xref: /openbmc/linux/include/linux/netdevice.h (revision e4624435)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <uapi/linux/netdev.h>
51 #include <linux/hashtable.h>
52 #include <linux/rbtree.h>
53 #include <net/net_trackers.h>
54 #include <net/net_debug.h>
55 #include <net/dropreason-core.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct ethtool_ops;
60 struct phy_device;
61 struct dsa_port;
62 struct ip_tunnel_parm;
63 struct macsec_context;
64 struct macsec_ops;
65 struct netdev_name_node;
66 struct sd_flow_limit;
67 struct sfp_bus;
68 /* 802.11 specific */
69 struct wireless_dev;
70 /* 802.15.4 specific */
71 struct wpan_dev;
72 struct mpls_dev;
73 /* UDP Tunnel offloads */
74 struct udp_tunnel_info;
75 struct udp_tunnel_nic_info;
76 struct udp_tunnel_nic;
77 struct bpf_prog;
78 struct xdp_buff;
79 struct xdp_md;
80 
81 void synchronize_net(void);
82 void netdev_set_default_ethtool_ops(struct net_device *dev,
83 				    const struct ethtool_ops *ops);
84 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
85 
86 /* Backlog congestion levels */
87 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
88 #define NET_RX_DROP		1	/* packet dropped */
89 
90 #define MAX_NEST_DEV 8
91 
92 /*
93  * Transmit return codes: transmit return codes originate from three different
94  * namespaces:
95  *
96  * - qdisc return codes
97  * - driver transmit return codes
98  * - errno values
99  *
100  * Drivers are allowed to return any one of those in their hard_start_xmit()
101  * function. Real network devices commonly used with qdiscs should only return
102  * the driver transmit return codes though - when qdiscs are used, the actual
103  * transmission happens asynchronously, so the value is not propagated to
104  * higher layers. Virtual network devices transmit synchronously; in this case
105  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
106  * others are propagated to higher layers.
107  */
108 
109 /* qdisc ->enqueue() return codes. */
110 #define NET_XMIT_SUCCESS	0x00
111 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
112 #define NET_XMIT_CN		0x02	/* congestion notification	*/
113 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
114 
115 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
116  * indicates that the device will soon be dropping packets, or already drops
117  * some packets of the same priority; prompting us to send less aggressively. */
118 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
119 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
120 
121 /* Driver transmit return codes */
122 #define NETDEV_TX_MASK		0xf0
123 
124 enum netdev_tx {
125 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
126 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
127 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
128 };
129 typedef enum netdev_tx netdev_tx_t;
130 
131 /*
132  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
133  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
134  */
135 static inline bool dev_xmit_complete(int rc)
136 {
137 	/*
138 	 * Positive cases with an skb consumed by a driver:
139 	 * - successful transmission (rc == NETDEV_TX_OK)
140 	 * - error while transmitting (rc < 0)
141 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
142 	 */
143 	if (likely(rc < NET_XMIT_MASK))
144 		return true;
145 
146 	return false;
147 }
148 
149 /*
150  *	Compute the worst-case header length according to the protocols
151  *	used.
152  */
153 
154 #if defined(CONFIG_HYPERV_NET)
155 # define LL_MAX_HEADER 128
156 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
157 # if defined(CONFIG_MAC80211_MESH)
158 #  define LL_MAX_HEADER 128
159 # else
160 #  define LL_MAX_HEADER 96
161 # endif
162 #else
163 # define LL_MAX_HEADER 32
164 #endif
165 
166 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
167     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
168 #define MAX_HEADER LL_MAX_HEADER
169 #else
170 #define MAX_HEADER (LL_MAX_HEADER + 48)
171 #endif
172 
173 /*
174  *	Old network device statistics. Fields are native words
175  *	(unsigned long) so they can be read and written atomically.
176  */
177 
178 #define NET_DEV_STAT(FIELD)			\
179 	union {					\
180 		unsigned long FIELD;		\
181 		atomic_long_t __##FIELD;	\
182 	}
183 
184 struct net_device_stats {
185 	NET_DEV_STAT(rx_packets);
186 	NET_DEV_STAT(tx_packets);
187 	NET_DEV_STAT(rx_bytes);
188 	NET_DEV_STAT(tx_bytes);
189 	NET_DEV_STAT(rx_errors);
190 	NET_DEV_STAT(tx_errors);
191 	NET_DEV_STAT(rx_dropped);
192 	NET_DEV_STAT(tx_dropped);
193 	NET_DEV_STAT(multicast);
194 	NET_DEV_STAT(collisions);
195 	NET_DEV_STAT(rx_length_errors);
196 	NET_DEV_STAT(rx_over_errors);
197 	NET_DEV_STAT(rx_crc_errors);
198 	NET_DEV_STAT(rx_frame_errors);
199 	NET_DEV_STAT(rx_fifo_errors);
200 	NET_DEV_STAT(rx_missed_errors);
201 	NET_DEV_STAT(tx_aborted_errors);
202 	NET_DEV_STAT(tx_carrier_errors);
203 	NET_DEV_STAT(tx_fifo_errors);
204 	NET_DEV_STAT(tx_heartbeat_errors);
205 	NET_DEV_STAT(tx_window_errors);
206 	NET_DEV_STAT(rx_compressed);
207 	NET_DEV_STAT(tx_compressed);
208 };
209 #undef NET_DEV_STAT
210 
211 /* per-cpu stats, allocated on demand.
212  * Try to fit them in a single cache line, for dev_get_stats() sake.
213  */
214 struct net_device_core_stats {
215 	unsigned long	rx_dropped;
216 	unsigned long	tx_dropped;
217 	unsigned long	rx_nohandler;
218 	unsigned long	rx_otherhost_dropped;
219 } __aligned(4 * sizeof(unsigned long));
220 
221 #include <linux/cache.h>
222 #include <linux/skbuff.h>
223 
224 #ifdef CONFIG_RPS
225 #include <linux/static_key.h>
226 extern struct static_key_false rps_needed;
227 extern struct static_key_false rfs_needed;
228 #endif
229 
230 struct neighbour;
231 struct neigh_parms;
232 struct sk_buff;
233 
234 struct netdev_hw_addr {
235 	struct list_head	list;
236 	struct rb_node		node;
237 	unsigned char		addr[MAX_ADDR_LEN];
238 	unsigned char		type;
239 #define NETDEV_HW_ADDR_T_LAN		1
240 #define NETDEV_HW_ADDR_T_SAN		2
241 #define NETDEV_HW_ADDR_T_UNICAST	3
242 #define NETDEV_HW_ADDR_T_MULTICAST	4
243 	bool			global_use;
244 	int			sync_cnt;
245 	int			refcount;
246 	int			synced;
247 	struct rcu_head		rcu_head;
248 };
249 
250 struct netdev_hw_addr_list {
251 	struct list_head	list;
252 	int			count;
253 
254 	/* Auxiliary tree for faster lookup on addition and deletion */
255 	struct rb_root		tree;
256 };
257 
258 #define netdev_hw_addr_list_count(l) ((l)->count)
259 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
260 #define netdev_hw_addr_list_for_each(ha, l) \
261 	list_for_each_entry(ha, &(l)->list, list)
262 
263 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
264 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
265 #define netdev_for_each_uc_addr(ha, dev) \
266 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
267 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
268 	netdev_for_each_uc_addr((_ha), (_dev)) \
269 		if ((_ha)->sync_cnt)
270 
271 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
272 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
273 #define netdev_for_each_mc_addr(ha, dev) \
274 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
275 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
276 	netdev_for_each_mc_addr((_ha), (_dev)) \
277 		if ((_ha)->sync_cnt)
278 
279 struct hh_cache {
280 	unsigned int	hh_len;
281 	seqlock_t	hh_lock;
282 
283 	/* cached hardware header; allow for machine alignment needs.        */
284 #define HH_DATA_MOD	16
285 #define HH_DATA_OFF(__len) \
286 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
287 #define HH_DATA_ALIGN(__len) \
288 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
289 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
290 };
291 
292 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
293  * Alternative is:
294  *   dev->hard_header_len ? (dev->hard_header_len +
295  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
296  *
297  * We could use other alignment values, but we must maintain the
298  * relationship HH alignment <= LL alignment.
299  */
300 #define LL_RESERVED_SPACE(dev) \
301 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
302 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
303 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
304 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
305 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306 
307 struct header_ops {
308 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
309 			   unsigned short type, const void *daddr,
310 			   const void *saddr, unsigned int len);
311 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
312 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
313 	void	(*cache_update)(struct hh_cache *hh,
314 				const struct net_device *dev,
315 				const unsigned char *haddr);
316 	bool	(*validate)(const char *ll_header, unsigned int len);
317 	__be16	(*parse_protocol)(const struct sk_buff *skb);
318 };
319 
320 /* These flag bits are private to the generic network queueing
321  * layer; they may not be explicitly referenced by any other
322  * code.
323  */
324 
325 enum netdev_state_t {
326 	__LINK_STATE_START,
327 	__LINK_STATE_PRESENT,
328 	__LINK_STATE_NOCARRIER,
329 	__LINK_STATE_LINKWATCH_PENDING,
330 	__LINK_STATE_DORMANT,
331 	__LINK_STATE_TESTING,
332 };
333 
334 struct gro_list {
335 	struct list_head	list;
336 	int			count;
337 };
338 
339 /*
340  * size of gro hash buckets, must less than bit number of
341  * napi_struct::gro_bitmask
342  */
343 #define GRO_HASH_BUCKETS	8
344 
345 /*
346  * Structure for NAPI scheduling similar to tasklet but with weighting
347  */
348 struct napi_struct {
349 	/* The poll_list must only be managed by the entity which
350 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
351 	 * whoever atomically sets that bit can add this napi_struct
352 	 * to the per-CPU poll_list, and whoever clears that bit
353 	 * can remove from the list right before clearing the bit.
354 	 */
355 	struct list_head	poll_list;
356 
357 	unsigned long		state;
358 	int			weight;
359 	int			defer_hard_irqs_count;
360 	unsigned long		gro_bitmask;
361 	int			(*poll)(struct napi_struct *, int);
362 #ifdef CONFIG_NETPOLL
363 	/* CPU actively polling if netpoll is configured */
364 	int			poll_owner;
365 #endif
366 	/* CPU on which NAPI has been scheduled for processing */
367 	int			list_owner;
368 	struct net_device	*dev;
369 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
370 	struct sk_buff		*skb;
371 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
372 	int			rx_count; /* length of rx_list */
373 	unsigned int		napi_id;
374 	struct hrtimer		timer;
375 	struct task_struct	*thread;
376 	/* control-path-only fields follow */
377 	struct list_head	dev_list;
378 	struct hlist_node	napi_hash_node;
379 };
380 
381 enum {
382 	NAPI_STATE_SCHED,		/* Poll is scheduled */
383 	NAPI_STATE_MISSED,		/* reschedule a napi */
384 	NAPI_STATE_DISABLE,		/* Disable pending */
385 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
386 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
387 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
388 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
389 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
390 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
391 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
392 };
393 
394 enum {
395 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
396 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
397 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
398 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
399 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
400 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
401 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
402 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
403 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
404 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
405 };
406 
407 enum gro_result {
408 	GRO_MERGED,
409 	GRO_MERGED_FREE,
410 	GRO_HELD,
411 	GRO_NORMAL,
412 	GRO_CONSUMED,
413 };
414 typedef enum gro_result gro_result_t;
415 
416 /*
417  * enum rx_handler_result - Possible return values for rx_handlers.
418  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
419  * further.
420  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
421  * case skb->dev was changed by rx_handler.
422  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
423  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
424  *
425  * rx_handlers are functions called from inside __netif_receive_skb(), to do
426  * special processing of the skb, prior to delivery to protocol handlers.
427  *
428  * Currently, a net_device can only have a single rx_handler registered. Trying
429  * to register a second rx_handler will return -EBUSY.
430  *
431  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
432  * To unregister a rx_handler on a net_device, use
433  * netdev_rx_handler_unregister().
434  *
435  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
436  * do with the skb.
437  *
438  * If the rx_handler consumed the skb in some way, it should return
439  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
440  * the skb to be delivered in some other way.
441  *
442  * If the rx_handler changed skb->dev, to divert the skb to another
443  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
444  * new device will be called if it exists.
445  *
446  * If the rx_handler decides the skb should be ignored, it should return
447  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
448  * are registered on exact device (ptype->dev == skb->dev).
449  *
450  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
451  * delivered, it should return RX_HANDLER_PASS.
452  *
453  * A device without a registered rx_handler will behave as if rx_handler
454  * returned RX_HANDLER_PASS.
455  */
456 
457 enum rx_handler_result {
458 	RX_HANDLER_CONSUMED,
459 	RX_HANDLER_ANOTHER,
460 	RX_HANDLER_EXACT,
461 	RX_HANDLER_PASS,
462 };
463 typedef enum rx_handler_result rx_handler_result_t;
464 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
465 
466 void __napi_schedule(struct napi_struct *n);
467 void __napi_schedule_irqoff(struct napi_struct *n);
468 
469 static inline bool napi_disable_pending(struct napi_struct *n)
470 {
471 	return test_bit(NAPI_STATE_DISABLE, &n->state);
472 }
473 
474 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
475 {
476 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
477 }
478 
479 bool napi_schedule_prep(struct napi_struct *n);
480 
481 /**
482  *	napi_schedule - schedule NAPI poll
483  *	@n: NAPI context
484  *
485  * Schedule NAPI poll routine to be called if it is not already
486  * running.
487  */
488 static inline void napi_schedule(struct napi_struct *n)
489 {
490 	if (napi_schedule_prep(n))
491 		__napi_schedule(n);
492 }
493 
494 /**
495  *	napi_schedule_irqoff - schedule NAPI poll
496  *	@n: NAPI context
497  *
498  * Variant of napi_schedule(), assuming hard irqs are masked.
499  */
500 static inline void napi_schedule_irqoff(struct napi_struct *n)
501 {
502 	if (napi_schedule_prep(n))
503 		__napi_schedule_irqoff(n);
504 }
505 
506 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
507 static inline bool napi_reschedule(struct napi_struct *napi)
508 {
509 	if (napi_schedule_prep(napi)) {
510 		__napi_schedule(napi);
511 		return true;
512 	}
513 	return false;
514 }
515 
516 /**
517  * napi_complete_done - NAPI processing complete
518  * @n: NAPI context
519  * @work_done: number of packets processed
520  *
521  * Mark NAPI processing as complete. Should only be called if poll budget
522  * has not been completely consumed.
523  * Prefer over napi_complete().
524  * Return false if device should avoid rearming interrupts.
525  */
526 bool napi_complete_done(struct napi_struct *n, int work_done);
527 
528 static inline bool napi_complete(struct napi_struct *n)
529 {
530 	return napi_complete_done(n, 0);
531 }
532 
533 int dev_set_threaded(struct net_device *dev, bool threaded);
534 
535 /**
536  *	napi_disable - prevent NAPI from scheduling
537  *	@n: NAPI context
538  *
539  * Stop NAPI from being scheduled on this context.
540  * Waits till any outstanding processing completes.
541  */
542 void napi_disable(struct napi_struct *n);
543 
544 void napi_enable(struct napi_struct *n);
545 
546 /**
547  *	napi_synchronize - wait until NAPI is not running
548  *	@n: NAPI context
549  *
550  * Wait until NAPI is done being scheduled on this context.
551  * Waits till any outstanding processing completes but
552  * does not disable future activations.
553  */
554 static inline void napi_synchronize(const struct napi_struct *n)
555 {
556 	if (IS_ENABLED(CONFIG_SMP))
557 		while (test_bit(NAPI_STATE_SCHED, &n->state))
558 			msleep(1);
559 	else
560 		barrier();
561 }
562 
563 /**
564  *	napi_if_scheduled_mark_missed - if napi is running, set the
565  *	NAPIF_STATE_MISSED
566  *	@n: NAPI context
567  *
568  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
569  * NAPI is scheduled.
570  **/
571 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
572 {
573 	unsigned long val, new;
574 
575 	val = READ_ONCE(n->state);
576 	do {
577 		if (val & NAPIF_STATE_DISABLE)
578 			return true;
579 
580 		if (!(val & NAPIF_STATE_SCHED))
581 			return false;
582 
583 		new = val | NAPIF_STATE_MISSED;
584 	} while (!try_cmpxchg(&n->state, &val, new));
585 
586 	return true;
587 }
588 
589 enum netdev_queue_state_t {
590 	__QUEUE_STATE_DRV_XOFF,
591 	__QUEUE_STATE_STACK_XOFF,
592 	__QUEUE_STATE_FROZEN,
593 };
594 
595 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
596 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
597 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
598 
599 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
600 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
601 					QUEUE_STATE_FROZEN)
602 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
603 					QUEUE_STATE_FROZEN)
604 
605 /*
606  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
607  * netif_tx_* functions below are used to manipulate this flag.  The
608  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
609  * queue independently.  The netif_xmit_*stopped functions below are called
610  * to check if the queue has been stopped by the driver or stack (either
611  * of the XOFF bits are set in the state).  Drivers should not need to call
612  * netif_xmit*stopped functions, they should only be using netif_tx_*.
613  */
614 
615 struct netdev_queue {
616 /*
617  * read-mostly part
618  */
619 	struct net_device	*dev;
620 	netdevice_tracker	dev_tracker;
621 
622 	struct Qdisc __rcu	*qdisc;
623 	struct Qdisc		*qdisc_sleeping;
624 #ifdef CONFIG_SYSFS
625 	struct kobject		kobj;
626 #endif
627 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
628 	int			numa_node;
629 #endif
630 	unsigned long		tx_maxrate;
631 	/*
632 	 * Number of TX timeouts for this queue
633 	 * (/sys/class/net/DEV/Q/trans_timeout)
634 	 */
635 	atomic_long_t		trans_timeout;
636 
637 	/* Subordinate device that the queue has been assigned to */
638 	struct net_device	*sb_dev;
639 #ifdef CONFIG_XDP_SOCKETS
640 	struct xsk_buff_pool    *pool;
641 #endif
642 /*
643  * write-mostly part
644  */
645 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
646 	int			xmit_lock_owner;
647 	/*
648 	 * Time (in jiffies) of last Tx
649 	 */
650 	unsigned long		trans_start;
651 
652 	unsigned long		state;
653 
654 #ifdef CONFIG_BQL
655 	struct dql		dql;
656 #endif
657 } ____cacheline_aligned_in_smp;
658 
659 extern int sysctl_fb_tunnels_only_for_init_net;
660 extern int sysctl_devconf_inherit_init_net;
661 
662 /*
663  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
664  *                                     == 1 : For initns only
665  *                                     == 2 : For none.
666  */
667 static inline bool net_has_fallback_tunnels(const struct net *net)
668 {
669 #if IS_ENABLED(CONFIG_SYSCTL)
670 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
671 
672 	return !fb_tunnels_only_for_init_net ||
673 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
674 #else
675 	return true;
676 #endif
677 }
678 
679 static inline int net_inherit_devconf(void)
680 {
681 #if IS_ENABLED(CONFIG_SYSCTL)
682 	return READ_ONCE(sysctl_devconf_inherit_init_net);
683 #else
684 	return 0;
685 #endif
686 }
687 
688 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
689 {
690 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
691 	return q->numa_node;
692 #else
693 	return NUMA_NO_NODE;
694 #endif
695 }
696 
697 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
698 {
699 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
700 	q->numa_node = node;
701 #endif
702 }
703 
704 #ifdef CONFIG_RPS
705 /*
706  * This structure holds an RPS map which can be of variable length.  The
707  * map is an array of CPUs.
708  */
709 struct rps_map {
710 	unsigned int len;
711 	struct rcu_head rcu;
712 	u16 cpus[];
713 };
714 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
715 
716 /*
717  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
718  * tail pointer for that CPU's input queue at the time of last enqueue, and
719  * a hardware filter index.
720  */
721 struct rps_dev_flow {
722 	u16 cpu;
723 	u16 filter;
724 	unsigned int last_qtail;
725 };
726 #define RPS_NO_FILTER 0xffff
727 
728 /*
729  * The rps_dev_flow_table structure contains a table of flow mappings.
730  */
731 struct rps_dev_flow_table {
732 	unsigned int mask;
733 	struct rcu_head rcu;
734 	struct rps_dev_flow flows[];
735 };
736 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
737     ((_num) * sizeof(struct rps_dev_flow)))
738 
739 /*
740  * The rps_sock_flow_table contains mappings of flows to the last CPU
741  * on which they were processed by the application (set in recvmsg).
742  * Each entry is a 32bit value. Upper part is the high-order bits
743  * of flow hash, lower part is CPU number.
744  * rps_cpu_mask is used to partition the space, depending on number of
745  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
746  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
747  * meaning we use 32-6=26 bits for the hash.
748  */
749 struct rps_sock_flow_table {
750 	u32	mask;
751 
752 	u32	ents[] ____cacheline_aligned_in_smp;
753 };
754 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
755 
756 #define RPS_NO_CPU 0xffff
757 
758 extern u32 rps_cpu_mask;
759 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
760 
761 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
762 					u32 hash)
763 {
764 	if (table && hash) {
765 		unsigned int index = hash & table->mask;
766 		u32 val = hash & ~rps_cpu_mask;
767 
768 		/* We only give a hint, preemption can change CPU under us */
769 		val |= raw_smp_processor_id();
770 
771 		if (table->ents[index] != val)
772 			table->ents[index] = val;
773 	}
774 }
775 
776 #ifdef CONFIG_RFS_ACCEL
777 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
778 			 u16 filter_id);
779 #endif
780 #endif /* CONFIG_RPS */
781 
782 /* This structure contains an instance of an RX queue. */
783 struct netdev_rx_queue {
784 	struct xdp_rxq_info		xdp_rxq;
785 #ifdef CONFIG_RPS
786 	struct rps_map __rcu		*rps_map;
787 	struct rps_dev_flow_table __rcu	*rps_flow_table;
788 #endif
789 	struct kobject			kobj;
790 	struct net_device		*dev;
791 	netdevice_tracker		dev_tracker;
792 
793 #ifdef CONFIG_XDP_SOCKETS
794 	struct xsk_buff_pool            *pool;
795 #endif
796 } ____cacheline_aligned_in_smp;
797 
798 /*
799  * RX queue sysfs structures and functions.
800  */
801 struct rx_queue_attribute {
802 	struct attribute attr;
803 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
804 	ssize_t (*store)(struct netdev_rx_queue *queue,
805 			 const char *buf, size_t len);
806 };
807 
808 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
809 enum xps_map_type {
810 	XPS_CPUS = 0,
811 	XPS_RXQS,
812 	XPS_MAPS_MAX,
813 };
814 
815 #ifdef CONFIG_XPS
816 /*
817  * This structure holds an XPS map which can be of variable length.  The
818  * map is an array of queues.
819  */
820 struct xps_map {
821 	unsigned int len;
822 	unsigned int alloc_len;
823 	struct rcu_head rcu;
824 	u16 queues[];
825 };
826 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
827 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
828        - sizeof(struct xps_map)) / sizeof(u16))
829 
830 /*
831  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
832  *
833  * We keep track of the number of cpus/rxqs used when the struct is allocated,
834  * in nr_ids. This will help not accessing out-of-bound memory.
835  *
836  * We keep track of the number of traffic classes used when the struct is
837  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
838  * not crossing its upper bound, as the original dev->num_tc can be updated in
839  * the meantime.
840  */
841 struct xps_dev_maps {
842 	struct rcu_head rcu;
843 	unsigned int nr_ids;
844 	s16 num_tc;
845 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
846 };
847 
848 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
849 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
850 
851 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
852 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
853 
854 #endif /* CONFIG_XPS */
855 
856 #define TC_MAX_QUEUE	16
857 #define TC_BITMASK	15
858 /* HW offloaded queuing disciplines txq count and offset maps */
859 struct netdev_tc_txq {
860 	u16 count;
861 	u16 offset;
862 };
863 
864 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
865 /*
866  * This structure is to hold information about the device
867  * configured to run FCoE protocol stack.
868  */
869 struct netdev_fcoe_hbainfo {
870 	char	manufacturer[64];
871 	char	serial_number[64];
872 	char	hardware_version[64];
873 	char	driver_version[64];
874 	char	optionrom_version[64];
875 	char	firmware_version[64];
876 	char	model[256];
877 	char	model_description[256];
878 };
879 #endif
880 
881 #define MAX_PHYS_ITEM_ID_LEN 32
882 
883 /* This structure holds a unique identifier to identify some
884  * physical item (port for example) used by a netdevice.
885  */
886 struct netdev_phys_item_id {
887 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
888 	unsigned char id_len;
889 };
890 
891 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
892 					    struct netdev_phys_item_id *b)
893 {
894 	return a->id_len == b->id_len &&
895 	       memcmp(a->id, b->id, a->id_len) == 0;
896 }
897 
898 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
899 				       struct sk_buff *skb,
900 				       struct net_device *sb_dev);
901 
902 enum net_device_path_type {
903 	DEV_PATH_ETHERNET = 0,
904 	DEV_PATH_VLAN,
905 	DEV_PATH_BRIDGE,
906 	DEV_PATH_PPPOE,
907 	DEV_PATH_DSA,
908 	DEV_PATH_MTK_WDMA,
909 };
910 
911 struct net_device_path {
912 	enum net_device_path_type	type;
913 	const struct net_device		*dev;
914 	union {
915 		struct {
916 			u16		id;
917 			__be16		proto;
918 			u8		h_dest[ETH_ALEN];
919 		} encap;
920 		struct {
921 			enum {
922 				DEV_PATH_BR_VLAN_KEEP,
923 				DEV_PATH_BR_VLAN_TAG,
924 				DEV_PATH_BR_VLAN_UNTAG,
925 				DEV_PATH_BR_VLAN_UNTAG_HW,
926 			}		vlan_mode;
927 			u16		vlan_id;
928 			__be16		vlan_proto;
929 		} bridge;
930 		struct {
931 			int port;
932 			u16 proto;
933 		} dsa;
934 		struct {
935 			u8 wdma_idx;
936 			u8 queue;
937 			u16 wcid;
938 			u8 bss;
939 		} mtk_wdma;
940 	};
941 };
942 
943 #define NET_DEVICE_PATH_STACK_MAX	5
944 #define NET_DEVICE_PATH_VLAN_MAX	2
945 
946 struct net_device_path_stack {
947 	int			num_paths;
948 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
949 };
950 
951 struct net_device_path_ctx {
952 	const struct net_device *dev;
953 	u8			daddr[ETH_ALEN];
954 
955 	int			num_vlans;
956 	struct {
957 		u16		id;
958 		__be16		proto;
959 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
960 };
961 
962 enum tc_setup_type {
963 	TC_QUERY_CAPS,
964 	TC_SETUP_QDISC_MQPRIO,
965 	TC_SETUP_CLSU32,
966 	TC_SETUP_CLSFLOWER,
967 	TC_SETUP_CLSMATCHALL,
968 	TC_SETUP_CLSBPF,
969 	TC_SETUP_BLOCK,
970 	TC_SETUP_QDISC_CBS,
971 	TC_SETUP_QDISC_RED,
972 	TC_SETUP_QDISC_PRIO,
973 	TC_SETUP_QDISC_MQ,
974 	TC_SETUP_QDISC_ETF,
975 	TC_SETUP_ROOT_QDISC,
976 	TC_SETUP_QDISC_GRED,
977 	TC_SETUP_QDISC_TAPRIO,
978 	TC_SETUP_FT,
979 	TC_SETUP_QDISC_ETS,
980 	TC_SETUP_QDISC_TBF,
981 	TC_SETUP_QDISC_FIFO,
982 	TC_SETUP_QDISC_HTB,
983 	TC_SETUP_ACT,
984 };
985 
986 /* These structures hold the attributes of bpf state that are being passed
987  * to the netdevice through the bpf op.
988  */
989 enum bpf_netdev_command {
990 	/* Set or clear a bpf program used in the earliest stages of packet
991 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
992 	 * is responsible for calling bpf_prog_put on any old progs that are
993 	 * stored. In case of error, the callee need not release the new prog
994 	 * reference, but on success it takes ownership and must bpf_prog_put
995 	 * when it is no longer used.
996 	 */
997 	XDP_SETUP_PROG,
998 	XDP_SETUP_PROG_HW,
999 	/* BPF program for offload callbacks, invoked at program load time. */
1000 	BPF_OFFLOAD_MAP_ALLOC,
1001 	BPF_OFFLOAD_MAP_FREE,
1002 	XDP_SETUP_XSK_POOL,
1003 };
1004 
1005 struct bpf_prog_offload_ops;
1006 struct netlink_ext_ack;
1007 struct xdp_umem;
1008 struct xdp_dev_bulk_queue;
1009 struct bpf_xdp_link;
1010 
1011 enum bpf_xdp_mode {
1012 	XDP_MODE_SKB = 0,
1013 	XDP_MODE_DRV = 1,
1014 	XDP_MODE_HW = 2,
1015 	__MAX_XDP_MODE
1016 };
1017 
1018 struct bpf_xdp_entity {
1019 	struct bpf_prog *prog;
1020 	struct bpf_xdp_link *link;
1021 };
1022 
1023 struct netdev_bpf {
1024 	enum bpf_netdev_command command;
1025 	union {
1026 		/* XDP_SETUP_PROG */
1027 		struct {
1028 			u32 flags;
1029 			struct bpf_prog *prog;
1030 			struct netlink_ext_ack *extack;
1031 		};
1032 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1033 		struct {
1034 			struct bpf_offloaded_map *offmap;
1035 		};
1036 		/* XDP_SETUP_XSK_POOL */
1037 		struct {
1038 			struct xsk_buff_pool *pool;
1039 			u16 queue_id;
1040 		} xsk;
1041 	};
1042 };
1043 
1044 /* Flags for ndo_xsk_wakeup. */
1045 #define XDP_WAKEUP_RX (1 << 0)
1046 #define XDP_WAKEUP_TX (1 << 1)
1047 
1048 #ifdef CONFIG_XFRM_OFFLOAD
1049 struct xfrmdev_ops {
1050 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
1051 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1052 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1053 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1054 				       struct xfrm_state *x);
1055 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1056 	void	(*xdo_dev_state_update_curlft) (struct xfrm_state *x);
1057 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1058 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1059 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1060 };
1061 #endif
1062 
1063 struct dev_ifalias {
1064 	struct rcu_head rcuhead;
1065 	char ifalias[];
1066 };
1067 
1068 struct devlink;
1069 struct tlsdev_ops;
1070 
1071 struct netdev_net_notifier {
1072 	struct list_head list;
1073 	struct notifier_block *nb;
1074 };
1075 
1076 /*
1077  * This structure defines the management hooks for network devices.
1078  * The following hooks can be defined; unless noted otherwise, they are
1079  * optional and can be filled with a null pointer.
1080  *
1081  * int (*ndo_init)(struct net_device *dev);
1082  *     This function is called once when a network device is registered.
1083  *     The network device can use this for any late stage initialization
1084  *     or semantic validation. It can fail with an error code which will
1085  *     be propagated back to register_netdev.
1086  *
1087  * void (*ndo_uninit)(struct net_device *dev);
1088  *     This function is called when device is unregistered or when registration
1089  *     fails. It is not called if init fails.
1090  *
1091  * int (*ndo_open)(struct net_device *dev);
1092  *     This function is called when a network device transitions to the up
1093  *     state.
1094  *
1095  * int (*ndo_stop)(struct net_device *dev);
1096  *     This function is called when a network device transitions to the down
1097  *     state.
1098  *
1099  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1100  *                               struct net_device *dev);
1101  *	Called when a packet needs to be transmitted.
1102  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1103  *	the queue before that can happen; it's for obsolete devices and weird
1104  *	corner cases, but the stack really does a non-trivial amount
1105  *	of useless work if you return NETDEV_TX_BUSY.
1106  *	Required; cannot be NULL.
1107  *
1108  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1109  *					   struct net_device *dev
1110  *					   netdev_features_t features);
1111  *	Called by core transmit path to determine if device is capable of
1112  *	performing offload operations on a given packet. This is to give
1113  *	the device an opportunity to implement any restrictions that cannot
1114  *	be otherwise expressed by feature flags. The check is called with
1115  *	the set of features that the stack has calculated and it returns
1116  *	those the driver believes to be appropriate.
1117  *
1118  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1119  *                         struct net_device *sb_dev);
1120  *	Called to decide which queue to use when device supports multiple
1121  *	transmit queues.
1122  *
1123  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1124  *	This function is called to allow device receiver to make
1125  *	changes to configuration when multicast or promiscuous is enabled.
1126  *
1127  * void (*ndo_set_rx_mode)(struct net_device *dev);
1128  *	This function is called device changes address list filtering.
1129  *	If driver handles unicast address filtering, it should set
1130  *	IFF_UNICAST_FLT in its priv_flags.
1131  *
1132  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1133  *	This function  is called when the Media Access Control address
1134  *	needs to be changed. If this interface is not defined, the
1135  *	MAC address can not be changed.
1136  *
1137  * int (*ndo_validate_addr)(struct net_device *dev);
1138  *	Test if Media Access Control address is valid for the device.
1139  *
1140  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1141  *	Old-style ioctl entry point. This is used internally by the
1142  *	appletalk and ieee802154 subsystems but is no longer called by
1143  *	the device ioctl handler.
1144  *
1145  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1146  *	Used by the bonding driver for its device specific ioctls:
1147  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1148  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1149  *
1150  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1151  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1152  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1153  *
1154  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1155  *	Used to set network devices bus interface parameters. This interface
1156  *	is retained for legacy reasons; new devices should use the bus
1157  *	interface (PCI) for low level management.
1158  *
1159  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1160  *	Called when a user wants to change the Maximum Transfer Unit
1161  *	of a device.
1162  *
1163  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1164  *	Callback used when the transmitter has not made any progress
1165  *	for dev->watchdog ticks.
1166  *
1167  * void (*ndo_get_stats64)(struct net_device *dev,
1168  *                         struct rtnl_link_stats64 *storage);
1169  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1170  *	Called when a user wants to get the network device usage
1171  *	statistics. Drivers must do one of the following:
1172  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1173  *	   rtnl_link_stats64 structure passed by the caller.
1174  *	2. Define @ndo_get_stats to update a net_device_stats structure
1175  *	   (which should normally be dev->stats) and return a pointer to
1176  *	   it. The structure may be changed asynchronously only if each
1177  *	   field is written atomically.
1178  *	3. Update dev->stats asynchronously and atomically, and define
1179  *	   neither operation.
1180  *
1181  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1182  *	Return true if this device supports offload stats of this attr_id.
1183  *
1184  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1185  *	void *attr_data)
1186  *	Get statistics for offload operations by attr_id. Write it into the
1187  *	attr_data pointer.
1188  *
1189  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1190  *	If device supports VLAN filtering this function is called when a
1191  *	VLAN id is registered.
1192  *
1193  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1194  *	If device supports VLAN filtering this function is called when a
1195  *	VLAN id is unregistered.
1196  *
1197  * void (*ndo_poll_controller)(struct net_device *dev);
1198  *
1199  *	SR-IOV management functions.
1200  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1201  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1202  *			  u8 qos, __be16 proto);
1203  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1204  *			  int max_tx_rate);
1205  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1206  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1207  * int (*ndo_get_vf_config)(struct net_device *dev,
1208  *			    int vf, struct ifla_vf_info *ivf);
1209  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1210  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1211  *			  struct nlattr *port[]);
1212  *
1213  *      Enable or disable the VF ability to query its RSS Redirection Table and
1214  *      Hash Key. This is needed since on some devices VF share this information
1215  *      with PF and querying it may introduce a theoretical security risk.
1216  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1217  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1218  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1219  *		       void *type_data);
1220  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1221  *	This is always called from the stack with the rtnl lock held and netif
1222  *	tx queues stopped. This allows the netdevice to perform queue
1223  *	management safely.
1224  *
1225  *	Fiber Channel over Ethernet (FCoE) offload functions.
1226  * int (*ndo_fcoe_enable)(struct net_device *dev);
1227  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1228  *	so the underlying device can perform whatever needed configuration or
1229  *	initialization to support acceleration of FCoE traffic.
1230  *
1231  * int (*ndo_fcoe_disable)(struct net_device *dev);
1232  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1233  *	so the underlying device can perform whatever needed clean-ups to
1234  *	stop supporting acceleration of FCoE traffic.
1235  *
1236  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1237  *			     struct scatterlist *sgl, unsigned int sgc);
1238  *	Called when the FCoE Initiator wants to initialize an I/O that
1239  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1240  *	perform necessary setup and returns 1 to indicate the device is set up
1241  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1242  *
1243  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1244  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1245  *	indicated by the FC exchange id 'xid', so the underlying device can
1246  *	clean up and reuse resources for later DDP requests.
1247  *
1248  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1249  *			      struct scatterlist *sgl, unsigned int sgc);
1250  *	Called when the FCoE Target wants to initialize an I/O that
1251  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1252  *	perform necessary setup and returns 1 to indicate the device is set up
1253  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1254  *
1255  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1256  *			       struct netdev_fcoe_hbainfo *hbainfo);
1257  *	Called when the FCoE Protocol stack wants information on the underlying
1258  *	device. This information is utilized by the FCoE protocol stack to
1259  *	register attributes with Fiber Channel management service as per the
1260  *	FC-GS Fabric Device Management Information(FDMI) specification.
1261  *
1262  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1263  *	Called when the underlying device wants to override default World Wide
1264  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1265  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1266  *	protocol stack to use.
1267  *
1268  *	RFS acceleration.
1269  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1270  *			    u16 rxq_index, u32 flow_id);
1271  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1272  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1273  *	Return the filter ID on success, or a negative error code.
1274  *
1275  *	Slave management functions (for bridge, bonding, etc).
1276  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1277  *	Called to make another netdev an underling.
1278  *
1279  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1280  *	Called to release previously enslaved netdev.
1281  *
1282  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1283  *					    struct sk_buff *skb,
1284  *					    bool all_slaves);
1285  *	Get the xmit slave of master device. If all_slaves is true, function
1286  *	assume all the slaves can transmit.
1287  *
1288  *      Feature/offload setting functions.
1289  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1290  *		netdev_features_t features);
1291  *	Adjusts the requested feature flags according to device-specific
1292  *	constraints, and returns the resulting flags. Must not modify
1293  *	the device state.
1294  *
1295  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1296  *	Called to update device configuration to new features. Passed
1297  *	feature set might be less than what was returned by ndo_fix_features()).
1298  *	Must return >0 or -errno if it changed dev->features itself.
1299  *
1300  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1301  *		      struct net_device *dev,
1302  *		      const unsigned char *addr, u16 vid, u16 flags,
1303  *		      struct netlink_ext_ack *extack);
1304  *	Adds an FDB entry to dev for addr.
1305  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1306  *		      struct net_device *dev,
1307  *		      const unsigned char *addr, u16 vid)
1308  *	Deletes the FDB entry from dev coresponding to addr.
1309  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1310  *			   struct net_device *dev,
1311  *			   u16 vid,
1312  *			   struct netlink_ext_ack *extack);
1313  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1314  *		       struct net_device *dev, struct net_device *filter_dev,
1315  *		       int *idx)
1316  *	Used to add FDB entries to dump requests. Implementers should add
1317  *	entries to skb and update idx with the number of entries.
1318  *
1319  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1320  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1321  *	Adds an MDB entry to dev.
1322  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1323  *		      struct netlink_ext_ack *extack);
1324  *	Deletes the MDB entry from dev.
1325  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1326  *		       struct netlink_callback *cb);
1327  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1328  *	callback is used by core rtnetlink code.
1329  *
1330  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1331  *			     u16 flags, struct netlink_ext_ack *extack)
1332  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1333  *			     struct net_device *dev, u32 filter_mask,
1334  *			     int nlflags)
1335  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1336  *			     u16 flags);
1337  *
1338  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1339  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1340  *	which do not represent real hardware may define this to allow their
1341  *	userspace components to manage their virtual carrier state. Devices
1342  *	that determine carrier state from physical hardware properties (eg
1343  *	network cables) or protocol-dependent mechanisms (eg
1344  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1345  *
1346  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1347  *			       struct netdev_phys_item_id *ppid);
1348  *	Called to get ID of physical port of this device. If driver does
1349  *	not implement this, it is assumed that the hw is not able to have
1350  *	multiple net devices on single physical port.
1351  *
1352  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1353  *				 struct netdev_phys_item_id *ppid)
1354  *	Called to get the parent ID of the physical port of this device.
1355  *
1356  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1357  *				 struct net_device *dev)
1358  *	Called by upper layer devices to accelerate switching or other
1359  *	station functionality into hardware. 'pdev is the lowerdev
1360  *	to use for the offload and 'dev' is the net device that will
1361  *	back the offload. Returns a pointer to the private structure
1362  *	the upper layer will maintain.
1363  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1364  *	Called by upper layer device to delete the station created
1365  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1366  *	the station and priv is the structure returned by the add
1367  *	operation.
1368  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1369  *			     int queue_index, u32 maxrate);
1370  *	Called when a user wants to set a max-rate limitation of specific
1371  *	TX queue.
1372  * int (*ndo_get_iflink)(const struct net_device *dev);
1373  *	Called to get the iflink value of this device.
1374  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1375  *	This function is used to get egress tunnel information for given skb.
1376  *	This is useful for retrieving outer tunnel header parameters while
1377  *	sampling packet.
1378  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1379  *	This function is used to specify the headroom that the skb must
1380  *	consider when allocation skb during packet reception. Setting
1381  *	appropriate rx headroom value allows avoiding skb head copy on
1382  *	forward. Setting a negative value resets the rx headroom to the
1383  *	default value.
1384  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1385  *	This function is used to set or query state related to XDP on the
1386  *	netdevice and manage BPF offload. See definition of
1387  *	enum bpf_netdev_command for details.
1388  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1389  *			u32 flags);
1390  *	This function is used to submit @n XDP packets for transmit on a
1391  *	netdevice. Returns number of frames successfully transmitted, frames
1392  *	that got dropped are freed/returned via xdp_return_frame().
1393  *	Returns negative number, means general error invoking ndo, meaning
1394  *	no frames were xmit'ed and core-caller will free all frames.
1395  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1396  *					        struct xdp_buff *xdp);
1397  *      Get the xmit slave of master device based on the xdp_buff.
1398  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1399  *      This function is used to wake up the softirq, ksoftirqd or kthread
1400  *	responsible for sending and/or receiving packets on a specific
1401  *	queue id bound to an AF_XDP socket. The flags field specifies if
1402  *	only RX, only Tx, or both should be woken up using the flags
1403  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1404  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1405  *			 int cmd);
1406  *	Add, change, delete or get information on an IPv4 tunnel.
1407  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1408  *	If a device is paired with a peer device, return the peer instance.
1409  *	The caller must be under RCU read context.
1410  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1411  *     Get the forwarding path to reach the real device from the HW destination address
1412  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1413  *			     const struct skb_shared_hwtstamps *hwtstamps,
1414  *			     bool cycles);
1415  *	Get hardware timestamp based on normal/adjustable time or free running
1416  *	cycle counter. This function is required if physical clock supports a
1417  *	free running cycle counter.
1418  */
1419 struct net_device_ops {
1420 	int			(*ndo_init)(struct net_device *dev);
1421 	void			(*ndo_uninit)(struct net_device *dev);
1422 	int			(*ndo_open)(struct net_device *dev);
1423 	int			(*ndo_stop)(struct net_device *dev);
1424 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1425 						  struct net_device *dev);
1426 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1427 						      struct net_device *dev,
1428 						      netdev_features_t features);
1429 	u16			(*ndo_select_queue)(struct net_device *dev,
1430 						    struct sk_buff *skb,
1431 						    struct net_device *sb_dev);
1432 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1433 						       int flags);
1434 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1435 	int			(*ndo_set_mac_address)(struct net_device *dev,
1436 						       void *addr);
1437 	int			(*ndo_validate_addr)(struct net_device *dev);
1438 	int			(*ndo_do_ioctl)(struct net_device *dev,
1439 					        struct ifreq *ifr, int cmd);
1440 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1441 						 struct ifreq *ifr, int cmd);
1442 	int			(*ndo_siocbond)(struct net_device *dev,
1443 						struct ifreq *ifr, int cmd);
1444 	int			(*ndo_siocwandev)(struct net_device *dev,
1445 						  struct if_settings *ifs);
1446 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1447 						      struct ifreq *ifr,
1448 						      void __user *data, int cmd);
1449 	int			(*ndo_set_config)(struct net_device *dev,
1450 					          struct ifmap *map);
1451 	int			(*ndo_change_mtu)(struct net_device *dev,
1452 						  int new_mtu);
1453 	int			(*ndo_neigh_setup)(struct net_device *dev,
1454 						   struct neigh_parms *);
1455 	void			(*ndo_tx_timeout) (struct net_device *dev,
1456 						   unsigned int txqueue);
1457 
1458 	void			(*ndo_get_stats64)(struct net_device *dev,
1459 						   struct rtnl_link_stats64 *storage);
1460 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1461 	int			(*ndo_get_offload_stats)(int attr_id,
1462 							 const struct net_device *dev,
1463 							 void *attr_data);
1464 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1465 
1466 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1467 						       __be16 proto, u16 vid);
1468 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1469 						        __be16 proto, u16 vid);
1470 #ifdef CONFIG_NET_POLL_CONTROLLER
1471 	void                    (*ndo_poll_controller)(struct net_device *dev);
1472 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1473 						     struct netpoll_info *info);
1474 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1475 #endif
1476 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1477 						  int queue, u8 *mac);
1478 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1479 						   int queue, u16 vlan,
1480 						   u8 qos, __be16 proto);
1481 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1482 						   int vf, int min_tx_rate,
1483 						   int max_tx_rate);
1484 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1485 						       int vf, bool setting);
1486 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1487 						    int vf, bool setting);
1488 	int			(*ndo_get_vf_config)(struct net_device *dev,
1489 						     int vf,
1490 						     struct ifla_vf_info *ivf);
1491 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1492 							 int vf, int link_state);
1493 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1494 						    int vf,
1495 						    struct ifla_vf_stats
1496 						    *vf_stats);
1497 	int			(*ndo_set_vf_port)(struct net_device *dev,
1498 						   int vf,
1499 						   struct nlattr *port[]);
1500 	int			(*ndo_get_vf_port)(struct net_device *dev,
1501 						   int vf, struct sk_buff *skb);
1502 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1503 						   int vf,
1504 						   struct ifla_vf_guid *node_guid,
1505 						   struct ifla_vf_guid *port_guid);
1506 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1507 						   int vf, u64 guid,
1508 						   int guid_type);
1509 	int			(*ndo_set_vf_rss_query_en)(
1510 						   struct net_device *dev,
1511 						   int vf, bool setting);
1512 	int			(*ndo_setup_tc)(struct net_device *dev,
1513 						enum tc_setup_type type,
1514 						void *type_data);
1515 #if IS_ENABLED(CONFIG_FCOE)
1516 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1517 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1518 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1519 						      u16 xid,
1520 						      struct scatterlist *sgl,
1521 						      unsigned int sgc);
1522 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1523 						     u16 xid);
1524 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1525 						       u16 xid,
1526 						       struct scatterlist *sgl,
1527 						       unsigned int sgc);
1528 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1529 							struct netdev_fcoe_hbainfo *hbainfo);
1530 #endif
1531 
1532 #if IS_ENABLED(CONFIG_LIBFCOE)
1533 #define NETDEV_FCOE_WWNN 0
1534 #define NETDEV_FCOE_WWPN 1
1535 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1536 						    u64 *wwn, int type);
1537 #endif
1538 
1539 #ifdef CONFIG_RFS_ACCEL
1540 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1541 						     const struct sk_buff *skb,
1542 						     u16 rxq_index,
1543 						     u32 flow_id);
1544 #endif
1545 	int			(*ndo_add_slave)(struct net_device *dev,
1546 						 struct net_device *slave_dev,
1547 						 struct netlink_ext_ack *extack);
1548 	int			(*ndo_del_slave)(struct net_device *dev,
1549 						 struct net_device *slave_dev);
1550 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1551 						      struct sk_buff *skb,
1552 						      bool all_slaves);
1553 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1554 							struct sock *sk);
1555 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1556 						    netdev_features_t features);
1557 	int			(*ndo_set_features)(struct net_device *dev,
1558 						    netdev_features_t features);
1559 	int			(*ndo_neigh_construct)(struct net_device *dev,
1560 						       struct neighbour *n);
1561 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1562 						     struct neighbour *n);
1563 
1564 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1565 					       struct nlattr *tb[],
1566 					       struct net_device *dev,
1567 					       const unsigned char *addr,
1568 					       u16 vid,
1569 					       u16 flags,
1570 					       struct netlink_ext_ack *extack);
1571 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1572 					       struct nlattr *tb[],
1573 					       struct net_device *dev,
1574 					       const unsigned char *addr,
1575 					       u16 vid, struct netlink_ext_ack *extack);
1576 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1577 						    struct nlattr *tb[],
1578 						    struct net_device *dev,
1579 						    u16 vid,
1580 						    struct netlink_ext_ack *extack);
1581 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1582 						struct netlink_callback *cb,
1583 						struct net_device *dev,
1584 						struct net_device *filter_dev,
1585 						int *idx);
1586 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1587 					       struct nlattr *tb[],
1588 					       struct net_device *dev,
1589 					       const unsigned char *addr,
1590 					       u16 vid, u32 portid, u32 seq,
1591 					       struct netlink_ext_ack *extack);
1592 	int			(*ndo_mdb_add)(struct net_device *dev,
1593 					       struct nlattr *tb[],
1594 					       u16 nlmsg_flags,
1595 					       struct netlink_ext_ack *extack);
1596 	int			(*ndo_mdb_del)(struct net_device *dev,
1597 					       struct nlattr *tb[],
1598 					       struct netlink_ext_ack *extack);
1599 	int			(*ndo_mdb_dump)(struct net_device *dev,
1600 						struct sk_buff *skb,
1601 						struct netlink_callback *cb);
1602 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1603 						      struct nlmsghdr *nlh,
1604 						      u16 flags,
1605 						      struct netlink_ext_ack *extack);
1606 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1607 						      u32 pid, u32 seq,
1608 						      struct net_device *dev,
1609 						      u32 filter_mask,
1610 						      int nlflags);
1611 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1612 						      struct nlmsghdr *nlh,
1613 						      u16 flags);
1614 	int			(*ndo_change_carrier)(struct net_device *dev,
1615 						      bool new_carrier);
1616 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1617 							struct netdev_phys_item_id *ppid);
1618 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1619 							  struct netdev_phys_item_id *ppid);
1620 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1621 							  char *name, size_t len);
1622 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1623 							struct net_device *dev);
1624 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1625 							void *priv);
1626 
1627 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1628 						      int queue_index,
1629 						      u32 maxrate);
1630 	int			(*ndo_get_iflink)(const struct net_device *dev);
1631 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1632 						       struct sk_buff *skb);
1633 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1634 						       int needed_headroom);
1635 	int			(*ndo_bpf)(struct net_device *dev,
1636 					   struct netdev_bpf *bpf);
1637 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1638 						struct xdp_frame **xdp,
1639 						u32 flags);
1640 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1641 							  struct xdp_buff *xdp);
1642 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1643 						  u32 queue_id, u32 flags);
1644 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1645 						  struct ip_tunnel_parm *p, int cmd);
1646 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1647 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1648                                                          struct net_device_path *path);
1649 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1650 						  const struct skb_shared_hwtstamps *hwtstamps,
1651 						  bool cycles);
1652 };
1653 
1654 struct xdp_metadata_ops {
1655 	int	(*xmo_rx_timestamp)(const struct xdp_md *ctx, u64 *timestamp);
1656 	int	(*xmo_rx_hash)(const struct xdp_md *ctx, u32 *hash,
1657 			       enum xdp_rss_hash_type *rss_type);
1658 };
1659 
1660 /**
1661  * enum netdev_priv_flags - &struct net_device priv_flags
1662  *
1663  * These are the &struct net_device, they are only set internally
1664  * by drivers and used in the kernel. These flags are invisible to
1665  * userspace; this means that the order of these flags can change
1666  * during any kernel release.
1667  *
1668  * You should have a pretty good reason to be extending these flags.
1669  *
1670  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1671  * @IFF_EBRIDGE: Ethernet bridging device
1672  * @IFF_BONDING: bonding master or slave
1673  * @IFF_ISATAP: ISATAP interface (RFC4214)
1674  * @IFF_WAN_HDLC: WAN HDLC device
1675  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1676  *	release skb->dst
1677  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1678  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1679  * @IFF_MACVLAN_PORT: device used as macvlan port
1680  * @IFF_BRIDGE_PORT: device used as bridge port
1681  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1682  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1683  * @IFF_UNICAST_FLT: Supports unicast filtering
1684  * @IFF_TEAM_PORT: device used as team port
1685  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1686  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1687  *	change when it's running
1688  * @IFF_MACVLAN: Macvlan device
1689  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1690  *	underlying stacked devices
1691  * @IFF_L3MDEV_MASTER: device is an L3 master device
1692  * @IFF_NO_QUEUE: device can run without qdisc attached
1693  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1694  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1695  * @IFF_TEAM: device is a team device
1696  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1697  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1698  *	entity (i.e. the master device for bridged veth)
1699  * @IFF_MACSEC: device is a MACsec device
1700  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1701  * @IFF_FAILOVER: device is a failover master device
1702  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1703  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1704  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1705  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1706  *	skb_headlen(skb) == 0 (data starts from frag0)
1707  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1708  */
1709 enum netdev_priv_flags {
1710 	IFF_802_1Q_VLAN			= 1<<0,
1711 	IFF_EBRIDGE			= 1<<1,
1712 	IFF_BONDING			= 1<<2,
1713 	IFF_ISATAP			= 1<<3,
1714 	IFF_WAN_HDLC			= 1<<4,
1715 	IFF_XMIT_DST_RELEASE		= 1<<5,
1716 	IFF_DONT_BRIDGE			= 1<<6,
1717 	IFF_DISABLE_NETPOLL		= 1<<7,
1718 	IFF_MACVLAN_PORT		= 1<<8,
1719 	IFF_BRIDGE_PORT			= 1<<9,
1720 	IFF_OVS_DATAPATH		= 1<<10,
1721 	IFF_TX_SKB_SHARING		= 1<<11,
1722 	IFF_UNICAST_FLT			= 1<<12,
1723 	IFF_TEAM_PORT			= 1<<13,
1724 	IFF_SUPP_NOFCS			= 1<<14,
1725 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1726 	IFF_MACVLAN			= 1<<16,
1727 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1728 	IFF_L3MDEV_MASTER		= 1<<18,
1729 	IFF_NO_QUEUE			= 1<<19,
1730 	IFF_OPENVSWITCH			= 1<<20,
1731 	IFF_L3MDEV_SLAVE		= 1<<21,
1732 	IFF_TEAM			= 1<<22,
1733 	IFF_RXFH_CONFIGURED		= 1<<23,
1734 	IFF_PHONY_HEADROOM		= 1<<24,
1735 	IFF_MACSEC			= 1<<25,
1736 	IFF_NO_RX_HANDLER		= 1<<26,
1737 	IFF_FAILOVER			= 1<<27,
1738 	IFF_FAILOVER_SLAVE		= 1<<28,
1739 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1740 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1741 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1742 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1743 };
1744 
1745 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1746 #define IFF_EBRIDGE			IFF_EBRIDGE
1747 #define IFF_BONDING			IFF_BONDING
1748 #define IFF_ISATAP			IFF_ISATAP
1749 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1750 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1751 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1752 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1753 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1754 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1755 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1756 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1757 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1758 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1759 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1760 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1761 #define IFF_MACVLAN			IFF_MACVLAN
1762 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1763 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1764 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1765 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1766 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1767 #define IFF_TEAM			IFF_TEAM
1768 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1769 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1770 #define IFF_MACSEC			IFF_MACSEC
1771 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1772 #define IFF_FAILOVER			IFF_FAILOVER
1773 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1774 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1775 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1776 
1777 /* Specifies the type of the struct net_device::ml_priv pointer */
1778 enum netdev_ml_priv_type {
1779 	ML_PRIV_NONE,
1780 	ML_PRIV_CAN,
1781 };
1782 
1783 /**
1784  *	struct net_device - The DEVICE structure.
1785  *
1786  *	Actually, this whole structure is a big mistake.  It mixes I/O
1787  *	data with strictly "high-level" data, and it has to know about
1788  *	almost every data structure used in the INET module.
1789  *
1790  *	@name:	This is the first field of the "visible" part of this structure
1791  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1792  *		of the interface.
1793  *
1794  *	@name_node:	Name hashlist node
1795  *	@ifalias:	SNMP alias
1796  *	@mem_end:	Shared memory end
1797  *	@mem_start:	Shared memory start
1798  *	@base_addr:	Device I/O address
1799  *	@irq:		Device IRQ number
1800  *
1801  *	@state:		Generic network queuing layer state, see netdev_state_t
1802  *	@dev_list:	The global list of network devices
1803  *	@napi_list:	List entry used for polling NAPI devices
1804  *	@unreg_list:	List entry  when we are unregistering the
1805  *			device; see the function unregister_netdev
1806  *	@close_list:	List entry used when we are closing the device
1807  *	@ptype_all:     Device-specific packet handlers for all protocols
1808  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1809  *
1810  *	@adj_list:	Directly linked devices, like slaves for bonding
1811  *	@features:	Currently active device features
1812  *	@hw_features:	User-changeable features
1813  *
1814  *	@wanted_features:	User-requested features
1815  *	@vlan_features:		Mask of features inheritable by VLAN devices
1816  *
1817  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1818  *				This field indicates what encapsulation
1819  *				offloads the hardware is capable of doing,
1820  *				and drivers will need to set them appropriately.
1821  *
1822  *	@mpls_features:	Mask of features inheritable by MPLS
1823  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1824  *
1825  *	@ifindex:	interface index
1826  *	@group:		The group the device belongs to
1827  *
1828  *	@stats:		Statistics struct, which was left as a legacy, use
1829  *			rtnl_link_stats64 instead
1830  *
1831  *	@core_stats:	core networking counters,
1832  *			do not use this in drivers
1833  *	@carrier_up_count:	Number of times the carrier has been up
1834  *	@carrier_down_count:	Number of times the carrier has been down
1835  *
1836  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1837  *				instead of ioctl,
1838  *				see <net/iw_handler.h> for details.
1839  *	@wireless_data:	Instance data managed by the core of wireless extensions
1840  *
1841  *	@netdev_ops:	Includes several pointers to callbacks,
1842  *			if one wants to override the ndo_*() functions
1843  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1844  *	@ethtool_ops:	Management operations
1845  *	@l3mdev_ops:	Layer 3 master device operations
1846  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1847  *			discovery handling. Necessary for e.g. 6LoWPAN.
1848  *	@xfrmdev_ops:	Transformation offload operations
1849  *	@tlsdev_ops:	Transport Layer Security offload operations
1850  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1851  *			of Layer 2 headers.
1852  *
1853  *	@flags:		Interface flags (a la BSD)
1854  *	@xdp_features:	XDP capability supported by the device
1855  *	@priv_flags:	Like 'flags' but invisible to userspace,
1856  *			see if.h for the definitions
1857  *	@gflags:	Global flags ( kept as legacy )
1858  *	@padded:	How much padding added by alloc_netdev()
1859  *	@operstate:	RFC2863 operstate
1860  *	@link_mode:	Mapping policy to operstate
1861  *	@if_port:	Selectable AUI, TP, ...
1862  *	@dma:		DMA channel
1863  *	@mtu:		Interface MTU value
1864  *	@min_mtu:	Interface Minimum MTU value
1865  *	@max_mtu:	Interface Maximum MTU value
1866  *	@type:		Interface hardware type
1867  *	@hard_header_len: Maximum hardware header length.
1868  *	@min_header_len:  Minimum hardware header length
1869  *
1870  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1871  *			  cases can this be guaranteed
1872  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1873  *			  cases can this be guaranteed. Some cases also use
1874  *			  LL_MAX_HEADER instead to allocate the skb
1875  *
1876  *	interface address info:
1877  *
1878  * 	@perm_addr:		Permanent hw address
1879  * 	@addr_assign_type:	Hw address assignment type
1880  * 	@addr_len:		Hardware address length
1881  *	@upper_level:		Maximum depth level of upper devices.
1882  *	@lower_level:		Maximum depth level of lower devices.
1883  *	@neigh_priv_len:	Used in neigh_alloc()
1884  * 	@dev_id:		Used to differentiate devices that share
1885  * 				the same link layer address
1886  * 	@dev_port:		Used to differentiate devices that share
1887  * 				the same function
1888  *	@addr_list_lock:	XXX: need comments on this one
1889  *	@name_assign_type:	network interface name assignment type
1890  *	@uc_promisc:		Counter that indicates promiscuous mode
1891  *				has been enabled due to the need to listen to
1892  *				additional unicast addresses in a device that
1893  *				does not implement ndo_set_rx_mode()
1894  *	@uc:			unicast mac addresses
1895  *	@mc:			multicast mac addresses
1896  *	@dev_addrs:		list of device hw addresses
1897  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1898  *	@promiscuity:		Number of times the NIC is told to work in
1899  *				promiscuous mode; if it becomes 0 the NIC will
1900  *				exit promiscuous mode
1901  *	@allmulti:		Counter, enables or disables allmulticast mode
1902  *
1903  *	@vlan_info:	VLAN info
1904  *	@dsa_ptr:	dsa specific data
1905  *	@tipc_ptr:	TIPC specific data
1906  *	@atalk_ptr:	AppleTalk link
1907  *	@ip_ptr:	IPv4 specific data
1908  *	@ip6_ptr:	IPv6 specific data
1909  *	@ax25_ptr:	AX.25 specific data
1910  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1911  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1912  *			 device struct
1913  *	@mpls_ptr:	mpls_dev struct pointer
1914  *	@mctp_ptr:	MCTP specific data
1915  *
1916  *	@dev_addr:	Hw address (before bcast,
1917  *			because most packets are unicast)
1918  *
1919  *	@_rx:			Array of RX queues
1920  *	@num_rx_queues:		Number of RX queues
1921  *				allocated at register_netdev() time
1922  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1923  *	@xdp_prog:		XDP sockets filter program pointer
1924  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1925  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1926  *				allow to avoid NIC hard IRQ, on busy queues.
1927  *
1928  *	@rx_handler:		handler for received packets
1929  *	@rx_handler_data: 	XXX: need comments on this one
1930  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1931  *				ingress processing
1932  *	@ingress_queue:		XXX: need comments on this one
1933  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1934  *	@broadcast:		hw bcast address
1935  *
1936  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1937  *			indexed by RX queue number. Assigned by driver.
1938  *			This must only be set if the ndo_rx_flow_steer
1939  *			operation is defined
1940  *	@index_hlist:		Device index hash chain
1941  *
1942  *	@_tx:			Array of TX queues
1943  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1944  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1945  *	@qdisc:			Root qdisc from userspace point of view
1946  *	@tx_queue_len:		Max frames per queue allowed
1947  *	@tx_global_lock: 	XXX: need comments on this one
1948  *	@xdp_bulkq:		XDP device bulk queue
1949  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1950  *
1951  *	@xps_maps:	XXX: need comments on this one
1952  *	@miniq_egress:		clsact qdisc specific data for
1953  *				egress processing
1954  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1955  *	@qdisc_hash:		qdisc hash table
1956  *	@watchdog_timeo:	Represents the timeout that is used by
1957  *				the watchdog (see dev_watchdog())
1958  *	@watchdog_timer:	List of timers
1959  *
1960  *	@proto_down_reason:	reason a netdev interface is held down
1961  *	@pcpu_refcnt:		Number of references to this device
1962  *	@dev_refcnt:		Number of references to this device
1963  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1964  *	@todo_list:		Delayed register/unregister
1965  *	@link_watch_list:	XXX: need comments on this one
1966  *
1967  *	@reg_state:		Register/unregister state machine
1968  *	@dismantle:		Device is going to be freed
1969  *	@rtnl_link_state:	This enum represents the phases of creating
1970  *				a new link
1971  *
1972  *	@needs_free_netdev:	Should unregister perform free_netdev?
1973  *	@priv_destructor:	Called from unregister
1974  *	@npinfo:		XXX: need comments on this one
1975  * 	@nd_net:		Network namespace this network device is inside
1976  *
1977  * 	@ml_priv:	Mid-layer private
1978  *	@ml_priv_type:  Mid-layer private type
1979  * 	@lstats:	Loopback statistics
1980  * 	@tstats:	Tunnel statistics
1981  * 	@dstats:	Dummy statistics
1982  * 	@vstats:	Virtual ethernet statistics
1983  *
1984  *	@garp_port:	GARP
1985  *	@mrp_port:	MRP
1986  *
1987  *	@dm_private:	Drop monitor private
1988  *
1989  *	@dev:		Class/net/name entry
1990  *	@sysfs_groups:	Space for optional device, statistics and wireless
1991  *			sysfs groups
1992  *
1993  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1994  *	@rtnl_link_ops:	Rtnl_link_ops
1995  *
1996  *	@gso_max_size:	Maximum size of generic segmentation offload
1997  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1998  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1999  *			NIC for GSO
2000  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
2001  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
2002  * 				for IPv4.
2003  *
2004  *	@dcbnl_ops:	Data Center Bridging netlink ops
2005  *	@num_tc:	Number of traffic classes in the net device
2006  *	@tc_to_txq:	XXX: need comments on this one
2007  *	@prio_tc_map:	XXX: need comments on this one
2008  *
2009  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
2010  *
2011  *	@priomap:	XXX: need comments on this one
2012  *	@phydev:	Physical device may attach itself
2013  *			for hardware timestamping
2014  *	@sfp_bus:	attached &struct sfp_bus structure.
2015  *
2016  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
2017  *
2018  *	@proto_down:	protocol port state information can be sent to the
2019  *			switch driver and used to set the phys state of the
2020  *			switch port.
2021  *
2022  *	@wol_enabled:	Wake-on-LAN is enabled
2023  *
2024  *	@threaded:	napi threaded mode is enabled
2025  *
2026  *	@net_notifier_list:	List of per-net netdev notifier block
2027  *				that follow this device when it is moved
2028  *				to another network namespace.
2029  *
2030  *	@macsec_ops:    MACsec offloading ops
2031  *
2032  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2033  *				offload capabilities of the device
2034  *	@udp_tunnel_nic:	UDP tunnel offload state
2035  *	@xdp_state:		stores info on attached XDP BPF programs
2036  *
2037  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2038  *			dev->addr_list_lock.
2039  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2040  *			keep a list of interfaces to be deleted.
2041  *	@gro_max_size:	Maximum size of aggregated packet in generic
2042  *			receive offload (GRO)
2043  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2044  * 				receive offload (GRO), for IPv4.
2045  *
2046  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2047  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2048  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2049  *	@dev_registered_tracker:	tracker for reference held while
2050  *					registered
2051  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2052  *
2053  *	@devlink_port:	Pointer to related devlink port structure.
2054  *			Assigned by a driver before netdev registration using
2055  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2056  *			during the time netdevice is registered.
2057  *
2058  *	FIXME: cleanup struct net_device such that network protocol info
2059  *	moves out.
2060  */
2061 
2062 struct net_device {
2063 	char			name[IFNAMSIZ];
2064 	struct netdev_name_node	*name_node;
2065 	struct dev_ifalias	__rcu *ifalias;
2066 	/*
2067 	 *	I/O specific fields
2068 	 *	FIXME: Merge these and struct ifmap into one
2069 	 */
2070 	unsigned long		mem_end;
2071 	unsigned long		mem_start;
2072 	unsigned long		base_addr;
2073 
2074 	/*
2075 	 *	Some hardware also needs these fields (state,dev_list,
2076 	 *	napi_list,unreg_list,close_list) but they are not
2077 	 *	part of the usual set specified in Space.c.
2078 	 */
2079 
2080 	unsigned long		state;
2081 
2082 	struct list_head	dev_list;
2083 	struct list_head	napi_list;
2084 	struct list_head	unreg_list;
2085 	struct list_head	close_list;
2086 	struct list_head	ptype_all;
2087 	struct list_head	ptype_specific;
2088 
2089 	struct {
2090 		struct list_head upper;
2091 		struct list_head lower;
2092 	} adj_list;
2093 
2094 	/* Read-mostly cache-line for fast-path access */
2095 	unsigned int		flags;
2096 	xdp_features_t		xdp_features;
2097 	unsigned long long	priv_flags;
2098 	const struct net_device_ops *netdev_ops;
2099 	const struct xdp_metadata_ops *xdp_metadata_ops;
2100 	int			ifindex;
2101 	unsigned short		gflags;
2102 	unsigned short		hard_header_len;
2103 
2104 	/* Note : dev->mtu is often read without holding a lock.
2105 	 * Writers usually hold RTNL.
2106 	 * It is recommended to use READ_ONCE() to annotate the reads,
2107 	 * and to use WRITE_ONCE() to annotate the writes.
2108 	 */
2109 	unsigned int		mtu;
2110 	unsigned short		needed_headroom;
2111 	unsigned short		needed_tailroom;
2112 
2113 	netdev_features_t	features;
2114 	netdev_features_t	hw_features;
2115 	netdev_features_t	wanted_features;
2116 	netdev_features_t	vlan_features;
2117 	netdev_features_t	hw_enc_features;
2118 	netdev_features_t	mpls_features;
2119 	netdev_features_t	gso_partial_features;
2120 
2121 	unsigned int		min_mtu;
2122 	unsigned int		max_mtu;
2123 	unsigned short		type;
2124 	unsigned char		min_header_len;
2125 	unsigned char		name_assign_type;
2126 
2127 	int			group;
2128 
2129 	struct net_device_stats	stats; /* not used by modern drivers */
2130 
2131 	struct net_device_core_stats __percpu *core_stats;
2132 
2133 	/* Stats to monitor link on/off, flapping */
2134 	atomic_t		carrier_up_count;
2135 	atomic_t		carrier_down_count;
2136 
2137 #ifdef CONFIG_WIRELESS_EXT
2138 	const struct iw_handler_def *wireless_handlers;
2139 	struct iw_public_data	*wireless_data;
2140 #endif
2141 	const struct ethtool_ops *ethtool_ops;
2142 #ifdef CONFIG_NET_L3_MASTER_DEV
2143 	const struct l3mdev_ops	*l3mdev_ops;
2144 #endif
2145 #if IS_ENABLED(CONFIG_IPV6)
2146 	const struct ndisc_ops *ndisc_ops;
2147 #endif
2148 
2149 #ifdef CONFIG_XFRM_OFFLOAD
2150 	const struct xfrmdev_ops *xfrmdev_ops;
2151 #endif
2152 
2153 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2154 	const struct tlsdev_ops *tlsdev_ops;
2155 #endif
2156 
2157 	const struct header_ops *header_ops;
2158 
2159 	unsigned char		operstate;
2160 	unsigned char		link_mode;
2161 
2162 	unsigned char		if_port;
2163 	unsigned char		dma;
2164 
2165 	/* Interface address info. */
2166 	unsigned char		perm_addr[MAX_ADDR_LEN];
2167 	unsigned char		addr_assign_type;
2168 	unsigned char		addr_len;
2169 	unsigned char		upper_level;
2170 	unsigned char		lower_level;
2171 
2172 	unsigned short		neigh_priv_len;
2173 	unsigned short          dev_id;
2174 	unsigned short          dev_port;
2175 	unsigned short		padded;
2176 
2177 	spinlock_t		addr_list_lock;
2178 	int			irq;
2179 
2180 	struct netdev_hw_addr_list	uc;
2181 	struct netdev_hw_addr_list	mc;
2182 	struct netdev_hw_addr_list	dev_addrs;
2183 
2184 #ifdef CONFIG_SYSFS
2185 	struct kset		*queues_kset;
2186 #endif
2187 #ifdef CONFIG_LOCKDEP
2188 	struct list_head	unlink_list;
2189 #endif
2190 	unsigned int		promiscuity;
2191 	unsigned int		allmulti;
2192 	bool			uc_promisc;
2193 #ifdef CONFIG_LOCKDEP
2194 	unsigned char		nested_level;
2195 #endif
2196 
2197 
2198 	/* Protocol-specific pointers */
2199 
2200 	struct in_device __rcu	*ip_ptr;
2201 	struct inet6_dev __rcu	*ip6_ptr;
2202 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2203 	struct vlan_info __rcu	*vlan_info;
2204 #endif
2205 #if IS_ENABLED(CONFIG_NET_DSA)
2206 	struct dsa_port		*dsa_ptr;
2207 #endif
2208 #if IS_ENABLED(CONFIG_TIPC)
2209 	struct tipc_bearer __rcu *tipc_ptr;
2210 #endif
2211 #if IS_ENABLED(CONFIG_ATALK)
2212 	void 			*atalk_ptr;
2213 #endif
2214 #if IS_ENABLED(CONFIG_AX25)
2215 	void			*ax25_ptr;
2216 #endif
2217 #if IS_ENABLED(CONFIG_CFG80211)
2218 	struct wireless_dev	*ieee80211_ptr;
2219 #endif
2220 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2221 	struct wpan_dev		*ieee802154_ptr;
2222 #endif
2223 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2224 	struct mpls_dev __rcu	*mpls_ptr;
2225 #endif
2226 #if IS_ENABLED(CONFIG_MCTP)
2227 	struct mctp_dev __rcu	*mctp_ptr;
2228 #endif
2229 
2230 /*
2231  * Cache lines mostly used on receive path (including eth_type_trans())
2232  */
2233 	/* Interface address info used in eth_type_trans() */
2234 	const unsigned char	*dev_addr;
2235 
2236 	struct netdev_rx_queue	*_rx;
2237 	unsigned int		num_rx_queues;
2238 	unsigned int		real_num_rx_queues;
2239 
2240 	struct bpf_prog __rcu	*xdp_prog;
2241 	unsigned long		gro_flush_timeout;
2242 	int			napi_defer_hard_irqs;
2243 #define GRO_LEGACY_MAX_SIZE	65536u
2244 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2245  * and shinfo->gso_segs is a 16bit field.
2246  */
2247 #define GRO_MAX_SIZE		(8 * 65535u)
2248 	unsigned int		gro_max_size;
2249 	unsigned int		gro_ipv4_max_size;
2250 	rx_handler_func_t __rcu	*rx_handler;
2251 	void __rcu		*rx_handler_data;
2252 
2253 #ifdef CONFIG_NET_CLS_ACT
2254 	struct mini_Qdisc __rcu	*miniq_ingress;
2255 #endif
2256 	struct netdev_queue __rcu *ingress_queue;
2257 #ifdef CONFIG_NETFILTER_INGRESS
2258 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2259 #endif
2260 
2261 	unsigned char		broadcast[MAX_ADDR_LEN];
2262 #ifdef CONFIG_RFS_ACCEL
2263 	struct cpu_rmap		*rx_cpu_rmap;
2264 #endif
2265 	struct hlist_node	index_hlist;
2266 
2267 /*
2268  * Cache lines mostly used on transmit path
2269  */
2270 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2271 	unsigned int		num_tx_queues;
2272 	unsigned int		real_num_tx_queues;
2273 	struct Qdisc __rcu	*qdisc;
2274 	unsigned int		tx_queue_len;
2275 	spinlock_t		tx_global_lock;
2276 
2277 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2278 
2279 #ifdef CONFIG_XPS
2280 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2281 #endif
2282 #ifdef CONFIG_NET_CLS_ACT
2283 	struct mini_Qdisc __rcu	*miniq_egress;
2284 #endif
2285 #ifdef CONFIG_NETFILTER_EGRESS
2286 	struct nf_hook_entries __rcu *nf_hooks_egress;
2287 #endif
2288 
2289 #ifdef CONFIG_NET_SCHED
2290 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2291 #endif
2292 	/* These may be needed for future network-power-down code. */
2293 	struct timer_list	watchdog_timer;
2294 	int			watchdog_timeo;
2295 
2296 	u32                     proto_down_reason;
2297 
2298 	struct list_head	todo_list;
2299 
2300 #ifdef CONFIG_PCPU_DEV_REFCNT
2301 	int __percpu		*pcpu_refcnt;
2302 #else
2303 	refcount_t		dev_refcnt;
2304 #endif
2305 	struct ref_tracker_dir	refcnt_tracker;
2306 
2307 	struct list_head	link_watch_list;
2308 
2309 	enum { NETREG_UNINITIALIZED=0,
2310 	       NETREG_REGISTERED,	/* completed register_netdevice */
2311 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2312 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2313 	       NETREG_RELEASED,		/* called free_netdev */
2314 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2315 	} reg_state:8;
2316 
2317 	bool dismantle;
2318 
2319 	enum {
2320 		RTNL_LINK_INITIALIZED,
2321 		RTNL_LINK_INITIALIZING,
2322 	} rtnl_link_state:16;
2323 
2324 	bool needs_free_netdev;
2325 	void (*priv_destructor)(struct net_device *dev);
2326 
2327 #ifdef CONFIG_NETPOLL
2328 	struct netpoll_info __rcu	*npinfo;
2329 #endif
2330 
2331 	possible_net_t			nd_net;
2332 
2333 	/* mid-layer private */
2334 	void				*ml_priv;
2335 	enum netdev_ml_priv_type	ml_priv_type;
2336 
2337 	union {
2338 		struct pcpu_lstats __percpu		*lstats;
2339 		struct pcpu_sw_netstats __percpu	*tstats;
2340 		struct pcpu_dstats __percpu		*dstats;
2341 	};
2342 
2343 #if IS_ENABLED(CONFIG_GARP)
2344 	struct garp_port __rcu	*garp_port;
2345 #endif
2346 #if IS_ENABLED(CONFIG_MRP)
2347 	struct mrp_port __rcu	*mrp_port;
2348 #endif
2349 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2350 	struct dm_hw_stat_delta __rcu *dm_private;
2351 #endif
2352 	struct device		dev;
2353 	const struct attribute_group *sysfs_groups[4];
2354 	const struct attribute_group *sysfs_rx_queue_group;
2355 
2356 	const struct rtnl_link_ops *rtnl_link_ops;
2357 
2358 	/* for setting kernel sock attribute on TCP connection setup */
2359 #define GSO_MAX_SEGS		65535u
2360 #define GSO_LEGACY_MAX_SIZE	65536u
2361 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2362  * and shinfo->gso_segs is a 16bit field.
2363  */
2364 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2365 
2366 	unsigned int		gso_max_size;
2367 #define TSO_LEGACY_MAX_SIZE	65536
2368 #define TSO_MAX_SIZE		UINT_MAX
2369 	unsigned int		tso_max_size;
2370 	u16			gso_max_segs;
2371 #define TSO_MAX_SEGS		U16_MAX
2372 	u16			tso_max_segs;
2373 	unsigned int		gso_ipv4_max_size;
2374 
2375 #ifdef CONFIG_DCB
2376 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2377 #endif
2378 	s16			num_tc;
2379 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2380 	u8			prio_tc_map[TC_BITMASK + 1];
2381 
2382 #if IS_ENABLED(CONFIG_FCOE)
2383 	unsigned int		fcoe_ddp_xid;
2384 #endif
2385 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2386 	struct netprio_map __rcu *priomap;
2387 #endif
2388 	struct phy_device	*phydev;
2389 	struct sfp_bus		*sfp_bus;
2390 	struct lock_class_key	*qdisc_tx_busylock;
2391 	bool			proto_down;
2392 	unsigned		wol_enabled:1;
2393 	unsigned		threaded:1;
2394 
2395 	struct list_head	net_notifier_list;
2396 
2397 #if IS_ENABLED(CONFIG_MACSEC)
2398 	/* MACsec management functions */
2399 	const struct macsec_ops *macsec_ops;
2400 #endif
2401 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2402 	struct udp_tunnel_nic	*udp_tunnel_nic;
2403 
2404 	/* protected by rtnl_lock */
2405 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2406 
2407 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2408 	netdevice_tracker	linkwatch_dev_tracker;
2409 	netdevice_tracker	watchdog_dev_tracker;
2410 	netdevice_tracker	dev_registered_tracker;
2411 	struct rtnl_hw_stats64	*offload_xstats_l3;
2412 
2413 	struct devlink_port	*devlink_port;
2414 };
2415 #define to_net_dev(d) container_of(d, struct net_device, dev)
2416 
2417 /*
2418  * Driver should use this to assign devlink port instance to a netdevice
2419  * before it registers the netdevice. Therefore devlink_port is static
2420  * during the netdev lifetime after it is registered.
2421  */
2422 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2423 ({								\
2424 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2425 	((dev)->devlink_port = (port));				\
2426 })
2427 
2428 static inline bool netif_elide_gro(const struct net_device *dev)
2429 {
2430 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2431 		return true;
2432 	return false;
2433 }
2434 
2435 #define	NETDEV_ALIGN		32
2436 
2437 static inline
2438 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2439 {
2440 	return dev->prio_tc_map[prio & TC_BITMASK];
2441 }
2442 
2443 static inline
2444 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2445 {
2446 	if (tc >= dev->num_tc)
2447 		return -EINVAL;
2448 
2449 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2450 	return 0;
2451 }
2452 
2453 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2454 void netdev_reset_tc(struct net_device *dev);
2455 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2456 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2457 
2458 static inline
2459 int netdev_get_num_tc(struct net_device *dev)
2460 {
2461 	return dev->num_tc;
2462 }
2463 
2464 static inline void net_prefetch(void *p)
2465 {
2466 	prefetch(p);
2467 #if L1_CACHE_BYTES < 128
2468 	prefetch((u8 *)p + L1_CACHE_BYTES);
2469 #endif
2470 }
2471 
2472 static inline void net_prefetchw(void *p)
2473 {
2474 	prefetchw(p);
2475 #if L1_CACHE_BYTES < 128
2476 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2477 #endif
2478 }
2479 
2480 void netdev_unbind_sb_channel(struct net_device *dev,
2481 			      struct net_device *sb_dev);
2482 int netdev_bind_sb_channel_queue(struct net_device *dev,
2483 				 struct net_device *sb_dev,
2484 				 u8 tc, u16 count, u16 offset);
2485 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2486 static inline int netdev_get_sb_channel(struct net_device *dev)
2487 {
2488 	return max_t(int, -dev->num_tc, 0);
2489 }
2490 
2491 static inline
2492 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2493 					 unsigned int index)
2494 {
2495 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2496 	return &dev->_tx[index];
2497 }
2498 
2499 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2500 						    const struct sk_buff *skb)
2501 {
2502 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2503 }
2504 
2505 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2506 					    void (*f)(struct net_device *,
2507 						      struct netdev_queue *,
2508 						      void *),
2509 					    void *arg)
2510 {
2511 	unsigned int i;
2512 
2513 	for (i = 0; i < dev->num_tx_queues; i++)
2514 		f(dev, &dev->_tx[i], arg);
2515 }
2516 
2517 #define netdev_lockdep_set_classes(dev)				\
2518 {								\
2519 	static struct lock_class_key qdisc_tx_busylock_key;	\
2520 	static struct lock_class_key qdisc_xmit_lock_key;	\
2521 	static struct lock_class_key dev_addr_list_lock_key;	\
2522 	unsigned int i;						\
2523 								\
2524 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2525 	lockdep_set_class(&(dev)->addr_list_lock,		\
2526 			  &dev_addr_list_lock_key);		\
2527 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2528 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2529 				  &qdisc_xmit_lock_key);	\
2530 }
2531 
2532 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2533 		     struct net_device *sb_dev);
2534 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2535 					 struct sk_buff *skb,
2536 					 struct net_device *sb_dev);
2537 
2538 /* returns the headroom that the master device needs to take in account
2539  * when forwarding to this dev
2540  */
2541 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2542 {
2543 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2544 }
2545 
2546 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2547 {
2548 	if (dev->netdev_ops->ndo_set_rx_headroom)
2549 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2550 }
2551 
2552 /* set the device rx headroom to the dev's default */
2553 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2554 {
2555 	netdev_set_rx_headroom(dev, -1);
2556 }
2557 
2558 static inline void *netdev_get_ml_priv(struct net_device *dev,
2559 				       enum netdev_ml_priv_type type)
2560 {
2561 	if (dev->ml_priv_type != type)
2562 		return NULL;
2563 
2564 	return dev->ml_priv;
2565 }
2566 
2567 static inline void netdev_set_ml_priv(struct net_device *dev,
2568 				      void *ml_priv,
2569 				      enum netdev_ml_priv_type type)
2570 {
2571 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2572 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2573 	     dev->ml_priv_type, type);
2574 	WARN(!dev->ml_priv_type && dev->ml_priv,
2575 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2576 
2577 	dev->ml_priv = ml_priv;
2578 	dev->ml_priv_type = type;
2579 }
2580 
2581 /*
2582  * Net namespace inlines
2583  */
2584 static inline
2585 struct net *dev_net(const struct net_device *dev)
2586 {
2587 	return read_pnet(&dev->nd_net);
2588 }
2589 
2590 static inline
2591 void dev_net_set(struct net_device *dev, struct net *net)
2592 {
2593 	write_pnet(&dev->nd_net, net);
2594 }
2595 
2596 /**
2597  *	netdev_priv - access network device private data
2598  *	@dev: network device
2599  *
2600  * Get network device private data
2601  */
2602 static inline void *netdev_priv(const struct net_device *dev)
2603 {
2604 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2605 }
2606 
2607 /* Set the sysfs physical device reference for the network logical device
2608  * if set prior to registration will cause a symlink during initialization.
2609  */
2610 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2611 
2612 /* Set the sysfs device type for the network logical device to allow
2613  * fine-grained identification of different network device types. For
2614  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2615  */
2616 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2617 
2618 /* Default NAPI poll() weight
2619  * Device drivers are strongly advised to not use bigger value
2620  */
2621 #define NAPI_POLL_WEIGHT 64
2622 
2623 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2624 			   int (*poll)(struct napi_struct *, int), int weight);
2625 
2626 /**
2627  * netif_napi_add() - initialize a NAPI context
2628  * @dev:  network device
2629  * @napi: NAPI context
2630  * @poll: polling function
2631  *
2632  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2633  * *any* of the other NAPI-related functions.
2634  */
2635 static inline void
2636 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2637 	       int (*poll)(struct napi_struct *, int))
2638 {
2639 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2640 }
2641 
2642 static inline void
2643 netif_napi_add_tx_weight(struct net_device *dev,
2644 			 struct napi_struct *napi,
2645 			 int (*poll)(struct napi_struct *, int),
2646 			 int weight)
2647 {
2648 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2649 	netif_napi_add_weight(dev, napi, poll, weight);
2650 }
2651 
2652 /**
2653  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2654  * @dev:  network device
2655  * @napi: NAPI context
2656  * @poll: polling function
2657  *
2658  * This variant of netif_napi_add() should be used from drivers using NAPI
2659  * to exclusively poll a TX queue.
2660  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2661  */
2662 static inline void netif_napi_add_tx(struct net_device *dev,
2663 				     struct napi_struct *napi,
2664 				     int (*poll)(struct napi_struct *, int))
2665 {
2666 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2667 }
2668 
2669 /**
2670  *  __netif_napi_del - remove a NAPI context
2671  *  @napi: NAPI context
2672  *
2673  * Warning: caller must observe RCU grace period before freeing memory
2674  * containing @napi. Drivers might want to call this helper to combine
2675  * all the needed RCU grace periods into a single one.
2676  */
2677 void __netif_napi_del(struct napi_struct *napi);
2678 
2679 /**
2680  *  netif_napi_del - remove a NAPI context
2681  *  @napi: NAPI context
2682  *
2683  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2684  */
2685 static inline void netif_napi_del(struct napi_struct *napi)
2686 {
2687 	__netif_napi_del(napi);
2688 	synchronize_net();
2689 }
2690 
2691 struct packet_type {
2692 	__be16			type;	/* This is really htons(ether_type). */
2693 	bool			ignore_outgoing;
2694 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2695 	netdevice_tracker	dev_tracker;
2696 	int			(*func) (struct sk_buff *,
2697 					 struct net_device *,
2698 					 struct packet_type *,
2699 					 struct net_device *);
2700 	void			(*list_func) (struct list_head *,
2701 					      struct packet_type *,
2702 					      struct net_device *);
2703 	bool			(*id_match)(struct packet_type *ptype,
2704 					    struct sock *sk);
2705 	struct net		*af_packet_net;
2706 	void			*af_packet_priv;
2707 	struct list_head	list;
2708 };
2709 
2710 struct offload_callbacks {
2711 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2712 						netdev_features_t features);
2713 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2714 						struct sk_buff *skb);
2715 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2716 };
2717 
2718 struct packet_offload {
2719 	__be16			 type;	/* This is really htons(ether_type). */
2720 	u16			 priority;
2721 	struct offload_callbacks callbacks;
2722 	struct list_head	 list;
2723 };
2724 
2725 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2726 struct pcpu_sw_netstats {
2727 	u64_stats_t		rx_packets;
2728 	u64_stats_t		rx_bytes;
2729 	u64_stats_t		tx_packets;
2730 	u64_stats_t		tx_bytes;
2731 	struct u64_stats_sync   syncp;
2732 } __aligned(4 * sizeof(u64));
2733 
2734 struct pcpu_lstats {
2735 	u64_stats_t packets;
2736 	u64_stats_t bytes;
2737 	struct u64_stats_sync syncp;
2738 } __aligned(2 * sizeof(u64));
2739 
2740 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2741 
2742 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2743 {
2744 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2745 
2746 	u64_stats_update_begin(&tstats->syncp);
2747 	u64_stats_add(&tstats->rx_bytes, len);
2748 	u64_stats_inc(&tstats->rx_packets);
2749 	u64_stats_update_end(&tstats->syncp);
2750 }
2751 
2752 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2753 					  unsigned int packets,
2754 					  unsigned int len)
2755 {
2756 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2757 
2758 	u64_stats_update_begin(&tstats->syncp);
2759 	u64_stats_add(&tstats->tx_bytes, len);
2760 	u64_stats_add(&tstats->tx_packets, packets);
2761 	u64_stats_update_end(&tstats->syncp);
2762 }
2763 
2764 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2765 {
2766 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2767 
2768 	u64_stats_update_begin(&lstats->syncp);
2769 	u64_stats_add(&lstats->bytes, len);
2770 	u64_stats_inc(&lstats->packets);
2771 	u64_stats_update_end(&lstats->syncp);
2772 }
2773 
2774 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2775 ({									\
2776 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2777 	if (pcpu_stats)	{						\
2778 		int __cpu;						\
2779 		for_each_possible_cpu(__cpu) {				\
2780 			typeof(type) *stat;				\
2781 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2782 			u64_stats_init(&stat->syncp);			\
2783 		}							\
2784 	}								\
2785 	pcpu_stats;							\
2786 })
2787 
2788 #define netdev_alloc_pcpu_stats(type)					\
2789 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2790 
2791 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2792 ({									\
2793 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2794 	if (pcpu_stats) {						\
2795 		int __cpu;						\
2796 		for_each_possible_cpu(__cpu) {				\
2797 			typeof(type) *stat;				\
2798 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2799 			u64_stats_init(&stat->syncp);			\
2800 		}							\
2801 	}								\
2802 	pcpu_stats;							\
2803 })
2804 
2805 enum netdev_lag_tx_type {
2806 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2807 	NETDEV_LAG_TX_TYPE_RANDOM,
2808 	NETDEV_LAG_TX_TYPE_BROADCAST,
2809 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2810 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2811 	NETDEV_LAG_TX_TYPE_HASH,
2812 };
2813 
2814 enum netdev_lag_hash {
2815 	NETDEV_LAG_HASH_NONE,
2816 	NETDEV_LAG_HASH_L2,
2817 	NETDEV_LAG_HASH_L34,
2818 	NETDEV_LAG_HASH_L23,
2819 	NETDEV_LAG_HASH_E23,
2820 	NETDEV_LAG_HASH_E34,
2821 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2822 	NETDEV_LAG_HASH_UNKNOWN,
2823 };
2824 
2825 struct netdev_lag_upper_info {
2826 	enum netdev_lag_tx_type tx_type;
2827 	enum netdev_lag_hash hash_type;
2828 };
2829 
2830 struct netdev_lag_lower_state_info {
2831 	u8 link_up : 1,
2832 	   tx_enabled : 1;
2833 };
2834 
2835 #include <linux/notifier.h>
2836 
2837 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2838  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2839  * adding new types.
2840  */
2841 enum netdev_cmd {
2842 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2843 	NETDEV_DOWN,
2844 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2845 				   detected a hardware crash and restarted
2846 				   - we can use this eg to kick tcp sessions
2847 				   once done */
2848 	NETDEV_CHANGE,		/* Notify device state change */
2849 	NETDEV_REGISTER,
2850 	NETDEV_UNREGISTER,
2851 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2852 	NETDEV_CHANGEADDR,	/* notify after the address change */
2853 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2854 	NETDEV_GOING_DOWN,
2855 	NETDEV_CHANGENAME,
2856 	NETDEV_FEAT_CHANGE,
2857 	NETDEV_BONDING_FAILOVER,
2858 	NETDEV_PRE_UP,
2859 	NETDEV_PRE_TYPE_CHANGE,
2860 	NETDEV_POST_TYPE_CHANGE,
2861 	NETDEV_POST_INIT,
2862 	NETDEV_PRE_UNINIT,
2863 	NETDEV_RELEASE,
2864 	NETDEV_NOTIFY_PEERS,
2865 	NETDEV_JOIN,
2866 	NETDEV_CHANGEUPPER,
2867 	NETDEV_RESEND_IGMP,
2868 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2869 	NETDEV_CHANGEINFODATA,
2870 	NETDEV_BONDING_INFO,
2871 	NETDEV_PRECHANGEUPPER,
2872 	NETDEV_CHANGELOWERSTATE,
2873 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2874 	NETDEV_UDP_TUNNEL_DROP_INFO,
2875 	NETDEV_CHANGE_TX_QUEUE_LEN,
2876 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2877 	NETDEV_CVLAN_FILTER_DROP_INFO,
2878 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2879 	NETDEV_SVLAN_FILTER_DROP_INFO,
2880 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2881 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2882 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2883 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2884 	NETDEV_XDP_FEAT_CHANGE,
2885 };
2886 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2887 
2888 int register_netdevice_notifier(struct notifier_block *nb);
2889 int unregister_netdevice_notifier(struct notifier_block *nb);
2890 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2891 int unregister_netdevice_notifier_net(struct net *net,
2892 				      struct notifier_block *nb);
2893 int register_netdevice_notifier_dev_net(struct net_device *dev,
2894 					struct notifier_block *nb,
2895 					struct netdev_net_notifier *nn);
2896 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2897 					  struct notifier_block *nb,
2898 					  struct netdev_net_notifier *nn);
2899 
2900 struct netdev_notifier_info {
2901 	struct net_device	*dev;
2902 	struct netlink_ext_ack	*extack;
2903 };
2904 
2905 struct netdev_notifier_info_ext {
2906 	struct netdev_notifier_info info; /* must be first */
2907 	union {
2908 		u32 mtu;
2909 	} ext;
2910 };
2911 
2912 struct netdev_notifier_change_info {
2913 	struct netdev_notifier_info info; /* must be first */
2914 	unsigned int flags_changed;
2915 };
2916 
2917 struct netdev_notifier_changeupper_info {
2918 	struct netdev_notifier_info info; /* must be first */
2919 	struct net_device *upper_dev; /* new upper dev */
2920 	bool master; /* is upper dev master */
2921 	bool linking; /* is the notification for link or unlink */
2922 	void *upper_info; /* upper dev info */
2923 };
2924 
2925 struct netdev_notifier_changelowerstate_info {
2926 	struct netdev_notifier_info info; /* must be first */
2927 	void *lower_state_info; /* is lower dev state */
2928 };
2929 
2930 struct netdev_notifier_pre_changeaddr_info {
2931 	struct netdev_notifier_info info; /* must be first */
2932 	const unsigned char *dev_addr;
2933 };
2934 
2935 enum netdev_offload_xstats_type {
2936 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2937 };
2938 
2939 struct netdev_notifier_offload_xstats_info {
2940 	struct netdev_notifier_info info; /* must be first */
2941 	enum netdev_offload_xstats_type type;
2942 
2943 	union {
2944 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2945 		struct netdev_notifier_offload_xstats_rd *report_delta;
2946 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2947 		struct netdev_notifier_offload_xstats_ru *report_used;
2948 	};
2949 };
2950 
2951 int netdev_offload_xstats_enable(struct net_device *dev,
2952 				 enum netdev_offload_xstats_type type,
2953 				 struct netlink_ext_ack *extack);
2954 int netdev_offload_xstats_disable(struct net_device *dev,
2955 				  enum netdev_offload_xstats_type type);
2956 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2957 				   enum netdev_offload_xstats_type type);
2958 int netdev_offload_xstats_get(struct net_device *dev,
2959 			      enum netdev_offload_xstats_type type,
2960 			      struct rtnl_hw_stats64 *stats, bool *used,
2961 			      struct netlink_ext_ack *extack);
2962 void
2963 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2964 				   const struct rtnl_hw_stats64 *stats);
2965 void
2966 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2967 void netdev_offload_xstats_push_delta(struct net_device *dev,
2968 				      enum netdev_offload_xstats_type type,
2969 				      const struct rtnl_hw_stats64 *stats);
2970 
2971 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2972 					     struct net_device *dev)
2973 {
2974 	info->dev = dev;
2975 	info->extack = NULL;
2976 }
2977 
2978 static inline struct net_device *
2979 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2980 {
2981 	return info->dev;
2982 }
2983 
2984 static inline struct netlink_ext_ack *
2985 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2986 {
2987 	return info->extack;
2988 }
2989 
2990 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2991 int call_netdevice_notifiers_info(unsigned long val,
2992 				  struct netdev_notifier_info *info);
2993 
2994 extern rwlock_t				dev_base_lock;		/* Device list lock */
2995 
2996 #define for_each_netdev(net, d)		\
2997 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2998 #define for_each_netdev_reverse(net, d)	\
2999 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3000 #define for_each_netdev_rcu(net, d)		\
3001 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3002 #define for_each_netdev_safe(net, d, n)	\
3003 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3004 #define for_each_netdev_continue(net, d)		\
3005 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3006 #define for_each_netdev_continue_reverse(net, d)		\
3007 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3008 						     dev_list)
3009 #define for_each_netdev_continue_rcu(net, d)		\
3010 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3011 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3012 		for_each_netdev_rcu(&init_net, slave)	\
3013 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3014 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3015 
3016 static inline struct net_device *next_net_device(struct net_device *dev)
3017 {
3018 	struct list_head *lh;
3019 	struct net *net;
3020 
3021 	net = dev_net(dev);
3022 	lh = dev->dev_list.next;
3023 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3024 }
3025 
3026 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3027 {
3028 	struct list_head *lh;
3029 	struct net *net;
3030 
3031 	net = dev_net(dev);
3032 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3033 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3034 }
3035 
3036 static inline struct net_device *first_net_device(struct net *net)
3037 {
3038 	return list_empty(&net->dev_base_head) ? NULL :
3039 		net_device_entry(net->dev_base_head.next);
3040 }
3041 
3042 static inline struct net_device *first_net_device_rcu(struct net *net)
3043 {
3044 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3045 
3046 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3047 }
3048 
3049 int netdev_boot_setup_check(struct net_device *dev);
3050 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3051 				       const char *hwaddr);
3052 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3053 void dev_add_pack(struct packet_type *pt);
3054 void dev_remove_pack(struct packet_type *pt);
3055 void __dev_remove_pack(struct packet_type *pt);
3056 void dev_add_offload(struct packet_offload *po);
3057 void dev_remove_offload(struct packet_offload *po);
3058 
3059 int dev_get_iflink(const struct net_device *dev);
3060 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3061 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3062 			  struct net_device_path_stack *stack);
3063 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3064 				      unsigned short mask);
3065 struct net_device *dev_get_by_name(struct net *net, const char *name);
3066 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3067 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3068 bool netdev_name_in_use(struct net *net, const char *name);
3069 int dev_alloc_name(struct net_device *dev, const char *name);
3070 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3071 void dev_close(struct net_device *dev);
3072 void dev_close_many(struct list_head *head, bool unlink);
3073 void dev_disable_lro(struct net_device *dev);
3074 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3075 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3076 		     struct net_device *sb_dev);
3077 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3078 		       struct net_device *sb_dev);
3079 
3080 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3081 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3082 
3083 static inline int dev_queue_xmit(struct sk_buff *skb)
3084 {
3085 	return __dev_queue_xmit(skb, NULL);
3086 }
3087 
3088 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3089 				       struct net_device *sb_dev)
3090 {
3091 	return __dev_queue_xmit(skb, sb_dev);
3092 }
3093 
3094 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3095 {
3096 	int ret;
3097 
3098 	ret = __dev_direct_xmit(skb, queue_id);
3099 	if (!dev_xmit_complete(ret))
3100 		kfree_skb(skb);
3101 	return ret;
3102 }
3103 
3104 int register_netdevice(struct net_device *dev);
3105 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3106 void unregister_netdevice_many(struct list_head *head);
3107 static inline void unregister_netdevice(struct net_device *dev)
3108 {
3109 	unregister_netdevice_queue(dev, NULL);
3110 }
3111 
3112 int netdev_refcnt_read(const struct net_device *dev);
3113 void free_netdev(struct net_device *dev);
3114 void netdev_freemem(struct net_device *dev);
3115 int init_dummy_netdev(struct net_device *dev);
3116 
3117 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3118 					 struct sk_buff *skb,
3119 					 bool all_slaves);
3120 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3121 					    struct sock *sk);
3122 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3123 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3124 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3125 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3126 int dev_restart(struct net_device *dev);
3127 
3128 
3129 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3130 				  unsigned short type,
3131 				  const void *daddr, const void *saddr,
3132 				  unsigned int len)
3133 {
3134 	if (!dev->header_ops || !dev->header_ops->create)
3135 		return 0;
3136 
3137 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3138 }
3139 
3140 static inline int dev_parse_header(const struct sk_buff *skb,
3141 				   unsigned char *haddr)
3142 {
3143 	const struct net_device *dev = skb->dev;
3144 
3145 	if (!dev->header_ops || !dev->header_ops->parse)
3146 		return 0;
3147 	return dev->header_ops->parse(skb, haddr);
3148 }
3149 
3150 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3151 {
3152 	const struct net_device *dev = skb->dev;
3153 
3154 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3155 		return 0;
3156 	return dev->header_ops->parse_protocol(skb);
3157 }
3158 
3159 /* ll_header must have at least hard_header_len allocated */
3160 static inline bool dev_validate_header(const struct net_device *dev,
3161 				       char *ll_header, int len)
3162 {
3163 	if (likely(len >= dev->hard_header_len))
3164 		return true;
3165 	if (len < dev->min_header_len)
3166 		return false;
3167 
3168 	if (capable(CAP_SYS_RAWIO)) {
3169 		memset(ll_header + len, 0, dev->hard_header_len - len);
3170 		return true;
3171 	}
3172 
3173 	if (dev->header_ops && dev->header_ops->validate)
3174 		return dev->header_ops->validate(ll_header, len);
3175 
3176 	return false;
3177 }
3178 
3179 static inline bool dev_has_header(const struct net_device *dev)
3180 {
3181 	return dev->header_ops && dev->header_ops->create;
3182 }
3183 
3184 /*
3185  * Incoming packets are placed on per-CPU queues
3186  */
3187 struct softnet_data {
3188 	struct list_head	poll_list;
3189 	struct sk_buff_head	process_queue;
3190 
3191 	/* stats */
3192 	unsigned int		processed;
3193 	unsigned int		time_squeeze;
3194 #ifdef CONFIG_RPS
3195 	struct softnet_data	*rps_ipi_list;
3196 #endif
3197 
3198 	bool			in_net_rx_action;
3199 	bool			in_napi_threaded_poll;
3200 
3201 #ifdef CONFIG_NET_FLOW_LIMIT
3202 	struct sd_flow_limit __rcu *flow_limit;
3203 #endif
3204 	struct Qdisc		*output_queue;
3205 	struct Qdisc		**output_queue_tailp;
3206 	struct sk_buff		*completion_queue;
3207 #ifdef CONFIG_XFRM_OFFLOAD
3208 	struct sk_buff_head	xfrm_backlog;
3209 #endif
3210 	/* written and read only by owning cpu: */
3211 	struct {
3212 		u16 recursion;
3213 		u8  more;
3214 #ifdef CONFIG_NET_EGRESS
3215 		u8  skip_txqueue;
3216 #endif
3217 	} xmit;
3218 #ifdef CONFIG_RPS
3219 	/* input_queue_head should be written by cpu owning this struct,
3220 	 * and only read by other cpus. Worth using a cache line.
3221 	 */
3222 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3223 
3224 	/* Elements below can be accessed between CPUs for RPS/RFS */
3225 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3226 	struct softnet_data	*rps_ipi_next;
3227 	unsigned int		cpu;
3228 	unsigned int		input_queue_tail;
3229 #endif
3230 	unsigned int		received_rps;
3231 	unsigned int		dropped;
3232 	struct sk_buff_head	input_pkt_queue;
3233 	struct napi_struct	backlog;
3234 
3235 	/* Another possibly contended cache line */
3236 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3237 	int			defer_count;
3238 	int			defer_ipi_scheduled;
3239 	struct sk_buff		*defer_list;
3240 	call_single_data_t	defer_csd;
3241 };
3242 
3243 static inline void input_queue_head_incr(struct softnet_data *sd)
3244 {
3245 #ifdef CONFIG_RPS
3246 	sd->input_queue_head++;
3247 #endif
3248 }
3249 
3250 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3251 					      unsigned int *qtail)
3252 {
3253 #ifdef CONFIG_RPS
3254 	*qtail = ++sd->input_queue_tail;
3255 #endif
3256 }
3257 
3258 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3259 
3260 static inline int dev_recursion_level(void)
3261 {
3262 	return this_cpu_read(softnet_data.xmit.recursion);
3263 }
3264 
3265 #define XMIT_RECURSION_LIMIT	8
3266 static inline bool dev_xmit_recursion(void)
3267 {
3268 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3269 			XMIT_RECURSION_LIMIT);
3270 }
3271 
3272 static inline void dev_xmit_recursion_inc(void)
3273 {
3274 	__this_cpu_inc(softnet_data.xmit.recursion);
3275 }
3276 
3277 static inline void dev_xmit_recursion_dec(void)
3278 {
3279 	__this_cpu_dec(softnet_data.xmit.recursion);
3280 }
3281 
3282 void __netif_schedule(struct Qdisc *q);
3283 void netif_schedule_queue(struct netdev_queue *txq);
3284 
3285 static inline void netif_tx_schedule_all(struct net_device *dev)
3286 {
3287 	unsigned int i;
3288 
3289 	for (i = 0; i < dev->num_tx_queues; i++)
3290 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3291 }
3292 
3293 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3294 {
3295 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3296 }
3297 
3298 /**
3299  *	netif_start_queue - allow transmit
3300  *	@dev: network device
3301  *
3302  *	Allow upper layers to call the device hard_start_xmit routine.
3303  */
3304 static inline void netif_start_queue(struct net_device *dev)
3305 {
3306 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3307 }
3308 
3309 static inline void netif_tx_start_all_queues(struct net_device *dev)
3310 {
3311 	unsigned int i;
3312 
3313 	for (i = 0; i < dev->num_tx_queues; i++) {
3314 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3315 		netif_tx_start_queue(txq);
3316 	}
3317 }
3318 
3319 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3320 
3321 /**
3322  *	netif_wake_queue - restart transmit
3323  *	@dev: network device
3324  *
3325  *	Allow upper layers to call the device hard_start_xmit routine.
3326  *	Used for flow control when transmit resources are available.
3327  */
3328 static inline void netif_wake_queue(struct net_device *dev)
3329 {
3330 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3331 }
3332 
3333 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3334 {
3335 	unsigned int i;
3336 
3337 	for (i = 0; i < dev->num_tx_queues; i++) {
3338 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3339 		netif_tx_wake_queue(txq);
3340 	}
3341 }
3342 
3343 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3344 {
3345 	/* Must be an atomic op see netif_txq_try_stop() */
3346 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3347 }
3348 
3349 /**
3350  *	netif_stop_queue - stop transmitted packets
3351  *	@dev: network device
3352  *
3353  *	Stop upper layers calling the device hard_start_xmit routine.
3354  *	Used for flow control when transmit resources are unavailable.
3355  */
3356 static inline void netif_stop_queue(struct net_device *dev)
3357 {
3358 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3359 }
3360 
3361 void netif_tx_stop_all_queues(struct net_device *dev);
3362 
3363 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3364 {
3365 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3366 }
3367 
3368 /**
3369  *	netif_queue_stopped - test if transmit queue is flowblocked
3370  *	@dev: network device
3371  *
3372  *	Test if transmit queue on device is currently unable to send.
3373  */
3374 static inline bool netif_queue_stopped(const struct net_device *dev)
3375 {
3376 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3377 }
3378 
3379 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3380 {
3381 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3382 }
3383 
3384 static inline bool
3385 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3386 {
3387 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3388 }
3389 
3390 static inline bool
3391 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3392 {
3393 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3394 }
3395 
3396 /**
3397  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3398  *	@dev_queue: pointer to transmit queue
3399  *	@min_limit: dql minimum limit
3400  *
3401  * Forces xmit_more() to return true until the minimum threshold
3402  * defined by @min_limit is reached (or until the tx queue is
3403  * empty). Warning: to be use with care, misuse will impact the
3404  * latency.
3405  */
3406 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3407 						  unsigned int min_limit)
3408 {
3409 #ifdef CONFIG_BQL
3410 	dev_queue->dql.min_limit = min_limit;
3411 #endif
3412 }
3413 
3414 /**
3415  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3416  *	@dev_queue: pointer to transmit queue
3417  *
3418  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3419  * to give appropriate hint to the CPU.
3420  */
3421 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3422 {
3423 #ifdef CONFIG_BQL
3424 	prefetchw(&dev_queue->dql.num_queued);
3425 #endif
3426 }
3427 
3428 /**
3429  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3430  *	@dev_queue: pointer to transmit queue
3431  *
3432  * BQL enabled drivers might use this helper in their TX completion path,
3433  * to give appropriate hint to the CPU.
3434  */
3435 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3436 {
3437 #ifdef CONFIG_BQL
3438 	prefetchw(&dev_queue->dql.limit);
3439 #endif
3440 }
3441 
3442 /**
3443  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3444  *	@dev_queue: network device queue
3445  *	@bytes: number of bytes queued to the device queue
3446  *
3447  *	Report the number of bytes queued for sending/completion to the network
3448  *	device hardware queue. @bytes should be a good approximation and should
3449  *	exactly match netdev_completed_queue() @bytes.
3450  *	This is typically called once per packet, from ndo_start_xmit().
3451  */
3452 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3453 					unsigned int bytes)
3454 {
3455 #ifdef CONFIG_BQL
3456 	dql_queued(&dev_queue->dql, bytes);
3457 
3458 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3459 		return;
3460 
3461 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3462 
3463 	/*
3464 	 * The XOFF flag must be set before checking the dql_avail below,
3465 	 * because in netdev_tx_completed_queue we update the dql_completed
3466 	 * before checking the XOFF flag.
3467 	 */
3468 	smp_mb();
3469 
3470 	/* check again in case another CPU has just made room avail */
3471 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3472 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3473 #endif
3474 }
3475 
3476 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3477  * that they should not test BQL status themselves.
3478  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3479  * skb of a batch.
3480  * Returns true if the doorbell must be used to kick the NIC.
3481  */
3482 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3483 					  unsigned int bytes,
3484 					  bool xmit_more)
3485 {
3486 	if (xmit_more) {
3487 #ifdef CONFIG_BQL
3488 		dql_queued(&dev_queue->dql, bytes);
3489 #endif
3490 		return netif_tx_queue_stopped(dev_queue);
3491 	}
3492 	netdev_tx_sent_queue(dev_queue, bytes);
3493 	return true;
3494 }
3495 
3496 /**
3497  *	netdev_sent_queue - report the number of bytes queued to hardware
3498  *	@dev: network device
3499  *	@bytes: number of bytes queued to the hardware device queue
3500  *
3501  *	Report the number of bytes queued for sending/completion to the network
3502  *	device hardware queue#0. @bytes should be a good approximation and should
3503  *	exactly match netdev_completed_queue() @bytes.
3504  *	This is typically called once per packet, from ndo_start_xmit().
3505  */
3506 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3507 {
3508 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3509 }
3510 
3511 static inline bool __netdev_sent_queue(struct net_device *dev,
3512 				       unsigned int bytes,
3513 				       bool xmit_more)
3514 {
3515 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3516 				      xmit_more);
3517 }
3518 
3519 /**
3520  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3521  *	@dev_queue: network device queue
3522  *	@pkts: number of packets (currently ignored)
3523  *	@bytes: number of bytes dequeued from the device queue
3524  *
3525  *	Must be called at most once per TX completion round (and not per
3526  *	individual packet), so that BQL can adjust its limits appropriately.
3527  */
3528 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3529 					     unsigned int pkts, unsigned int bytes)
3530 {
3531 #ifdef CONFIG_BQL
3532 	if (unlikely(!bytes))
3533 		return;
3534 
3535 	dql_completed(&dev_queue->dql, bytes);
3536 
3537 	/*
3538 	 * Without the memory barrier there is a small possiblity that
3539 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3540 	 * be stopped forever
3541 	 */
3542 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3543 
3544 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3545 		return;
3546 
3547 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3548 		netif_schedule_queue(dev_queue);
3549 #endif
3550 }
3551 
3552 /**
3553  * 	netdev_completed_queue - report bytes and packets completed by device
3554  * 	@dev: network device
3555  * 	@pkts: actual number of packets sent over the medium
3556  * 	@bytes: actual number of bytes sent over the medium
3557  *
3558  * 	Report the number of bytes and packets transmitted by the network device
3559  * 	hardware queue over the physical medium, @bytes must exactly match the
3560  * 	@bytes amount passed to netdev_sent_queue()
3561  */
3562 static inline void netdev_completed_queue(struct net_device *dev,
3563 					  unsigned int pkts, unsigned int bytes)
3564 {
3565 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3566 }
3567 
3568 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3569 {
3570 #ifdef CONFIG_BQL
3571 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3572 	dql_reset(&q->dql);
3573 #endif
3574 }
3575 
3576 /**
3577  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3578  * 	@dev_queue: network device
3579  *
3580  * 	Reset the bytes and packet count of a network device and clear the
3581  * 	software flow control OFF bit for this network device
3582  */
3583 static inline void netdev_reset_queue(struct net_device *dev_queue)
3584 {
3585 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3586 }
3587 
3588 /**
3589  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3590  * 	@dev: network device
3591  * 	@queue_index: given tx queue index
3592  *
3593  * 	Returns 0 if given tx queue index >= number of device tx queues,
3594  * 	otherwise returns the originally passed tx queue index.
3595  */
3596 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3597 {
3598 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3599 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3600 				     dev->name, queue_index,
3601 				     dev->real_num_tx_queues);
3602 		return 0;
3603 	}
3604 
3605 	return queue_index;
3606 }
3607 
3608 /**
3609  *	netif_running - test if up
3610  *	@dev: network device
3611  *
3612  *	Test if the device has been brought up.
3613  */
3614 static inline bool netif_running(const struct net_device *dev)
3615 {
3616 	return test_bit(__LINK_STATE_START, &dev->state);
3617 }
3618 
3619 /*
3620  * Routines to manage the subqueues on a device.  We only need start,
3621  * stop, and a check if it's stopped.  All other device management is
3622  * done at the overall netdevice level.
3623  * Also test the device if we're multiqueue.
3624  */
3625 
3626 /**
3627  *	netif_start_subqueue - allow sending packets on subqueue
3628  *	@dev: network device
3629  *	@queue_index: sub queue index
3630  *
3631  * Start individual transmit queue of a device with multiple transmit queues.
3632  */
3633 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3634 {
3635 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3636 
3637 	netif_tx_start_queue(txq);
3638 }
3639 
3640 /**
3641  *	netif_stop_subqueue - stop sending packets on subqueue
3642  *	@dev: network device
3643  *	@queue_index: sub queue index
3644  *
3645  * Stop individual transmit queue of a device with multiple transmit queues.
3646  */
3647 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3648 {
3649 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3650 	netif_tx_stop_queue(txq);
3651 }
3652 
3653 /**
3654  *	__netif_subqueue_stopped - test status of subqueue
3655  *	@dev: network device
3656  *	@queue_index: sub queue index
3657  *
3658  * Check individual transmit queue of a device with multiple transmit queues.
3659  */
3660 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3661 					    u16 queue_index)
3662 {
3663 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3664 
3665 	return netif_tx_queue_stopped(txq);
3666 }
3667 
3668 /**
3669  *	netif_subqueue_stopped - test status of subqueue
3670  *	@dev: network device
3671  *	@skb: sub queue buffer pointer
3672  *
3673  * Check individual transmit queue of a device with multiple transmit queues.
3674  */
3675 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3676 					  struct sk_buff *skb)
3677 {
3678 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3679 }
3680 
3681 /**
3682  *	netif_wake_subqueue - allow sending packets on subqueue
3683  *	@dev: network device
3684  *	@queue_index: sub queue index
3685  *
3686  * Resume individual transmit queue of a device with multiple transmit queues.
3687  */
3688 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3689 {
3690 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3691 
3692 	netif_tx_wake_queue(txq);
3693 }
3694 
3695 #ifdef CONFIG_XPS
3696 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3697 			u16 index);
3698 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3699 			  u16 index, enum xps_map_type type);
3700 
3701 /**
3702  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3703  *	@j: CPU/Rx queue index
3704  *	@mask: bitmask of all cpus/rx queues
3705  *	@nr_bits: number of bits in the bitmask
3706  *
3707  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3708  */
3709 static inline bool netif_attr_test_mask(unsigned long j,
3710 					const unsigned long *mask,
3711 					unsigned int nr_bits)
3712 {
3713 	cpu_max_bits_warn(j, nr_bits);
3714 	return test_bit(j, mask);
3715 }
3716 
3717 /**
3718  *	netif_attr_test_online - Test for online CPU/Rx queue
3719  *	@j: CPU/Rx queue index
3720  *	@online_mask: bitmask for CPUs/Rx queues that are online
3721  *	@nr_bits: number of bits in the bitmask
3722  *
3723  * Returns true if a CPU/Rx queue is online.
3724  */
3725 static inline bool netif_attr_test_online(unsigned long j,
3726 					  const unsigned long *online_mask,
3727 					  unsigned int nr_bits)
3728 {
3729 	cpu_max_bits_warn(j, nr_bits);
3730 
3731 	if (online_mask)
3732 		return test_bit(j, online_mask);
3733 
3734 	return (j < nr_bits);
3735 }
3736 
3737 /**
3738  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3739  *	@n: CPU/Rx queue index
3740  *	@srcp: the cpumask/Rx queue mask pointer
3741  *	@nr_bits: number of bits in the bitmask
3742  *
3743  * Returns >= nr_bits if no further CPUs/Rx queues set.
3744  */
3745 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3746 					       unsigned int nr_bits)
3747 {
3748 	/* -1 is a legal arg here. */
3749 	if (n != -1)
3750 		cpu_max_bits_warn(n, nr_bits);
3751 
3752 	if (srcp)
3753 		return find_next_bit(srcp, nr_bits, n + 1);
3754 
3755 	return n + 1;
3756 }
3757 
3758 /**
3759  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3760  *	@n: CPU/Rx queue index
3761  *	@src1p: the first CPUs/Rx queues mask pointer
3762  *	@src2p: the second CPUs/Rx queues mask pointer
3763  *	@nr_bits: number of bits in the bitmask
3764  *
3765  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3766  */
3767 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3768 					  const unsigned long *src2p,
3769 					  unsigned int nr_bits)
3770 {
3771 	/* -1 is a legal arg here. */
3772 	if (n != -1)
3773 		cpu_max_bits_warn(n, nr_bits);
3774 
3775 	if (src1p && src2p)
3776 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3777 	else if (src1p)
3778 		return find_next_bit(src1p, nr_bits, n + 1);
3779 	else if (src2p)
3780 		return find_next_bit(src2p, nr_bits, n + 1);
3781 
3782 	return n + 1;
3783 }
3784 #else
3785 static inline int netif_set_xps_queue(struct net_device *dev,
3786 				      const struct cpumask *mask,
3787 				      u16 index)
3788 {
3789 	return 0;
3790 }
3791 
3792 static inline int __netif_set_xps_queue(struct net_device *dev,
3793 					const unsigned long *mask,
3794 					u16 index, enum xps_map_type type)
3795 {
3796 	return 0;
3797 }
3798 #endif
3799 
3800 /**
3801  *	netif_is_multiqueue - test if device has multiple transmit queues
3802  *	@dev: network device
3803  *
3804  * Check if device has multiple transmit queues
3805  */
3806 static inline bool netif_is_multiqueue(const struct net_device *dev)
3807 {
3808 	return dev->num_tx_queues > 1;
3809 }
3810 
3811 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3812 
3813 #ifdef CONFIG_SYSFS
3814 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3815 #else
3816 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3817 						unsigned int rxqs)
3818 {
3819 	dev->real_num_rx_queues = rxqs;
3820 	return 0;
3821 }
3822 #endif
3823 int netif_set_real_num_queues(struct net_device *dev,
3824 			      unsigned int txq, unsigned int rxq);
3825 
3826 static inline struct netdev_rx_queue *
3827 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3828 {
3829 	return dev->_rx + rxq;
3830 }
3831 
3832 #ifdef CONFIG_SYSFS
3833 static inline unsigned int get_netdev_rx_queue_index(
3834 		struct netdev_rx_queue *queue)
3835 {
3836 	struct net_device *dev = queue->dev;
3837 	int index = queue - dev->_rx;
3838 
3839 	BUG_ON(index >= dev->num_rx_queues);
3840 	return index;
3841 }
3842 #endif
3843 
3844 int netif_get_num_default_rss_queues(void);
3845 
3846 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3847 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3848 
3849 /*
3850  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3851  * interrupt context or with hardware interrupts being disabled.
3852  * (in_hardirq() || irqs_disabled())
3853  *
3854  * We provide four helpers that can be used in following contexts :
3855  *
3856  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3857  *  replacing kfree_skb(skb)
3858  *
3859  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3860  *  Typically used in place of consume_skb(skb) in TX completion path
3861  *
3862  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3863  *  replacing kfree_skb(skb)
3864  *
3865  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3866  *  and consumed a packet. Used in place of consume_skb(skb)
3867  */
3868 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3869 {
3870 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3871 }
3872 
3873 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3874 {
3875 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3876 }
3877 
3878 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3879 {
3880 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3881 }
3882 
3883 static inline void dev_consume_skb_any(struct sk_buff *skb)
3884 {
3885 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3886 }
3887 
3888 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3889 			     struct bpf_prog *xdp_prog);
3890 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3891 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3892 int netif_rx(struct sk_buff *skb);
3893 int __netif_rx(struct sk_buff *skb);
3894 
3895 int netif_receive_skb(struct sk_buff *skb);
3896 int netif_receive_skb_core(struct sk_buff *skb);
3897 void netif_receive_skb_list_internal(struct list_head *head);
3898 void netif_receive_skb_list(struct list_head *head);
3899 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3900 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3901 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3902 void napi_get_frags_check(struct napi_struct *napi);
3903 gro_result_t napi_gro_frags(struct napi_struct *napi);
3904 struct packet_offload *gro_find_receive_by_type(__be16 type);
3905 struct packet_offload *gro_find_complete_by_type(__be16 type);
3906 
3907 static inline void napi_free_frags(struct napi_struct *napi)
3908 {
3909 	kfree_skb(napi->skb);
3910 	napi->skb = NULL;
3911 }
3912 
3913 bool netdev_is_rx_handler_busy(struct net_device *dev);
3914 int netdev_rx_handler_register(struct net_device *dev,
3915 			       rx_handler_func_t *rx_handler,
3916 			       void *rx_handler_data);
3917 void netdev_rx_handler_unregister(struct net_device *dev);
3918 
3919 bool dev_valid_name(const char *name);
3920 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3921 {
3922 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3923 }
3924 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3925 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3926 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3927 		void __user *data, bool *need_copyout);
3928 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3929 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3930 unsigned int dev_get_flags(const struct net_device *);
3931 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3932 		       struct netlink_ext_ack *extack);
3933 int dev_change_flags(struct net_device *dev, unsigned int flags,
3934 		     struct netlink_ext_ack *extack);
3935 int dev_set_alias(struct net_device *, const char *, size_t);
3936 int dev_get_alias(const struct net_device *, char *, size_t);
3937 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3938 			       const char *pat, int new_ifindex);
3939 static inline
3940 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3941 			     const char *pat)
3942 {
3943 	return __dev_change_net_namespace(dev, net, pat, 0);
3944 }
3945 int __dev_set_mtu(struct net_device *, int);
3946 int dev_set_mtu(struct net_device *, int);
3947 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3948 			      struct netlink_ext_ack *extack);
3949 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3950 			struct netlink_ext_ack *extack);
3951 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3952 			     struct netlink_ext_ack *extack);
3953 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3954 int dev_get_port_parent_id(struct net_device *dev,
3955 			   struct netdev_phys_item_id *ppid, bool recurse);
3956 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3957 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3958 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3959 				    struct netdev_queue *txq, int *ret);
3960 
3961 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3962 u8 dev_xdp_prog_count(struct net_device *dev);
3963 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3964 
3965 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3966 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3967 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3968 bool is_skb_forwardable(const struct net_device *dev,
3969 			const struct sk_buff *skb);
3970 
3971 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3972 						 const struct sk_buff *skb,
3973 						 const bool check_mtu)
3974 {
3975 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3976 	unsigned int len;
3977 
3978 	if (!(dev->flags & IFF_UP))
3979 		return false;
3980 
3981 	if (!check_mtu)
3982 		return true;
3983 
3984 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3985 	if (skb->len <= len)
3986 		return true;
3987 
3988 	/* if TSO is enabled, we don't care about the length as the packet
3989 	 * could be forwarded without being segmented before
3990 	 */
3991 	if (skb_is_gso(skb))
3992 		return true;
3993 
3994 	return false;
3995 }
3996 
3997 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3998 
3999 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
4000 {
4001 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
4002 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
4003 
4004 	if (likely(p))
4005 		return p;
4006 
4007 	return netdev_core_stats_alloc(dev);
4008 }
4009 
4010 #define DEV_CORE_STATS_INC(FIELD)						\
4011 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4012 {										\
4013 	struct net_device_core_stats __percpu *p;				\
4014 										\
4015 	p = dev_core_stats(dev);						\
4016 	if (p)									\
4017 		this_cpu_inc(p->FIELD);						\
4018 }
4019 DEV_CORE_STATS_INC(rx_dropped)
4020 DEV_CORE_STATS_INC(tx_dropped)
4021 DEV_CORE_STATS_INC(rx_nohandler)
4022 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4023 
4024 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4025 					       struct sk_buff *skb,
4026 					       const bool check_mtu)
4027 {
4028 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4029 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4030 		dev_core_stats_rx_dropped_inc(dev);
4031 		kfree_skb(skb);
4032 		return NET_RX_DROP;
4033 	}
4034 
4035 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4036 	skb->priority = 0;
4037 	return 0;
4038 }
4039 
4040 bool dev_nit_active(struct net_device *dev);
4041 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4042 
4043 static inline void __dev_put(struct net_device *dev)
4044 {
4045 	if (dev) {
4046 #ifdef CONFIG_PCPU_DEV_REFCNT
4047 		this_cpu_dec(*dev->pcpu_refcnt);
4048 #else
4049 		refcount_dec(&dev->dev_refcnt);
4050 #endif
4051 	}
4052 }
4053 
4054 static inline void __dev_hold(struct net_device *dev)
4055 {
4056 	if (dev) {
4057 #ifdef CONFIG_PCPU_DEV_REFCNT
4058 		this_cpu_inc(*dev->pcpu_refcnt);
4059 #else
4060 		refcount_inc(&dev->dev_refcnt);
4061 #endif
4062 	}
4063 }
4064 
4065 static inline void __netdev_tracker_alloc(struct net_device *dev,
4066 					  netdevice_tracker *tracker,
4067 					  gfp_t gfp)
4068 {
4069 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4070 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4071 #endif
4072 }
4073 
4074 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4075  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4076  */
4077 static inline void netdev_tracker_alloc(struct net_device *dev,
4078 					netdevice_tracker *tracker, gfp_t gfp)
4079 {
4080 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4081 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4082 	__netdev_tracker_alloc(dev, tracker, gfp);
4083 #endif
4084 }
4085 
4086 static inline void netdev_tracker_free(struct net_device *dev,
4087 				       netdevice_tracker *tracker)
4088 {
4089 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4090 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4091 #endif
4092 }
4093 
4094 static inline void netdev_hold(struct net_device *dev,
4095 			       netdevice_tracker *tracker, gfp_t gfp)
4096 {
4097 	if (dev) {
4098 		__dev_hold(dev);
4099 		__netdev_tracker_alloc(dev, tracker, gfp);
4100 	}
4101 }
4102 
4103 static inline void netdev_put(struct net_device *dev,
4104 			      netdevice_tracker *tracker)
4105 {
4106 	if (dev) {
4107 		netdev_tracker_free(dev, tracker);
4108 		__dev_put(dev);
4109 	}
4110 }
4111 
4112 /**
4113  *	dev_hold - get reference to device
4114  *	@dev: network device
4115  *
4116  * Hold reference to device to keep it from being freed.
4117  * Try using netdev_hold() instead.
4118  */
4119 static inline void dev_hold(struct net_device *dev)
4120 {
4121 	netdev_hold(dev, NULL, GFP_ATOMIC);
4122 }
4123 
4124 /**
4125  *	dev_put - release reference to device
4126  *	@dev: network device
4127  *
4128  * Release reference to device to allow it to be freed.
4129  * Try using netdev_put() instead.
4130  */
4131 static inline void dev_put(struct net_device *dev)
4132 {
4133 	netdev_put(dev, NULL);
4134 }
4135 
4136 static inline void netdev_ref_replace(struct net_device *odev,
4137 				      struct net_device *ndev,
4138 				      netdevice_tracker *tracker,
4139 				      gfp_t gfp)
4140 {
4141 	if (odev)
4142 		netdev_tracker_free(odev, tracker);
4143 
4144 	__dev_hold(ndev);
4145 	__dev_put(odev);
4146 
4147 	if (ndev)
4148 		__netdev_tracker_alloc(ndev, tracker, gfp);
4149 }
4150 
4151 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4152  * and _off may be called from IRQ context, but it is caller
4153  * who is responsible for serialization of these calls.
4154  *
4155  * The name carrier is inappropriate, these functions should really be
4156  * called netif_lowerlayer_*() because they represent the state of any
4157  * kind of lower layer not just hardware media.
4158  */
4159 void linkwatch_fire_event(struct net_device *dev);
4160 
4161 /**
4162  *	netif_carrier_ok - test if carrier present
4163  *	@dev: network device
4164  *
4165  * Check if carrier is present on device
4166  */
4167 static inline bool netif_carrier_ok(const struct net_device *dev)
4168 {
4169 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4170 }
4171 
4172 unsigned long dev_trans_start(struct net_device *dev);
4173 
4174 void __netdev_watchdog_up(struct net_device *dev);
4175 
4176 void netif_carrier_on(struct net_device *dev);
4177 void netif_carrier_off(struct net_device *dev);
4178 void netif_carrier_event(struct net_device *dev);
4179 
4180 /**
4181  *	netif_dormant_on - mark device as dormant.
4182  *	@dev: network device
4183  *
4184  * Mark device as dormant (as per RFC2863).
4185  *
4186  * The dormant state indicates that the relevant interface is not
4187  * actually in a condition to pass packets (i.e., it is not 'up') but is
4188  * in a "pending" state, waiting for some external event.  For "on-
4189  * demand" interfaces, this new state identifies the situation where the
4190  * interface is waiting for events to place it in the up state.
4191  */
4192 static inline void netif_dormant_on(struct net_device *dev)
4193 {
4194 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4195 		linkwatch_fire_event(dev);
4196 }
4197 
4198 /**
4199  *	netif_dormant_off - set device as not dormant.
4200  *	@dev: network device
4201  *
4202  * Device is not in dormant state.
4203  */
4204 static inline void netif_dormant_off(struct net_device *dev)
4205 {
4206 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4207 		linkwatch_fire_event(dev);
4208 }
4209 
4210 /**
4211  *	netif_dormant - test if device is dormant
4212  *	@dev: network device
4213  *
4214  * Check if device is dormant.
4215  */
4216 static inline bool netif_dormant(const struct net_device *dev)
4217 {
4218 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4219 }
4220 
4221 
4222 /**
4223  *	netif_testing_on - mark device as under test.
4224  *	@dev: network device
4225  *
4226  * Mark device as under test (as per RFC2863).
4227  *
4228  * The testing state indicates that some test(s) must be performed on
4229  * the interface. After completion, of the test, the interface state
4230  * will change to up, dormant, or down, as appropriate.
4231  */
4232 static inline void netif_testing_on(struct net_device *dev)
4233 {
4234 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4235 		linkwatch_fire_event(dev);
4236 }
4237 
4238 /**
4239  *	netif_testing_off - set device as not under test.
4240  *	@dev: network device
4241  *
4242  * Device is not in testing state.
4243  */
4244 static inline void netif_testing_off(struct net_device *dev)
4245 {
4246 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4247 		linkwatch_fire_event(dev);
4248 }
4249 
4250 /**
4251  *	netif_testing - test if device is under test
4252  *	@dev: network device
4253  *
4254  * Check if device is under test
4255  */
4256 static inline bool netif_testing(const struct net_device *dev)
4257 {
4258 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4259 }
4260 
4261 
4262 /**
4263  *	netif_oper_up - test if device is operational
4264  *	@dev: network device
4265  *
4266  * Check if carrier is operational
4267  */
4268 static inline bool netif_oper_up(const struct net_device *dev)
4269 {
4270 	return (dev->operstate == IF_OPER_UP ||
4271 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4272 }
4273 
4274 /**
4275  *	netif_device_present - is device available or removed
4276  *	@dev: network device
4277  *
4278  * Check if device has not been removed from system.
4279  */
4280 static inline bool netif_device_present(const struct net_device *dev)
4281 {
4282 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4283 }
4284 
4285 void netif_device_detach(struct net_device *dev);
4286 
4287 void netif_device_attach(struct net_device *dev);
4288 
4289 /*
4290  * Network interface message level settings
4291  */
4292 
4293 enum {
4294 	NETIF_MSG_DRV_BIT,
4295 	NETIF_MSG_PROBE_BIT,
4296 	NETIF_MSG_LINK_BIT,
4297 	NETIF_MSG_TIMER_BIT,
4298 	NETIF_MSG_IFDOWN_BIT,
4299 	NETIF_MSG_IFUP_BIT,
4300 	NETIF_MSG_RX_ERR_BIT,
4301 	NETIF_MSG_TX_ERR_BIT,
4302 	NETIF_MSG_TX_QUEUED_BIT,
4303 	NETIF_MSG_INTR_BIT,
4304 	NETIF_MSG_TX_DONE_BIT,
4305 	NETIF_MSG_RX_STATUS_BIT,
4306 	NETIF_MSG_PKTDATA_BIT,
4307 	NETIF_MSG_HW_BIT,
4308 	NETIF_MSG_WOL_BIT,
4309 
4310 	/* When you add a new bit above, update netif_msg_class_names array
4311 	 * in net/ethtool/common.c
4312 	 */
4313 	NETIF_MSG_CLASS_COUNT,
4314 };
4315 /* Both ethtool_ops interface and internal driver implementation use u32 */
4316 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4317 
4318 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4319 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4320 
4321 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4322 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4323 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4324 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4325 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4326 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4327 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4328 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4329 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4330 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4331 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4332 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4333 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4334 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4335 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4336 
4337 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4338 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4339 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4340 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4341 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4342 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4343 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4344 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4345 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4346 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4347 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4348 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4349 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4350 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4351 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4352 
4353 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4354 {
4355 	/* use default */
4356 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4357 		return default_msg_enable_bits;
4358 	if (debug_value == 0)	/* no output */
4359 		return 0;
4360 	/* set low N bits */
4361 	return (1U << debug_value) - 1;
4362 }
4363 
4364 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4365 {
4366 	spin_lock(&txq->_xmit_lock);
4367 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4368 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4369 }
4370 
4371 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4372 {
4373 	__acquire(&txq->_xmit_lock);
4374 	return true;
4375 }
4376 
4377 static inline void __netif_tx_release(struct netdev_queue *txq)
4378 {
4379 	__release(&txq->_xmit_lock);
4380 }
4381 
4382 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4383 {
4384 	spin_lock_bh(&txq->_xmit_lock);
4385 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4386 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4387 }
4388 
4389 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4390 {
4391 	bool ok = spin_trylock(&txq->_xmit_lock);
4392 
4393 	if (likely(ok)) {
4394 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4395 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4396 	}
4397 	return ok;
4398 }
4399 
4400 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4401 {
4402 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4403 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4404 	spin_unlock(&txq->_xmit_lock);
4405 }
4406 
4407 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4408 {
4409 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4410 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4411 	spin_unlock_bh(&txq->_xmit_lock);
4412 }
4413 
4414 /*
4415  * txq->trans_start can be read locklessly from dev_watchdog()
4416  */
4417 static inline void txq_trans_update(struct netdev_queue *txq)
4418 {
4419 	if (txq->xmit_lock_owner != -1)
4420 		WRITE_ONCE(txq->trans_start, jiffies);
4421 }
4422 
4423 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4424 {
4425 	unsigned long now = jiffies;
4426 
4427 	if (READ_ONCE(txq->trans_start) != now)
4428 		WRITE_ONCE(txq->trans_start, now);
4429 }
4430 
4431 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4432 static inline void netif_trans_update(struct net_device *dev)
4433 {
4434 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4435 
4436 	txq_trans_cond_update(txq);
4437 }
4438 
4439 /**
4440  *	netif_tx_lock - grab network device transmit lock
4441  *	@dev: network device
4442  *
4443  * Get network device transmit lock
4444  */
4445 void netif_tx_lock(struct net_device *dev);
4446 
4447 static inline void netif_tx_lock_bh(struct net_device *dev)
4448 {
4449 	local_bh_disable();
4450 	netif_tx_lock(dev);
4451 }
4452 
4453 void netif_tx_unlock(struct net_device *dev);
4454 
4455 static inline void netif_tx_unlock_bh(struct net_device *dev)
4456 {
4457 	netif_tx_unlock(dev);
4458 	local_bh_enable();
4459 }
4460 
4461 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4462 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4463 		__netif_tx_lock(txq, cpu);		\
4464 	} else {					\
4465 		__netif_tx_acquire(txq);		\
4466 	}						\
4467 }
4468 
4469 #define HARD_TX_TRYLOCK(dev, txq)			\
4470 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4471 		__netif_tx_trylock(txq) :		\
4472 		__netif_tx_acquire(txq))
4473 
4474 #define HARD_TX_UNLOCK(dev, txq) {			\
4475 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4476 		__netif_tx_unlock(txq);			\
4477 	} else {					\
4478 		__netif_tx_release(txq);		\
4479 	}						\
4480 }
4481 
4482 static inline void netif_tx_disable(struct net_device *dev)
4483 {
4484 	unsigned int i;
4485 	int cpu;
4486 
4487 	local_bh_disable();
4488 	cpu = smp_processor_id();
4489 	spin_lock(&dev->tx_global_lock);
4490 	for (i = 0; i < dev->num_tx_queues; i++) {
4491 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4492 
4493 		__netif_tx_lock(txq, cpu);
4494 		netif_tx_stop_queue(txq);
4495 		__netif_tx_unlock(txq);
4496 	}
4497 	spin_unlock(&dev->tx_global_lock);
4498 	local_bh_enable();
4499 }
4500 
4501 static inline void netif_addr_lock(struct net_device *dev)
4502 {
4503 	unsigned char nest_level = 0;
4504 
4505 #ifdef CONFIG_LOCKDEP
4506 	nest_level = dev->nested_level;
4507 #endif
4508 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4509 }
4510 
4511 static inline void netif_addr_lock_bh(struct net_device *dev)
4512 {
4513 	unsigned char nest_level = 0;
4514 
4515 #ifdef CONFIG_LOCKDEP
4516 	nest_level = dev->nested_level;
4517 #endif
4518 	local_bh_disable();
4519 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4520 }
4521 
4522 static inline void netif_addr_unlock(struct net_device *dev)
4523 {
4524 	spin_unlock(&dev->addr_list_lock);
4525 }
4526 
4527 static inline void netif_addr_unlock_bh(struct net_device *dev)
4528 {
4529 	spin_unlock_bh(&dev->addr_list_lock);
4530 }
4531 
4532 /*
4533  * dev_addrs walker. Should be used only for read access. Call with
4534  * rcu_read_lock held.
4535  */
4536 #define for_each_dev_addr(dev, ha) \
4537 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4538 
4539 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4540 
4541 void ether_setup(struct net_device *dev);
4542 
4543 /* Support for loadable net-drivers */
4544 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4545 				    unsigned char name_assign_type,
4546 				    void (*setup)(struct net_device *),
4547 				    unsigned int txqs, unsigned int rxqs);
4548 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4549 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4550 
4551 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4552 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4553 			 count)
4554 
4555 int register_netdev(struct net_device *dev);
4556 void unregister_netdev(struct net_device *dev);
4557 
4558 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4559 
4560 /* General hardware address lists handling functions */
4561 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4562 		   struct netdev_hw_addr_list *from_list, int addr_len);
4563 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4564 		      struct netdev_hw_addr_list *from_list, int addr_len);
4565 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4566 		       struct net_device *dev,
4567 		       int (*sync)(struct net_device *, const unsigned char *),
4568 		       int (*unsync)(struct net_device *,
4569 				     const unsigned char *));
4570 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4571 			   struct net_device *dev,
4572 			   int (*sync)(struct net_device *,
4573 				       const unsigned char *, int),
4574 			   int (*unsync)(struct net_device *,
4575 					 const unsigned char *, int));
4576 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4577 			      struct net_device *dev,
4578 			      int (*unsync)(struct net_device *,
4579 					    const unsigned char *, int));
4580 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4581 			  struct net_device *dev,
4582 			  int (*unsync)(struct net_device *,
4583 					const unsigned char *));
4584 void __hw_addr_init(struct netdev_hw_addr_list *list);
4585 
4586 /* Functions used for device addresses handling */
4587 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4588 		  const void *addr, size_t len);
4589 
4590 static inline void
4591 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4592 {
4593 	dev_addr_mod(dev, 0, addr, len);
4594 }
4595 
4596 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4597 {
4598 	__dev_addr_set(dev, addr, dev->addr_len);
4599 }
4600 
4601 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4602 		 unsigned char addr_type);
4603 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4604 		 unsigned char addr_type);
4605 
4606 /* Functions used for unicast addresses handling */
4607 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4608 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4609 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4610 int dev_uc_sync(struct net_device *to, struct net_device *from);
4611 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4612 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4613 void dev_uc_flush(struct net_device *dev);
4614 void dev_uc_init(struct net_device *dev);
4615 
4616 /**
4617  *  __dev_uc_sync - Synchonize device's unicast list
4618  *  @dev:  device to sync
4619  *  @sync: function to call if address should be added
4620  *  @unsync: function to call if address should be removed
4621  *
4622  *  Add newly added addresses to the interface, and release
4623  *  addresses that have been deleted.
4624  */
4625 static inline int __dev_uc_sync(struct net_device *dev,
4626 				int (*sync)(struct net_device *,
4627 					    const unsigned char *),
4628 				int (*unsync)(struct net_device *,
4629 					      const unsigned char *))
4630 {
4631 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4632 }
4633 
4634 /**
4635  *  __dev_uc_unsync - Remove synchronized addresses from device
4636  *  @dev:  device to sync
4637  *  @unsync: function to call if address should be removed
4638  *
4639  *  Remove all addresses that were added to the device by dev_uc_sync().
4640  */
4641 static inline void __dev_uc_unsync(struct net_device *dev,
4642 				   int (*unsync)(struct net_device *,
4643 						 const unsigned char *))
4644 {
4645 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4646 }
4647 
4648 /* Functions used for multicast addresses handling */
4649 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4650 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4651 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4652 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4653 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4654 int dev_mc_sync(struct net_device *to, struct net_device *from);
4655 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4656 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4657 void dev_mc_flush(struct net_device *dev);
4658 void dev_mc_init(struct net_device *dev);
4659 
4660 /**
4661  *  __dev_mc_sync - Synchonize device's multicast list
4662  *  @dev:  device to sync
4663  *  @sync: function to call if address should be added
4664  *  @unsync: function to call if address should be removed
4665  *
4666  *  Add newly added addresses to the interface, and release
4667  *  addresses that have been deleted.
4668  */
4669 static inline int __dev_mc_sync(struct net_device *dev,
4670 				int (*sync)(struct net_device *,
4671 					    const unsigned char *),
4672 				int (*unsync)(struct net_device *,
4673 					      const unsigned char *))
4674 {
4675 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4676 }
4677 
4678 /**
4679  *  __dev_mc_unsync - Remove synchronized addresses from device
4680  *  @dev:  device to sync
4681  *  @unsync: function to call if address should be removed
4682  *
4683  *  Remove all addresses that were added to the device by dev_mc_sync().
4684  */
4685 static inline void __dev_mc_unsync(struct net_device *dev,
4686 				   int (*unsync)(struct net_device *,
4687 						 const unsigned char *))
4688 {
4689 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4690 }
4691 
4692 /* Functions used for secondary unicast and multicast support */
4693 void dev_set_rx_mode(struct net_device *dev);
4694 int dev_set_promiscuity(struct net_device *dev, int inc);
4695 int dev_set_allmulti(struct net_device *dev, int inc);
4696 void netdev_state_change(struct net_device *dev);
4697 void __netdev_notify_peers(struct net_device *dev);
4698 void netdev_notify_peers(struct net_device *dev);
4699 void netdev_features_change(struct net_device *dev);
4700 /* Load a device via the kmod */
4701 void dev_load(struct net *net, const char *name);
4702 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4703 					struct rtnl_link_stats64 *storage);
4704 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4705 			     const struct net_device_stats *netdev_stats);
4706 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4707 			   const struct pcpu_sw_netstats __percpu *netstats);
4708 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4709 
4710 extern int		netdev_max_backlog;
4711 extern int		dev_rx_weight;
4712 extern int		dev_tx_weight;
4713 extern int		gro_normal_batch;
4714 
4715 enum {
4716 	NESTED_SYNC_IMM_BIT,
4717 	NESTED_SYNC_TODO_BIT,
4718 };
4719 
4720 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4721 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4722 
4723 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4724 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4725 
4726 struct netdev_nested_priv {
4727 	unsigned char flags;
4728 	void *data;
4729 };
4730 
4731 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4732 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4733 						     struct list_head **iter);
4734 
4735 /* iterate through upper list, must be called under RCU read lock */
4736 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4737 	for (iter = &(dev)->adj_list.upper, \
4738 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4739 	     updev; \
4740 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4741 
4742 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4743 				  int (*fn)(struct net_device *upper_dev,
4744 					    struct netdev_nested_priv *priv),
4745 				  struct netdev_nested_priv *priv);
4746 
4747 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4748 				  struct net_device *upper_dev);
4749 
4750 bool netdev_has_any_upper_dev(struct net_device *dev);
4751 
4752 void *netdev_lower_get_next_private(struct net_device *dev,
4753 				    struct list_head **iter);
4754 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4755 					struct list_head **iter);
4756 
4757 #define netdev_for_each_lower_private(dev, priv, iter) \
4758 	for (iter = (dev)->adj_list.lower.next, \
4759 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4760 	     priv; \
4761 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4762 
4763 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4764 	for (iter = &(dev)->adj_list.lower, \
4765 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4766 	     priv; \
4767 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4768 
4769 void *netdev_lower_get_next(struct net_device *dev,
4770 				struct list_head **iter);
4771 
4772 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4773 	for (iter = (dev)->adj_list.lower.next, \
4774 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4775 	     ldev; \
4776 	     ldev = netdev_lower_get_next(dev, &(iter)))
4777 
4778 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4779 					     struct list_head **iter);
4780 int netdev_walk_all_lower_dev(struct net_device *dev,
4781 			      int (*fn)(struct net_device *lower_dev,
4782 					struct netdev_nested_priv *priv),
4783 			      struct netdev_nested_priv *priv);
4784 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4785 				  int (*fn)(struct net_device *lower_dev,
4786 					    struct netdev_nested_priv *priv),
4787 				  struct netdev_nested_priv *priv);
4788 
4789 void *netdev_adjacent_get_private(struct list_head *adj_list);
4790 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4791 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4792 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4793 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4794 			  struct netlink_ext_ack *extack);
4795 int netdev_master_upper_dev_link(struct net_device *dev,
4796 				 struct net_device *upper_dev,
4797 				 void *upper_priv, void *upper_info,
4798 				 struct netlink_ext_ack *extack);
4799 void netdev_upper_dev_unlink(struct net_device *dev,
4800 			     struct net_device *upper_dev);
4801 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4802 				   struct net_device *new_dev,
4803 				   struct net_device *dev,
4804 				   struct netlink_ext_ack *extack);
4805 void netdev_adjacent_change_commit(struct net_device *old_dev,
4806 				   struct net_device *new_dev,
4807 				   struct net_device *dev);
4808 void netdev_adjacent_change_abort(struct net_device *old_dev,
4809 				  struct net_device *new_dev,
4810 				  struct net_device *dev);
4811 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4812 void *netdev_lower_dev_get_private(struct net_device *dev,
4813 				   struct net_device *lower_dev);
4814 void netdev_lower_state_changed(struct net_device *lower_dev,
4815 				void *lower_state_info);
4816 
4817 /* RSS keys are 40 or 52 bytes long */
4818 #define NETDEV_RSS_KEY_LEN 52
4819 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4820 void netdev_rss_key_fill(void *buffer, size_t len);
4821 
4822 int skb_checksum_help(struct sk_buff *skb);
4823 int skb_crc32c_csum_help(struct sk_buff *skb);
4824 int skb_csum_hwoffload_help(struct sk_buff *skb,
4825 			    const netdev_features_t features);
4826 
4827 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4828 				  netdev_features_t features, bool tx_path);
4829 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4830 				    netdev_features_t features, __be16 type);
4831 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4832 				    netdev_features_t features);
4833 
4834 struct netdev_bonding_info {
4835 	ifslave	slave;
4836 	ifbond	master;
4837 };
4838 
4839 struct netdev_notifier_bonding_info {
4840 	struct netdev_notifier_info info; /* must be first */
4841 	struct netdev_bonding_info  bonding_info;
4842 };
4843 
4844 void netdev_bonding_info_change(struct net_device *dev,
4845 				struct netdev_bonding_info *bonding_info);
4846 
4847 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4848 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4849 #else
4850 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4851 				  const void *data)
4852 {
4853 }
4854 #endif
4855 
4856 static inline
4857 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4858 {
4859 	return __skb_gso_segment(skb, features, true);
4860 }
4861 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4862 
4863 static inline bool can_checksum_protocol(netdev_features_t features,
4864 					 __be16 protocol)
4865 {
4866 	if (protocol == htons(ETH_P_FCOE))
4867 		return !!(features & NETIF_F_FCOE_CRC);
4868 
4869 	/* Assume this is an IP checksum (not SCTP CRC) */
4870 
4871 	if (features & NETIF_F_HW_CSUM) {
4872 		/* Can checksum everything */
4873 		return true;
4874 	}
4875 
4876 	switch (protocol) {
4877 	case htons(ETH_P_IP):
4878 		return !!(features & NETIF_F_IP_CSUM);
4879 	case htons(ETH_P_IPV6):
4880 		return !!(features & NETIF_F_IPV6_CSUM);
4881 	default:
4882 		return false;
4883 	}
4884 }
4885 
4886 #ifdef CONFIG_BUG
4887 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4888 #else
4889 static inline void netdev_rx_csum_fault(struct net_device *dev,
4890 					struct sk_buff *skb)
4891 {
4892 }
4893 #endif
4894 /* rx skb timestamps */
4895 void net_enable_timestamp(void);
4896 void net_disable_timestamp(void);
4897 
4898 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4899 					const struct skb_shared_hwtstamps *hwtstamps,
4900 					bool cycles)
4901 {
4902 	const struct net_device_ops *ops = dev->netdev_ops;
4903 
4904 	if (ops->ndo_get_tstamp)
4905 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4906 
4907 	return hwtstamps->hwtstamp;
4908 }
4909 
4910 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4911 					      struct sk_buff *skb, struct net_device *dev,
4912 					      bool more)
4913 {
4914 	__this_cpu_write(softnet_data.xmit.more, more);
4915 	return ops->ndo_start_xmit(skb, dev);
4916 }
4917 
4918 static inline bool netdev_xmit_more(void)
4919 {
4920 	return __this_cpu_read(softnet_data.xmit.more);
4921 }
4922 
4923 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4924 					    struct netdev_queue *txq, bool more)
4925 {
4926 	const struct net_device_ops *ops = dev->netdev_ops;
4927 	netdev_tx_t rc;
4928 
4929 	rc = __netdev_start_xmit(ops, skb, dev, more);
4930 	if (rc == NETDEV_TX_OK)
4931 		txq_trans_update(txq);
4932 
4933 	return rc;
4934 }
4935 
4936 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4937 				const void *ns);
4938 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4939 				 const void *ns);
4940 
4941 extern const struct kobj_ns_type_operations net_ns_type_operations;
4942 
4943 const char *netdev_drivername(const struct net_device *dev);
4944 
4945 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4946 							  netdev_features_t f2)
4947 {
4948 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4949 		if (f1 & NETIF_F_HW_CSUM)
4950 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4951 		else
4952 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4953 	}
4954 
4955 	return f1 & f2;
4956 }
4957 
4958 static inline netdev_features_t netdev_get_wanted_features(
4959 	struct net_device *dev)
4960 {
4961 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4962 }
4963 netdev_features_t netdev_increment_features(netdev_features_t all,
4964 	netdev_features_t one, netdev_features_t mask);
4965 
4966 /* Allow TSO being used on stacked device :
4967  * Performing the GSO segmentation before last device
4968  * is a performance improvement.
4969  */
4970 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4971 							netdev_features_t mask)
4972 {
4973 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4974 }
4975 
4976 int __netdev_update_features(struct net_device *dev);
4977 void netdev_update_features(struct net_device *dev);
4978 void netdev_change_features(struct net_device *dev);
4979 
4980 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4981 					struct net_device *dev);
4982 
4983 netdev_features_t passthru_features_check(struct sk_buff *skb,
4984 					  struct net_device *dev,
4985 					  netdev_features_t features);
4986 netdev_features_t netif_skb_features(struct sk_buff *skb);
4987 
4988 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4989 {
4990 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4991 
4992 	/* check flags correspondence */
4993 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4994 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4995 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4996 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4997 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4998 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4999 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5000 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5001 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5002 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5003 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5004 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5005 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5006 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5007 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5008 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5009 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5010 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5011 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5012 
5013 	return (features & feature) == feature;
5014 }
5015 
5016 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5017 {
5018 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5019 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5020 }
5021 
5022 static inline bool netif_needs_gso(struct sk_buff *skb,
5023 				   netdev_features_t features)
5024 {
5025 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5026 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5027 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5028 }
5029 
5030 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5031 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5032 void netif_inherit_tso_max(struct net_device *to,
5033 			   const struct net_device *from);
5034 
5035 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
5036 					int pulled_hlen, u16 mac_offset,
5037 					int mac_len)
5038 {
5039 	skb->protocol = protocol;
5040 	skb->encapsulation = 1;
5041 	skb_push(skb, pulled_hlen);
5042 	skb_reset_transport_header(skb);
5043 	skb->mac_header = mac_offset;
5044 	skb->network_header = skb->mac_header + mac_len;
5045 	skb->mac_len = mac_len;
5046 }
5047 
5048 static inline bool netif_is_macsec(const struct net_device *dev)
5049 {
5050 	return dev->priv_flags & IFF_MACSEC;
5051 }
5052 
5053 static inline bool netif_is_macvlan(const struct net_device *dev)
5054 {
5055 	return dev->priv_flags & IFF_MACVLAN;
5056 }
5057 
5058 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5059 {
5060 	return dev->priv_flags & IFF_MACVLAN_PORT;
5061 }
5062 
5063 static inline bool netif_is_bond_master(const struct net_device *dev)
5064 {
5065 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5066 }
5067 
5068 static inline bool netif_is_bond_slave(const struct net_device *dev)
5069 {
5070 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5071 }
5072 
5073 static inline bool netif_supports_nofcs(struct net_device *dev)
5074 {
5075 	return dev->priv_flags & IFF_SUPP_NOFCS;
5076 }
5077 
5078 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5079 {
5080 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5081 }
5082 
5083 static inline bool netif_is_l3_master(const struct net_device *dev)
5084 {
5085 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5086 }
5087 
5088 static inline bool netif_is_l3_slave(const struct net_device *dev)
5089 {
5090 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5091 }
5092 
5093 static inline bool netif_is_bridge_master(const struct net_device *dev)
5094 {
5095 	return dev->priv_flags & IFF_EBRIDGE;
5096 }
5097 
5098 static inline bool netif_is_bridge_port(const struct net_device *dev)
5099 {
5100 	return dev->priv_flags & IFF_BRIDGE_PORT;
5101 }
5102 
5103 static inline bool netif_is_ovs_master(const struct net_device *dev)
5104 {
5105 	return dev->priv_flags & IFF_OPENVSWITCH;
5106 }
5107 
5108 static inline bool netif_is_ovs_port(const struct net_device *dev)
5109 {
5110 	return dev->priv_flags & IFF_OVS_DATAPATH;
5111 }
5112 
5113 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5114 {
5115 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5116 }
5117 
5118 static inline bool netif_is_team_master(const struct net_device *dev)
5119 {
5120 	return dev->priv_flags & IFF_TEAM;
5121 }
5122 
5123 static inline bool netif_is_team_port(const struct net_device *dev)
5124 {
5125 	return dev->priv_flags & IFF_TEAM_PORT;
5126 }
5127 
5128 static inline bool netif_is_lag_master(const struct net_device *dev)
5129 {
5130 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5131 }
5132 
5133 static inline bool netif_is_lag_port(const struct net_device *dev)
5134 {
5135 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5136 }
5137 
5138 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5139 {
5140 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5141 }
5142 
5143 static inline bool netif_is_failover(const struct net_device *dev)
5144 {
5145 	return dev->priv_flags & IFF_FAILOVER;
5146 }
5147 
5148 static inline bool netif_is_failover_slave(const struct net_device *dev)
5149 {
5150 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5151 }
5152 
5153 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5154 static inline void netif_keep_dst(struct net_device *dev)
5155 {
5156 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5157 }
5158 
5159 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5160 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5161 {
5162 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5163 	return netif_is_macsec(dev);
5164 }
5165 
5166 extern struct pernet_operations __net_initdata loopback_net_ops;
5167 
5168 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5169 
5170 /* netdev_printk helpers, similar to dev_printk */
5171 
5172 static inline const char *netdev_name(const struct net_device *dev)
5173 {
5174 	if (!dev->name[0] || strchr(dev->name, '%'))
5175 		return "(unnamed net_device)";
5176 	return dev->name;
5177 }
5178 
5179 static inline const char *netdev_reg_state(const struct net_device *dev)
5180 {
5181 	switch (dev->reg_state) {
5182 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5183 	case NETREG_REGISTERED: return "";
5184 	case NETREG_UNREGISTERING: return " (unregistering)";
5185 	case NETREG_UNREGISTERED: return " (unregistered)";
5186 	case NETREG_RELEASED: return " (released)";
5187 	case NETREG_DUMMY: return " (dummy)";
5188 	}
5189 
5190 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5191 	return " (unknown)";
5192 }
5193 
5194 #define MODULE_ALIAS_NETDEV(device) \
5195 	MODULE_ALIAS("netdev-" device)
5196 
5197 /*
5198  * netdev_WARN() acts like dev_printk(), but with the key difference
5199  * of using a WARN/WARN_ON to get the message out, including the
5200  * file/line information and a backtrace.
5201  */
5202 #define netdev_WARN(dev, format, args...)			\
5203 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5204 	     netdev_reg_state(dev), ##args)
5205 
5206 #define netdev_WARN_ONCE(dev, format, args...)				\
5207 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5208 		  netdev_reg_state(dev), ##args)
5209 
5210 /*
5211  *	The list of packet types we will receive (as opposed to discard)
5212  *	and the routines to invoke.
5213  *
5214  *	Why 16. Because with 16 the only overlap we get on a hash of the
5215  *	low nibble of the protocol value is RARP/SNAP/X.25.
5216  *
5217  *		0800	IP
5218  *		0001	802.3
5219  *		0002	AX.25
5220  *		0004	802.2
5221  *		8035	RARP
5222  *		0005	SNAP
5223  *		0805	X.25
5224  *		0806	ARP
5225  *		8137	IPX
5226  *		0009	Localtalk
5227  *		86DD	IPv6
5228  */
5229 #define PTYPE_HASH_SIZE	(16)
5230 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5231 
5232 extern struct list_head ptype_all __read_mostly;
5233 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5234 
5235 extern struct net_device *blackhole_netdev;
5236 
5237 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5238 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5239 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5240 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5241 
5242 #endif	/* _LINUX_NETDEVICE_H */
5243