xref: /openbmc/linux/include/linux/netdevice.h (revision e7f127b2)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <net/net_namespace.h>
38 #ifdef CONFIG_DCB
39 #include <net/dcbnl.h>
40 #endif
41 #include <net/netprio_cgroup.h>
42 #include <net/xdp.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <linux/hashtable.h>
50 #include <linux/rbtree.h>
51 #include <net/net_trackers.h>
52 
53 struct netpoll_info;
54 struct device;
55 struct ethtool_ops;
56 struct phy_device;
57 struct dsa_port;
58 struct ip_tunnel_parm;
59 struct macsec_context;
60 struct macsec_ops;
61 
62 struct sfp_bus;
63 /* 802.11 specific */
64 struct wireless_dev;
65 /* 802.15.4 specific */
66 struct wpan_dev;
67 struct mpls_dev;
68 /* UDP Tunnel offloads */
69 struct udp_tunnel_info;
70 struct udp_tunnel_nic_info;
71 struct udp_tunnel_nic;
72 struct bpf_prog;
73 struct xdp_buff;
74 
75 void synchronize_net(void);
76 void netdev_set_default_ethtool_ops(struct net_device *dev,
77 				    const struct ethtool_ops *ops);
78 
79 /* Backlog congestion levels */
80 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
81 #define NET_RX_DROP		1	/* packet dropped */
82 
83 #define MAX_NEST_DEV 8
84 
85 /*
86  * Transmit return codes: transmit return codes originate from three different
87  * namespaces:
88  *
89  * - qdisc return codes
90  * - driver transmit return codes
91  * - errno values
92  *
93  * Drivers are allowed to return any one of those in their hard_start_xmit()
94  * function. Real network devices commonly used with qdiscs should only return
95  * the driver transmit return codes though - when qdiscs are used, the actual
96  * transmission happens asynchronously, so the value is not propagated to
97  * higher layers. Virtual network devices transmit synchronously; in this case
98  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
99  * others are propagated to higher layers.
100  */
101 
102 /* qdisc ->enqueue() return codes. */
103 #define NET_XMIT_SUCCESS	0x00
104 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
105 #define NET_XMIT_CN		0x02	/* congestion notification	*/
106 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
107 
108 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
109  * indicates that the device will soon be dropping packets, or already drops
110  * some packets of the same priority; prompting us to send less aggressively. */
111 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
112 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
113 
114 /* Driver transmit return codes */
115 #define NETDEV_TX_MASK		0xf0
116 
117 enum netdev_tx {
118 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
119 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
120 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
121 };
122 typedef enum netdev_tx netdev_tx_t;
123 
124 /*
125  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
126  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
127  */
128 static inline bool dev_xmit_complete(int rc)
129 {
130 	/*
131 	 * Positive cases with an skb consumed by a driver:
132 	 * - successful transmission (rc == NETDEV_TX_OK)
133 	 * - error while transmitting (rc < 0)
134 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
135 	 */
136 	if (likely(rc < NET_XMIT_MASK))
137 		return true;
138 
139 	return false;
140 }
141 
142 /*
143  *	Compute the worst-case header length according to the protocols
144  *	used.
145  */
146 
147 #if defined(CONFIG_HYPERV_NET)
148 # define LL_MAX_HEADER 128
149 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
150 # if defined(CONFIG_MAC80211_MESH)
151 #  define LL_MAX_HEADER 128
152 # else
153 #  define LL_MAX_HEADER 96
154 # endif
155 #else
156 # define LL_MAX_HEADER 32
157 #endif
158 
159 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
160     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
161 #define MAX_HEADER LL_MAX_HEADER
162 #else
163 #define MAX_HEADER (LL_MAX_HEADER + 48)
164 #endif
165 
166 /*
167  *	Old network device statistics. Fields are native words
168  *	(unsigned long) so they can be read and written atomically.
169  */
170 
171 struct net_device_stats {
172 	unsigned long	rx_packets;
173 	unsigned long	tx_packets;
174 	unsigned long	rx_bytes;
175 	unsigned long	tx_bytes;
176 	unsigned long	rx_errors;
177 	unsigned long	tx_errors;
178 	unsigned long	rx_dropped;
179 	unsigned long	tx_dropped;
180 	unsigned long	multicast;
181 	unsigned long	collisions;
182 	unsigned long	rx_length_errors;
183 	unsigned long	rx_over_errors;
184 	unsigned long	rx_crc_errors;
185 	unsigned long	rx_frame_errors;
186 	unsigned long	rx_fifo_errors;
187 	unsigned long	rx_missed_errors;
188 	unsigned long	tx_aborted_errors;
189 	unsigned long	tx_carrier_errors;
190 	unsigned long	tx_fifo_errors;
191 	unsigned long	tx_heartbeat_errors;
192 	unsigned long	tx_window_errors;
193 	unsigned long	rx_compressed;
194 	unsigned long	tx_compressed;
195 };
196 
197 
198 #include <linux/cache.h>
199 #include <linux/skbuff.h>
200 
201 #ifdef CONFIG_RPS
202 #include <linux/static_key.h>
203 extern struct static_key_false rps_needed;
204 extern struct static_key_false rfs_needed;
205 #endif
206 
207 struct neighbour;
208 struct neigh_parms;
209 struct sk_buff;
210 
211 struct netdev_hw_addr {
212 	struct list_head	list;
213 	struct rb_node		node;
214 	unsigned char		addr[MAX_ADDR_LEN];
215 	unsigned char		type;
216 #define NETDEV_HW_ADDR_T_LAN		1
217 #define NETDEV_HW_ADDR_T_SAN		2
218 #define NETDEV_HW_ADDR_T_UNICAST	3
219 #define NETDEV_HW_ADDR_T_MULTICAST	4
220 	bool			global_use;
221 	int			sync_cnt;
222 	int			refcount;
223 	int			synced;
224 	struct rcu_head		rcu_head;
225 };
226 
227 struct netdev_hw_addr_list {
228 	struct list_head	list;
229 	int			count;
230 
231 	/* Auxiliary tree for faster lookup on addition and deletion */
232 	struct rb_root		tree;
233 };
234 
235 #define netdev_hw_addr_list_count(l) ((l)->count)
236 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
237 #define netdev_hw_addr_list_for_each(ha, l) \
238 	list_for_each_entry(ha, &(l)->list, list)
239 
240 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
241 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
242 #define netdev_for_each_uc_addr(ha, dev) \
243 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
244 
245 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
246 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
247 #define netdev_for_each_mc_addr(ha, dev) \
248 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
249 
250 struct hh_cache {
251 	unsigned int	hh_len;
252 	seqlock_t	hh_lock;
253 
254 	/* cached hardware header; allow for machine alignment needs.        */
255 #define HH_DATA_MOD	16
256 #define HH_DATA_OFF(__len) \
257 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
258 #define HH_DATA_ALIGN(__len) \
259 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
260 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
261 };
262 
263 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
264  * Alternative is:
265  *   dev->hard_header_len ? (dev->hard_header_len +
266  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
267  *
268  * We could use other alignment values, but we must maintain the
269  * relationship HH alignment <= LL alignment.
270  */
271 #define LL_RESERVED_SPACE(dev) \
272 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
273 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
274 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
275 
276 struct header_ops {
277 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
278 			   unsigned short type, const void *daddr,
279 			   const void *saddr, unsigned int len);
280 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
281 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
282 	void	(*cache_update)(struct hh_cache *hh,
283 				const struct net_device *dev,
284 				const unsigned char *haddr);
285 	bool	(*validate)(const char *ll_header, unsigned int len);
286 	__be16	(*parse_protocol)(const struct sk_buff *skb);
287 };
288 
289 /* These flag bits are private to the generic network queueing
290  * layer; they may not be explicitly referenced by any other
291  * code.
292  */
293 
294 enum netdev_state_t {
295 	__LINK_STATE_START,
296 	__LINK_STATE_PRESENT,
297 	__LINK_STATE_NOCARRIER,
298 	__LINK_STATE_LINKWATCH_PENDING,
299 	__LINK_STATE_DORMANT,
300 	__LINK_STATE_TESTING,
301 };
302 
303 struct gro_list {
304 	struct list_head	list;
305 	int			count;
306 };
307 
308 /*
309  * size of gro hash buckets, must less than bit number of
310  * napi_struct::gro_bitmask
311  */
312 #define GRO_HASH_BUCKETS	8
313 
314 /*
315  * Structure for NAPI scheduling similar to tasklet but with weighting
316  */
317 struct napi_struct {
318 	/* The poll_list must only be managed by the entity which
319 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
320 	 * whoever atomically sets that bit can add this napi_struct
321 	 * to the per-CPU poll_list, and whoever clears that bit
322 	 * can remove from the list right before clearing the bit.
323 	 */
324 	struct list_head	poll_list;
325 
326 	unsigned long		state;
327 	int			weight;
328 	int			defer_hard_irqs_count;
329 	unsigned long		gro_bitmask;
330 	int			(*poll)(struct napi_struct *, int);
331 #ifdef CONFIG_NETPOLL
332 	int			poll_owner;
333 #endif
334 	struct net_device	*dev;
335 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
336 	struct sk_buff		*skb;
337 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
338 	int			rx_count; /* length of rx_list */
339 	struct hrtimer		timer;
340 	struct list_head	dev_list;
341 	struct hlist_node	napi_hash_node;
342 	unsigned int		napi_id;
343 	struct task_struct	*thread;
344 };
345 
346 enum {
347 	NAPI_STATE_SCHED,		/* Poll is scheduled */
348 	NAPI_STATE_MISSED,		/* reschedule a napi */
349 	NAPI_STATE_DISABLE,		/* Disable pending */
350 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
351 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
352 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
353 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
354 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
355 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
356 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
357 };
358 
359 enum {
360 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
361 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
362 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
363 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
364 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
365 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
366 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
367 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
368 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
369 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
370 };
371 
372 enum gro_result {
373 	GRO_MERGED,
374 	GRO_MERGED_FREE,
375 	GRO_HELD,
376 	GRO_NORMAL,
377 	GRO_CONSUMED,
378 };
379 typedef enum gro_result gro_result_t;
380 
381 /*
382  * enum rx_handler_result - Possible return values for rx_handlers.
383  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
384  * further.
385  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
386  * case skb->dev was changed by rx_handler.
387  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
388  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
389  *
390  * rx_handlers are functions called from inside __netif_receive_skb(), to do
391  * special processing of the skb, prior to delivery to protocol handlers.
392  *
393  * Currently, a net_device can only have a single rx_handler registered. Trying
394  * to register a second rx_handler will return -EBUSY.
395  *
396  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
397  * To unregister a rx_handler on a net_device, use
398  * netdev_rx_handler_unregister().
399  *
400  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
401  * do with the skb.
402  *
403  * If the rx_handler consumed the skb in some way, it should return
404  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
405  * the skb to be delivered in some other way.
406  *
407  * If the rx_handler changed skb->dev, to divert the skb to another
408  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
409  * new device will be called if it exists.
410  *
411  * If the rx_handler decides the skb should be ignored, it should return
412  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
413  * are registered on exact device (ptype->dev == skb->dev).
414  *
415  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
416  * delivered, it should return RX_HANDLER_PASS.
417  *
418  * A device without a registered rx_handler will behave as if rx_handler
419  * returned RX_HANDLER_PASS.
420  */
421 
422 enum rx_handler_result {
423 	RX_HANDLER_CONSUMED,
424 	RX_HANDLER_ANOTHER,
425 	RX_HANDLER_EXACT,
426 	RX_HANDLER_PASS,
427 };
428 typedef enum rx_handler_result rx_handler_result_t;
429 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
430 
431 void __napi_schedule(struct napi_struct *n);
432 void __napi_schedule_irqoff(struct napi_struct *n);
433 
434 static inline bool napi_disable_pending(struct napi_struct *n)
435 {
436 	return test_bit(NAPI_STATE_DISABLE, &n->state);
437 }
438 
439 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
440 {
441 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
442 }
443 
444 bool napi_schedule_prep(struct napi_struct *n);
445 
446 /**
447  *	napi_schedule - schedule NAPI poll
448  *	@n: NAPI context
449  *
450  * Schedule NAPI poll routine to be called if it is not already
451  * running.
452  */
453 static inline void napi_schedule(struct napi_struct *n)
454 {
455 	if (napi_schedule_prep(n))
456 		__napi_schedule(n);
457 }
458 
459 /**
460  *	napi_schedule_irqoff - schedule NAPI poll
461  *	@n: NAPI context
462  *
463  * Variant of napi_schedule(), assuming hard irqs are masked.
464  */
465 static inline void napi_schedule_irqoff(struct napi_struct *n)
466 {
467 	if (napi_schedule_prep(n))
468 		__napi_schedule_irqoff(n);
469 }
470 
471 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
472 static inline bool napi_reschedule(struct napi_struct *napi)
473 {
474 	if (napi_schedule_prep(napi)) {
475 		__napi_schedule(napi);
476 		return true;
477 	}
478 	return false;
479 }
480 
481 bool napi_complete_done(struct napi_struct *n, int work_done);
482 /**
483  *	napi_complete - NAPI processing complete
484  *	@n: NAPI context
485  *
486  * Mark NAPI processing as complete.
487  * Consider using napi_complete_done() instead.
488  * Return false if device should avoid rearming interrupts.
489  */
490 static inline bool napi_complete(struct napi_struct *n)
491 {
492 	return napi_complete_done(n, 0);
493 }
494 
495 int dev_set_threaded(struct net_device *dev, bool threaded);
496 
497 /**
498  *	napi_disable - prevent NAPI from scheduling
499  *	@n: NAPI context
500  *
501  * Stop NAPI from being scheduled on this context.
502  * Waits till any outstanding processing completes.
503  */
504 void napi_disable(struct napi_struct *n);
505 
506 void napi_enable(struct napi_struct *n);
507 
508 /**
509  *	napi_synchronize - wait until NAPI is not running
510  *	@n: NAPI context
511  *
512  * Wait until NAPI is done being scheduled on this context.
513  * Waits till any outstanding processing completes but
514  * does not disable future activations.
515  */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518 	if (IS_ENABLED(CONFIG_SMP))
519 		while (test_bit(NAPI_STATE_SCHED, &n->state))
520 			msleep(1);
521 	else
522 		barrier();
523 }
524 
525 /**
526  *	napi_if_scheduled_mark_missed - if napi is running, set the
527  *	NAPIF_STATE_MISSED
528  *	@n: NAPI context
529  *
530  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
531  * NAPI is scheduled.
532  **/
533 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
534 {
535 	unsigned long val, new;
536 
537 	do {
538 		val = READ_ONCE(n->state);
539 		if (val & NAPIF_STATE_DISABLE)
540 			return true;
541 
542 		if (!(val & NAPIF_STATE_SCHED))
543 			return false;
544 
545 		new = val | NAPIF_STATE_MISSED;
546 	} while (cmpxchg(&n->state, val, new) != val);
547 
548 	return true;
549 }
550 
551 enum netdev_queue_state_t {
552 	__QUEUE_STATE_DRV_XOFF,
553 	__QUEUE_STATE_STACK_XOFF,
554 	__QUEUE_STATE_FROZEN,
555 };
556 
557 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
558 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
559 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
560 
561 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
562 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
563 					QUEUE_STATE_FROZEN)
564 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
565 					QUEUE_STATE_FROZEN)
566 
567 /*
568  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
569  * netif_tx_* functions below are used to manipulate this flag.  The
570  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
571  * queue independently.  The netif_xmit_*stopped functions below are called
572  * to check if the queue has been stopped by the driver or stack (either
573  * of the XOFF bits are set in the state).  Drivers should not need to call
574  * netif_xmit*stopped functions, they should only be using netif_tx_*.
575  */
576 
577 struct netdev_queue {
578 /*
579  * read-mostly part
580  */
581 	struct net_device	*dev;
582 	netdevice_tracker	dev_tracker;
583 
584 	struct Qdisc __rcu	*qdisc;
585 	struct Qdisc		*qdisc_sleeping;
586 #ifdef CONFIG_SYSFS
587 	struct kobject		kobj;
588 #endif
589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
590 	int			numa_node;
591 #endif
592 	unsigned long		tx_maxrate;
593 	/*
594 	 * Number of TX timeouts for this queue
595 	 * (/sys/class/net/DEV/Q/trans_timeout)
596 	 */
597 	atomic_long_t		trans_timeout;
598 
599 	/* Subordinate device that the queue has been assigned to */
600 	struct net_device	*sb_dev;
601 #ifdef CONFIG_XDP_SOCKETS
602 	struct xsk_buff_pool    *pool;
603 #endif
604 /*
605  * write-mostly part
606  */
607 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
608 	int			xmit_lock_owner;
609 	/*
610 	 * Time (in jiffies) of last Tx
611 	 */
612 	unsigned long		trans_start;
613 
614 	unsigned long		state;
615 
616 #ifdef CONFIG_BQL
617 	struct dql		dql;
618 #endif
619 } ____cacheline_aligned_in_smp;
620 
621 extern int sysctl_fb_tunnels_only_for_init_net;
622 extern int sysctl_devconf_inherit_init_net;
623 
624 /*
625  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
626  *                                     == 1 : For initns only
627  *                                     == 2 : For none.
628  */
629 static inline bool net_has_fallback_tunnels(const struct net *net)
630 {
631 	return !IS_ENABLED(CONFIG_SYSCTL) ||
632 	       !sysctl_fb_tunnels_only_for_init_net ||
633 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
634 }
635 
636 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
637 {
638 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
639 	return q->numa_node;
640 #else
641 	return NUMA_NO_NODE;
642 #endif
643 }
644 
645 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
646 {
647 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
648 	q->numa_node = node;
649 #endif
650 }
651 
652 #ifdef CONFIG_RPS
653 /*
654  * This structure holds an RPS map which can be of variable length.  The
655  * map is an array of CPUs.
656  */
657 struct rps_map {
658 	unsigned int len;
659 	struct rcu_head rcu;
660 	u16 cpus[];
661 };
662 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
663 
664 /*
665  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
666  * tail pointer for that CPU's input queue at the time of last enqueue, and
667  * a hardware filter index.
668  */
669 struct rps_dev_flow {
670 	u16 cpu;
671 	u16 filter;
672 	unsigned int last_qtail;
673 };
674 #define RPS_NO_FILTER 0xffff
675 
676 /*
677  * The rps_dev_flow_table structure contains a table of flow mappings.
678  */
679 struct rps_dev_flow_table {
680 	unsigned int mask;
681 	struct rcu_head rcu;
682 	struct rps_dev_flow flows[];
683 };
684 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
685     ((_num) * sizeof(struct rps_dev_flow)))
686 
687 /*
688  * The rps_sock_flow_table contains mappings of flows to the last CPU
689  * on which they were processed by the application (set in recvmsg).
690  * Each entry is a 32bit value. Upper part is the high-order bits
691  * of flow hash, lower part is CPU number.
692  * rps_cpu_mask is used to partition the space, depending on number of
693  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
694  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
695  * meaning we use 32-6=26 bits for the hash.
696  */
697 struct rps_sock_flow_table {
698 	u32	mask;
699 
700 	u32	ents[] ____cacheline_aligned_in_smp;
701 };
702 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
703 
704 #define RPS_NO_CPU 0xffff
705 
706 extern u32 rps_cpu_mask;
707 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
708 
709 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
710 					u32 hash)
711 {
712 	if (table && hash) {
713 		unsigned int index = hash & table->mask;
714 		u32 val = hash & ~rps_cpu_mask;
715 
716 		/* We only give a hint, preemption can change CPU under us */
717 		val |= raw_smp_processor_id();
718 
719 		if (table->ents[index] != val)
720 			table->ents[index] = val;
721 	}
722 }
723 
724 #ifdef CONFIG_RFS_ACCEL
725 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
726 			 u16 filter_id);
727 #endif
728 #endif /* CONFIG_RPS */
729 
730 /* This structure contains an instance of an RX queue. */
731 struct netdev_rx_queue {
732 	struct xdp_rxq_info		xdp_rxq;
733 #ifdef CONFIG_RPS
734 	struct rps_map __rcu		*rps_map;
735 	struct rps_dev_flow_table __rcu	*rps_flow_table;
736 #endif
737 	struct kobject			kobj;
738 	struct net_device		*dev;
739 	netdevice_tracker		dev_tracker;
740 
741 #ifdef CONFIG_XDP_SOCKETS
742 	struct xsk_buff_pool            *pool;
743 #endif
744 } ____cacheline_aligned_in_smp;
745 
746 /*
747  * RX queue sysfs structures and functions.
748  */
749 struct rx_queue_attribute {
750 	struct attribute attr;
751 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
752 	ssize_t (*store)(struct netdev_rx_queue *queue,
753 			 const char *buf, size_t len);
754 };
755 
756 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
757 enum xps_map_type {
758 	XPS_CPUS = 0,
759 	XPS_RXQS,
760 	XPS_MAPS_MAX,
761 };
762 
763 #ifdef CONFIG_XPS
764 /*
765  * This structure holds an XPS map which can be of variable length.  The
766  * map is an array of queues.
767  */
768 struct xps_map {
769 	unsigned int len;
770 	unsigned int alloc_len;
771 	struct rcu_head rcu;
772 	u16 queues[];
773 };
774 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
775 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
776        - sizeof(struct xps_map)) / sizeof(u16))
777 
778 /*
779  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
780  *
781  * We keep track of the number of cpus/rxqs used when the struct is allocated,
782  * in nr_ids. This will help not accessing out-of-bound memory.
783  *
784  * We keep track of the number of traffic classes used when the struct is
785  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
786  * not crossing its upper bound, as the original dev->num_tc can be updated in
787  * the meantime.
788  */
789 struct xps_dev_maps {
790 	struct rcu_head rcu;
791 	unsigned int nr_ids;
792 	s16 num_tc;
793 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
794 };
795 
796 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
797 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
798 
799 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
800 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
801 
802 #endif /* CONFIG_XPS */
803 
804 #define TC_MAX_QUEUE	16
805 #define TC_BITMASK	15
806 /* HW offloaded queuing disciplines txq count and offset maps */
807 struct netdev_tc_txq {
808 	u16 count;
809 	u16 offset;
810 };
811 
812 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
813 /*
814  * This structure is to hold information about the device
815  * configured to run FCoE protocol stack.
816  */
817 struct netdev_fcoe_hbainfo {
818 	char	manufacturer[64];
819 	char	serial_number[64];
820 	char	hardware_version[64];
821 	char	driver_version[64];
822 	char	optionrom_version[64];
823 	char	firmware_version[64];
824 	char	model[256];
825 	char	model_description[256];
826 };
827 #endif
828 
829 #define MAX_PHYS_ITEM_ID_LEN 32
830 
831 /* This structure holds a unique identifier to identify some
832  * physical item (port for example) used by a netdevice.
833  */
834 struct netdev_phys_item_id {
835 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
836 	unsigned char id_len;
837 };
838 
839 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
840 					    struct netdev_phys_item_id *b)
841 {
842 	return a->id_len == b->id_len &&
843 	       memcmp(a->id, b->id, a->id_len) == 0;
844 }
845 
846 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
847 				       struct sk_buff *skb,
848 				       struct net_device *sb_dev);
849 
850 enum net_device_path_type {
851 	DEV_PATH_ETHERNET = 0,
852 	DEV_PATH_VLAN,
853 	DEV_PATH_BRIDGE,
854 	DEV_PATH_PPPOE,
855 	DEV_PATH_DSA,
856 };
857 
858 struct net_device_path {
859 	enum net_device_path_type	type;
860 	const struct net_device		*dev;
861 	union {
862 		struct {
863 			u16		id;
864 			__be16		proto;
865 			u8		h_dest[ETH_ALEN];
866 		} encap;
867 		struct {
868 			enum {
869 				DEV_PATH_BR_VLAN_KEEP,
870 				DEV_PATH_BR_VLAN_TAG,
871 				DEV_PATH_BR_VLAN_UNTAG,
872 				DEV_PATH_BR_VLAN_UNTAG_HW,
873 			}		vlan_mode;
874 			u16		vlan_id;
875 			__be16		vlan_proto;
876 		} bridge;
877 		struct {
878 			int port;
879 			u16 proto;
880 		} dsa;
881 	};
882 };
883 
884 #define NET_DEVICE_PATH_STACK_MAX	5
885 #define NET_DEVICE_PATH_VLAN_MAX	2
886 
887 struct net_device_path_stack {
888 	int			num_paths;
889 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
890 };
891 
892 struct net_device_path_ctx {
893 	const struct net_device *dev;
894 	const u8		*daddr;
895 
896 	int			num_vlans;
897 	struct {
898 		u16		id;
899 		__be16		proto;
900 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
901 };
902 
903 enum tc_setup_type {
904 	TC_SETUP_QDISC_MQPRIO,
905 	TC_SETUP_CLSU32,
906 	TC_SETUP_CLSFLOWER,
907 	TC_SETUP_CLSMATCHALL,
908 	TC_SETUP_CLSBPF,
909 	TC_SETUP_BLOCK,
910 	TC_SETUP_QDISC_CBS,
911 	TC_SETUP_QDISC_RED,
912 	TC_SETUP_QDISC_PRIO,
913 	TC_SETUP_QDISC_MQ,
914 	TC_SETUP_QDISC_ETF,
915 	TC_SETUP_ROOT_QDISC,
916 	TC_SETUP_QDISC_GRED,
917 	TC_SETUP_QDISC_TAPRIO,
918 	TC_SETUP_FT,
919 	TC_SETUP_QDISC_ETS,
920 	TC_SETUP_QDISC_TBF,
921 	TC_SETUP_QDISC_FIFO,
922 	TC_SETUP_QDISC_HTB,
923 	TC_SETUP_ACT,
924 };
925 
926 /* These structures hold the attributes of bpf state that are being passed
927  * to the netdevice through the bpf op.
928  */
929 enum bpf_netdev_command {
930 	/* Set or clear a bpf program used in the earliest stages of packet
931 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
932 	 * is responsible for calling bpf_prog_put on any old progs that are
933 	 * stored. In case of error, the callee need not release the new prog
934 	 * reference, but on success it takes ownership and must bpf_prog_put
935 	 * when it is no longer used.
936 	 */
937 	XDP_SETUP_PROG,
938 	XDP_SETUP_PROG_HW,
939 	/* BPF program for offload callbacks, invoked at program load time. */
940 	BPF_OFFLOAD_MAP_ALLOC,
941 	BPF_OFFLOAD_MAP_FREE,
942 	XDP_SETUP_XSK_POOL,
943 };
944 
945 struct bpf_prog_offload_ops;
946 struct netlink_ext_ack;
947 struct xdp_umem;
948 struct xdp_dev_bulk_queue;
949 struct bpf_xdp_link;
950 
951 enum bpf_xdp_mode {
952 	XDP_MODE_SKB = 0,
953 	XDP_MODE_DRV = 1,
954 	XDP_MODE_HW = 2,
955 	__MAX_XDP_MODE
956 };
957 
958 struct bpf_xdp_entity {
959 	struct bpf_prog *prog;
960 	struct bpf_xdp_link *link;
961 };
962 
963 struct netdev_bpf {
964 	enum bpf_netdev_command command;
965 	union {
966 		/* XDP_SETUP_PROG */
967 		struct {
968 			u32 flags;
969 			struct bpf_prog *prog;
970 			struct netlink_ext_ack *extack;
971 		};
972 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
973 		struct {
974 			struct bpf_offloaded_map *offmap;
975 		};
976 		/* XDP_SETUP_XSK_POOL */
977 		struct {
978 			struct xsk_buff_pool *pool;
979 			u16 queue_id;
980 		} xsk;
981 	};
982 };
983 
984 /* Flags for ndo_xsk_wakeup. */
985 #define XDP_WAKEUP_RX (1 << 0)
986 #define XDP_WAKEUP_TX (1 << 1)
987 
988 #ifdef CONFIG_XFRM_OFFLOAD
989 struct xfrmdev_ops {
990 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
991 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
992 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
993 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
994 				       struct xfrm_state *x);
995 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
996 };
997 #endif
998 
999 struct dev_ifalias {
1000 	struct rcu_head rcuhead;
1001 	char ifalias[];
1002 };
1003 
1004 struct devlink;
1005 struct tlsdev_ops;
1006 
1007 struct netdev_name_node {
1008 	struct hlist_node hlist;
1009 	struct list_head list;
1010 	struct net_device *dev;
1011 	const char *name;
1012 };
1013 
1014 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
1015 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
1016 
1017 struct netdev_net_notifier {
1018 	struct list_head list;
1019 	struct notifier_block *nb;
1020 };
1021 
1022 /*
1023  * This structure defines the management hooks for network devices.
1024  * The following hooks can be defined; unless noted otherwise, they are
1025  * optional and can be filled with a null pointer.
1026  *
1027  * int (*ndo_init)(struct net_device *dev);
1028  *     This function is called once when a network device is registered.
1029  *     The network device can use this for any late stage initialization
1030  *     or semantic validation. It can fail with an error code which will
1031  *     be propagated back to register_netdev.
1032  *
1033  * void (*ndo_uninit)(struct net_device *dev);
1034  *     This function is called when device is unregistered or when registration
1035  *     fails. It is not called if init fails.
1036  *
1037  * int (*ndo_open)(struct net_device *dev);
1038  *     This function is called when a network device transitions to the up
1039  *     state.
1040  *
1041  * int (*ndo_stop)(struct net_device *dev);
1042  *     This function is called when a network device transitions to the down
1043  *     state.
1044  *
1045  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1046  *                               struct net_device *dev);
1047  *	Called when a packet needs to be transmitted.
1048  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1049  *	the queue before that can happen; it's for obsolete devices and weird
1050  *	corner cases, but the stack really does a non-trivial amount
1051  *	of useless work if you return NETDEV_TX_BUSY.
1052  *	Required; cannot be NULL.
1053  *
1054  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1055  *					   struct net_device *dev
1056  *					   netdev_features_t features);
1057  *	Called by core transmit path to determine if device is capable of
1058  *	performing offload operations on a given packet. This is to give
1059  *	the device an opportunity to implement any restrictions that cannot
1060  *	be otherwise expressed by feature flags. The check is called with
1061  *	the set of features that the stack has calculated and it returns
1062  *	those the driver believes to be appropriate.
1063  *
1064  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1065  *                         struct net_device *sb_dev);
1066  *	Called to decide which queue to use when device supports multiple
1067  *	transmit queues.
1068  *
1069  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1070  *	This function is called to allow device receiver to make
1071  *	changes to configuration when multicast or promiscuous is enabled.
1072  *
1073  * void (*ndo_set_rx_mode)(struct net_device *dev);
1074  *	This function is called device changes address list filtering.
1075  *	If driver handles unicast address filtering, it should set
1076  *	IFF_UNICAST_FLT in its priv_flags.
1077  *
1078  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1079  *	This function  is called when the Media Access Control address
1080  *	needs to be changed. If this interface is not defined, the
1081  *	MAC address can not be changed.
1082  *
1083  * int (*ndo_validate_addr)(struct net_device *dev);
1084  *	Test if Media Access Control address is valid for the device.
1085  *
1086  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1087  *	Old-style ioctl entry point. This is used internally by the
1088  *	appletalk and ieee802154 subsystems but is no longer called by
1089  *	the device ioctl handler.
1090  *
1091  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1092  *	Used by the bonding driver for its device specific ioctls:
1093  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1094  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1095  *
1096  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1097  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1098  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1099  *
1100  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1101  *	Used to set network devices bus interface parameters. This interface
1102  *	is retained for legacy reasons; new devices should use the bus
1103  *	interface (PCI) for low level management.
1104  *
1105  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1106  *	Called when a user wants to change the Maximum Transfer Unit
1107  *	of a device.
1108  *
1109  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1110  *	Callback used when the transmitter has not made any progress
1111  *	for dev->watchdog ticks.
1112  *
1113  * void (*ndo_get_stats64)(struct net_device *dev,
1114  *                         struct rtnl_link_stats64 *storage);
1115  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1116  *	Called when a user wants to get the network device usage
1117  *	statistics. Drivers must do one of the following:
1118  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1119  *	   rtnl_link_stats64 structure passed by the caller.
1120  *	2. Define @ndo_get_stats to update a net_device_stats structure
1121  *	   (which should normally be dev->stats) and return a pointer to
1122  *	   it. The structure may be changed asynchronously only if each
1123  *	   field is written atomically.
1124  *	3. Update dev->stats asynchronously and atomically, and define
1125  *	   neither operation.
1126  *
1127  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1128  *	Return true if this device supports offload stats of this attr_id.
1129  *
1130  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1131  *	void *attr_data)
1132  *	Get statistics for offload operations by attr_id. Write it into the
1133  *	attr_data pointer.
1134  *
1135  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1136  *	If device supports VLAN filtering this function is called when a
1137  *	VLAN id is registered.
1138  *
1139  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1140  *	If device supports VLAN filtering this function is called when a
1141  *	VLAN id is unregistered.
1142  *
1143  * void (*ndo_poll_controller)(struct net_device *dev);
1144  *
1145  *	SR-IOV management functions.
1146  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1147  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1148  *			  u8 qos, __be16 proto);
1149  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1150  *			  int max_tx_rate);
1151  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1152  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1153  * int (*ndo_get_vf_config)(struct net_device *dev,
1154  *			    int vf, struct ifla_vf_info *ivf);
1155  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1156  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1157  *			  struct nlattr *port[]);
1158  *
1159  *      Enable or disable the VF ability to query its RSS Redirection Table and
1160  *      Hash Key. This is needed since on some devices VF share this information
1161  *      with PF and querying it may introduce a theoretical security risk.
1162  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1163  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1164  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1165  *		       void *type_data);
1166  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1167  *	This is always called from the stack with the rtnl lock held and netif
1168  *	tx queues stopped. This allows the netdevice to perform queue
1169  *	management safely.
1170  *
1171  *	Fiber Channel over Ethernet (FCoE) offload functions.
1172  * int (*ndo_fcoe_enable)(struct net_device *dev);
1173  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1174  *	so the underlying device can perform whatever needed configuration or
1175  *	initialization to support acceleration of FCoE traffic.
1176  *
1177  * int (*ndo_fcoe_disable)(struct net_device *dev);
1178  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1179  *	so the underlying device can perform whatever needed clean-ups to
1180  *	stop supporting acceleration of FCoE traffic.
1181  *
1182  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1183  *			     struct scatterlist *sgl, unsigned int sgc);
1184  *	Called when the FCoE Initiator wants to initialize an I/O that
1185  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1186  *	perform necessary setup and returns 1 to indicate the device is set up
1187  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1188  *
1189  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1190  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1191  *	indicated by the FC exchange id 'xid', so the underlying device can
1192  *	clean up and reuse resources for later DDP requests.
1193  *
1194  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1195  *			      struct scatterlist *sgl, unsigned int sgc);
1196  *	Called when the FCoE Target wants to initialize an I/O that
1197  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1198  *	perform necessary setup and returns 1 to indicate the device is set up
1199  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1200  *
1201  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1202  *			       struct netdev_fcoe_hbainfo *hbainfo);
1203  *	Called when the FCoE Protocol stack wants information on the underlying
1204  *	device. This information is utilized by the FCoE protocol stack to
1205  *	register attributes with Fiber Channel management service as per the
1206  *	FC-GS Fabric Device Management Information(FDMI) specification.
1207  *
1208  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1209  *	Called when the underlying device wants to override default World Wide
1210  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1211  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1212  *	protocol stack to use.
1213  *
1214  *	RFS acceleration.
1215  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1216  *			    u16 rxq_index, u32 flow_id);
1217  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1218  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1219  *	Return the filter ID on success, or a negative error code.
1220  *
1221  *	Slave management functions (for bridge, bonding, etc).
1222  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1223  *	Called to make another netdev an underling.
1224  *
1225  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1226  *	Called to release previously enslaved netdev.
1227  *
1228  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1229  *					    struct sk_buff *skb,
1230  *					    bool all_slaves);
1231  *	Get the xmit slave of master device. If all_slaves is true, function
1232  *	assume all the slaves can transmit.
1233  *
1234  *      Feature/offload setting functions.
1235  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1236  *		netdev_features_t features);
1237  *	Adjusts the requested feature flags according to device-specific
1238  *	constraints, and returns the resulting flags. Must not modify
1239  *	the device state.
1240  *
1241  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1242  *	Called to update device configuration to new features. Passed
1243  *	feature set might be less than what was returned by ndo_fix_features()).
1244  *	Must return >0 or -errno if it changed dev->features itself.
1245  *
1246  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1247  *		      struct net_device *dev,
1248  *		      const unsigned char *addr, u16 vid, u16 flags,
1249  *		      struct netlink_ext_ack *extack);
1250  *	Adds an FDB entry to dev for addr.
1251  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1252  *		      struct net_device *dev,
1253  *		      const unsigned char *addr, u16 vid)
1254  *	Deletes the FDB entry from dev coresponding to addr.
1255  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1256  *		       struct net_device *dev, struct net_device *filter_dev,
1257  *		       int *idx)
1258  *	Used to add FDB entries to dump requests. Implementers should add
1259  *	entries to skb and update idx with the number of entries.
1260  *
1261  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1262  *			     u16 flags, struct netlink_ext_ack *extack)
1263  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1264  *			     struct net_device *dev, u32 filter_mask,
1265  *			     int nlflags)
1266  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1267  *			     u16 flags);
1268  *
1269  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1270  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1271  *	which do not represent real hardware may define this to allow their
1272  *	userspace components to manage their virtual carrier state. Devices
1273  *	that determine carrier state from physical hardware properties (eg
1274  *	network cables) or protocol-dependent mechanisms (eg
1275  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1276  *
1277  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1278  *			       struct netdev_phys_item_id *ppid);
1279  *	Called to get ID of physical port of this device. If driver does
1280  *	not implement this, it is assumed that the hw is not able to have
1281  *	multiple net devices on single physical port.
1282  *
1283  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1284  *				 struct netdev_phys_item_id *ppid)
1285  *	Called to get the parent ID of the physical port of this device.
1286  *
1287  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1288  *				 struct net_device *dev)
1289  *	Called by upper layer devices to accelerate switching or other
1290  *	station functionality into hardware. 'pdev is the lowerdev
1291  *	to use for the offload and 'dev' is the net device that will
1292  *	back the offload. Returns a pointer to the private structure
1293  *	the upper layer will maintain.
1294  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1295  *	Called by upper layer device to delete the station created
1296  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1297  *	the station and priv is the structure returned by the add
1298  *	operation.
1299  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1300  *			     int queue_index, u32 maxrate);
1301  *	Called when a user wants to set a max-rate limitation of specific
1302  *	TX queue.
1303  * int (*ndo_get_iflink)(const struct net_device *dev);
1304  *	Called to get the iflink value of this device.
1305  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1306  *	This function is used to get egress tunnel information for given skb.
1307  *	This is useful for retrieving outer tunnel header parameters while
1308  *	sampling packet.
1309  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1310  *	This function is used to specify the headroom that the skb must
1311  *	consider when allocation skb during packet reception. Setting
1312  *	appropriate rx headroom value allows avoiding skb head copy on
1313  *	forward. Setting a negative value resets the rx headroom to the
1314  *	default value.
1315  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1316  *	This function is used to set or query state related to XDP on the
1317  *	netdevice and manage BPF offload. See definition of
1318  *	enum bpf_netdev_command for details.
1319  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1320  *			u32 flags);
1321  *	This function is used to submit @n XDP packets for transmit on a
1322  *	netdevice. Returns number of frames successfully transmitted, frames
1323  *	that got dropped are freed/returned via xdp_return_frame().
1324  *	Returns negative number, means general error invoking ndo, meaning
1325  *	no frames were xmit'ed and core-caller will free all frames.
1326  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1327  *					        struct xdp_buff *xdp);
1328  *      Get the xmit slave of master device based on the xdp_buff.
1329  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1330  *      This function is used to wake up the softirq, ksoftirqd or kthread
1331  *	responsible for sending and/or receiving packets on a specific
1332  *	queue id bound to an AF_XDP socket. The flags field specifies if
1333  *	only RX, only Tx, or both should be woken up using the flags
1334  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1335  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1336  *	Get devlink port instance associated with a given netdev.
1337  *	Called with a reference on the netdevice and devlink locks only,
1338  *	rtnl_lock is not held.
1339  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1340  *			 int cmd);
1341  *	Add, change, delete or get information on an IPv4 tunnel.
1342  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1343  *	If a device is paired with a peer device, return the peer instance.
1344  *	The caller must be under RCU read context.
1345  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1346  *     Get the forwarding path to reach the real device from the HW destination address
1347  */
1348 struct net_device_ops {
1349 	int			(*ndo_init)(struct net_device *dev);
1350 	void			(*ndo_uninit)(struct net_device *dev);
1351 	int			(*ndo_open)(struct net_device *dev);
1352 	int			(*ndo_stop)(struct net_device *dev);
1353 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1354 						  struct net_device *dev);
1355 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1356 						      struct net_device *dev,
1357 						      netdev_features_t features);
1358 	u16			(*ndo_select_queue)(struct net_device *dev,
1359 						    struct sk_buff *skb,
1360 						    struct net_device *sb_dev);
1361 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1362 						       int flags);
1363 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1364 	int			(*ndo_set_mac_address)(struct net_device *dev,
1365 						       void *addr);
1366 	int			(*ndo_validate_addr)(struct net_device *dev);
1367 	int			(*ndo_do_ioctl)(struct net_device *dev,
1368 					        struct ifreq *ifr, int cmd);
1369 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1370 						 struct ifreq *ifr, int cmd);
1371 	int			(*ndo_siocbond)(struct net_device *dev,
1372 						struct ifreq *ifr, int cmd);
1373 	int			(*ndo_siocwandev)(struct net_device *dev,
1374 						  struct if_settings *ifs);
1375 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1376 						      struct ifreq *ifr,
1377 						      void __user *data, int cmd);
1378 	int			(*ndo_set_config)(struct net_device *dev,
1379 					          struct ifmap *map);
1380 	int			(*ndo_change_mtu)(struct net_device *dev,
1381 						  int new_mtu);
1382 	int			(*ndo_neigh_setup)(struct net_device *dev,
1383 						   struct neigh_parms *);
1384 	void			(*ndo_tx_timeout) (struct net_device *dev,
1385 						   unsigned int txqueue);
1386 
1387 	void			(*ndo_get_stats64)(struct net_device *dev,
1388 						   struct rtnl_link_stats64 *storage);
1389 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1390 	int			(*ndo_get_offload_stats)(int attr_id,
1391 							 const struct net_device *dev,
1392 							 void *attr_data);
1393 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1394 
1395 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1396 						       __be16 proto, u16 vid);
1397 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1398 						        __be16 proto, u16 vid);
1399 #ifdef CONFIG_NET_POLL_CONTROLLER
1400 	void                    (*ndo_poll_controller)(struct net_device *dev);
1401 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1402 						     struct netpoll_info *info);
1403 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1404 #endif
1405 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1406 						  int queue, u8 *mac);
1407 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1408 						   int queue, u16 vlan,
1409 						   u8 qos, __be16 proto);
1410 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1411 						   int vf, int min_tx_rate,
1412 						   int max_tx_rate);
1413 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1414 						       int vf, bool setting);
1415 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1416 						    int vf, bool setting);
1417 	int			(*ndo_get_vf_config)(struct net_device *dev,
1418 						     int vf,
1419 						     struct ifla_vf_info *ivf);
1420 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1421 							 int vf, int link_state);
1422 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1423 						    int vf,
1424 						    struct ifla_vf_stats
1425 						    *vf_stats);
1426 	int			(*ndo_set_vf_port)(struct net_device *dev,
1427 						   int vf,
1428 						   struct nlattr *port[]);
1429 	int			(*ndo_get_vf_port)(struct net_device *dev,
1430 						   int vf, struct sk_buff *skb);
1431 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1432 						   int vf,
1433 						   struct ifla_vf_guid *node_guid,
1434 						   struct ifla_vf_guid *port_guid);
1435 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1436 						   int vf, u64 guid,
1437 						   int guid_type);
1438 	int			(*ndo_set_vf_rss_query_en)(
1439 						   struct net_device *dev,
1440 						   int vf, bool setting);
1441 	int			(*ndo_setup_tc)(struct net_device *dev,
1442 						enum tc_setup_type type,
1443 						void *type_data);
1444 #if IS_ENABLED(CONFIG_FCOE)
1445 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1446 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1447 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1448 						      u16 xid,
1449 						      struct scatterlist *sgl,
1450 						      unsigned int sgc);
1451 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1452 						     u16 xid);
1453 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1454 						       u16 xid,
1455 						       struct scatterlist *sgl,
1456 						       unsigned int sgc);
1457 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1458 							struct netdev_fcoe_hbainfo *hbainfo);
1459 #endif
1460 
1461 #if IS_ENABLED(CONFIG_LIBFCOE)
1462 #define NETDEV_FCOE_WWNN 0
1463 #define NETDEV_FCOE_WWPN 1
1464 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1465 						    u64 *wwn, int type);
1466 #endif
1467 
1468 #ifdef CONFIG_RFS_ACCEL
1469 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1470 						     const struct sk_buff *skb,
1471 						     u16 rxq_index,
1472 						     u32 flow_id);
1473 #endif
1474 	int			(*ndo_add_slave)(struct net_device *dev,
1475 						 struct net_device *slave_dev,
1476 						 struct netlink_ext_ack *extack);
1477 	int			(*ndo_del_slave)(struct net_device *dev,
1478 						 struct net_device *slave_dev);
1479 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1480 						      struct sk_buff *skb,
1481 						      bool all_slaves);
1482 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1483 							struct sock *sk);
1484 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1485 						    netdev_features_t features);
1486 	int			(*ndo_set_features)(struct net_device *dev,
1487 						    netdev_features_t features);
1488 	int			(*ndo_neigh_construct)(struct net_device *dev,
1489 						       struct neighbour *n);
1490 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1491 						     struct neighbour *n);
1492 
1493 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1494 					       struct nlattr *tb[],
1495 					       struct net_device *dev,
1496 					       const unsigned char *addr,
1497 					       u16 vid,
1498 					       u16 flags,
1499 					       struct netlink_ext_ack *extack);
1500 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1501 					       struct nlattr *tb[],
1502 					       struct net_device *dev,
1503 					       const unsigned char *addr,
1504 					       u16 vid);
1505 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1506 						struct netlink_callback *cb,
1507 						struct net_device *dev,
1508 						struct net_device *filter_dev,
1509 						int *idx);
1510 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1511 					       struct nlattr *tb[],
1512 					       struct net_device *dev,
1513 					       const unsigned char *addr,
1514 					       u16 vid, u32 portid, u32 seq,
1515 					       struct netlink_ext_ack *extack);
1516 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1517 						      struct nlmsghdr *nlh,
1518 						      u16 flags,
1519 						      struct netlink_ext_ack *extack);
1520 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1521 						      u32 pid, u32 seq,
1522 						      struct net_device *dev,
1523 						      u32 filter_mask,
1524 						      int nlflags);
1525 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1526 						      struct nlmsghdr *nlh,
1527 						      u16 flags);
1528 	int			(*ndo_change_carrier)(struct net_device *dev,
1529 						      bool new_carrier);
1530 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1531 							struct netdev_phys_item_id *ppid);
1532 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1533 							  struct netdev_phys_item_id *ppid);
1534 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1535 							  char *name, size_t len);
1536 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1537 							struct net_device *dev);
1538 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1539 							void *priv);
1540 
1541 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1542 						      int queue_index,
1543 						      u32 maxrate);
1544 	int			(*ndo_get_iflink)(const struct net_device *dev);
1545 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1546 						       struct sk_buff *skb);
1547 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1548 						       int needed_headroom);
1549 	int			(*ndo_bpf)(struct net_device *dev,
1550 					   struct netdev_bpf *bpf);
1551 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1552 						struct xdp_frame **xdp,
1553 						u32 flags);
1554 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1555 							  struct xdp_buff *xdp);
1556 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1557 						  u32 queue_id, u32 flags);
1558 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1559 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1560 						  struct ip_tunnel_parm *p, int cmd);
1561 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1562 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1563                                                          struct net_device_path *path);
1564 };
1565 
1566 /**
1567  * enum netdev_priv_flags - &struct net_device priv_flags
1568  *
1569  * These are the &struct net_device, they are only set internally
1570  * by drivers and used in the kernel. These flags are invisible to
1571  * userspace; this means that the order of these flags can change
1572  * during any kernel release.
1573  *
1574  * You should have a pretty good reason to be extending these flags.
1575  *
1576  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1577  * @IFF_EBRIDGE: Ethernet bridging device
1578  * @IFF_BONDING: bonding master or slave
1579  * @IFF_ISATAP: ISATAP interface (RFC4214)
1580  * @IFF_WAN_HDLC: WAN HDLC device
1581  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1582  *	release skb->dst
1583  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1584  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1585  * @IFF_MACVLAN_PORT: device used as macvlan port
1586  * @IFF_BRIDGE_PORT: device used as bridge port
1587  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1588  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1589  * @IFF_UNICAST_FLT: Supports unicast filtering
1590  * @IFF_TEAM_PORT: device used as team port
1591  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1592  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1593  *	change when it's running
1594  * @IFF_MACVLAN: Macvlan device
1595  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1596  *	underlying stacked devices
1597  * @IFF_L3MDEV_MASTER: device is an L3 master device
1598  * @IFF_NO_QUEUE: device can run without qdisc attached
1599  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1600  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1601  * @IFF_TEAM: device is a team device
1602  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1603  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1604  *	entity (i.e. the master device for bridged veth)
1605  * @IFF_MACSEC: device is a MACsec device
1606  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1607  * @IFF_FAILOVER: device is a failover master device
1608  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1609  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1610  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1611  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1612  *	skb_headlen(skb) == 0 (data starts from frag0)
1613  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1614  */
1615 enum netdev_priv_flags {
1616 	IFF_802_1Q_VLAN			= 1<<0,
1617 	IFF_EBRIDGE			= 1<<1,
1618 	IFF_BONDING			= 1<<2,
1619 	IFF_ISATAP			= 1<<3,
1620 	IFF_WAN_HDLC			= 1<<4,
1621 	IFF_XMIT_DST_RELEASE		= 1<<5,
1622 	IFF_DONT_BRIDGE			= 1<<6,
1623 	IFF_DISABLE_NETPOLL		= 1<<7,
1624 	IFF_MACVLAN_PORT		= 1<<8,
1625 	IFF_BRIDGE_PORT			= 1<<9,
1626 	IFF_OVS_DATAPATH		= 1<<10,
1627 	IFF_TX_SKB_SHARING		= 1<<11,
1628 	IFF_UNICAST_FLT			= 1<<12,
1629 	IFF_TEAM_PORT			= 1<<13,
1630 	IFF_SUPP_NOFCS			= 1<<14,
1631 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1632 	IFF_MACVLAN			= 1<<16,
1633 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1634 	IFF_L3MDEV_MASTER		= 1<<18,
1635 	IFF_NO_QUEUE			= 1<<19,
1636 	IFF_OPENVSWITCH			= 1<<20,
1637 	IFF_L3MDEV_SLAVE		= 1<<21,
1638 	IFF_TEAM			= 1<<22,
1639 	IFF_RXFH_CONFIGURED		= 1<<23,
1640 	IFF_PHONY_HEADROOM		= 1<<24,
1641 	IFF_MACSEC			= 1<<25,
1642 	IFF_NO_RX_HANDLER		= 1<<26,
1643 	IFF_FAILOVER			= 1<<27,
1644 	IFF_FAILOVER_SLAVE		= 1<<28,
1645 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1646 	IFF_LIVE_RENAME_OK		= 1<<30,
1647 	IFF_TX_SKB_NO_LINEAR		= 1<<31,
1648 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1649 };
1650 
1651 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1652 #define IFF_EBRIDGE			IFF_EBRIDGE
1653 #define IFF_BONDING			IFF_BONDING
1654 #define IFF_ISATAP			IFF_ISATAP
1655 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1656 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1657 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1658 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1659 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1660 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1661 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1662 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1663 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1664 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1665 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1666 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1667 #define IFF_MACVLAN			IFF_MACVLAN
1668 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1669 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1670 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1671 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1672 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1673 #define IFF_TEAM			IFF_TEAM
1674 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1675 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1676 #define IFF_MACSEC			IFF_MACSEC
1677 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1678 #define IFF_FAILOVER			IFF_FAILOVER
1679 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1680 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1681 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1682 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1683 
1684 /* Specifies the type of the struct net_device::ml_priv pointer */
1685 enum netdev_ml_priv_type {
1686 	ML_PRIV_NONE,
1687 	ML_PRIV_CAN,
1688 };
1689 
1690 /**
1691  *	struct net_device - The DEVICE structure.
1692  *
1693  *	Actually, this whole structure is a big mistake.  It mixes I/O
1694  *	data with strictly "high-level" data, and it has to know about
1695  *	almost every data structure used in the INET module.
1696  *
1697  *	@name:	This is the first field of the "visible" part of this structure
1698  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1699  *		of the interface.
1700  *
1701  *	@name_node:	Name hashlist node
1702  *	@ifalias:	SNMP alias
1703  *	@mem_end:	Shared memory end
1704  *	@mem_start:	Shared memory start
1705  *	@base_addr:	Device I/O address
1706  *	@irq:		Device IRQ number
1707  *
1708  *	@state:		Generic network queuing layer state, see netdev_state_t
1709  *	@dev_list:	The global list of network devices
1710  *	@napi_list:	List entry used for polling NAPI devices
1711  *	@unreg_list:	List entry  when we are unregistering the
1712  *			device; see the function unregister_netdev
1713  *	@close_list:	List entry used when we are closing the device
1714  *	@ptype_all:     Device-specific packet handlers for all protocols
1715  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1716  *
1717  *	@adj_list:	Directly linked devices, like slaves for bonding
1718  *	@features:	Currently active device features
1719  *	@hw_features:	User-changeable features
1720  *
1721  *	@wanted_features:	User-requested features
1722  *	@vlan_features:		Mask of features inheritable by VLAN devices
1723  *
1724  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1725  *				This field indicates what encapsulation
1726  *				offloads the hardware is capable of doing,
1727  *				and drivers will need to set them appropriately.
1728  *
1729  *	@mpls_features:	Mask of features inheritable by MPLS
1730  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1731  *
1732  *	@ifindex:	interface index
1733  *	@group:		The group the device belongs to
1734  *
1735  *	@stats:		Statistics struct, which was left as a legacy, use
1736  *			rtnl_link_stats64 instead
1737  *
1738  *	@rx_dropped:	Dropped packets by core network,
1739  *			do not use this in drivers
1740  *	@tx_dropped:	Dropped packets by core network,
1741  *			do not use this in drivers
1742  *	@rx_nohandler:	nohandler dropped packets by core network on
1743  *			inactive devices, do not use this in drivers
1744  *	@carrier_up_count:	Number of times the carrier has been up
1745  *	@carrier_down_count:	Number of times the carrier has been down
1746  *
1747  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1748  *				instead of ioctl,
1749  *				see <net/iw_handler.h> for details.
1750  *	@wireless_data:	Instance data managed by the core of wireless extensions
1751  *
1752  *	@netdev_ops:	Includes several pointers to callbacks,
1753  *			if one wants to override the ndo_*() functions
1754  *	@ethtool_ops:	Management operations
1755  *	@l3mdev_ops:	Layer 3 master device operations
1756  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1757  *			discovery handling. Necessary for e.g. 6LoWPAN.
1758  *	@xfrmdev_ops:	Transformation offload operations
1759  *	@tlsdev_ops:	Transport Layer Security offload operations
1760  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1761  *			of Layer 2 headers.
1762  *
1763  *	@flags:		Interface flags (a la BSD)
1764  *	@priv_flags:	Like 'flags' but invisible to userspace,
1765  *			see if.h for the definitions
1766  *	@gflags:	Global flags ( kept as legacy )
1767  *	@padded:	How much padding added by alloc_netdev()
1768  *	@operstate:	RFC2863 operstate
1769  *	@link_mode:	Mapping policy to operstate
1770  *	@if_port:	Selectable AUI, TP, ...
1771  *	@dma:		DMA channel
1772  *	@mtu:		Interface MTU value
1773  *	@min_mtu:	Interface Minimum MTU value
1774  *	@max_mtu:	Interface Maximum MTU value
1775  *	@type:		Interface hardware type
1776  *	@hard_header_len: Maximum hardware header length.
1777  *	@min_header_len:  Minimum hardware header length
1778  *
1779  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1780  *			  cases can this be guaranteed
1781  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1782  *			  cases can this be guaranteed. Some cases also use
1783  *			  LL_MAX_HEADER instead to allocate the skb
1784  *
1785  *	interface address info:
1786  *
1787  * 	@perm_addr:		Permanent hw address
1788  * 	@addr_assign_type:	Hw address assignment type
1789  * 	@addr_len:		Hardware address length
1790  *	@upper_level:		Maximum depth level of upper devices.
1791  *	@lower_level:		Maximum depth level of lower devices.
1792  *	@neigh_priv_len:	Used in neigh_alloc()
1793  * 	@dev_id:		Used to differentiate devices that share
1794  * 				the same link layer address
1795  * 	@dev_port:		Used to differentiate devices that share
1796  * 				the same function
1797  *	@addr_list_lock:	XXX: need comments on this one
1798  *	@name_assign_type:	network interface name assignment type
1799  *	@uc_promisc:		Counter that indicates promiscuous mode
1800  *				has been enabled due to the need to listen to
1801  *				additional unicast addresses in a device that
1802  *				does not implement ndo_set_rx_mode()
1803  *	@uc:			unicast mac addresses
1804  *	@mc:			multicast mac addresses
1805  *	@dev_addrs:		list of device hw addresses
1806  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1807  *	@promiscuity:		Number of times the NIC is told to work in
1808  *				promiscuous mode; if it becomes 0 the NIC will
1809  *				exit promiscuous mode
1810  *	@allmulti:		Counter, enables or disables allmulticast mode
1811  *
1812  *	@vlan_info:	VLAN info
1813  *	@dsa_ptr:	dsa specific data
1814  *	@tipc_ptr:	TIPC specific data
1815  *	@atalk_ptr:	AppleTalk link
1816  *	@ip_ptr:	IPv4 specific data
1817  *	@dn_ptr:	DECnet specific data
1818  *	@ip6_ptr:	IPv6 specific data
1819  *	@ax25_ptr:	AX.25 specific data
1820  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1821  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1822  *			 device struct
1823  *	@mpls_ptr:	mpls_dev struct pointer
1824  *	@mctp_ptr:	MCTP specific data
1825  *
1826  *	@dev_addr:	Hw address (before bcast,
1827  *			because most packets are unicast)
1828  *
1829  *	@_rx:			Array of RX queues
1830  *	@num_rx_queues:		Number of RX queues
1831  *				allocated at register_netdev() time
1832  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1833  *	@xdp_prog:		XDP sockets filter program pointer
1834  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1835  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1836  *				allow to avoid NIC hard IRQ, on busy queues.
1837  *
1838  *	@rx_handler:		handler for received packets
1839  *	@rx_handler_data: 	XXX: need comments on this one
1840  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1841  *				ingress processing
1842  *	@ingress_queue:		XXX: need comments on this one
1843  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1844  *	@broadcast:		hw bcast address
1845  *
1846  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1847  *			indexed by RX queue number. Assigned by driver.
1848  *			This must only be set if the ndo_rx_flow_steer
1849  *			operation is defined
1850  *	@index_hlist:		Device index hash chain
1851  *
1852  *	@_tx:			Array of TX queues
1853  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1854  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1855  *	@qdisc:			Root qdisc from userspace point of view
1856  *	@tx_queue_len:		Max frames per queue allowed
1857  *	@tx_global_lock: 	XXX: need comments on this one
1858  *	@xdp_bulkq:		XDP device bulk queue
1859  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1860  *
1861  *	@xps_maps:	XXX: need comments on this one
1862  *	@miniq_egress:		clsact qdisc specific data for
1863  *				egress processing
1864  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1865  *	@qdisc_hash:		qdisc hash table
1866  *	@watchdog_timeo:	Represents the timeout that is used by
1867  *				the watchdog (see dev_watchdog())
1868  *	@watchdog_timer:	List of timers
1869  *
1870  *	@proto_down_reason:	reason a netdev interface is held down
1871  *	@pcpu_refcnt:		Number of references to this device
1872  *	@dev_refcnt:		Number of references to this device
1873  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1874  *	@todo_list:		Delayed register/unregister
1875  *	@link_watch_list:	XXX: need comments on this one
1876  *
1877  *	@reg_state:		Register/unregister state machine
1878  *	@dismantle:		Device is going to be freed
1879  *	@rtnl_link_state:	This enum represents the phases of creating
1880  *				a new link
1881  *
1882  *	@needs_free_netdev:	Should unregister perform free_netdev?
1883  *	@priv_destructor:	Called from unregister
1884  *	@npinfo:		XXX: need comments on this one
1885  * 	@nd_net:		Network namespace this network device is inside
1886  *
1887  * 	@ml_priv:	Mid-layer private
1888  *	@ml_priv_type:  Mid-layer private type
1889  * 	@lstats:	Loopback statistics
1890  * 	@tstats:	Tunnel statistics
1891  * 	@dstats:	Dummy statistics
1892  * 	@vstats:	Virtual ethernet statistics
1893  *
1894  *	@garp_port:	GARP
1895  *	@mrp_port:	MRP
1896  *
1897  *	@dev:		Class/net/name entry
1898  *	@sysfs_groups:	Space for optional device, statistics and wireless
1899  *			sysfs groups
1900  *
1901  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1902  *	@rtnl_link_ops:	Rtnl_link_ops
1903  *
1904  *	@gso_max_size:	Maximum size of generic segmentation offload
1905  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1906  *			NIC for GSO
1907  *
1908  *	@dcbnl_ops:	Data Center Bridging netlink ops
1909  *	@num_tc:	Number of traffic classes in the net device
1910  *	@tc_to_txq:	XXX: need comments on this one
1911  *	@prio_tc_map:	XXX: need comments on this one
1912  *
1913  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1914  *
1915  *	@priomap:	XXX: need comments on this one
1916  *	@phydev:	Physical device may attach itself
1917  *			for hardware timestamping
1918  *	@sfp_bus:	attached &struct sfp_bus structure.
1919  *
1920  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1921  *
1922  *	@proto_down:	protocol port state information can be sent to the
1923  *			switch driver and used to set the phys state of the
1924  *			switch port.
1925  *
1926  *	@wol_enabled:	Wake-on-LAN is enabled
1927  *
1928  *	@threaded:	napi threaded mode is enabled
1929  *
1930  *	@net_notifier_list:	List of per-net netdev notifier block
1931  *				that follow this device when it is moved
1932  *				to another network namespace.
1933  *
1934  *	@macsec_ops:    MACsec offloading ops
1935  *
1936  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1937  *				offload capabilities of the device
1938  *	@udp_tunnel_nic:	UDP tunnel offload state
1939  *	@xdp_state:		stores info on attached XDP BPF programs
1940  *
1941  *	@nested_level:	Used as a parameter of spin_lock_nested() of
1942  *			dev->addr_list_lock.
1943  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1944  *			keep a list of interfaces to be deleted.
1945  *	@gro_max_size:	Maximum size of aggregated packet in generic
1946  *			receive offload (GRO)
1947  *
1948  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
1949  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
1950  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
1951  *
1952  *	FIXME: cleanup struct net_device such that network protocol info
1953  *	moves out.
1954  */
1955 
1956 struct net_device {
1957 	char			name[IFNAMSIZ];
1958 	struct netdev_name_node	*name_node;
1959 	struct dev_ifalias	__rcu *ifalias;
1960 	/*
1961 	 *	I/O specific fields
1962 	 *	FIXME: Merge these and struct ifmap into one
1963 	 */
1964 	unsigned long		mem_end;
1965 	unsigned long		mem_start;
1966 	unsigned long		base_addr;
1967 
1968 	/*
1969 	 *	Some hardware also needs these fields (state,dev_list,
1970 	 *	napi_list,unreg_list,close_list) but they are not
1971 	 *	part of the usual set specified in Space.c.
1972 	 */
1973 
1974 	unsigned long		state;
1975 
1976 	struct list_head	dev_list;
1977 	struct list_head	napi_list;
1978 	struct list_head	unreg_list;
1979 	struct list_head	close_list;
1980 	struct list_head	ptype_all;
1981 	struct list_head	ptype_specific;
1982 
1983 	struct {
1984 		struct list_head upper;
1985 		struct list_head lower;
1986 	} adj_list;
1987 
1988 	/* Read-mostly cache-line for fast-path access */
1989 	unsigned int		flags;
1990 	unsigned long long	priv_flags;
1991 	const struct net_device_ops *netdev_ops;
1992 	int			ifindex;
1993 	unsigned short		gflags;
1994 	unsigned short		hard_header_len;
1995 
1996 	/* Note : dev->mtu is often read without holding a lock.
1997 	 * Writers usually hold RTNL.
1998 	 * It is recommended to use READ_ONCE() to annotate the reads,
1999 	 * and to use WRITE_ONCE() to annotate the writes.
2000 	 */
2001 	unsigned int		mtu;
2002 	unsigned short		needed_headroom;
2003 	unsigned short		needed_tailroom;
2004 
2005 	netdev_features_t	features;
2006 	netdev_features_t	hw_features;
2007 	netdev_features_t	wanted_features;
2008 	netdev_features_t	vlan_features;
2009 	netdev_features_t	hw_enc_features;
2010 	netdev_features_t	mpls_features;
2011 	netdev_features_t	gso_partial_features;
2012 
2013 	unsigned int		min_mtu;
2014 	unsigned int		max_mtu;
2015 	unsigned short		type;
2016 	unsigned char		min_header_len;
2017 	unsigned char		name_assign_type;
2018 
2019 	int			group;
2020 
2021 	struct net_device_stats	stats; /* not used by modern drivers */
2022 
2023 	atomic_long_t		rx_dropped;
2024 	atomic_long_t		tx_dropped;
2025 	atomic_long_t		rx_nohandler;
2026 
2027 	/* Stats to monitor link on/off, flapping */
2028 	atomic_t		carrier_up_count;
2029 	atomic_t		carrier_down_count;
2030 
2031 #ifdef CONFIG_WIRELESS_EXT
2032 	const struct iw_handler_def *wireless_handlers;
2033 	struct iw_public_data	*wireless_data;
2034 #endif
2035 	const struct ethtool_ops *ethtool_ops;
2036 #ifdef CONFIG_NET_L3_MASTER_DEV
2037 	const struct l3mdev_ops	*l3mdev_ops;
2038 #endif
2039 #if IS_ENABLED(CONFIG_IPV6)
2040 	const struct ndisc_ops *ndisc_ops;
2041 #endif
2042 
2043 #ifdef CONFIG_XFRM_OFFLOAD
2044 	const struct xfrmdev_ops *xfrmdev_ops;
2045 #endif
2046 
2047 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2048 	const struct tlsdev_ops *tlsdev_ops;
2049 #endif
2050 
2051 	const struct header_ops *header_ops;
2052 
2053 	unsigned char		operstate;
2054 	unsigned char		link_mode;
2055 
2056 	unsigned char		if_port;
2057 	unsigned char		dma;
2058 
2059 	/* Interface address info. */
2060 	unsigned char		perm_addr[MAX_ADDR_LEN];
2061 	unsigned char		addr_assign_type;
2062 	unsigned char		addr_len;
2063 	unsigned char		upper_level;
2064 	unsigned char		lower_level;
2065 
2066 	unsigned short		neigh_priv_len;
2067 	unsigned short          dev_id;
2068 	unsigned short          dev_port;
2069 	unsigned short		padded;
2070 
2071 	spinlock_t		addr_list_lock;
2072 	int			irq;
2073 
2074 	struct netdev_hw_addr_list	uc;
2075 	struct netdev_hw_addr_list	mc;
2076 	struct netdev_hw_addr_list	dev_addrs;
2077 
2078 #ifdef CONFIG_SYSFS
2079 	struct kset		*queues_kset;
2080 #endif
2081 #ifdef CONFIG_LOCKDEP
2082 	struct list_head	unlink_list;
2083 #endif
2084 	unsigned int		promiscuity;
2085 	unsigned int		allmulti;
2086 	bool			uc_promisc;
2087 #ifdef CONFIG_LOCKDEP
2088 	unsigned char		nested_level;
2089 #endif
2090 
2091 
2092 	/* Protocol-specific pointers */
2093 
2094 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2095 	struct vlan_info __rcu	*vlan_info;
2096 #endif
2097 #if IS_ENABLED(CONFIG_NET_DSA)
2098 	struct dsa_port		*dsa_ptr;
2099 #endif
2100 #if IS_ENABLED(CONFIG_TIPC)
2101 	struct tipc_bearer __rcu *tipc_ptr;
2102 #endif
2103 #if IS_ENABLED(CONFIG_ATALK)
2104 	void 			*atalk_ptr;
2105 #endif
2106 	struct in_device __rcu	*ip_ptr;
2107 #if IS_ENABLED(CONFIG_DECNET)
2108 	struct dn_dev __rcu     *dn_ptr;
2109 #endif
2110 	struct inet6_dev __rcu	*ip6_ptr;
2111 #if IS_ENABLED(CONFIG_AX25)
2112 	void			*ax25_ptr;
2113 #endif
2114 	struct wireless_dev	*ieee80211_ptr;
2115 	struct wpan_dev		*ieee802154_ptr;
2116 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2117 	struct mpls_dev __rcu	*mpls_ptr;
2118 #endif
2119 #if IS_ENABLED(CONFIG_MCTP)
2120 	struct mctp_dev __rcu	*mctp_ptr;
2121 #endif
2122 
2123 /*
2124  * Cache lines mostly used on receive path (including eth_type_trans())
2125  */
2126 	/* Interface address info used in eth_type_trans() */
2127 	const unsigned char	*dev_addr;
2128 
2129 	struct netdev_rx_queue	*_rx;
2130 	unsigned int		num_rx_queues;
2131 	unsigned int		real_num_rx_queues;
2132 
2133 	struct bpf_prog __rcu	*xdp_prog;
2134 	unsigned long		gro_flush_timeout;
2135 	int			napi_defer_hard_irqs;
2136 #define GRO_MAX_SIZE		65536
2137 	unsigned int		gro_max_size;
2138 	rx_handler_func_t __rcu	*rx_handler;
2139 	void __rcu		*rx_handler_data;
2140 
2141 #ifdef CONFIG_NET_CLS_ACT
2142 	struct mini_Qdisc __rcu	*miniq_ingress;
2143 #endif
2144 	struct netdev_queue __rcu *ingress_queue;
2145 #ifdef CONFIG_NETFILTER_INGRESS
2146 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2147 #endif
2148 
2149 	unsigned char		broadcast[MAX_ADDR_LEN];
2150 #ifdef CONFIG_RFS_ACCEL
2151 	struct cpu_rmap		*rx_cpu_rmap;
2152 #endif
2153 	struct hlist_node	index_hlist;
2154 
2155 /*
2156  * Cache lines mostly used on transmit path
2157  */
2158 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2159 	unsigned int		num_tx_queues;
2160 	unsigned int		real_num_tx_queues;
2161 	struct Qdisc		*qdisc;
2162 	unsigned int		tx_queue_len;
2163 	spinlock_t		tx_global_lock;
2164 
2165 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2166 
2167 #ifdef CONFIG_XPS
2168 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2169 #endif
2170 #ifdef CONFIG_NET_CLS_ACT
2171 	struct mini_Qdisc __rcu	*miniq_egress;
2172 #endif
2173 #ifdef CONFIG_NETFILTER_EGRESS
2174 	struct nf_hook_entries __rcu *nf_hooks_egress;
2175 #endif
2176 
2177 #ifdef CONFIG_NET_SCHED
2178 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2179 #endif
2180 	/* These may be needed for future network-power-down code. */
2181 	struct timer_list	watchdog_timer;
2182 	int			watchdog_timeo;
2183 
2184 	u32                     proto_down_reason;
2185 
2186 	struct list_head	todo_list;
2187 
2188 #ifdef CONFIG_PCPU_DEV_REFCNT
2189 	int __percpu		*pcpu_refcnt;
2190 #else
2191 	refcount_t		dev_refcnt;
2192 #endif
2193 	struct ref_tracker_dir	refcnt_tracker;
2194 
2195 	struct list_head	link_watch_list;
2196 
2197 	enum { NETREG_UNINITIALIZED=0,
2198 	       NETREG_REGISTERED,	/* completed register_netdevice */
2199 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2200 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2201 	       NETREG_RELEASED,		/* called free_netdev */
2202 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2203 	} reg_state:8;
2204 
2205 	bool dismantle;
2206 
2207 	enum {
2208 		RTNL_LINK_INITIALIZED,
2209 		RTNL_LINK_INITIALIZING,
2210 	} rtnl_link_state:16;
2211 
2212 	bool needs_free_netdev;
2213 	void (*priv_destructor)(struct net_device *dev);
2214 
2215 #ifdef CONFIG_NETPOLL
2216 	struct netpoll_info __rcu	*npinfo;
2217 #endif
2218 
2219 	possible_net_t			nd_net;
2220 
2221 	/* mid-layer private */
2222 	void				*ml_priv;
2223 	enum netdev_ml_priv_type	ml_priv_type;
2224 
2225 	union {
2226 		struct pcpu_lstats __percpu		*lstats;
2227 		struct pcpu_sw_netstats __percpu	*tstats;
2228 		struct pcpu_dstats __percpu		*dstats;
2229 	};
2230 
2231 #if IS_ENABLED(CONFIG_GARP)
2232 	struct garp_port __rcu	*garp_port;
2233 #endif
2234 #if IS_ENABLED(CONFIG_MRP)
2235 	struct mrp_port __rcu	*mrp_port;
2236 #endif
2237 
2238 	struct device		dev;
2239 	const struct attribute_group *sysfs_groups[4];
2240 	const struct attribute_group *sysfs_rx_queue_group;
2241 
2242 	const struct rtnl_link_ops *rtnl_link_ops;
2243 
2244 	/* for setting kernel sock attribute on TCP connection setup */
2245 #define GSO_MAX_SIZE		65536
2246 	unsigned int		gso_max_size;
2247 #define GSO_MAX_SEGS		65535
2248 	u16			gso_max_segs;
2249 
2250 #ifdef CONFIG_DCB
2251 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2252 #endif
2253 	s16			num_tc;
2254 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2255 	u8			prio_tc_map[TC_BITMASK + 1];
2256 
2257 #if IS_ENABLED(CONFIG_FCOE)
2258 	unsigned int		fcoe_ddp_xid;
2259 #endif
2260 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2261 	struct netprio_map __rcu *priomap;
2262 #endif
2263 	struct phy_device	*phydev;
2264 	struct sfp_bus		*sfp_bus;
2265 	struct lock_class_key	*qdisc_tx_busylock;
2266 	bool			proto_down;
2267 	unsigned		wol_enabled:1;
2268 	unsigned		threaded:1;
2269 
2270 	struct list_head	net_notifier_list;
2271 
2272 #if IS_ENABLED(CONFIG_MACSEC)
2273 	/* MACsec management functions */
2274 	const struct macsec_ops *macsec_ops;
2275 #endif
2276 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2277 	struct udp_tunnel_nic	*udp_tunnel_nic;
2278 
2279 	/* protected by rtnl_lock */
2280 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2281 
2282 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2283 	netdevice_tracker	linkwatch_dev_tracker;
2284 	netdevice_tracker	watchdog_dev_tracker;
2285 };
2286 #define to_net_dev(d) container_of(d, struct net_device, dev)
2287 
2288 static inline bool netif_elide_gro(const struct net_device *dev)
2289 {
2290 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2291 		return true;
2292 	return false;
2293 }
2294 
2295 #define	NETDEV_ALIGN		32
2296 
2297 static inline
2298 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2299 {
2300 	return dev->prio_tc_map[prio & TC_BITMASK];
2301 }
2302 
2303 static inline
2304 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2305 {
2306 	if (tc >= dev->num_tc)
2307 		return -EINVAL;
2308 
2309 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2310 	return 0;
2311 }
2312 
2313 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2314 void netdev_reset_tc(struct net_device *dev);
2315 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2316 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2317 
2318 static inline
2319 int netdev_get_num_tc(struct net_device *dev)
2320 {
2321 	return dev->num_tc;
2322 }
2323 
2324 static inline void net_prefetch(void *p)
2325 {
2326 	prefetch(p);
2327 #if L1_CACHE_BYTES < 128
2328 	prefetch((u8 *)p + L1_CACHE_BYTES);
2329 #endif
2330 }
2331 
2332 static inline void net_prefetchw(void *p)
2333 {
2334 	prefetchw(p);
2335 #if L1_CACHE_BYTES < 128
2336 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2337 #endif
2338 }
2339 
2340 void netdev_unbind_sb_channel(struct net_device *dev,
2341 			      struct net_device *sb_dev);
2342 int netdev_bind_sb_channel_queue(struct net_device *dev,
2343 				 struct net_device *sb_dev,
2344 				 u8 tc, u16 count, u16 offset);
2345 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2346 static inline int netdev_get_sb_channel(struct net_device *dev)
2347 {
2348 	return max_t(int, -dev->num_tc, 0);
2349 }
2350 
2351 static inline
2352 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2353 					 unsigned int index)
2354 {
2355 	return &dev->_tx[index];
2356 }
2357 
2358 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2359 						    const struct sk_buff *skb)
2360 {
2361 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2362 }
2363 
2364 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2365 					    void (*f)(struct net_device *,
2366 						      struct netdev_queue *,
2367 						      void *),
2368 					    void *arg)
2369 {
2370 	unsigned int i;
2371 
2372 	for (i = 0; i < dev->num_tx_queues; i++)
2373 		f(dev, &dev->_tx[i], arg);
2374 }
2375 
2376 #define netdev_lockdep_set_classes(dev)				\
2377 {								\
2378 	static struct lock_class_key qdisc_tx_busylock_key;	\
2379 	static struct lock_class_key qdisc_xmit_lock_key;	\
2380 	static struct lock_class_key dev_addr_list_lock_key;	\
2381 	unsigned int i;						\
2382 								\
2383 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2384 	lockdep_set_class(&(dev)->addr_list_lock,		\
2385 			  &dev_addr_list_lock_key);		\
2386 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2387 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2388 				  &qdisc_xmit_lock_key);	\
2389 }
2390 
2391 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2392 		     struct net_device *sb_dev);
2393 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2394 					 struct sk_buff *skb,
2395 					 struct net_device *sb_dev);
2396 
2397 /* returns the headroom that the master device needs to take in account
2398  * when forwarding to this dev
2399  */
2400 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2401 {
2402 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2403 }
2404 
2405 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2406 {
2407 	if (dev->netdev_ops->ndo_set_rx_headroom)
2408 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2409 }
2410 
2411 /* set the device rx headroom to the dev's default */
2412 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2413 {
2414 	netdev_set_rx_headroom(dev, -1);
2415 }
2416 
2417 static inline void *netdev_get_ml_priv(struct net_device *dev,
2418 				       enum netdev_ml_priv_type type)
2419 {
2420 	if (dev->ml_priv_type != type)
2421 		return NULL;
2422 
2423 	return dev->ml_priv;
2424 }
2425 
2426 static inline void netdev_set_ml_priv(struct net_device *dev,
2427 				      void *ml_priv,
2428 				      enum netdev_ml_priv_type type)
2429 {
2430 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2431 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2432 	     dev->ml_priv_type, type);
2433 	WARN(!dev->ml_priv_type && dev->ml_priv,
2434 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2435 
2436 	dev->ml_priv = ml_priv;
2437 	dev->ml_priv_type = type;
2438 }
2439 
2440 /*
2441  * Net namespace inlines
2442  */
2443 static inline
2444 struct net *dev_net(const struct net_device *dev)
2445 {
2446 	return read_pnet(&dev->nd_net);
2447 }
2448 
2449 static inline
2450 void dev_net_set(struct net_device *dev, struct net *net)
2451 {
2452 	write_pnet(&dev->nd_net, net);
2453 }
2454 
2455 /**
2456  *	netdev_priv - access network device private data
2457  *	@dev: network device
2458  *
2459  * Get network device private data
2460  */
2461 static inline void *netdev_priv(const struct net_device *dev)
2462 {
2463 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2464 }
2465 
2466 /* Set the sysfs physical device reference for the network logical device
2467  * if set prior to registration will cause a symlink during initialization.
2468  */
2469 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2470 
2471 /* Set the sysfs device type for the network logical device to allow
2472  * fine-grained identification of different network device types. For
2473  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2474  */
2475 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2476 
2477 /* Default NAPI poll() weight
2478  * Device drivers are strongly advised to not use bigger value
2479  */
2480 #define NAPI_POLL_WEIGHT 64
2481 
2482 /**
2483  *	netif_napi_add - initialize a NAPI context
2484  *	@dev:  network device
2485  *	@napi: NAPI context
2486  *	@poll: polling function
2487  *	@weight: default weight
2488  *
2489  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2490  * *any* of the other NAPI-related functions.
2491  */
2492 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2493 		    int (*poll)(struct napi_struct *, int), int weight);
2494 
2495 /**
2496  *	netif_tx_napi_add - initialize a NAPI context
2497  *	@dev:  network device
2498  *	@napi: NAPI context
2499  *	@poll: polling function
2500  *	@weight: default weight
2501  *
2502  * This variant of netif_napi_add() should be used from drivers using NAPI
2503  * to exclusively poll a TX queue.
2504  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2505  */
2506 static inline void netif_tx_napi_add(struct net_device *dev,
2507 				     struct napi_struct *napi,
2508 				     int (*poll)(struct napi_struct *, int),
2509 				     int weight)
2510 {
2511 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2512 	netif_napi_add(dev, napi, poll, weight);
2513 }
2514 
2515 /**
2516  *  __netif_napi_del - remove a NAPI context
2517  *  @napi: NAPI context
2518  *
2519  * Warning: caller must observe RCU grace period before freeing memory
2520  * containing @napi. Drivers might want to call this helper to combine
2521  * all the needed RCU grace periods into a single one.
2522  */
2523 void __netif_napi_del(struct napi_struct *napi);
2524 
2525 /**
2526  *  netif_napi_del - remove a NAPI context
2527  *  @napi: NAPI context
2528  *
2529  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2530  */
2531 static inline void netif_napi_del(struct napi_struct *napi)
2532 {
2533 	__netif_napi_del(napi);
2534 	synchronize_net();
2535 }
2536 
2537 struct packet_type {
2538 	__be16			type;	/* This is really htons(ether_type). */
2539 	bool			ignore_outgoing;
2540 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2541 	netdevice_tracker	dev_tracker;
2542 	int			(*func) (struct sk_buff *,
2543 					 struct net_device *,
2544 					 struct packet_type *,
2545 					 struct net_device *);
2546 	void			(*list_func) (struct list_head *,
2547 					      struct packet_type *,
2548 					      struct net_device *);
2549 	bool			(*id_match)(struct packet_type *ptype,
2550 					    struct sock *sk);
2551 	void			*af_packet_priv;
2552 	struct list_head	list;
2553 };
2554 
2555 struct offload_callbacks {
2556 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2557 						netdev_features_t features);
2558 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2559 						struct sk_buff *skb);
2560 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2561 };
2562 
2563 struct packet_offload {
2564 	__be16			 type;	/* This is really htons(ether_type). */
2565 	u16			 priority;
2566 	struct offload_callbacks callbacks;
2567 	struct list_head	 list;
2568 };
2569 
2570 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2571 struct pcpu_sw_netstats {
2572 	u64     rx_packets;
2573 	u64     rx_bytes;
2574 	u64     tx_packets;
2575 	u64     tx_bytes;
2576 	struct u64_stats_sync   syncp;
2577 } __aligned(4 * sizeof(u64));
2578 
2579 struct pcpu_lstats {
2580 	u64_stats_t packets;
2581 	u64_stats_t bytes;
2582 	struct u64_stats_sync syncp;
2583 } __aligned(2 * sizeof(u64));
2584 
2585 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2586 
2587 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2588 {
2589 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2590 
2591 	u64_stats_update_begin(&tstats->syncp);
2592 	tstats->rx_bytes += len;
2593 	tstats->rx_packets++;
2594 	u64_stats_update_end(&tstats->syncp);
2595 }
2596 
2597 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2598 					  unsigned int packets,
2599 					  unsigned int len)
2600 {
2601 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2602 
2603 	u64_stats_update_begin(&tstats->syncp);
2604 	tstats->tx_bytes += len;
2605 	tstats->tx_packets += packets;
2606 	u64_stats_update_end(&tstats->syncp);
2607 }
2608 
2609 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2610 {
2611 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2612 
2613 	u64_stats_update_begin(&lstats->syncp);
2614 	u64_stats_add(&lstats->bytes, len);
2615 	u64_stats_inc(&lstats->packets);
2616 	u64_stats_update_end(&lstats->syncp);
2617 }
2618 
2619 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2620 ({									\
2621 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2622 	if (pcpu_stats)	{						\
2623 		int __cpu;						\
2624 		for_each_possible_cpu(__cpu) {				\
2625 			typeof(type) *stat;				\
2626 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2627 			u64_stats_init(&stat->syncp);			\
2628 		}							\
2629 	}								\
2630 	pcpu_stats;							\
2631 })
2632 
2633 #define netdev_alloc_pcpu_stats(type)					\
2634 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2635 
2636 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2637 ({									\
2638 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2639 	if (pcpu_stats) {						\
2640 		int __cpu;						\
2641 		for_each_possible_cpu(__cpu) {				\
2642 			typeof(type) *stat;				\
2643 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2644 			u64_stats_init(&stat->syncp);			\
2645 		}							\
2646 	}								\
2647 	pcpu_stats;							\
2648 })
2649 
2650 enum netdev_lag_tx_type {
2651 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2652 	NETDEV_LAG_TX_TYPE_RANDOM,
2653 	NETDEV_LAG_TX_TYPE_BROADCAST,
2654 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2655 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2656 	NETDEV_LAG_TX_TYPE_HASH,
2657 };
2658 
2659 enum netdev_lag_hash {
2660 	NETDEV_LAG_HASH_NONE,
2661 	NETDEV_LAG_HASH_L2,
2662 	NETDEV_LAG_HASH_L34,
2663 	NETDEV_LAG_HASH_L23,
2664 	NETDEV_LAG_HASH_E23,
2665 	NETDEV_LAG_HASH_E34,
2666 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2667 	NETDEV_LAG_HASH_UNKNOWN,
2668 };
2669 
2670 struct netdev_lag_upper_info {
2671 	enum netdev_lag_tx_type tx_type;
2672 	enum netdev_lag_hash hash_type;
2673 };
2674 
2675 struct netdev_lag_lower_state_info {
2676 	u8 link_up : 1,
2677 	   tx_enabled : 1;
2678 };
2679 
2680 #include <linux/notifier.h>
2681 
2682 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2683  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2684  * adding new types.
2685  */
2686 enum netdev_cmd {
2687 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2688 	NETDEV_DOWN,
2689 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2690 				   detected a hardware crash and restarted
2691 				   - we can use this eg to kick tcp sessions
2692 				   once done */
2693 	NETDEV_CHANGE,		/* Notify device state change */
2694 	NETDEV_REGISTER,
2695 	NETDEV_UNREGISTER,
2696 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2697 	NETDEV_CHANGEADDR,	/* notify after the address change */
2698 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2699 	NETDEV_GOING_DOWN,
2700 	NETDEV_CHANGENAME,
2701 	NETDEV_FEAT_CHANGE,
2702 	NETDEV_BONDING_FAILOVER,
2703 	NETDEV_PRE_UP,
2704 	NETDEV_PRE_TYPE_CHANGE,
2705 	NETDEV_POST_TYPE_CHANGE,
2706 	NETDEV_POST_INIT,
2707 	NETDEV_RELEASE,
2708 	NETDEV_NOTIFY_PEERS,
2709 	NETDEV_JOIN,
2710 	NETDEV_CHANGEUPPER,
2711 	NETDEV_RESEND_IGMP,
2712 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2713 	NETDEV_CHANGEINFODATA,
2714 	NETDEV_BONDING_INFO,
2715 	NETDEV_PRECHANGEUPPER,
2716 	NETDEV_CHANGELOWERSTATE,
2717 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2718 	NETDEV_UDP_TUNNEL_DROP_INFO,
2719 	NETDEV_CHANGE_TX_QUEUE_LEN,
2720 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2721 	NETDEV_CVLAN_FILTER_DROP_INFO,
2722 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2723 	NETDEV_SVLAN_FILTER_DROP_INFO,
2724 };
2725 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2726 
2727 int register_netdevice_notifier(struct notifier_block *nb);
2728 int unregister_netdevice_notifier(struct notifier_block *nb);
2729 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2730 int unregister_netdevice_notifier_net(struct net *net,
2731 				      struct notifier_block *nb);
2732 int register_netdevice_notifier_dev_net(struct net_device *dev,
2733 					struct notifier_block *nb,
2734 					struct netdev_net_notifier *nn);
2735 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2736 					  struct notifier_block *nb,
2737 					  struct netdev_net_notifier *nn);
2738 
2739 struct netdev_notifier_info {
2740 	struct net_device	*dev;
2741 	struct netlink_ext_ack	*extack;
2742 };
2743 
2744 struct netdev_notifier_info_ext {
2745 	struct netdev_notifier_info info; /* must be first */
2746 	union {
2747 		u32 mtu;
2748 	} ext;
2749 };
2750 
2751 struct netdev_notifier_change_info {
2752 	struct netdev_notifier_info info; /* must be first */
2753 	unsigned int flags_changed;
2754 };
2755 
2756 struct netdev_notifier_changeupper_info {
2757 	struct netdev_notifier_info info; /* must be first */
2758 	struct net_device *upper_dev; /* new upper dev */
2759 	bool master; /* is upper dev master */
2760 	bool linking; /* is the notification for link or unlink */
2761 	void *upper_info; /* upper dev info */
2762 };
2763 
2764 struct netdev_notifier_changelowerstate_info {
2765 	struct netdev_notifier_info info; /* must be first */
2766 	void *lower_state_info; /* is lower dev state */
2767 };
2768 
2769 struct netdev_notifier_pre_changeaddr_info {
2770 	struct netdev_notifier_info info; /* must be first */
2771 	const unsigned char *dev_addr;
2772 };
2773 
2774 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2775 					     struct net_device *dev)
2776 {
2777 	info->dev = dev;
2778 	info->extack = NULL;
2779 }
2780 
2781 static inline struct net_device *
2782 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2783 {
2784 	return info->dev;
2785 }
2786 
2787 static inline struct netlink_ext_ack *
2788 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2789 {
2790 	return info->extack;
2791 }
2792 
2793 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2794 
2795 
2796 extern rwlock_t				dev_base_lock;		/* Device list lock */
2797 
2798 #define for_each_netdev(net, d)		\
2799 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2800 #define for_each_netdev_reverse(net, d)	\
2801 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2802 #define for_each_netdev_rcu(net, d)		\
2803 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2804 #define for_each_netdev_safe(net, d, n)	\
2805 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2806 #define for_each_netdev_continue(net, d)		\
2807 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2808 #define for_each_netdev_continue_reverse(net, d)		\
2809 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2810 						     dev_list)
2811 #define for_each_netdev_continue_rcu(net, d)		\
2812 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2813 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2814 		for_each_netdev_rcu(&init_net, slave)	\
2815 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2816 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2817 
2818 static inline struct net_device *next_net_device(struct net_device *dev)
2819 {
2820 	struct list_head *lh;
2821 	struct net *net;
2822 
2823 	net = dev_net(dev);
2824 	lh = dev->dev_list.next;
2825 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2826 }
2827 
2828 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2829 {
2830 	struct list_head *lh;
2831 	struct net *net;
2832 
2833 	net = dev_net(dev);
2834 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2835 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2836 }
2837 
2838 static inline struct net_device *first_net_device(struct net *net)
2839 {
2840 	return list_empty(&net->dev_base_head) ? NULL :
2841 		net_device_entry(net->dev_base_head.next);
2842 }
2843 
2844 static inline struct net_device *first_net_device_rcu(struct net *net)
2845 {
2846 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2847 
2848 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2849 }
2850 
2851 int netdev_boot_setup_check(struct net_device *dev);
2852 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2853 				       const char *hwaddr);
2854 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2855 void dev_add_pack(struct packet_type *pt);
2856 void dev_remove_pack(struct packet_type *pt);
2857 void __dev_remove_pack(struct packet_type *pt);
2858 void dev_add_offload(struct packet_offload *po);
2859 void dev_remove_offload(struct packet_offload *po);
2860 
2861 int dev_get_iflink(const struct net_device *dev);
2862 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2863 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2864 			  struct net_device_path_stack *stack);
2865 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2866 				      unsigned short mask);
2867 struct net_device *dev_get_by_name(struct net *net, const char *name);
2868 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2869 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2870 bool netdev_name_in_use(struct net *net, const char *name);
2871 int dev_alloc_name(struct net_device *dev, const char *name);
2872 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2873 void dev_close(struct net_device *dev);
2874 void dev_close_many(struct list_head *head, bool unlink);
2875 void dev_disable_lro(struct net_device *dev);
2876 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2877 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2878 		     struct net_device *sb_dev);
2879 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2880 		       struct net_device *sb_dev);
2881 
2882 int dev_queue_xmit(struct sk_buff *skb);
2883 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2884 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2885 
2886 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2887 {
2888 	int ret;
2889 
2890 	ret = __dev_direct_xmit(skb, queue_id);
2891 	if (!dev_xmit_complete(ret))
2892 		kfree_skb(skb);
2893 	return ret;
2894 }
2895 
2896 int register_netdevice(struct net_device *dev);
2897 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2898 void unregister_netdevice_many(struct list_head *head);
2899 static inline void unregister_netdevice(struct net_device *dev)
2900 {
2901 	unregister_netdevice_queue(dev, NULL);
2902 }
2903 
2904 int netdev_refcnt_read(const struct net_device *dev);
2905 void free_netdev(struct net_device *dev);
2906 void netdev_freemem(struct net_device *dev);
2907 int init_dummy_netdev(struct net_device *dev);
2908 
2909 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2910 					 struct sk_buff *skb,
2911 					 bool all_slaves);
2912 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
2913 					    struct sock *sk);
2914 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2915 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2916 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2917 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2918 int netdev_get_name(struct net *net, char *name, int ifindex);
2919 int dev_restart(struct net_device *dev);
2920 
2921 
2922 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2923 				  unsigned short type,
2924 				  const void *daddr, const void *saddr,
2925 				  unsigned int len)
2926 {
2927 	if (!dev->header_ops || !dev->header_ops->create)
2928 		return 0;
2929 
2930 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2931 }
2932 
2933 static inline int dev_parse_header(const struct sk_buff *skb,
2934 				   unsigned char *haddr)
2935 {
2936 	const struct net_device *dev = skb->dev;
2937 
2938 	if (!dev->header_ops || !dev->header_ops->parse)
2939 		return 0;
2940 	return dev->header_ops->parse(skb, haddr);
2941 }
2942 
2943 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2944 {
2945 	const struct net_device *dev = skb->dev;
2946 
2947 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
2948 		return 0;
2949 	return dev->header_ops->parse_protocol(skb);
2950 }
2951 
2952 /* ll_header must have at least hard_header_len allocated */
2953 static inline bool dev_validate_header(const struct net_device *dev,
2954 				       char *ll_header, int len)
2955 {
2956 	if (likely(len >= dev->hard_header_len))
2957 		return true;
2958 	if (len < dev->min_header_len)
2959 		return false;
2960 
2961 	if (capable(CAP_SYS_RAWIO)) {
2962 		memset(ll_header + len, 0, dev->hard_header_len - len);
2963 		return true;
2964 	}
2965 
2966 	if (dev->header_ops && dev->header_ops->validate)
2967 		return dev->header_ops->validate(ll_header, len);
2968 
2969 	return false;
2970 }
2971 
2972 static inline bool dev_has_header(const struct net_device *dev)
2973 {
2974 	return dev->header_ops && dev->header_ops->create;
2975 }
2976 
2977 #ifdef CONFIG_NET_FLOW_LIMIT
2978 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2979 struct sd_flow_limit {
2980 	u64			count;
2981 	unsigned int		num_buckets;
2982 	unsigned int		history_head;
2983 	u16			history[FLOW_LIMIT_HISTORY];
2984 	u8			buckets[];
2985 };
2986 
2987 extern int netdev_flow_limit_table_len;
2988 #endif /* CONFIG_NET_FLOW_LIMIT */
2989 
2990 /*
2991  * Incoming packets are placed on per-CPU queues
2992  */
2993 struct softnet_data {
2994 	struct list_head	poll_list;
2995 	struct sk_buff_head	process_queue;
2996 
2997 	/* stats */
2998 	unsigned int		processed;
2999 	unsigned int		time_squeeze;
3000 	unsigned int		received_rps;
3001 #ifdef CONFIG_RPS
3002 	struct softnet_data	*rps_ipi_list;
3003 #endif
3004 #ifdef CONFIG_NET_FLOW_LIMIT
3005 	struct sd_flow_limit __rcu *flow_limit;
3006 #endif
3007 	struct Qdisc		*output_queue;
3008 	struct Qdisc		**output_queue_tailp;
3009 	struct sk_buff		*completion_queue;
3010 #ifdef CONFIG_XFRM_OFFLOAD
3011 	struct sk_buff_head	xfrm_backlog;
3012 #endif
3013 	/* written and read only by owning cpu: */
3014 	struct {
3015 		u16 recursion;
3016 		u8  more;
3017 	} xmit;
3018 #ifdef CONFIG_RPS
3019 	/* input_queue_head should be written by cpu owning this struct,
3020 	 * and only read by other cpus. Worth using a cache line.
3021 	 */
3022 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3023 
3024 	/* Elements below can be accessed between CPUs for RPS/RFS */
3025 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3026 	struct softnet_data	*rps_ipi_next;
3027 	unsigned int		cpu;
3028 	unsigned int		input_queue_tail;
3029 #endif
3030 	unsigned int		dropped;
3031 	struct sk_buff_head	input_pkt_queue;
3032 	struct napi_struct	backlog;
3033 
3034 };
3035 
3036 static inline void input_queue_head_incr(struct softnet_data *sd)
3037 {
3038 #ifdef CONFIG_RPS
3039 	sd->input_queue_head++;
3040 #endif
3041 }
3042 
3043 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3044 					      unsigned int *qtail)
3045 {
3046 #ifdef CONFIG_RPS
3047 	*qtail = ++sd->input_queue_tail;
3048 #endif
3049 }
3050 
3051 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3052 
3053 static inline int dev_recursion_level(void)
3054 {
3055 	return this_cpu_read(softnet_data.xmit.recursion);
3056 }
3057 
3058 #define XMIT_RECURSION_LIMIT	8
3059 static inline bool dev_xmit_recursion(void)
3060 {
3061 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3062 			XMIT_RECURSION_LIMIT);
3063 }
3064 
3065 static inline void dev_xmit_recursion_inc(void)
3066 {
3067 	__this_cpu_inc(softnet_data.xmit.recursion);
3068 }
3069 
3070 static inline void dev_xmit_recursion_dec(void)
3071 {
3072 	__this_cpu_dec(softnet_data.xmit.recursion);
3073 }
3074 
3075 void __netif_schedule(struct Qdisc *q);
3076 void netif_schedule_queue(struct netdev_queue *txq);
3077 
3078 static inline void netif_tx_schedule_all(struct net_device *dev)
3079 {
3080 	unsigned int i;
3081 
3082 	for (i = 0; i < dev->num_tx_queues; i++)
3083 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3084 }
3085 
3086 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3087 {
3088 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3089 }
3090 
3091 /**
3092  *	netif_start_queue - allow transmit
3093  *	@dev: network device
3094  *
3095  *	Allow upper layers to call the device hard_start_xmit routine.
3096  */
3097 static inline void netif_start_queue(struct net_device *dev)
3098 {
3099 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3100 }
3101 
3102 static inline void netif_tx_start_all_queues(struct net_device *dev)
3103 {
3104 	unsigned int i;
3105 
3106 	for (i = 0; i < dev->num_tx_queues; i++) {
3107 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3108 		netif_tx_start_queue(txq);
3109 	}
3110 }
3111 
3112 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3113 
3114 /**
3115  *	netif_wake_queue - restart transmit
3116  *	@dev: network device
3117  *
3118  *	Allow upper layers to call the device hard_start_xmit routine.
3119  *	Used for flow control when transmit resources are available.
3120  */
3121 static inline void netif_wake_queue(struct net_device *dev)
3122 {
3123 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3124 }
3125 
3126 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3127 {
3128 	unsigned int i;
3129 
3130 	for (i = 0; i < dev->num_tx_queues; i++) {
3131 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3132 		netif_tx_wake_queue(txq);
3133 	}
3134 }
3135 
3136 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3137 {
3138 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3139 }
3140 
3141 /**
3142  *	netif_stop_queue - stop transmitted packets
3143  *	@dev: network device
3144  *
3145  *	Stop upper layers calling the device hard_start_xmit routine.
3146  *	Used for flow control when transmit resources are unavailable.
3147  */
3148 static inline void netif_stop_queue(struct net_device *dev)
3149 {
3150 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3151 }
3152 
3153 void netif_tx_stop_all_queues(struct net_device *dev);
3154 
3155 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3156 {
3157 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3158 }
3159 
3160 /**
3161  *	netif_queue_stopped - test if transmit queue is flowblocked
3162  *	@dev: network device
3163  *
3164  *	Test if transmit queue on device is currently unable to send.
3165  */
3166 static inline bool netif_queue_stopped(const struct net_device *dev)
3167 {
3168 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3169 }
3170 
3171 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3172 {
3173 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3174 }
3175 
3176 static inline bool
3177 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3178 {
3179 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3180 }
3181 
3182 static inline bool
3183 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3184 {
3185 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3186 }
3187 
3188 /**
3189  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3190  *	@dev_queue: pointer to transmit queue
3191  *	@min_limit: dql minimum limit
3192  *
3193  * Forces xmit_more() to return true until the minimum threshold
3194  * defined by @min_limit is reached (or until the tx queue is
3195  * empty). Warning: to be use with care, misuse will impact the
3196  * latency.
3197  */
3198 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3199 						  unsigned int min_limit)
3200 {
3201 #ifdef CONFIG_BQL
3202 	dev_queue->dql.min_limit = min_limit;
3203 #endif
3204 }
3205 
3206 /**
3207  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3208  *	@dev_queue: pointer to transmit queue
3209  *
3210  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3211  * to give appropriate hint to the CPU.
3212  */
3213 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3214 {
3215 #ifdef CONFIG_BQL
3216 	prefetchw(&dev_queue->dql.num_queued);
3217 #endif
3218 }
3219 
3220 /**
3221  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3222  *	@dev_queue: pointer to transmit queue
3223  *
3224  * BQL enabled drivers might use this helper in their TX completion path,
3225  * to give appropriate hint to the CPU.
3226  */
3227 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3228 {
3229 #ifdef CONFIG_BQL
3230 	prefetchw(&dev_queue->dql.limit);
3231 #endif
3232 }
3233 
3234 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3235 					unsigned int bytes)
3236 {
3237 #ifdef CONFIG_BQL
3238 	dql_queued(&dev_queue->dql, bytes);
3239 
3240 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3241 		return;
3242 
3243 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3244 
3245 	/*
3246 	 * The XOFF flag must be set before checking the dql_avail below,
3247 	 * because in netdev_tx_completed_queue we update the dql_completed
3248 	 * before checking the XOFF flag.
3249 	 */
3250 	smp_mb();
3251 
3252 	/* check again in case another CPU has just made room avail */
3253 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3254 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3255 #endif
3256 }
3257 
3258 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3259  * that they should not test BQL status themselves.
3260  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3261  * skb of a batch.
3262  * Returns true if the doorbell must be used to kick the NIC.
3263  */
3264 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3265 					  unsigned int bytes,
3266 					  bool xmit_more)
3267 {
3268 	if (xmit_more) {
3269 #ifdef CONFIG_BQL
3270 		dql_queued(&dev_queue->dql, bytes);
3271 #endif
3272 		return netif_tx_queue_stopped(dev_queue);
3273 	}
3274 	netdev_tx_sent_queue(dev_queue, bytes);
3275 	return true;
3276 }
3277 
3278 /**
3279  * 	netdev_sent_queue - report the number of bytes queued to hardware
3280  * 	@dev: network device
3281  * 	@bytes: number of bytes queued to the hardware device queue
3282  *
3283  * 	Report the number of bytes queued for sending/completion to the network
3284  * 	device hardware queue. @bytes should be a good approximation and should
3285  * 	exactly match netdev_completed_queue() @bytes
3286  */
3287 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3288 {
3289 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3290 }
3291 
3292 static inline bool __netdev_sent_queue(struct net_device *dev,
3293 				       unsigned int bytes,
3294 				       bool xmit_more)
3295 {
3296 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3297 				      xmit_more);
3298 }
3299 
3300 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3301 					     unsigned int pkts, unsigned int bytes)
3302 {
3303 #ifdef CONFIG_BQL
3304 	if (unlikely(!bytes))
3305 		return;
3306 
3307 	dql_completed(&dev_queue->dql, bytes);
3308 
3309 	/*
3310 	 * Without the memory barrier there is a small possiblity that
3311 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3312 	 * be stopped forever
3313 	 */
3314 	smp_mb();
3315 
3316 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3317 		return;
3318 
3319 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3320 		netif_schedule_queue(dev_queue);
3321 #endif
3322 }
3323 
3324 /**
3325  * 	netdev_completed_queue - report bytes and packets completed by device
3326  * 	@dev: network device
3327  * 	@pkts: actual number of packets sent over the medium
3328  * 	@bytes: actual number of bytes sent over the medium
3329  *
3330  * 	Report the number of bytes and packets transmitted by the network device
3331  * 	hardware queue over the physical medium, @bytes must exactly match the
3332  * 	@bytes amount passed to netdev_sent_queue()
3333  */
3334 static inline void netdev_completed_queue(struct net_device *dev,
3335 					  unsigned int pkts, unsigned int bytes)
3336 {
3337 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3338 }
3339 
3340 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3341 {
3342 #ifdef CONFIG_BQL
3343 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3344 	dql_reset(&q->dql);
3345 #endif
3346 }
3347 
3348 /**
3349  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3350  * 	@dev_queue: network device
3351  *
3352  * 	Reset the bytes and packet count of a network device and clear the
3353  * 	software flow control OFF bit for this network device
3354  */
3355 static inline void netdev_reset_queue(struct net_device *dev_queue)
3356 {
3357 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3358 }
3359 
3360 /**
3361  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3362  * 	@dev: network device
3363  * 	@queue_index: given tx queue index
3364  *
3365  * 	Returns 0 if given tx queue index >= number of device tx queues,
3366  * 	otherwise returns the originally passed tx queue index.
3367  */
3368 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3369 {
3370 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3371 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3372 				     dev->name, queue_index,
3373 				     dev->real_num_tx_queues);
3374 		return 0;
3375 	}
3376 
3377 	return queue_index;
3378 }
3379 
3380 /**
3381  *	netif_running - test if up
3382  *	@dev: network device
3383  *
3384  *	Test if the device has been brought up.
3385  */
3386 static inline bool netif_running(const struct net_device *dev)
3387 {
3388 	return test_bit(__LINK_STATE_START, &dev->state);
3389 }
3390 
3391 /*
3392  * Routines to manage the subqueues on a device.  We only need start,
3393  * stop, and a check if it's stopped.  All other device management is
3394  * done at the overall netdevice level.
3395  * Also test the device if we're multiqueue.
3396  */
3397 
3398 /**
3399  *	netif_start_subqueue - allow sending packets on subqueue
3400  *	@dev: network device
3401  *	@queue_index: sub queue index
3402  *
3403  * Start individual transmit queue of a device with multiple transmit queues.
3404  */
3405 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3406 {
3407 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3408 
3409 	netif_tx_start_queue(txq);
3410 }
3411 
3412 /**
3413  *	netif_stop_subqueue - stop sending packets on subqueue
3414  *	@dev: network device
3415  *	@queue_index: sub queue index
3416  *
3417  * Stop individual transmit queue of a device with multiple transmit queues.
3418  */
3419 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3420 {
3421 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3422 	netif_tx_stop_queue(txq);
3423 }
3424 
3425 /**
3426  *	__netif_subqueue_stopped - test status of subqueue
3427  *	@dev: network device
3428  *	@queue_index: sub queue index
3429  *
3430  * Check individual transmit queue of a device with multiple transmit queues.
3431  */
3432 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3433 					    u16 queue_index)
3434 {
3435 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3436 
3437 	return netif_tx_queue_stopped(txq);
3438 }
3439 
3440 /**
3441  *	netif_subqueue_stopped - test status of subqueue
3442  *	@dev: network device
3443  *	@skb: sub queue buffer pointer
3444  *
3445  * Check individual transmit queue of a device with multiple transmit queues.
3446  */
3447 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3448 					  struct sk_buff *skb)
3449 {
3450 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3451 }
3452 
3453 /**
3454  *	netif_wake_subqueue - allow sending packets on subqueue
3455  *	@dev: network device
3456  *	@queue_index: sub queue index
3457  *
3458  * Resume individual transmit queue of a device with multiple transmit queues.
3459  */
3460 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3461 {
3462 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3463 
3464 	netif_tx_wake_queue(txq);
3465 }
3466 
3467 #ifdef CONFIG_XPS
3468 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3469 			u16 index);
3470 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3471 			  u16 index, enum xps_map_type type);
3472 
3473 /**
3474  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3475  *	@j: CPU/Rx queue index
3476  *	@mask: bitmask of all cpus/rx queues
3477  *	@nr_bits: number of bits in the bitmask
3478  *
3479  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3480  */
3481 static inline bool netif_attr_test_mask(unsigned long j,
3482 					const unsigned long *mask,
3483 					unsigned int nr_bits)
3484 {
3485 	cpu_max_bits_warn(j, nr_bits);
3486 	return test_bit(j, mask);
3487 }
3488 
3489 /**
3490  *	netif_attr_test_online - Test for online CPU/Rx queue
3491  *	@j: CPU/Rx queue index
3492  *	@online_mask: bitmask for CPUs/Rx queues that are online
3493  *	@nr_bits: number of bits in the bitmask
3494  *
3495  * Returns true if a CPU/Rx queue is online.
3496  */
3497 static inline bool netif_attr_test_online(unsigned long j,
3498 					  const unsigned long *online_mask,
3499 					  unsigned int nr_bits)
3500 {
3501 	cpu_max_bits_warn(j, nr_bits);
3502 
3503 	if (online_mask)
3504 		return test_bit(j, online_mask);
3505 
3506 	return (j < nr_bits);
3507 }
3508 
3509 /**
3510  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3511  *	@n: CPU/Rx queue index
3512  *	@srcp: the cpumask/Rx queue mask pointer
3513  *	@nr_bits: number of bits in the bitmask
3514  *
3515  * Returns >= nr_bits if no further CPUs/Rx queues set.
3516  */
3517 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3518 					       unsigned int nr_bits)
3519 {
3520 	/* -1 is a legal arg here. */
3521 	if (n != -1)
3522 		cpu_max_bits_warn(n, nr_bits);
3523 
3524 	if (srcp)
3525 		return find_next_bit(srcp, nr_bits, n + 1);
3526 
3527 	return n + 1;
3528 }
3529 
3530 /**
3531  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3532  *	@n: CPU/Rx queue index
3533  *	@src1p: the first CPUs/Rx queues mask pointer
3534  *	@src2p: the second CPUs/Rx queues mask pointer
3535  *	@nr_bits: number of bits in the bitmask
3536  *
3537  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3538  */
3539 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3540 					  const unsigned long *src2p,
3541 					  unsigned int nr_bits)
3542 {
3543 	/* -1 is a legal arg here. */
3544 	if (n != -1)
3545 		cpu_max_bits_warn(n, nr_bits);
3546 
3547 	if (src1p && src2p)
3548 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3549 	else if (src1p)
3550 		return find_next_bit(src1p, nr_bits, n + 1);
3551 	else if (src2p)
3552 		return find_next_bit(src2p, nr_bits, n + 1);
3553 
3554 	return n + 1;
3555 }
3556 #else
3557 static inline int netif_set_xps_queue(struct net_device *dev,
3558 				      const struct cpumask *mask,
3559 				      u16 index)
3560 {
3561 	return 0;
3562 }
3563 
3564 static inline int __netif_set_xps_queue(struct net_device *dev,
3565 					const unsigned long *mask,
3566 					u16 index, enum xps_map_type type)
3567 {
3568 	return 0;
3569 }
3570 #endif
3571 
3572 /**
3573  *	netif_is_multiqueue - test if device has multiple transmit queues
3574  *	@dev: network device
3575  *
3576  * Check if device has multiple transmit queues
3577  */
3578 static inline bool netif_is_multiqueue(const struct net_device *dev)
3579 {
3580 	return dev->num_tx_queues > 1;
3581 }
3582 
3583 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3584 
3585 #ifdef CONFIG_SYSFS
3586 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3587 #else
3588 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3589 						unsigned int rxqs)
3590 {
3591 	dev->real_num_rx_queues = rxqs;
3592 	return 0;
3593 }
3594 #endif
3595 int netif_set_real_num_queues(struct net_device *dev,
3596 			      unsigned int txq, unsigned int rxq);
3597 
3598 static inline struct netdev_rx_queue *
3599 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3600 {
3601 	return dev->_rx + rxq;
3602 }
3603 
3604 #ifdef CONFIG_SYSFS
3605 static inline unsigned int get_netdev_rx_queue_index(
3606 		struct netdev_rx_queue *queue)
3607 {
3608 	struct net_device *dev = queue->dev;
3609 	int index = queue - dev->_rx;
3610 
3611 	BUG_ON(index >= dev->num_rx_queues);
3612 	return index;
3613 }
3614 #endif
3615 
3616 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3617 int netif_get_num_default_rss_queues(void);
3618 
3619 enum skb_free_reason {
3620 	SKB_REASON_CONSUMED,
3621 	SKB_REASON_DROPPED,
3622 };
3623 
3624 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3625 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3626 
3627 /*
3628  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3629  * interrupt context or with hardware interrupts being disabled.
3630  * (in_hardirq() || irqs_disabled())
3631  *
3632  * We provide four helpers that can be used in following contexts :
3633  *
3634  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3635  *  replacing kfree_skb(skb)
3636  *
3637  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3638  *  Typically used in place of consume_skb(skb) in TX completion path
3639  *
3640  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3641  *  replacing kfree_skb(skb)
3642  *
3643  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3644  *  and consumed a packet. Used in place of consume_skb(skb)
3645  */
3646 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3647 {
3648 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3649 }
3650 
3651 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3652 {
3653 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3654 }
3655 
3656 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3657 {
3658 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3659 }
3660 
3661 static inline void dev_consume_skb_any(struct sk_buff *skb)
3662 {
3663 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3664 }
3665 
3666 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3667 			     struct bpf_prog *xdp_prog);
3668 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3669 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3670 int netif_rx(struct sk_buff *skb);
3671 int netif_rx_ni(struct sk_buff *skb);
3672 int netif_rx_any_context(struct sk_buff *skb);
3673 int netif_receive_skb(struct sk_buff *skb);
3674 int netif_receive_skb_core(struct sk_buff *skb);
3675 void netif_receive_skb_list_internal(struct list_head *head);
3676 void netif_receive_skb_list(struct list_head *head);
3677 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3678 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3679 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3680 gro_result_t napi_gro_frags(struct napi_struct *napi);
3681 struct packet_offload *gro_find_receive_by_type(__be16 type);
3682 struct packet_offload *gro_find_complete_by_type(__be16 type);
3683 
3684 static inline void napi_free_frags(struct napi_struct *napi)
3685 {
3686 	kfree_skb(napi->skb);
3687 	napi->skb = NULL;
3688 }
3689 
3690 bool netdev_is_rx_handler_busy(struct net_device *dev);
3691 int netdev_rx_handler_register(struct net_device *dev,
3692 			       rx_handler_func_t *rx_handler,
3693 			       void *rx_handler_data);
3694 void netdev_rx_handler_unregister(struct net_device *dev);
3695 
3696 bool dev_valid_name(const char *name);
3697 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3698 {
3699 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3700 }
3701 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3702 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3703 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3704 		void __user *data, bool *need_copyout);
3705 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3706 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3707 unsigned int dev_get_flags(const struct net_device *);
3708 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3709 		       struct netlink_ext_ack *extack);
3710 int dev_change_flags(struct net_device *dev, unsigned int flags,
3711 		     struct netlink_ext_ack *extack);
3712 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3713 			unsigned int gchanges);
3714 int dev_change_name(struct net_device *, const char *);
3715 int dev_set_alias(struct net_device *, const char *, size_t);
3716 int dev_get_alias(const struct net_device *, char *, size_t);
3717 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3718 			       const char *pat, int new_ifindex);
3719 static inline
3720 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3721 			     const char *pat)
3722 {
3723 	return __dev_change_net_namespace(dev, net, pat, 0);
3724 }
3725 int __dev_set_mtu(struct net_device *, int);
3726 int dev_validate_mtu(struct net_device *dev, int mtu,
3727 		     struct netlink_ext_ack *extack);
3728 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3729 		    struct netlink_ext_ack *extack);
3730 int dev_set_mtu(struct net_device *, int);
3731 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3732 void dev_set_group(struct net_device *, int);
3733 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3734 			      struct netlink_ext_ack *extack);
3735 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3736 			struct netlink_ext_ack *extack);
3737 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3738 			     struct netlink_ext_ack *extack);
3739 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3740 int dev_change_carrier(struct net_device *, bool new_carrier);
3741 int dev_get_phys_port_id(struct net_device *dev,
3742 			 struct netdev_phys_item_id *ppid);
3743 int dev_get_phys_port_name(struct net_device *dev,
3744 			   char *name, size_t len);
3745 int dev_get_port_parent_id(struct net_device *dev,
3746 			   struct netdev_phys_item_id *ppid, bool recurse);
3747 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3748 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3749 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3750 				  u32 value);
3751 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3752 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3753 				    struct netdev_queue *txq, int *ret);
3754 
3755 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3756 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3757 		      int fd, int expected_fd, u32 flags);
3758 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3759 u8 dev_xdp_prog_count(struct net_device *dev);
3760 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3761 
3762 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3763 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3764 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3765 bool is_skb_forwardable(const struct net_device *dev,
3766 			const struct sk_buff *skb);
3767 
3768 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3769 						 const struct sk_buff *skb,
3770 						 const bool check_mtu)
3771 {
3772 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3773 	unsigned int len;
3774 
3775 	if (!(dev->flags & IFF_UP))
3776 		return false;
3777 
3778 	if (!check_mtu)
3779 		return true;
3780 
3781 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3782 	if (skb->len <= len)
3783 		return true;
3784 
3785 	/* if TSO is enabled, we don't care about the length as the packet
3786 	 * could be forwarded without being segmented before
3787 	 */
3788 	if (skb_is_gso(skb))
3789 		return true;
3790 
3791 	return false;
3792 }
3793 
3794 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3795 					       struct sk_buff *skb,
3796 					       const bool check_mtu)
3797 {
3798 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3799 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3800 		atomic_long_inc(&dev->rx_dropped);
3801 		kfree_skb(skb);
3802 		return NET_RX_DROP;
3803 	}
3804 
3805 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3806 	skb->priority = 0;
3807 	return 0;
3808 }
3809 
3810 bool dev_nit_active(struct net_device *dev);
3811 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3812 
3813 extern int		netdev_budget;
3814 extern unsigned int	netdev_budget_usecs;
3815 
3816 /* Called by rtnetlink.c:rtnl_unlock() */
3817 void netdev_run_todo(void);
3818 
3819 /**
3820  *	dev_put - release reference to device
3821  *	@dev: network device
3822  *
3823  * Release reference to device to allow it to be freed.
3824  * Try using dev_put_track() instead.
3825  */
3826 static inline void dev_put(struct net_device *dev)
3827 {
3828 	if (dev) {
3829 #ifdef CONFIG_PCPU_DEV_REFCNT
3830 		this_cpu_dec(*dev->pcpu_refcnt);
3831 #else
3832 		refcount_dec(&dev->dev_refcnt);
3833 #endif
3834 	}
3835 }
3836 
3837 /**
3838  *	dev_hold - get reference to device
3839  *	@dev: network device
3840  *
3841  * Hold reference to device to keep it from being freed.
3842  * Try using dev_hold_track() instead.
3843  */
3844 static inline void dev_hold(struct net_device *dev)
3845 {
3846 	if (dev) {
3847 #ifdef CONFIG_PCPU_DEV_REFCNT
3848 		this_cpu_inc(*dev->pcpu_refcnt);
3849 #else
3850 		refcount_inc(&dev->dev_refcnt);
3851 #endif
3852 	}
3853 }
3854 
3855 static inline void netdev_tracker_alloc(struct net_device *dev,
3856 					netdevice_tracker *tracker, gfp_t gfp)
3857 {
3858 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3859 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
3860 #endif
3861 }
3862 
3863 static inline void netdev_tracker_free(struct net_device *dev,
3864 				       netdevice_tracker *tracker)
3865 {
3866 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3867 	ref_tracker_free(&dev->refcnt_tracker, tracker);
3868 #endif
3869 }
3870 
3871 static inline void dev_hold_track(struct net_device *dev,
3872 				  netdevice_tracker *tracker, gfp_t gfp)
3873 {
3874 	if (dev) {
3875 		dev_hold(dev);
3876 		netdev_tracker_alloc(dev, tracker, gfp);
3877 	}
3878 }
3879 
3880 static inline void dev_put_track(struct net_device *dev,
3881 				 netdevice_tracker *tracker)
3882 {
3883 	if (dev) {
3884 		netdev_tracker_free(dev, tracker);
3885 		dev_put(dev);
3886 	}
3887 }
3888 
3889 static inline void dev_replace_track(struct net_device *odev,
3890 				     struct net_device *ndev,
3891 				     netdevice_tracker *tracker,
3892 				     gfp_t gfp)
3893 {
3894 	if (odev)
3895 		netdev_tracker_free(odev, tracker);
3896 
3897 	dev_hold(ndev);
3898 	dev_put(odev);
3899 
3900 	if (ndev)
3901 		netdev_tracker_alloc(ndev, tracker, gfp);
3902 }
3903 
3904 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3905  * and _off may be called from IRQ context, but it is caller
3906  * who is responsible for serialization of these calls.
3907  *
3908  * The name carrier is inappropriate, these functions should really be
3909  * called netif_lowerlayer_*() because they represent the state of any
3910  * kind of lower layer not just hardware media.
3911  */
3912 
3913 void linkwatch_init_dev(struct net_device *dev);
3914 void linkwatch_fire_event(struct net_device *dev);
3915 void linkwatch_forget_dev(struct net_device *dev);
3916 
3917 /**
3918  *	netif_carrier_ok - test if carrier present
3919  *	@dev: network device
3920  *
3921  * Check if carrier is present on device
3922  */
3923 static inline bool netif_carrier_ok(const struct net_device *dev)
3924 {
3925 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3926 }
3927 
3928 unsigned long dev_trans_start(struct net_device *dev);
3929 
3930 void __netdev_watchdog_up(struct net_device *dev);
3931 
3932 void netif_carrier_on(struct net_device *dev);
3933 void netif_carrier_off(struct net_device *dev);
3934 void netif_carrier_event(struct net_device *dev);
3935 
3936 /**
3937  *	netif_dormant_on - mark device as dormant.
3938  *	@dev: network device
3939  *
3940  * Mark device as dormant (as per RFC2863).
3941  *
3942  * The dormant state indicates that the relevant interface is not
3943  * actually in a condition to pass packets (i.e., it is not 'up') but is
3944  * in a "pending" state, waiting for some external event.  For "on-
3945  * demand" interfaces, this new state identifies the situation where the
3946  * interface is waiting for events to place it in the up state.
3947  */
3948 static inline void netif_dormant_on(struct net_device *dev)
3949 {
3950 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3951 		linkwatch_fire_event(dev);
3952 }
3953 
3954 /**
3955  *	netif_dormant_off - set device as not dormant.
3956  *	@dev: network device
3957  *
3958  * Device is not in dormant state.
3959  */
3960 static inline void netif_dormant_off(struct net_device *dev)
3961 {
3962 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3963 		linkwatch_fire_event(dev);
3964 }
3965 
3966 /**
3967  *	netif_dormant - test if device is dormant
3968  *	@dev: network device
3969  *
3970  * Check if device is dormant.
3971  */
3972 static inline bool netif_dormant(const struct net_device *dev)
3973 {
3974 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3975 }
3976 
3977 
3978 /**
3979  *	netif_testing_on - mark device as under test.
3980  *	@dev: network device
3981  *
3982  * Mark device as under test (as per RFC2863).
3983  *
3984  * The testing state indicates that some test(s) must be performed on
3985  * the interface. After completion, of the test, the interface state
3986  * will change to up, dormant, or down, as appropriate.
3987  */
3988 static inline void netif_testing_on(struct net_device *dev)
3989 {
3990 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
3991 		linkwatch_fire_event(dev);
3992 }
3993 
3994 /**
3995  *	netif_testing_off - set device as not under test.
3996  *	@dev: network device
3997  *
3998  * Device is not in testing state.
3999  */
4000 static inline void netif_testing_off(struct net_device *dev)
4001 {
4002 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4003 		linkwatch_fire_event(dev);
4004 }
4005 
4006 /**
4007  *	netif_testing - test if device is under test
4008  *	@dev: network device
4009  *
4010  * Check if device is under test
4011  */
4012 static inline bool netif_testing(const struct net_device *dev)
4013 {
4014 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4015 }
4016 
4017 
4018 /**
4019  *	netif_oper_up - test if device is operational
4020  *	@dev: network device
4021  *
4022  * Check if carrier is operational
4023  */
4024 static inline bool netif_oper_up(const struct net_device *dev)
4025 {
4026 	return (dev->operstate == IF_OPER_UP ||
4027 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4028 }
4029 
4030 /**
4031  *	netif_device_present - is device available or removed
4032  *	@dev: network device
4033  *
4034  * Check if device has not been removed from system.
4035  */
4036 static inline bool netif_device_present(const struct net_device *dev)
4037 {
4038 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4039 }
4040 
4041 void netif_device_detach(struct net_device *dev);
4042 
4043 void netif_device_attach(struct net_device *dev);
4044 
4045 /*
4046  * Network interface message level settings
4047  */
4048 
4049 enum {
4050 	NETIF_MSG_DRV_BIT,
4051 	NETIF_MSG_PROBE_BIT,
4052 	NETIF_MSG_LINK_BIT,
4053 	NETIF_MSG_TIMER_BIT,
4054 	NETIF_MSG_IFDOWN_BIT,
4055 	NETIF_MSG_IFUP_BIT,
4056 	NETIF_MSG_RX_ERR_BIT,
4057 	NETIF_MSG_TX_ERR_BIT,
4058 	NETIF_MSG_TX_QUEUED_BIT,
4059 	NETIF_MSG_INTR_BIT,
4060 	NETIF_MSG_TX_DONE_BIT,
4061 	NETIF_MSG_RX_STATUS_BIT,
4062 	NETIF_MSG_PKTDATA_BIT,
4063 	NETIF_MSG_HW_BIT,
4064 	NETIF_MSG_WOL_BIT,
4065 
4066 	/* When you add a new bit above, update netif_msg_class_names array
4067 	 * in net/ethtool/common.c
4068 	 */
4069 	NETIF_MSG_CLASS_COUNT,
4070 };
4071 /* Both ethtool_ops interface and internal driver implementation use u32 */
4072 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4073 
4074 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4075 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4076 
4077 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4078 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4079 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4080 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4081 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4082 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4083 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4084 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4085 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4086 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4087 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4088 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4089 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4090 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4091 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4092 
4093 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4094 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4095 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4096 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4097 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4098 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4099 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4100 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4101 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4102 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4103 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4104 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4105 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4106 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4107 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4108 
4109 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4110 {
4111 	/* use default */
4112 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4113 		return default_msg_enable_bits;
4114 	if (debug_value == 0)	/* no output */
4115 		return 0;
4116 	/* set low N bits */
4117 	return (1U << debug_value) - 1;
4118 }
4119 
4120 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4121 {
4122 	spin_lock(&txq->_xmit_lock);
4123 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4124 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4125 }
4126 
4127 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4128 {
4129 	__acquire(&txq->_xmit_lock);
4130 	return true;
4131 }
4132 
4133 static inline void __netif_tx_release(struct netdev_queue *txq)
4134 {
4135 	__release(&txq->_xmit_lock);
4136 }
4137 
4138 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4139 {
4140 	spin_lock_bh(&txq->_xmit_lock);
4141 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4142 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4143 }
4144 
4145 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4146 {
4147 	bool ok = spin_trylock(&txq->_xmit_lock);
4148 
4149 	if (likely(ok)) {
4150 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4151 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4152 	}
4153 	return ok;
4154 }
4155 
4156 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4157 {
4158 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4159 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4160 	spin_unlock(&txq->_xmit_lock);
4161 }
4162 
4163 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4164 {
4165 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4166 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4167 	spin_unlock_bh(&txq->_xmit_lock);
4168 }
4169 
4170 /*
4171  * txq->trans_start can be read locklessly from dev_watchdog()
4172  */
4173 static inline void txq_trans_update(struct netdev_queue *txq)
4174 {
4175 	if (txq->xmit_lock_owner != -1)
4176 		WRITE_ONCE(txq->trans_start, jiffies);
4177 }
4178 
4179 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4180 {
4181 	unsigned long now = jiffies;
4182 
4183 	if (READ_ONCE(txq->trans_start) != now)
4184 		WRITE_ONCE(txq->trans_start, now);
4185 }
4186 
4187 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4188 static inline void netif_trans_update(struct net_device *dev)
4189 {
4190 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4191 
4192 	txq_trans_cond_update(txq);
4193 }
4194 
4195 /**
4196  *	netif_tx_lock - grab network device transmit lock
4197  *	@dev: network device
4198  *
4199  * Get network device transmit lock
4200  */
4201 void netif_tx_lock(struct net_device *dev);
4202 
4203 static inline void netif_tx_lock_bh(struct net_device *dev)
4204 {
4205 	local_bh_disable();
4206 	netif_tx_lock(dev);
4207 }
4208 
4209 void netif_tx_unlock(struct net_device *dev);
4210 
4211 static inline void netif_tx_unlock_bh(struct net_device *dev)
4212 {
4213 	netif_tx_unlock(dev);
4214 	local_bh_enable();
4215 }
4216 
4217 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4218 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4219 		__netif_tx_lock(txq, cpu);		\
4220 	} else {					\
4221 		__netif_tx_acquire(txq);		\
4222 	}						\
4223 }
4224 
4225 #define HARD_TX_TRYLOCK(dev, txq)			\
4226 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4227 		__netif_tx_trylock(txq) :		\
4228 		__netif_tx_acquire(txq))
4229 
4230 #define HARD_TX_UNLOCK(dev, txq) {			\
4231 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4232 		__netif_tx_unlock(txq);			\
4233 	} else {					\
4234 		__netif_tx_release(txq);		\
4235 	}						\
4236 }
4237 
4238 static inline void netif_tx_disable(struct net_device *dev)
4239 {
4240 	unsigned int i;
4241 	int cpu;
4242 
4243 	local_bh_disable();
4244 	cpu = smp_processor_id();
4245 	spin_lock(&dev->tx_global_lock);
4246 	for (i = 0; i < dev->num_tx_queues; i++) {
4247 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4248 
4249 		__netif_tx_lock(txq, cpu);
4250 		netif_tx_stop_queue(txq);
4251 		__netif_tx_unlock(txq);
4252 	}
4253 	spin_unlock(&dev->tx_global_lock);
4254 	local_bh_enable();
4255 }
4256 
4257 static inline void netif_addr_lock(struct net_device *dev)
4258 {
4259 	unsigned char nest_level = 0;
4260 
4261 #ifdef CONFIG_LOCKDEP
4262 	nest_level = dev->nested_level;
4263 #endif
4264 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4265 }
4266 
4267 static inline void netif_addr_lock_bh(struct net_device *dev)
4268 {
4269 	unsigned char nest_level = 0;
4270 
4271 #ifdef CONFIG_LOCKDEP
4272 	nest_level = dev->nested_level;
4273 #endif
4274 	local_bh_disable();
4275 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4276 }
4277 
4278 static inline void netif_addr_unlock(struct net_device *dev)
4279 {
4280 	spin_unlock(&dev->addr_list_lock);
4281 }
4282 
4283 static inline void netif_addr_unlock_bh(struct net_device *dev)
4284 {
4285 	spin_unlock_bh(&dev->addr_list_lock);
4286 }
4287 
4288 /*
4289  * dev_addrs walker. Should be used only for read access. Call with
4290  * rcu_read_lock held.
4291  */
4292 #define for_each_dev_addr(dev, ha) \
4293 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4294 
4295 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4296 
4297 void ether_setup(struct net_device *dev);
4298 
4299 /* Support for loadable net-drivers */
4300 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4301 				    unsigned char name_assign_type,
4302 				    void (*setup)(struct net_device *),
4303 				    unsigned int txqs, unsigned int rxqs);
4304 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4305 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4306 
4307 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4308 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4309 			 count)
4310 
4311 int register_netdev(struct net_device *dev);
4312 void unregister_netdev(struct net_device *dev);
4313 
4314 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4315 
4316 /* General hardware address lists handling functions */
4317 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4318 		   struct netdev_hw_addr_list *from_list, int addr_len);
4319 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4320 		      struct netdev_hw_addr_list *from_list, int addr_len);
4321 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4322 		       struct net_device *dev,
4323 		       int (*sync)(struct net_device *, const unsigned char *),
4324 		       int (*unsync)(struct net_device *,
4325 				     const unsigned char *));
4326 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4327 			   struct net_device *dev,
4328 			   int (*sync)(struct net_device *,
4329 				       const unsigned char *, int),
4330 			   int (*unsync)(struct net_device *,
4331 					 const unsigned char *, int));
4332 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4333 			      struct net_device *dev,
4334 			      int (*unsync)(struct net_device *,
4335 					    const unsigned char *, int));
4336 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4337 			  struct net_device *dev,
4338 			  int (*unsync)(struct net_device *,
4339 					const unsigned char *));
4340 void __hw_addr_init(struct netdev_hw_addr_list *list);
4341 
4342 /* Functions used for device addresses handling */
4343 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4344 		  const void *addr, size_t len);
4345 
4346 static inline void
4347 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4348 {
4349 	dev_addr_mod(dev, 0, addr, len);
4350 }
4351 
4352 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4353 {
4354 	__dev_addr_set(dev, addr, dev->addr_len);
4355 }
4356 
4357 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4358 		 unsigned char addr_type);
4359 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4360 		 unsigned char addr_type);
4361 void dev_addr_flush(struct net_device *dev);
4362 int dev_addr_init(struct net_device *dev);
4363 void dev_addr_check(struct net_device *dev);
4364 
4365 /* Functions used for unicast addresses handling */
4366 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4367 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4368 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4369 int dev_uc_sync(struct net_device *to, struct net_device *from);
4370 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4371 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4372 void dev_uc_flush(struct net_device *dev);
4373 void dev_uc_init(struct net_device *dev);
4374 
4375 /**
4376  *  __dev_uc_sync - Synchonize device's unicast list
4377  *  @dev:  device to sync
4378  *  @sync: function to call if address should be added
4379  *  @unsync: function to call if address should be removed
4380  *
4381  *  Add newly added addresses to the interface, and release
4382  *  addresses that have been deleted.
4383  */
4384 static inline int __dev_uc_sync(struct net_device *dev,
4385 				int (*sync)(struct net_device *,
4386 					    const unsigned char *),
4387 				int (*unsync)(struct net_device *,
4388 					      const unsigned char *))
4389 {
4390 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4391 }
4392 
4393 /**
4394  *  __dev_uc_unsync - Remove synchronized addresses from device
4395  *  @dev:  device to sync
4396  *  @unsync: function to call if address should be removed
4397  *
4398  *  Remove all addresses that were added to the device by dev_uc_sync().
4399  */
4400 static inline void __dev_uc_unsync(struct net_device *dev,
4401 				   int (*unsync)(struct net_device *,
4402 						 const unsigned char *))
4403 {
4404 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4405 }
4406 
4407 /* Functions used for multicast addresses handling */
4408 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4409 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4410 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4411 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4412 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4413 int dev_mc_sync(struct net_device *to, struct net_device *from);
4414 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4415 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4416 void dev_mc_flush(struct net_device *dev);
4417 void dev_mc_init(struct net_device *dev);
4418 
4419 /**
4420  *  __dev_mc_sync - Synchonize device's multicast list
4421  *  @dev:  device to sync
4422  *  @sync: function to call if address should be added
4423  *  @unsync: function to call if address should be removed
4424  *
4425  *  Add newly added addresses to the interface, and release
4426  *  addresses that have been deleted.
4427  */
4428 static inline int __dev_mc_sync(struct net_device *dev,
4429 				int (*sync)(struct net_device *,
4430 					    const unsigned char *),
4431 				int (*unsync)(struct net_device *,
4432 					      const unsigned char *))
4433 {
4434 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4435 }
4436 
4437 /**
4438  *  __dev_mc_unsync - Remove synchronized addresses from device
4439  *  @dev:  device to sync
4440  *  @unsync: function to call if address should be removed
4441  *
4442  *  Remove all addresses that were added to the device by dev_mc_sync().
4443  */
4444 static inline void __dev_mc_unsync(struct net_device *dev,
4445 				   int (*unsync)(struct net_device *,
4446 						 const unsigned char *))
4447 {
4448 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4449 }
4450 
4451 /* Functions used for secondary unicast and multicast support */
4452 void dev_set_rx_mode(struct net_device *dev);
4453 void __dev_set_rx_mode(struct net_device *dev);
4454 int dev_set_promiscuity(struct net_device *dev, int inc);
4455 int dev_set_allmulti(struct net_device *dev, int inc);
4456 void netdev_state_change(struct net_device *dev);
4457 void __netdev_notify_peers(struct net_device *dev);
4458 void netdev_notify_peers(struct net_device *dev);
4459 void netdev_features_change(struct net_device *dev);
4460 /* Load a device via the kmod */
4461 void dev_load(struct net *net, const char *name);
4462 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4463 					struct rtnl_link_stats64 *storage);
4464 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4465 			     const struct net_device_stats *netdev_stats);
4466 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4467 			   const struct pcpu_sw_netstats __percpu *netstats);
4468 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4469 
4470 extern int		netdev_max_backlog;
4471 extern int		netdev_tstamp_prequeue;
4472 extern int		netdev_unregister_timeout_secs;
4473 extern int		weight_p;
4474 extern int		dev_weight_rx_bias;
4475 extern int		dev_weight_tx_bias;
4476 extern int		dev_rx_weight;
4477 extern int		dev_tx_weight;
4478 extern int		gro_normal_batch;
4479 
4480 enum {
4481 	NESTED_SYNC_IMM_BIT,
4482 	NESTED_SYNC_TODO_BIT,
4483 };
4484 
4485 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4486 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4487 
4488 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4489 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4490 
4491 struct netdev_nested_priv {
4492 	unsigned char flags;
4493 	void *data;
4494 };
4495 
4496 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4497 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4498 						     struct list_head **iter);
4499 
4500 #ifdef CONFIG_LOCKDEP
4501 static LIST_HEAD(net_unlink_list);
4502 
4503 static inline void net_unlink_todo(struct net_device *dev)
4504 {
4505 	if (list_empty(&dev->unlink_list))
4506 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4507 }
4508 #endif
4509 
4510 /* iterate through upper list, must be called under RCU read lock */
4511 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4512 	for (iter = &(dev)->adj_list.upper, \
4513 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4514 	     updev; \
4515 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4516 
4517 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4518 				  int (*fn)(struct net_device *upper_dev,
4519 					    struct netdev_nested_priv *priv),
4520 				  struct netdev_nested_priv *priv);
4521 
4522 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4523 				  struct net_device *upper_dev);
4524 
4525 bool netdev_has_any_upper_dev(struct net_device *dev);
4526 
4527 void *netdev_lower_get_next_private(struct net_device *dev,
4528 				    struct list_head **iter);
4529 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4530 					struct list_head **iter);
4531 
4532 #define netdev_for_each_lower_private(dev, priv, iter) \
4533 	for (iter = (dev)->adj_list.lower.next, \
4534 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4535 	     priv; \
4536 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4537 
4538 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4539 	for (iter = &(dev)->adj_list.lower, \
4540 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4541 	     priv; \
4542 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4543 
4544 void *netdev_lower_get_next(struct net_device *dev,
4545 				struct list_head **iter);
4546 
4547 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4548 	for (iter = (dev)->adj_list.lower.next, \
4549 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4550 	     ldev; \
4551 	     ldev = netdev_lower_get_next(dev, &(iter)))
4552 
4553 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4554 					     struct list_head **iter);
4555 int netdev_walk_all_lower_dev(struct net_device *dev,
4556 			      int (*fn)(struct net_device *lower_dev,
4557 					struct netdev_nested_priv *priv),
4558 			      struct netdev_nested_priv *priv);
4559 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4560 				  int (*fn)(struct net_device *lower_dev,
4561 					    struct netdev_nested_priv *priv),
4562 				  struct netdev_nested_priv *priv);
4563 
4564 void *netdev_adjacent_get_private(struct list_head *adj_list);
4565 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4566 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4567 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4568 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4569 			  struct netlink_ext_ack *extack);
4570 int netdev_master_upper_dev_link(struct net_device *dev,
4571 				 struct net_device *upper_dev,
4572 				 void *upper_priv, void *upper_info,
4573 				 struct netlink_ext_ack *extack);
4574 void netdev_upper_dev_unlink(struct net_device *dev,
4575 			     struct net_device *upper_dev);
4576 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4577 				   struct net_device *new_dev,
4578 				   struct net_device *dev,
4579 				   struct netlink_ext_ack *extack);
4580 void netdev_adjacent_change_commit(struct net_device *old_dev,
4581 				   struct net_device *new_dev,
4582 				   struct net_device *dev);
4583 void netdev_adjacent_change_abort(struct net_device *old_dev,
4584 				  struct net_device *new_dev,
4585 				  struct net_device *dev);
4586 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4587 void *netdev_lower_dev_get_private(struct net_device *dev,
4588 				   struct net_device *lower_dev);
4589 void netdev_lower_state_changed(struct net_device *lower_dev,
4590 				void *lower_state_info);
4591 
4592 /* RSS keys are 40 or 52 bytes long */
4593 #define NETDEV_RSS_KEY_LEN 52
4594 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4595 void netdev_rss_key_fill(void *buffer, size_t len);
4596 
4597 int skb_checksum_help(struct sk_buff *skb);
4598 int skb_crc32c_csum_help(struct sk_buff *skb);
4599 int skb_csum_hwoffload_help(struct sk_buff *skb,
4600 			    const netdev_features_t features);
4601 
4602 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4603 				  netdev_features_t features, bool tx_path);
4604 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4605 				    netdev_features_t features);
4606 
4607 struct netdev_bonding_info {
4608 	ifslave	slave;
4609 	ifbond	master;
4610 };
4611 
4612 struct netdev_notifier_bonding_info {
4613 	struct netdev_notifier_info info; /* must be first */
4614 	struct netdev_bonding_info  bonding_info;
4615 };
4616 
4617 void netdev_bonding_info_change(struct net_device *dev,
4618 				struct netdev_bonding_info *bonding_info);
4619 
4620 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4621 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4622 #else
4623 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4624 				  const void *data)
4625 {
4626 }
4627 #endif
4628 
4629 static inline
4630 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4631 {
4632 	return __skb_gso_segment(skb, features, true);
4633 }
4634 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4635 
4636 static inline bool can_checksum_protocol(netdev_features_t features,
4637 					 __be16 protocol)
4638 {
4639 	if (protocol == htons(ETH_P_FCOE))
4640 		return !!(features & NETIF_F_FCOE_CRC);
4641 
4642 	/* Assume this is an IP checksum (not SCTP CRC) */
4643 
4644 	if (features & NETIF_F_HW_CSUM) {
4645 		/* Can checksum everything */
4646 		return true;
4647 	}
4648 
4649 	switch (protocol) {
4650 	case htons(ETH_P_IP):
4651 		return !!(features & NETIF_F_IP_CSUM);
4652 	case htons(ETH_P_IPV6):
4653 		return !!(features & NETIF_F_IPV6_CSUM);
4654 	default:
4655 		return false;
4656 	}
4657 }
4658 
4659 #ifdef CONFIG_BUG
4660 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4661 #else
4662 static inline void netdev_rx_csum_fault(struct net_device *dev,
4663 					struct sk_buff *skb)
4664 {
4665 }
4666 #endif
4667 /* rx skb timestamps */
4668 void net_enable_timestamp(void);
4669 void net_disable_timestamp(void);
4670 
4671 #ifdef CONFIG_PROC_FS
4672 int __init dev_proc_init(void);
4673 #else
4674 #define dev_proc_init() 0
4675 #endif
4676 
4677 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4678 					      struct sk_buff *skb, struct net_device *dev,
4679 					      bool more)
4680 {
4681 	__this_cpu_write(softnet_data.xmit.more, more);
4682 	return ops->ndo_start_xmit(skb, dev);
4683 }
4684 
4685 static inline bool netdev_xmit_more(void)
4686 {
4687 	return __this_cpu_read(softnet_data.xmit.more);
4688 }
4689 
4690 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4691 					    struct netdev_queue *txq, bool more)
4692 {
4693 	const struct net_device_ops *ops = dev->netdev_ops;
4694 	netdev_tx_t rc;
4695 
4696 	rc = __netdev_start_xmit(ops, skb, dev, more);
4697 	if (rc == NETDEV_TX_OK)
4698 		txq_trans_update(txq);
4699 
4700 	return rc;
4701 }
4702 
4703 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4704 				const void *ns);
4705 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4706 				 const void *ns);
4707 
4708 extern const struct kobj_ns_type_operations net_ns_type_operations;
4709 
4710 const char *netdev_drivername(const struct net_device *dev);
4711 
4712 void linkwatch_run_queue(void);
4713 
4714 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4715 							  netdev_features_t f2)
4716 {
4717 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4718 		if (f1 & NETIF_F_HW_CSUM)
4719 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4720 		else
4721 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4722 	}
4723 
4724 	return f1 & f2;
4725 }
4726 
4727 static inline netdev_features_t netdev_get_wanted_features(
4728 	struct net_device *dev)
4729 {
4730 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4731 }
4732 netdev_features_t netdev_increment_features(netdev_features_t all,
4733 	netdev_features_t one, netdev_features_t mask);
4734 
4735 /* Allow TSO being used on stacked device :
4736  * Performing the GSO segmentation before last device
4737  * is a performance improvement.
4738  */
4739 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4740 							netdev_features_t mask)
4741 {
4742 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4743 }
4744 
4745 int __netdev_update_features(struct net_device *dev);
4746 void netdev_update_features(struct net_device *dev);
4747 void netdev_change_features(struct net_device *dev);
4748 
4749 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4750 					struct net_device *dev);
4751 
4752 netdev_features_t passthru_features_check(struct sk_buff *skb,
4753 					  struct net_device *dev,
4754 					  netdev_features_t features);
4755 netdev_features_t netif_skb_features(struct sk_buff *skb);
4756 
4757 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4758 {
4759 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4760 
4761 	/* check flags correspondence */
4762 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4763 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4764 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4765 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4766 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4767 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4768 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4769 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4770 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4771 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4772 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4773 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4774 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4775 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4776 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4777 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4778 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4779 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4780 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4781 
4782 	return (features & feature) == feature;
4783 }
4784 
4785 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4786 {
4787 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4788 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4789 }
4790 
4791 static inline bool netif_needs_gso(struct sk_buff *skb,
4792 				   netdev_features_t features)
4793 {
4794 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4795 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4796 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4797 }
4798 
4799 static inline void netif_set_gso_max_size(struct net_device *dev,
4800 					  unsigned int size)
4801 {
4802 	/* dev->gso_max_size is read locklessly from sk_setup_caps() */
4803 	WRITE_ONCE(dev->gso_max_size, size);
4804 }
4805 
4806 static inline void netif_set_gso_max_segs(struct net_device *dev,
4807 					  unsigned int segs)
4808 {
4809 	/* dev->gso_max_segs is read locklessly from sk_setup_caps() */
4810 	WRITE_ONCE(dev->gso_max_segs, segs);
4811 }
4812 
4813 static inline void netif_set_gro_max_size(struct net_device *dev,
4814 					  unsigned int size)
4815 {
4816 	/* This pairs with the READ_ONCE() in skb_gro_receive() */
4817 	WRITE_ONCE(dev->gro_max_size, size);
4818 }
4819 
4820 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4821 					int pulled_hlen, u16 mac_offset,
4822 					int mac_len)
4823 {
4824 	skb->protocol = protocol;
4825 	skb->encapsulation = 1;
4826 	skb_push(skb, pulled_hlen);
4827 	skb_reset_transport_header(skb);
4828 	skb->mac_header = mac_offset;
4829 	skb->network_header = skb->mac_header + mac_len;
4830 	skb->mac_len = mac_len;
4831 }
4832 
4833 static inline bool netif_is_macsec(const struct net_device *dev)
4834 {
4835 	return dev->priv_flags & IFF_MACSEC;
4836 }
4837 
4838 static inline bool netif_is_macvlan(const struct net_device *dev)
4839 {
4840 	return dev->priv_flags & IFF_MACVLAN;
4841 }
4842 
4843 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4844 {
4845 	return dev->priv_flags & IFF_MACVLAN_PORT;
4846 }
4847 
4848 static inline bool netif_is_bond_master(const struct net_device *dev)
4849 {
4850 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4851 }
4852 
4853 static inline bool netif_is_bond_slave(const struct net_device *dev)
4854 {
4855 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4856 }
4857 
4858 static inline bool netif_supports_nofcs(struct net_device *dev)
4859 {
4860 	return dev->priv_flags & IFF_SUPP_NOFCS;
4861 }
4862 
4863 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4864 {
4865 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4866 }
4867 
4868 static inline bool netif_is_l3_master(const struct net_device *dev)
4869 {
4870 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4871 }
4872 
4873 static inline bool netif_is_l3_slave(const struct net_device *dev)
4874 {
4875 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4876 }
4877 
4878 static inline bool netif_is_bridge_master(const struct net_device *dev)
4879 {
4880 	return dev->priv_flags & IFF_EBRIDGE;
4881 }
4882 
4883 static inline bool netif_is_bridge_port(const struct net_device *dev)
4884 {
4885 	return dev->priv_flags & IFF_BRIDGE_PORT;
4886 }
4887 
4888 static inline bool netif_is_ovs_master(const struct net_device *dev)
4889 {
4890 	return dev->priv_flags & IFF_OPENVSWITCH;
4891 }
4892 
4893 static inline bool netif_is_ovs_port(const struct net_device *dev)
4894 {
4895 	return dev->priv_flags & IFF_OVS_DATAPATH;
4896 }
4897 
4898 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4899 {
4900 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4901 }
4902 
4903 static inline bool netif_is_team_master(const struct net_device *dev)
4904 {
4905 	return dev->priv_flags & IFF_TEAM;
4906 }
4907 
4908 static inline bool netif_is_team_port(const struct net_device *dev)
4909 {
4910 	return dev->priv_flags & IFF_TEAM_PORT;
4911 }
4912 
4913 static inline bool netif_is_lag_master(const struct net_device *dev)
4914 {
4915 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4916 }
4917 
4918 static inline bool netif_is_lag_port(const struct net_device *dev)
4919 {
4920 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4921 }
4922 
4923 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4924 {
4925 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4926 }
4927 
4928 static inline bool netif_is_failover(const struct net_device *dev)
4929 {
4930 	return dev->priv_flags & IFF_FAILOVER;
4931 }
4932 
4933 static inline bool netif_is_failover_slave(const struct net_device *dev)
4934 {
4935 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4936 }
4937 
4938 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4939 static inline void netif_keep_dst(struct net_device *dev)
4940 {
4941 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4942 }
4943 
4944 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4945 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4946 {
4947 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4948 	return netif_is_macsec(dev);
4949 }
4950 
4951 extern struct pernet_operations __net_initdata loopback_net_ops;
4952 
4953 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4954 
4955 /* netdev_printk helpers, similar to dev_printk */
4956 
4957 static inline const char *netdev_name(const struct net_device *dev)
4958 {
4959 	if (!dev->name[0] || strchr(dev->name, '%'))
4960 		return "(unnamed net_device)";
4961 	return dev->name;
4962 }
4963 
4964 static inline bool netdev_unregistering(const struct net_device *dev)
4965 {
4966 	return dev->reg_state == NETREG_UNREGISTERING;
4967 }
4968 
4969 static inline const char *netdev_reg_state(const struct net_device *dev)
4970 {
4971 	switch (dev->reg_state) {
4972 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4973 	case NETREG_REGISTERED: return "";
4974 	case NETREG_UNREGISTERING: return " (unregistering)";
4975 	case NETREG_UNREGISTERED: return " (unregistered)";
4976 	case NETREG_RELEASED: return " (released)";
4977 	case NETREG_DUMMY: return " (dummy)";
4978 	}
4979 
4980 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4981 	return " (unknown)";
4982 }
4983 
4984 __printf(3, 4) __cold
4985 void netdev_printk(const char *level, const struct net_device *dev,
4986 		   const char *format, ...);
4987 __printf(2, 3) __cold
4988 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4989 __printf(2, 3) __cold
4990 void netdev_alert(const struct net_device *dev, const char *format, ...);
4991 __printf(2, 3) __cold
4992 void netdev_crit(const struct net_device *dev, const char *format, ...);
4993 __printf(2, 3) __cold
4994 void netdev_err(const struct net_device *dev, const char *format, ...);
4995 __printf(2, 3) __cold
4996 void netdev_warn(const struct net_device *dev, const char *format, ...);
4997 __printf(2, 3) __cold
4998 void netdev_notice(const struct net_device *dev, const char *format, ...);
4999 __printf(2, 3) __cold
5000 void netdev_info(const struct net_device *dev, const char *format, ...);
5001 
5002 #define netdev_level_once(level, dev, fmt, ...)			\
5003 do {								\
5004 	static bool __section(".data.once") __print_once;	\
5005 								\
5006 	if (!__print_once) {					\
5007 		__print_once = true;				\
5008 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5009 	}							\
5010 } while (0)
5011 
5012 #define netdev_emerg_once(dev, fmt, ...) \
5013 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5014 #define netdev_alert_once(dev, fmt, ...) \
5015 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5016 #define netdev_crit_once(dev, fmt, ...) \
5017 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5018 #define netdev_err_once(dev, fmt, ...) \
5019 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5020 #define netdev_warn_once(dev, fmt, ...) \
5021 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5022 #define netdev_notice_once(dev, fmt, ...) \
5023 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5024 #define netdev_info_once(dev, fmt, ...) \
5025 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5026 
5027 #define MODULE_ALIAS_NETDEV(device) \
5028 	MODULE_ALIAS("netdev-" device)
5029 
5030 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5031 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5032 #define netdev_dbg(__dev, format, args...)			\
5033 do {								\
5034 	dynamic_netdev_dbg(__dev, format, ##args);		\
5035 } while (0)
5036 #elif defined(DEBUG)
5037 #define netdev_dbg(__dev, format, args...)			\
5038 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5039 #else
5040 #define netdev_dbg(__dev, format, args...)			\
5041 ({								\
5042 	if (0)							\
5043 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5044 })
5045 #endif
5046 
5047 #if defined(VERBOSE_DEBUG)
5048 #define netdev_vdbg	netdev_dbg
5049 #else
5050 
5051 #define netdev_vdbg(dev, format, args...)			\
5052 ({								\
5053 	if (0)							\
5054 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5055 	0;							\
5056 })
5057 #endif
5058 
5059 /*
5060  * netdev_WARN() acts like dev_printk(), but with the key difference
5061  * of using a WARN/WARN_ON to get the message out, including the
5062  * file/line information and a backtrace.
5063  */
5064 #define netdev_WARN(dev, format, args...)			\
5065 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5066 	     netdev_reg_state(dev), ##args)
5067 
5068 #define netdev_WARN_ONCE(dev, format, args...)				\
5069 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5070 		  netdev_reg_state(dev), ##args)
5071 
5072 /* netif printk helpers, similar to netdev_printk */
5073 
5074 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5075 do {					  			\
5076 	if (netif_msg_##type(priv))				\
5077 		netdev_printk(level, (dev), fmt, ##args);	\
5078 } while (0)
5079 
5080 #define netif_level(level, priv, type, dev, fmt, args...)	\
5081 do {								\
5082 	if (netif_msg_##type(priv))				\
5083 		netdev_##level(dev, fmt, ##args);		\
5084 } while (0)
5085 
5086 #define netif_emerg(priv, type, dev, fmt, args...)		\
5087 	netif_level(emerg, priv, type, dev, fmt, ##args)
5088 #define netif_alert(priv, type, dev, fmt, args...)		\
5089 	netif_level(alert, priv, type, dev, fmt, ##args)
5090 #define netif_crit(priv, type, dev, fmt, args...)		\
5091 	netif_level(crit, priv, type, dev, fmt, ##args)
5092 #define netif_err(priv, type, dev, fmt, args...)		\
5093 	netif_level(err, priv, type, dev, fmt, ##args)
5094 #define netif_warn(priv, type, dev, fmt, args...)		\
5095 	netif_level(warn, priv, type, dev, fmt, ##args)
5096 #define netif_notice(priv, type, dev, fmt, args...)		\
5097 	netif_level(notice, priv, type, dev, fmt, ##args)
5098 #define netif_info(priv, type, dev, fmt, args...)		\
5099 	netif_level(info, priv, type, dev, fmt, ##args)
5100 
5101 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5102 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5103 #define netif_dbg(priv, type, netdev, format, args...)		\
5104 do {								\
5105 	if (netif_msg_##type(priv))				\
5106 		dynamic_netdev_dbg(netdev, format, ##args);	\
5107 } while (0)
5108 #elif defined(DEBUG)
5109 #define netif_dbg(priv, type, dev, format, args...)		\
5110 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5111 #else
5112 #define netif_dbg(priv, type, dev, format, args...)			\
5113 ({									\
5114 	if (0)								\
5115 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5116 	0;								\
5117 })
5118 #endif
5119 
5120 /* if @cond then downgrade to debug, else print at @level */
5121 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5122 	do {                                                              \
5123 		if (cond)                                                 \
5124 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5125 		else                                                      \
5126 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5127 	} while (0)
5128 
5129 #if defined(VERBOSE_DEBUG)
5130 #define netif_vdbg	netif_dbg
5131 #else
5132 #define netif_vdbg(priv, type, dev, format, args...)		\
5133 ({								\
5134 	if (0)							\
5135 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5136 	0;							\
5137 })
5138 #endif
5139 
5140 /*
5141  *	The list of packet types we will receive (as opposed to discard)
5142  *	and the routines to invoke.
5143  *
5144  *	Why 16. Because with 16 the only overlap we get on a hash of the
5145  *	low nibble of the protocol value is RARP/SNAP/X.25.
5146  *
5147  *		0800	IP
5148  *		0001	802.3
5149  *		0002	AX.25
5150  *		0004	802.2
5151  *		8035	RARP
5152  *		0005	SNAP
5153  *		0805	X.25
5154  *		0806	ARP
5155  *		8137	IPX
5156  *		0009	Localtalk
5157  *		86DD	IPv6
5158  */
5159 #define PTYPE_HASH_SIZE	(16)
5160 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5161 
5162 extern struct list_head ptype_all __read_mostly;
5163 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5164 
5165 extern struct net_device *blackhole_netdev;
5166 
5167 #endif	/* _LINUX_NETDEVICE_H */
5168