ACCEL 769 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 770 u16 filter_id); 771 #endif 772 #endif /* CONFIG_RPS */ 773 774 /* This structure contains an instance of an RX queue. */ 775 struct netdev_rx_queue { 776 struct xdp_rxq_info xdp_rxq; 777 #ifdef CONFIG_RPS 778 struct rps_map __rcu *rps_map; 779 struct rps_dev_flow_table __rcu *rps_flow_table; 780 #endif 781 struct kobject kobj; 782 struct net_device *dev; 783 netdevice_tracker dev_tracker; 784 785 #ifdef CONFIG_XDP_SOCKETS 786 struct xsk_buff_pool *pool; 787 #endif 788 } ____cacheline_aligned_in_smp; 789 790 /* 791 * RX queue sysfs structures and functions. 792 */ 793 struct rx_queue_attribute { 794 struct attribute attr; 795 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 796 ssize_t (*store)(struct netdev_rx_queue *queue, 797 const char *buf, size_t len); 798 }; 799 800 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 801 enum xps_map_type { 802 XPS_CPUS = 0, 803 XPS_RXQS, 804 XPS_MAPS_MAX, 805 }; 806 807 #ifdef CONFIG_XPS 808 /* 809 * This structure holds an XPS map which can be of variable length. The 810 * map is an array of queues. 811 */ 812 struct xps_map { 813 unsigned int len; 814 unsigned int alloc_len; 815 struct rcu_head rcu; 816 u16 queues[]; 817 }; 818 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 819 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 820 - sizeof(struct xps_map)) / sizeof(u16)) 821 822 /* 823 * This structure holds all XPS maps for device. Maps are indexed by CPU. 824 * 825 * We keep track of the number of cpus/rxqs used when the struct is allocated, 826 * in nr_ids. This will help not accessing out-of-bound memory. 827 * 828 * We keep track of the number of traffic classes used when the struct is 829 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 830 * not crossing its upper bound, as the original dev->num_tc can be updated in 831 * the meantime. 832 */ 833 struct xps_dev_maps { 834 struct rcu_head rcu; 835 unsigned int nr_ids; 836 s16 num_tc; 837 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 838 }; 839 840 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 841 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 842 843 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 844 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 845 846 #endif /* CONFIG_XPS */ 847 848 #define TC_MAX_QUEUE 16 849 #define TC_BITMASK 15 850 /* HW offloaded queuing disciplines txq count and offset maps */ 851 struct netdev_tc_txq { 852 u16 count; 853 u16 offset; 854 }; 855 856 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 857 /* 858 * This structure is to hold information about the device 859 * configured to run FCoE protocol stack. 860 */ 861 struct netdev_fcoe_hbainfo { 862 char manufacturer[64]; 863 char serial_number[64]; 864 char hardware_version[64]; 865 char driver_version[64]; 866 char optionrom_version[64]; 867 char firmware_version[64]; 868 char model[256]; 869 char model_description[256]; 870 }; 871 #endif 872 873 #define MAX_PHYS_ITEM_ID_LEN 32 874 875 /* This structure holds a unique identifier to identify some 876 * physical item (port for example) used by a netdevice. 877 */ 878 struct netdev_phys_item_id { 879 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 880 unsigned char id_len; 881 }; 882 883 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 884 struct netdev_phys_item_id *b) 885 { 886 return a->id_len == b->id_len && 887 memcmp(a->id, b->id, a->id_len) == 0; 888 } 889 890 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 891 struct sk_buff *skb, 892 struct net_device *sb_dev); 893 894 enum net_device_path_type { 895 DEV_PATH_ETHERNET = 0, 896 DEV_PATH_VLAN, 897 DEV_PATH_BRIDGE, 898 DEV_PATH_PPPOE, 899 DEV_PATH_DSA, 900 DEV_PATH_MTK_WDMA, 901 }; 902 903 struct net_device_path { 904 enum net_device_path_type type; 905 const struct net_device *dev; 906 union { 907 struct { 908 u16 id; 909 __be16 proto; 910 u8 h_dest[ETH_ALEN]; 911 } encap; 912 struct { 913 enum { 914 DEV_PATH_BR_VLAN_KEEP, 915 DEV_PATH_BR_VLAN_TAG, 916 DEV_PATH_BR_VLAN_UNTAG, 917 DEV_PATH_BR_VLAN_UNTAG_HW, 918 } vlan_mode; 919 u16 vlan_id; 920 __be16 vlan_proto; 921 } bridge; 922 struct { 923 int port; 924 u16 proto; 925 } dsa; 926 struct { 927 u8 wdma_idx; 928 u8 queue; 929 u16 wcid; 930 u8 bss; 931 } mtk_wdma; 932 }; 933 }; 934 935 #define NET_DEVICE_PATH_STACK_MAX 5 936 #define NET_DEVICE_PATH_VLAN_MAX 2 937 938 struct net_device_path_stack { 939 int num_paths; 940 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 941 }; 942 943 struct net_device_path_ctx { 944 const struct net_device *dev; 945 u8 daddr[ETH_ALEN]; 946 947 int num_vlans; 948 struct { 949 u16 id; 950 __be16 proto; 951 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 952 }; 953 954 enum tc_setup_type { 955 TC_QUERY_CAPS, 956 TC_SETUP_QDISC_MQPRIO, 957 TC_SETUP_CLSU32, 958 TC_SETUP_CLSFLOWER, 959 TC_SETUP_CLSMATCHALL, 960 TC_SETUP_CLSBPF, 961 TC_SETUP_BLOCK, 962 TC_SETUP_QDISC_CBS, 963 TC_SETUP_QDISC_RED, 964 TC_SETUP_QDISC_PRIO, 965 TC_SETUP_QDISC_MQ, 966 TC_SETUP_QDISC_ETF, 967 TC_SETUP_ROOT_QDISC, 968 TC_SETUP_QDISC_GRED, 969 TC_SETUP_QDISC_TAPRIO, 970 TC_SETUP_FT, 971 TC_SETUP_QDISC_ETS, 972 TC_SETUP_QDISC_TBF, 973 TC_SETUP_QDISC_FIFO, 974 TC_SETUP_QDISC_HTB, 975 TC_SETUP_ACT, 976 }; 977 978 /* These structures hold the attributes of bpf state that are being passed 979 * to the netdevice through the bpf op. 980 */ 981 enum bpf_netdev_command { 982 /* Set or clear a bpf program used in the earliest stages of packet 983 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 984 * is responsible for calling bpf_prog_put on any old progs that are 985 * stored. In case of error, the callee need not release the new prog 986 * reference, but on success it takes ownership and must bpf_prog_put 987 * when it is no longer used. 988 */ 989 XDP_SETUP_PROG, 990 XDP_SETUP_PROG_HW, 991 /* BPF program for offload callbacks, invoked at program load time. */ 992 BPF_OFFLOAD_MAP_ALLOC, 993 BPF_OFFLOAD_MAP_FREE, 994 XDP_SETUP_XSK_POOL, 995 }; 996 997 struct bpf_prog_offload_ops; 998 struct netlink_ext_ack; 999 struct xdp_umem; 1000 struct xdp_dev_bulk_queue; 1001 struct bpf_xdp_link; 1002 1003 enum bpf_xdp_mode { 1004 XDP_MODE_SKB = 0, 1005 XDP_MODE_DRV = 1, 1006 XDP_MODE_HW = 2, 1007 __MAX_XDP_MODE 1008 }; 1009 1010 struct bpf_xdp_entity { 1011 struct bpf_prog *prog; 1012 struct bpf_xdp_link *link; 1013 }; 1014 1015 struct netdev_bpf { 1016 enum bpf_netdev_command command; 1017 union { 1018 /* XDP_SETUP_PROG */ 1019 struct { 1020 u32 flags; 1021 struct bpf_prog *prog; 1022 struct netlink_ext_ack *extack; 1023 }; 1024 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 1025 struct { 1026 struct bpf_offloaded_map *offmap; 1027 }; 1028 /* XDP_SETUP_XSK_POOL */ 1029 struct { 1030 struct xsk_buff_pool *pool; 1031 u16 queue_id; 1032 } xsk; 1033 }; 1034 }; 1035 1036 /* Flags for ndo_xsk_wakeup. */ 1037 #define XDP_WAKEUP_RX (1 << 0) 1038 #define XDP_WAKEUP_TX (1 << 1) 1039 1040 #ifdef CONFIG_XFRM_OFFLOAD 1041 struct xfrmdev_ops { 1042 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 1043 void (*xdo_dev_state_delete) (struct xfrm_state *x); 1044 void (*xdo_dev_state_free) (struct xfrm_state *x); 1045 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1046 struct xfrm_state *x); 1047 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1048 void (*xdo_dev_state_update_curlft) (struct xfrm_state *x); 1049 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 1050 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 1051 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 1052 }; 1053 #endif 1054 1055 struct dev_ifalias { 1056 struct rcu_head rcuhead; 1057 char ifalias[]; 1058 }; 1059 1060 struct devlink; 1061 struct tlsdev_ops; 1062 1063 struct netdev_net_notifier { 1064 struct list_head list; 1065 struct notifier_block *nb; 1066 }; 1067 1068 /* 1069 * This structure defines the management hooks for network devices. 1070 * The following hooks can be defined; unless noted otherwise, they are 1071 * optional and can be filled with a null pointer. 1072 * 1073 * int (*ndo_init)(struct net_device *dev); 1074 * This function is called once when a network device is registered. 1075 * The network device can use this for any late stage initialization 1076 * or semantic validation. It can fail with an error code which will 1077 * be propagated back to register_netdev. 1078 * 1079 * void (*ndo_uninit)(struct net_device *dev); 1080 * This function is called when device is unregistered or when registration 1081 * fails. It is not called if init fails. 1082 * 1083 * int (*ndo_open)(struct net_device *dev); 1084 * This function is called when a network device transitions to the up 1085 * state. 1086 * 1087 * int (*ndo_stop)(struct net_device *dev); 1088 * This function is called when a network device transitions to the down 1089 * state. 1090 * 1091 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1092 * struct net_device *dev); 1093 * Called when a packet needs to be transmitted. 1094 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1095 * the queue before that can happen; it's for obsolete devices and weird 1096 * corner cases, but the stack really does a non-trivial amount 1097 * of useless work if you return NETDEV_TX_BUSY. 1098 * Required; cannot be NULL. 1099 * 1100 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1101 * struct net_device *dev 1102 * netdev_features_t features); 1103 * Called by core transmit path to determine if device is capable of 1104 * performing offload operations on a given packet. This is to give 1105 * the device an opportunity to implement any restrictions that cannot 1106 * be otherwise expressed by feature flags. The check is called with 1107 * the set of features that the stack has calculated and it returns 1108 * those the driver believes to be appropriate. 1109 * 1110 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1111 * struct net_device *sb_dev); 1112 * Called to decide which queue to use when device supports multiple 1113 * transmit queues. 1114 * 1115 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1116 * This function is called to allow device receiver to make 1117 * changes to configuration when multicast or promiscuous is enabled. 1118 * 1119 * void (*ndo_set_rx_mode)(struct net_device *dev); 1120 * This function is called device changes address list filtering. 1121 * If driver handles unicast address filtering, it should set 1122 * IFF_UNICAST_FLT in its priv_flags. 1123 * 1124 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1125 * This function is called when the Media Access Control address 1126 * needs to be changed. If this interface is not defined, the 1127 * MAC address can not be changed. 1128 * 1129 * int (*ndo_validate_addr)(struct net_device *dev); 1130 * Test if Media Access Control address is valid for the device. 1131 * 1132 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1133 * Old-style ioctl entry point. This is used internally by the 1134 * appletalk and ieee802154 subsystems but is no longer called by 1135 * the device ioctl handler. 1136 * 1137 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1138 * Used by the bonding driver for its device specific ioctls: 1139 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1140 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1141 * 1142 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1143 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1144 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1145 * 1146 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1147 * Used to set network devices bus interface parameters. This interface 1148 * is retained for legacy reasons; new devices should use the bus 1149 * interface (PCI) for low level management. 1150 * 1151 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1152 * Called when a user wants to change the Maximum Transfer Unit 1153 * of a device. 1154 * 1155 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1156 * Callback used when the transmitter has not made any progress 1157 * for dev->watchdog ticks. 1158 * 1159 * void (*ndo_get_stats64)(struct net_device *dev, 1160 * struct rtnl_link_stats64 *storage); 1161 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1162 * Called when a user wants to get the network device usage 1163 * statistics. Drivers must do one of the following: 1164 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1165 * rtnl_link_stats64 structure passed by the caller. 1166 * 2. Define @ndo_get_stats to update a net_device_stats structure 1167 * (which should normally be dev->stats) and return a pointer to 1168 * it. The structure may be changed asynchronously only if each 1169 * field is written atomically. 1170 * 3. Update dev->stats asynchronously and atomically, and define 1171 * neither operation. 1172 * 1173 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1174 * Return true if this device supports offload stats of this attr_id. 1175 * 1176 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1177 * void *attr_data) 1178 * Get statistics for offload operations by attr_id. Write it into the 1179 * attr_data pointer. 1180 * 1181 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1182 * If device supports VLAN filtering this function is called when a 1183 * VLAN id is registered. 1184 * 1185 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1186 * If device supports VLAN filtering this function is called when a 1187 * VLAN id is unregistered. 1188 * 1189 * void (*ndo_poll_controller)(struct net_device *dev); 1190 * 1191 * SR-IOV management functions. 1192 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1193 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1194 * u8 qos, __be16 proto); 1195 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1196 * int max_tx_rate); 1197 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1198 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1199 * int (*ndo_get_vf_config)(struct net_device *dev, 1200 * int vf, struct ifla_vf_info *ivf); 1201 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1202 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1203 * struct nlattr *port[]); 1204 * 1205 * Enable or disable the VF ability to query its RSS Redirection Table and 1206 * Hash Key. This is needed since on some devices VF share this information 1207 * with PF and querying it may introduce a theoretical security risk. 1208 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1209 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1210 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1211 * void *type_data); 1212 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1213 * This is always called from the stack with the rtnl lock held and netif 1214 * tx queues stopped. This allows the netdevice to perform queue 1215 * management safely. 1216 * 1217 * Fiber Channel over Ethernet (FCoE) offload functions. 1218 * int (*ndo_fcoe_enable)(struct net_device *dev); 1219 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1220 * so the underlying device can perform whatever needed configuration or 1221 * initialization to support acceleration of FCoE traffic. 1222 * 1223 * int (*ndo_fcoe_disable)(struct net_device *dev); 1224 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1225 * so the underlying device can perform whatever needed clean-ups to 1226 * stop supporting acceleration of FCoE traffic. 1227 * 1228 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1229 * struct scatterlist *sgl, unsigned int sgc); 1230 * Called when the FCoE Initiator wants to initialize an I/O that 1231 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1232 * perform necessary setup and returns 1 to indicate the device is set up 1233 * successfully to perform DDP on this I/O, otherwise this returns 0. 1234 * 1235 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1236 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1237 * indicated by the FC exchange id 'xid', so the underlying device can 1238 * clean up and reuse resources for later DDP requests. 1239 * 1240 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1241 * struct scatterlist *sgl, unsigned int sgc); 1242 * Called when the FCoE Target wants to initialize an I/O that 1243 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1244 * perform necessary setup and returns 1 to indicate the device is set up 1245 * successfully to perform DDP on this I/O, otherwise this returns 0. 1246 * 1247 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1248 * struct netdev_fcoe_hbainfo *hbainfo); 1249 * Called when the FCoE Protocol stack wants information on the underlying 1250 * device. This information is utilized by the FCoE protocol stack to 1251 * register attributes with Fiber Channel management service as per the 1252 * FC-GS Fabric Device Management Information(FDMI) specification. 1253 * 1254 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1255 * Called when the underlying device wants to override default World Wide 1256 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1257 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1258 * protocol stack to use. 1259 * 1260 * RFS acceleration. 1261 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1262 * u16 rxq_index, u32 flow_id); 1263 * Set hardware filter for RFS. rxq_index is the target queue index; 1264 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1265 * Return the filter ID on success, or a negative error code. 1266 * 1267 * Slave management functions (for bridge, bonding, etc). 1268 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1269 * Called to make another netdev an underling. 1270 * 1271 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1272 * Called to release previously enslaved netdev. 1273 * 1274 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1275 * struct sk_buff *skb, 1276 * bool all_slaves); 1277 * Get the xmit slave of master device. If all_slaves is true, function 1278 * assume all the slaves can transmit. 1279 * 1280 * Feature/offload setting functions. 1281 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1282 * netdev_features_t features); 1283 * Adjusts the requested feature flags according to device-specific 1284 * constraints, and returns the resulting flags. Must not modify 1285 * the device state. 1286 * 1287 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1288 * Called to update device configuration to new features. Passed 1289 * feature set might be less than what was returned by ndo_fix_features()). 1290 * Must return >0 or -errno if it changed dev->features itself. 1291 * 1292 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1293 * struct net_device *dev, 1294 * const unsigned char *addr, u16 vid, u16 flags, 1295 * struct netlink_ext_ack *extack); 1296 * Adds an FDB entry to dev for addr. 1297 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1298 * struct net_device *dev, 1299 * const unsigned char *addr, u16 vid) 1300 * Deletes the FDB entry from dev coresponding to addr. 1301 * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[], 1302 * struct net_device *dev, 1303 * u16 vid, 1304 * struct netlink_ext_ack *extack); 1305 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1306 * struct net_device *dev, struct net_device *filter_dev, 1307 * int *idx) 1308 * Used to add FDB entries to dump requests. Implementers should add 1309 * entries to skb and update idx with the number of entries. 1310 * 1311 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1312 * u16 flags, struct netlink_ext_ack *extack) 1313 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1314 * struct net_device *dev, u32 filter_mask, 1315 * int nlflags) 1316 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1317 * u16 flags); 1318 * 1319 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1320 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1321 * which do not represent real hardware may define this to allow their 1322 * userspace components to manage their virtual carrier state. Devices 1323 * that determine carrier state from physical hardware properties (eg 1324 * network cables) or protocol-dependent mechanisms (eg 1325 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1326 * 1327 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1328 * struct netdev_phys_item_id *ppid); 1329 * Called to get ID of physical port of this device. If driver does 1330 * not implement this, it is assumed that the hw is not able to have 1331 * multiple net devices on single physical port. 1332 * 1333 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1334 * struct netdev_phys_item_id *ppid) 1335 * Called to get the parent ID of the physical port of this device. 1336 * 1337 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1338 * struct net_device *dev) 1339 * Called by upper layer devices to accelerate switching or other 1340 * station functionality into hardware. 'pdev is the lowerdev 1341 * to use for the offload and 'dev' is the net device that will 1342 * back the offload. Returns a pointer to the private structure 1343 * the upper layer will maintain. 1344 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1345 * Called by upper layer device to delete the station created 1346 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1347 * the station and priv is the structure returned by the add 1348 * operation. 1349 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1350 * int queue_index, u32 maxrate); 1351 * Called when a user wants to set a max-rate limitation of specific 1352 * TX queue. 1353 * int (*ndo_get_iflink)(const struct net_device *dev); 1354 * Called to get the iflink value of this device. 1355 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1356 * This function is used to get egress tunnel information for given skb. 1357 * This is useful for retrieving outer tunnel header parameters while 1358 * sampling packet. 1359 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1360 * This function is used to specify the headroom that the skb must 1361 * consider when allocation skb during packet reception. Setting 1362 * appropriate rx headroom value allows avoiding skb head copy on 1363 * forward. Setting a negative value resets the rx headroom to the 1364 * default value. 1365 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1366 * This function is used to set or query state related to XDP on the 1367 * netdevice and manage BPF offload. See definition of 1368 * enum bpf_netdev_command for details. 1369 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1370 * u32 flags); 1371 * This function is used to submit @n XDP packets for transmit on a 1372 * netdevice. Returns number of frames successfully transmitted, frames 1373 * that got dropped are freed/returned via xdp_return_frame(). 1374 * Returns negative number, means general error invoking ndo, meaning 1375 * no frames were xmit'ed and core-caller will free all frames. 1376 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1377 * struct xdp_buff *xdp); 1378 * Get the xmit slave of master device based on the xdp_buff. 1379 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1380 * This function is used to wake up the softirq, ksoftirqd or kthread 1381 * responsible for sending and/or receiving packets on a specific 1382 * queue id bound to an AF_XDP socket. The flags field specifies if 1383 * only RX, only Tx, or both should be woken up using the flags 1384 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1385 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1386 * int cmd); 1387 * Add, change, delete or get information on an IPv4 tunnel. 1388 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1389 * If a device is paired with a peer device, return the peer instance. 1390 * The caller must be under RCU read context. 1391 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1392 * Get the forwarding path to reach the real device from the HW destination address 1393 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1394 * const struct skb_shared_hwtstamps *hwtstamps, 1395 * bool cycles); 1396 * Get hardware timestamp based on normal/adjustable time or free running 1397 * cycle counter. This function is required if physical clock supports a 1398 * free running cycle counter. 1399 */ 1400 struct net_device_ops { 1401 int (*ndo_init)(struct net_device *dev); 1402 void (*ndo_uninit)(struct net_device *dev); 1403 int (*ndo_open)(struct net_device *dev); 1404 int (*ndo_stop)(struct net_device *dev); 1405 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1406 struct net_device *dev); 1407 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1408 struct net_device *dev, 1409 netdev_features_t features); 1410 u16 (*ndo_select_queue)(struct net_device *dev, 1411 struct sk_buff *skb, 1412 struct net_device *sb_dev); 1413 void (*ndo_change_rx_flags)(struct net_device *dev, 1414 int flags); 1415 void (*ndo_set_rx_mode)(struct net_device *dev); 1416 int (*ndo_set_mac_address)(struct net_device *dev, 1417 void *addr); 1418 int (*ndo_validate_addr)(struct net_device *dev); 1419 int (*ndo_do_ioctl)(struct net_device *dev, 1420 struct ifreq *ifr, int cmd); 1421 int (*ndo_eth_ioctl)(struct net_device *dev, 1422 struct ifreq *ifr, int cmd); 1423 int (*ndo_siocbond)(struct net_device *dev, 1424 struct ifreq *ifr, int cmd); 1425 int (*ndo_siocwandev)(struct net_device *dev, 1426 struct if_settings *ifs); 1427 int (*ndo_siocdevprivate)(struct net_device *dev, 1428 struct ifreq *ifr, 1429 void __user *data, int cmd); 1430 int (*ndo_set_config)(struct net_device *dev, 1431 struct ifmap *map); 1432 int (*ndo_change_mtu)(struct net_device *dev, 1433 int new_mtu); 1434 int (*ndo_neigh_setup)(struct net_device *dev, 1435 struct neigh_parms *); 1436 void (*ndo_tx_timeout) (struct net_device *dev, 1437 unsigned int txqueue); 1438 1439 void (*ndo_get_stats64)(struct net_device *dev, 1440 struct rtnl_link_stats64 *storage); 1441 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1442 int (*ndo_get_offload_stats)(int attr_id, 1443 const struct net_device *dev, 1444 void *attr_data); 1445 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1446 1447 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1448 __be16 proto, u16 vid); 1449 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1450 __be16 proto, u16 vid); 1451 #ifdef CONFIG_NET_POLL_CONTROLLER 1452 void (*ndo_poll_controller)(struct net_device *dev); 1453 int (*ndo_netpoll_setup)(struct net_device *dev, 1454 struct netpoll_info *info); 1455 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1456 #endif 1457 int (*ndo_set_vf_mac)(struct net_device *dev, 1458 int queue, u8 *mac); 1459 int (*ndo_set_vf_vlan)(struct net_device *dev, 1460 int queue, u16 vlan, 1461 u8 qos, __be16 proto); 1462 int (*ndo_set_vf_rate)(struct net_device *dev, 1463 int vf, int min_tx_rate, 1464 int max_tx_rate); 1465 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1466 int vf, bool setting); 1467 int (*ndo_set_vf_trust)(struct net_device *dev, 1468 int vf, bool setting); 1469 int (*ndo_get_vf_config)(struct net_device *dev, 1470 int vf, 1471 struct ifla_vf_info *ivf); 1472 int (*ndo_set_vf_link_state)(struct net_device *dev, 1473 int vf, int link_state); 1474 int (*ndo_get_vf_stats)(struct net_device *dev, 1475 int vf, 1476 struct ifla_vf_stats 1477 *vf_stats); 1478 int (*ndo_set_vf_port)(struct net_device *dev, 1479 int vf, 1480 struct nlattr *port[]); 1481 int (*ndo_get_vf_port)(struct net_device *dev, 1482 int vf, struct sk_buff *skb); 1483 int (*ndo_get_vf_guid)(struct net_device *dev, 1484 int vf, 1485 struct ifla_vf_guid *node_guid, 1486 struct ifla_vf_guid *port_guid); 1487 int (*ndo_set_vf_guid)(struct net_device *dev, 1488 int vf, u64 guid, 1489 int guid_type); 1490 int (*ndo_set_vf_rss_query_en)( 1491 struct net_device *dev, 1492 int vf, bool setting); 1493 int (*ndo_setup_tc)(struct net_device *dev, 1494 enum tc_setup_type type, 1495 void *type_data); 1496 #if IS_ENABLED(CONFIG_FCOE) 1497 int (*ndo_fcoe_enable)(struct net_device *dev); 1498 int (*ndo_fcoe_disable)(struct net_device *dev); 1499 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1500 u16 xid, 1501 struct scatterlist *sgl, 1502 unsigned int sgc); 1503 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1504 u16 xid); 1505 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1506 u16 xid, 1507 struct scatterlist *sgl, 1508 unsigned int sgc); 1509 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1510 struct netdev_fcoe_hbainfo *hbainfo); 1511 #endif 1512 1513 #if IS_ENABLED(CONFIG_LIBFCOE) 1514 #define NETDEV_FCOE_WWNN 0 1515 #define NETDEV_FCOE_WWPN 1 1516 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1517 u64 *wwn, int type); 1518 #endif 1519 1520 #ifdef CONFIG_RFS_ACCEL 1521 int (*ndo_rx_flow_steer)(struct net_device *dev, 1522 const struct sk_buff *skb, 1523 u16 rxq_index, 1524 u32 flow_id); 1525 #endif 1526 int (*ndo_add_slave)(struct net_device *dev, 1527 struct net_device *slave_dev, 1528 struct netlink_ext_ack *extack); 1529 int (*ndo_del_slave)(struct net_device *dev, 1530 struct net_device *slave_dev); 1531 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1532 struct sk_buff *skb, 1533 bool all_slaves); 1534 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1535 struct sock *sk); 1536 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1537 netdev_features_t features); 1538 int (*ndo_set_features)(struct net_device *dev, 1539 netdev_features_t features); 1540 int (*ndo_neigh_construct)(struct net_device *dev, 1541 struct neighbour *n); 1542 void (*ndo_neigh_destroy)(struct net_device *dev, 1543 struct neighbour *n); 1544 1545 int (*ndo_fdb_add)(struct ndmsg *ndm, 1546 struct nlattr *tb[], 1547 struct net_device *dev, 1548 const unsigned char *addr, 1549 u16 vid, 1550 u16 flags, 1551 struct netlink_ext_ack *extack); 1552 int (*ndo_fdb_del)(struct ndmsg *ndm, 1553 struct nlattr *tb[], 1554 struct net_device *dev, 1555 const unsigned char *addr, 1556 u16 vid, struct netlink_ext_ack *extack); 1557 int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, 1558 struct nlattr *tb[], 1559 struct net_device *dev, 1560 u16 vid, 1561 struct netlink_ext_ack *extack); 1562 int (*ndo_fdb_dump)(struct sk_buff *skb, 1563 struct netlink_callback *cb, 1564 struct net_device *dev, 1565 struct net_device *filter_dev, 1566 int *idx); 1567 int (*ndo_fdb_get)(struct sk_buff *skb, 1568 struct nlattr *tb[], 1569 struct net_device *dev, 1570 const unsigned char *addr, 1571 u16 vid, u32 portid, u32 seq, 1572 struct netlink_ext_ack *extack); 1573 int (*ndo_bridge_setlink)(struct net_device *dev, 1574 struct nlmsghdr *nlh, 1575 u16 flags, 1576 struct netlink_ext_ack *extack); 1577 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1578 u32 pid, u32 seq, 1579 struct net_device *dev, 1580 u32 filter_mask, 1581 int nlflags); 1582 int (*ndo_bridge_dellink)(struct net_device *dev, 1583 struct nlmsghdr *nlh, 1584 u16 flags); 1585 int (*ndo_change_carrier)(struct net_device *dev, 1586 bool new_carrier); 1587 int (*ndo_get_phys_port_id)(struct net_device *dev, 1588 struct netdev_phys_item_id *ppid); 1589 int (*ndo_get_port_parent_id)(struct net_device *dev, 1590 struct netdev_phys_item_id *ppid); 1591 int (*ndo_get_phys_port_name)(struct net_device *dev, 1592 char *name, size_t len); 1593 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1594 struct net_device *dev); 1595 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1596 void *priv); 1597 1598 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1599 int queue_index, 1600 u32 maxrate); 1601 int (*ndo_get_iflink)(const struct net_device *dev); 1602 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1603 struct sk_buff *skb); 1604 void (*ndo_set_rx_headroom)(struct net_device *dev, 1605 int needed_headroom); 1606 int (*ndo_bpf)(struct net_device *dev, 1607 struct netdev_bpf *bpf); 1608 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1609 struct xdp_frame **xdp, 1610 u32 flags); 1611 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1612 struct xdp_buff *xdp); 1613 int (*ndo_xsk_wakeup)(struct net_device *dev, 1614 u32 queue_id, u32 flags); 1615 int (*ndo_tunnel_ctl)(struct net_device *dev, 1616 struct ip_tunnel_parm *p, int cmd); 1617 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1618 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1619 struct net_device_path *path); 1620 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1621 const struct skb_shared_hwtstamps *hwtstamps, 1622 bool cycles); 1623 }; 1624 1625 struct xdp_metadata_ops { 1626 int (*xmo_rx_timestamp)(const struct xdp_md *ctx, u64 *timestamp); 1627 int (*xmo_rx_hash)(const struct xdp_md *ctx, u32 *hash, 1628 enum xdp_rss_hash_type *rss_type); 1629 }; 1630 1631 /** 1632 * enum netdev_priv_flags - &struct net_device priv_flags 1633 * 1634 * These are the &struct net_device, they are only set internally 1635 * by drivers and used in the kernel. These flags are invisible to 1636 * userspace; this means that the order of these flags can change 1637 * during any kernel release. 1638 * 1639 * You should have a pretty good reason to be extending these flags. 1640 * 1641 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1642 * @IFF_EBRIDGE: Ethernet bridging device 1643 * @IFF_BONDING: bonding master or slave 1644 * @IFF_ISATAP: ISATAP interface (RFC4214) 1645 * @IFF_WAN_HDLC: WAN HDLC device 1646 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1647 * release skb->dst 1648 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1649 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1650 * @IFF_MACVLAN_PORT: device used as macvlan port 1651 * @IFF_BRIDGE_PORT: device used as bridge port 1652 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1653 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1654 * @IFF_UNICAST_FLT: Supports unicast filtering 1655 * @IFF_TEAM_PORT: device used as team port 1656 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1657 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1658 * change when it's running 1659 * @IFF_MACVLAN: Macvlan device 1660 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1661 * underlying stacked devices 1662 * @IFF_L3MDEV_MASTER: device is an L3 master device 1663 * @IFF_NO_QUEUE: device can run without qdisc attached 1664 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1665 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1666 * @IFF_TEAM: device is a team device 1667 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1668 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1669 * entity (i.e. the master device for bridged veth) 1670 * @IFF_MACSEC: device is a MACsec device 1671 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1672 * @IFF_FAILOVER: device is a failover master device 1673 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1674 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1675 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1676 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1677 * skb_headlen(skb) == 0 (data starts from frag0) 1678 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1679 */ 1680 enum netdev_priv_flags { 1681 IFF_802_1Q_VLAN = 1<<0, 1682 IFF_EBRIDGE = 1<<1, 1683 IFF_BONDING = 1<<2, 1684 IFF_ISATAP = 1<<3, 1685 IFF_WAN_HDLC = 1<<4, 1686 IFF_XMIT_DST_RELEASE = 1<<5, 1687 IFF_DONT_BRIDGE = 1<<6, 1688 IFF_DISABLE_NETPOLL = 1<<7, 1689 IFF_MACVLAN_PORT = 1<<8, 1690 IFF_BRIDGE_PORT = 1<<9, 1691 IFF_OVS_DATAPATH = 1<<10, 1692 IFF_TX_SKB_SHARING = 1<<11, 1693 IFF_UNICAST_FLT = 1<<12, 1694 IFF_TEAM_PORT = 1<<13, 1695 IFF_SUPP_NOFCS = 1<<14, 1696 IFF_LIVE_ADDR_CHANGE = 1<<15, 1697 IFF_MACVLAN = 1<<16, 1698 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1699 IFF_L3MDEV_MASTER = 1<<18, 1700 IFF_NO_QUEUE = 1<<19, 1701 IFF_OPENVSWITCH = 1<<20, 1702 IFF_L3MDEV_SLAVE = 1<<21, 1703 IFF_TEAM = 1<<22, 1704 IFF_RXFH_CONFIGURED = 1<<23, 1705 IFF_PHONY_HEADROOM = 1<<24, 1706 IFF_MACSEC = 1<<25, 1707 IFF_NO_RX_HANDLER = 1<<26, 1708 IFF_FAILOVER = 1<<27, 1709 IFF_FAILOVER_SLAVE = 1<<28, 1710 IFF_L3MDEV_RX_HANDLER = 1<<29, 1711 IFF_NO_ADDRCONF = BIT_ULL(30), 1712 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1713 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1714 }; 1715 1716 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1717 #define IFF_EBRIDGE IFF_EBRIDGE 1718 #define IFF_BONDING IFF_BONDING 1719 #define IFF_ISATAP IFF_ISATAP 1720 #define IFF_WAN_HDLC IFF_WAN_HDLC 1721 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1722 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1723 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1724 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1725 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1726 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1727 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1728 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1729 #define IFF_TEAM_PORT IFF_TEAM_PORT 1730 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1731 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1732 #define IFF_MACVLAN IFF_MACVLAN 1733 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1734 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1735 #define IFF_NO_QUEUE IFF_NO_QUEUE 1736 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1737 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1738 #define IFF_TEAM IFF_TEAM 1739 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1740 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1741 #define IFF_MACSEC IFF_MACSEC 1742 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1743 #define IFF_FAILOVER IFF_FAILOVER 1744 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1745 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1746 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1747 1748 /* Specifies the type of the struct net_device::ml_priv pointer */ 1749 enum netdev_ml_priv_type { 1750 ML_PRIV_NONE, 1751 ML_PRIV_CAN, 1752 }; 1753 1754 /** 1755 * struct net_device - The DEVICE structure. 1756 * 1757 * Actually, this whole structure is a big mistake. It mixes I/O 1758 * data with strictly "high-level" data, and it has to know about 1759 * almost every data structure used in the INET module. 1760 * 1761 * @name: This is the first field of the "visible" part of this structure 1762 * (i.e. as seen by users in the "Space.c" file). It is the name 1763 * of the interface. 1764 * 1765 * @name_node: Name hashlist node 1766 * @ifalias: SNMP alias 1767 * @mem_end: Shared memory end 1768 * @mem_start: Shared memory start 1769 * @base_addr: Device I/O address 1770 * @irq: Device IRQ number 1771 * 1772 * @state: Generic network queuing layer state, see netdev_state_t 1773 * @dev_list: The global list of network devices 1774 * @napi_list: List entry used for polling NAPI devices 1775 * @unreg_list: List entry when we are unregistering the 1776 * device; see the function unregister_netdev 1777 * @close_list: List entry used when we are closing the device 1778 * @ptype_all: Device-specific packet handlers for all protocols 1779 * @ptype_specific: Device-specific, protocol-specific packet handlers 1780 * 1781 * @adj_list: Directly linked devices, like slaves for bonding 1782 * @features: Currently active device features 1783 * @hw_features: User-changeable features 1784 * 1785 * @wanted_features: User-requested features 1786 * @vlan_features: Mask of features inheritable by VLAN devices 1787 * 1788 * @hw_enc_features: Mask of features inherited by encapsulating devices 1789 * This field indicates what encapsulation 1790 * offloads the hardware is capable of doing, 1791 * and drivers will need to set them appropriately. 1792 * 1793 * @mpls_features: Mask of features inheritable by MPLS 1794 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1795 * 1796 * @ifindex: interface index 1797 * @group: The group the device belongs to 1798 * 1799 * @stats: Statistics struct, which was left as a legacy, use 1800 * rtnl_link_stats64 instead 1801 * 1802 * @core_stats: core networking counters, 1803 * do not use this in drivers 1804 * @carrier_up_count: Number of times the carrier has been up 1805 * @carrier_down_count: Number of times the carrier has been down 1806 * 1807 * @wireless_handlers: List of functions to handle Wireless Extensions, 1808 * instead of ioctl, 1809 * see <net/iw_handler.h> for details. 1810 * @wireless_data: Instance data managed by the core of wireless extensions 1811 * 1812 * @netdev_ops: Includes several pointers to callbacks, 1813 * if one wants to override the ndo_*() functions 1814 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1815 * @ethtool_ops: Management operations 1816 * @l3mdev_ops: Layer 3 master device operations 1817 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1818 * discovery handling. Necessary for e.g. 6LoWPAN. 1819 * @xfrmdev_ops: Transformation offload operations 1820 * @tlsdev_ops: Transport Layer Security offload operations 1821 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1822 * of Layer 2 headers. 1823 * 1824 * @flags: Interface flags (a la BSD) 1825 * @xdp_features: XDP capability supported by the device 1826 * @priv_flags: Like 'flags' but invisible to userspace, 1827 * see if.h for the definitions 1828 * @gflags: Global flags ( kept as legacy ) 1829 * @padded: How much padding added by alloc_netdev() 1830 * @operstate: RFC2863 operstate 1831 * @link_mode: Mapping policy to operstate 1832 * @if_port: Selectable AUI, TP, ... 1833 * @dma: DMA channel 1834 * @mtu: Interface MTU value 1835 * @min_mtu: Interface Minimum MTU value 1836 * @max_mtu: Interface Maximum MTU value 1837 * @type: Interface hardware type 1838 * @hard_header_len: Maximum hardware header length. 1839 * @min_header_len: Minimum hardware header length 1840 * 1841 * @needed_headroom: Extra headroom the hardware may need, but not in all 1842 * cases can this be guaranteed 1843 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1844 * cases can this be guaranteed. Some cases also use 1845 * LL_MAX_HEADER instead to allocate the skb 1846 * 1847 * interface address info: 1848 * 1849 * @perm_addr: Permanent hw address 1850 * @addr_assign_type: Hw address assignment type 1851 * @addr_len: Hardware address length 1852 * @upper_level: Maximum depth level of upper devices. 1853 * @lower_level: Maximum depth level of lower devices. 1854 * @neigh_priv_len: Used in neigh_alloc() 1855 * @dev_id: Used to differentiate devices that share 1856 * the same link layer address 1857 * @dev_port: Used to differentiate devices that share 1858 * the same function 1859 * @addr_list_lock: XXX: need comments on this one 1860 * @name_assign_type: network interface name assignment type 1861 * @uc_promisc: Counter that indicates promiscuous mode 1862 * has been enabled due to the need to listen to 1863 * additional unicast addresses in a device that 1864 * does not implement ndo_set_rx_mode() 1865 * @uc: unicast mac addresses 1866 * @mc: multicast mac addresses 1867 * @dev_addrs: list of device hw addresses 1868 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1869 * @promiscuity: Number of times the NIC is told to work in 1870 * promiscuous mode; if it becomes 0 the NIC will 1871 * exit promiscuous mode 1872 * @allmulti: Counter, enables or disables allmulticast mode 1873 * 1874 * @vlan_info: VLAN info 1875 * @dsa_ptr: dsa specific data 1876 * @tipc_ptr: TIPC specific data 1877 * @atalk_ptr: AppleTalk link 1878 * @ip_ptr: IPv4 specific data 1879 * @ip6_ptr: IPv6 specific data 1880 * @ax25_ptr: AX.25 specific data 1881 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1882 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1883 * device struct 1884 * @mpls_ptr: mpls_dev struct pointer 1885 * @mctp_ptr: MCTP specific data 1886 * 1887 * @dev_addr: Hw address (before bcast, 1888 * because most packets are unicast) 1889 * 1890 * @_rx: Array of RX queues 1891 * @num_rx_queues: Number of RX queues 1892 * allocated at register_netdev() time 1893 * @real_num_rx_queues: Number of RX queues currently active in device 1894 * @xdp_prog: XDP sockets filter program pointer 1895 * @gro_flush_timeout: timeout for GRO layer in NAPI 1896 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1897 * allow to avoid NIC hard IRQ, on busy queues. 1898 * 1899 * @rx_handler: handler for received packets 1900 * @rx_handler_data: XXX: need comments on this one 1901 * @miniq_ingress: ingress/clsact qdisc specific data for 1902 * ingress processing 1903 * @ingress_queue: XXX: need comments on this one 1904 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1905 * @broadcast: hw bcast address 1906 * 1907 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1908 * indexed by RX queue number. Assigned by driver. 1909 * This must only be set if the ndo_rx_flow_steer 1910 * operation is defined 1911 * @index_hlist: Device index hash chain 1912 * 1913 * @_tx: Array of TX queues 1914 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1915 * @real_num_tx_queues: Number of TX queues currently active in device 1916 * @qdisc: Root qdisc from userspace point of view 1917 * @tx_queue_len: Max frames per queue allowed 1918 * @tx_global_lock: XXX: need comments on this one 1919 * @xdp_bulkq: XDP device bulk queue 1920 * @xps_maps: all CPUs/RXQs maps for XPS device 1921 * 1922 * @xps_maps: XXX: need comments on this one 1923 * @miniq_egress: clsact qdisc specific data for 1924 * egress processing 1925 * @nf_hooks_egress: netfilter hooks executed for egress packets 1926 * @qdisc_hash: qdisc hash table 1927 * @watchdog_timeo: Represents the timeout that is used by 1928 * the watchdog (see dev_watchdog()) 1929 * @watchdog_timer: List of timers 1930 * 1931 * @proto_down_reason: reason a netdev interface is held down 1932 * @pcpu_refcnt: Number of references to this device 1933 * @dev_refcnt: Number of references to this device 1934 * @refcnt_tracker: Tracker directory for tracked references to this device 1935 * @todo_list: Delayed register/unregister 1936 * @link_watch_list: XXX: need comments on this one 1937 * 1938 * @reg_state: Register/unregister state machine 1939 * @dismantle: Device is going to be freed 1940 * @rtnl_link_state: This enum represents the phases of creating 1941 * a new link 1942 * 1943 * @needs_free_netdev: Should unregister perform free_netdev? 1944 * @priv_destructor: Called from unregister 1945 * @npinfo: XXX: need comments on this one 1946 * @nd_net: Network namespace this network device is inside 1947 * 1948 * @ml_priv: Mid-layer private 1949 * @ml_priv_type: Mid-layer private type 1950 * @lstats: Loopback statistics 1951 * @tstats: Tunnel statistics 1952 * @dstats: Dummy statistics 1953 * @vstats: Virtual ethernet statistics 1954 * 1955 * @garp_port: GARP 1956 * @mrp_port: MRP 1957 * 1958 * @dm_private: Drop monitor private 1959 * 1960 * @dev: Class/net/name entry 1961 * @sysfs_groups: Space for optional device, statistics and wireless 1962 * sysfs groups 1963 * 1964 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1965 * @rtnl_link_ops: Rtnl_link_ops 1966 * 1967 * @gso_max_size: Maximum size of generic segmentation offload 1968 * @tso_max_size: Device (as in HW) limit on the max TSO request size 1969 * @gso_max_segs: Maximum number of segments that can be passed to the 1970 * NIC for GSO 1971 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 1972 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 1973 * for IPv4. 1974 * 1975 * @dcbnl_ops: Data Center Bridging netlink ops 1976 * @num_tc: Number of traffic classes in the net device 1977 * @tc_to_txq: XXX: need comments on this one 1978 * @prio_tc_map: XXX: need comments on this one 1979 * 1980 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1981 * 1982 * @priomap: XXX: need comments on this one 1983 * @phydev: Physical device may attach itself 1984 * for hardware timestamping 1985 * @sfp_bus: attached &struct sfp_bus structure. 1986 * 1987 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1988 * 1989 * @proto_down: protocol port state information can be sent to the 1990 * switch driver and used to set the phys state of the 1991 * switch port. 1992 * 1993 * @wol_enabled: Wake-on-LAN is enabled 1994 * 1995 * @threaded: napi threaded mode is enabled 1996 * 1997 * @net_notifier_list: List of per-net netdev notifier block 1998 * that follow this device when it is moved 1999 * to another network namespace. 2000 * 2001 * @macsec_ops: MACsec offloading ops 2002 * 2003 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 2004 * offload capabilities of the device 2005 * @udp_tunnel_nic: UDP tunnel offload state 2006 * @xdp_state: stores info on attached XDP BPF programs 2007 * 2008 * @nested_level: Used as a parameter of spin_lock_nested() of 2009 * dev->addr_list_lock. 2010 * @unlink_list: As netif_addr_lock() can be called recursively, 2011 * keep a list of interfaces to be deleted. 2012 * @gro_max_size: Maximum size of aggregated packet in generic 2013 * receive offload (GRO) 2014 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2015 * receive offload (GRO), for IPv4. 2016 * 2017 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2018 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2019 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2020 * @dev_registered_tracker: tracker for reference held while 2021 * registered 2022 * @offload_xstats_l3: L3 HW stats for this netdevice. 2023 * 2024 * @devlink_port: Pointer to related devlink port structure. 2025 * Assigned by a driver before netdev registration using 2026 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2027 * during the time netdevice is registered. 2028 * 2029 * FIXME: cleanup struct net_device such that network protocol info 2030 * moves out. 2031 */ 2032 2033 struct net_device { 2034 char name[IFNAMSIZ]; 2035 struct netdev_name_node *name_node; 2036 struct dev_ifalias __rcu *ifalias; 2037 /* 2038 * I/O specific fields 2039 * FIXME: Merge these and struct ifmap into one 2040 */ 2041 unsigned long mem_end; 2042 unsigned long mem_start; 2043 unsigned long base_addr; 2044 2045 /* 2046 * Some hardware also needs these fields (state,dev_list, 2047 * napi_list,unreg_list,close_list) but they are not 2048 * part of the usual set specified in Space.c. 2049 */ 2050 2051 unsigned long state; 2052 2053 struct list_head dev_list; 2054 struct list_head napi_list; 2055 struct list_head unreg_list; 2056 struct list_head close_list; 2057 struct list_head ptype_all; 2058 struct list_head ptype_specific; 2059 2060 struct { 2061 struct list_head upper; 2062 struct list_head lower; 2063 } adj_list; 2064 2065 /* Read-mostly cache-line for fast-path access */ 2066 unsigned int flags; 2067 xdp_features_t xdp_features; 2068 unsigned long long priv_flags; 2069 const struct net_device_ops *netdev_ops; 2070 const struct xdp_metadata_ops *xdp_metadata_ops; 2071 int ifindex; 2072 unsigned short gflags; 2073 unsigned short hard_header_len; 2074 2075 /* Note : dev->mtu is often read without holding a lock. 2076 * Writers usually hold RTNL. 2077 * It is recommended to use READ_ONCE() to annotate the reads, 2078 * and to use WRITE_ONCE() to annotate the writes. 2079 */ 2080 unsigned int mtu; 2081 unsigned short needed_headroom; 2082 unsigned short needed_tailroom; 2083 2084 netdev_features_t features; 2085 netdev_features_t hw_features; 2086 netdev_features_t wanted_features; 2087 netdev_features_t vlan_features; 2088 netdev_features_t hw_enc_features; 2089 netdev_features_t mpls_features; 2090 netdev_features_t gso_partial_features; 2091 2092 unsigned int min_mtu; 2093 unsigned int max_mtu; 2094 unsigned short type; 2095 unsigned char min_header_len; 2096 unsigned char name_assign_type; 2097 2098 int group; 2099 2100 struct net_device_stats stats; /* not used by modern drivers */ 2101 2102 struct net_device_core_stats __percpu *core_stats; 2103 2104 /* Stats to monitor link on/off, flapping */ 2105 atomic_t carrier_up_count; 2106 atomic_t carrier_down_count; 2107 2108 #ifdef CONFIG_WIRELESS_EXT 2109 const struct iw_handler_def *wireless_handlers; 2110 struct iw_public_data *wireless_data; 2111 #endif 2112 const struct ethtool_ops *ethtool_ops; 2113 #ifdef CONFIG_NET_L3_MASTER_DEV 2114 const struct l3mdev_ops *l3mdev_ops; 2115 #endif 2116 #if IS_ENABLED(CONFIG_IPV6) 2117 const struct ndisc_ops *ndisc_ops; 2118 #endif 2119 2120 #ifdef CONFIG_XFRM_OFFLOAD 2121 const struct xfrmdev_ops *xfrmdev_ops; 2122 #endif 2123 2124 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2125 const struct tlsdev_ops *tlsdev_ops; 2126 #endif 2127 2128 const struct header_ops *header_ops; 2129 2130 unsigned char operstate; 2131 unsigned char link_mode; 2132 2133 unsigned char if_port; 2134 unsigned char dma; 2135 2136 /* Interface address info. */ 2137 unsigned char perm_addr[MAX_ADDR_LEN]; 2138 unsigned char addr_assign_type; 2139 unsigned char addr_len; 2140 unsigned char upper_level; 2141 unsigned char lower_level; 2142 2143 unsigned short neigh_priv_len; 2144 unsigned short dev_id; 2145 unsigned short dev_port; 2146 unsigned short padded; 2147 2148 spinlock_t addr_list_lock; 2149 int irq; 2150 2151 struct netdev_hw_addr_list uc; 2152 struct netdev_hw_addr_list mc; 2153 struct netdev_hw_addr_list dev_addrs; 2154 2155 #ifdef CONFIG_SYSFS 2156 struct kset *queues_kset; 2157 #endif 2158 #ifdef CONFIG_LOCKDEP 2159 struct list_head unlink_list; 2160 #endif 2161 unsigned int promiscuity; 2162 unsigned int allmulti; 2163 bool uc_promisc; 2164 #ifdef CONFIG_LOCKDEP 2165 unsigned char nested_level; 2166 #endif 2167 2168 2169 /* Protocol-specific pointers */ 2170 2171 struct in_device __rcu *ip_ptr; 2172 struct inet6_dev __rcu *ip6_ptr; 2173 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2174 struct vlan_info __rcu *vlan_info; 2175 #endif 2176 #if IS_ENABLED(CONFIG_NET_DSA) 2177 struct dsa_port *dsa_ptr; 2178 #endif 2179 #if IS_ENABLED(CONFIG_TIPC) 2180 struct tipc_bearer __rcu *tipc_ptr; 2181 #endif 2182 #if IS_ENABLED(CONFIG_ATALK) 2183 void *atalk_ptr; 2184 #endif 2185 #if IS_ENABLED(CONFIG_AX25) 2186 void *ax25_ptr; 2187 #endif 2188 #if IS_ENABLED(CONFIG_CFG80211) 2189 struct wireless_dev *ieee80211_ptr; 2190 #endif 2191 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2192 struct wpan_dev *ieee802154_ptr; 2193 #endif 2194 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2195 struct mpls_dev __rcu *mpls_ptr; 2196 #endif 2197 #if IS_ENABLED(CONFIG_MCTP) 2198 struct mctp_dev __rcu *mctp_ptr; 2199 #endif 2200 2201 /* 2202 * Cache lines mostly used on receive path (including eth_type_trans()) 2203 */ 2204 /* Interface address info used in eth_type_trans() */ 2205 const unsigned char *dev_addr; 2206 2207 struct netdev_rx_queue *_rx; 2208 unsigned int num_rx_queues; 2209 unsigned int real_num_rx_queues; 2210 2211 struct bpf_prog __rcu *xdp_prog; 2212 unsigned long gro_flush_timeout; 2213 int napi_defer_hard_irqs; 2214 #define GRO_LEGACY_MAX_SIZE 65536u 2215 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2216 * and shinfo->gso_segs is a 16bit field. 2217 */ 2218 #define GRO_MAX_SIZE (8 * 65535u) 2219 unsigned int gro_max_size; 2220 unsigned int gro_ipv4_max_size; 2221 rx_handler_func_t __rcu *rx_handler; 2222 void __rcu *rx_handler_data; 2223 2224 #ifdef CONFIG_NET_CLS_ACT 2225 struct mini_Qdisc __rcu *miniq_ingress; 2226 #endif 2227 struct netdev_queue __rcu *ingress_queue; 2228 #ifdef CONFIG_NETFILTER_INGRESS 2229 struct nf_hook_entries __rcu *nf_hooks_ingress; 2230 #endif 2231 2232 unsigned char broadcast[MAX_ADDR_LEN]; 2233 #ifdef CONFIG_RFS_ACCEL 2234 struct cpu_rmap *rx_cpu_rmap; 2235 #endif 2236 struct hlist_node index_hlist; 2237 2238 /* 2239 * Cache lines mostly used on transmit path 2240 */ 2241 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2242 unsigned int num_tx_queues; 2243 unsigned int real_num_tx_queues; 2244 struct Qdisc __rcu *qdisc; 2245 unsigned int tx_queue_len; 2246 spinlock_t tx_global_lock; 2247 2248 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2249 2250 #ifdef CONFIG_XPS 2251 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2252 #endif 2253 #ifdef CONFIG_NET_CLS_ACT 2254 struct mini_Qdisc __rcu *miniq_egress; 2255 #endif 2256 #ifdef CONFIG_NETFILTER_EGRESS 2257 struct nf_hook_entries __rcu *nf_hooks_egress; 2258 #endif 2259 2260 #ifdef CONFIG_NET_SCHED 2261 DECLARE_HASHTABLE (qdisc_hash, 4); 2262 #endif 2263 /* These may be needed for future network-power-down code. */ 2264 struct timer_list watchdog_timer; 2265 int watchdog_timeo; 2266 2267 u32 proto_down_reason; 2268 2269 struct list_head todo_list; 2270 2271 #ifdef CONFIG_PCPU_DEV_REFCNT 2272 int __percpu *pcpu_refcnt; 2273 #else 2274 refcount_t dev_refcnt; 2275 #endif 2276 struct ref_tracker_dir refcnt_tracker; 2277 2278 struct list_head link_watch_list; 2279 2280 enum { NETREG_UNINITIALIZED=0, 2281 NETREG_REGISTERED, /* completed register_netdevice */ 2282 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2283 NETREG_UNREGISTERED, /* completed unregister todo */ 2284 NETREG_RELEASED, /* called free_netdev */ 2285 NETREG_DUMMY, /* dummy device for NAPI poll */ 2286 } reg_state:8; 2287 2288 bool dismantle; 2289 2290 enum { 2291 RTNL_LINK_INITIALIZED, 2292 RTNL_LINK_INITIALIZING, 2293 } rtnl_link_state:16; 2294 2295 bool needs_free_netdev; 2296 void (*priv_destructor)(struct net_device *dev); 2297 2298 #ifdef CONFIG_NETPOLL 2299 struct netpoll_info __rcu *npinfo; 2300 #endif 2301 2302 possible_net_t nd_net; 2303 2304 /* mid-layer private */ 2305 void *ml_priv; 2306 enum netdev_ml_priv_type ml_priv_type; 2307 2308 union { 2309 struct pcpu_lstats __percpu *lstats; 2310 struct pcpu_sw_netstats __percpu *tstats; 2311 struct pcpu_dstats __percpu *dstats; 2312 }; 2313 2314 #if IS_ENABLED(CONFIG_GARP) 2315 struct garp_port __rcu *garp_port; 2316 #endif 2317 #if IS_ENABLED(CONFIG_MRP) 2318 struct mrp_port __rcu *mrp_port; 2319 #endif 2320 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2321 struct dm_hw_stat_delta __rcu *dm_private; 2322 #endif 2323 struct device dev; 2324 const struct attribute_group *sysfs_groups[4]; 2325 const struct attribute_group *sysfs_rx_queue_group; 2326 2327 const struct rtnl_link_ops *rtnl_link_ops; 2328 2329 /* for setting kernel sock attribute on TCP connection setup */ 2330 #define GSO_MAX_SEGS 65535u 2331 #define GSO_LEGACY_MAX_SIZE 65536u 2332 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2333 * and shinfo->gso_segs is a 16bit field. 2334 */ 2335 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2336 2337 unsigned int gso_max_size; 2338 #define TSO_LEGACY_MAX_SIZE 65536 2339 #define TSO_MAX_SIZE UINT_MAX 2340 unsigned int tso_max_size; 2341 u16 gso_max_segs; 2342 #define TSO_MAX_SEGS U16_MAX 2343 u16 tso_max_segs; 2344 unsigned int gso_ipv4_max_size; 2345 2346 #ifdef CONFIG_DCB 2347 const struct dcbnl_rtnl_ops *dcbnl_ops; 2348 #endif 2349 s16 num_tc; 2350 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2351 u8 prio_tc_map[TC_BITMASK + 1]; 2352 2353 #if IS_ENABLED(CONFIG_FCOE) 2354 unsigned int fcoe_ddp_xid; 2355 #endif 2356 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2357 struct netprio_map __rcu *priomap; 2358 #endif 2359 struct phy_device *phydev; 2360 struct sfp_bus *sfp_bus; 2361 struct lock_class_key *qdisc_tx_busylock; 2362 bool proto_down; 2363 unsigned wol_enabled:1; 2364 unsigned threaded:1; 2365 2366 struct list_head net_notifier_list; 2367 2368 #if IS_ENABLED(CONFIG_MACSEC) 2369 /* MACsec management functions */ 2370 const struct macsec_ops *macsec_ops; 2371 #endif 2372 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2373 struct udp_tunnel_nic *udp_tunnel_nic; 2374 2375 /* protected by rtnl_lock */ 2376 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2377 2378 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2379 netdevice_tracker linkwatch_dev_tracker; 2380 netdevice_tracker watchdog_dev_tracker; 2381 netdevice_tracker dev_registered_tracker; 2382 struct rtnl_hw_stats64 *offload_xstats_l3; 2383 2384 struct devlink_port *devlink_port; 2385 }; 2386 #define to_net_dev(d) container_of(d, struct net_device, dev) 2387 2388 /* 2389 * Driver should use this to assign devlink port instance to a netdevice 2390 * before it registers the netdevice. Therefore devlink_port is static 2391 * during the netdev lifetime after it is registered. 2392 */ 2393 #define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2394 ({ \ 2395 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2396 ((dev)->devlink_port = (port)); \ 2397 }) 2398 2399 static inline bool netif_elide_gro(const struct net_device *dev) 2400 { 2401 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2402 return true; 2403 return false; 2404 } 2405 2406 #define NETDEV_ALIGN 32 2407 2408 static inline 2409 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2410 { 2411 return dev->prio_tc_map[prio & TC_BITMASK]; 2412 } 2413 2414 static inline 2415 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2416 { 2417 if (tc >= dev->num_tc) 2418 return -EINVAL; 2419 2420 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2421 return 0; 2422 } 2423 2424 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2425 void netdev_reset_tc(struct net_device *dev); 2426 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2427 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2428 2429 static inline 2430 int netdev_get_num_tc(struct net_device *dev) 2431 { 2432 return dev->num_tc; 2433 } 2434 2435 static inline void net_prefetch(void *p) 2436 { 2437 prefetch(p); 2438 #if L1_CACHE_BYTES < 128 2439 prefetch((u8 *)p + L1_CACHE_BYTES); 2440 #endif 2441 } 2442 2443 static inline void net_prefetchw(void *p) 2444 { 2445 prefetchw(p); 2446 #if L1_CACHE_BYTES < 128 2447 prefetchw((u8 *)p + L1_CACHE_BYTES); 2448 #endif 2449 } 2450 2451 void netdev_unbind_sb_channel(struct net_device *dev, 2452 struct net_device *sb_dev); 2453 int netdev_bind_sb_channel_queue(struct net_device *dev, 2454 struct net_device *sb_dev, 2455 u8 tc, u16 count, u16 offset); 2456 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2457 static inline int netdev_get_sb_channel(struct net_device *dev) 2458 { 2459 return max_t(int, -dev->num_tc, 0); 2460 } 2461 2462 static inline 2463 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2464 unsigned int index) 2465 { 2466 return &dev->_tx[index]; 2467 } 2468 2469 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2470 const struct sk_buff *skb) 2471 { 2472 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2473 } 2474 2475 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2476 void (*f)(struct net_device *, 2477 struct netdev_queue *, 2478 void *), 2479 void *arg) 2480 { 2481 unsigned int i; 2482 2483 for (i = 0; i < dev->num_tx_queues; i++) 2484 f(dev, &dev->_tx[i], arg); 2485 } 2486 2487 #define netdev_lockdep_set_classes(dev) \ 2488 { \ 2489 static struct lock_class_key qdisc_tx_busylock_key; \ 2490 static struct lock_class_key qdisc_xmit_lock_key; \ 2491 static struct lock_class_key dev_addr_list_lock_key; \ 2492 unsigned int i; \ 2493 \ 2494 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2495 lockdep_set_class(&(dev)->addr_list_lock, \ 2496 &dev_addr_list_lock_key); \ 2497 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2498 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2499 &qdisc_xmit_lock_key); \ 2500 } 2501 2502 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2503 struct net_device *sb_dev); 2504 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2505 struct sk_buff *skb, 2506 struct net_device *sb_dev); 2507 2508 /* returns the headroom that the master device needs to take in account 2509 * when forwarding to this dev 2510 */ 2511 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2512 { 2513 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2514 } 2515 2516 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2517 { 2518 if (dev->netdev_ops->ndo_set_rx_headroom) 2519 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2520 } 2521 2522 /* set the device rx headroom to the dev's default */ 2523 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2524 { 2525 netdev_set_rx_headroom(dev, -1); 2526 } 2527 2528 static inline void *netdev_get_ml_priv(struct net_device *dev, 2529 enum netdev_ml_priv_type type) 2530 { 2531 if (dev->ml_priv_type != type) 2532 return NULL; 2533 2534 return dev->ml_priv; 2535 } 2536 2537 static inline void netdev_set_ml_priv(struct net_device *dev, 2538 void *ml_priv, 2539 enum netdev_ml_priv_type type) 2540 { 2541 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2542 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2543 dev->ml_priv_type, type); 2544 WARN(!dev->ml_priv_type && dev->ml_priv, 2545 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2546 2547 dev->ml_priv = ml_priv; 2548 dev->ml_priv_type = type; 2549 } 2550 2551 /* 2552 * Net namespace inlines 2553 */ 2554 static inline 2555 struct net *dev_net(const struct net_device *dev) 2556 { 2557 return read_pnet(&dev->nd_net); 2558 } 2559 2560 static inline 2561 void dev_net_set(struct net_device *dev, struct net *net) 2562 { 2563 write_pnet(&dev->nd_net, net); 2564 } 2565 2566 /** 2567 * netdev_priv - access network device private data 2568 * @dev: network device 2569 * 2570 * Get network device private data 2571 */ 2572 static inline void *netdev_priv(const struct net_device *dev) 2573 { 2574 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2575 } 2576 2577 /* Set the sysfs physical device reference for the network logical device 2578 * if set prior to registration will cause a symlink during initialization. 2579 */ 2580 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2581 2582 /* Set the sysfs device type for the network logical device to allow 2583 * fine-grained identification of different network device types. For 2584 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2585 */ 2586 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2587 2588 /* Default NAPI poll() weight 2589 * Device drivers are strongly advised to not use bigger value 2590 */ 2591 #define NAPI_POLL_WEIGHT 64 2592 2593 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2594 int (*poll)(struct napi_struct *, int), int weight); 2595 2596 /** 2597 * netif_napi_add() - initialize a NAPI context 2598 * @dev: network device 2599 * @napi: NAPI context 2600 * @poll: polling function 2601 * 2602 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2603 * *any* of the other NAPI-related functions. 2604 */ 2605 static inline void 2606 netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2607 int (*poll)(struct napi_struct *, int)) 2608 { 2609 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2610 } 2611 2612 static inline void 2613 netif_napi_add_tx_weight(struct net_device *dev, 2614 struct napi_struct *napi, 2615 int (*poll)(struct napi_struct *, int), 2616 int weight) 2617 { 2618 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2619 netif_napi_add_weight(dev, napi, poll, weight); 2620 } 2621 2622 /** 2623 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2624 * @dev: network device 2625 * @napi: NAPI context 2626 * @poll: polling function 2627 * 2628 * This variant of netif_napi_add() should be used from drivers using NAPI 2629 * to exclusively poll a TX queue. 2630 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2631 */ 2632 static inline void netif_napi_add_tx(struct net_device *dev, 2633 struct napi_struct *napi, 2634 int (*poll)(struct napi_struct *, int)) 2635 { 2636 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2637 } 2638 2639 /** 2640 * __netif_napi_del - remove a NAPI context 2641 * @napi: NAPI context 2642 * 2643 * Warning: caller must observe RCU grace period before freeing memory 2644 * containing @napi. Drivers might want to call this helper to combine 2645 * all the needed RCU grace periods into a single one. 2646 */ 2647 void __netif_napi_del(struct napi_struct *napi); 2648 2649 /** 2650 * netif_napi_del - remove a NAPI context 2651 * @napi: NAPI context 2652 * 2653 * netif_napi_del() removes a NAPI context from the network device NAPI list 2654 */ 2655 static inline void netif_napi_del(struct napi_struct *napi) 2656 { 2657 __netif_napi_del(napi); 2658 synchronize_net(); 2659 } 2660 2661 struct packet_type { 2662 __be16 type; /* This is really htons(ether_type). */ 2663 bool ignore_outgoing; 2664 struct net_device *dev; /* NULL is wildcarded here */ 2665 netdevice_tracker dev_tracker; 2666 int (*func) (struct sk_buff *, 2667 struct net_device *, 2668 struct packet_type *, 2669 struct net_device *); 2670 void (*list_func) (struct list_head *, 2671 struct packet_type *, 2672 struct net_device *); 2673 bool (*id_match)(struct packet_type *ptype, 2674 struct sock *sk); 2675 struct net *af_packet_net; 2676 void *af_packet_priv; 2677 struct list_head list; 2678 }; 2679 2680 struct offload_callbacks { 2681 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2682 netdev_features_t features); 2683 struct sk_buff *(*gro_receive)(struct list_head *head, 2684 struct sk_buff *skb); 2685 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2686 }; 2687 2688 struct packet_offload { 2689 __be16 type; /* This is really htons(ether_type). */ 2690 u16 priority; 2691 struct offload_callbacks callbacks; 2692 struct list_head list; 2693 }; 2694 2695 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2696 struct pcpu_sw_netstats { 2697 u64_stats_t rx_packets; 2698 u64_stats_t rx_bytes; 2699 u64_stats_t tx_packets; 2700 u64_stats_t tx_bytes; 2701 struct u64_stats_sync syncp; 2702 } __aligned(4 * sizeof(u64)); 2703 2704 struct pcpu_lstats { 2705 u64_stats_t packets; 2706 u64_stats_t bytes; 2707 struct u64_stats_sync syncp; 2708 } __aligned(2 * sizeof(u64)); 2709 2710 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2711 2712 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2713 { 2714 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2715 2716 u64_stats_update_begin(&tstats->syncp); 2717 u64_stats_add(&tstats->rx_bytes, len); 2718 u64_stats_inc(&tstats->rx_packets); 2719 u64_stats_update_end(&tstats->syncp); 2720 } 2721 2722 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2723 unsigned int packets, 2724 unsigned int len) 2725 { 2726 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2727 2728 u64_stats_update_begin(&tstats->syncp); 2729 u64_stats_add(&tstats->tx_bytes, len); 2730 u64_stats_add(&tstats->tx_packets, packets); 2731 u64_stats_update_end(&tstats->syncp); 2732 } 2733 2734 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2735 { 2736 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2737 2738 u64_stats_update_begin(&lstats->syncp); 2739 u64_stats_add(&lstats->bytes, len); 2740 u64_stats_inc(&lstats->packets); 2741 u64_stats_update_end(&lstats->syncp); 2742 } 2743 2744 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2745 ({ \ 2746 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2747 if (pcpu_stats) { \ 2748 int __cpu; \ 2749 for_each_possible_cpu(__cpu) { \ 2750 typeof(type) *stat; \ 2751 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2752 u64_stats_init(&stat->syncp); \ 2753 } \ 2754 } \ 2755 pcpu_stats; \ 2756 }) 2757 2758 #define netdev_alloc_pcpu_stats(type) \ 2759 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2760 2761 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2762 ({ \ 2763 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2764 if (pcpu_stats) { \ 2765 int __cpu; \ 2766 for_each_possible_cpu(__cpu) { \ 2767 typeof(type) *stat; \ 2768 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2769 u64_stats_init(&stat->syncp); \ 2770 } \ 2771 } \ 2772 pcpu_stats; \ 2773 }) 2774 2775 enum netdev_lag_tx_type { 2776 NETDEV_LAG_TX_TYPE_UNKNOWN, 2777 NETDEV_LAG_TX_TYPE_RANDOM, 2778 NETDEV_LAG_TX_TYPE_BROADCAST, 2779 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2780 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2781 NETDEV_LAG_TX_TYPE_HASH, 2782 }; 2783 2784 enum netdev_lag_hash { 2785 NETDEV_LAG_HASH_NONE, 2786 NETDEV_LAG_HASH_L2, 2787 NETDEV_LAG_HASH_L34, 2788 NETDEV_LAG_HASH_L23, 2789 NETDEV_LAG_HASH_E23, 2790 NETDEV_LAG_HASH_E34, 2791 NETDEV_LAG_HASH_VLAN_SRCMAC, 2792 NETDEV_LAG_HASH_UNKNOWN, 2793 }; 2794 2795 struct netdev_lag_upper_info { 2796 enum netdev_lag_tx_type tx_type; 2797 enum netdev_lag_hash hash_type; 2798 }; 2799 2800 struct netdev_lag_lower_state_info { 2801 u8 link_up : 1, 2802 tx_enabled : 1; 2803 }; 2804 2805 #include <linux/notifier.h> 2806 2807 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2808 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2809 * adding new types. 2810 */ 2811 enum netdev_cmd { 2812 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2813 NETDEV_DOWN, 2814 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2815 detected a hardware crash and restarted 2816 - we can use this eg to kick tcp sessions 2817 once done */ 2818 NETDEV_CHANGE, /* Notify device state change */ 2819 NETDEV_REGISTER, 2820 NETDEV_UNREGISTER, 2821 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2822 NETDEV_CHANGEADDR, /* notify after the address change */ 2823 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2824 NETDEV_GOING_DOWN, 2825 NETDEV_CHANGENAME, 2826 NETDEV_FEAT_CHANGE, 2827 NETDEV_BONDING_FAILOVER, 2828 NETDEV_PRE_UP, 2829 NETDEV_PRE_TYPE_CHANGE, 2830 NETDEV_POST_TYPE_CHANGE, 2831 NETDEV_POST_INIT, 2832 NETDEV_PRE_UNINIT, 2833 NETDEV_RELEASE, 2834 NETDEV_NOTIFY_PEERS, 2835 NETDEV_JOIN, 2836 NETDEV_CHANGEUPPER, 2837 NETDEV_RESEND_IGMP, 2838 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2839 NETDEV_CHANGEINFODATA, 2840 NETDEV_BONDING_INFO, 2841 NETDEV_PRECHANGEUPPER, 2842 NETDEV_CHANGELOWERSTATE, 2843 NETDEV_UDP_TUNNEL_PUSH_INFO, 2844 NETDEV_UDP_TUNNEL_DROP_INFO, 2845 NETDEV_CHANGE_TX_QUEUE_LEN, 2846 NETDEV_CVLAN_FILTER_PUSH_INFO, 2847 NETDEV_CVLAN_FILTER_DROP_INFO, 2848 NETDEV_SVLAN_FILTER_PUSH_INFO, 2849 NETDEV_SVLAN_FILTER_DROP_INFO, 2850 NETDEV_OFFLOAD_XSTATS_ENABLE, 2851 NETDEV_OFFLOAD_XSTATS_DISABLE, 2852 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2853 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2854 NETDEV_XDP_FEAT_CHANGE, 2855 }; 2856 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2857 2858 int register_netdevice_notifier(struct notifier_block *nb); 2859 int unregister_netdevice_notifier(struct notifier_block *nb); 2860 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2861 int unregister_netdevice_notifier_net(struct net *net, 2862 struct notifier_block *nb); 2863 int register_netdevice_notifier_dev_net(struct net_device *dev, 2864 struct notifier_block *nb, 2865 struct netdev_net_notifier *nn); 2866 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2867 struct notifier_block *nb, 2868 struct netdev_net_notifier *nn); 2869 2870 struct netdev_notifier_info { 2871 struct net_device *dev; 2872 struct netlink_ext_ack *extack; 2873 }; 2874 2875 struct netdev_notifier_info_ext { 2876 struct netdev_notifier_info info; /* must be first */ 2877 union { 2878 u32 mtu; 2879 } ext; 2880 }; 2881 2882 struct netdev_notifier_change_info { 2883 struct netdev_notifier_info info; /* must be first */ 2884 unsigned int flags_changed; 2885 }; 2886 2887 struct netdev_notifier_changeupper_info { 2888 struct netdev_notifier_info info; /* must be first */ 2889 struct net_device *upper_dev; /* new upper dev */ 2890 bool master; /* is upper dev master */ 2891 bool linking; /* is the notification for link or unlink */ 2892 void *upper_info; /* upper dev info */ 2893 }; 2894 2895 struct netdev_notifier_changelowerstate_info { 2896 struct netdev_notifier_info info; /* must be first */ 2897 void *lower_state_info; /* is lower dev state */ 2898 }; 2899 2900 struct netdev_notifier_pre_changeaddr_info { 2901 struct netdev_notifier_info info; /* must be first */ 2902 const unsigned char *dev_addr; 2903 }; 2904 2905 enum netdev_offload_xstats_type { 2906 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2907 }; 2908 2909 struct netdev_notifier_offload_xstats_info { 2910 struct netdev_notifier_info info; /* must be first */ 2911 enum netdev_offload_xstats_type type; 2912 2913 union { 2914 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2915 struct netdev_notifier_offload_xstats_rd *report_delta; 2916 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2917 struct netdev_notifier_offload_xstats_ru *report_used; 2918 }; 2919 }; 2920 2921 int netdev_offload_xstats_enable(struct net_device *dev, 2922 enum netdev_offload_xstats_type type, 2923 struct netlink_ext_ack *extack); 2924 int netdev_offload_xstats_disable(struct net_device *dev, 2925 enum netdev_offload_xstats_type type); 2926 bool netdev_offload_xstats_enabled(const struct net_device *dev, 2927 enum netdev_offload_xstats_type type); 2928 int netdev_offload_xstats_get(struct net_device *dev, 2929 enum netdev_offload_xstats_type type, 2930 struct rtnl_hw_stats64 *stats, bool *used, 2931 struct netlink_ext_ack *extack); 2932 void 2933 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 2934 const struct rtnl_hw_stats64 *stats); 2935 void 2936 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 2937 void netdev_offload_xstats_push_delta(struct net_device *dev, 2938 enum netdev_offload_xstats_type type, 2939 const struct rtnl_hw_stats64 *stats); 2940 2941 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2942 struct net_device *dev) 2943 { 2944 info->dev = dev; 2945 info->extack = NULL; 2946 } 2947 2948 static inline struct net_device * 2949 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2950 { 2951 return info->dev; 2952 } 2953 2954 static inline struct netlink_ext_ack * 2955 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2956 { 2957 return info->extack; 2958 } 2959 2960 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2961 2962 2963 extern rwlock_t dev_base_lock; /* Device list lock */ 2964 2965 #define for_each_netdev(net, d) \ 2966 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2967 #define for_each_netdev_reverse(net, d) \ 2968 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2969 #define for_each_netdev_rcu(net, d) \ 2970 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2971 #define for_each_netdev_safe(net, d, n) \ 2972 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2973 #define for_each_netdev_continue(net, d) \ 2974 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2975 #define for_each_netdev_continue_reverse(net, d) \ 2976 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 2977 dev_list) 2978 #define for_each_netdev_continue_rcu(net, d) \ 2979 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2980 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2981 for_each_netdev_rcu(&init_net, slave) \ 2982 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2983 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2984 2985 static inline struct net_device *next_net_device(struct net_device *dev) 2986 { 2987 struct list_head *lh; 2988 struct net *net; 2989 2990 net = dev_net(dev); 2991 lh = dev->dev_list.next; 2992 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2993 } 2994 2995 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2996 { 2997 struct list_head *lh; 2998 struct net *net; 2999 3000 net = dev_net(dev); 3001 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3002 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3003 } 3004 3005 static inline struct net_device *first_net_device(struct net *net) 3006 { 3007 return list_empty(&net->dev_base_head) ? NULL : 3008 net_device_entry(net->dev_base_head.next); 3009 } 3010 3011 static inline struct net_device *first_net_device_rcu(struct net *net) 3012 { 3013 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3014 3015 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3016 } 3017 3018 int netdev_boot_setup_check(struct net_device *dev); 3019 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3020 const char *hwaddr); 3021 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3022 void dev_add_pack(struct packet_type *pt); 3023 void dev_remove_pack(struct packet_type *pt); 3024 void __dev_remove_pack(struct packet_type *pt); 3025 void dev_add_offload(struct packet_offload *po); 3026 void dev_remove_offload(struct packet_offload *po); 3027 3028 int dev_get_iflink(const struct net_device *dev); 3029 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3030 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3031 struct net_device_path_stack *stack); 3032 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3033 unsigned short mask); 3034 struct net_device *dev_get_by_name(struct net *net, const char *name); 3035 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3036 struct net_device *__dev_get_by_name(struct net *net, const char *name); 3037 bool netdev_name_in_use(struct net *net, const char *name); 3038 int dev_alloc_name(struct net_device *dev, const char *name); 3039 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3040 void dev_close(struct net_device *dev); 3041 void dev_close_many(struct list_head *head, bool unlink); 3042 void dev_disable_lro(struct net_device *dev); 3043 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3044 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3045 struct net_device *sb_dev); 3046 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3047 struct net_device *sb_dev); 3048 3049 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3050 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3051 3052 static inline int dev_queue_xmit(struct sk_buff *skb) 3053 { 3054 return __dev_queue_xmit(skb, NULL); 3055 } 3056 3057 static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3058 struct net_device *sb_dev) 3059 { 3060 return __dev_queue_xmit(skb, sb_dev); 3061 } 3062 3063 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3064 { 3065 int ret; 3066 3067 ret = __dev_direct_xmit(skb, queue_id); 3068 if (!dev_xmit_complete(ret)) 3069 kfree_skb(skb); 3070 return ret; 3071 } 3072 3073 int register_netdevice(struct net_device *dev); 3074 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3075 void unregister_netdevice_many(struct list_head *head); 3076 static inline void unregister_netdevice(struct net_device *dev) 3077 { 3078 unregister_netdevice_queue(dev, NULL); 3079 } 3080 3081 int netdev_refcnt_read(const struct net_device *dev); 3082 void free_netdev(struct net_device *dev); 3083 void netdev_freemem(struct net_device *dev); 3084 int init_dummy_netdev(struct net_device *dev); 3085 3086 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3087 struct sk_buff *skb, 3088 bool all_slaves); 3089 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3090 struct sock *sk); 3091 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3092 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3093 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3094 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3095 int dev_restart(struct net_device *dev); 3096 3097 3098 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3099 unsigned short type, 3100 const void *daddr, const void *saddr, 3101 unsigned int len) 3102 { 3103 if (!dev->header_ops || !dev->header_ops->create) 3104 return 0; 3105 3106 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3107 } 3108 3109 static inline int dev_parse_header(const struct sk_buff *skb, 3110 unsigned char *haddr) 3111 { 3112 const struct net_device *dev = skb->dev; 3113 3114 if (!dev->header_ops || !dev->header_ops->parse) 3115 return 0; 3116 return dev->header_ops->parse(skb, haddr); 3117 } 3118 3119 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3120 { 3121 const struct net_device *dev = skb->dev; 3122 3123 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3124 return 0; 3125 return dev->header_ops->parse_protocol(skb); 3126 } 3127 3128 /* ll_header must have at least hard_header_len allocated */ 3129 static inline bool dev_validate_header(const struct net_device *dev, 3130 char *ll_header, int len) 3131 { 3132 if (likely(len >= dev->hard_header_len)) 3133 return true; 3134 if (len < dev->min_header_len) 3135 return false; 3136 3137 if (capable(CAP_SYS_RAWIO)) { 3138 memset(ll_header + len, 0, dev->hard_header_len - len); 3139 return true; 3140 } 3141 3142 if (dev->header_ops && dev->header_ops->validate) 3143 return dev->header_ops->validate(ll_header, len); 3144 3145 return false; 3146 } 3147 3148 static inline bool dev_has_header(const struct net_device *dev) 3149 { 3150 return dev->header_ops && dev->header_ops->create; 3151 } 3152 3153 /* 3154 * Incoming packets are placed on per-CPU queues 3155 */ 3156 struct softnet_data { 3157 struct list_head poll_list; 3158 struct sk_buff_head process_queue; 3159 3160 /* stats */ 3161 unsigned int processed; 3162 unsigned int time_squeeze; 3163 #ifdef CONFIG_RPS 3164 struct softnet_data *rps_ipi_list; 3165 #endif 3166 #ifdef CONFIG_NET_FLOW_LIMIT 3167 struct sd_flow_limit __rcu *flow_limit; 3168 #endif 3169 struct Qdisc *output_queue; 3170 struct Qdisc **output_queue_tailp; 3171 struct sk_buff *completion_queue; 3172 #ifdef CONFIG_XFRM_OFFLOAD 3173 struct sk_buff_head xfrm_backlog; 3174 #endif 3175 /* written and read only by owning cpu: */ 3176 struct { 3177 u16 recursion; 3178 u8 more; 3179 #ifdef CONFIG_NET_EGRESS 3180 u8 skip_txqueue; 3181 #endif 3182 } xmit; 3183 #ifdef CONFIG_RPS 3184 /* input_queue_head should be written by cpu owning this struct, 3185 * and only read by other cpus. Worth using a cache line. 3186 */ 3187 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3188 3189 /* Elements below can be accessed between CPUs for RPS/RFS */ 3190 call_single_data_t csd ____cacheline_aligned_in_smp; 3191 struct softnet_data *rps_ipi_next; 3192 unsigned int cpu; 3193 unsigned int input_queue_tail; 3194 #endif 3195 unsigned int received_rps; 3196 unsigned int dropped; 3197 struct sk_buff_head input_pkt_queue; 3198 struct napi_struct backlog; 3199 3200 /* Another possibly contended cache line */ 3201 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3202 int defer_count; 3203 int defer_ipi_scheduled; 3204 struct sk_buff *defer_list; 3205 call_single_data_t defer_csd; 3206 }; 3207 3208 static inline void input_queue_head_incr(struct softnet_data *sd) 3209 { 3210 #ifdef CONFIG_RPS 3211 sd->input_queue_head++; 3212 #endif 3213 } 3214 3215 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3216 unsigned int *qtail) 3217 { 3218 #ifdef CONFIG_RPS 3219 *qtail = ++sd->input_queue_tail; 3220 #endif 3221 } 3222 3223 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3224 3225 static inline int dev_recursion_level(void) 3226 { 3227 return this_cpu_read(softnet_data.xmit.recursion); 3228 } 3229 3230 #define XMIT_RECURSION_LIMIT 8 3231 static inline bool dev_xmit_recursion(void) 3232 { 3233 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3234 XMIT_RECURSION_LIMIT); 3235 } 3236 3237 static inline void dev_xmit_recursion_inc(void) 3238 { 3239 __this_cpu_inc(softnet_data.xmit.recursion); 3240 } 3241 3242 static inline void dev_xmit_recursion_dec(void) 3243 { 3244 __this_cpu_dec(softnet_data.xmit.recursion); 3245 } 3246 3247 void __netif_schedule(struct Qdisc *q); 3248 void netif_schedule_queue(struct netdev_queue *txq); 3249 3250 static inline void netif_tx_schedule_all(struct net_device *dev) 3251 { 3252 unsigned int i; 3253 3254 for (i = 0; i < dev->num_tx_queues; i++) 3255 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3256 } 3257 3258 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3259 { 3260 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3261 } 3262 3263 /** 3264 * netif_start_queue - allow transmit 3265 * @dev: network device 3266 * 3267 * Allow upper layers to call the device hard_start_xmit routine. 3268 */ 3269 static inline void netif_start_queue(struct net_device *dev) 3270 { 3271 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3272 } 3273 3274 static inline void netif_tx_start_all_queues(struct net_device *dev) 3275 { 3276 unsigned int i; 3277 3278 for (i = 0; i < dev->num_tx_queues; i++) { 3279 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3280 netif_tx_start_queue(txq); 3281 } 3282 } 3283 3284 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3285 3286 /** 3287 * netif_wake_queue - restart transmit 3288 * @dev: network device 3289 * 3290 * Allow upper layers to call the device hard_start_xmit routine. 3291 * Used for flow control when transmit resources are available. 3292 */ 3293 static inline void netif_wake_queue(struct net_device *dev) 3294 { 3295 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3296 } 3297 3298 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3299 { 3300 unsigned int i; 3301 3302 for (i = 0; i < dev->num_tx_queues; i++) { 3303 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3304 netif_tx_wake_queue(txq); 3305 } 3306 } 3307 3308 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3309 { 3310 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3311 } 3312 3313 /** 3314 * netif_stop_queue - stop transmitted packets 3315 * @dev: network device 3316 * 3317 * Stop upper layers calling the device hard_start_xmit routine. 3318 * Used for flow control when transmit resources are unavailable. 3319 */ 3320 static inline void netif_stop_queue(struct net_device *dev) 3321 { 3322 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3323 } 3324 3325 void netif_tx_stop_all_queues(struct net_device *dev); 3326 3327 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3328 { 3329 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3330 } 3331 3332 /** 3333 * netif_queue_stopped - test if transmit queue is flowblocked 3334 * @dev: network device 3335 * 3336 * Test if transmit queue on device is currently unable to send. 3337 */ 3338 static inline bool netif_queue_stopped(const struct net_device *dev) 3339 { 3340 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3341 } 3342 3343 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3344 { 3345 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3346 } 3347 3348 static inline bool 3349 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3350 { 3351 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3352 } 3353 3354 static inline bool 3355 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3356 { 3357 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3358 } 3359 3360 /** 3361 * netdev_queue_set_dql_min_limit - set dql minimum limit 3362 * @dev_queue: pointer to transmit queue 3363 * @min_limit: dql minimum limit 3364 * 3365 * Forces xmit_more() to return true until the minimum threshold 3366 * defined by @min_limit is reached (or until the tx queue is 3367 * empty). Warning: to be use with care, misuse will impact the 3368 * latency. 3369 */ 3370 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3371 unsigned int min_limit) 3372 { 3373 #ifdef CONFIG_BQL 3374 dev_queue->dql.min_limit = min_limit; 3375 #endif 3376 } 3377 3378 /** 3379 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3380 * @dev_queue: pointer to transmit queue 3381 * 3382 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3383 * to give appropriate hint to the CPU. 3384 */ 3385 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3386 { 3387 #ifdef CONFIG_BQL 3388 prefetchw(&dev_queue->dql.num_queued); 3389 #endif 3390 } 3391 3392 /** 3393 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3394 * @dev_queue: pointer to transmit queue 3395 * 3396 * BQL enabled drivers might use this helper in their TX completion path, 3397 * to give appropriate hint to the CPU. 3398 */ 3399 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3400 { 3401 #ifdef CONFIG_BQL 3402 prefetchw(&dev_queue->dql.limit); 3403 #endif 3404 } 3405 3406 /** 3407 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3408 * @dev_queue: network device queue 3409 * @bytes: number of bytes queued to the device queue 3410 * 3411 * Report the number of bytes queued for sending/completion to the network 3412 * device hardware queue. @bytes should be a good approximation and should 3413 * exactly match netdev_completed_queue() @bytes. 3414 * This is typically called once per packet, from ndo_start_xmit(). 3415 */ 3416 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3417 unsigned int bytes) 3418 { 3419 #ifdef CONFIG_BQL 3420 dql_queued(&dev_queue->dql, bytes); 3421 3422 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3423 return; 3424 3425 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3426 3427 /* 3428 * The XOFF flag must be set before checking the dql_avail below, 3429 * because in netdev_tx_completed_queue we update the dql_completed 3430 * before checking the XOFF flag. 3431 */ 3432 smp_mb(); 3433 3434 /* check again in case another CPU has just made room avail */ 3435 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3436 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3437 #endif 3438 } 3439 3440 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3441 * that they should not test BQL status themselves. 3442 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3443 * skb of a batch. 3444 * Returns true if the doorbell must be used to kick the NIC. 3445 */ 3446 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3447 unsigned int bytes, 3448 bool xmit_more) 3449 { 3450 if (xmit_more) { 3451 #ifdef CONFIG_BQL 3452 dql_queued(&dev_queue->dql, bytes); 3453 #endif 3454 return netif_tx_queue_stopped(dev_queue); 3455 } 3456 netdev_tx_sent_queue(dev_queue, bytes); 3457 return true; 3458 } 3459 3460 /** 3461 * netdev_sent_queue - report the number of bytes queued to hardware 3462 * @dev: network device 3463 * @bytes: number of bytes queued to the hardware device queue 3464 * 3465 * Report the number of bytes queued for sending/completion to the network 3466 * device hardware queue#0. @bytes should be a good approximation and should 3467 * exactly match netdev_completed_queue() @bytes. 3468 * This is typically called once per packet, from ndo_start_xmit(). 3469 */ 3470 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3471 { 3472 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3473 } 3474 3475 static inline bool __netdev_sent_queue(struct net_device *dev, 3476 unsigned int bytes, 3477 bool xmit_more) 3478 { 3479 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3480 xmit_more); 3481 } 3482 3483 /** 3484 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3485 * @dev_queue: network device queue 3486 * @pkts: number of packets (currently ignored) 3487 * @bytes: number of bytes dequeued from the device queue 3488 * 3489 * Must be called at most once per TX completion round (and not per 3490 * individual packet), so that BQL can adjust its limits appropriately. 3491 */ 3492 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3493 unsigned int pkts, unsigned int bytes) 3494 { 3495 #ifdef CONFIG_BQL 3496 if (unlikely(!bytes)) 3497 return; 3498 3499 dql_completed(&dev_queue->dql, bytes); 3500 3501 /* 3502 * Without the memory barrier there is a small possiblity that 3503 * netdev_tx_sent_queue will miss the update and cause the queue to 3504 * be stopped forever 3505 */ 3506 smp_mb(); 3507 3508 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3509 return; 3510 3511 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3512 netif_schedule_queue(dev_queue); 3513 #endif 3514 } 3515 3516 /** 3517 * netdev_completed_queue - report bytes and packets completed by device 3518 * @dev: network device 3519 * @pkts: actual number of packets sent over the medium 3520 * @bytes: actual number of bytes sent over the medium 3521 * 3522 * Report the number of bytes and packets transmitted by the network device 3523 * hardware queue over the physical medium, @bytes must exactly match the 3524 * @bytes amount passed to netdev_sent_queue() 3525 */ 3526 static inline void netdev_completed_queue(struct net_device *dev, 3527 unsigned int pkts, unsigned int bytes) 3528 { 3529 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3530 } 3531 3532 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3533 { 3534 #ifdef CONFIG_BQL 3535 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3536 dql_reset(&q->dql); 3537 #endif 3538 } 3539 3540 /** 3541 * netdev_reset_queue - reset the packets and bytes count of a network device 3542 * @dev_queue: network device 3543 * 3544 * Reset the bytes and packet count of a network device and clear the 3545 * software flow control OFF bit for this network device 3546 */ 3547 static inline void netdev_reset_queue(struct net_device *dev_queue) 3548 { 3549 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3550 } 3551 3552 /** 3553 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3554 * @dev: network device 3555 * @queue_index: given tx queue index 3556 * 3557 * Returns 0 if given tx queue index >= number of device tx queues, 3558 * otherwise returns the originally passed tx queue index. 3559 */ 3560 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3561 { 3562 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3563 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3564 dev->name, queue_index, 3565 dev->real_num_tx_queues); 3566 return 0; 3567 } 3568 3569 return queue_index; 3570 } 3571 3572 /** 3573 * netif_running - test if up 3574 * @dev: network device 3575 * 3576 * Test if the device has been brought up. 3577 */ 3578 static inline bool netif_running(const struct net_device *dev) 3579 { 3580 return test_bit(__LINK_STATE_START, &dev->state); 3581 } 3582 3583 /* 3584 * Routines to manage the subqueues on a device. We only need start, 3585 * stop, and a check if it's stopped. All other device management is 3586 * done at the overall netdevice level. 3587 * Also test the device if we're multiqueue. 3588 */ 3589 3590 /** 3591 * netif_start_subqueue - allow sending packets on subqueue 3592 * @dev: network device 3593 * @queue_index: sub queue index 3594 * 3595 * Start individual transmit queue of a device with multiple transmit queues. 3596 */ 3597 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3598 { 3599 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3600 3601 netif_tx_start_queue(txq); 3602 } 3603 3604 /** 3605 * netif_stop_subqueue - stop sending packets on subqueue 3606 * @dev: network device 3607 * @queue_index: sub queue index 3608 * 3609 * Stop individual transmit queue of a device with multiple transmit queues. 3610 */ 3611 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3612 { 3613 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3614 netif_tx_stop_queue(txq); 3615 } 3616 3617 /** 3618 * __netif_subqueue_stopped - test status of subqueue 3619 * @dev: network device 3620 * @queue_index: sub queue index 3621 * 3622 * Check individual transmit queue of a device with multiple transmit queues. 3623 */ 3624 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3625 u16 queue_index) 3626 { 3627 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3628 3629 return netif_tx_queue_stopped(txq); 3630 } 3631 3632 /** 3633 * netif_subqueue_stopped - test status of subqueue 3634 * @dev: network device 3635 * @skb: sub queue buffer pointer 3636 * 3637 * Check individual transmit queue of a device with multiple transmit queues. 3638 */ 3639 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3640 struct sk_buff *skb) 3641 { 3642 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3643 } 3644 3645 /** 3646 * netif_wake_subqueue - allow sending packets on subqueue 3647 * @dev: network device 3648 * @queue_index: sub queue index 3649 * 3650 * Resume individual transmit queue of a device with multiple transmit queues. 3651 */ 3652 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3653 { 3654 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3655 3656 netif_tx_wake_queue(txq); 3657 } 3658 3659 #ifdef CONFIG_XPS 3660 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3661 u16 index); 3662 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3663 u16 index, enum xps_map_type type); 3664 3665 /** 3666 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3667 * @j: CPU/Rx queue index 3668 * @mask: bitmask of all cpus/rx queues 3669 * @nr_bits: number of bits in the bitmask 3670 * 3671 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3672 */ 3673 static inline bool netif_attr_test_mask(unsigned long j, 3674 const unsigned long *mask, 3675 unsigned int nr_bits) 3676 { 3677 cpu_max_bits_warn(j, nr_bits); 3678 return test_bit(j, mask); 3679 } 3680 3681 /** 3682 * netif_attr_test_online - Test for online CPU/Rx queue 3683 * @j: CPU/Rx queue index 3684 * @online_mask: bitmask for CPUs/Rx queues that are online 3685 * @nr_bits: number of bits in the bitmask 3686 * 3687 * Returns true if a CPU/Rx queue is online. 3688 */ 3689 static inline bool netif_attr_test_online(unsigned long j, 3690 const unsigned long *online_mask, 3691 unsigned int nr_bits) 3692 { 3693 cpu_max_bits_warn(j, nr_bits); 3694 3695 if (online_mask) 3696 return test_bit(j, online_mask); 3697 3698 return (j < nr_bits); 3699 } 3700 3701 /** 3702 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3703 * @n: CPU/Rx queue index 3704 * @srcp: the cpumask/Rx queue mask pointer 3705 * @nr_bits: number of bits in the bitmask 3706 * 3707 * Returns >= nr_bits if no further CPUs/Rx queues set. 3708 */ 3709 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3710 unsigned int nr_bits) 3711 { 3712 /* -1 is a legal arg here. */ 3713 if (n != -1) 3714 cpu_max_bits_warn(n, nr_bits); 3715 3716 if (srcp) 3717 return find_next_bit(srcp, nr_bits, n + 1); 3718 3719 return n + 1; 3720 } 3721 3722 /** 3723 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3724 * @n: CPU/Rx queue index 3725 * @src1p: the first CPUs/Rx queues mask pointer 3726 * @src2p: the second CPUs/Rx queues mask pointer 3727 * @nr_bits: number of bits in the bitmask 3728 * 3729 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3730 */ 3731 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3732 const unsigned long *src2p, 3733 unsigned int nr_bits) 3734 { 3735 /* -1 is a legal arg here. */ 3736 if (n != -1) 3737 cpu_max_bits_warn(n, nr_bits); 3738 3739 if (src1p && src2p) 3740 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3741 else if (src1p) 3742 return find_next_bit(src1p, nr_bits, n + 1); 3743 else if (src2p) 3744 return find_next_bit(src2p, nr_bits, n + 1); 3745 3746 return n + 1; 3747 } 3748 #else 3749 static inline int netif_set_xps_queue(struct net_device *dev, 3750 const struct cpumask *mask, 3751 u16 index) 3752 { 3753 return 0; 3754 } 3755 3756 static inline int __netif_set_xps_queue(struct net_device *dev, 3757 const unsigned long *mask, 3758 u16 index, enum xps_map_type type) 3759 { 3760 return 0; 3761 } 3762 #endif 3763 3764 /** 3765 * netif_is_multiqueue - test if device has multiple transmit queues 3766 * @dev: network device 3767 * 3768 * Check if device has multiple transmit queues 3769 */ 3770 static inline bool netif_is_multiqueue(const struct net_device *dev) 3771 { 3772 return dev->num_tx_queues > 1; 3773 } 3774 3775 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3776 3777 #ifdef CONFIG_SYSFS 3778 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3779 #else 3780 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3781 unsigned int rxqs) 3782 { 3783 dev->real_num_rx_queues = rxqs; 3784 return 0; 3785 } 3786 #endif 3787 int netif_set_real_num_queues(struct net_device *dev, 3788 unsigned int txq, unsigned int rxq); 3789 3790 static inline struct netdev_rx_queue * 3791 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3792 { 3793 return dev->_rx + rxq; 3794 } 3795 3796 #ifdef CONFIG_SYSFS 3797 static inline unsigned int get_netdev_rx_queue_index( 3798 struct netdev_rx_queue *queue) 3799 { 3800 struct net_device *dev = queue->dev; 3801 int index = queue - dev->_rx; 3802 3803 BUG_ON(index >= dev->num_rx_queues); 3804 return index; 3805 } 3806 #endif 3807 3808 int netif_get_num_default_rss_queues(void); 3809 3810 enum skb_free_reason { 3811 SKB_REASON_CONSUMED, 3812 SKB_REASON_DROPPED, 3813 }; 3814 3815 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3816 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3817 3818 /* 3819 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3820 * interrupt context or with hardware interrupts being disabled. 3821 * (in_hardirq() || irqs_disabled()) 3822 * 3823 * We provide four helpers that can be used in following contexts : 3824 * 3825 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3826 * replacing kfree_skb(skb) 3827 * 3828 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3829 * Typically used in place of consume_skb(skb) in TX completion path 3830 * 3831 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3832 * replacing kfree_skb(skb) 3833 * 3834 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3835 * and consumed a packet. Used in place of consume_skb(skb) 3836 */ 3837 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3838 { 3839 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3840 } 3841 3842 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3843 { 3844 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3845 } 3846 3847 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3848 { 3849 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3850 } 3851 3852 static inline void dev_consume_skb_any(struct sk_buff *skb) 3853 { 3854 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3855 } 3856 3857 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3858 struct bpf_prog *xdp_prog); 3859 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3860 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3861 int netif_rx(struct sk_buff *skb); 3862 int __netif_rx(struct sk_buff *skb); 3863 3864 int netif_receive_skb(struct sk_buff *skb); 3865 int netif_receive_skb_core(struct sk_buff *skb); 3866 void netif_receive_skb_list_internal(struct list_head *head); 3867 void netif_receive_skb_list(struct list_head *head); 3868 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3869 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3870 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3871 void napi_get_frags_check(struct napi_struct *napi); 3872 gro_result_t napi_gro_frags(struct napi_struct *napi); 3873 struct packet_offload *gro_find_receive_by_type(__be16 type); 3874 struct packet_offload *gro_find_complete_by_type(__be16 type); 3875 3876 static inline void napi_free_frags(struct napi_struct *napi) 3877 { 3878 kfree_skb(napi->skb); 3879 napi->skb = NULL; 3880 } 3881 3882 bool netdev_is_rx_handler_busy(struct net_device *dev); 3883 int netdev_rx_handler_register(struct net_device *dev, 3884 rx_handler_func_t *rx_handler, 3885 void *rx_handler_data); 3886 void netdev_rx_handler_unregister(struct net_device *dev); 3887 3888 bool dev_valid_name(const char *name); 3889 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3890 { 3891 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3892 } 3893 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3894 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3895 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3896 void __user *data, bool *need_copyout); 3897 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3898 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3899 unsigned int dev_get_flags(const struct net_device *); 3900 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3901 struct netlink_ext_ack *extack); 3902 int dev_change_flags(struct net_device *dev, unsigned int flags, 3903 struct netlink_ext_ack *extack); 3904 int dev_set_alias(struct net_device *, const char *, size_t); 3905 int dev_get_alias(const struct net_device *, char *, size_t); 3906 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3907 const char *pat, int new_ifindex); 3908 static inline 3909 int dev_change_net_namespace(struct net_device *dev, struct net *net, 3910 const char *pat) 3911 { 3912 return __dev_change_net_namespace(dev, net, pat, 0); 3913 } 3914 int __dev_set_mtu(struct net_device *, int); 3915 int dev_set_mtu(struct net_device *, int); 3916 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3917 struct netlink_ext_ack *extack); 3918 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3919 struct netlink_ext_ack *extack); 3920 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3921 struct netlink_ext_ack *extack); 3922 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3923 int dev_get_port_parent_id(struct net_device *dev, 3924 struct netdev_phys_item_id *ppid, bool recurse); 3925 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3926 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3927 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3928 struct netdev_queue *txq, int *ret); 3929 3930 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3931 u8 dev_xdp_prog_count(struct net_device *dev); 3932 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3933 3934 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3935 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3936 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3937 bool is_skb_forwardable(const struct net_device *dev, 3938 const struct sk_buff *skb); 3939 3940 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 3941 const struct sk_buff *skb, 3942 const bool check_mtu) 3943 { 3944 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 3945 unsigned int len; 3946 3947 if (!(dev->flags & IFF_UP)) 3948 return false; 3949 3950 if (!check_mtu) 3951 return true; 3952 3953 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 3954 if (skb->len <= len) 3955 return true; 3956 3957 /* if TSO is enabled, we don't care about the length as the packet 3958 * could be forwarded without being segmented before 3959 */ 3960 if (skb_is_gso(skb)) 3961 return true; 3962 3963 return false; 3964 } 3965 3966 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev); 3967 3968 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev) 3969 { 3970 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 3971 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 3972 3973 if (likely(p)) 3974 return p; 3975 3976 return netdev_core_stats_alloc(dev); 3977 } 3978 3979 #define DEV_CORE_STATS_INC(FIELD) \ 3980 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 3981 { \ 3982 struct net_device_core_stats __percpu *p; \ 3983 \ 3984 p = dev_core_stats(dev); \ 3985 if (p) \ 3986 this_cpu_inc(p->FIELD); \ 3987 } 3988 DEV_CORE_STATS_INC(rx_dropped) 3989 DEV_CORE_STATS_INC(tx_dropped) 3990 DEV_CORE_STATS_INC(rx_nohandler) 3991 DEV_CORE_STATS_INC(rx_otherhost_dropped) 3992 3993 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3994 struct sk_buff *skb, 3995 const bool check_mtu) 3996 { 3997 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3998 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 3999 dev_core_stats_rx_dropped_inc(dev); 4000 kfree_skb(skb); 4001 return NET_RX_DROP; 4002 } 4003 4004 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4005 skb->priority = 0; 4006 return 0; 4007 } 4008 4009 bool dev_nit_active(struct net_device *dev); 4010 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4011 4012 static inline void __dev_put(struct net_device *dev) 4013 { 4014 if (dev) { 4015 #ifdef CONFIG_PCPU_DEV_REFCNT 4016 this_cpu_dec(*dev->pcpu_refcnt); 4017 #else 4018 refcount_dec(&dev->dev_refcnt); 4019 #endif 4020 } 4021 } 4022 4023 static inline void __dev_hold(struct net_device *dev) 4024 { 4025 if (dev) { 4026 #ifdef CONFIG_PCPU_DEV_REFCNT 4027 this_cpu_inc(*dev->pcpu_refcnt); 4028 #else 4029 refcount_inc(&dev->dev_refcnt); 4030 #endif 4031 } 4032 } 4033 4034 static inline void __netdev_tracker_alloc(struct net_device *dev, 4035 netdevice_tracker *tracker, 4036 gfp_t gfp) 4037 { 4038 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4039 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4040 #endif 4041 } 4042 4043 /* netdev_tracker_alloc() can upgrade a prior untracked reference 4044 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4045 */ 4046 static inline void netdev_tracker_alloc(struct net_device *dev, 4047 netdevice_tracker *tracker, gfp_t gfp) 4048 { 4049 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4050 refcount_dec(&dev->refcnt_tracker.no_tracker); 4051 __netdev_tracker_alloc(dev, tracker, gfp); 4052 #endif 4053 } 4054 4055 static inline void netdev_tracker_free(struct net_device *dev, 4056 netdevice_tracker *tracker) 4057 { 4058 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4059 ref_tracker_free(&dev->refcnt_tracker, tracker); 4060 #endif 4061 } 4062 4063 static inline void netdev_hold(struct net_device *dev, 4064 netdevice_tracker *tracker, gfp_t gfp) 4065 { 4066 if (dev) { 4067 __dev_hold(dev); 4068 __netdev_tracker_alloc(dev, tracker, gfp); 4069 } 4070 } 4071 4072 static inline void netdev_put(struct net_device *dev, 4073 netdevice_tracker *tracker) 4074 { 4075 if (dev) { 4076 netdev_tracker_free(dev, tracker); 4077 __dev_put(dev); 4078 } 4079 } 4080 4081 /** 4082 * dev_hold - get reference to device 4083 * @dev: network device 4084 * 4085 * Hold reference to device to keep it from being freed. 4086 * Try using netdev_hold() instead. 4087 */ 4088 static inline void dev_hold(struct net_device *dev) 4089 { 4090 netdev_hold(dev, NULL, GFP_ATOMIC); 4091 } 4092 4093 /** 4094 * dev_put - release reference to device 4095 * @dev: network device 4096 * 4097 * Release reference to device to allow it to be freed. 4098 * Try using netdev_put() instead. 4099 */ 4100 static inline void dev_put(struct net_device *dev) 4101 { 4102 netdev_put(dev, NULL); 4103 } 4104 4105 static inline void netdev_ref_replace(struct net_device *odev, 4106 struct net_device *ndev, 4107 netdevice_tracker *tracker, 4108 gfp_t gfp) 4109 { 4110 if (odev) 4111 netdev_tracker_free(odev, tracker); 4112 4113 __dev_hold(ndev); 4114 __dev_put(odev); 4115 4116 if (ndev) 4117 __netdev_tracker_alloc(ndev, tracker, gfp); 4118 } 4119 4120 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4121 * and _off may be called from IRQ context, but it is caller 4122 * who is responsible for serialization of these calls. 4123 * 4124 * The name carrier is inappropriate, these functions should really be 4125 * called netif_lowerlayer_*() because they represent the state of any 4126 * kind of lower layer not just hardware media. 4127 */ 4128 void linkwatch_fire_event(struct net_device *dev); 4129 4130 /** 4131 * netif_carrier_ok - test if carrier present 4132 * @dev: network device 4133 * 4134 * Check if carrier is present on device 4135 */ 4136 static inline bool netif_carrier_ok(const struct net_device *dev) 4137 { 4138 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4139 } 4140 4141 unsigned long dev_trans_start(struct net_device *dev); 4142 4143 void __netdev_watchdog_up(struct net_device *dev); 4144 4145 void netif_carrier_on(struct net_device *dev); 4146 void netif_carrier_off(struct net_device *dev); 4147 void netif_carrier_event(struct net_device *dev); 4148 4149 /** 4150 * netif_dormant_on - mark device as dormant. 4151 * @dev: network device 4152 * 4153 * Mark device as dormant (as per RFC2863). 4154 * 4155 * The dormant state indicates that the relevant interface is not 4156 * actually in a condition to pass packets (i.e., it is not 'up') but is 4157 * in a "pending" state, waiting for some external event. For "on- 4158 * demand" interfaces, this new state identifies the situation where the 4159 * interface is waiting for events to place it in the up state. 4160 */ 4161 static inline void netif_dormant_on(struct net_device *dev) 4162 { 4163 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4164 linkwatch_fire_event(dev); 4165 } 4166 4167 /** 4168 * netif_dormant_off - set device as not dormant. 4169 * @dev: network device 4170 * 4171 * Device is not in dormant state. 4172 */ 4173 static inline void netif_dormant_off(struct net_device *dev) 4174 { 4175 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4176 linkwatch_fire_event(dev); 4177 } 4178 4179 /** 4180 * netif_dormant - test if device is dormant 4181 * @dev: network device 4182 * 4183 * Check if device is dormant. 4184 */ 4185 static inline bool netif_dormant(const struct net_device *dev) 4186 { 4187 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4188 } 4189 4190 4191 /** 4192 * netif_testing_on - mark device as under test. 4193 * @dev: network device 4194 * 4195 * Mark device as under test (as per RFC2863). 4196 * 4197 * The testing state indicates that some test(s) must be performed on 4198 * the interface. After completion, of the test, the interface state 4199 * will change to up, dormant, or down, as appropriate. 4200 */ 4201 static inline void netif_testing_on(struct net_device *dev) 4202 { 4203 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4204 linkwatch_fire_event(dev); 4205 } 4206 4207 /** 4208 * netif_testing_off - set device as not under test. 4209 * @dev: network device 4210 * 4211 * Device is not in testing state. 4212 */ 4213 static inline void netif_testing_off(struct net_device *dev) 4214 { 4215 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4216 linkwatch_fire_event(dev); 4217 } 4218 4219 /** 4220 * netif_testing - test if device is under test 4221 * @dev: network device 4222 * 4223 * Check if device is under test 4224 */ 4225 static inline bool netif_testing(const struct net_device *dev) 4226 { 4227 return test_bit(__LINK_STATE_TESTING, &dev->state); 4228 } 4229 4230 4231 /** 4232 * netif_oper_up - test if device is operational 4233 * @dev: network device 4234 * 4235 * Check if carrier is operational 4236 */ 4237 static inline bool netif_oper_up(const struct net_device *dev) 4238 { 4239 return (dev->operstate == IF_OPER_UP || 4240 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4241 } 4242 4243 /** 4244 * netif_device_present - is device available or removed 4245 * @dev: network device 4246 * 4247 * Check if device has not been removed from system. 4248 */ 4249 static inline bool netif_device_present(const struct net_device *dev) 4250 { 4251 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4252 } 4253 4254 void netif_device_detach(struct net_device *dev); 4255 4256 void netif_device_attach(struct net_device *dev); 4257 4258 /* 4259 * Network interface message level settings 4260 */ 4261 4262 enum { 4263 NETIF_MSG_DRV_BIT, 4264 NETIF_MSG_PROBE_BIT, 4265 NETIF_MSG_LINK_BIT, 4266 NETIF_MSG_TIMER_BIT, 4267 NETIF_MSG_IFDOWN_BIT, 4268 NETIF_MSG_IFUP_BIT, 4269 NETIF_MSG_RX_ERR_BIT, 4270 NETIF_MSG_TX_ERR_BIT, 4271 NETIF_MSG_TX_QUEUED_BIT, 4272 NETIF_MSG_INTR_BIT, 4273 NETIF_MSG_TX_DONE_BIT, 4274 NETIF_MSG_RX_STATUS_BIT, 4275 NETIF_MSG_PKTDATA_BIT, 4276 NETIF_MSG_HW_BIT, 4277 NETIF_MSG_WOL_BIT, 4278 4279 /* When you add a new bit above, update netif_msg_class_names array 4280 * in net/ethtool/common.c 4281 */ 4282 NETIF_MSG_CLASS_COUNT, 4283 }; 4284 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4285 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4286 4287 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4288 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4289 4290 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4291 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4292 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4293 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4294 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4295 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4296 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4297 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4298 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4299 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4300 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4301 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4302 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4303 #define NETIF_MSG_HW __NETIF_MSG(HW) 4304 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4305 4306 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4307 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4308 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4309 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4310 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4311 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4312 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4313 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4314 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4315 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4316 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4317 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4318 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4319 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4320 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4321 4322 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4323 { 4324 /* use default */ 4325 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4326 return default_msg_enable_bits; 4327 if (debug_value == 0) /* no output */ 4328 return 0; 4329 /* set low N bits */ 4330 return (1U << debug_value) - 1; 4331 } 4332 4333 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4334 { 4335 spin_lock(&txq->_xmit_lock); 4336 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4337 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4338 } 4339 4340 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4341 { 4342 __acquire(&txq->_xmit_lock); 4343 return true; 4344 } 4345 4346 static inline void __netif_tx_release(struct netdev_queue *txq) 4347 { 4348 __release(&txq->_xmit_lock); 4349 } 4350 4351 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4352 { 4353 spin_lock_bh(&txq->_xmit_lock); 4354 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4355 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4356 } 4357 4358 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4359 { 4360 bool ok = spin_trylock(&txq->_xmit_lock); 4361 4362 if (likely(ok)) { 4363 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4364 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4365 } 4366 return ok; 4367 } 4368 4369 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4370 { 4371 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4372 WRITE_ONCE(txq->xmit_lock_owner, -1); 4373 spin_unlock(&txq->_xmit_lock); 4374 } 4375 4376 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4377 { 4378 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4379 WRITE_ONCE(txq->xmit_lock_owner, -1); 4380 spin_unlock_bh(&txq->_xmit_lock); 4381 } 4382 4383 /* 4384 * txq->trans_start can be read locklessly from dev_watchdog() 4385 */ 4386 static inline void txq_trans_update(struct netdev_queue *txq) 4387 { 4388 if (txq->xmit_lock_owner != -1) 4389 WRITE_ONCE(txq->trans_start, jiffies); 4390 } 4391 4392 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4393 { 4394 unsigned long now = jiffies; 4395 4396 if (READ_ONCE(txq->trans_start) != now) 4397 WRITE_ONCE(txq->trans_start, now); 4398 } 4399 4400 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4401 static inline void netif_trans_update(struct net_device *dev) 4402 { 4403 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4404 4405 txq_trans_cond_update(txq); 4406 } 4407 4408 /** 4409 * netif_tx_lock - grab network device transmit lock 4410 * @dev: network device 4411 * 4412 * Get network device transmit lock 4413 */ 4414 void netif_tx_lock(struct net_device *dev); 4415 4416 static inline void netif_tx_lock_bh(struct net_device *dev) 4417 { 4418 local_bh_disable(); 4419 netif_tx_lock(dev); 4420 } 4421 4422 void netif_tx_unlock(struct net_device *dev); 4423 4424 static inline void netif_tx_unlock_bh(struct net_device *dev) 4425 { 4426 netif_tx_unlock(dev); 4427 local_bh_enable(); 4428 } 4429 4430 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4431 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4432 __netif_tx_lock(txq, cpu); \ 4433 } else { \ 4434 __netif_tx_acquire(txq); \ 4435 } \ 4436 } 4437 4438 #define HARD_TX_TRYLOCK(dev, txq) \ 4439 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4440 __netif_tx_trylock(txq) : \ 4441 __netif_tx_acquire(txq)) 4442 4443 #define HARD_TX_UNLOCK(dev, txq) { \ 4444 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4445 __netif_tx_unlock(txq); \ 4446 } else { \ 4447 __netif_tx_release(txq); \ 4448 } \ 4449 } 4450 4451 static inline void netif_tx_disable(struct net_device *dev) 4452 { 4453 unsigned int i; 4454 int cpu; 4455 4456 local_bh_disable(); 4457 cpu = smp_processor_id(); 4458 spin_lock(&dev->tx_global_lock); 4459 for (i = 0; i < dev->num_tx_queues; i++) { 4460 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4461 4462 __netif_tx_lock(txq, cpu); 4463 netif_tx_stop_queue(txq); 4464 __netif_tx_unlock(txq); 4465 } 4466 spin_unlock(&dev->tx_global_lock); 4467 local_bh_enable(); 4468 } 4469 4470 static inline void netif_addr_lock(struct net_device *dev) 4471 { 4472 unsigned char nest_level = 0; 4473 4474 #ifdef CONFIG_LOCKDEP 4475 nest_level = dev->nested_level; 4476 #endif 4477 spin_lock_nested(&dev->addr_list_lock, nest_level); 4478 } 4479 4480 static inline void netif_addr_lock_bh(struct net_device *dev) 4481 { 4482 unsigned char nest_level = 0; 4483 4484 #ifdef CONFIG_LOCKDEP 4485 nest_level = dev->nested_level; 4486 #endif 4487 local_bh_disable(); 4488 spin_lock_nested(&dev->addr_list_lock, nest_level); 4489 } 4490 4491 static inline void netif_addr_unlock(struct net_device *dev) 4492 { 4493 spin_unlock(&dev->addr_list_lock); 4494 } 4495 4496 static inline void netif_addr_unlock_bh(struct net_device *dev) 4497 { 4498 spin_unlock_bh(&dev->addr_list_lock); 4499 } 4500 4501 /* 4502 * dev_addrs walker. Should be used only for read access. Call with 4503 * rcu_read_lock held. 4504 */ 4505 #define for_each_dev_addr(dev, ha) \ 4506 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4507 4508 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4509 4510 void ether_setup(struct net_device *dev); 4511 4512 /* Support for loadable net-drivers */ 4513 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4514 unsigned char name_assign_type, 4515 void (*setup)(struct net_device *), 4516 unsigned int txqs, unsigned int rxqs); 4517 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4518 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4519 4520 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4521 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4522 count) 4523 4524 int register_netdev(struct net_device *dev); 4525 void unregister_netdev(struct net_device *dev); 4526 4527 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4528 4529 /* General hardware address lists handling functions */ 4530 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4531 struct netdev_hw_addr_list *from_list, int addr_len); 4532 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4533 struct netdev_hw_addr_list *from_list, int addr_len); 4534 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4535 struct net_device *dev, 4536 int (*sync)(struct net_device *, const unsigned char *), 4537 int (*unsync)(struct net_device *, 4538 const unsigned char *)); 4539 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4540 struct net_device *dev, 4541 int (*sync)(struct net_device *, 4542 const unsigned char *, int), 4543 int (*unsync)(struct net_device *, 4544 const unsigned char *, int)); 4545 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4546 struct net_device *dev, 4547 int (*unsync)(struct net_device *, 4548 const unsigned char *, int)); 4549 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4550 struct net_device *dev, 4551 int (*unsync)(struct net_device *, 4552 const unsigned char *)); 4553 void __hw_addr_init(struct netdev_hw_addr_list *list); 4554 4555 /* Functions used for device addresses handling */ 4556 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4557 const void *addr, size_t len); 4558 4559 static inline void 4560 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4561 { 4562 dev_addr_mod(dev, 0, addr, len); 4563 } 4564 4565 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4566 { 4567 __dev_addr_set(dev, addr, dev->addr_len); 4568 } 4569 4570 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4571 unsigned char addr_type); 4572 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4573 unsigned char addr_type); 4574 4575 /* Functions used for unicast addresses handling */ 4576 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4577 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4578 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4579 int dev_uc_sync(struct net_device *to, struct net_device *from); 4580 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4581 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4582 void dev_uc_flush(struct net_device *dev); 4583 void dev_uc_init(struct net_device *dev); 4584 4585 /** 4586 * __dev_uc_sync - Synchonize device's unicast list 4587 * @dev: device to sync 4588 * @sync: function to call if address should be added 4589 * @unsync: function to call if address should be removed 4590 * 4591 * Add newly added addresses to the interface, and release 4592 * addresses that have been deleted. 4593 */ 4594 static inline int __dev_uc_sync(struct net_device *dev, 4595 int (*sync)(struct net_device *, 4596 const unsigned char *), 4597 int (*unsync)(struct net_device *, 4598 const unsigned char *)) 4599 { 4600 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4601 } 4602 4603 /** 4604 * __dev_uc_unsync - Remove synchronized addresses from device 4605 * @dev: device to sync 4606 * @unsync: function to call if address should be removed 4607 * 4608 * Remove all addresses that were added to the device by dev_uc_sync(). 4609 */ 4610 static inline void __dev_uc_unsync(struct net_device *dev, 4611 int (*unsync)(struct net_device *, 4612 const unsigned char *)) 4613 { 4614 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4615 } 4616 4617 /* Functions used for multicast addresses handling */ 4618 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4619 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4620 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4621 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4622 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4623 int dev_mc_sync(struct net_device *to, struct net_device *from); 4624 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4625 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4626 void dev_mc_flush(struct net_device *dev); 4627 void dev_mc_init(struct net_device *dev); 4628 4629 /** 4630 * __dev_mc_sync - Synchonize device's multicast list 4631 * @dev: device to sync 4632 * @sync: function to call if address should be added 4633 * @unsync: function to call if address should be removed 4634 * 4635 * Add newly added addresses to the interface, and release 4636 * addresses that have been deleted. 4637 */ 4638 static inline int __dev_mc_sync(struct net_device *dev, 4639 int (*sync)(struct net_device *, 4640 const unsigned char *), 4641 int (*unsync)(struct net_device *, 4642 const unsigned char *)) 4643 { 4644 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4645 } 4646 4647 /** 4648 * __dev_mc_unsync - Remove synchronized addresses from device 4649 * @dev: device to sync 4650 * @unsync: function to call if address should be removed 4651 * 4652 * Remove all addresses that were added to the device by dev_mc_sync(). 4653 */ 4654 static inline void __dev_mc_unsync(struct net_device *dev, 4655 int (*unsync)(struct net_device *, 4656 const unsigned char *)) 4657 { 4658 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4659 } 4660 4661 /* Functions used for secondary unicast and multicast support */ 4662 void dev_set_rx_mode(struct net_device *dev); 4663 int dev_set_promiscuity(struct net_device *dev, int inc); 4664 int dev_set_allmulti(struct net_device *dev, int inc); 4665 void netdev_state_change(struct net_device *dev); 4666 void __netdev_notify_peers(struct net_device *dev); 4667 void netdev_notify_peers(struct net_device *dev); 4668 void netdev_features_change(struct net_device *dev); 4669 /* Load a device via the kmod */ 4670 void dev_load(struct net *net, const char *name); 4671 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4672 struct rtnl_link_stats64 *storage); 4673 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4674 const struct net_device_stats *netdev_stats); 4675 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4676 const struct pcpu_sw_netstats __percpu *netstats); 4677 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4678 4679 extern int netdev_max_backlog; 4680 extern int dev_rx_weight; 4681 extern int dev_tx_weight; 4682 extern int gro_normal_batch; 4683 4684 enum { 4685 NESTED_SYNC_IMM_BIT, 4686 NESTED_SYNC_TODO_BIT, 4687 }; 4688 4689 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4690 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4691 4692 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4693 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4694 4695 struct netdev_nested_priv { 4696 unsigned char flags; 4697 void *data; 4698 }; 4699 4700 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4701 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4702 struct list_head **iter); 4703 4704 /* iterate through upper list, must be called under RCU read lock */ 4705 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4706 for (iter = &(dev)->adj_list.upper, \ 4707 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4708 updev; \ 4709 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4710 4711 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4712 int (*fn)(struct net_device *upper_dev, 4713 struct netdev_nested_priv *priv), 4714 struct netdev_nested_priv *priv); 4715 4716 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4717 struct net_device *upper_dev); 4718 4719 bool netdev_has_any_upper_dev(struct net_device *dev); 4720 4721 void *netdev_lower_get_next_private(struct net_device *dev, 4722 struct list_head **iter); 4723 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4724 struct list_head **iter); 4725 4726 #define netdev_for_each_lower_private(dev, priv, iter) \ 4727 for (iter = (dev)->adj_list.lower.next, \ 4728 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4729 priv; \ 4730 priv = netdev_lower_get_next_private(dev, &(iter))) 4731 4732 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4733 for (iter = &(dev)->adj_list.lower, \ 4734 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4735 priv; \ 4736 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4737 4738 void *netdev_lower_get_next(struct net_device *dev, 4739 struct list_head **iter); 4740 4741 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4742 for (iter = (dev)->adj_list.lower.next, \ 4743 ldev = netdev_lower_get_next(dev, &(iter)); \ 4744 ldev; \ 4745 ldev = netdev_lower_get_next(dev, &(iter))) 4746 4747 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4748 struct list_head **iter); 4749 int netdev_walk_all_lower_dev(struct net_device *dev, 4750 int (*fn)(struct net_device *lower_dev, 4751 struct netdev_nested_priv *priv), 4752 struct netdev_nested_priv *priv); 4753 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4754 int (*fn)(struct net_device *lower_dev, 4755 struct netdev_nested_priv *priv), 4756 struct netdev_nested_priv *priv); 4757 4758 void *netdev_adjacent_get_private(struct list_head *adj_list); 4759 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4760 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4761 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4762 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4763 struct netlink_ext_ack *extack); 4764 int netdev_master_upper_dev_link(struct net_device *dev, 4765 struct net_device *upper_dev, 4766 void *upper_priv, void *upper_info, 4767 struct netlink_ext_ack *extack); 4768 void netdev_upper_dev_unlink(struct net_device *dev, 4769 struct net_device *upper_dev); 4770 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4771 struct net_device *new_dev, 4772 struct net_device *dev, 4773 struct netlink_ext_ack *extack); 4774 void netdev_adjacent_change_commit(struct net_device *old_dev, 4775 struct net_device *new_dev, 4776 struct net_device *dev); 4777 void netdev_adjacent_change_abort(struct net_device *old_dev, 4778 struct net_device *new_dev, 4779 struct net_device *dev); 4780 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4781 void *netdev_lower_dev_get_private(struct net_device *dev, 4782 struct net_device *lower_dev); 4783 void netdev_lower_state_changed(struct net_device *lower_dev, 4784 void *lower_state_info); 4785 4786 /* RSS keys are 40 or 52 bytes long */ 4787 #define NETDEV_RSS_KEY_LEN 52 4788 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4789 void netdev_rss_key_fill(void *buffer, size_t len); 4790 4791 int skb_checksum_help(struct sk_buff *skb); 4792 int skb_crc32c_csum_help(struct sk_buff *skb); 4793 int skb_csum_hwoffload_help(struct sk_buff *skb, 4794 const netdev_features_t features); 4795 4796 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4797 netdev_features_t features, bool tx_path); 4798 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb, 4799 netdev_features_t features, __be16 type); 4800 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4801 netdev_features_t features); 4802 4803 struct netdev_bonding_info { 4804 ifslave slave; 4805 ifbond master; 4806 }; 4807 4808 struct netdev_notifier_bonding_info { 4809 struct netdev_notifier_info info; /* must be first */ 4810 struct netdev_bonding_info bonding_info; 4811 }; 4812 4813 void netdev_bonding_info_change(struct net_device *dev, 4814 struct netdev_bonding_info *bonding_info); 4815 4816 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4817 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4818 #else 4819 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4820 const void *data) 4821 { 4822 } 4823 #endif 4824 4825 static inline 4826 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4827 { 4828 return __skb_gso_segment(skb, features, true); 4829 } 4830 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4831 4832 static inline bool can_checksum_protocol(netdev_features_t features, 4833 __be16 protocol) 4834 { 4835 if (protocol == htons(ETH_P_FCOE)) 4836 return !!(features & NETIF_F_FCOE_CRC); 4837 4838 /* Assume this is an IP checksum (not SCTP CRC) */ 4839 4840 if (features & NETIF_F_HW_CSUM) { 4841 /* Can checksum everything */ 4842 return true; 4843 } 4844 4845 switch (protocol) { 4846 case htons(ETH_P_IP): 4847 return !!(features & NETIF_F_IP_CSUM); 4848 case htons(ETH_P_IPV6): 4849 return !!(features & NETIF_F_IPV6_CSUM); 4850 default: 4851 return false; 4852 } 4853 } 4854 4855 #ifdef CONFIG_BUG 4856 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4857 #else 4858 static inline void netdev_rx_csum_fault(struct net_device *dev, 4859 struct sk_buff *skb) 4860 { 4861 } 4862 #endif 4863 /* rx skb timestamps */ 4864 void net_enable_timestamp(void); 4865 void net_disable_timestamp(void); 4866 4867 static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4868 const struct skb_shared_hwtstamps *hwtstamps, 4869 bool cycles) 4870 { 4871 const struct net_device_ops *ops = dev->netdev_ops; 4872 4873 if (ops->ndo_get_tstamp) 4874 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4875 4876 return hwtstamps->hwtstamp; 4877 } 4878 4879 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4880 struct sk_buff *skb, struct net_device *dev, 4881 bool more) 4882 { 4883 __this_cpu_write(softnet_data.xmit.more, more); 4884 return ops->ndo_start_xmit(skb, dev); 4885 } 4886 4887 static inline bool netdev_xmit_more(void) 4888 { 4889 return __this_cpu_read(softnet_data.xmit.more); 4890 } 4891 4892 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4893 struct netdev_queue *txq, bool more) 4894 { 4895 const struct net_device_ops *ops = dev->netdev_ops; 4896 netdev_tx_t rc; 4897 4898 rc = __netdev_start_xmit(ops, skb, dev, more); 4899 if (rc == NETDEV_TX_OK) 4900 txq_trans_update(txq); 4901 4902 return rc; 4903 } 4904 4905 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4906 const void *ns); 4907 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4908 const void *ns); 4909 4910 extern const struct kobj_ns_type_operations net_ns_type_operations; 4911 4912 const char *netdev_drivername(const struct net_device *dev); 4913 4914 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4915 netdev_features_t f2) 4916 { 4917 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4918 if (f1 & NETIF_F_HW_CSUM) 4919 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4920 else 4921 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4922 } 4923 4924 return f1 & f2; 4925 } 4926 4927 static inline netdev_features_t netdev_get_wanted_features( 4928 struct net_device *dev) 4929 { 4930 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4931 } 4932 netdev_features_t netdev_increment_features(netdev_features_t all, 4933 netdev_features_t one, netdev_features_t mask); 4934 4935 /* Allow TSO being used on stacked device : 4936 * Performing the GSO segmentation before last device 4937 * is a performance improvement. 4938 */ 4939 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4940 netdev_features_t mask) 4941 { 4942 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4943 } 4944 4945 int __netdev_update_features(struct net_device *dev); 4946 void netdev_update_features(struct net_device *dev); 4947 void netdev_change_features(struct net_device *dev); 4948 4949 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4950 struct net_device *dev); 4951 4952 netdev_features_t passthru_features_check(struct sk_buff *skb, 4953 struct net_device *dev, 4954 netdev_features_t features); 4955 netdev_features_t netif_skb_features(struct sk_buff *skb); 4956 4957 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4958 { 4959 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4960 4961 /* check flags correspondence */ 4962 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4963 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4964 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4965 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4966 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4967 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4968 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4969 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4970 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4971 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4972 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4973 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4974 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4975 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4976 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4977 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4978 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4979 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4980 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 4981 4982 return (features & feature) == feature; 4983 } 4984 4985 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4986 { 4987 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4988 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4989 } 4990 4991 static inline bool netif_needs_gso(struct sk_buff *skb, 4992 netdev_features_t features) 4993 { 4994 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4995 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4996 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4997 } 4998 4999 void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5000 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5001 void netif_inherit_tso_max(struct net_device *to, 5002 const struct net_device *from); 5003 5004 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 5005 int pulled_hlen, u16 mac_offset, 5006 int mac_len) 5007 { 5008 skb->protocol = protocol; 5009 skb->encapsulation = 1; 5010 skb_push(skb, pulled_hlen); 5011 skb_reset_transport_header(skb); 5012 skb->mac_header = mac_offset; 5013 skb->network_header = skb->mac_header + mac_len; 5014 skb->mac_len = mac_len; 5015 } 5016 5017 static inline bool netif_is_macsec(const struct net_device *dev) 5018 { 5019 return dev->priv_flags & IFF_MACSEC; 5020 } 5021 5022 static inline bool netif_is_macvlan(const struct net_device *dev) 5023 { 5024 return dev->priv_flags & IFF_MACVLAN; 5025 } 5026 5027 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5028 { 5029 return dev->priv_flags & IFF_MACVLAN_PORT; 5030 } 5031 5032 static inline bool netif_is_bond_master(const struct net_device *dev) 5033 { 5034 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5035 } 5036 5037 static inline bool netif_is_bond_slave(const struct net_device *dev) 5038 { 5039 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5040 } 5041 5042 static inline bool netif_supports_nofcs(struct net_device *dev) 5043 { 5044 return dev->priv_flags & IFF_SUPP_NOFCS; 5045 } 5046 5047 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5048 { 5049 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5050 } 5051 5052 static inline bool netif_is_l3_master(const struct net_device *dev) 5053 { 5054 return dev->priv_flags & IFF_L3MDEV_MASTER; 5055 } 5056 5057 static inline bool netif_is_l3_slave(const struct net_device *dev) 5058 { 5059 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5060 } 5061 5062 static inline bool netif_is_bridge_master(const struct net_device *dev) 5063 { 5064 return dev->priv_flags & IFF_EBRIDGE; 5065 } 5066 5067 static inline bool netif_is_bridge_port(const struct net_device *dev) 5068 { 5069 return dev->priv_flags & IFF_BRIDGE_PORT; 5070 } 5071 5072 static inline bool netif_is_ovs_master(const struct net_device *dev) 5073 { 5074 return dev->priv_flags & IFF_OPENVSWITCH; 5075 } 5076 5077 static inline bool netif_is_ovs_port(const struct net_device *dev) 5078 { 5079 return dev->priv_flags & IFF_OVS_DATAPATH; 5080 } 5081 5082 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5083 { 5084 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5085 } 5086 5087 static inline bool netif_is_team_master(const struct net_device *dev) 5088 { 5089 return dev->priv_flags & IFF_TEAM; 5090 } 5091 5092 static inline bool netif_is_team_port(const struct net_device *dev) 5093 { 5094 return dev->priv_flags & IFF_TEAM_PORT; 5095 } 5096 5097 static inline bool netif_is_lag_master(const struct net_device *dev) 5098 { 5099 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5100 } 5101 5102 static inline bool netif_is_lag_port(const struct net_device *dev) 5103 { 5104 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5105 } 5106 5107 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5108 { 5109 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5110 } 5111 5112 static inline bool netif_is_failover(const struct net_device *dev) 5113 { 5114 return dev->priv_flags & IFF_FAILOVER; 5115 } 5116 5117 static inline bool netif_is_failover_slave(const struct net_device *dev) 5118 { 5119 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5120 } 5121 5122 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5123 static inline void netif_keep_dst(struct net_device *dev) 5124 { 5125 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5126 } 5127 5128 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5129 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5130 { 5131 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5132 return netif_is_macsec(dev); 5133 } 5134 5135 extern struct pernet_operations __net_initdata loopback_net_ops; 5136 5137 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5138 5139 /* netdev_printk helpers, similar to dev_printk */ 5140 5141 static inline const char *netdev_name(const struct net_device *dev) 5142 { 5143 if (!dev->name[0] || strchr(dev->name, '%')) 5144 return "(unnamed net_device)"; 5145 return dev->name; 5146 } 5147 5148 static inline const char *netdev_reg_state(const struct net_device *dev) 5149 { 5150 switch (dev->reg_state) { 5151 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5152 case NETREG_REGISTERED: return ""; 5153 case NETREG_UNREGISTERING: return " (unregistering)"; 5154 case NETREG_UNREGISTERED: return " (unregistered)"; 5155 case NETREG_RELEASED: return " (released)"; 5156 case NETREG_DUMMY: return " (dummy)"; 5157 } 5158 5159 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5160 return " (unknown)"; 5161 } 5162 5163 #define MODULE_ALIAS_NETDEV(device) \ 5164 MODULE_ALIAS("netdev-" device) 5165 5166 /* 5167 * netdev_WARN() acts like dev_printk(), but with the key difference 5168 * of using a WARN/WARN_ON to get the message out, including the 5169 * file/line information and a backtrace. 5170 */ 5171 #define netdev_WARN(dev, format, args...) \ 5172 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5173 netdev_reg_state(dev), ##args) 5174 5175 #define netdev_WARN_ONCE(dev, format, args...) \ 5176 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5177 netdev_reg_state(dev), ##args) 5178 5179 /* 5180 * The list of packet types we will receive (as opposed to discard) 5181 * and the routines to invoke. 5182 * 5183 * Why 16. Because with 16 the only overlap we get on a hash of the 5184 * low nibble of the protocol value is RARP/SNAP/X.25. 5185 * 5186 * 0800 IP 5187 * 0001 802.3 5188 * 0002 AX.25 5189 * 0004 802.2 5190 * 8035 RARP 5191 * 0005 SNAP 5192 * 0805 X.25 5193 * 0806 ARP 5194 * 8137 IPX 5195 * 0009 Localtalk 5196 * 86DD IPv6 5197 */ 5198 #define PTYPE_HASH_SIZE (16) 5199 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5200 5201 extern struct list_head ptype_all __read_mostly; 5202 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5203 5204 extern struct net_device *blackhole_netdev; 5205 5206 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5207 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5208 #define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5209 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5210 5211 #endif /* _LINUX_NETDEVICE_H */ 5212