xref: /openbmc/linux/include/linux/netdevice.h (revision e63c7a0979f28bb13e06b981765dd514c01c075b)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 				    const struct ethtool_ops *ops);
66 
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
69 #define NET_RX_DROP		1	/* packet dropped */
70 
71 /*
72  * Transmit return codes: transmit return codes originate from three different
73  * namespaces:
74  *
75  * - qdisc return codes
76  * - driver transmit return codes
77  * - errno values
78  *
79  * Drivers are allowed to return any one of those in their hard_start_xmit()
80  * function. Real network devices commonly used with qdiscs should only return
81  * the driver transmit return codes though - when qdiscs are used, the actual
82  * transmission happens asynchronously, so the value is not propagated to
83  * higher layers. Virtual network devices transmit synchronously, in this case
84  * the driver transmit return codes are consumed by dev_queue_xmit(), all
85  * others are propagated to higher layers.
86  */
87 
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS	0x00
90 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
91 #define NET_XMIT_CN		0x02	/* congestion notification	*/
92 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
93 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
94 
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96  * indicates that the device will soon be dropping packets, or already drops
97  * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100 
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK		0xf0
103 
104 enum netdev_tx {
105 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
106 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
107 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
108 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111 
112 /*
113  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115  */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 	/*
119 	 * Positive cases with an skb consumed by a driver:
120 	 * - successful transmission (rc == NETDEV_TX_OK)
121 	 * - error while transmitting (rc < 0)
122 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 	 */
124 	if (likely(rc < NET_XMIT_MASK))
125 		return true;
126 
127 	return false;
128 }
129 
130 /*
131  *	Compute the worst case header length according to the protocols
132  *	used.
133  */
134 
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 #  define LL_MAX_HEADER 128
138 # else
139 #  define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144 
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151 
152 /*
153  *	Old network device statistics. Fields are native words
154  *	(unsigned long) so they can be read and written atomically.
155  */
156 
157 struct net_device_stats {
158 	unsigned long	rx_packets;
159 	unsigned long	tx_packets;
160 	unsigned long	rx_bytes;
161 	unsigned long	tx_bytes;
162 	unsigned long	rx_errors;
163 	unsigned long	tx_errors;
164 	unsigned long	rx_dropped;
165 	unsigned long	tx_dropped;
166 	unsigned long	multicast;
167 	unsigned long	collisions;
168 	unsigned long	rx_length_errors;
169 	unsigned long	rx_over_errors;
170 	unsigned long	rx_crc_errors;
171 	unsigned long	rx_frame_errors;
172 	unsigned long	rx_fifo_errors;
173 	unsigned long	rx_missed_errors;
174 	unsigned long	tx_aborted_errors;
175 	unsigned long	tx_carrier_errors;
176 	unsigned long	tx_fifo_errors;
177 	unsigned long	tx_heartbeat_errors;
178 	unsigned long	tx_window_errors;
179 	unsigned long	rx_compressed;
180 	unsigned long	tx_compressed;
181 };
182 
183 
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186 
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191 
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195 
196 struct netdev_hw_addr {
197 	struct list_head	list;
198 	unsigned char		addr[MAX_ADDR_LEN];
199 	unsigned char		type;
200 #define NETDEV_HW_ADDR_T_LAN		1
201 #define NETDEV_HW_ADDR_T_SAN		2
202 #define NETDEV_HW_ADDR_T_SLAVE		3
203 #define NETDEV_HW_ADDR_T_UNICAST	4
204 #define NETDEV_HW_ADDR_T_MULTICAST	5
205 	bool			global_use;
206 	int			sync_cnt;
207 	int			refcount;
208 	int			synced;
209 	struct rcu_head		rcu_head;
210 };
211 
212 struct netdev_hw_addr_list {
213 	struct list_head	list;
214 	int			count;
215 };
216 
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 	list_for_each_entry(ha, &(l)->list, list)
221 
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226 
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231 
232 struct hh_cache {
233 	u16		hh_len;
234 	u16		__pad;
235 	seqlock_t	hh_lock;
236 
237 	/* cached hardware header; allow for machine alignment needs.        */
238 #define HH_DATA_MOD	16
239 #define HH_DATA_OFF(__len) \
240 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245 
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247  * Alternative is:
248  *   dev->hard_header_len ? (dev->hard_header_len +
249  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250  *
251  * We could use other alignment values, but we must maintain the
252  * relationship HH alignment <= LL alignment.
253  */
254 #define LL_RESERVED_SPACE(dev) \
255 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 
259 struct header_ops {
260 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
261 			   unsigned short type, const void *daddr,
262 			   const void *saddr, unsigned int len);
263 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 	void	(*cache_update)(struct hh_cache *hh,
266 				const struct net_device *dev,
267 				const unsigned char *haddr);
268 };
269 
270 /* These flag bits are private to the generic network queueing
271  * layer, they may not be explicitly referenced by any other
272  * code.
273  */
274 
275 enum netdev_state_t {
276 	__LINK_STATE_START,
277 	__LINK_STATE_PRESENT,
278 	__LINK_STATE_NOCARRIER,
279 	__LINK_STATE_LINKWATCH_PENDING,
280 	__LINK_STATE_DORMANT,
281 };
282 
283 
284 /*
285  * This structure holds at boot time configured netdevice settings. They
286  * are then used in the device probing.
287  */
288 struct netdev_boot_setup {
289 	char name[IFNAMSIZ];
290 	struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293 
294 int __init netdev_boot_setup(char *str);
295 
296 /*
297  * Structure for NAPI scheduling similar to tasklet but with weighting
298  */
299 struct napi_struct {
300 	/* The poll_list must only be managed by the entity which
301 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
302 	 * whoever atomically sets that bit can add this napi_struct
303 	 * to the per-cpu poll_list, and whoever clears that bit
304 	 * can remove from the list right before clearing the bit.
305 	 */
306 	struct list_head	poll_list;
307 
308 	unsigned long		state;
309 	int			weight;
310 	unsigned int		gro_count;
311 	int			(*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313 	spinlock_t		poll_lock;
314 	int			poll_owner;
315 #endif
316 	struct net_device	*dev;
317 	struct sk_buff		*gro_list;
318 	struct sk_buff		*skb;
319 	struct hrtimer		timer;
320 	struct list_head	dev_list;
321 	struct hlist_node	napi_hash_node;
322 	unsigned int		napi_id;
323 };
324 
325 enum {
326 	NAPI_STATE_SCHED,	/* Poll is scheduled */
327 	NAPI_STATE_DISABLE,	/* Disable pending */
328 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
329 	NAPI_STATE_HASHED,	/* In NAPI hash */
330 };
331 
332 enum gro_result {
333 	GRO_MERGED,
334 	GRO_MERGED_FREE,
335 	GRO_HELD,
336 	GRO_NORMAL,
337 	GRO_DROP,
338 };
339 typedef enum gro_result gro_result_t;
340 
341 /*
342  * enum rx_handler_result - Possible return values for rx_handlers.
343  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344  * further.
345  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346  * case skb->dev was changed by rx_handler.
347  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349  *
350  * rx_handlers are functions called from inside __netif_receive_skb(), to do
351  * special processing of the skb, prior to delivery to protocol handlers.
352  *
353  * Currently, a net_device can only have a single rx_handler registered. Trying
354  * to register a second rx_handler will return -EBUSY.
355  *
356  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357  * To unregister a rx_handler on a net_device, use
358  * netdev_rx_handler_unregister().
359  *
360  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361  * do with the skb.
362  *
363  * If the rx_handler consumed to skb in some way, it should return
364  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365  * the skb to be delivered in some other ways.
366  *
367  * If the rx_handler changed skb->dev, to divert the skb to another
368  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369  * new device will be called if it exists.
370  *
371  * If the rx_handler consider the skb should be ignored, it should return
372  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373  * are registered on exact device (ptype->dev == skb->dev).
374  *
375  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376  * delivered, it should return RX_HANDLER_PASS.
377  *
378  * A device without a registered rx_handler will behave as if rx_handler
379  * returned RX_HANDLER_PASS.
380  */
381 
382 enum rx_handler_result {
383 	RX_HANDLER_CONSUMED,
384 	RX_HANDLER_ANOTHER,
385 	RX_HANDLER_EXACT,
386 	RX_HANDLER_PASS,
387 };
388 typedef enum rx_handler_result rx_handler_result_t;
389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390 
391 void __napi_schedule(struct napi_struct *n);
392 void __napi_schedule_irqoff(struct napi_struct *n);
393 
394 static inline bool napi_disable_pending(struct napi_struct *n)
395 {
396 	return test_bit(NAPI_STATE_DISABLE, &n->state);
397 }
398 
399 /**
400  *	napi_schedule_prep - check if napi can be scheduled
401  *	@n: napi context
402  *
403  * Test if NAPI routine is already running, and if not mark
404  * it as running.  This is used as a condition variable
405  * insure only one NAPI poll instance runs.  We also make
406  * sure there is no pending NAPI disable.
407  */
408 static inline bool napi_schedule_prep(struct napi_struct *n)
409 {
410 	return !napi_disable_pending(n) &&
411 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412 }
413 
414 /**
415  *	napi_schedule - schedule NAPI poll
416  *	@n: napi context
417  *
418  * Schedule NAPI poll routine to be called if it is not already
419  * running.
420  */
421 static inline void napi_schedule(struct napi_struct *n)
422 {
423 	if (napi_schedule_prep(n))
424 		__napi_schedule(n);
425 }
426 
427 /**
428  *	napi_schedule_irqoff - schedule NAPI poll
429  *	@n: napi context
430  *
431  * Variant of napi_schedule(), assuming hard irqs are masked.
432  */
433 static inline void napi_schedule_irqoff(struct napi_struct *n)
434 {
435 	if (napi_schedule_prep(n))
436 		__napi_schedule_irqoff(n);
437 }
438 
439 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
440 static inline bool napi_reschedule(struct napi_struct *napi)
441 {
442 	if (napi_schedule_prep(napi)) {
443 		__napi_schedule(napi);
444 		return true;
445 	}
446 	return false;
447 }
448 
449 void __napi_complete(struct napi_struct *n);
450 void napi_complete_done(struct napi_struct *n, int work_done);
451 /**
452  *	napi_complete - NAPI processing complete
453  *	@n: napi context
454  *
455  * Mark NAPI processing as complete.
456  * Consider using napi_complete_done() instead.
457  */
458 static inline void napi_complete(struct napi_struct *n)
459 {
460 	return napi_complete_done(n, 0);
461 }
462 
463 /**
464  *	napi_by_id - lookup a NAPI by napi_id
465  *	@napi_id: hashed napi_id
466  *
467  * lookup @napi_id in napi_hash table
468  * must be called under rcu_read_lock()
469  */
470 struct napi_struct *napi_by_id(unsigned int napi_id);
471 
472 /**
473  *	napi_hash_add - add a NAPI to global hashtable
474  *	@napi: napi context
475  *
476  * generate a new napi_id and store a @napi under it in napi_hash
477  */
478 void napi_hash_add(struct napi_struct *napi);
479 
480 /**
481  *	napi_hash_del - remove a NAPI from global table
482  *	@napi: napi context
483  *
484  * Warning: caller must observe rcu grace period
485  * before freeing memory containing @napi
486  */
487 void napi_hash_del(struct napi_struct *napi);
488 
489 /**
490  *	napi_disable - prevent NAPI from scheduling
491  *	@n: napi context
492  *
493  * Stop NAPI from being scheduled on this context.
494  * Waits till any outstanding processing completes.
495  */
496 void napi_disable(struct napi_struct *n);
497 
498 /**
499  *	napi_enable - enable NAPI scheduling
500  *	@n: napi context
501  *
502  * Resume NAPI from being scheduled on this context.
503  * Must be paired with napi_disable.
504  */
505 static inline void napi_enable(struct napi_struct *n)
506 {
507 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508 	smp_mb__before_atomic();
509 	clear_bit(NAPI_STATE_SCHED, &n->state);
510 }
511 
512 #ifdef CONFIG_SMP
513 /**
514  *	napi_synchronize - wait until NAPI is not running
515  *	@n: napi context
516  *
517  * Wait until NAPI is done being scheduled on this context.
518  * Waits till any outstanding processing completes but
519  * does not disable future activations.
520  */
521 static inline void napi_synchronize(const struct napi_struct *n)
522 {
523 	while (test_bit(NAPI_STATE_SCHED, &n->state))
524 		msleep(1);
525 }
526 #else
527 # define napi_synchronize(n)	barrier()
528 #endif
529 
530 enum netdev_queue_state_t {
531 	__QUEUE_STATE_DRV_XOFF,
532 	__QUEUE_STATE_STACK_XOFF,
533 	__QUEUE_STATE_FROZEN,
534 };
535 
536 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
537 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
538 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
539 
540 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
541 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
542 					QUEUE_STATE_FROZEN)
543 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
544 					QUEUE_STATE_FROZEN)
545 
546 /*
547  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
548  * netif_tx_* functions below are used to manipulate this flag.  The
549  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
550  * queue independently.  The netif_xmit_*stopped functions below are called
551  * to check if the queue has been stopped by the driver or stack (either
552  * of the XOFF bits are set in the state).  Drivers should not need to call
553  * netif_xmit*stopped functions, they should only be using netif_tx_*.
554  */
555 
556 struct netdev_queue {
557 /*
558  * read mostly part
559  */
560 	struct net_device	*dev;
561 	struct Qdisc __rcu	*qdisc;
562 	struct Qdisc		*qdisc_sleeping;
563 #ifdef CONFIG_SYSFS
564 	struct kobject		kobj;
565 #endif
566 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
567 	int			numa_node;
568 #endif
569 /*
570  * write mostly part
571  */
572 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
573 	int			xmit_lock_owner;
574 	/*
575 	 * please use this field instead of dev->trans_start
576 	 */
577 	unsigned long		trans_start;
578 
579 	/*
580 	 * Number of TX timeouts for this queue
581 	 * (/sys/class/net/DEV/Q/trans_timeout)
582 	 */
583 	unsigned long		trans_timeout;
584 
585 	unsigned long		state;
586 
587 #ifdef CONFIG_BQL
588 	struct dql		dql;
589 #endif
590 	unsigned long		tx_maxrate;
591 } ____cacheline_aligned_in_smp;
592 
593 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
594 {
595 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
596 	return q->numa_node;
597 #else
598 	return NUMA_NO_NODE;
599 #endif
600 }
601 
602 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
603 {
604 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
605 	q->numa_node = node;
606 #endif
607 }
608 
609 #ifdef CONFIG_RPS
610 /*
611  * This structure holds an RPS map which can be of variable length.  The
612  * map is an array of CPUs.
613  */
614 struct rps_map {
615 	unsigned int len;
616 	struct rcu_head rcu;
617 	u16 cpus[0];
618 };
619 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
620 
621 /*
622  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
623  * tail pointer for that CPU's input queue at the time of last enqueue, and
624  * a hardware filter index.
625  */
626 struct rps_dev_flow {
627 	u16 cpu;
628 	u16 filter;
629 	unsigned int last_qtail;
630 };
631 #define RPS_NO_FILTER 0xffff
632 
633 /*
634  * The rps_dev_flow_table structure contains a table of flow mappings.
635  */
636 struct rps_dev_flow_table {
637 	unsigned int mask;
638 	struct rcu_head rcu;
639 	struct rps_dev_flow flows[0];
640 };
641 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
642     ((_num) * sizeof(struct rps_dev_flow)))
643 
644 /*
645  * The rps_sock_flow_table contains mappings of flows to the last CPU
646  * on which they were processed by the application (set in recvmsg).
647  * Each entry is a 32bit value. Upper part is the high order bits
648  * of flow hash, lower part is cpu number.
649  * rps_cpu_mask is used to partition the space, depending on number of
650  * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
651  * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
652  * meaning we use 32-6=26 bits for the hash.
653  */
654 struct rps_sock_flow_table {
655 	u32	mask;
656 
657 	u32	ents[0] ____cacheline_aligned_in_smp;
658 };
659 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
660 
661 #define RPS_NO_CPU 0xffff
662 
663 extern u32 rps_cpu_mask;
664 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
665 
666 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
667 					u32 hash)
668 {
669 	if (table && hash) {
670 		unsigned int index = hash & table->mask;
671 		u32 val = hash & ~rps_cpu_mask;
672 
673 		/* We only give a hint, preemption can change cpu under us */
674 		val |= raw_smp_processor_id();
675 
676 		if (table->ents[index] != val)
677 			table->ents[index] = val;
678 	}
679 }
680 
681 #ifdef CONFIG_RFS_ACCEL
682 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
683 			 u16 filter_id);
684 #endif
685 #endif /* CONFIG_RPS */
686 
687 /* This structure contains an instance of an RX queue. */
688 struct netdev_rx_queue {
689 #ifdef CONFIG_RPS
690 	struct rps_map __rcu		*rps_map;
691 	struct rps_dev_flow_table __rcu	*rps_flow_table;
692 #endif
693 	struct kobject			kobj;
694 	struct net_device		*dev;
695 } ____cacheline_aligned_in_smp;
696 
697 /*
698  * RX queue sysfs structures and functions.
699  */
700 struct rx_queue_attribute {
701 	struct attribute attr;
702 	ssize_t (*show)(struct netdev_rx_queue *queue,
703 	    struct rx_queue_attribute *attr, char *buf);
704 	ssize_t (*store)(struct netdev_rx_queue *queue,
705 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
706 };
707 
708 #ifdef CONFIG_XPS
709 /*
710  * This structure holds an XPS map which can be of variable length.  The
711  * map is an array of queues.
712  */
713 struct xps_map {
714 	unsigned int len;
715 	unsigned int alloc_len;
716 	struct rcu_head rcu;
717 	u16 queues[0];
718 };
719 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
720 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
721     / sizeof(u16))
722 
723 /*
724  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
725  */
726 struct xps_dev_maps {
727 	struct rcu_head rcu;
728 	struct xps_map __rcu *cpu_map[0];
729 };
730 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
731     (nr_cpu_ids * sizeof(struct xps_map *)))
732 #endif /* CONFIG_XPS */
733 
734 #define TC_MAX_QUEUE	16
735 #define TC_BITMASK	15
736 /* HW offloaded queuing disciplines txq count and offset maps */
737 struct netdev_tc_txq {
738 	u16 count;
739 	u16 offset;
740 };
741 
742 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
743 /*
744  * This structure is to hold information about the device
745  * configured to run FCoE protocol stack.
746  */
747 struct netdev_fcoe_hbainfo {
748 	char	manufacturer[64];
749 	char	serial_number[64];
750 	char	hardware_version[64];
751 	char	driver_version[64];
752 	char	optionrom_version[64];
753 	char	firmware_version[64];
754 	char	model[256];
755 	char	model_description[256];
756 };
757 #endif
758 
759 #define MAX_PHYS_ITEM_ID_LEN 32
760 
761 /* This structure holds a unique identifier to identify some
762  * physical item (port for example) used by a netdevice.
763  */
764 struct netdev_phys_item_id {
765 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
766 	unsigned char id_len;
767 };
768 
769 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
770 					    struct netdev_phys_item_id *b)
771 {
772 	return a->id_len == b->id_len &&
773 	       memcmp(a->id, b->id, a->id_len) == 0;
774 }
775 
776 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
777 				       struct sk_buff *skb);
778 
779 /*
780  * This structure defines the management hooks for network devices.
781  * The following hooks can be defined; unless noted otherwise, they are
782  * optional and can be filled with a null pointer.
783  *
784  * int (*ndo_init)(struct net_device *dev);
785  *     This function is called once when network device is registered.
786  *     The network device can use this to any late stage initializaton
787  *     or semantic validattion. It can fail with an error code which will
788  *     be propogated back to register_netdev
789  *
790  * void (*ndo_uninit)(struct net_device *dev);
791  *     This function is called when device is unregistered or when registration
792  *     fails. It is not called if init fails.
793  *
794  * int (*ndo_open)(struct net_device *dev);
795  *     This function is called when network device transistions to the up
796  *     state.
797  *
798  * int (*ndo_stop)(struct net_device *dev);
799  *     This function is called when network device transistions to the down
800  *     state.
801  *
802  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
803  *                               struct net_device *dev);
804  *	Called when a packet needs to be transmitted.
805  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
806  *	the queue before that can happen; it's for obsolete devices and weird
807  *	corner cases, but the stack really does a non-trivial amount
808  *	of useless work if you return NETDEV_TX_BUSY.
809  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
810  *	Required can not be NULL.
811  *
812  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
813  *                         void *accel_priv, select_queue_fallback_t fallback);
814  *	Called to decide which queue to when device supports multiple
815  *	transmit queues.
816  *
817  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
818  *	This function is called to allow device receiver to make
819  *	changes to configuration when multicast or promiscious is enabled.
820  *
821  * void (*ndo_set_rx_mode)(struct net_device *dev);
822  *	This function is called device changes address list filtering.
823  *	If driver handles unicast address filtering, it should set
824  *	IFF_UNICAST_FLT to its priv_flags.
825  *
826  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
827  *	This function  is called when the Media Access Control address
828  *	needs to be changed. If this interface is not defined, the
829  *	mac address can not be changed.
830  *
831  * int (*ndo_validate_addr)(struct net_device *dev);
832  *	Test if Media Access Control address is valid for the device.
833  *
834  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
835  *	Called when a user request an ioctl which can't be handled by
836  *	the generic interface code. If not defined ioctl's return
837  *	not supported error code.
838  *
839  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
840  *	Used to set network devices bus interface parameters. This interface
841  *	is retained for legacy reason, new devices should use the bus
842  *	interface (PCI) for low level management.
843  *
844  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
845  *	Called when a user wants to change the Maximum Transfer Unit
846  *	of a device. If not defined, any request to change MTU will
847  *	will return an error.
848  *
849  * void (*ndo_tx_timeout)(struct net_device *dev);
850  *	Callback uses when the transmitter has not made any progress
851  *	for dev->watchdog ticks.
852  *
853  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
854  *                      struct rtnl_link_stats64 *storage);
855  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
856  *	Called when a user wants to get the network device usage
857  *	statistics. Drivers must do one of the following:
858  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
859  *	   rtnl_link_stats64 structure passed by the caller.
860  *	2. Define @ndo_get_stats to update a net_device_stats structure
861  *	   (which should normally be dev->stats) and return a pointer to
862  *	   it. The structure may be changed asynchronously only if each
863  *	   field is written atomically.
864  *	3. Update dev->stats asynchronously and atomically, and define
865  *	   neither operation.
866  *
867  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
868  *	If device support VLAN filtering this function is called when a
869  *	VLAN id is registered.
870  *
871  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
872  *	If device support VLAN filtering this function is called when a
873  *	VLAN id is unregistered.
874  *
875  * void (*ndo_poll_controller)(struct net_device *dev);
876  *
877  *	SR-IOV management functions.
878  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
879  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
880  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
881  *			  int max_tx_rate);
882  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
883  * int (*ndo_get_vf_config)(struct net_device *dev,
884  *			    int vf, struct ifla_vf_info *ivf);
885  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
886  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
887  *			  struct nlattr *port[]);
888  *
889  *      Enable or disable the VF ability to query its RSS Redirection Table and
890  *      Hash Key. This is needed since on some devices VF share this information
891  *      with PF and querying it may adduce a theoretical security risk.
892  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
893  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
894  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
895  * 	Called to setup 'tc' number of traffic classes in the net device. This
896  * 	is always called from the stack with the rtnl lock held and netif tx
897  * 	queues stopped. This allows the netdevice to perform queue management
898  * 	safely.
899  *
900  *	Fiber Channel over Ethernet (FCoE) offload functions.
901  * int (*ndo_fcoe_enable)(struct net_device *dev);
902  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
903  *	so the underlying device can perform whatever needed configuration or
904  *	initialization to support acceleration of FCoE traffic.
905  *
906  * int (*ndo_fcoe_disable)(struct net_device *dev);
907  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
908  *	so the underlying device can perform whatever needed clean-ups to
909  *	stop supporting acceleration of FCoE traffic.
910  *
911  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
912  *			     struct scatterlist *sgl, unsigned int sgc);
913  *	Called when the FCoE Initiator wants to initialize an I/O that
914  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
915  *	perform necessary setup and returns 1 to indicate the device is set up
916  *	successfully to perform DDP on this I/O, otherwise this returns 0.
917  *
918  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
919  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
920  *	indicated by the FC exchange id 'xid', so the underlying device can
921  *	clean up and reuse resources for later DDP requests.
922  *
923  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
924  *			      struct scatterlist *sgl, unsigned int sgc);
925  *	Called when the FCoE Target wants to initialize an I/O that
926  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
927  *	perform necessary setup and returns 1 to indicate the device is set up
928  *	successfully to perform DDP on this I/O, otherwise this returns 0.
929  *
930  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
931  *			       struct netdev_fcoe_hbainfo *hbainfo);
932  *	Called when the FCoE Protocol stack wants information on the underlying
933  *	device. This information is utilized by the FCoE protocol stack to
934  *	register attributes with Fiber Channel management service as per the
935  *	FC-GS Fabric Device Management Information(FDMI) specification.
936  *
937  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
938  *	Called when the underlying device wants to override default World Wide
939  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
940  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
941  *	protocol stack to use.
942  *
943  *	RFS acceleration.
944  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
945  *			    u16 rxq_index, u32 flow_id);
946  *	Set hardware filter for RFS.  rxq_index is the target queue index;
947  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
948  *	Return the filter ID on success, or a negative error code.
949  *
950  *	Slave management functions (for bridge, bonding, etc).
951  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
952  *	Called to make another netdev an underling.
953  *
954  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
955  *	Called to release previously enslaved netdev.
956  *
957  *      Feature/offload setting functions.
958  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
959  *		netdev_features_t features);
960  *	Adjusts the requested feature flags according to device-specific
961  *	constraints, and returns the resulting flags. Must not modify
962  *	the device state.
963  *
964  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
965  *	Called to update device configuration to new features. Passed
966  *	feature set might be less than what was returned by ndo_fix_features()).
967  *	Must return >0 or -errno if it changed dev->features itself.
968  *
969  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
970  *		      struct net_device *dev,
971  *		      const unsigned char *addr, u16 vid, u16 flags)
972  *	Adds an FDB entry to dev for addr.
973  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
974  *		      struct net_device *dev,
975  *		      const unsigned char *addr, u16 vid)
976  *	Deletes the FDB entry from dev coresponding to addr.
977  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
978  *		       struct net_device *dev, struct net_device *filter_dev,
979  *		       int idx)
980  *	Used to add FDB entries to dump requests. Implementers should add
981  *	entries to skb and update idx with the number of entries.
982  *
983  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
984  *			     u16 flags)
985  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
986  *			     struct net_device *dev, u32 filter_mask,
987  *			     int nlflags)
988  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
989  *			     u16 flags);
990  *
991  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
992  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
993  *	which do not represent real hardware may define this to allow their
994  *	userspace components to manage their virtual carrier state. Devices
995  *	that determine carrier state from physical hardware properties (eg
996  *	network cables) or protocol-dependent mechanisms (eg
997  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
998  *
999  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1000  *			       struct netdev_phys_item_id *ppid);
1001  *	Called to get ID of physical port of this device. If driver does
1002  *	not implement this, it is assumed that the hw is not able to have
1003  *	multiple net devices on single physical port.
1004  *
1005  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
1006  *			      sa_family_t sa_family, __be16 port);
1007  *	Called by vxlan to notiy a driver about the UDP port and socket
1008  *	address family that vxlan is listnening to. It is called only when
1009  *	a new port starts listening. The operation is protected by the
1010  *	vxlan_net->sock_lock.
1011  *
1012  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1013  *			      sa_family_t sa_family, __be16 port);
1014  *	Called by vxlan to notify the driver about a UDP port and socket
1015  *	address family that vxlan is not listening to anymore. The operation
1016  *	is protected by the vxlan_net->sock_lock.
1017  *
1018  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1019  *				 struct net_device *dev)
1020  *	Called by upper layer devices to accelerate switching or other
1021  *	station functionality into hardware. 'pdev is the lowerdev
1022  *	to use for the offload and 'dev' is the net device that will
1023  *	back the offload. Returns a pointer to the private structure
1024  *	the upper layer will maintain.
1025  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1026  *	Called by upper layer device to delete the station created
1027  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1028  *	the station and priv is the structure returned by the add
1029  *	operation.
1030  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1031  *				      struct net_device *dev,
1032  *				      void *priv);
1033  *	Callback to use for xmit over the accelerated station. This
1034  *	is used in place of ndo_start_xmit on accelerated net
1035  *	devices.
1036  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1037  *					    struct net_device *dev
1038  *					    netdev_features_t features);
1039  *	Called by core transmit path to determine if device is capable of
1040  *	performing offload operations on a given packet. This is to give
1041  *	the device an opportunity to implement any restrictions that cannot
1042  *	be otherwise expressed by feature flags. The check is called with
1043  *	the set of features that the stack has calculated and it returns
1044  *	those the driver believes to be appropriate.
1045  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1046  *			     int queue_index, u32 maxrate);
1047  *	Called when a user wants to set a max-rate limitation of specific
1048  *	TX queue.
1049  * int (*ndo_get_iflink)(const struct net_device *dev);
1050  *	Called to get the iflink value of this device.
1051  * void (*ndo_change_proto_down)(struct net_device *dev,
1052  *				  bool proto_down);
1053  *	This function is used to pass protocol port error state information
1054  *	to the switch driver. The switch driver can react to the proto_down
1055  *      by doing a phys down on the associated switch port.
1056  *
1057  */
1058 struct net_device_ops {
1059 	int			(*ndo_init)(struct net_device *dev);
1060 	void			(*ndo_uninit)(struct net_device *dev);
1061 	int			(*ndo_open)(struct net_device *dev);
1062 	int			(*ndo_stop)(struct net_device *dev);
1063 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1064 						   struct net_device *dev);
1065 	u16			(*ndo_select_queue)(struct net_device *dev,
1066 						    struct sk_buff *skb,
1067 						    void *accel_priv,
1068 						    select_queue_fallback_t fallback);
1069 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1070 						       int flags);
1071 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1072 	int			(*ndo_set_mac_address)(struct net_device *dev,
1073 						       void *addr);
1074 	int			(*ndo_validate_addr)(struct net_device *dev);
1075 	int			(*ndo_do_ioctl)(struct net_device *dev,
1076 					        struct ifreq *ifr, int cmd);
1077 	int			(*ndo_set_config)(struct net_device *dev,
1078 					          struct ifmap *map);
1079 	int			(*ndo_change_mtu)(struct net_device *dev,
1080 						  int new_mtu);
1081 	int			(*ndo_neigh_setup)(struct net_device *dev,
1082 						   struct neigh_parms *);
1083 	void			(*ndo_tx_timeout) (struct net_device *dev);
1084 
1085 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1086 						     struct rtnl_link_stats64 *storage);
1087 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1088 
1089 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1090 						       __be16 proto, u16 vid);
1091 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1092 						        __be16 proto, u16 vid);
1093 #ifdef CONFIG_NET_POLL_CONTROLLER
1094 	void                    (*ndo_poll_controller)(struct net_device *dev);
1095 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1096 						     struct netpoll_info *info);
1097 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1098 #endif
1099 #ifdef CONFIG_NET_RX_BUSY_POLL
1100 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1101 #endif
1102 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1103 						  int queue, u8 *mac);
1104 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1105 						   int queue, u16 vlan, u8 qos);
1106 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1107 						   int vf, int min_tx_rate,
1108 						   int max_tx_rate);
1109 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1110 						       int vf, bool setting);
1111 	int			(*ndo_get_vf_config)(struct net_device *dev,
1112 						     int vf,
1113 						     struct ifla_vf_info *ivf);
1114 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1115 							 int vf, int link_state);
1116 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1117 						    int vf,
1118 						    struct ifla_vf_stats
1119 						    *vf_stats);
1120 	int			(*ndo_set_vf_port)(struct net_device *dev,
1121 						   int vf,
1122 						   struct nlattr *port[]);
1123 	int			(*ndo_get_vf_port)(struct net_device *dev,
1124 						   int vf, struct sk_buff *skb);
1125 	int			(*ndo_set_vf_rss_query_en)(
1126 						   struct net_device *dev,
1127 						   int vf, bool setting);
1128 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1129 #if IS_ENABLED(CONFIG_FCOE)
1130 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1131 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1132 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1133 						      u16 xid,
1134 						      struct scatterlist *sgl,
1135 						      unsigned int sgc);
1136 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1137 						     u16 xid);
1138 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1139 						       u16 xid,
1140 						       struct scatterlist *sgl,
1141 						       unsigned int sgc);
1142 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1143 							struct netdev_fcoe_hbainfo *hbainfo);
1144 #endif
1145 
1146 #if IS_ENABLED(CONFIG_LIBFCOE)
1147 #define NETDEV_FCOE_WWNN 0
1148 #define NETDEV_FCOE_WWPN 1
1149 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1150 						    u64 *wwn, int type);
1151 #endif
1152 
1153 #ifdef CONFIG_RFS_ACCEL
1154 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1155 						     const struct sk_buff *skb,
1156 						     u16 rxq_index,
1157 						     u32 flow_id);
1158 #endif
1159 	int			(*ndo_add_slave)(struct net_device *dev,
1160 						 struct net_device *slave_dev);
1161 	int			(*ndo_del_slave)(struct net_device *dev,
1162 						 struct net_device *slave_dev);
1163 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1164 						    netdev_features_t features);
1165 	int			(*ndo_set_features)(struct net_device *dev,
1166 						    netdev_features_t features);
1167 	int			(*ndo_neigh_construct)(struct neighbour *n);
1168 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1169 
1170 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1171 					       struct nlattr *tb[],
1172 					       struct net_device *dev,
1173 					       const unsigned char *addr,
1174 					       u16 vid,
1175 					       u16 flags);
1176 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1177 					       struct nlattr *tb[],
1178 					       struct net_device *dev,
1179 					       const unsigned char *addr,
1180 					       u16 vid);
1181 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1182 						struct netlink_callback *cb,
1183 						struct net_device *dev,
1184 						struct net_device *filter_dev,
1185 						int idx);
1186 
1187 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1188 						      struct nlmsghdr *nlh,
1189 						      u16 flags);
1190 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1191 						      u32 pid, u32 seq,
1192 						      struct net_device *dev,
1193 						      u32 filter_mask,
1194 						      int nlflags);
1195 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1196 						      struct nlmsghdr *nlh,
1197 						      u16 flags);
1198 	int			(*ndo_change_carrier)(struct net_device *dev,
1199 						      bool new_carrier);
1200 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1201 							struct netdev_phys_item_id *ppid);
1202 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1203 							  char *name, size_t len);
1204 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1205 						      sa_family_t sa_family,
1206 						      __be16 port);
1207 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1208 						      sa_family_t sa_family,
1209 						      __be16 port);
1210 
1211 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1212 							struct net_device *dev);
1213 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1214 							void *priv);
1215 
1216 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1217 							struct net_device *dev,
1218 							void *priv);
1219 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1220 	netdev_features_t	(*ndo_features_check) (struct sk_buff *skb,
1221 						       struct net_device *dev,
1222 						       netdev_features_t features);
1223 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1224 						      int queue_index,
1225 						      u32 maxrate);
1226 	int			(*ndo_get_iflink)(const struct net_device *dev);
1227 	int			(*ndo_change_proto_down)(struct net_device *dev,
1228 							 bool proto_down);
1229 };
1230 
1231 /**
1232  * enum net_device_priv_flags - &struct net_device priv_flags
1233  *
1234  * These are the &struct net_device, they are only set internally
1235  * by drivers and used in the kernel. These flags are invisible to
1236  * userspace, this means that the order of these flags can change
1237  * during any kernel release.
1238  *
1239  * You should have a pretty good reason to be extending these flags.
1240  *
1241  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1242  * @IFF_EBRIDGE: Ethernet bridging device
1243  * @IFF_BONDING: bonding master or slave
1244  * @IFF_ISATAP: ISATAP interface (RFC4214)
1245  * @IFF_WAN_HDLC: WAN HDLC device
1246  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1247  *	release skb->dst
1248  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1249  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1250  * @IFF_MACVLAN_PORT: device used as macvlan port
1251  * @IFF_BRIDGE_PORT: device used as bridge port
1252  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1253  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1254  * @IFF_UNICAST_FLT: Supports unicast filtering
1255  * @IFF_TEAM_PORT: device used as team port
1256  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1257  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1258  *	change when it's running
1259  * @IFF_MACVLAN: Macvlan device
1260  * @IFF_VRF_MASTER: device is a VRF master
1261  * @IFF_NO_QUEUE: device can run without qdisc attached
1262  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1263  */
1264 enum netdev_priv_flags {
1265 	IFF_802_1Q_VLAN			= 1<<0,
1266 	IFF_EBRIDGE			= 1<<1,
1267 	IFF_BONDING			= 1<<2,
1268 	IFF_ISATAP			= 1<<3,
1269 	IFF_WAN_HDLC			= 1<<4,
1270 	IFF_XMIT_DST_RELEASE		= 1<<5,
1271 	IFF_DONT_BRIDGE			= 1<<6,
1272 	IFF_DISABLE_NETPOLL		= 1<<7,
1273 	IFF_MACVLAN_PORT		= 1<<8,
1274 	IFF_BRIDGE_PORT			= 1<<9,
1275 	IFF_OVS_DATAPATH		= 1<<10,
1276 	IFF_TX_SKB_SHARING		= 1<<11,
1277 	IFF_UNICAST_FLT			= 1<<12,
1278 	IFF_TEAM_PORT			= 1<<13,
1279 	IFF_SUPP_NOFCS			= 1<<14,
1280 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1281 	IFF_MACVLAN			= 1<<16,
1282 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1283 	IFF_IPVLAN_MASTER		= 1<<18,
1284 	IFF_IPVLAN_SLAVE		= 1<<19,
1285 	IFF_VRF_MASTER			= 1<<20,
1286 	IFF_NO_QUEUE			= 1<<21,
1287 	IFF_OPENVSWITCH			= 1<<22,
1288 };
1289 
1290 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1291 #define IFF_EBRIDGE			IFF_EBRIDGE
1292 #define IFF_BONDING			IFF_BONDING
1293 #define IFF_ISATAP			IFF_ISATAP
1294 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1295 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1296 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1297 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1298 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1299 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1300 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1301 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1302 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1303 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1304 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1305 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1306 #define IFF_MACVLAN			IFF_MACVLAN
1307 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1308 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1309 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1310 #define IFF_VRF_MASTER			IFF_VRF_MASTER
1311 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1312 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1313 
1314 /**
1315  *	struct net_device - The DEVICE structure.
1316  *		Actually, this whole structure is a big mistake.  It mixes I/O
1317  *		data with strictly "high-level" data, and it has to know about
1318  *		almost every data structure used in the INET module.
1319  *
1320  *	@name:	This is the first field of the "visible" part of this structure
1321  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1322  *	 	of the interface.
1323  *
1324  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1325  *	@ifalias:	SNMP alias
1326  *	@mem_end:	Shared memory end
1327  *	@mem_start:	Shared memory start
1328  *	@base_addr:	Device I/O address
1329  *	@irq:		Device IRQ number
1330  *
1331  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1332  *
1333  *	@state:		Generic network queuing layer state, see netdev_state_t
1334  *	@dev_list:	The global list of network devices
1335  *	@napi_list:	List entry, that is used for polling napi devices
1336  *	@unreg_list:	List entry, that is used, when we are unregistering the
1337  *			device, see the function unregister_netdev
1338  *	@close_list:	List entry, that is used, when we are closing the device
1339  *
1340  *	@adj_list:	Directly linked devices, like slaves for bonding
1341  *	@all_adj_list:	All linked devices, *including* neighbours
1342  *	@features:	Currently active device features
1343  *	@hw_features:	User-changeable features
1344  *
1345  *	@wanted_features:	User-requested features
1346  *	@vlan_features:		Mask of features inheritable by VLAN devices
1347  *
1348  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1349  *				This field indicates what encapsulation
1350  *				offloads the hardware is capable of doing,
1351  *				and drivers will need to set them appropriately.
1352  *
1353  *	@mpls_features:	Mask of features inheritable by MPLS
1354  *
1355  *	@ifindex:	interface index
1356  *	@group:		The group, that the device belongs to
1357  *
1358  *	@stats:		Statistics struct, which was left as a legacy, use
1359  *			rtnl_link_stats64 instead
1360  *
1361  *	@rx_dropped:	Dropped packets by core network,
1362  *			do not use this in drivers
1363  *	@tx_dropped:	Dropped packets by core network,
1364  *			do not use this in drivers
1365  *
1366  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1367  *				instead of ioctl,
1368  *				see <net/iw_handler.h> for details.
1369  *	@wireless_data:	Instance data managed by the core of wireless extensions
1370  *
1371  *	@netdev_ops:	Includes several pointers to callbacks,
1372  *			if one wants to override the ndo_*() functions
1373  *	@ethtool_ops:	Management operations
1374  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1375  *			of Layer 2 headers.
1376  *
1377  *	@flags:		Interface flags (a la BSD)
1378  *	@priv_flags:	Like 'flags' but invisible to userspace,
1379  *			see if.h for the definitions
1380  *	@gflags:	Global flags ( kept as legacy )
1381  *	@padded:	How much padding added by alloc_netdev()
1382  *	@operstate:	RFC2863 operstate
1383  *	@link_mode:	Mapping policy to operstate
1384  *	@if_port:	Selectable AUI, TP, ...
1385  *	@dma:		DMA channel
1386  *	@mtu:		Interface MTU value
1387  *	@type:		Interface hardware type
1388  *	@hard_header_len: Hardware header length
1389  *
1390  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1391  *			  cases can this be guaranteed
1392  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1393  *			  cases can this be guaranteed. Some cases also use
1394  *			  LL_MAX_HEADER instead to allocate the skb
1395  *
1396  *	interface address info:
1397  *
1398  * 	@perm_addr:		Permanent hw address
1399  * 	@addr_assign_type:	Hw address assignment type
1400  * 	@addr_len:		Hardware address length
1401  * 	@neigh_priv_len;	Used in neigh_alloc(),
1402  * 				initialized only in atm/clip.c
1403  * 	@dev_id:		Used to differentiate devices that share
1404  * 				the same link layer address
1405  * 	@dev_port:		Used to differentiate devices that share
1406  * 				the same function
1407  *	@addr_list_lock:	XXX: need comments on this one
1408  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1409  *				has been enabled due to the need to listen to
1410  *				additional unicast addresses in a device that
1411  *				does not implement ndo_set_rx_mode()
1412  *	@uc:			unicast mac addresses
1413  *	@mc:			multicast mac addresses
1414  *	@dev_addrs:		list of device hw addresses
1415  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1416  *	@promiscuity:		Number of times, the NIC is told to work in
1417  *				Promiscuous mode, if it becomes 0 the NIC will
1418  *				exit from working in Promiscuous mode
1419  *	@allmulti:		Counter, enables or disables allmulticast mode
1420  *
1421  *	@vlan_info:	VLAN info
1422  *	@dsa_ptr:	dsa specific data
1423  *	@tipc_ptr:	TIPC specific data
1424  *	@atalk_ptr:	AppleTalk link
1425  *	@ip_ptr:	IPv4 specific data
1426  *	@dn_ptr:	DECnet specific data
1427  *	@ip6_ptr:	IPv6 specific data
1428  *	@ax25_ptr:	AX.25 specific data
1429  *	@vrf_ptr:	VRF specific data
1430  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1431  *
1432  *	@last_rx:	Time of last Rx
1433  *	@dev_addr:	Hw address (before bcast,
1434  *			because most packets are unicast)
1435  *
1436  *	@_rx:			Array of RX queues
1437  *	@num_rx_queues:		Number of RX queues
1438  *				allocated at register_netdev() time
1439  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1440  *
1441  *	@rx_handler:		handler for received packets
1442  *	@rx_handler_data: 	XXX: need comments on this one
1443  *	@ingress_queue:		XXX: need comments on this one
1444  *	@broadcast:		hw bcast address
1445  *
1446  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1447  *			indexed by RX queue number. Assigned by driver.
1448  *			This must only be set if the ndo_rx_flow_steer
1449  *			operation is defined
1450  *	@index_hlist:		Device index hash chain
1451  *
1452  *	@_tx:			Array of TX queues
1453  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1454  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1455  *	@qdisc:			Root qdisc from userspace point of view
1456  *	@tx_queue_len:		Max frames per queue allowed
1457  *	@tx_global_lock: 	XXX: need comments on this one
1458  *
1459  *	@xps_maps:	XXX: need comments on this one
1460  *
1461  *	@offload_fwd_mark:	Offload device fwding mark
1462  *
1463  *	@trans_start:		Time (in jiffies) of last Tx
1464  *	@watchdog_timeo:	Represents the timeout that is used by
1465  *				the watchdog ( see dev_watchdog() )
1466  *	@watchdog_timer:	List of timers
1467  *
1468  *	@pcpu_refcnt:		Number of references to this device
1469  *	@todo_list:		Delayed register/unregister
1470  *	@link_watch_list:	XXX: need comments on this one
1471  *
1472  *	@reg_state:		Register/unregister state machine
1473  *	@dismantle:		Device is going to be freed
1474  *	@rtnl_link_state:	This enum represents the phases of creating
1475  *				a new link
1476  *
1477  *	@destructor:		Called from unregister,
1478  *				can be used to call free_netdev
1479  *	@npinfo:		XXX: need comments on this one
1480  * 	@nd_net:		Network namespace this network device is inside
1481  *
1482  * 	@ml_priv:	Mid-layer private
1483  * 	@lstats:	Loopback statistics
1484  * 	@tstats:	Tunnel statistics
1485  * 	@dstats:	Dummy statistics
1486  * 	@vstats:	Virtual ethernet statistics
1487  *
1488  *	@garp_port:	GARP
1489  *	@mrp_port:	MRP
1490  *
1491  *	@dev:		Class/net/name entry
1492  *	@sysfs_groups:	Space for optional device, statistics and wireless
1493  *			sysfs groups
1494  *
1495  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1496  *	@rtnl_link_ops:	Rtnl_link_ops
1497  *
1498  *	@gso_max_size:	Maximum size of generic segmentation offload
1499  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1500  *			NIC for GSO
1501  *	@gso_min_segs:	Minimum number of segments that can be passed to the
1502  *			NIC for GSO
1503  *
1504  *	@dcbnl_ops:	Data Center Bridging netlink ops
1505  *	@num_tc:	Number of traffic classes in the net device
1506  *	@tc_to_txq:	XXX: need comments on this one
1507  *	@prio_tc_map	XXX: need comments on this one
1508  *
1509  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1510  *
1511  *	@priomap:	XXX: need comments on this one
1512  *	@phydev:	Physical device may attach itself
1513  *			for hardware timestamping
1514  *
1515  *	@qdisc_tx_busylock:	XXX: need comments on this one
1516  *
1517  *	@proto_down:	protocol port state information can be sent to the
1518  *			switch driver and used to set the phys state of the
1519  *			switch port.
1520  *
1521  *	FIXME: cleanup struct net_device such that network protocol info
1522  *	moves out.
1523  */
1524 
1525 struct net_device {
1526 	char			name[IFNAMSIZ];
1527 	struct hlist_node	name_hlist;
1528 	char 			*ifalias;
1529 	/*
1530 	 *	I/O specific fields
1531 	 *	FIXME: Merge these and struct ifmap into one
1532 	 */
1533 	unsigned long		mem_end;
1534 	unsigned long		mem_start;
1535 	unsigned long		base_addr;
1536 	int			irq;
1537 
1538 	atomic_t		carrier_changes;
1539 
1540 	/*
1541 	 *	Some hardware also needs these fields (state,dev_list,
1542 	 *	napi_list,unreg_list,close_list) but they are not
1543 	 *	part of the usual set specified in Space.c.
1544 	 */
1545 
1546 	unsigned long		state;
1547 
1548 	struct list_head	dev_list;
1549 	struct list_head	napi_list;
1550 	struct list_head	unreg_list;
1551 	struct list_head	close_list;
1552 	struct list_head	ptype_all;
1553 	struct list_head	ptype_specific;
1554 
1555 	struct {
1556 		struct list_head upper;
1557 		struct list_head lower;
1558 	} adj_list;
1559 
1560 	struct {
1561 		struct list_head upper;
1562 		struct list_head lower;
1563 	} all_adj_list;
1564 
1565 	netdev_features_t	features;
1566 	netdev_features_t	hw_features;
1567 	netdev_features_t	wanted_features;
1568 	netdev_features_t	vlan_features;
1569 	netdev_features_t	hw_enc_features;
1570 	netdev_features_t	mpls_features;
1571 
1572 	int			ifindex;
1573 	int			group;
1574 
1575 	struct net_device_stats	stats;
1576 
1577 	atomic_long_t		rx_dropped;
1578 	atomic_long_t		tx_dropped;
1579 
1580 #ifdef CONFIG_WIRELESS_EXT
1581 	const struct iw_handler_def *	wireless_handlers;
1582 	struct iw_public_data *	wireless_data;
1583 #endif
1584 	const struct net_device_ops *netdev_ops;
1585 	const struct ethtool_ops *ethtool_ops;
1586 #ifdef CONFIG_NET_SWITCHDEV
1587 	const struct switchdev_ops *switchdev_ops;
1588 #endif
1589 
1590 	const struct header_ops *header_ops;
1591 
1592 	unsigned int		flags;
1593 	unsigned int		priv_flags;
1594 
1595 	unsigned short		gflags;
1596 	unsigned short		padded;
1597 
1598 	unsigned char		operstate;
1599 	unsigned char		link_mode;
1600 
1601 	unsigned char		if_port;
1602 	unsigned char		dma;
1603 
1604 	unsigned int		mtu;
1605 	unsigned short		type;
1606 	unsigned short		hard_header_len;
1607 
1608 	unsigned short		needed_headroom;
1609 	unsigned short		needed_tailroom;
1610 
1611 	/* Interface address info. */
1612 	unsigned char		perm_addr[MAX_ADDR_LEN];
1613 	unsigned char		addr_assign_type;
1614 	unsigned char		addr_len;
1615 	unsigned short		neigh_priv_len;
1616 	unsigned short          dev_id;
1617 	unsigned short          dev_port;
1618 	spinlock_t		addr_list_lock;
1619 	unsigned char		name_assign_type;
1620 	bool			uc_promisc;
1621 	struct netdev_hw_addr_list	uc;
1622 	struct netdev_hw_addr_list	mc;
1623 	struct netdev_hw_addr_list	dev_addrs;
1624 
1625 #ifdef CONFIG_SYSFS
1626 	struct kset		*queues_kset;
1627 #endif
1628 	unsigned int		promiscuity;
1629 	unsigned int		allmulti;
1630 
1631 
1632 	/* Protocol specific pointers */
1633 
1634 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1635 	struct vlan_info __rcu	*vlan_info;
1636 #endif
1637 #if IS_ENABLED(CONFIG_NET_DSA)
1638 	struct dsa_switch_tree	*dsa_ptr;
1639 #endif
1640 #if IS_ENABLED(CONFIG_TIPC)
1641 	struct tipc_bearer __rcu *tipc_ptr;
1642 #endif
1643 	void 			*atalk_ptr;
1644 	struct in_device __rcu	*ip_ptr;
1645 	struct dn_dev __rcu     *dn_ptr;
1646 	struct inet6_dev __rcu	*ip6_ptr;
1647 	void			*ax25_ptr;
1648 	struct net_vrf_dev __rcu *vrf_ptr;
1649 	struct wireless_dev	*ieee80211_ptr;
1650 	struct wpan_dev		*ieee802154_ptr;
1651 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1652 	struct mpls_dev __rcu	*mpls_ptr;
1653 #endif
1654 
1655 /*
1656  * Cache lines mostly used on receive path (including eth_type_trans())
1657  */
1658 	unsigned long		last_rx;
1659 
1660 	/* Interface address info used in eth_type_trans() */
1661 	unsigned char		*dev_addr;
1662 
1663 
1664 #ifdef CONFIG_SYSFS
1665 	struct netdev_rx_queue	*_rx;
1666 
1667 	unsigned int		num_rx_queues;
1668 	unsigned int		real_num_rx_queues;
1669 
1670 #endif
1671 
1672 	unsigned long		gro_flush_timeout;
1673 	rx_handler_func_t __rcu	*rx_handler;
1674 	void __rcu		*rx_handler_data;
1675 
1676 #ifdef CONFIG_NET_CLS_ACT
1677 	struct tcf_proto __rcu  *ingress_cl_list;
1678 #endif
1679 	struct netdev_queue __rcu *ingress_queue;
1680 #ifdef CONFIG_NETFILTER_INGRESS
1681 	struct list_head	nf_hooks_ingress;
1682 #endif
1683 
1684 	unsigned char		broadcast[MAX_ADDR_LEN];
1685 #ifdef CONFIG_RFS_ACCEL
1686 	struct cpu_rmap		*rx_cpu_rmap;
1687 #endif
1688 	struct hlist_node	index_hlist;
1689 
1690 /*
1691  * Cache lines mostly used on transmit path
1692  */
1693 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1694 	unsigned int		num_tx_queues;
1695 	unsigned int		real_num_tx_queues;
1696 	struct Qdisc		*qdisc;
1697 	unsigned long		tx_queue_len;
1698 	spinlock_t		tx_global_lock;
1699 	int			watchdog_timeo;
1700 
1701 #ifdef CONFIG_XPS
1702 	struct xps_dev_maps __rcu *xps_maps;
1703 #endif
1704 
1705 #ifdef CONFIG_NET_SWITCHDEV
1706 	u32			offload_fwd_mark;
1707 #endif
1708 
1709 	/* These may be needed for future network-power-down code. */
1710 
1711 	/*
1712 	 * trans_start here is expensive for high speed devices on SMP,
1713 	 * please use netdev_queue->trans_start instead.
1714 	 */
1715 	unsigned long		trans_start;
1716 
1717 	struct timer_list	watchdog_timer;
1718 
1719 	int __percpu		*pcpu_refcnt;
1720 	struct list_head	todo_list;
1721 
1722 	struct list_head	link_watch_list;
1723 
1724 	enum { NETREG_UNINITIALIZED=0,
1725 	       NETREG_REGISTERED,	/* completed register_netdevice */
1726 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1727 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1728 	       NETREG_RELEASED,		/* called free_netdev */
1729 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1730 	} reg_state:8;
1731 
1732 	bool dismantle;
1733 
1734 	enum {
1735 		RTNL_LINK_INITIALIZED,
1736 		RTNL_LINK_INITIALIZING,
1737 	} rtnl_link_state:16;
1738 
1739 	void (*destructor)(struct net_device *dev);
1740 
1741 #ifdef CONFIG_NETPOLL
1742 	struct netpoll_info __rcu	*npinfo;
1743 #endif
1744 
1745 	possible_net_t			nd_net;
1746 
1747 	/* mid-layer private */
1748 	union {
1749 		void					*ml_priv;
1750 		struct pcpu_lstats __percpu		*lstats;
1751 		struct pcpu_sw_netstats __percpu	*tstats;
1752 		struct pcpu_dstats __percpu		*dstats;
1753 		struct pcpu_vstats __percpu		*vstats;
1754 	};
1755 
1756 	struct garp_port __rcu	*garp_port;
1757 	struct mrp_port __rcu	*mrp_port;
1758 
1759 	struct device	dev;
1760 	const struct attribute_group *sysfs_groups[4];
1761 	const struct attribute_group *sysfs_rx_queue_group;
1762 
1763 	const struct rtnl_link_ops *rtnl_link_ops;
1764 
1765 	/* for setting kernel sock attribute on TCP connection setup */
1766 #define GSO_MAX_SIZE		65536
1767 	unsigned int		gso_max_size;
1768 #define GSO_MAX_SEGS		65535
1769 	u16			gso_max_segs;
1770 	u16			gso_min_segs;
1771 #ifdef CONFIG_DCB
1772 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1773 #endif
1774 	u8 num_tc;
1775 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1776 	u8 prio_tc_map[TC_BITMASK + 1];
1777 
1778 #if IS_ENABLED(CONFIG_FCOE)
1779 	unsigned int		fcoe_ddp_xid;
1780 #endif
1781 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1782 	struct netprio_map __rcu *priomap;
1783 #endif
1784 	struct phy_device *phydev;
1785 	struct lock_class_key *qdisc_tx_busylock;
1786 	bool proto_down;
1787 };
1788 #define to_net_dev(d) container_of(d, struct net_device, dev)
1789 
1790 #define	NETDEV_ALIGN		32
1791 
1792 static inline
1793 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1794 {
1795 	return dev->prio_tc_map[prio & TC_BITMASK];
1796 }
1797 
1798 static inline
1799 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1800 {
1801 	if (tc >= dev->num_tc)
1802 		return -EINVAL;
1803 
1804 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1805 	return 0;
1806 }
1807 
1808 static inline
1809 void netdev_reset_tc(struct net_device *dev)
1810 {
1811 	dev->num_tc = 0;
1812 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1813 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1814 }
1815 
1816 static inline
1817 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1818 {
1819 	if (tc >= dev->num_tc)
1820 		return -EINVAL;
1821 
1822 	dev->tc_to_txq[tc].count = count;
1823 	dev->tc_to_txq[tc].offset = offset;
1824 	return 0;
1825 }
1826 
1827 static inline
1828 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1829 {
1830 	if (num_tc > TC_MAX_QUEUE)
1831 		return -EINVAL;
1832 
1833 	dev->num_tc = num_tc;
1834 	return 0;
1835 }
1836 
1837 static inline
1838 int netdev_get_num_tc(struct net_device *dev)
1839 {
1840 	return dev->num_tc;
1841 }
1842 
1843 static inline
1844 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1845 					 unsigned int index)
1846 {
1847 	return &dev->_tx[index];
1848 }
1849 
1850 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1851 						    const struct sk_buff *skb)
1852 {
1853 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1854 }
1855 
1856 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1857 					    void (*f)(struct net_device *,
1858 						      struct netdev_queue *,
1859 						      void *),
1860 					    void *arg)
1861 {
1862 	unsigned int i;
1863 
1864 	for (i = 0; i < dev->num_tx_queues; i++)
1865 		f(dev, &dev->_tx[i], arg);
1866 }
1867 
1868 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1869 				    struct sk_buff *skb,
1870 				    void *accel_priv);
1871 
1872 /*
1873  * Net namespace inlines
1874  */
1875 static inline
1876 struct net *dev_net(const struct net_device *dev)
1877 {
1878 	return read_pnet(&dev->nd_net);
1879 }
1880 
1881 static inline
1882 void dev_net_set(struct net_device *dev, struct net *net)
1883 {
1884 	write_pnet(&dev->nd_net, net);
1885 }
1886 
1887 static inline bool netdev_uses_dsa(struct net_device *dev)
1888 {
1889 #if IS_ENABLED(CONFIG_NET_DSA)
1890 	if (dev->dsa_ptr != NULL)
1891 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1892 #endif
1893 	return false;
1894 }
1895 
1896 /**
1897  *	netdev_priv - access network device private data
1898  *	@dev: network device
1899  *
1900  * Get network device private data
1901  */
1902 static inline void *netdev_priv(const struct net_device *dev)
1903 {
1904 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1905 }
1906 
1907 /* Set the sysfs physical device reference for the network logical device
1908  * if set prior to registration will cause a symlink during initialization.
1909  */
1910 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1911 
1912 /* Set the sysfs device type for the network logical device to allow
1913  * fine-grained identification of different network device types. For
1914  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1915  */
1916 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1917 
1918 /* Default NAPI poll() weight
1919  * Device drivers are strongly advised to not use bigger value
1920  */
1921 #define NAPI_POLL_WEIGHT 64
1922 
1923 /**
1924  *	netif_napi_add - initialize a napi context
1925  *	@dev:  network device
1926  *	@napi: napi context
1927  *	@poll: polling function
1928  *	@weight: default weight
1929  *
1930  * netif_napi_add() must be used to initialize a napi context prior to calling
1931  * *any* of the other napi related functions.
1932  */
1933 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1934 		    int (*poll)(struct napi_struct *, int), int weight);
1935 
1936 /**
1937  *  netif_napi_del - remove a napi context
1938  *  @napi: napi context
1939  *
1940  *  netif_napi_del() removes a napi context from the network device napi list
1941  */
1942 void netif_napi_del(struct napi_struct *napi);
1943 
1944 struct napi_gro_cb {
1945 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1946 	void *frag0;
1947 
1948 	/* Length of frag0. */
1949 	unsigned int frag0_len;
1950 
1951 	/* This indicates where we are processing relative to skb->data. */
1952 	int data_offset;
1953 
1954 	/* This is non-zero if the packet cannot be merged with the new skb. */
1955 	u16	flush;
1956 
1957 	/* Save the IP ID here and check when we get to the transport layer */
1958 	u16	flush_id;
1959 
1960 	/* Number of segments aggregated. */
1961 	u16	count;
1962 
1963 	/* Start offset for remote checksum offload */
1964 	u16	gro_remcsum_start;
1965 
1966 	/* jiffies when first packet was created/queued */
1967 	unsigned long age;
1968 
1969 	/* Used in ipv6_gro_receive() and foo-over-udp */
1970 	u16	proto;
1971 
1972 	/* This is non-zero if the packet may be of the same flow. */
1973 	u8	same_flow:1;
1974 
1975 	/* Used in udp_gro_receive */
1976 	u8	udp_mark:1;
1977 
1978 	/* GRO checksum is valid */
1979 	u8	csum_valid:1;
1980 
1981 	/* Number of checksums via CHECKSUM_UNNECESSARY */
1982 	u8	csum_cnt:3;
1983 
1984 	/* Free the skb? */
1985 	u8	free:2;
1986 #define NAPI_GRO_FREE		  1
1987 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1988 
1989 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
1990 	u8	is_ipv6:1;
1991 
1992 	/* 7 bit hole */
1993 
1994 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
1995 	__wsum	csum;
1996 
1997 	/* used in skb_gro_receive() slow path */
1998 	struct sk_buff *last;
1999 };
2000 
2001 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2002 
2003 struct packet_type {
2004 	__be16			type;	/* This is really htons(ether_type). */
2005 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2006 	int			(*func) (struct sk_buff *,
2007 					 struct net_device *,
2008 					 struct packet_type *,
2009 					 struct net_device *);
2010 	bool			(*id_match)(struct packet_type *ptype,
2011 					    struct sock *sk);
2012 	void			*af_packet_priv;
2013 	struct list_head	list;
2014 };
2015 
2016 struct offload_callbacks {
2017 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2018 						netdev_features_t features);
2019 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2020 						 struct sk_buff *skb);
2021 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2022 };
2023 
2024 struct packet_offload {
2025 	__be16			 type;	/* This is really htons(ether_type). */
2026 	u16			 priority;
2027 	struct offload_callbacks callbacks;
2028 	struct list_head	 list;
2029 };
2030 
2031 struct udp_offload;
2032 
2033 struct udp_offload_callbacks {
2034 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2035 						 struct sk_buff *skb,
2036 						 struct udp_offload *uoff);
2037 	int			(*gro_complete)(struct sk_buff *skb,
2038 						int nhoff,
2039 						struct udp_offload *uoff);
2040 };
2041 
2042 struct udp_offload {
2043 	__be16			 port;
2044 	u8			 ipproto;
2045 	struct udp_offload_callbacks callbacks;
2046 };
2047 
2048 /* often modified stats are per cpu, other are shared (netdev->stats) */
2049 struct pcpu_sw_netstats {
2050 	u64     rx_packets;
2051 	u64     rx_bytes;
2052 	u64     tx_packets;
2053 	u64     tx_bytes;
2054 	struct u64_stats_sync   syncp;
2055 };
2056 
2057 #define netdev_alloc_pcpu_stats(type)				\
2058 ({								\
2059 	typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2060 	if (pcpu_stats)	{					\
2061 		int __cpu;					\
2062 		for_each_possible_cpu(__cpu) {			\
2063 			typeof(type) *stat;			\
2064 			stat = per_cpu_ptr(pcpu_stats, __cpu);	\
2065 			u64_stats_init(&stat->syncp);		\
2066 		}						\
2067 	}							\
2068 	pcpu_stats;						\
2069 })
2070 
2071 #include <linux/notifier.h>
2072 
2073 /* netdevice notifier chain. Please remember to update the rtnetlink
2074  * notification exclusion list in rtnetlink_event() when adding new
2075  * types.
2076  */
2077 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2078 #define NETDEV_DOWN	0x0002
2079 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2080 				   detected a hardware crash and restarted
2081 				   - we can use this eg to kick tcp sessions
2082 				   once done */
2083 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2084 #define NETDEV_REGISTER 0x0005
2085 #define NETDEV_UNREGISTER	0x0006
2086 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2087 #define NETDEV_CHANGEADDR	0x0008
2088 #define NETDEV_GOING_DOWN	0x0009
2089 #define NETDEV_CHANGENAME	0x000A
2090 #define NETDEV_FEAT_CHANGE	0x000B
2091 #define NETDEV_BONDING_FAILOVER 0x000C
2092 #define NETDEV_PRE_UP		0x000D
2093 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2094 #define NETDEV_POST_TYPE_CHANGE	0x000F
2095 #define NETDEV_POST_INIT	0x0010
2096 #define NETDEV_UNREGISTER_FINAL 0x0011
2097 #define NETDEV_RELEASE		0x0012
2098 #define NETDEV_NOTIFY_PEERS	0x0013
2099 #define NETDEV_JOIN		0x0014
2100 #define NETDEV_CHANGEUPPER	0x0015
2101 #define NETDEV_RESEND_IGMP	0x0016
2102 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2103 #define NETDEV_CHANGEINFODATA	0x0018
2104 #define NETDEV_BONDING_INFO	0x0019
2105 
2106 int register_netdevice_notifier(struct notifier_block *nb);
2107 int unregister_netdevice_notifier(struct notifier_block *nb);
2108 
2109 struct netdev_notifier_info {
2110 	struct net_device *dev;
2111 };
2112 
2113 struct netdev_notifier_change_info {
2114 	struct netdev_notifier_info info; /* must be first */
2115 	unsigned int flags_changed;
2116 };
2117 
2118 struct netdev_notifier_changeupper_info {
2119 	struct netdev_notifier_info info; /* must be first */
2120 	struct net_device *upper_dev; /* new upper dev */
2121 	bool master; /* is upper dev master */
2122 	bool linking; /* is the nofication for link or unlink */
2123 };
2124 
2125 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2126 					     struct net_device *dev)
2127 {
2128 	info->dev = dev;
2129 }
2130 
2131 static inline struct net_device *
2132 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2133 {
2134 	return info->dev;
2135 }
2136 
2137 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2138 
2139 
2140 extern rwlock_t				dev_base_lock;		/* Device list lock */
2141 
2142 #define for_each_netdev(net, d)		\
2143 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2144 #define for_each_netdev_reverse(net, d)	\
2145 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2146 #define for_each_netdev_rcu(net, d)		\
2147 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2148 #define for_each_netdev_safe(net, d, n)	\
2149 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2150 #define for_each_netdev_continue(net, d)		\
2151 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2152 #define for_each_netdev_continue_rcu(net, d)		\
2153 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2154 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2155 		for_each_netdev_rcu(&init_net, slave)	\
2156 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2157 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2158 
2159 static inline struct net_device *next_net_device(struct net_device *dev)
2160 {
2161 	struct list_head *lh;
2162 	struct net *net;
2163 
2164 	net = dev_net(dev);
2165 	lh = dev->dev_list.next;
2166 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2167 }
2168 
2169 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2170 {
2171 	struct list_head *lh;
2172 	struct net *net;
2173 
2174 	net = dev_net(dev);
2175 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2176 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2177 }
2178 
2179 static inline struct net_device *first_net_device(struct net *net)
2180 {
2181 	return list_empty(&net->dev_base_head) ? NULL :
2182 		net_device_entry(net->dev_base_head.next);
2183 }
2184 
2185 static inline struct net_device *first_net_device_rcu(struct net *net)
2186 {
2187 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2188 
2189 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2190 }
2191 
2192 int netdev_boot_setup_check(struct net_device *dev);
2193 unsigned long netdev_boot_base(const char *prefix, int unit);
2194 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2195 				       const char *hwaddr);
2196 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2197 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2198 void dev_add_pack(struct packet_type *pt);
2199 void dev_remove_pack(struct packet_type *pt);
2200 void __dev_remove_pack(struct packet_type *pt);
2201 void dev_add_offload(struct packet_offload *po);
2202 void dev_remove_offload(struct packet_offload *po);
2203 
2204 int dev_get_iflink(const struct net_device *dev);
2205 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2206 				      unsigned short mask);
2207 struct net_device *dev_get_by_name(struct net *net, const char *name);
2208 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2209 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2210 int dev_alloc_name(struct net_device *dev, const char *name);
2211 int dev_open(struct net_device *dev);
2212 int dev_close(struct net_device *dev);
2213 int dev_close_many(struct list_head *head, bool unlink);
2214 void dev_disable_lro(struct net_device *dev);
2215 int dev_loopback_xmit(struct sock *sk, struct sk_buff *newskb);
2216 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb);
2217 static inline int dev_queue_xmit(struct sk_buff *skb)
2218 {
2219 	return dev_queue_xmit_sk(skb->sk, skb);
2220 }
2221 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2222 int register_netdevice(struct net_device *dev);
2223 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2224 void unregister_netdevice_many(struct list_head *head);
2225 static inline void unregister_netdevice(struct net_device *dev)
2226 {
2227 	unregister_netdevice_queue(dev, NULL);
2228 }
2229 
2230 int netdev_refcnt_read(const struct net_device *dev);
2231 void free_netdev(struct net_device *dev);
2232 void netdev_freemem(struct net_device *dev);
2233 void synchronize_net(void);
2234 int init_dummy_netdev(struct net_device *dev);
2235 
2236 DECLARE_PER_CPU(int, xmit_recursion);
2237 static inline int dev_recursion_level(void)
2238 {
2239 	return this_cpu_read(xmit_recursion);
2240 }
2241 
2242 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2243 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2244 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2245 int netdev_get_name(struct net *net, char *name, int ifindex);
2246 int dev_restart(struct net_device *dev);
2247 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2248 
2249 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2250 {
2251 	return NAPI_GRO_CB(skb)->data_offset;
2252 }
2253 
2254 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2255 {
2256 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2257 }
2258 
2259 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2260 {
2261 	NAPI_GRO_CB(skb)->data_offset += len;
2262 }
2263 
2264 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2265 					unsigned int offset)
2266 {
2267 	return NAPI_GRO_CB(skb)->frag0 + offset;
2268 }
2269 
2270 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2271 {
2272 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2273 }
2274 
2275 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2276 					unsigned int offset)
2277 {
2278 	if (!pskb_may_pull(skb, hlen))
2279 		return NULL;
2280 
2281 	NAPI_GRO_CB(skb)->frag0 = NULL;
2282 	NAPI_GRO_CB(skb)->frag0_len = 0;
2283 	return skb->data + offset;
2284 }
2285 
2286 static inline void *skb_gro_network_header(struct sk_buff *skb)
2287 {
2288 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2289 	       skb_network_offset(skb);
2290 }
2291 
2292 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2293 					const void *start, unsigned int len)
2294 {
2295 	if (NAPI_GRO_CB(skb)->csum_valid)
2296 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2297 						  csum_partial(start, len, 0));
2298 }
2299 
2300 /* GRO checksum functions. These are logical equivalents of the normal
2301  * checksum functions (in skbuff.h) except that they operate on the GRO
2302  * offsets and fields in sk_buff.
2303  */
2304 
2305 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2306 
2307 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2308 {
2309 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2310 }
2311 
2312 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2313 						      bool zero_okay,
2314 						      __sum16 check)
2315 {
2316 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2317 		skb_checksum_start_offset(skb) <
2318 		 skb_gro_offset(skb)) &&
2319 		!skb_at_gro_remcsum_start(skb) &&
2320 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2321 		(!zero_okay || check));
2322 }
2323 
2324 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2325 							   __wsum psum)
2326 {
2327 	if (NAPI_GRO_CB(skb)->csum_valid &&
2328 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2329 		return 0;
2330 
2331 	NAPI_GRO_CB(skb)->csum = psum;
2332 
2333 	return __skb_gro_checksum_complete(skb);
2334 }
2335 
2336 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2337 {
2338 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2339 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2340 		NAPI_GRO_CB(skb)->csum_cnt--;
2341 	} else {
2342 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2343 		 * verified a new top level checksum or an encapsulated one
2344 		 * during GRO. This saves work if we fallback to normal path.
2345 		 */
2346 		__skb_incr_checksum_unnecessary(skb);
2347 	}
2348 }
2349 
2350 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2351 				    compute_pseudo)			\
2352 ({									\
2353 	__sum16 __ret = 0;						\
2354 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2355 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2356 				compute_pseudo(skb, proto));		\
2357 	if (__ret)							\
2358 		__skb_mark_checksum_bad(skb);				\
2359 	else								\
2360 		skb_gro_incr_csum_unnecessary(skb);			\
2361 	__ret;								\
2362 })
2363 
2364 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2365 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2366 
2367 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2368 					     compute_pseudo)		\
2369 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2370 
2371 #define skb_gro_checksum_simple_validate(skb)				\
2372 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2373 
2374 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2375 {
2376 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2377 		!NAPI_GRO_CB(skb)->csum_valid);
2378 }
2379 
2380 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2381 					      __sum16 check, __wsum pseudo)
2382 {
2383 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2384 	NAPI_GRO_CB(skb)->csum_valid = 1;
2385 }
2386 
2387 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2388 do {									\
2389 	if (__skb_gro_checksum_convert_check(skb))			\
2390 		__skb_gro_checksum_convert(skb, check,			\
2391 					   compute_pseudo(skb, proto));	\
2392 } while (0)
2393 
2394 struct gro_remcsum {
2395 	int offset;
2396 	__wsum delta;
2397 };
2398 
2399 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2400 {
2401 	grc->offset = 0;
2402 	grc->delta = 0;
2403 }
2404 
2405 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2406 					    unsigned int off, size_t hdrlen,
2407 					    int start, int offset,
2408 					    struct gro_remcsum *grc,
2409 					    bool nopartial)
2410 {
2411 	__wsum delta;
2412 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2413 
2414 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2415 
2416 	if (!nopartial) {
2417 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2418 		return ptr;
2419 	}
2420 
2421 	ptr = skb_gro_header_fast(skb, off);
2422 	if (skb_gro_header_hard(skb, off + plen)) {
2423 		ptr = skb_gro_header_slow(skb, off + plen, off);
2424 		if (!ptr)
2425 			return NULL;
2426 	}
2427 
2428 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2429 			       start, offset);
2430 
2431 	/* Adjust skb->csum since we changed the packet */
2432 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2433 
2434 	grc->offset = off + hdrlen + offset;
2435 	grc->delta = delta;
2436 
2437 	return ptr;
2438 }
2439 
2440 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2441 					   struct gro_remcsum *grc)
2442 {
2443 	void *ptr;
2444 	size_t plen = grc->offset + sizeof(u16);
2445 
2446 	if (!grc->delta)
2447 		return;
2448 
2449 	ptr = skb_gro_header_fast(skb, grc->offset);
2450 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2451 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2452 		if (!ptr)
2453 			return;
2454 	}
2455 
2456 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2457 }
2458 
2459 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2460 				  unsigned short type,
2461 				  const void *daddr, const void *saddr,
2462 				  unsigned int len)
2463 {
2464 	if (!dev->header_ops || !dev->header_ops->create)
2465 		return 0;
2466 
2467 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2468 }
2469 
2470 static inline int dev_parse_header(const struct sk_buff *skb,
2471 				   unsigned char *haddr)
2472 {
2473 	const struct net_device *dev = skb->dev;
2474 
2475 	if (!dev->header_ops || !dev->header_ops->parse)
2476 		return 0;
2477 	return dev->header_ops->parse(skb, haddr);
2478 }
2479 
2480 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2481 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2482 static inline int unregister_gifconf(unsigned int family)
2483 {
2484 	return register_gifconf(family, NULL);
2485 }
2486 
2487 #ifdef CONFIG_NET_FLOW_LIMIT
2488 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2489 struct sd_flow_limit {
2490 	u64			count;
2491 	unsigned int		num_buckets;
2492 	unsigned int		history_head;
2493 	u16			history[FLOW_LIMIT_HISTORY];
2494 	u8			buckets[];
2495 };
2496 
2497 extern int netdev_flow_limit_table_len;
2498 #endif /* CONFIG_NET_FLOW_LIMIT */
2499 
2500 /*
2501  * Incoming packets are placed on per-cpu queues
2502  */
2503 struct softnet_data {
2504 	struct list_head	poll_list;
2505 	struct sk_buff_head	process_queue;
2506 
2507 	/* stats */
2508 	unsigned int		processed;
2509 	unsigned int		time_squeeze;
2510 	unsigned int		cpu_collision;
2511 	unsigned int		received_rps;
2512 #ifdef CONFIG_RPS
2513 	struct softnet_data	*rps_ipi_list;
2514 #endif
2515 #ifdef CONFIG_NET_FLOW_LIMIT
2516 	struct sd_flow_limit __rcu *flow_limit;
2517 #endif
2518 	struct Qdisc		*output_queue;
2519 	struct Qdisc		**output_queue_tailp;
2520 	struct sk_buff		*completion_queue;
2521 
2522 #ifdef CONFIG_RPS
2523 	/* Elements below can be accessed between CPUs for RPS */
2524 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2525 	struct softnet_data	*rps_ipi_next;
2526 	unsigned int		cpu;
2527 	unsigned int		input_queue_head;
2528 	unsigned int		input_queue_tail;
2529 #endif
2530 	unsigned int		dropped;
2531 	struct sk_buff_head	input_pkt_queue;
2532 	struct napi_struct	backlog;
2533 
2534 };
2535 
2536 static inline void input_queue_head_incr(struct softnet_data *sd)
2537 {
2538 #ifdef CONFIG_RPS
2539 	sd->input_queue_head++;
2540 #endif
2541 }
2542 
2543 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2544 					      unsigned int *qtail)
2545 {
2546 #ifdef CONFIG_RPS
2547 	*qtail = ++sd->input_queue_tail;
2548 #endif
2549 }
2550 
2551 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2552 
2553 void __netif_schedule(struct Qdisc *q);
2554 void netif_schedule_queue(struct netdev_queue *txq);
2555 
2556 static inline void netif_tx_schedule_all(struct net_device *dev)
2557 {
2558 	unsigned int i;
2559 
2560 	for (i = 0; i < dev->num_tx_queues; i++)
2561 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2562 }
2563 
2564 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2565 {
2566 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2567 }
2568 
2569 /**
2570  *	netif_start_queue - allow transmit
2571  *	@dev: network device
2572  *
2573  *	Allow upper layers to call the device hard_start_xmit routine.
2574  */
2575 static inline void netif_start_queue(struct net_device *dev)
2576 {
2577 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2578 }
2579 
2580 static inline void netif_tx_start_all_queues(struct net_device *dev)
2581 {
2582 	unsigned int i;
2583 
2584 	for (i = 0; i < dev->num_tx_queues; i++) {
2585 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2586 		netif_tx_start_queue(txq);
2587 	}
2588 }
2589 
2590 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2591 
2592 /**
2593  *	netif_wake_queue - restart transmit
2594  *	@dev: network device
2595  *
2596  *	Allow upper layers to call the device hard_start_xmit routine.
2597  *	Used for flow control when transmit resources are available.
2598  */
2599 static inline void netif_wake_queue(struct net_device *dev)
2600 {
2601 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2602 }
2603 
2604 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2605 {
2606 	unsigned int i;
2607 
2608 	for (i = 0; i < dev->num_tx_queues; i++) {
2609 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2610 		netif_tx_wake_queue(txq);
2611 	}
2612 }
2613 
2614 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2615 {
2616 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2617 }
2618 
2619 /**
2620  *	netif_stop_queue - stop transmitted packets
2621  *	@dev: network device
2622  *
2623  *	Stop upper layers calling the device hard_start_xmit routine.
2624  *	Used for flow control when transmit resources are unavailable.
2625  */
2626 static inline void netif_stop_queue(struct net_device *dev)
2627 {
2628 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2629 }
2630 
2631 void netif_tx_stop_all_queues(struct net_device *dev);
2632 
2633 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2634 {
2635 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2636 }
2637 
2638 /**
2639  *	netif_queue_stopped - test if transmit queue is flowblocked
2640  *	@dev: network device
2641  *
2642  *	Test if transmit queue on device is currently unable to send.
2643  */
2644 static inline bool netif_queue_stopped(const struct net_device *dev)
2645 {
2646 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2647 }
2648 
2649 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2650 {
2651 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2652 }
2653 
2654 static inline bool
2655 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2656 {
2657 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2658 }
2659 
2660 static inline bool
2661 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2662 {
2663 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2664 }
2665 
2666 /**
2667  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2668  *	@dev_queue: pointer to transmit queue
2669  *
2670  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2671  * to give appropriate hint to the cpu.
2672  */
2673 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2674 {
2675 #ifdef CONFIG_BQL
2676 	prefetchw(&dev_queue->dql.num_queued);
2677 #endif
2678 }
2679 
2680 /**
2681  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2682  *	@dev_queue: pointer to transmit queue
2683  *
2684  * BQL enabled drivers might use this helper in their TX completion path,
2685  * to give appropriate hint to the cpu.
2686  */
2687 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2688 {
2689 #ifdef CONFIG_BQL
2690 	prefetchw(&dev_queue->dql.limit);
2691 #endif
2692 }
2693 
2694 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2695 					unsigned int bytes)
2696 {
2697 #ifdef CONFIG_BQL
2698 	dql_queued(&dev_queue->dql, bytes);
2699 
2700 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2701 		return;
2702 
2703 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2704 
2705 	/*
2706 	 * The XOFF flag must be set before checking the dql_avail below,
2707 	 * because in netdev_tx_completed_queue we update the dql_completed
2708 	 * before checking the XOFF flag.
2709 	 */
2710 	smp_mb();
2711 
2712 	/* check again in case another CPU has just made room avail */
2713 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2714 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2715 #endif
2716 }
2717 
2718 /**
2719  * 	netdev_sent_queue - report the number of bytes queued to hardware
2720  * 	@dev: network device
2721  * 	@bytes: number of bytes queued to the hardware device queue
2722  *
2723  * 	Report the number of bytes queued for sending/completion to the network
2724  * 	device hardware queue. @bytes should be a good approximation and should
2725  * 	exactly match netdev_completed_queue() @bytes
2726  */
2727 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2728 {
2729 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2730 }
2731 
2732 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2733 					     unsigned int pkts, unsigned int bytes)
2734 {
2735 #ifdef CONFIG_BQL
2736 	if (unlikely(!bytes))
2737 		return;
2738 
2739 	dql_completed(&dev_queue->dql, bytes);
2740 
2741 	/*
2742 	 * Without the memory barrier there is a small possiblity that
2743 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2744 	 * be stopped forever
2745 	 */
2746 	smp_mb();
2747 
2748 	if (dql_avail(&dev_queue->dql) < 0)
2749 		return;
2750 
2751 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2752 		netif_schedule_queue(dev_queue);
2753 #endif
2754 }
2755 
2756 /**
2757  * 	netdev_completed_queue - report bytes and packets completed by device
2758  * 	@dev: network device
2759  * 	@pkts: actual number of packets sent over the medium
2760  * 	@bytes: actual number of bytes sent over the medium
2761  *
2762  * 	Report the number of bytes and packets transmitted by the network device
2763  * 	hardware queue over the physical medium, @bytes must exactly match the
2764  * 	@bytes amount passed to netdev_sent_queue()
2765  */
2766 static inline void netdev_completed_queue(struct net_device *dev,
2767 					  unsigned int pkts, unsigned int bytes)
2768 {
2769 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2770 }
2771 
2772 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2773 {
2774 #ifdef CONFIG_BQL
2775 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2776 	dql_reset(&q->dql);
2777 #endif
2778 }
2779 
2780 /**
2781  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2782  * 	@dev_queue: network device
2783  *
2784  * 	Reset the bytes and packet count of a network device and clear the
2785  * 	software flow control OFF bit for this network device
2786  */
2787 static inline void netdev_reset_queue(struct net_device *dev_queue)
2788 {
2789 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2790 }
2791 
2792 /**
2793  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2794  * 	@dev: network device
2795  * 	@queue_index: given tx queue index
2796  *
2797  * 	Returns 0 if given tx queue index >= number of device tx queues,
2798  * 	otherwise returns the originally passed tx queue index.
2799  */
2800 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2801 {
2802 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2803 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2804 				     dev->name, queue_index,
2805 				     dev->real_num_tx_queues);
2806 		return 0;
2807 	}
2808 
2809 	return queue_index;
2810 }
2811 
2812 /**
2813  *	netif_running - test if up
2814  *	@dev: network device
2815  *
2816  *	Test if the device has been brought up.
2817  */
2818 static inline bool netif_running(const struct net_device *dev)
2819 {
2820 	return test_bit(__LINK_STATE_START, &dev->state);
2821 }
2822 
2823 /*
2824  * Routines to manage the subqueues on a device.  We only need start
2825  * stop, and a check if it's stopped.  All other device management is
2826  * done at the overall netdevice level.
2827  * Also test the device if we're multiqueue.
2828  */
2829 
2830 /**
2831  *	netif_start_subqueue - allow sending packets on subqueue
2832  *	@dev: network device
2833  *	@queue_index: sub queue index
2834  *
2835  * Start individual transmit queue of a device with multiple transmit queues.
2836  */
2837 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2838 {
2839 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2840 
2841 	netif_tx_start_queue(txq);
2842 }
2843 
2844 /**
2845  *	netif_stop_subqueue - stop sending packets on subqueue
2846  *	@dev: network device
2847  *	@queue_index: sub queue index
2848  *
2849  * Stop individual transmit queue of a device with multiple transmit queues.
2850  */
2851 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2852 {
2853 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2854 	netif_tx_stop_queue(txq);
2855 }
2856 
2857 /**
2858  *	netif_subqueue_stopped - test status of subqueue
2859  *	@dev: network device
2860  *	@queue_index: sub queue index
2861  *
2862  * Check individual transmit queue of a device with multiple transmit queues.
2863  */
2864 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2865 					    u16 queue_index)
2866 {
2867 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2868 
2869 	return netif_tx_queue_stopped(txq);
2870 }
2871 
2872 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2873 					  struct sk_buff *skb)
2874 {
2875 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2876 }
2877 
2878 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2879 
2880 #ifdef CONFIG_XPS
2881 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2882 			u16 index);
2883 #else
2884 static inline int netif_set_xps_queue(struct net_device *dev,
2885 				      const struct cpumask *mask,
2886 				      u16 index)
2887 {
2888 	return 0;
2889 }
2890 #endif
2891 
2892 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2893 		  unsigned int num_tx_queues);
2894 
2895 /*
2896  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2897  * as a distribution range limit for the returned value.
2898  */
2899 static inline u16 skb_tx_hash(const struct net_device *dev,
2900 			      struct sk_buff *skb)
2901 {
2902 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2903 }
2904 
2905 /**
2906  *	netif_is_multiqueue - test if device has multiple transmit queues
2907  *	@dev: network device
2908  *
2909  * Check if device has multiple transmit queues
2910  */
2911 static inline bool netif_is_multiqueue(const struct net_device *dev)
2912 {
2913 	return dev->num_tx_queues > 1;
2914 }
2915 
2916 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2917 
2918 #ifdef CONFIG_SYSFS
2919 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2920 #else
2921 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2922 						unsigned int rxq)
2923 {
2924 	return 0;
2925 }
2926 #endif
2927 
2928 #ifdef CONFIG_SYSFS
2929 static inline unsigned int get_netdev_rx_queue_index(
2930 		struct netdev_rx_queue *queue)
2931 {
2932 	struct net_device *dev = queue->dev;
2933 	int index = queue - dev->_rx;
2934 
2935 	BUG_ON(index >= dev->num_rx_queues);
2936 	return index;
2937 }
2938 #endif
2939 
2940 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2941 int netif_get_num_default_rss_queues(void);
2942 
2943 enum skb_free_reason {
2944 	SKB_REASON_CONSUMED,
2945 	SKB_REASON_DROPPED,
2946 };
2947 
2948 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2949 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2950 
2951 /*
2952  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2953  * interrupt context or with hardware interrupts being disabled.
2954  * (in_irq() || irqs_disabled())
2955  *
2956  * We provide four helpers that can be used in following contexts :
2957  *
2958  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2959  *  replacing kfree_skb(skb)
2960  *
2961  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2962  *  Typically used in place of consume_skb(skb) in TX completion path
2963  *
2964  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2965  *  replacing kfree_skb(skb)
2966  *
2967  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2968  *  and consumed a packet. Used in place of consume_skb(skb)
2969  */
2970 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2971 {
2972 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2973 }
2974 
2975 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2976 {
2977 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2978 }
2979 
2980 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2981 {
2982 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2983 }
2984 
2985 static inline void dev_consume_skb_any(struct sk_buff *skb)
2986 {
2987 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2988 }
2989 
2990 int netif_rx(struct sk_buff *skb);
2991 int netif_rx_ni(struct sk_buff *skb);
2992 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb);
2993 static inline int netif_receive_skb(struct sk_buff *skb)
2994 {
2995 	return netif_receive_skb_sk(skb->sk, skb);
2996 }
2997 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2998 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2999 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3000 gro_result_t napi_gro_frags(struct napi_struct *napi);
3001 struct packet_offload *gro_find_receive_by_type(__be16 type);
3002 struct packet_offload *gro_find_complete_by_type(__be16 type);
3003 
3004 static inline void napi_free_frags(struct napi_struct *napi)
3005 {
3006 	kfree_skb(napi->skb);
3007 	napi->skb = NULL;
3008 }
3009 
3010 int netdev_rx_handler_register(struct net_device *dev,
3011 			       rx_handler_func_t *rx_handler,
3012 			       void *rx_handler_data);
3013 void netdev_rx_handler_unregister(struct net_device *dev);
3014 
3015 bool dev_valid_name(const char *name);
3016 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3017 int dev_ethtool(struct net *net, struct ifreq *);
3018 unsigned int dev_get_flags(const struct net_device *);
3019 int __dev_change_flags(struct net_device *, unsigned int flags);
3020 int dev_change_flags(struct net_device *, unsigned int);
3021 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3022 			unsigned int gchanges);
3023 int dev_change_name(struct net_device *, const char *);
3024 int dev_set_alias(struct net_device *, const char *, size_t);
3025 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3026 int dev_set_mtu(struct net_device *, int);
3027 void dev_set_group(struct net_device *, int);
3028 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3029 int dev_change_carrier(struct net_device *, bool new_carrier);
3030 int dev_get_phys_port_id(struct net_device *dev,
3031 			 struct netdev_phys_item_id *ppid);
3032 int dev_get_phys_port_name(struct net_device *dev,
3033 			   char *name, size_t len);
3034 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3035 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3036 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3037 				    struct netdev_queue *txq, int *ret);
3038 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3039 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3040 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3041 
3042 extern int		netdev_budget;
3043 
3044 /* Called by rtnetlink.c:rtnl_unlock() */
3045 void netdev_run_todo(void);
3046 
3047 /**
3048  *	dev_put - release reference to device
3049  *	@dev: network device
3050  *
3051  * Release reference to device to allow it to be freed.
3052  */
3053 static inline void dev_put(struct net_device *dev)
3054 {
3055 	this_cpu_dec(*dev->pcpu_refcnt);
3056 }
3057 
3058 /**
3059  *	dev_hold - get reference to device
3060  *	@dev: network device
3061  *
3062  * Hold reference to device to keep it from being freed.
3063  */
3064 static inline void dev_hold(struct net_device *dev)
3065 {
3066 	this_cpu_inc(*dev->pcpu_refcnt);
3067 }
3068 
3069 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3070  * and _off may be called from IRQ context, but it is caller
3071  * who is responsible for serialization of these calls.
3072  *
3073  * The name carrier is inappropriate, these functions should really be
3074  * called netif_lowerlayer_*() because they represent the state of any
3075  * kind of lower layer not just hardware media.
3076  */
3077 
3078 void linkwatch_init_dev(struct net_device *dev);
3079 void linkwatch_fire_event(struct net_device *dev);
3080 void linkwatch_forget_dev(struct net_device *dev);
3081 
3082 /**
3083  *	netif_carrier_ok - test if carrier present
3084  *	@dev: network device
3085  *
3086  * Check if carrier is present on device
3087  */
3088 static inline bool netif_carrier_ok(const struct net_device *dev)
3089 {
3090 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3091 }
3092 
3093 unsigned long dev_trans_start(struct net_device *dev);
3094 
3095 void __netdev_watchdog_up(struct net_device *dev);
3096 
3097 void netif_carrier_on(struct net_device *dev);
3098 
3099 void netif_carrier_off(struct net_device *dev);
3100 
3101 /**
3102  *	netif_dormant_on - mark device as dormant.
3103  *	@dev: network device
3104  *
3105  * Mark device as dormant (as per RFC2863).
3106  *
3107  * The dormant state indicates that the relevant interface is not
3108  * actually in a condition to pass packets (i.e., it is not 'up') but is
3109  * in a "pending" state, waiting for some external event.  For "on-
3110  * demand" interfaces, this new state identifies the situation where the
3111  * interface is waiting for events to place it in the up state.
3112  *
3113  */
3114 static inline void netif_dormant_on(struct net_device *dev)
3115 {
3116 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3117 		linkwatch_fire_event(dev);
3118 }
3119 
3120 /**
3121  *	netif_dormant_off - set device as not dormant.
3122  *	@dev: network device
3123  *
3124  * Device is not in dormant state.
3125  */
3126 static inline void netif_dormant_off(struct net_device *dev)
3127 {
3128 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3129 		linkwatch_fire_event(dev);
3130 }
3131 
3132 /**
3133  *	netif_dormant - test if carrier present
3134  *	@dev: network device
3135  *
3136  * Check if carrier is present on device
3137  */
3138 static inline bool netif_dormant(const struct net_device *dev)
3139 {
3140 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3141 }
3142 
3143 
3144 /**
3145  *	netif_oper_up - test if device is operational
3146  *	@dev: network device
3147  *
3148  * Check if carrier is operational
3149  */
3150 static inline bool netif_oper_up(const struct net_device *dev)
3151 {
3152 	return (dev->operstate == IF_OPER_UP ||
3153 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3154 }
3155 
3156 /**
3157  *	netif_device_present - is device available or removed
3158  *	@dev: network device
3159  *
3160  * Check if device has not been removed from system.
3161  */
3162 static inline bool netif_device_present(struct net_device *dev)
3163 {
3164 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3165 }
3166 
3167 void netif_device_detach(struct net_device *dev);
3168 
3169 void netif_device_attach(struct net_device *dev);
3170 
3171 /*
3172  * Network interface message level settings
3173  */
3174 
3175 enum {
3176 	NETIF_MSG_DRV		= 0x0001,
3177 	NETIF_MSG_PROBE		= 0x0002,
3178 	NETIF_MSG_LINK		= 0x0004,
3179 	NETIF_MSG_TIMER		= 0x0008,
3180 	NETIF_MSG_IFDOWN	= 0x0010,
3181 	NETIF_MSG_IFUP		= 0x0020,
3182 	NETIF_MSG_RX_ERR	= 0x0040,
3183 	NETIF_MSG_TX_ERR	= 0x0080,
3184 	NETIF_MSG_TX_QUEUED	= 0x0100,
3185 	NETIF_MSG_INTR		= 0x0200,
3186 	NETIF_MSG_TX_DONE	= 0x0400,
3187 	NETIF_MSG_RX_STATUS	= 0x0800,
3188 	NETIF_MSG_PKTDATA	= 0x1000,
3189 	NETIF_MSG_HW		= 0x2000,
3190 	NETIF_MSG_WOL		= 0x4000,
3191 };
3192 
3193 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3194 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3195 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3196 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3197 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3198 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3199 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3200 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3201 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3202 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3203 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3204 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3205 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3206 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3207 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3208 
3209 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3210 {
3211 	/* use default */
3212 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3213 		return default_msg_enable_bits;
3214 	if (debug_value == 0)	/* no output */
3215 		return 0;
3216 	/* set low N bits */
3217 	return (1 << debug_value) - 1;
3218 }
3219 
3220 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3221 {
3222 	spin_lock(&txq->_xmit_lock);
3223 	txq->xmit_lock_owner = cpu;
3224 }
3225 
3226 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3227 {
3228 	spin_lock_bh(&txq->_xmit_lock);
3229 	txq->xmit_lock_owner = smp_processor_id();
3230 }
3231 
3232 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3233 {
3234 	bool ok = spin_trylock(&txq->_xmit_lock);
3235 	if (likely(ok))
3236 		txq->xmit_lock_owner = smp_processor_id();
3237 	return ok;
3238 }
3239 
3240 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3241 {
3242 	txq->xmit_lock_owner = -1;
3243 	spin_unlock(&txq->_xmit_lock);
3244 }
3245 
3246 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3247 {
3248 	txq->xmit_lock_owner = -1;
3249 	spin_unlock_bh(&txq->_xmit_lock);
3250 }
3251 
3252 static inline void txq_trans_update(struct netdev_queue *txq)
3253 {
3254 	if (txq->xmit_lock_owner != -1)
3255 		txq->trans_start = jiffies;
3256 }
3257 
3258 /**
3259  *	netif_tx_lock - grab network device transmit lock
3260  *	@dev: network device
3261  *
3262  * Get network device transmit lock
3263  */
3264 static inline void netif_tx_lock(struct net_device *dev)
3265 {
3266 	unsigned int i;
3267 	int cpu;
3268 
3269 	spin_lock(&dev->tx_global_lock);
3270 	cpu = smp_processor_id();
3271 	for (i = 0; i < dev->num_tx_queues; i++) {
3272 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3273 
3274 		/* We are the only thread of execution doing a
3275 		 * freeze, but we have to grab the _xmit_lock in
3276 		 * order to synchronize with threads which are in
3277 		 * the ->hard_start_xmit() handler and already
3278 		 * checked the frozen bit.
3279 		 */
3280 		__netif_tx_lock(txq, cpu);
3281 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3282 		__netif_tx_unlock(txq);
3283 	}
3284 }
3285 
3286 static inline void netif_tx_lock_bh(struct net_device *dev)
3287 {
3288 	local_bh_disable();
3289 	netif_tx_lock(dev);
3290 }
3291 
3292 static inline void netif_tx_unlock(struct net_device *dev)
3293 {
3294 	unsigned int i;
3295 
3296 	for (i = 0; i < dev->num_tx_queues; i++) {
3297 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3298 
3299 		/* No need to grab the _xmit_lock here.  If the
3300 		 * queue is not stopped for another reason, we
3301 		 * force a schedule.
3302 		 */
3303 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3304 		netif_schedule_queue(txq);
3305 	}
3306 	spin_unlock(&dev->tx_global_lock);
3307 }
3308 
3309 static inline void netif_tx_unlock_bh(struct net_device *dev)
3310 {
3311 	netif_tx_unlock(dev);
3312 	local_bh_enable();
3313 }
3314 
3315 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3316 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3317 		__netif_tx_lock(txq, cpu);		\
3318 	}						\
3319 }
3320 
3321 #define HARD_TX_TRYLOCK(dev, txq)			\
3322 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3323 		__netif_tx_trylock(txq) :		\
3324 		true )
3325 
3326 #define HARD_TX_UNLOCK(dev, txq) {			\
3327 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3328 		__netif_tx_unlock(txq);			\
3329 	}						\
3330 }
3331 
3332 static inline void netif_tx_disable(struct net_device *dev)
3333 {
3334 	unsigned int i;
3335 	int cpu;
3336 
3337 	local_bh_disable();
3338 	cpu = smp_processor_id();
3339 	for (i = 0; i < dev->num_tx_queues; i++) {
3340 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3341 
3342 		__netif_tx_lock(txq, cpu);
3343 		netif_tx_stop_queue(txq);
3344 		__netif_tx_unlock(txq);
3345 	}
3346 	local_bh_enable();
3347 }
3348 
3349 static inline void netif_addr_lock(struct net_device *dev)
3350 {
3351 	spin_lock(&dev->addr_list_lock);
3352 }
3353 
3354 static inline void netif_addr_lock_nested(struct net_device *dev)
3355 {
3356 	int subclass = SINGLE_DEPTH_NESTING;
3357 
3358 	if (dev->netdev_ops->ndo_get_lock_subclass)
3359 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3360 
3361 	spin_lock_nested(&dev->addr_list_lock, subclass);
3362 }
3363 
3364 static inline void netif_addr_lock_bh(struct net_device *dev)
3365 {
3366 	spin_lock_bh(&dev->addr_list_lock);
3367 }
3368 
3369 static inline void netif_addr_unlock(struct net_device *dev)
3370 {
3371 	spin_unlock(&dev->addr_list_lock);
3372 }
3373 
3374 static inline void netif_addr_unlock_bh(struct net_device *dev)
3375 {
3376 	spin_unlock_bh(&dev->addr_list_lock);
3377 }
3378 
3379 /*
3380  * dev_addrs walker. Should be used only for read access. Call with
3381  * rcu_read_lock held.
3382  */
3383 #define for_each_dev_addr(dev, ha) \
3384 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3385 
3386 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3387 
3388 void ether_setup(struct net_device *dev);
3389 
3390 /* Support for loadable net-drivers */
3391 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3392 				    unsigned char name_assign_type,
3393 				    void (*setup)(struct net_device *),
3394 				    unsigned int txqs, unsigned int rxqs);
3395 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3396 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3397 
3398 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3399 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3400 			 count)
3401 
3402 int register_netdev(struct net_device *dev);
3403 void unregister_netdev(struct net_device *dev);
3404 
3405 /* General hardware address lists handling functions */
3406 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3407 		   struct netdev_hw_addr_list *from_list, int addr_len);
3408 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3409 		      struct netdev_hw_addr_list *from_list, int addr_len);
3410 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3411 		       struct net_device *dev,
3412 		       int (*sync)(struct net_device *, const unsigned char *),
3413 		       int (*unsync)(struct net_device *,
3414 				     const unsigned char *));
3415 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3416 			  struct net_device *dev,
3417 			  int (*unsync)(struct net_device *,
3418 					const unsigned char *));
3419 void __hw_addr_init(struct netdev_hw_addr_list *list);
3420 
3421 /* Functions used for device addresses handling */
3422 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3423 		 unsigned char addr_type);
3424 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3425 		 unsigned char addr_type);
3426 void dev_addr_flush(struct net_device *dev);
3427 int dev_addr_init(struct net_device *dev);
3428 
3429 /* Functions used for unicast addresses handling */
3430 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3431 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3432 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3433 int dev_uc_sync(struct net_device *to, struct net_device *from);
3434 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3435 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3436 void dev_uc_flush(struct net_device *dev);
3437 void dev_uc_init(struct net_device *dev);
3438 
3439 /**
3440  *  __dev_uc_sync - Synchonize device's unicast list
3441  *  @dev:  device to sync
3442  *  @sync: function to call if address should be added
3443  *  @unsync: function to call if address should be removed
3444  *
3445  *  Add newly added addresses to the interface, and release
3446  *  addresses that have been deleted.
3447  **/
3448 static inline int __dev_uc_sync(struct net_device *dev,
3449 				int (*sync)(struct net_device *,
3450 					    const unsigned char *),
3451 				int (*unsync)(struct net_device *,
3452 					      const unsigned char *))
3453 {
3454 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3455 }
3456 
3457 /**
3458  *  __dev_uc_unsync - Remove synchronized addresses from device
3459  *  @dev:  device to sync
3460  *  @unsync: function to call if address should be removed
3461  *
3462  *  Remove all addresses that were added to the device by dev_uc_sync().
3463  **/
3464 static inline void __dev_uc_unsync(struct net_device *dev,
3465 				   int (*unsync)(struct net_device *,
3466 						 const unsigned char *))
3467 {
3468 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3469 }
3470 
3471 /* Functions used for multicast addresses handling */
3472 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3473 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3474 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3475 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3476 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3477 int dev_mc_sync(struct net_device *to, struct net_device *from);
3478 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3479 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3480 void dev_mc_flush(struct net_device *dev);
3481 void dev_mc_init(struct net_device *dev);
3482 
3483 /**
3484  *  __dev_mc_sync - Synchonize device's multicast list
3485  *  @dev:  device to sync
3486  *  @sync: function to call if address should be added
3487  *  @unsync: function to call if address should be removed
3488  *
3489  *  Add newly added addresses to the interface, and release
3490  *  addresses that have been deleted.
3491  **/
3492 static inline int __dev_mc_sync(struct net_device *dev,
3493 				int (*sync)(struct net_device *,
3494 					    const unsigned char *),
3495 				int (*unsync)(struct net_device *,
3496 					      const unsigned char *))
3497 {
3498 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3499 }
3500 
3501 /**
3502  *  __dev_mc_unsync - Remove synchronized addresses from device
3503  *  @dev:  device to sync
3504  *  @unsync: function to call if address should be removed
3505  *
3506  *  Remove all addresses that were added to the device by dev_mc_sync().
3507  **/
3508 static inline void __dev_mc_unsync(struct net_device *dev,
3509 				   int (*unsync)(struct net_device *,
3510 						 const unsigned char *))
3511 {
3512 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3513 }
3514 
3515 /* Functions used for secondary unicast and multicast support */
3516 void dev_set_rx_mode(struct net_device *dev);
3517 void __dev_set_rx_mode(struct net_device *dev);
3518 int dev_set_promiscuity(struct net_device *dev, int inc);
3519 int dev_set_allmulti(struct net_device *dev, int inc);
3520 void netdev_state_change(struct net_device *dev);
3521 void netdev_notify_peers(struct net_device *dev);
3522 void netdev_features_change(struct net_device *dev);
3523 /* Load a device via the kmod */
3524 void dev_load(struct net *net, const char *name);
3525 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3526 					struct rtnl_link_stats64 *storage);
3527 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3528 			     const struct net_device_stats *netdev_stats);
3529 
3530 extern int		netdev_max_backlog;
3531 extern int		netdev_tstamp_prequeue;
3532 extern int		weight_p;
3533 extern int		bpf_jit_enable;
3534 
3535 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3536 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3537 						     struct list_head **iter);
3538 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3539 						     struct list_head **iter);
3540 
3541 /* iterate through upper list, must be called under RCU read lock */
3542 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3543 	for (iter = &(dev)->adj_list.upper, \
3544 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3545 	     updev; \
3546 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3547 
3548 /* iterate through upper list, must be called under RCU read lock */
3549 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3550 	for (iter = &(dev)->all_adj_list.upper, \
3551 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3552 	     updev; \
3553 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3554 
3555 void *netdev_lower_get_next_private(struct net_device *dev,
3556 				    struct list_head **iter);
3557 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3558 					struct list_head **iter);
3559 
3560 #define netdev_for_each_lower_private(dev, priv, iter) \
3561 	for (iter = (dev)->adj_list.lower.next, \
3562 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3563 	     priv; \
3564 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3565 
3566 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3567 	for (iter = &(dev)->adj_list.lower, \
3568 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3569 	     priv; \
3570 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3571 
3572 void *netdev_lower_get_next(struct net_device *dev,
3573 				struct list_head **iter);
3574 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3575 	for (iter = &(dev)->adj_list.lower, \
3576 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3577 	     ldev; \
3578 	     ldev = netdev_lower_get_next(dev, &(iter)))
3579 
3580 void *netdev_adjacent_get_private(struct list_head *adj_list);
3581 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3582 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3583 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3584 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3585 int netdev_master_upper_dev_link(struct net_device *dev,
3586 				 struct net_device *upper_dev);
3587 int netdev_master_upper_dev_link_private(struct net_device *dev,
3588 					 struct net_device *upper_dev,
3589 					 void *private);
3590 void netdev_upper_dev_unlink(struct net_device *dev,
3591 			     struct net_device *upper_dev);
3592 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3593 void *netdev_lower_dev_get_private(struct net_device *dev,
3594 				   struct net_device *lower_dev);
3595 
3596 /* RSS keys are 40 or 52 bytes long */
3597 #define NETDEV_RSS_KEY_LEN 52
3598 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3599 void netdev_rss_key_fill(void *buffer, size_t len);
3600 
3601 int dev_get_nest_level(struct net_device *dev,
3602 		       bool (*type_check)(struct net_device *dev));
3603 int skb_checksum_help(struct sk_buff *skb);
3604 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3605 				  netdev_features_t features, bool tx_path);
3606 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3607 				    netdev_features_t features);
3608 
3609 struct netdev_bonding_info {
3610 	ifslave	slave;
3611 	ifbond	master;
3612 };
3613 
3614 struct netdev_notifier_bonding_info {
3615 	struct netdev_notifier_info info; /* must be first */
3616 	struct netdev_bonding_info  bonding_info;
3617 };
3618 
3619 void netdev_bonding_info_change(struct net_device *dev,
3620 				struct netdev_bonding_info *bonding_info);
3621 
3622 static inline
3623 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3624 {
3625 	return __skb_gso_segment(skb, features, true);
3626 }
3627 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3628 
3629 static inline bool can_checksum_protocol(netdev_features_t features,
3630 					 __be16 protocol)
3631 {
3632 	return ((features & NETIF_F_GEN_CSUM) ||
3633 		((features & NETIF_F_V4_CSUM) &&
3634 		 protocol == htons(ETH_P_IP)) ||
3635 		((features & NETIF_F_V6_CSUM) &&
3636 		 protocol == htons(ETH_P_IPV6)) ||
3637 		((features & NETIF_F_FCOE_CRC) &&
3638 		 protocol == htons(ETH_P_FCOE)));
3639 }
3640 
3641 #ifdef CONFIG_BUG
3642 void netdev_rx_csum_fault(struct net_device *dev);
3643 #else
3644 static inline void netdev_rx_csum_fault(struct net_device *dev)
3645 {
3646 }
3647 #endif
3648 /* rx skb timestamps */
3649 void net_enable_timestamp(void);
3650 void net_disable_timestamp(void);
3651 
3652 #ifdef CONFIG_PROC_FS
3653 int __init dev_proc_init(void);
3654 #else
3655 #define dev_proc_init() 0
3656 #endif
3657 
3658 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3659 					      struct sk_buff *skb, struct net_device *dev,
3660 					      bool more)
3661 {
3662 	skb->xmit_more = more ? 1 : 0;
3663 	return ops->ndo_start_xmit(skb, dev);
3664 }
3665 
3666 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3667 					    struct netdev_queue *txq, bool more)
3668 {
3669 	const struct net_device_ops *ops = dev->netdev_ops;
3670 	int rc;
3671 
3672 	rc = __netdev_start_xmit(ops, skb, dev, more);
3673 	if (rc == NETDEV_TX_OK)
3674 		txq_trans_update(txq);
3675 
3676 	return rc;
3677 }
3678 
3679 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3680 				const void *ns);
3681 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3682 				 const void *ns);
3683 
3684 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3685 {
3686 	return netdev_class_create_file_ns(class_attr, NULL);
3687 }
3688 
3689 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3690 {
3691 	netdev_class_remove_file_ns(class_attr, NULL);
3692 }
3693 
3694 extern struct kobj_ns_type_operations net_ns_type_operations;
3695 
3696 const char *netdev_drivername(const struct net_device *dev);
3697 
3698 void linkwatch_run_queue(void);
3699 
3700 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3701 							  netdev_features_t f2)
3702 {
3703 	if (f1 & NETIF_F_GEN_CSUM)
3704 		f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3705 	if (f2 & NETIF_F_GEN_CSUM)
3706 		f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3707 	f1 &= f2;
3708 	if (f1 & NETIF_F_GEN_CSUM)
3709 		f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3710 
3711 	return f1;
3712 }
3713 
3714 static inline netdev_features_t netdev_get_wanted_features(
3715 	struct net_device *dev)
3716 {
3717 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3718 }
3719 netdev_features_t netdev_increment_features(netdev_features_t all,
3720 	netdev_features_t one, netdev_features_t mask);
3721 
3722 /* Allow TSO being used on stacked device :
3723  * Performing the GSO segmentation before last device
3724  * is a performance improvement.
3725  */
3726 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3727 							netdev_features_t mask)
3728 {
3729 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3730 }
3731 
3732 int __netdev_update_features(struct net_device *dev);
3733 void netdev_update_features(struct net_device *dev);
3734 void netdev_change_features(struct net_device *dev);
3735 
3736 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3737 					struct net_device *dev);
3738 
3739 netdev_features_t passthru_features_check(struct sk_buff *skb,
3740 					  struct net_device *dev,
3741 					  netdev_features_t features);
3742 netdev_features_t netif_skb_features(struct sk_buff *skb);
3743 
3744 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3745 {
3746 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3747 
3748 	/* check flags correspondence */
3749 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3750 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3751 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3752 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3753 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3754 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3755 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3756 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3757 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3758 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3759 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3760 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3761 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3762 
3763 	return (features & feature) == feature;
3764 }
3765 
3766 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3767 {
3768 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3769 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3770 }
3771 
3772 static inline bool netif_needs_gso(struct sk_buff *skb,
3773 				   netdev_features_t features)
3774 {
3775 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3776 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3777 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3778 }
3779 
3780 static inline void netif_set_gso_max_size(struct net_device *dev,
3781 					  unsigned int size)
3782 {
3783 	dev->gso_max_size = size;
3784 }
3785 
3786 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3787 					int pulled_hlen, u16 mac_offset,
3788 					int mac_len)
3789 {
3790 	skb->protocol = protocol;
3791 	skb->encapsulation = 1;
3792 	skb_push(skb, pulled_hlen);
3793 	skb_reset_transport_header(skb);
3794 	skb->mac_header = mac_offset;
3795 	skb->network_header = skb->mac_header + mac_len;
3796 	skb->mac_len = mac_len;
3797 }
3798 
3799 static inline bool netif_is_macvlan(struct net_device *dev)
3800 {
3801 	return dev->priv_flags & IFF_MACVLAN;
3802 }
3803 
3804 static inline bool netif_is_macvlan_port(struct net_device *dev)
3805 {
3806 	return dev->priv_flags & IFF_MACVLAN_PORT;
3807 }
3808 
3809 static inline bool netif_is_ipvlan(struct net_device *dev)
3810 {
3811 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
3812 }
3813 
3814 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3815 {
3816 	return dev->priv_flags & IFF_IPVLAN_MASTER;
3817 }
3818 
3819 static inline bool netif_is_bond_master(struct net_device *dev)
3820 {
3821 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3822 }
3823 
3824 static inline bool netif_is_bond_slave(struct net_device *dev)
3825 {
3826 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3827 }
3828 
3829 static inline bool netif_supports_nofcs(struct net_device *dev)
3830 {
3831 	return dev->priv_flags & IFF_SUPP_NOFCS;
3832 }
3833 
3834 static inline bool netif_is_vrf(const struct net_device *dev)
3835 {
3836 	return dev->priv_flags & IFF_VRF_MASTER;
3837 }
3838 
3839 static inline bool netif_is_bridge_master(const struct net_device *dev)
3840 {
3841 	return dev->priv_flags & IFF_EBRIDGE;
3842 }
3843 
3844 static inline bool netif_is_ovs_master(const struct net_device *dev)
3845 {
3846 	return dev->priv_flags & IFF_OPENVSWITCH;
3847 }
3848 
3849 static inline bool netif_index_is_vrf(struct net *net, int ifindex)
3850 {
3851 	bool rc = false;
3852 
3853 #if IS_ENABLED(CONFIG_NET_VRF)
3854 	struct net_device *dev;
3855 
3856 	if (ifindex == 0)
3857 		return false;
3858 
3859 	rcu_read_lock();
3860 
3861 	dev = dev_get_by_index_rcu(net, ifindex);
3862 	if (dev)
3863 		rc = netif_is_vrf(dev);
3864 
3865 	rcu_read_unlock();
3866 #endif
3867 	return rc;
3868 }
3869 
3870 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3871 static inline void netif_keep_dst(struct net_device *dev)
3872 {
3873 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3874 }
3875 
3876 extern struct pernet_operations __net_initdata loopback_net_ops;
3877 
3878 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3879 
3880 /* netdev_printk helpers, similar to dev_printk */
3881 
3882 static inline const char *netdev_name(const struct net_device *dev)
3883 {
3884 	if (!dev->name[0] || strchr(dev->name, '%'))
3885 		return "(unnamed net_device)";
3886 	return dev->name;
3887 }
3888 
3889 static inline const char *netdev_reg_state(const struct net_device *dev)
3890 {
3891 	switch (dev->reg_state) {
3892 	case NETREG_UNINITIALIZED: return " (uninitialized)";
3893 	case NETREG_REGISTERED: return "";
3894 	case NETREG_UNREGISTERING: return " (unregistering)";
3895 	case NETREG_UNREGISTERED: return " (unregistered)";
3896 	case NETREG_RELEASED: return " (released)";
3897 	case NETREG_DUMMY: return " (dummy)";
3898 	}
3899 
3900 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3901 	return " (unknown)";
3902 }
3903 
3904 __printf(3, 4)
3905 void netdev_printk(const char *level, const struct net_device *dev,
3906 		   const char *format, ...);
3907 __printf(2, 3)
3908 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3909 __printf(2, 3)
3910 void netdev_alert(const struct net_device *dev, const char *format, ...);
3911 __printf(2, 3)
3912 void netdev_crit(const struct net_device *dev, const char *format, ...);
3913 __printf(2, 3)
3914 void netdev_err(const struct net_device *dev, const char *format, ...);
3915 __printf(2, 3)
3916 void netdev_warn(const struct net_device *dev, const char *format, ...);
3917 __printf(2, 3)
3918 void netdev_notice(const struct net_device *dev, const char *format, ...);
3919 __printf(2, 3)
3920 void netdev_info(const struct net_device *dev, const char *format, ...);
3921 
3922 #define MODULE_ALIAS_NETDEV(device) \
3923 	MODULE_ALIAS("netdev-" device)
3924 
3925 #if defined(CONFIG_DYNAMIC_DEBUG)
3926 #define netdev_dbg(__dev, format, args...)			\
3927 do {								\
3928 	dynamic_netdev_dbg(__dev, format, ##args);		\
3929 } while (0)
3930 #elif defined(DEBUG)
3931 #define netdev_dbg(__dev, format, args...)			\
3932 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3933 #else
3934 #define netdev_dbg(__dev, format, args...)			\
3935 ({								\
3936 	if (0)							\
3937 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3938 })
3939 #endif
3940 
3941 #if defined(VERBOSE_DEBUG)
3942 #define netdev_vdbg	netdev_dbg
3943 #else
3944 
3945 #define netdev_vdbg(dev, format, args...)			\
3946 ({								\
3947 	if (0)							\
3948 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3949 	0;							\
3950 })
3951 #endif
3952 
3953 /*
3954  * netdev_WARN() acts like dev_printk(), but with the key difference
3955  * of using a WARN/WARN_ON to get the message out, including the
3956  * file/line information and a backtrace.
3957  */
3958 #define netdev_WARN(dev, format, args...)			\
3959 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
3960 	     netdev_reg_state(dev), ##args)
3961 
3962 /* netif printk helpers, similar to netdev_printk */
3963 
3964 #define netif_printk(priv, type, level, dev, fmt, args...)	\
3965 do {					  			\
3966 	if (netif_msg_##type(priv))				\
3967 		netdev_printk(level, (dev), fmt, ##args);	\
3968 } while (0)
3969 
3970 #define netif_level(level, priv, type, dev, fmt, args...)	\
3971 do {								\
3972 	if (netif_msg_##type(priv))				\
3973 		netdev_##level(dev, fmt, ##args);		\
3974 } while (0)
3975 
3976 #define netif_emerg(priv, type, dev, fmt, args...)		\
3977 	netif_level(emerg, priv, type, dev, fmt, ##args)
3978 #define netif_alert(priv, type, dev, fmt, args...)		\
3979 	netif_level(alert, priv, type, dev, fmt, ##args)
3980 #define netif_crit(priv, type, dev, fmt, args...)		\
3981 	netif_level(crit, priv, type, dev, fmt, ##args)
3982 #define netif_err(priv, type, dev, fmt, args...)		\
3983 	netif_level(err, priv, type, dev, fmt, ##args)
3984 #define netif_warn(priv, type, dev, fmt, args...)		\
3985 	netif_level(warn, priv, type, dev, fmt, ##args)
3986 #define netif_notice(priv, type, dev, fmt, args...)		\
3987 	netif_level(notice, priv, type, dev, fmt, ##args)
3988 #define netif_info(priv, type, dev, fmt, args...)		\
3989 	netif_level(info, priv, type, dev, fmt, ##args)
3990 
3991 #if defined(CONFIG_DYNAMIC_DEBUG)
3992 #define netif_dbg(priv, type, netdev, format, args...)		\
3993 do {								\
3994 	if (netif_msg_##type(priv))				\
3995 		dynamic_netdev_dbg(netdev, format, ##args);	\
3996 } while (0)
3997 #elif defined(DEBUG)
3998 #define netif_dbg(priv, type, dev, format, args...)		\
3999 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4000 #else
4001 #define netif_dbg(priv, type, dev, format, args...)			\
4002 ({									\
4003 	if (0)								\
4004 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4005 	0;								\
4006 })
4007 #endif
4008 
4009 #if defined(VERBOSE_DEBUG)
4010 #define netif_vdbg	netif_dbg
4011 #else
4012 #define netif_vdbg(priv, type, dev, format, args...)		\
4013 ({								\
4014 	if (0)							\
4015 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4016 	0;							\
4017 })
4018 #endif
4019 
4020 /*
4021  *	The list of packet types we will receive (as opposed to discard)
4022  *	and the routines to invoke.
4023  *
4024  *	Why 16. Because with 16 the only overlap we get on a hash of the
4025  *	low nibble of the protocol value is RARP/SNAP/X.25.
4026  *
4027  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4028  *             sure which should go first, but I bet it won't make much
4029  *             difference if we are running VLANs.  The good news is that
4030  *             this protocol won't be in the list unless compiled in, so
4031  *             the average user (w/out VLANs) will not be adversely affected.
4032  *             --BLG
4033  *
4034  *		0800	IP
4035  *		8100    802.1Q VLAN
4036  *		0001	802.3
4037  *		0002	AX.25
4038  *		0004	802.2
4039  *		8035	RARP
4040  *		0005	SNAP
4041  *		0805	X.25
4042  *		0806	ARP
4043  *		8137	IPX
4044  *		0009	Localtalk
4045  *		86DD	IPv6
4046  */
4047 #define PTYPE_HASH_SIZE	(16)
4048 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4049 
4050 #endif	/* _LINUX_NETDEVICE_H */
4051