xref: /openbmc/linux/include/linux/netdevice.h (revision e1a0ebc8d82b64440d3ca7eac6a8489937ee2519)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 				    const struct ethtool_ops *ops);
66 
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
69 #define NET_RX_DROP		1	/* packet dropped */
70 
71 /*
72  * Transmit return codes: transmit return codes originate from three different
73  * namespaces:
74  *
75  * - qdisc return codes
76  * - driver transmit return codes
77  * - errno values
78  *
79  * Drivers are allowed to return any one of those in their hard_start_xmit()
80  * function. Real network devices commonly used with qdiscs should only return
81  * the driver transmit return codes though - when qdiscs are used, the actual
82  * transmission happens asynchronously, so the value is not propagated to
83  * higher layers. Virtual network devices transmit synchronously, in this case
84  * the driver transmit return codes are consumed by dev_queue_xmit(), all
85  * others are propagated to higher layers.
86  */
87 
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS	0x00
90 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
91 #define NET_XMIT_CN		0x02	/* congestion notification	*/
92 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
93 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
94 
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96  * indicates that the device will soon be dropping packets, or already drops
97  * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100 
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK		0xf0
103 
104 enum netdev_tx {
105 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
106 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
107 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
108 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111 
112 /*
113  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115  */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 	/*
119 	 * Positive cases with an skb consumed by a driver:
120 	 * - successful transmission (rc == NETDEV_TX_OK)
121 	 * - error while transmitting (rc < 0)
122 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 	 */
124 	if (likely(rc < NET_XMIT_MASK))
125 		return true;
126 
127 	return false;
128 }
129 
130 /*
131  *	Compute the worst case header length according to the protocols
132  *	used.
133  */
134 
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 #  define LL_MAX_HEADER 128
138 # else
139 #  define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144 
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151 
152 /*
153  *	Old network device statistics. Fields are native words
154  *	(unsigned long) so they can be read and written atomically.
155  */
156 
157 struct net_device_stats {
158 	unsigned long	rx_packets;
159 	unsigned long	tx_packets;
160 	unsigned long	rx_bytes;
161 	unsigned long	tx_bytes;
162 	unsigned long	rx_errors;
163 	unsigned long	tx_errors;
164 	unsigned long	rx_dropped;
165 	unsigned long	tx_dropped;
166 	unsigned long	multicast;
167 	unsigned long	collisions;
168 	unsigned long	rx_length_errors;
169 	unsigned long	rx_over_errors;
170 	unsigned long	rx_crc_errors;
171 	unsigned long	rx_frame_errors;
172 	unsigned long	rx_fifo_errors;
173 	unsigned long	rx_missed_errors;
174 	unsigned long	tx_aborted_errors;
175 	unsigned long	tx_carrier_errors;
176 	unsigned long	tx_fifo_errors;
177 	unsigned long	tx_heartbeat_errors;
178 	unsigned long	tx_window_errors;
179 	unsigned long	rx_compressed;
180 	unsigned long	tx_compressed;
181 };
182 
183 
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186 
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191 
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195 
196 struct netdev_hw_addr {
197 	struct list_head	list;
198 	unsigned char		addr[MAX_ADDR_LEN];
199 	unsigned char		type;
200 #define NETDEV_HW_ADDR_T_LAN		1
201 #define NETDEV_HW_ADDR_T_SAN		2
202 #define NETDEV_HW_ADDR_T_SLAVE		3
203 #define NETDEV_HW_ADDR_T_UNICAST	4
204 #define NETDEV_HW_ADDR_T_MULTICAST	5
205 	bool			global_use;
206 	int			sync_cnt;
207 	int			refcount;
208 	int			synced;
209 	struct rcu_head		rcu_head;
210 };
211 
212 struct netdev_hw_addr_list {
213 	struct list_head	list;
214 	int			count;
215 };
216 
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 	list_for_each_entry(ha, &(l)->list, list)
221 
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226 
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231 
232 struct hh_cache {
233 	u16		hh_len;
234 	u16		__pad;
235 	seqlock_t	hh_lock;
236 
237 	/* cached hardware header; allow for machine alignment needs.        */
238 #define HH_DATA_MOD	16
239 #define HH_DATA_OFF(__len) \
240 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245 
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247  * Alternative is:
248  *   dev->hard_header_len ? (dev->hard_header_len +
249  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250  *
251  * We could use other alignment values, but we must maintain the
252  * relationship HH alignment <= LL alignment.
253  */
254 #define LL_RESERVED_SPACE(dev) \
255 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 
259 struct header_ops {
260 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
261 			   unsigned short type, const void *daddr,
262 			   const void *saddr, unsigned int len);
263 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 	void	(*cache_update)(struct hh_cache *hh,
266 				const struct net_device *dev,
267 				const unsigned char *haddr);
268 };
269 
270 /* These flag bits are private to the generic network queueing
271  * layer, they may not be explicitly referenced by any other
272  * code.
273  */
274 
275 enum netdev_state_t {
276 	__LINK_STATE_START,
277 	__LINK_STATE_PRESENT,
278 	__LINK_STATE_NOCARRIER,
279 	__LINK_STATE_LINKWATCH_PENDING,
280 	__LINK_STATE_DORMANT,
281 };
282 
283 
284 /*
285  * This structure holds at boot time configured netdevice settings. They
286  * are then used in the device probing.
287  */
288 struct netdev_boot_setup {
289 	char name[IFNAMSIZ];
290 	struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293 
294 int __init netdev_boot_setup(char *str);
295 
296 /*
297  * Structure for NAPI scheduling similar to tasklet but with weighting
298  */
299 struct napi_struct {
300 	/* The poll_list must only be managed by the entity which
301 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
302 	 * whoever atomically sets that bit can add this napi_struct
303 	 * to the per-cpu poll_list, and whoever clears that bit
304 	 * can remove from the list right before clearing the bit.
305 	 */
306 	struct list_head	poll_list;
307 
308 	unsigned long		state;
309 	int			weight;
310 	unsigned int		gro_count;
311 	int			(*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313 	spinlock_t		poll_lock;
314 	int			poll_owner;
315 #endif
316 	struct net_device	*dev;
317 	struct sk_buff		*gro_list;
318 	struct sk_buff		*skb;
319 	struct hrtimer		timer;
320 	struct list_head	dev_list;
321 	struct hlist_node	napi_hash_node;
322 	unsigned int		napi_id;
323 };
324 
325 enum {
326 	NAPI_STATE_SCHED,	/* Poll is scheduled */
327 	NAPI_STATE_DISABLE,	/* Disable pending */
328 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
329 	NAPI_STATE_HASHED,	/* In NAPI hash */
330 };
331 
332 enum gro_result {
333 	GRO_MERGED,
334 	GRO_MERGED_FREE,
335 	GRO_HELD,
336 	GRO_NORMAL,
337 	GRO_DROP,
338 };
339 typedef enum gro_result gro_result_t;
340 
341 /*
342  * enum rx_handler_result - Possible return values for rx_handlers.
343  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344  * further.
345  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346  * case skb->dev was changed by rx_handler.
347  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349  *
350  * rx_handlers are functions called from inside __netif_receive_skb(), to do
351  * special processing of the skb, prior to delivery to protocol handlers.
352  *
353  * Currently, a net_device can only have a single rx_handler registered. Trying
354  * to register a second rx_handler will return -EBUSY.
355  *
356  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357  * To unregister a rx_handler on a net_device, use
358  * netdev_rx_handler_unregister().
359  *
360  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361  * do with the skb.
362  *
363  * If the rx_handler consumed to skb in some way, it should return
364  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365  * the skb to be delivered in some other ways.
366  *
367  * If the rx_handler changed skb->dev, to divert the skb to another
368  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369  * new device will be called if it exists.
370  *
371  * If the rx_handler consider the skb should be ignored, it should return
372  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373  * are registered on exact device (ptype->dev == skb->dev).
374  *
375  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376  * delivered, it should return RX_HANDLER_PASS.
377  *
378  * A device without a registered rx_handler will behave as if rx_handler
379  * returned RX_HANDLER_PASS.
380  */
381 
382 enum rx_handler_result {
383 	RX_HANDLER_CONSUMED,
384 	RX_HANDLER_ANOTHER,
385 	RX_HANDLER_EXACT,
386 	RX_HANDLER_PASS,
387 };
388 typedef enum rx_handler_result rx_handler_result_t;
389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390 
391 void __napi_schedule(struct napi_struct *n);
392 void __napi_schedule_irqoff(struct napi_struct *n);
393 
394 static inline bool napi_disable_pending(struct napi_struct *n)
395 {
396 	return test_bit(NAPI_STATE_DISABLE, &n->state);
397 }
398 
399 /**
400  *	napi_schedule_prep - check if napi can be scheduled
401  *	@n: napi context
402  *
403  * Test if NAPI routine is already running, and if not mark
404  * it as running.  This is used as a condition variable
405  * insure only one NAPI poll instance runs.  We also make
406  * sure there is no pending NAPI disable.
407  */
408 static inline bool napi_schedule_prep(struct napi_struct *n)
409 {
410 	return !napi_disable_pending(n) &&
411 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412 }
413 
414 /**
415  *	napi_schedule - schedule NAPI poll
416  *	@n: napi context
417  *
418  * Schedule NAPI poll routine to be called if it is not already
419  * running.
420  */
421 static inline void napi_schedule(struct napi_struct *n)
422 {
423 	if (napi_schedule_prep(n))
424 		__napi_schedule(n);
425 }
426 
427 /**
428  *	napi_schedule_irqoff - schedule NAPI poll
429  *	@n: napi context
430  *
431  * Variant of napi_schedule(), assuming hard irqs are masked.
432  */
433 static inline void napi_schedule_irqoff(struct napi_struct *n)
434 {
435 	if (napi_schedule_prep(n))
436 		__napi_schedule_irqoff(n);
437 }
438 
439 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
440 static inline bool napi_reschedule(struct napi_struct *napi)
441 {
442 	if (napi_schedule_prep(napi)) {
443 		__napi_schedule(napi);
444 		return true;
445 	}
446 	return false;
447 }
448 
449 void __napi_complete(struct napi_struct *n);
450 void napi_complete_done(struct napi_struct *n, int work_done);
451 /**
452  *	napi_complete - NAPI processing complete
453  *	@n: napi context
454  *
455  * Mark NAPI processing as complete.
456  * Consider using napi_complete_done() instead.
457  */
458 static inline void napi_complete(struct napi_struct *n)
459 {
460 	return napi_complete_done(n, 0);
461 }
462 
463 /**
464  *	napi_by_id - lookup a NAPI by napi_id
465  *	@napi_id: hashed napi_id
466  *
467  * lookup @napi_id in napi_hash table
468  * must be called under rcu_read_lock()
469  */
470 struct napi_struct *napi_by_id(unsigned int napi_id);
471 
472 /**
473  *	napi_hash_add - add a NAPI to global hashtable
474  *	@napi: napi context
475  *
476  * generate a new napi_id and store a @napi under it in napi_hash
477  */
478 void napi_hash_add(struct napi_struct *napi);
479 
480 /**
481  *	napi_hash_del - remove a NAPI from global table
482  *	@napi: napi context
483  *
484  * Warning: caller must observe rcu grace period
485  * before freeing memory containing @napi
486  */
487 void napi_hash_del(struct napi_struct *napi);
488 
489 /**
490  *	napi_disable - prevent NAPI from scheduling
491  *	@n: napi context
492  *
493  * Stop NAPI from being scheduled on this context.
494  * Waits till any outstanding processing completes.
495  */
496 void napi_disable(struct napi_struct *n);
497 
498 /**
499  *	napi_enable - enable NAPI scheduling
500  *	@n: napi context
501  *
502  * Resume NAPI from being scheduled on this context.
503  * Must be paired with napi_disable.
504  */
505 static inline void napi_enable(struct napi_struct *n)
506 {
507 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508 	smp_mb__before_atomic();
509 	clear_bit(NAPI_STATE_SCHED, &n->state);
510 	clear_bit(NAPI_STATE_NPSVC, &n->state);
511 }
512 
513 #ifdef CONFIG_SMP
514 /**
515  *	napi_synchronize - wait until NAPI is not running
516  *	@n: napi context
517  *
518  * Wait until NAPI is done being scheduled on this context.
519  * Waits till any outstanding processing completes but
520  * does not disable future activations.
521  */
522 static inline void napi_synchronize(const struct napi_struct *n)
523 {
524 	while (test_bit(NAPI_STATE_SCHED, &n->state))
525 		msleep(1);
526 }
527 #else
528 # define napi_synchronize(n)	barrier()
529 #endif
530 
531 enum netdev_queue_state_t {
532 	__QUEUE_STATE_DRV_XOFF,
533 	__QUEUE_STATE_STACK_XOFF,
534 	__QUEUE_STATE_FROZEN,
535 };
536 
537 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
538 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
539 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
540 
541 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
542 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
543 					QUEUE_STATE_FROZEN)
544 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
545 					QUEUE_STATE_FROZEN)
546 
547 /*
548  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
549  * netif_tx_* functions below are used to manipulate this flag.  The
550  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
551  * queue independently.  The netif_xmit_*stopped functions below are called
552  * to check if the queue has been stopped by the driver or stack (either
553  * of the XOFF bits are set in the state).  Drivers should not need to call
554  * netif_xmit*stopped functions, they should only be using netif_tx_*.
555  */
556 
557 struct netdev_queue {
558 /*
559  * read mostly part
560  */
561 	struct net_device	*dev;
562 	struct Qdisc __rcu	*qdisc;
563 	struct Qdisc		*qdisc_sleeping;
564 #ifdef CONFIG_SYSFS
565 	struct kobject		kobj;
566 #endif
567 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
568 	int			numa_node;
569 #endif
570 /*
571  * write mostly part
572  */
573 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
574 	int			xmit_lock_owner;
575 	/*
576 	 * please use this field instead of dev->trans_start
577 	 */
578 	unsigned long		trans_start;
579 
580 	/*
581 	 * Number of TX timeouts for this queue
582 	 * (/sys/class/net/DEV/Q/trans_timeout)
583 	 */
584 	unsigned long		trans_timeout;
585 
586 	unsigned long		state;
587 
588 #ifdef CONFIG_BQL
589 	struct dql		dql;
590 #endif
591 	unsigned long		tx_maxrate;
592 } ____cacheline_aligned_in_smp;
593 
594 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
595 {
596 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
597 	return q->numa_node;
598 #else
599 	return NUMA_NO_NODE;
600 #endif
601 }
602 
603 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
604 {
605 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
606 	q->numa_node = node;
607 #endif
608 }
609 
610 #ifdef CONFIG_RPS
611 /*
612  * This structure holds an RPS map which can be of variable length.  The
613  * map is an array of CPUs.
614  */
615 struct rps_map {
616 	unsigned int len;
617 	struct rcu_head rcu;
618 	u16 cpus[0];
619 };
620 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
621 
622 /*
623  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
624  * tail pointer for that CPU's input queue at the time of last enqueue, and
625  * a hardware filter index.
626  */
627 struct rps_dev_flow {
628 	u16 cpu;
629 	u16 filter;
630 	unsigned int last_qtail;
631 };
632 #define RPS_NO_FILTER 0xffff
633 
634 /*
635  * The rps_dev_flow_table structure contains a table of flow mappings.
636  */
637 struct rps_dev_flow_table {
638 	unsigned int mask;
639 	struct rcu_head rcu;
640 	struct rps_dev_flow flows[0];
641 };
642 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
643     ((_num) * sizeof(struct rps_dev_flow)))
644 
645 /*
646  * The rps_sock_flow_table contains mappings of flows to the last CPU
647  * on which they were processed by the application (set in recvmsg).
648  * Each entry is a 32bit value. Upper part is the high order bits
649  * of flow hash, lower part is cpu number.
650  * rps_cpu_mask is used to partition the space, depending on number of
651  * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
652  * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
653  * meaning we use 32-6=26 bits for the hash.
654  */
655 struct rps_sock_flow_table {
656 	u32	mask;
657 
658 	u32	ents[0] ____cacheline_aligned_in_smp;
659 };
660 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
661 
662 #define RPS_NO_CPU 0xffff
663 
664 extern u32 rps_cpu_mask;
665 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666 
667 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
668 					u32 hash)
669 {
670 	if (table && hash) {
671 		unsigned int index = hash & table->mask;
672 		u32 val = hash & ~rps_cpu_mask;
673 
674 		/* We only give a hint, preemption can change cpu under us */
675 		val |= raw_smp_processor_id();
676 
677 		if (table->ents[index] != val)
678 			table->ents[index] = val;
679 	}
680 }
681 
682 #ifdef CONFIG_RFS_ACCEL
683 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
684 			 u16 filter_id);
685 #endif
686 #endif /* CONFIG_RPS */
687 
688 /* This structure contains an instance of an RX queue. */
689 struct netdev_rx_queue {
690 #ifdef CONFIG_RPS
691 	struct rps_map __rcu		*rps_map;
692 	struct rps_dev_flow_table __rcu	*rps_flow_table;
693 #endif
694 	struct kobject			kobj;
695 	struct net_device		*dev;
696 } ____cacheline_aligned_in_smp;
697 
698 /*
699  * RX queue sysfs structures and functions.
700  */
701 struct rx_queue_attribute {
702 	struct attribute attr;
703 	ssize_t (*show)(struct netdev_rx_queue *queue,
704 	    struct rx_queue_attribute *attr, char *buf);
705 	ssize_t (*store)(struct netdev_rx_queue *queue,
706 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
707 };
708 
709 #ifdef CONFIG_XPS
710 /*
711  * This structure holds an XPS map which can be of variable length.  The
712  * map is an array of queues.
713  */
714 struct xps_map {
715 	unsigned int len;
716 	unsigned int alloc_len;
717 	struct rcu_head rcu;
718 	u16 queues[0];
719 };
720 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
721 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
722        - sizeof(struct xps_map)) / sizeof(u16))
723 
724 /*
725  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
726  */
727 struct xps_dev_maps {
728 	struct rcu_head rcu;
729 	struct xps_map __rcu *cpu_map[0];
730 };
731 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
732     (nr_cpu_ids * sizeof(struct xps_map *)))
733 #endif /* CONFIG_XPS */
734 
735 #define TC_MAX_QUEUE	16
736 #define TC_BITMASK	15
737 /* HW offloaded queuing disciplines txq count and offset maps */
738 struct netdev_tc_txq {
739 	u16 count;
740 	u16 offset;
741 };
742 
743 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
744 /*
745  * This structure is to hold information about the device
746  * configured to run FCoE protocol stack.
747  */
748 struct netdev_fcoe_hbainfo {
749 	char	manufacturer[64];
750 	char	serial_number[64];
751 	char	hardware_version[64];
752 	char	driver_version[64];
753 	char	optionrom_version[64];
754 	char	firmware_version[64];
755 	char	model[256];
756 	char	model_description[256];
757 };
758 #endif
759 
760 #define MAX_PHYS_ITEM_ID_LEN 32
761 
762 /* This structure holds a unique identifier to identify some
763  * physical item (port for example) used by a netdevice.
764  */
765 struct netdev_phys_item_id {
766 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
767 	unsigned char id_len;
768 };
769 
770 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
771 					    struct netdev_phys_item_id *b)
772 {
773 	return a->id_len == b->id_len &&
774 	       memcmp(a->id, b->id, a->id_len) == 0;
775 }
776 
777 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
778 				       struct sk_buff *skb);
779 
780 /*
781  * This structure defines the management hooks for network devices.
782  * The following hooks can be defined; unless noted otherwise, they are
783  * optional and can be filled with a null pointer.
784  *
785  * int (*ndo_init)(struct net_device *dev);
786  *     This function is called once when network device is registered.
787  *     The network device can use this to any late stage initializaton
788  *     or semantic validattion. It can fail with an error code which will
789  *     be propogated back to register_netdev
790  *
791  * void (*ndo_uninit)(struct net_device *dev);
792  *     This function is called when device is unregistered or when registration
793  *     fails. It is not called if init fails.
794  *
795  * int (*ndo_open)(struct net_device *dev);
796  *     This function is called when network device transistions to the up
797  *     state.
798  *
799  * int (*ndo_stop)(struct net_device *dev);
800  *     This function is called when network device transistions to the down
801  *     state.
802  *
803  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
804  *                               struct net_device *dev);
805  *	Called when a packet needs to be transmitted.
806  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
807  *	the queue before that can happen; it's for obsolete devices and weird
808  *	corner cases, but the stack really does a non-trivial amount
809  *	of useless work if you return NETDEV_TX_BUSY.
810  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
811  *	Required can not be NULL.
812  *
813  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
814  *                         void *accel_priv, select_queue_fallback_t fallback);
815  *	Called to decide which queue to when device supports multiple
816  *	transmit queues.
817  *
818  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
819  *	This function is called to allow device receiver to make
820  *	changes to configuration when multicast or promiscious is enabled.
821  *
822  * void (*ndo_set_rx_mode)(struct net_device *dev);
823  *	This function is called device changes address list filtering.
824  *	If driver handles unicast address filtering, it should set
825  *	IFF_UNICAST_FLT to its priv_flags.
826  *
827  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
828  *	This function  is called when the Media Access Control address
829  *	needs to be changed. If this interface is not defined, the
830  *	mac address can not be changed.
831  *
832  * int (*ndo_validate_addr)(struct net_device *dev);
833  *	Test if Media Access Control address is valid for the device.
834  *
835  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
836  *	Called when a user request an ioctl which can't be handled by
837  *	the generic interface code. If not defined ioctl's return
838  *	not supported error code.
839  *
840  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
841  *	Used to set network devices bus interface parameters. This interface
842  *	is retained for legacy reason, new devices should use the bus
843  *	interface (PCI) for low level management.
844  *
845  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
846  *	Called when a user wants to change the Maximum Transfer Unit
847  *	of a device. If not defined, any request to change MTU will
848  *	will return an error.
849  *
850  * void (*ndo_tx_timeout)(struct net_device *dev);
851  *	Callback uses when the transmitter has not made any progress
852  *	for dev->watchdog ticks.
853  *
854  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
855  *                      struct rtnl_link_stats64 *storage);
856  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
857  *	Called when a user wants to get the network device usage
858  *	statistics. Drivers must do one of the following:
859  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
860  *	   rtnl_link_stats64 structure passed by the caller.
861  *	2. Define @ndo_get_stats to update a net_device_stats structure
862  *	   (which should normally be dev->stats) and return a pointer to
863  *	   it. The structure may be changed asynchronously only if each
864  *	   field is written atomically.
865  *	3. Update dev->stats asynchronously and atomically, and define
866  *	   neither operation.
867  *
868  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
869  *	If device support VLAN filtering this function is called when a
870  *	VLAN id is registered.
871  *
872  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
873  *	If device support VLAN filtering this function is called when a
874  *	VLAN id is unregistered.
875  *
876  * void (*ndo_poll_controller)(struct net_device *dev);
877  *
878  *	SR-IOV management functions.
879  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
880  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
881  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
882  *			  int max_tx_rate);
883  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
884  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
885  * int (*ndo_get_vf_config)(struct net_device *dev,
886  *			    int vf, struct ifla_vf_info *ivf);
887  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
888  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
889  *			  struct nlattr *port[]);
890  *
891  *      Enable or disable the VF ability to query its RSS Redirection Table and
892  *      Hash Key. This is needed since on some devices VF share this information
893  *      with PF and querying it may adduce a theoretical security risk.
894  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
895  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
896  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
897  * 	Called to setup 'tc' number of traffic classes in the net device. This
898  * 	is always called from the stack with the rtnl lock held and netif tx
899  * 	queues stopped. This allows the netdevice to perform queue management
900  * 	safely.
901  *
902  *	Fiber Channel over Ethernet (FCoE) offload functions.
903  * int (*ndo_fcoe_enable)(struct net_device *dev);
904  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
905  *	so the underlying device can perform whatever needed configuration or
906  *	initialization to support acceleration of FCoE traffic.
907  *
908  * int (*ndo_fcoe_disable)(struct net_device *dev);
909  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
910  *	so the underlying device can perform whatever needed clean-ups to
911  *	stop supporting acceleration of FCoE traffic.
912  *
913  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
914  *			     struct scatterlist *sgl, unsigned int sgc);
915  *	Called when the FCoE Initiator wants to initialize an I/O that
916  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
917  *	perform necessary setup and returns 1 to indicate the device is set up
918  *	successfully to perform DDP on this I/O, otherwise this returns 0.
919  *
920  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
921  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
922  *	indicated by the FC exchange id 'xid', so the underlying device can
923  *	clean up and reuse resources for later DDP requests.
924  *
925  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
926  *			      struct scatterlist *sgl, unsigned int sgc);
927  *	Called when the FCoE Target wants to initialize an I/O that
928  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
929  *	perform necessary setup and returns 1 to indicate the device is set up
930  *	successfully to perform DDP on this I/O, otherwise this returns 0.
931  *
932  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
933  *			       struct netdev_fcoe_hbainfo *hbainfo);
934  *	Called when the FCoE Protocol stack wants information on the underlying
935  *	device. This information is utilized by the FCoE protocol stack to
936  *	register attributes with Fiber Channel management service as per the
937  *	FC-GS Fabric Device Management Information(FDMI) specification.
938  *
939  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
940  *	Called when the underlying device wants to override default World Wide
941  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
942  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
943  *	protocol stack to use.
944  *
945  *	RFS acceleration.
946  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
947  *			    u16 rxq_index, u32 flow_id);
948  *	Set hardware filter for RFS.  rxq_index is the target queue index;
949  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
950  *	Return the filter ID on success, or a negative error code.
951  *
952  *	Slave management functions (for bridge, bonding, etc).
953  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
954  *	Called to make another netdev an underling.
955  *
956  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
957  *	Called to release previously enslaved netdev.
958  *
959  *      Feature/offload setting functions.
960  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
961  *		netdev_features_t features);
962  *	Adjusts the requested feature flags according to device-specific
963  *	constraints, and returns the resulting flags. Must not modify
964  *	the device state.
965  *
966  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
967  *	Called to update device configuration to new features. Passed
968  *	feature set might be less than what was returned by ndo_fix_features()).
969  *	Must return >0 or -errno if it changed dev->features itself.
970  *
971  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
972  *		      struct net_device *dev,
973  *		      const unsigned char *addr, u16 vid, u16 flags)
974  *	Adds an FDB entry to dev for addr.
975  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
976  *		      struct net_device *dev,
977  *		      const unsigned char *addr, u16 vid)
978  *	Deletes the FDB entry from dev coresponding to addr.
979  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
980  *		       struct net_device *dev, struct net_device *filter_dev,
981  *		       int idx)
982  *	Used to add FDB entries to dump requests. Implementers should add
983  *	entries to skb and update idx with the number of entries.
984  *
985  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
986  *			     u16 flags)
987  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
988  *			     struct net_device *dev, u32 filter_mask,
989  *			     int nlflags)
990  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
991  *			     u16 flags);
992  *
993  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
994  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
995  *	which do not represent real hardware may define this to allow their
996  *	userspace components to manage their virtual carrier state. Devices
997  *	that determine carrier state from physical hardware properties (eg
998  *	network cables) or protocol-dependent mechanisms (eg
999  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1000  *
1001  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1002  *			       struct netdev_phys_item_id *ppid);
1003  *	Called to get ID of physical port of this device. If driver does
1004  *	not implement this, it is assumed that the hw is not able to have
1005  *	multiple net devices on single physical port.
1006  *
1007  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
1008  *			      sa_family_t sa_family, __be16 port);
1009  *	Called by vxlan to notiy a driver about the UDP port and socket
1010  *	address family that vxlan is listnening to. It is called only when
1011  *	a new port starts listening. The operation is protected by the
1012  *	vxlan_net->sock_lock.
1013  *
1014  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1015  *			      sa_family_t sa_family, __be16 port);
1016  *	Called by vxlan to notify the driver about a UDP port and socket
1017  *	address family that vxlan is not listening to anymore. The operation
1018  *	is protected by the vxlan_net->sock_lock.
1019  *
1020  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1021  *				 struct net_device *dev)
1022  *	Called by upper layer devices to accelerate switching or other
1023  *	station functionality into hardware. 'pdev is the lowerdev
1024  *	to use for the offload and 'dev' is the net device that will
1025  *	back the offload. Returns a pointer to the private structure
1026  *	the upper layer will maintain.
1027  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1028  *	Called by upper layer device to delete the station created
1029  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1030  *	the station and priv is the structure returned by the add
1031  *	operation.
1032  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1033  *				      struct net_device *dev,
1034  *				      void *priv);
1035  *	Callback to use for xmit over the accelerated station. This
1036  *	is used in place of ndo_start_xmit on accelerated net
1037  *	devices.
1038  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1039  *					    struct net_device *dev
1040  *					    netdev_features_t features);
1041  *	Called by core transmit path to determine if device is capable of
1042  *	performing offload operations on a given packet. This is to give
1043  *	the device an opportunity to implement any restrictions that cannot
1044  *	be otherwise expressed by feature flags. The check is called with
1045  *	the set of features that the stack has calculated and it returns
1046  *	those the driver believes to be appropriate.
1047  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1048  *			     int queue_index, u32 maxrate);
1049  *	Called when a user wants to set a max-rate limitation of specific
1050  *	TX queue.
1051  * int (*ndo_get_iflink)(const struct net_device *dev);
1052  *	Called to get the iflink value of this device.
1053  * void (*ndo_change_proto_down)(struct net_device *dev,
1054  *				  bool proto_down);
1055  *	This function is used to pass protocol port error state information
1056  *	to the switch driver. The switch driver can react to the proto_down
1057  *      by doing a phys down on the associated switch port.
1058  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1059  *	This function is used to get egress tunnel information for given skb.
1060  *	This is useful for retrieving outer tunnel header parameters while
1061  *	sampling packet.
1062  *
1063  */
1064 struct net_device_ops {
1065 	int			(*ndo_init)(struct net_device *dev);
1066 	void			(*ndo_uninit)(struct net_device *dev);
1067 	int			(*ndo_open)(struct net_device *dev);
1068 	int			(*ndo_stop)(struct net_device *dev);
1069 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1070 						   struct net_device *dev);
1071 	u16			(*ndo_select_queue)(struct net_device *dev,
1072 						    struct sk_buff *skb,
1073 						    void *accel_priv,
1074 						    select_queue_fallback_t fallback);
1075 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1076 						       int flags);
1077 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1078 	int			(*ndo_set_mac_address)(struct net_device *dev,
1079 						       void *addr);
1080 	int			(*ndo_validate_addr)(struct net_device *dev);
1081 	int			(*ndo_do_ioctl)(struct net_device *dev,
1082 					        struct ifreq *ifr, int cmd);
1083 	int			(*ndo_set_config)(struct net_device *dev,
1084 					          struct ifmap *map);
1085 	int			(*ndo_change_mtu)(struct net_device *dev,
1086 						  int new_mtu);
1087 	int			(*ndo_neigh_setup)(struct net_device *dev,
1088 						   struct neigh_parms *);
1089 	void			(*ndo_tx_timeout) (struct net_device *dev);
1090 
1091 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1092 						     struct rtnl_link_stats64 *storage);
1093 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1094 
1095 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1096 						       __be16 proto, u16 vid);
1097 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1098 						        __be16 proto, u16 vid);
1099 #ifdef CONFIG_NET_POLL_CONTROLLER
1100 	void                    (*ndo_poll_controller)(struct net_device *dev);
1101 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1102 						     struct netpoll_info *info);
1103 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1104 #endif
1105 #ifdef CONFIG_NET_RX_BUSY_POLL
1106 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1107 #endif
1108 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1109 						  int queue, u8 *mac);
1110 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1111 						   int queue, u16 vlan, u8 qos);
1112 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1113 						   int vf, int min_tx_rate,
1114 						   int max_tx_rate);
1115 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1116 						       int vf, bool setting);
1117 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1118 						    int vf, bool setting);
1119 	int			(*ndo_get_vf_config)(struct net_device *dev,
1120 						     int vf,
1121 						     struct ifla_vf_info *ivf);
1122 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1123 							 int vf, int link_state);
1124 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1125 						    int vf,
1126 						    struct ifla_vf_stats
1127 						    *vf_stats);
1128 	int			(*ndo_set_vf_port)(struct net_device *dev,
1129 						   int vf,
1130 						   struct nlattr *port[]);
1131 	int			(*ndo_get_vf_port)(struct net_device *dev,
1132 						   int vf, struct sk_buff *skb);
1133 	int			(*ndo_set_vf_rss_query_en)(
1134 						   struct net_device *dev,
1135 						   int vf, bool setting);
1136 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1137 #if IS_ENABLED(CONFIG_FCOE)
1138 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1139 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1140 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1141 						      u16 xid,
1142 						      struct scatterlist *sgl,
1143 						      unsigned int sgc);
1144 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1145 						     u16 xid);
1146 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1147 						       u16 xid,
1148 						       struct scatterlist *sgl,
1149 						       unsigned int sgc);
1150 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1151 							struct netdev_fcoe_hbainfo *hbainfo);
1152 #endif
1153 
1154 #if IS_ENABLED(CONFIG_LIBFCOE)
1155 #define NETDEV_FCOE_WWNN 0
1156 #define NETDEV_FCOE_WWPN 1
1157 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1158 						    u64 *wwn, int type);
1159 #endif
1160 
1161 #ifdef CONFIG_RFS_ACCEL
1162 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1163 						     const struct sk_buff *skb,
1164 						     u16 rxq_index,
1165 						     u32 flow_id);
1166 #endif
1167 	int			(*ndo_add_slave)(struct net_device *dev,
1168 						 struct net_device *slave_dev);
1169 	int			(*ndo_del_slave)(struct net_device *dev,
1170 						 struct net_device *slave_dev);
1171 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1172 						    netdev_features_t features);
1173 	int			(*ndo_set_features)(struct net_device *dev,
1174 						    netdev_features_t features);
1175 	int			(*ndo_neigh_construct)(struct neighbour *n);
1176 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1177 
1178 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1179 					       struct nlattr *tb[],
1180 					       struct net_device *dev,
1181 					       const unsigned char *addr,
1182 					       u16 vid,
1183 					       u16 flags);
1184 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1185 					       struct nlattr *tb[],
1186 					       struct net_device *dev,
1187 					       const unsigned char *addr,
1188 					       u16 vid);
1189 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1190 						struct netlink_callback *cb,
1191 						struct net_device *dev,
1192 						struct net_device *filter_dev,
1193 						int idx);
1194 
1195 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1196 						      struct nlmsghdr *nlh,
1197 						      u16 flags);
1198 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1199 						      u32 pid, u32 seq,
1200 						      struct net_device *dev,
1201 						      u32 filter_mask,
1202 						      int nlflags);
1203 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1204 						      struct nlmsghdr *nlh,
1205 						      u16 flags);
1206 	int			(*ndo_change_carrier)(struct net_device *dev,
1207 						      bool new_carrier);
1208 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1209 							struct netdev_phys_item_id *ppid);
1210 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1211 							  char *name, size_t len);
1212 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1213 						      sa_family_t sa_family,
1214 						      __be16 port);
1215 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1216 						      sa_family_t sa_family,
1217 						      __be16 port);
1218 
1219 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1220 							struct net_device *dev);
1221 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1222 							void *priv);
1223 
1224 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1225 							struct net_device *dev,
1226 							void *priv);
1227 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1228 	netdev_features_t	(*ndo_features_check) (struct sk_buff *skb,
1229 						       struct net_device *dev,
1230 						       netdev_features_t features);
1231 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1232 						      int queue_index,
1233 						      u32 maxrate);
1234 	int			(*ndo_get_iflink)(const struct net_device *dev);
1235 	int			(*ndo_change_proto_down)(struct net_device *dev,
1236 							 bool proto_down);
1237 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1238 						       struct sk_buff *skb);
1239 };
1240 
1241 /**
1242  * enum net_device_priv_flags - &struct net_device priv_flags
1243  *
1244  * These are the &struct net_device, they are only set internally
1245  * by drivers and used in the kernel. These flags are invisible to
1246  * userspace, this means that the order of these flags can change
1247  * during any kernel release.
1248  *
1249  * You should have a pretty good reason to be extending these flags.
1250  *
1251  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1252  * @IFF_EBRIDGE: Ethernet bridging device
1253  * @IFF_BONDING: bonding master or slave
1254  * @IFF_ISATAP: ISATAP interface (RFC4214)
1255  * @IFF_WAN_HDLC: WAN HDLC device
1256  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1257  *	release skb->dst
1258  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1259  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1260  * @IFF_MACVLAN_PORT: device used as macvlan port
1261  * @IFF_BRIDGE_PORT: device used as bridge port
1262  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1263  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1264  * @IFF_UNICAST_FLT: Supports unicast filtering
1265  * @IFF_TEAM_PORT: device used as team port
1266  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1267  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1268  *	change when it's running
1269  * @IFF_MACVLAN: Macvlan device
1270  * @IFF_L3MDEV_MASTER: device is an L3 master device
1271  * @IFF_NO_QUEUE: device can run without qdisc attached
1272  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1273  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1274  */
1275 enum netdev_priv_flags {
1276 	IFF_802_1Q_VLAN			= 1<<0,
1277 	IFF_EBRIDGE			= 1<<1,
1278 	IFF_BONDING			= 1<<2,
1279 	IFF_ISATAP			= 1<<3,
1280 	IFF_WAN_HDLC			= 1<<4,
1281 	IFF_XMIT_DST_RELEASE		= 1<<5,
1282 	IFF_DONT_BRIDGE			= 1<<6,
1283 	IFF_DISABLE_NETPOLL		= 1<<7,
1284 	IFF_MACVLAN_PORT		= 1<<8,
1285 	IFF_BRIDGE_PORT			= 1<<9,
1286 	IFF_OVS_DATAPATH		= 1<<10,
1287 	IFF_TX_SKB_SHARING		= 1<<11,
1288 	IFF_UNICAST_FLT			= 1<<12,
1289 	IFF_TEAM_PORT			= 1<<13,
1290 	IFF_SUPP_NOFCS			= 1<<14,
1291 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1292 	IFF_MACVLAN			= 1<<16,
1293 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1294 	IFF_IPVLAN_MASTER		= 1<<18,
1295 	IFF_IPVLAN_SLAVE		= 1<<19,
1296 	IFF_L3MDEV_MASTER		= 1<<20,
1297 	IFF_NO_QUEUE			= 1<<21,
1298 	IFF_OPENVSWITCH			= 1<<22,
1299 	IFF_L3MDEV_SLAVE		= 1<<23,
1300 };
1301 
1302 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1303 #define IFF_EBRIDGE			IFF_EBRIDGE
1304 #define IFF_BONDING			IFF_BONDING
1305 #define IFF_ISATAP			IFF_ISATAP
1306 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1307 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1308 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1309 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1310 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1311 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1312 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1313 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1314 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1315 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1316 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1317 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1318 #define IFF_MACVLAN			IFF_MACVLAN
1319 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1320 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1321 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1322 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1323 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1324 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1325 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1326 
1327 /**
1328  *	struct net_device - The DEVICE structure.
1329  *		Actually, this whole structure is a big mistake.  It mixes I/O
1330  *		data with strictly "high-level" data, and it has to know about
1331  *		almost every data structure used in the INET module.
1332  *
1333  *	@name:	This is the first field of the "visible" part of this structure
1334  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1335  *	 	of the interface.
1336  *
1337  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1338  *	@ifalias:	SNMP alias
1339  *	@mem_end:	Shared memory end
1340  *	@mem_start:	Shared memory start
1341  *	@base_addr:	Device I/O address
1342  *	@irq:		Device IRQ number
1343  *
1344  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1345  *
1346  *	@state:		Generic network queuing layer state, see netdev_state_t
1347  *	@dev_list:	The global list of network devices
1348  *	@napi_list:	List entry, that is used for polling napi devices
1349  *	@unreg_list:	List entry, that is used, when we are unregistering the
1350  *			device, see the function unregister_netdev
1351  *	@close_list:	List entry, that is used, when we are closing the device
1352  *
1353  *	@adj_list:	Directly linked devices, like slaves for bonding
1354  *	@all_adj_list:	All linked devices, *including* neighbours
1355  *	@features:	Currently active device features
1356  *	@hw_features:	User-changeable features
1357  *
1358  *	@wanted_features:	User-requested features
1359  *	@vlan_features:		Mask of features inheritable by VLAN devices
1360  *
1361  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1362  *				This field indicates what encapsulation
1363  *				offloads the hardware is capable of doing,
1364  *				and drivers will need to set them appropriately.
1365  *
1366  *	@mpls_features:	Mask of features inheritable by MPLS
1367  *
1368  *	@ifindex:	interface index
1369  *	@group:		The group, that the device belongs to
1370  *
1371  *	@stats:		Statistics struct, which was left as a legacy, use
1372  *			rtnl_link_stats64 instead
1373  *
1374  *	@rx_dropped:	Dropped packets by core network,
1375  *			do not use this in drivers
1376  *	@tx_dropped:	Dropped packets by core network,
1377  *			do not use this in drivers
1378  *
1379  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1380  *				instead of ioctl,
1381  *				see <net/iw_handler.h> for details.
1382  *	@wireless_data:	Instance data managed by the core of wireless extensions
1383  *
1384  *	@netdev_ops:	Includes several pointers to callbacks,
1385  *			if one wants to override the ndo_*() functions
1386  *	@ethtool_ops:	Management operations
1387  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1388  *			of Layer 2 headers.
1389  *
1390  *	@flags:		Interface flags (a la BSD)
1391  *	@priv_flags:	Like 'flags' but invisible to userspace,
1392  *			see if.h for the definitions
1393  *	@gflags:	Global flags ( kept as legacy )
1394  *	@padded:	How much padding added by alloc_netdev()
1395  *	@operstate:	RFC2863 operstate
1396  *	@link_mode:	Mapping policy to operstate
1397  *	@if_port:	Selectable AUI, TP, ...
1398  *	@dma:		DMA channel
1399  *	@mtu:		Interface MTU value
1400  *	@type:		Interface hardware type
1401  *	@hard_header_len: Hardware header length
1402  *
1403  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1404  *			  cases can this be guaranteed
1405  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1406  *			  cases can this be guaranteed. Some cases also use
1407  *			  LL_MAX_HEADER instead to allocate the skb
1408  *
1409  *	interface address info:
1410  *
1411  * 	@perm_addr:		Permanent hw address
1412  * 	@addr_assign_type:	Hw address assignment type
1413  * 	@addr_len:		Hardware address length
1414  * 	@neigh_priv_len;	Used in neigh_alloc(),
1415  * 				initialized only in atm/clip.c
1416  * 	@dev_id:		Used to differentiate devices that share
1417  * 				the same link layer address
1418  * 	@dev_port:		Used to differentiate devices that share
1419  * 				the same function
1420  *	@addr_list_lock:	XXX: need comments on this one
1421  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1422  *				has been enabled due to the need to listen to
1423  *				additional unicast addresses in a device that
1424  *				does not implement ndo_set_rx_mode()
1425  *	@uc:			unicast mac addresses
1426  *	@mc:			multicast mac addresses
1427  *	@dev_addrs:		list of device hw addresses
1428  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1429  *	@promiscuity:		Number of times, the NIC is told to work in
1430  *				Promiscuous mode, if it becomes 0 the NIC will
1431  *				exit from working in Promiscuous mode
1432  *	@allmulti:		Counter, enables or disables allmulticast mode
1433  *
1434  *	@vlan_info:	VLAN info
1435  *	@dsa_ptr:	dsa specific data
1436  *	@tipc_ptr:	TIPC specific data
1437  *	@atalk_ptr:	AppleTalk link
1438  *	@ip_ptr:	IPv4 specific data
1439  *	@dn_ptr:	DECnet specific data
1440  *	@ip6_ptr:	IPv6 specific data
1441  *	@ax25_ptr:	AX.25 specific data
1442  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1443  *
1444  *	@last_rx:	Time of last Rx
1445  *	@dev_addr:	Hw address (before bcast,
1446  *			because most packets are unicast)
1447  *
1448  *	@_rx:			Array of RX queues
1449  *	@num_rx_queues:		Number of RX queues
1450  *				allocated at register_netdev() time
1451  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1452  *
1453  *	@rx_handler:		handler for received packets
1454  *	@rx_handler_data: 	XXX: need comments on this one
1455  *	@ingress_queue:		XXX: need comments on this one
1456  *	@broadcast:		hw bcast address
1457  *
1458  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1459  *			indexed by RX queue number. Assigned by driver.
1460  *			This must only be set if the ndo_rx_flow_steer
1461  *			operation is defined
1462  *	@index_hlist:		Device index hash chain
1463  *
1464  *	@_tx:			Array of TX queues
1465  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1466  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1467  *	@qdisc:			Root qdisc from userspace point of view
1468  *	@tx_queue_len:		Max frames per queue allowed
1469  *	@tx_global_lock: 	XXX: need comments on this one
1470  *
1471  *	@xps_maps:	XXX: need comments on this one
1472  *
1473  *	@offload_fwd_mark:	Offload device fwding mark
1474  *
1475  *	@trans_start:		Time (in jiffies) of last Tx
1476  *	@watchdog_timeo:	Represents the timeout that is used by
1477  *				the watchdog ( see dev_watchdog() )
1478  *	@watchdog_timer:	List of timers
1479  *
1480  *	@pcpu_refcnt:		Number of references to this device
1481  *	@todo_list:		Delayed register/unregister
1482  *	@link_watch_list:	XXX: need comments on this one
1483  *
1484  *	@reg_state:		Register/unregister state machine
1485  *	@dismantle:		Device is going to be freed
1486  *	@rtnl_link_state:	This enum represents the phases of creating
1487  *				a new link
1488  *
1489  *	@destructor:		Called from unregister,
1490  *				can be used to call free_netdev
1491  *	@npinfo:		XXX: need comments on this one
1492  * 	@nd_net:		Network namespace this network device is inside
1493  *
1494  * 	@ml_priv:	Mid-layer private
1495  * 	@lstats:	Loopback statistics
1496  * 	@tstats:	Tunnel statistics
1497  * 	@dstats:	Dummy statistics
1498  * 	@vstats:	Virtual ethernet statistics
1499  *
1500  *	@garp_port:	GARP
1501  *	@mrp_port:	MRP
1502  *
1503  *	@dev:		Class/net/name entry
1504  *	@sysfs_groups:	Space for optional device, statistics and wireless
1505  *			sysfs groups
1506  *
1507  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1508  *	@rtnl_link_ops:	Rtnl_link_ops
1509  *
1510  *	@gso_max_size:	Maximum size of generic segmentation offload
1511  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1512  *			NIC for GSO
1513  *	@gso_min_segs:	Minimum number of segments that can be passed to the
1514  *			NIC for GSO
1515  *
1516  *	@dcbnl_ops:	Data Center Bridging netlink ops
1517  *	@num_tc:	Number of traffic classes in the net device
1518  *	@tc_to_txq:	XXX: need comments on this one
1519  *	@prio_tc_map	XXX: need comments on this one
1520  *
1521  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1522  *
1523  *	@priomap:	XXX: need comments on this one
1524  *	@phydev:	Physical device may attach itself
1525  *			for hardware timestamping
1526  *
1527  *	@qdisc_tx_busylock:	XXX: need comments on this one
1528  *
1529  *	@proto_down:	protocol port state information can be sent to the
1530  *			switch driver and used to set the phys state of the
1531  *			switch port.
1532  *
1533  *	FIXME: cleanup struct net_device such that network protocol info
1534  *	moves out.
1535  */
1536 
1537 struct net_device {
1538 	char			name[IFNAMSIZ];
1539 	struct hlist_node	name_hlist;
1540 	char 			*ifalias;
1541 	/*
1542 	 *	I/O specific fields
1543 	 *	FIXME: Merge these and struct ifmap into one
1544 	 */
1545 	unsigned long		mem_end;
1546 	unsigned long		mem_start;
1547 	unsigned long		base_addr;
1548 	int			irq;
1549 
1550 	atomic_t		carrier_changes;
1551 
1552 	/*
1553 	 *	Some hardware also needs these fields (state,dev_list,
1554 	 *	napi_list,unreg_list,close_list) but they are not
1555 	 *	part of the usual set specified in Space.c.
1556 	 */
1557 
1558 	unsigned long		state;
1559 
1560 	struct list_head	dev_list;
1561 	struct list_head	napi_list;
1562 	struct list_head	unreg_list;
1563 	struct list_head	close_list;
1564 	struct list_head	ptype_all;
1565 	struct list_head	ptype_specific;
1566 
1567 	struct {
1568 		struct list_head upper;
1569 		struct list_head lower;
1570 	} adj_list;
1571 
1572 	struct {
1573 		struct list_head upper;
1574 		struct list_head lower;
1575 	} all_adj_list;
1576 
1577 	netdev_features_t	features;
1578 	netdev_features_t	hw_features;
1579 	netdev_features_t	wanted_features;
1580 	netdev_features_t	vlan_features;
1581 	netdev_features_t	hw_enc_features;
1582 	netdev_features_t	mpls_features;
1583 
1584 	int			ifindex;
1585 	int			group;
1586 
1587 	struct net_device_stats	stats;
1588 
1589 	atomic_long_t		rx_dropped;
1590 	atomic_long_t		tx_dropped;
1591 
1592 #ifdef CONFIG_WIRELESS_EXT
1593 	const struct iw_handler_def *	wireless_handlers;
1594 	struct iw_public_data *	wireless_data;
1595 #endif
1596 	const struct net_device_ops *netdev_ops;
1597 	const struct ethtool_ops *ethtool_ops;
1598 #ifdef CONFIG_NET_SWITCHDEV
1599 	const struct switchdev_ops *switchdev_ops;
1600 #endif
1601 #ifdef CONFIG_NET_L3_MASTER_DEV
1602 	const struct l3mdev_ops	*l3mdev_ops;
1603 #endif
1604 
1605 	const struct header_ops *header_ops;
1606 
1607 	unsigned int		flags;
1608 	unsigned int		priv_flags;
1609 
1610 	unsigned short		gflags;
1611 	unsigned short		padded;
1612 
1613 	unsigned char		operstate;
1614 	unsigned char		link_mode;
1615 
1616 	unsigned char		if_port;
1617 	unsigned char		dma;
1618 
1619 	unsigned int		mtu;
1620 	unsigned short		type;
1621 	unsigned short		hard_header_len;
1622 
1623 	unsigned short		needed_headroom;
1624 	unsigned short		needed_tailroom;
1625 
1626 	/* Interface address info. */
1627 	unsigned char		perm_addr[MAX_ADDR_LEN];
1628 	unsigned char		addr_assign_type;
1629 	unsigned char		addr_len;
1630 	unsigned short		neigh_priv_len;
1631 	unsigned short          dev_id;
1632 	unsigned short          dev_port;
1633 	spinlock_t		addr_list_lock;
1634 	unsigned char		name_assign_type;
1635 	bool			uc_promisc;
1636 	struct netdev_hw_addr_list	uc;
1637 	struct netdev_hw_addr_list	mc;
1638 	struct netdev_hw_addr_list	dev_addrs;
1639 
1640 #ifdef CONFIG_SYSFS
1641 	struct kset		*queues_kset;
1642 #endif
1643 	unsigned int		promiscuity;
1644 	unsigned int		allmulti;
1645 
1646 
1647 	/* Protocol specific pointers */
1648 
1649 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1650 	struct vlan_info __rcu	*vlan_info;
1651 #endif
1652 #if IS_ENABLED(CONFIG_NET_DSA)
1653 	struct dsa_switch_tree	*dsa_ptr;
1654 #endif
1655 #if IS_ENABLED(CONFIG_TIPC)
1656 	struct tipc_bearer __rcu *tipc_ptr;
1657 #endif
1658 	void 			*atalk_ptr;
1659 	struct in_device __rcu	*ip_ptr;
1660 	struct dn_dev __rcu     *dn_ptr;
1661 	struct inet6_dev __rcu	*ip6_ptr;
1662 	void			*ax25_ptr;
1663 	struct wireless_dev	*ieee80211_ptr;
1664 	struct wpan_dev		*ieee802154_ptr;
1665 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1666 	struct mpls_dev __rcu	*mpls_ptr;
1667 #endif
1668 
1669 /*
1670  * Cache lines mostly used on receive path (including eth_type_trans())
1671  */
1672 	unsigned long		last_rx;
1673 
1674 	/* Interface address info used in eth_type_trans() */
1675 	unsigned char		*dev_addr;
1676 
1677 
1678 #ifdef CONFIG_SYSFS
1679 	struct netdev_rx_queue	*_rx;
1680 
1681 	unsigned int		num_rx_queues;
1682 	unsigned int		real_num_rx_queues;
1683 
1684 #endif
1685 
1686 	unsigned long		gro_flush_timeout;
1687 	rx_handler_func_t __rcu	*rx_handler;
1688 	void __rcu		*rx_handler_data;
1689 
1690 #ifdef CONFIG_NET_CLS_ACT
1691 	struct tcf_proto __rcu  *ingress_cl_list;
1692 #endif
1693 	struct netdev_queue __rcu *ingress_queue;
1694 #ifdef CONFIG_NETFILTER_INGRESS
1695 	struct list_head	nf_hooks_ingress;
1696 #endif
1697 
1698 	unsigned char		broadcast[MAX_ADDR_LEN];
1699 #ifdef CONFIG_RFS_ACCEL
1700 	struct cpu_rmap		*rx_cpu_rmap;
1701 #endif
1702 	struct hlist_node	index_hlist;
1703 
1704 /*
1705  * Cache lines mostly used on transmit path
1706  */
1707 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1708 	unsigned int		num_tx_queues;
1709 	unsigned int		real_num_tx_queues;
1710 	struct Qdisc		*qdisc;
1711 	unsigned long		tx_queue_len;
1712 	spinlock_t		tx_global_lock;
1713 	int			watchdog_timeo;
1714 
1715 #ifdef CONFIG_XPS
1716 	struct xps_dev_maps __rcu *xps_maps;
1717 #endif
1718 
1719 #ifdef CONFIG_NET_SWITCHDEV
1720 	u32			offload_fwd_mark;
1721 #endif
1722 
1723 	/* These may be needed for future network-power-down code. */
1724 
1725 	/*
1726 	 * trans_start here is expensive for high speed devices on SMP,
1727 	 * please use netdev_queue->trans_start instead.
1728 	 */
1729 	unsigned long		trans_start;
1730 
1731 	struct timer_list	watchdog_timer;
1732 
1733 	int __percpu		*pcpu_refcnt;
1734 	struct list_head	todo_list;
1735 
1736 	struct list_head	link_watch_list;
1737 
1738 	enum { NETREG_UNINITIALIZED=0,
1739 	       NETREG_REGISTERED,	/* completed register_netdevice */
1740 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1741 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1742 	       NETREG_RELEASED,		/* called free_netdev */
1743 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1744 	} reg_state:8;
1745 
1746 	bool dismantle;
1747 
1748 	enum {
1749 		RTNL_LINK_INITIALIZED,
1750 		RTNL_LINK_INITIALIZING,
1751 	} rtnl_link_state:16;
1752 
1753 	void (*destructor)(struct net_device *dev);
1754 
1755 #ifdef CONFIG_NETPOLL
1756 	struct netpoll_info __rcu	*npinfo;
1757 #endif
1758 
1759 	possible_net_t			nd_net;
1760 
1761 	/* mid-layer private */
1762 	union {
1763 		void					*ml_priv;
1764 		struct pcpu_lstats __percpu		*lstats;
1765 		struct pcpu_sw_netstats __percpu	*tstats;
1766 		struct pcpu_dstats __percpu		*dstats;
1767 		struct pcpu_vstats __percpu		*vstats;
1768 	};
1769 
1770 	struct garp_port __rcu	*garp_port;
1771 	struct mrp_port __rcu	*mrp_port;
1772 
1773 	struct device	dev;
1774 	const struct attribute_group *sysfs_groups[4];
1775 	const struct attribute_group *sysfs_rx_queue_group;
1776 
1777 	const struct rtnl_link_ops *rtnl_link_ops;
1778 
1779 	/* for setting kernel sock attribute on TCP connection setup */
1780 #define GSO_MAX_SIZE		65536
1781 	unsigned int		gso_max_size;
1782 #define GSO_MAX_SEGS		65535
1783 	u16			gso_max_segs;
1784 	u16			gso_min_segs;
1785 #ifdef CONFIG_DCB
1786 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1787 #endif
1788 	u8 num_tc;
1789 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1790 	u8 prio_tc_map[TC_BITMASK + 1];
1791 
1792 #if IS_ENABLED(CONFIG_FCOE)
1793 	unsigned int		fcoe_ddp_xid;
1794 #endif
1795 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1796 	struct netprio_map __rcu *priomap;
1797 #endif
1798 	struct phy_device *phydev;
1799 	struct lock_class_key *qdisc_tx_busylock;
1800 	bool proto_down;
1801 };
1802 #define to_net_dev(d) container_of(d, struct net_device, dev)
1803 
1804 #define	NETDEV_ALIGN		32
1805 
1806 static inline
1807 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1808 {
1809 	return dev->prio_tc_map[prio & TC_BITMASK];
1810 }
1811 
1812 static inline
1813 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1814 {
1815 	if (tc >= dev->num_tc)
1816 		return -EINVAL;
1817 
1818 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1819 	return 0;
1820 }
1821 
1822 static inline
1823 void netdev_reset_tc(struct net_device *dev)
1824 {
1825 	dev->num_tc = 0;
1826 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1827 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1828 }
1829 
1830 static inline
1831 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1832 {
1833 	if (tc >= dev->num_tc)
1834 		return -EINVAL;
1835 
1836 	dev->tc_to_txq[tc].count = count;
1837 	dev->tc_to_txq[tc].offset = offset;
1838 	return 0;
1839 }
1840 
1841 static inline
1842 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1843 {
1844 	if (num_tc > TC_MAX_QUEUE)
1845 		return -EINVAL;
1846 
1847 	dev->num_tc = num_tc;
1848 	return 0;
1849 }
1850 
1851 static inline
1852 int netdev_get_num_tc(struct net_device *dev)
1853 {
1854 	return dev->num_tc;
1855 }
1856 
1857 static inline
1858 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1859 					 unsigned int index)
1860 {
1861 	return &dev->_tx[index];
1862 }
1863 
1864 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1865 						    const struct sk_buff *skb)
1866 {
1867 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1868 }
1869 
1870 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1871 					    void (*f)(struct net_device *,
1872 						      struct netdev_queue *,
1873 						      void *),
1874 					    void *arg)
1875 {
1876 	unsigned int i;
1877 
1878 	for (i = 0; i < dev->num_tx_queues; i++)
1879 		f(dev, &dev->_tx[i], arg);
1880 }
1881 
1882 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1883 				    struct sk_buff *skb,
1884 				    void *accel_priv);
1885 
1886 /*
1887  * Net namespace inlines
1888  */
1889 static inline
1890 struct net *dev_net(const struct net_device *dev)
1891 {
1892 	return read_pnet(&dev->nd_net);
1893 }
1894 
1895 static inline
1896 void dev_net_set(struct net_device *dev, struct net *net)
1897 {
1898 	write_pnet(&dev->nd_net, net);
1899 }
1900 
1901 static inline bool netdev_uses_dsa(struct net_device *dev)
1902 {
1903 #if IS_ENABLED(CONFIG_NET_DSA)
1904 	if (dev->dsa_ptr != NULL)
1905 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1906 #endif
1907 	return false;
1908 }
1909 
1910 /**
1911  *	netdev_priv - access network device private data
1912  *	@dev: network device
1913  *
1914  * Get network device private data
1915  */
1916 static inline void *netdev_priv(const struct net_device *dev)
1917 {
1918 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1919 }
1920 
1921 /* Set the sysfs physical device reference for the network logical device
1922  * if set prior to registration will cause a symlink during initialization.
1923  */
1924 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1925 
1926 /* Set the sysfs device type for the network logical device to allow
1927  * fine-grained identification of different network device types. For
1928  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1929  */
1930 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1931 
1932 /* Default NAPI poll() weight
1933  * Device drivers are strongly advised to not use bigger value
1934  */
1935 #define NAPI_POLL_WEIGHT 64
1936 
1937 /**
1938  *	netif_napi_add - initialize a napi context
1939  *	@dev:  network device
1940  *	@napi: napi context
1941  *	@poll: polling function
1942  *	@weight: default weight
1943  *
1944  * netif_napi_add() must be used to initialize a napi context prior to calling
1945  * *any* of the other napi related functions.
1946  */
1947 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1948 		    int (*poll)(struct napi_struct *, int), int weight);
1949 
1950 /**
1951  *  netif_napi_del - remove a napi context
1952  *  @napi: napi context
1953  *
1954  *  netif_napi_del() removes a napi context from the network device napi list
1955  */
1956 void netif_napi_del(struct napi_struct *napi);
1957 
1958 struct napi_gro_cb {
1959 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1960 	void *frag0;
1961 
1962 	/* Length of frag0. */
1963 	unsigned int frag0_len;
1964 
1965 	/* This indicates where we are processing relative to skb->data. */
1966 	int data_offset;
1967 
1968 	/* This is non-zero if the packet cannot be merged with the new skb. */
1969 	u16	flush;
1970 
1971 	/* Save the IP ID here and check when we get to the transport layer */
1972 	u16	flush_id;
1973 
1974 	/* Number of segments aggregated. */
1975 	u16	count;
1976 
1977 	/* Start offset for remote checksum offload */
1978 	u16	gro_remcsum_start;
1979 
1980 	/* jiffies when first packet was created/queued */
1981 	unsigned long age;
1982 
1983 	/* Used in ipv6_gro_receive() and foo-over-udp */
1984 	u16	proto;
1985 
1986 	/* This is non-zero if the packet may be of the same flow. */
1987 	u8	same_flow:1;
1988 
1989 	/* Used in udp_gro_receive */
1990 	u8	udp_mark:1;
1991 
1992 	/* GRO checksum is valid */
1993 	u8	csum_valid:1;
1994 
1995 	/* Number of checksums via CHECKSUM_UNNECESSARY */
1996 	u8	csum_cnt:3;
1997 
1998 	/* Free the skb? */
1999 	u8	free:2;
2000 #define NAPI_GRO_FREE		  1
2001 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2002 
2003 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2004 	u8	is_ipv6:1;
2005 
2006 	/* 7 bit hole */
2007 
2008 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2009 	__wsum	csum;
2010 
2011 	/* used in skb_gro_receive() slow path */
2012 	struct sk_buff *last;
2013 };
2014 
2015 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2016 
2017 struct packet_type {
2018 	__be16			type;	/* This is really htons(ether_type). */
2019 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2020 	int			(*func) (struct sk_buff *,
2021 					 struct net_device *,
2022 					 struct packet_type *,
2023 					 struct net_device *);
2024 	bool			(*id_match)(struct packet_type *ptype,
2025 					    struct sock *sk);
2026 	void			*af_packet_priv;
2027 	struct list_head	list;
2028 };
2029 
2030 struct offload_callbacks {
2031 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2032 						netdev_features_t features);
2033 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2034 						 struct sk_buff *skb);
2035 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2036 };
2037 
2038 struct packet_offload {
2039 	__be16			 type;	/* This is really htons(ether_type). */
2040 	u16			 priority;
2041 	struct offload_callbacks callbacks;
2042 	struct list_head	 list;
2043 };
2044 
2045 struct udp_offload;
2046 
2047 struct udp_offload_callbacks {
2048 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2049 						 struct sk_buff *skb,
2050 						 struct udp_offload *uoff);
2051 	int			(*gro_complete)(struct sk_buff *skb,
2052 						int nhoff,
2053 						struct udp_offload *uoff);
2054 };
2055 
2056 struct udp_offload {
2057 	__be16			 port;
2058 	u8			 ipproto;
2059 	struct udp_offload_callbacks callbacks;
2060 };
2061 
2062 /* often modified stats are per cpu, other are shared (netdev->stats) */
2063 struct pcpu_sw_netstats {
2064 	u64     rx_packets;
2065 	u64     rx_bytes;
2066 	u64     tx_packets;
2067 	u64     tx_bytes;
2068 	struct u64_stats_sync   syncp;
2069 };
2070 
2071 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2072 ({									\
2073 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2074 	if (pcpu_stats)	{						\
2075 		int __cpu;						\
2076 		for_each_possible_cpu(__cpu) {				\
2077 			typeof(type) *stat;				\
2078 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2079 			u64_stats_init(&stat->syncp);			\
2080 		}							\
2081 	}								\
2082 	pcpu_stats;							\
2083 })
2084 
2085 #define netdev_alloc_pcpu_stats(type)					\
2086 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL);
2087 
2088 #include <linux/notifier.h>
2089 
2090 /* netdevice notifier chain. Please remember to update the rtnetlink
2091  * notification exclusion list in rtnetlink_event() when adding new
2092  * types.
2093  */
2094 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2095 #define NETDEV_DOWN	0x0002
2096 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2097 				   detected a hardware crash and restarted
2098 				   - we can use this eg to kick tcp sessions
2099 				   once done */
2100 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2101 #define NETDEV_REGISTER 0x0005
2102 #define NETDEV_UNREGISTER	0x0006
2103 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2104 #define NETDEV_CHANGEADDR	0x0008
2105 #define NETDEV_GOING_DOWN	0x0009
2106 #define NETDEV_CHANGENAME	0x000A
2107 #define NETDEV_FEAT_CHANGE	0x000B
2108 #define NETDEV_BONDING_FAILOVER 0x000C
2109 #define NETDEV_PRE_UP		0x000D
2110 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2111 #define NETDEV_POST_TYPE_CHANGE	0x000F
2112 #define NETDEV_POST_INIT	0x0010
2113 #define NETDEV_UNREGISTER_FINAL 0x0011
2114 #define NETDEV_RELEASE		0x0012
2115 #define NETDEV_NOTIFY_PEERS	0x0013
2116 #define NETDEV_JOIN		0x0014
2117 #define NETDEV_CHANGEUPPER	0x0015
2118 #define NETDEV_RESEND_IGMP	0x0016
2119 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2120 #define NETDEV_CHANGEINFODATA	0x0018
2121 #define NETDEV_BONDING_INFO	0x0019
2122 #define NETDEV_PRECHANGEUPPER	0x001A
2123 
2124 int register_netdevice_notifier(struct notifier_block *nb);
2125 int unregister_netdevice_notifier(struct notifier_block *nb);
2126 
2127 struct netdev_notifier_info {
2128 	struct net_device *dev;
2129 };
2130 
2131 struct netdev_notifier_change_info {
2132 	struct netdev_notifier_info info; /* must be first */
2133 	unsigned int flags_changed;
2134 };
2135 
2136 struct netdev_notifier_changeupper_info {
2137 	struct netdev_notifier_info info; /* must be first */
2138 	struct net_device *upper_dev; /* new upper dev */
2139 	bool master; /* is upper dev master */
2140 	bool linking; /* is the nofication for link or unlink */
2141 };
2142 
2143 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2144 					     struct net_device *dev)
2145 {
2146 	info->dev = dev;
2147 }
2148 
2149 static inline struct net_device *
2150 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2151 {
2152 	return info->dev;
2153 }
2154 
2155 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2156 
2157 
2158 extern rwlock_t				dev_base_lock;		/* Device list lock */
2159 
2160 #define for_each_netdev(net, d)		\
2161 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2162 #define for_each_netdev_reverse(net, d)	\
2163 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2164 #define for_each_netdev_rcu(net, d)		\
2165 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2166 #define for_each_netdev_safe(net, d, n)	\
2167 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2168 #define for_each_netdev_continue(net, d)		\
2169 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2170 #define for_each_netdev_continue_rcu(net, d)		\
2171 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2172 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2173 		for_each_netdev_rcu(&init_net, slave)	\
2174 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2175 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2176 
2177 static inline struct net_device *next_net_device(struct net_device *dev)
2178 {
2179 	struct list_head *lh;
2180 	struct net *net;
2181 
2182 	net = dev_net(dev);
2183 	lh = dev->dev_list.next;
2184 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2185 }
2186 
2187 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2188 {
2189 	struct list_head *lh;
2190 	struct net *net;
2191 
2192 	net = dev_net(dev);
2193 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2194 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2195 }
2196 
2197 static inline struct net_device *first_net_device(struct net *net)
2198 {
2199 	return list_empty(&net->dev_base_head) ? NULL :
2200 		net_device_entry(net->dev_base_head.next);
2201 }
2202 
2203 static inline struct net_device *first_net_device_rcu(struct net *net)
2204 {
2205 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2206 
2207 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2208 }
2209 
2210 int netdev_boot_setup_check(struct net_device *dev);
2211 unsigned long netdev_boot_base(const char *prefix, int unit);
2212 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2213 				       const char *hwaddr);
2214 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2215 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2216 void dev_add_pack(struct packet_type *pt);
2217 void dev_remove_pack(struct packet_type *pt);
2218 void __dev_remove_pack(struct packet_type *pt);
2219 void dev_add_offload(struct packet_offload *po);
2220 void dev_remove_offload(struct packet_offload *po);
2221 
2222 int dev_get_iflink(const struct net_device *dev);
2223 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2224 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2225 				      unsigned short mask);
2226 struct net_device *dev_get_by_name(struct net *net, const char *name);
2227 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2228 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2229 int dev_alloc_name(struct net_device *dev, const char *name);
2230 int dev_open(struct net_device *dev);
2231 int dev_close(struct net_device *dev);
2232 int dev_close_many(struct list_head *head, bool unlink);
2233 void dev_disable_lro(struct net_device *dev);
2234 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2235 int dev_queue_xmit(struct sk_buff *skb);
2236 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2237 int register_netdevice(struct net_device *dev);
2238 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2239 void unregister_netdevice_many(struct list_head *head);
2240 static inline void unregister_netdevice(struct net_device *dev)
2241 {
2242 	unregister_netdevice_queue(dev, NULL);
2243 }
2244 
2245 int netdev_refcnt_read(const struct net_device *dev);
2246 void free_netdev(struct net_device *dev);
2247 void netdev_freemem(struct net_device *dev);
2248 void synchronize_net(void);
2249 int init_dummy_netdev(struct net_device *dev);
2250 
2251 DECLARE_PER_CPU(int, xmit_recursion);
2252 static inline int dev_recursion_level(void)
2253 {
2254 	return this_cpu_read(xmit_recursion);
2255 }
2256 
2257 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2258 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2259 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2260 int netdev_get_name(struct net *net, char *name, int ifindex);
2261 int dev_restart(struct net_device *dev);
2262 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2263 
2264 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2265 {
2266 	return NAPI_GRO_CB(skb)->data_offset;
2267 }
2268 
2269 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2270 {
2271 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2272 }
2273 
2274 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2275 {
2276 	NAPI_GRO_CB(skb)->data_offset += len;
2277 }
2278 
2279 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2280 					unsigned int offset)
2281 {
2282 	return NAPI_GRO_CB(skb)->frag0 + offset;
2283 }
2284 
2285 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2286 {
2287 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2288 }
2289 
2290 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2291 					unsigned int offset)
2292 {
2293 	if (!pskb_may_pull(skb, hlen))
2294 		return NULL;
2295 
2296 	NAPI_GRO_CB(skb)->frag0 = NULL;
2297 	NAPI_GRO_CB(skb)->frag0_len = 0;
2298 	return skb->data + offset;
2299 }
2300 
2301 static inline void *skb_gro_network_header(struct sk_buff *skb)
2302 {
2303 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2304 	       skb_network_offset(skb);
2305 }
2306 
2307 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2308 					const void *start, unsigned int len)
2309 {
2310 	if (NAPI_GRO_CB(skb)->csum_valid)
2311 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2312 						  csum_partial(start, len, 0));
2313 }
2314 
2315 /* GRO checksum functions. These are logical equivalents of the normal
2316  * checksum functions (in skbuff.h) except that they operate on the GRO
2317  * offsets and fields in sk_buff.
2318  */
2319 
2320 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2321 
2322 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2323 {
2324 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2325 }
2326 
2327 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2328 						      bool zero_okay,
2329 						      __sum16 check)
2330 {
2331 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2332 		skb_checksum_start_offset(skb) <
2333 		 skb_gro_offset(skb)) &&
2334 		!skb_at_gro_remcsum_start(skb) &&
2335 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2336 		(!zero_okay || check));
2337 }
2338 
2339 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2340 							   __wsum psum)
2341 {
2342 	if (NAPI_GRO_CB(skb)->csum_valid &&
2343 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2344 		return 0;
2345 
2346 	NAPI_GRO_CB(skb)->csum = psum;
2347 
2348 	return __skb_gro_checksum_complete(skb);
2349 }
2350 
2351 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2352 {
2353 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2354 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2355 		NAPI_GRO_CB(skb)->csum_cnt--;
2356 	} else {
2357 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2358 		 * verified a new top level checksum or an encapsulated one
2359 		 * during GRO. This saves work if we fallback to normal path.
2360 		 */
2361 		__skb_incr_checksum_unnecessary(skb);
2362 	}
2363 }
2364 
2365 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2366 				    compute_pseudo)			\
2367 ({									\
2368 	__sum16 __ret = 0;						\
2369 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2370 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2371 				compute_pseudo(skb, proto));		\
2372 	if (__ret)							\
2373 		__skb_mark_checksum_bad(skb);				\
2374 	else								\
2375 		skb_gro_incr_csum_unnecessary(skb);			\
2376 	__ret;								\
2377 })
2378 
2379 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2380 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2381 
2382 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2383 					     compute_pseudo)		\
2384 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2385 
2386 #define skb_gro_checksum_simple_validate(skb)				\
2387 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2388 
2389 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2390 {
2391 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2392 		!NAPI_GRO_CB(skb)->csum_valid);
2393 }
2394 
2395 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2396 					      __sum16 check, __wsum pseudo)
2397 {
2398 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2399 	NAPI_GRO_CB(skb)->csum_valid = 1;
2400 }
2401 
2402 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2403 do {									\
2404 	if (__skb_gro_checksum_convert_check(skb))			\
2405 		__skb_gro_checksum_convert(skb, check,			\
2406 					   compute_pseudo(skb, proto));	\
2407 } while (0)
2408 
2409 struct gro_remcsum {
2410 	int offset;
2411 	__wsum delta;
2412 };
2413 
2414 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2415 {
2416 	grc->offset = 0;
2417 	grc->delta = 0;
2418 }
2419 
2420 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2421 					    unsigned int off, size_t hdrlen,
2422 					    int start, int offset,
2423 					    struct gro_remcsum *grc,
2424 					    bool nopartial)
2425 {
2426 	__wsum delta;
2427 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2428 
2429 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2430 
2431 	if (!nopartial) {
2432 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2433 		return ptr;
2434 	}
2435 
2436 	ptr = skb_gro_header_fast(skb, off);
2437 	if (skb_gro_header_hard(skb, off + plen)) {
2438 		ptr = skb_gro_header_slow(skb, off + plen, off);
2439 		if (!ptr)
2440 			return NULL;
2441 	}
2442 
2443 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2444 			       start, offset);
2445 
2446 	/* Adjust skb->csum since we changed the packet */
2447 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2448 
2449 	grc->offset = off + hdrlen + offset;
2450 	grc->delta = delta;
2451 
2452 	return ptr;
2453 }
2454 
2455 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2456 					   struct gro_remcsum *grc)
2457 {
2458 	void *ptr;
2459 	size_t plen = grc->offset + sizeof(u16);
2460 
2461 	if (!grc->delta)
2462 		return;
2463 
2464 	ptr = skb_gro_header_fast(skb, grc->offset);
2465 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2466 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2467 		if (!ptr)
2468 			return;
2469 	}
2470 
2471 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2472 }
2473 
2474 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2475 				  unsigned short type,
2476 				  const void *daddr, const void *saddr,
2477 				  unsigned int len)
2478 {
2479 	if (!dev->header_ops || !dev->header_ops->create)
2480 		return 0;
2481 
2482 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2483 }
2484 
2485 static inline int dev_parse_header(const struct sk_buff *skb,
2486 				   unsigned char *haddr)
2487 {
2488 	const struct net_device *dev = skb->dev;
2489 
2490 	if (!dev->header_ops || !dev->header_ops->parse)
2491 		return 0;
2492 	return dev->header_ops->parse(skb, haddr);
2493 }
2494 
2495 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2496 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2497 static inline int unregister_gifconf(unsigned int family)
2498 {
2499 	return register_gifconf(family, NULL);
2500 }
2501 
2502 #ifdef CONFIG_NET_FLOW_LIMIT
2503 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2504 struct sd_flow_limit {
2505 	u64			count;
2506 	unsigned int		num_buckets;
2507 	unsigned int		history_head;
2508 	u16			history[FLOW_LIMIT_HISTORY];
2509 	u8			buckets[];
2510 };
2511 
2512 extern int netdev_flow_limit_table_len;
2513 #endif /* CONFIG_NET_FLOW_LIMIT */
2514 
2515 /*
2516  * Incoming packets are placed on per-cpu queues
2517  */
2518 struct softnet_data {
2519 	struct list_head	poll_list;
2520 	struct sk_buff_head	process_queue;
2521 
2522 	/* stats */
2523 	unsigned int		processed;
2524 	unsigned int		time_squeeze;
2525 	unsigned int		cpu_collision;
2526 	unsigned int		received_rps;
2527 #ifdef CONFIG_RPS
2528 	struct softnet_data	*rps_ipi_list;
2529 #endif
2530 #ifdef CONFIG_NET_FLOW_LIMIT
2531 	struct sd_flow_limit __rcu *flow_limit;
2532 #endif
2533 	struct Qdisc		*output_queue;
2534 	struct Qdisc		**output_queue_tailp;
2535 	struct sk_buff		*completion_queue;
2536 
2537 #ifdef CONFIG_RPS
2538 	/* Elements below can be accessed between CPUs for RPS */
2539 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2540 	struct softnet_data	*rps_ipi_next;
2541 	unsigned int		cpu;
2542 	unsigned int		input_queue_head;
2543 	unsigned int		input_queue_tail;
2544 #endif
2545 	unsigned int		dropped;
2546 	struct sk_buff_head	input_pkt_queue;
2547 	struct napi_struct	backlog;
2548 
2549 };
2550 
2551 static inline void input_queue_head_incr(struct softnet_data *sd)
2552 {
2553 #ifdef CONFIG_RPS
2554 	sd->input_queue_head++;
2555 #endif
2556 }
2557 
2558 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2559 					      unsigned int *qtail)
2560 {
2561 #ifdef CONFIG_RPS
2562 	*qtail = ++sd->input_queue_tail;
2563 #endif
2564 }
2565 
2566 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2567 
2568 void __netif_schedule(struct Qdisc *q);
2569 void netif_schedule_queue(struct netdev_queue *txq);
2570 
2571 static inline void netif_tx_schedule_all(struct net_device *dev)
2572 {
2573 	unsigned int i;
2574 
2575 	for (i = 0; i < dev->num_tx_queues; i++)
2576 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2577 }
2578 
2579 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2580 {
2581 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2582 }
2583 
2584 /**
2585  *	netif_start_queue - allow transmit
2586  *	@dev: network device
2587  *
2588  *	Allow upper layers to call the device hard_start_xmit routine.
2589  */
2590 static inline void netif_start_queue(struct net_device *dev)
2591 {
2592 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2593 }
2594 
2595 static inline void netif_tx_start_all_queues(struct net_device *dev)
2596 {
2597 	unsigned int i;
2598 
2599 	for (i = 0; i < dev->num_tx_queues; i++) {
2600 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2601 		netif_tx_start_queue(txq);
2602 	}
2603 }
2604 
2605 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2606 
2607 /**
2608  *	netif_wake_queue - restart transmit
2609  *	@dev: network device
2610  *
2611  *	Allow upper layers to call the device hard_start_xmit routine.
2612  *	Used for flow control when transmit resources are available.
2613  */
2614 static inline void netif_wake_queue(struct net_device *dev)
2615 {
2616 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2617 }
2618 
2619 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2620 {
2621 	unsigned int i;
2622 
2623 	for (i = 0; i < dev->num_tx_queues; i++) {
2624 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2625 		netif_tx_wake_queue(txq);
2626 	}
2627 }
2628 
2629 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2630 {
2631 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2632 }
2633 
2634 /**
2635  *	netif_stop_queue - stop transmitted packets
2636  *	@dev: network device
2637  *
2638  *	Stop upper layers calling the device hard_start_xmit routine.
2639  *	Used for flow control when transmit resources are unavailable.
2640  */
2641 static inline void netif_stop_queue(struct net_device *dev)
2642 {
2643 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2644 }
2645 
2646 void netif_tx_stop_all_queues(struct net_device *dev);
2647 
2648 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2649 {
2650 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2651 }
2652 
2653 /**
2654  *	netif_queue_stopped - test if transmit queue is flowblocked
2655  *	@dev: network device
2656  *
2657  *	Test if transmit queue on device is currently unable to send.
2658  */
2659 static inline bool netif_queue_stopped(const struct net_device *dev)
2660 {
2661 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2662 }
2663 
2664 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2665 {
2666 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2667 }
2668 
2669 static inline bool
2670 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2671 {
2672 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2673 }
2674 
2675 static inline bool
2676 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2677 {
2678 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2679 }
2680 
2681 /**
2682  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2683  *	@dev_queue: pointer to transmit queue
2684  *
2685  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2686  * to give appropriate hint to the cpu.
2687  */
2688 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2689 {
2690 #ifdef CONFIG_BQL
2691 	prefetchw(&dev_queue->dql.num_queued);
2692 #endif
2693 }
2694 
2695 /**
2696  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2697  *	@dev_queue: pointer to transmit queue
2698  *
2699  * BQL enabled drivers might use this helper in their TX completion path,
2700  * to give appropriate hint to the cpu.
2701  */
2702 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2703 {
2704 #ifdef CONFIG_BQL
2705 	prefetchw(&dev_queue->dql.limit);
2706 #endif
2707 }
2708 
2709 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2710 					unsigned int bytes)
2711 {
2712 #ifdef CONFIG_BQL
2713 	dql_queued(&dev_queue->dql, bytes);
2714 
2715 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2716 		return;
2717 
2718 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2719 
2720 	/*
2721 	 * The XOFF flag must be set before checking the dql_avail below,
2722 	 * because in netdev_tx_completed_queue we update the dql_completed
2723 	 * before checking the XOFF flag.
2724 	 */
2725 	smp_mb();
2726 
2727 	/* check again in case another CPU has just made room avail */
2728 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2729 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2730 #endif
2731 }
2732 
2733 /**
2734  * 	netdev_sent_queue - report the number of bytes queued to hardware
2735  * 	@dev: network device
2736  * 	@bytes: number of bytes queued to the hardware device queue
2737  *
2738  * 	Report the number of bytes queued for sending/completion to the network
2739  * 	device hardware queue. @bytes should be a good approximation and should
2740  * 	exactly match netdev_completed_queue() @bytes
2741  */
2742 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2743 {
2744 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2745 }
2746 
2747 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2748 					     unsigned int pkts, unsigned int bytes)
2749 {
2750 #ifdef CONFIG_BQL
2751 	if (unlikely(!bytes))
2752 		return;
2753 
2754 	dql_completed(&dev_queue->dql, bytes);
2755 
2756 	/*
2757 	 * Without the memory barrier there is a small possiblity that
2758 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2759 	 * be stopped forever
2760 	 */
2761 	smp_mb();
2762 
2763 	if (dql_avail(&dev_queue->dql) < 0)
2764 		return;
2765 
2766 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2767 		netif_schedule_queue(dev_queue);
2768 #endif
2769 }
2770 
2771 /**
2772  * 	netdev_completed_queue - report bytes and packets completed by device
2773  * 	@dev: network device
2774  * 	@pkts: actual number of packets sent over the medium
2775  * 	@bytes: actual number of bytes sent over the medium
2776  *
2777  * 	Report the number of bytes and packets transmitted by the network device
2778  * 	hardware queue over the physical medium, @bytes must exactly match the
2779  * 	@bytes amount passed to netdev_sent_queue()
2780  */
2781 static inline void netdev_completed_queue(struct net_device *dev,
2782 					  unsigned int pkts, unsigned int bytes)
2783 {
2784 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2785 }
2786 
2787 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2788 {
2789 #ifdef CONFIG_BQL
2790 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2791 	dql_reset(&q->dql);
2792 #endif
2793 }
2794 
2795 /**
2796  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2797  * 	@dev_queue: network device
2798  *
2799  * 	Reset the bytes and packet count of a network device and clear the
2800  * 	software flow control OFF bit for this network device
2801  */
2802 static inline void netdev_reset_queue(struct net_device *dev_queue)
2803 {
2804 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2805 }
2806 
2807 /**
2808  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2809  * 	@dev: network device
2810  * 	@queue_index: given tx queue index
2811  *
2812  * 	Returns 0 if given tx queue index >= number of device tx queues,
2813  * 	otherwise returns the originally passed tx queue index.
2814  */
2815 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2816 {
2817 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2818 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2819 				     dev->name, queue_index,
2820 				     dev->real_num_tx_queues);
2821 		return 0;
2822 	}
2823 
2824 	return queue_index;
2825 }
2826 
2827 /**
2828  *	netif_running - test if up
2829  *	@dev: network device
2830  *
2831  *	Test if the device has been brought up.
2832  */
2833 static inline bool netif_running(const struct net_device *dev)
2834 {
2835 	return test_bit(__LINK_STATE_START, &dev->state);
2836 }
2837 
2838 /*
2839  * Routines to manage the subqueues on a device.  We only need start
2840  * stop, and a check if it's stopped.  All other device management is
2841  * done at the overall netdevice level.
2842  * Also test the device if we're multiqueue.
2843  */
2844 
2845 /**
2846  *	netif_start_subqueue - allow sending packets on subqueue
2847  *	@dev: network device
2848  *	@queue_index: sub queue index
2849  *
2850  * Start individual transmit queue of a device with multiple transmit queues.
2851  */
2852 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2853 {
2854 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2855 
2856 	netif_tx_start_queue(txq);
2857 }
2858 
2859 /**
2860  *	netif_stop_subqueue - stop sending packets on subqueue
2861  *	@dev: network device
2862  *	@queue_index: sub queue index
2863  *
2864  * Stop individual transmit queue of a device with multiple transmit queues.
2865  */
2866 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2867 {
2868 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2869 	netif_tx_stop_queue(txq);
2870 }
2871 
2872 /**
2873  *	netif_subqueue_stopped - test status of subqueue
2874  *	@dev: network device
2875  *	@queue_index: sub queue index
2876  *
2877  * Check individual transmit queue of a device with multiple transmit queues.
2878  */
2879 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2880 					    u16 queue_index)
2881 {
2882 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2883 
2884 	return netif_tx_queue_stopped(txq);
2885 }
2886 
2887 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2888 					  struct sk_buff *skb)
2889 {
2890 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2891 }
2892 
2893 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2894 
2895 #ifdef CONFIG_XPS
2896 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2897 			u16 index);
2898 #else
2899 static inline int netif_set_xps_queue(struct net_device *dev,
2900 				      const struct cpumask *mask,
2901 				      u16 index)
2902 {
2903 	return 0;
2904 }
2905 #endif
2906 
2907 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2908 		  unsigned int num_tx_queues);
2909 
2910 /*
2911  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2912  * as a distribution range limit for the returned value.
2913  */
2914 static inline u16 skb_tx_hash(const struct net_device *dev,
2915 			      struct sk_buff *skb)
2916 {
2917 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2918 }
2919 
2920 /**
2921  *	netif_is_multiqueue - test if device has multiple transmit queues
2922  *	@dev: network device
2923  *
2924  * Check if device has multiple transmit queues
2925  */
2926 static inline bool netif_is_multiqueue(const struct net_device *dev)
2927 {
2928 	return dev->num_tx_queues > 1;
2929 }
2930 
2931 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2932 
2933 #ifdef CONFIG_SYSFS
2934 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2935 #else
2936 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2937 						unsigned int rxq)
2938 {
2939 	return 0;
2940 }
2941 #endif
2942 
2943 #ifdef CONFIG_SYSFS
2944 static inline unsigned int get_netdev_rx_queue_index(
2945 		struct netdev_rx_queue *queue)
2946 {
2947 	struct net_device *dev = queue->dev;
2948 	int index = queue - dev->_rx;
2949 
2950 	BUG_ON(index >= dev->num_rx_queues);
2951 	return index;
2952 }
2953 #endif
2954 
2955 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2956 int netif_get_num_default_rss_queues(void);
2957 
2958 enum skb_free_reason {
2959 	SKB_REASON_CONSUMED,
2960 	SKB_REASON_DROPPED,
2961 };
2962 
2963 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2964 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2965 
2966 /*
2967  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2968  * interrupt context or with hardware interrupts being disabled.
2969  * (in_irq() || irqs_disabled())
2970  *
2971  * We provide four helpers that can be used in following contexts :
2972  *
2973  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2974  *  replacing kfree_skb(skb)
2975  *
2976  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2977  *  Typically used in place of consume_skb(skb) in TX completion path
2978  *
2979  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2980  *  replacing kfree_skb(skb)
2981  *
2982  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2983  *  and consumed a packet. Used in place of consume_skb(skb)
2984  */
2985 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2986 {
2987 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2988 }
2989 
2990 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2991 {
2992 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2993 }
2994 
2995 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2996 {
2997 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2998 }
2999 
3000 static inline void dev_consume_skb_any(struct sk_buff *skb)
3001 {
3002 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3003 }
3004 
3005 int netif_rx(struct sk_buff *skb);
3006 int netif_rx_ni(struct sk_buff *skb);
3007 int netif_receive_skb(struct sk_buff *skb);
3008 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3009 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3010 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3011 gro_result_t napi_gro_frags(struct napi_struct *napi);
3012 struct packet_offload *gro_find_receive_by_type(__be16 type);
3013 struct packet_offload *gro_find_complete_by_type(__be16 type);
3014 
3015 static inline void napi_free_frags(struct napi_struct *napi)
3016 {
3017 	kfree_skb(napi->skb);
3018 	napi->skb = NULL;
3019 }
3020 
3021 int netdev_rx_handler_register(struct net_device *dev,
3022 			       rx_handler_func_t *rx_handler,
3023 			       void *rx_handler_data);
3024 void netdev_rx_handler_unregister(struct net_device *dev);
3025 
3026 bool dev_valid_name(const char *name);
3027 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3028 int dev_ethtool(struct net *net, struct ifreq *);
3029 unsigned int dev_get_flags(const struct net_device *);
3030 int __dev_change_flags(struct net_device *, unsigned int flags);
3031 int dev_change_flags(struct net_device *, unsigned int);
3032 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3033 			unsigned int gchanges);
3034 int dev_change_name(struct net_device *, const char *);
3035 int dev_set_alias(struct net_device *, const char *, size_t);
3036 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3037 int dev_set_mtu(struct net_device *, int);
3038 void dev_set_group(struct net_device *, int);
3039 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3040 int dev_change_carrier(struct net_device *, bool new_carrier);
3041 int dev_get_phys_port_id(struct net_device *dev,
3042 			 struct netdev_phys_item_id *ppid);
3043 int dev_get_phys_port_name(struct net_device *dev,
3044 			   char *name, size_t len);
3045 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3046 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3047 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3048 				    struct netdev_queue *txq, int *ret);
3049 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3050 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3051 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3052 
3053 extern int		netdev_budget;
3054 
3055 /* Called by rtnetlink.c:rtnl_unlock() */
3056 void netdev_run_todo(void);
3057 
3058 /**
3059  *	dev_put - release reference to device
3060  *	@dev: network device
3061  *
3062  * Release reference to device to allow it to be freed.
3063  */
3064 static inline void dev_put(struct net_device *dev)
3065 {
3066 	this_cpu_dec(*dev->pcpu_refcnt);
3067 }
3068 
3069 /**
3070  *	dev_hold - get reference to device
3071  *	@dev: network device
3072  *
3073  * Hold reference to device to keep it from being freed.
3074  */
3075 static inline void dev_hold(struct net_device *dev)
3076 {
3077 	this_cpu_inc(*dev->pcpu_refcnt);
3078 }
3079 
3080 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3081  * and _off may be called from IRQ context, but it is caller
3082  * who is responsible for serialization of these calls.
3083  *
3084  * The name carrier is inappropriate, these functions should really be
3085  * called netif_lowerlayer_*() because they represent the state of any
3086  * kind of lower layer not just hardware media.
3087  */
3088 
3089 void linkwatch_init_dev(struct net_device *dev);
3090 void linkwatch_fire_event(struct net_device *dev);
3091 void linkwatch_forget_dev(struct net_device *dev);
3092 
3093 /**
3094  *	netif_carrier_ok - test if carrier present
3095  *	@dev: network device
3096  *
3097  * Check if carrier is present on device
3098  */
3099 static inline bool netif_carrier_ok(const struct net_device *dev)
3100 {
3101 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3102 }
3103 
3104 unsigned long dev_trans_start(struct net_device *dev);
3105 
3106 void __netdev_watchdog_up(struct net_device *dev);
3107 
3108 void netif_carrier_on(struct net_device *dev);
3109 
3110 void netif_carrier_off(struct net_device *dev);
3111 
3112 /**
3113  *	netif_dormant_on - mark device as dormant.
3114  *	@dev: network device
3115  *
3116  * Mark device as dormant (as per RFC2863).
3117  *
3118  * The dormant state indicates that the relevant interface is not
3119  * actually in a condition to pass packets (i.e., it is not 'up') but is
3120  * in a "pending" state, waiting for some external event.  For "on-
3121  * demand" interfaces, this new state identifies the situation where the
3122  * interface is waiting for events to place it in the up state.
3123  *
3124  */
3125 static inline void netif_dormant_on(struct net_device *dev)
3126 {
3127 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3128 		linkwatch_fire_event(dev);
3129 }
3130 
3131 /**
3132  *	netif_dormant_off - set device as not dormant.
3133  *	@dev: network device
3134  *
3135  * Device is not in dormant state.
3136  */
3137 static inline void netif_dormant_off(struct net_device *dev)
3138 {
3139 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3140 		linkwatch_fire_event(dev);
3141 }
3142 
3143 /**
3144  *	netif_dormant - test if carrier present
3145  *	@dev: network device
3146  *
3147  * Check if carrier is present on device
3148  */
3149 static inline bool netif_dormant(const struct net_device *dev)
3150 {
3151 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3152 }
3153 
3154 
3155 /**
3156  *	netif_oper_up - test if device is operational
3157  *	@dev: network device
3158  *
3159  * Check if carrier is operational
3160  */
3161 static inline bool netif_oper_up(const struct net_device *dev)
3162 {
3163 	return (dev->operstate == IF_OPER_UP ||
3164 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3165 }
3166 
3167 /**
3168  *	netif_device_present - is device available or removed
3169  *	@dev: network device
3170  *
3171  * Check if device has not been removed from system.
3172  */
3173 static inline bool netif_device_present(struct net_device *dev)
3174 {
3175 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3176 }
3177 
3178 void netif_device_detach(struct net_device *dev);
3179 
3180 void netif_device_attach(struct net_device *dev);
3181 
3182 /*
3183  * Network interface message level settings
3184  */
3185 
3186 enum {
3187 	NETIF_MSG_DRV		= 0x0001,
3188 	NETIF_MSG_PROBE		= 0x0002,
3189 	NETIF_MSG_LINK		= 0x0004,
3190 	NETIF_MSG_TIMER		= 0x0008,
3191 	NETIF_MSG_IFDOWN	= 0x0010,
3192 	NETIF_MSG_IFUP		= 0x0020,
3193 	NETIF_MSG_RX_ERR	= 0x0040,
3194 	NETIF_MSG_TX_ERR	= 0x0080,
3195 	NETIF_MSG_TX_QUEUED	= 0x0100,
3196 	NETIF_MSG_INTR		= 0x0200,
3197 	NETIF_MSG_TX_DONE	= 0x0400,
3198 	NETIF_MSG_RX_STATUS	= 0x0800,
3199 	NETIF_MSG_PKTDATA	= 0x1000,
3200 	NETIF_MSG_HW		= 0x2000,
3201 	NETIF_MSG_WOL		= 0x4000,
3202 };
3203 
3204 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3205 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3206 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3207 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3208 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3209 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3210 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3211 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3212 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3213 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3214 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3215 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3216 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3217 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3218 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3219 
3220 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3221 {
3222 	/* use default */
3223 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3224 		return default_msg_enable_bits;
3225 	if (debug_value == 0)	/* no output */
3226 		return 0;
3227 	/* set low N bits */
3228 	return (1 << debug_value) - 1;
3229 }
3230 
3231 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3232 {
3233 	spin_lock(&txq->_xmit_lock);
3234 	txq->xmit_lock_owner = cpu;
3235 }
3236 
3237 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3238 {
3239 	spin_lock_bh(&txq->_xmit_lock);
3240 	txq->xmit_lock_owner = smp_processor_id();
3241 }
3242 
3243 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3244 {
3245 	bool ok = spin_trylock(&txq->_xmit_lock);
3246 	if (likely(ok))
3247 		txq->xmit_lock_owner = smp_processor_id();
3248 	return ok;
3249 }
3250 
3251 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3252 {
3253 	txq->xmit_lock_owner = -1;
3254 	spin_unlock(&txq->_xmit_lock);
3255 }
3256 
3257 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3258 {
3259 	txq->xmit_lock_owner = -1;
3260 	spin_unlock_bh(&txq->_xmit_lock);
3261 }
3262 
3263 static inline void txq_trans_update(struct netdev_queue *txq)
3264 {
3265 	if (txq->xmit_lock_owner != -1)
3266 		txq->trans_start = jiffies;
3267 }
3268 
3269 /**
3270  *	netif_tx_lock - grab network device transmit lock
3271  *	@dev: network device
3272  *
3273  * Get network device transmit lock
3274  */
3275 static inline void netif_tx_lock(struct net_device *dev)
3276 {
3277 	unsigned int i;
3278 	int cpu;
3279 
3280 	spin_lock(&dev->tx_global_lock);
3281 	cpu = smp_processor_id();
3282 	for (i = 0; i < dev->num_tx_queues; i++) {
3283 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3284 
3285 		/* We are the only thread of execution doing a
3286 		 * freeze, but we have to grab the _xmit_lock in
3287 		 * order to synchronize with threads which are in
3288 		 * the ->hard_start_xmit() handler and already
3289 		 * checked the frozen bit.
3290 		 */
3291 		__netif_tx_lock(txq, cpu);
3292 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3293 		__netif_tx_unlock(txq);
3294 	}
3295 }
3296 
3297 static inline void netif_tx_lock_bh(struct net_device *dev)
3298 {
3299 	local_bh_disable();
3300 	netif_tx_lock(dev);
3301 }
3302 
3303 static inline void netif_tx_unlock(struct net_device *dev)
3304 {
3305 	unsigned int i;
3306 
3307 	for (i = 0; i < dev->num_tx_queues; i++) {
3308 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3309 
3310 		/* No need to grab the _xmit_lock here.  If the
3311 		 * queue is not stopped for another reason, we
3312 		 * force a schedule.
3313 		 */
3314 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3315 		netif_schedule_queue(txq);
3316 	}
3317 	spin_unlock(&dev->tx_global_lock);
3318 }
3319 
3320 static inline void netif_tx_unlock_bh(struct net_device *dev)
3321 {
3322 	netif_tx_unlock(dev);
3323 	local_bh_enable();
3324 }
3325 
3326 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3327 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3328 		__netif_tx_lock(txq, cpu);		\
3329 	}						\
3330 }
3331 
3332 #define HARD_TX_TRYLOCK(dev, txq)			\
3333 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3334 		__netif_tx_trylock(txq) :		\
3335 		true )
3336 
3337 #define HARD_TX_UNLOCK(dev, txq) {			\
3338 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3339 		__netif_tx_unlock(txq);			\
3340 	}						\
3341 }
3342 
3343 static inline void netif_tx_disable(struct net_device *dev)
3344 {
3345 	unsigned int i;
3346 	int cpu;
3347 
3348 	local_bh_disable();
3349 	cpu = smp_processor_id();
3350 	for (i = 0; i < dev->num_tx_queues; i++) {
3351 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3352 
3353 		__netif_tx_lock(txq, cpu);
3354 		netif_tx_stop_queue(txq);
3355 		__netif_tx_unlock(txq);
3356 	}
3357 	local_bh_enable();
3358 }
3359 
3360 static inline void netif_addr_lock(struct net_device *dev)
3361 {
3362 	spin_lock(&dev->addr_list_lock);
3363 }
3364 
3365 static inline void netif_addr_lock_nested(struct net_device *dev)
3366 {
3367 	int subclass = SINGLE_DEPTH_NESTING;
3368 
3369 	if (dev->netdev_ops->ndo_get_lock_subclass)
3370 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3371 
3372 	spin_lock_nested(&dev->addr_list_lock, subclass);
3373 }
3374 
3375 static inline void netif_addr_lock_bh(struct net_device *dev)
3376 {
3377 	spin_lock_bh(&dev->addr_list_lock);
3378 }
3379 
3380 static inline void netif_addr_unlock(struct net_device *dev)
3381 {
3382 	spin_unlock(&dev->addr_list_lock);
3383 }
3384 
3385 static inline void netif_addr_unlock_bh(struct net_device *dev)
3386 {
3387 	spin_unlock_bh(&dev->addr_list_lock);
3388 }
3389 
3390 /*
3391  * dev_addrs walker. Should be used only for read access. Call with
3392  * rcu_read_lock held.
3393  */
3394 #define for_each_dev_addr(dev, ha) \
3395 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3396 
3397 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3398 
3399 void ether_setup(struct net_device *dev);
3400 
3401 /* Support for loadable net-drivers */
3402 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3403 				    unsigned char name_assign_type,
3404 				    void (*setup)(struct net_device *),
3405 				    unsigned int txqs, unsigned int rxqs);
3406 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3407 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3408 
3409 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3410 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3411 			 count)
3412 
3413 int register_netdev(struct net_device *dev);
3414 void unregister_netdev(struct net_device *dev);
3415 
3416 /* General hardware address lists handling functions */
3417 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3418 		   struct netdev_hw_addr_list *from_list, int addr_len);
3419 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3420 		      struct netdev_hw_addr_list *from_list, int addr_len);
3421 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3422 		       struct net_device *dev,
3423 		       int (*sync)(struct net_device *, const unsigned char *),
3424 		       int (*unsync)(struct net_device *,
3425 				     const unsigned char *));
3426 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3427 			  struct net_device *dev,
3428 			  int (*unsync)(struct net_device *,
3429 					const unsigned char *));
3430 void __hw_addr_init(struct netdev_hw_addr_list *list);
3431 
3432 /* Functions used for device addresses handling */
3433 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3434 		 unsigned char addr_type);
3435 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3436 		 unsigned char addr_type);
3437 void dev_addr_flush(struct net_device *dev);
3438 int dev_addr_init(struct net_device *dev);
3439 
3440 /* Functions used for unicast addresses handling */
3441 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3442 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3443 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3444 int dev_uc_sync(struct net_device *to, struct net_device *from);
3445 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3446 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3447 void dev_uc_flush(struct net_device *dev);
3448 void dev_uc_init(struct net_device *dev);
3449 
3450 /**
3451  *  __dev_uc_sync - Synchonize device's unicast list
3452  *  @dev:  device to sync
3453  *  @sync: function to call if address should be added
3454  *  @unsync: function to call if address should be removed
3455  *
3456  *  Add newly added addresses to the interface, and release
3457  *  addresses that have been deleted.
3458  **/
3459 static inline int __dev_uc_sync(struct net_device *dev,
3460 				int (*sync)(struct net_device *,
3461 					    const unsigned char *),
3462 				int (*unsync)(struct net_device *,
3463 					      const unsigned char *))
3464 {
3465 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3466 }
3467 
3468 /**
3469  *  __dev_uc_unsync - Remove synchronized addresses from device
3470  *  @dev:  device to sync
3471  *  @unsync: function to call if address should be removed
3472  *
3473  *  Remove all addresses that were added to the device by dev_uc_sync().
3474  **/
3475 static inline void __dev_uc_unsync(struct net_device *dev,
3476 				   int (*unsync)(struct net_device *,
3477 						 const unsigned char *))
3478 {
3479 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3480 }
3481 
3482 /* Functions used for multicast addresses handling */
3483 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3484 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3485 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3486 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3487 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3488 int dev_mc_sync(struct net_device *to, struct net_device *from);
3489 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3490 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3491 void dev_mc_flush(struct net_device *dev);
3492 void dev_mc_init(struct net_device *dev);
3493 
3494 /**
3495  *  __dev_mc_sync - Synchonize device's multicast list
3496  *  @dev:  device to sync
3497  *  @sync: function to call if address should be added
3498  *  @unsync: function to call if address should be removed
3499  *
3500  *  Add newly added addresses to the interface, and release
3501  *  addresses that have been deleted.
3502  **/
3503 static inline int __dev_mc_sync(struct net_device *dev,
3504 				int (*sync)(struct net_device *,
3505 					    const unsigned char *),
3506 				int (*unsync)(struct net_device *,
3507 					      const unsigned char *))
3508 {
3509 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3510 }
3511 
3512 /**
3513  *  __dev_mc_unsync - Remove synchronized addresses from device
3514  *  @dev:  device to sync
3515  *  @unsync: function to call if address should be removed
3516  *
3517  *  Remove all addresses that were added to the device by dev_mc_sync().
3518  **/
3519 static inline void __dev_mc_unsync(struct net_device *dev,
3520 				   int (*unsync)(struct net_device *,
3521 						 const unsigned char *))
3522 {
3523 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3524 }
3525 
3526 /* Functions used for secondary unicast and multicast support */
3527 void dev_set_rx_mode(struct net_device *dev);
3528 void __dev_set_rx_mode(struct net_device *dev);
3529 int dev_set_promiscuity(struct net_device *dev, int inc);
3530 int dev_set_allmulti(struct net_device *dev, int inc);
3531 void netdev_state_change(struct net_device *dev);
3532 void netdev_notify_peers(struct net_device *dev);
3533 void netdev_features_change(struct net_device *dev);
3534 /* Load a device via the kmod */
3535 void dev_load(struct net *net, const char *name);
3536 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3537 					struct rtnl_link_stats64 *storage);
3538 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3539 			     const struct net_device_stats *netdev_stats);
3540 
3541 extern int		netdev_max_backlog;
3542 extern int		netdev_tstamp_prequeue;
3543 extern int		weight_p;
3544 extern int		bpf_jit_enable;
3545 
3546 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3547 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3548 						     struct list_head **iter);
3549 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3550 						     struct list_head **iter);
3551 
3552 /* iterate through upper list, must be called under RCU read lock */
3553 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3554 	for (iter = &(dev)->adj_list.upper, \
3555 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3556 	     updev; \
3557 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3558 
3559 /* iterate through upper list, must be called under RCU read lock */
3560 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3561 	for (iter = &(dev)->all_adj_list.upper, \
3562 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3563 	     updev; \
3564 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3565 
3566 void *netdev_lower_get_next_private(struct net_device *dev,
3567 				    struct list_head **iter);
3568 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3569 					struct list_head **iter);
3570 
3571 #define netdev_for_each_lower_private(dev, priv, iter) \
3572 	for (iter = (dev)->adj_list.lower.next, \
3573 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3574 	     priv; \
3575 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3576 
3577 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3578 	for (iter = &(dev)->adj_list.lower, \
3579 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3580 	     priv; \
3581 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3582 
3583 void *netdev_lower_get_next(struct net_device *dev,
3584 				struct list_head **iter);
3585 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3586 	for (iter = &(dev)->adj_list.lower, \
3587 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3588 	     ldev; \
3589 	     ldev = netdev_lower_get_next(dev, &(iter)))
3590 
3591 void *netdev_adjacent_get_private(struct list_head *adj_list);
3592 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3593 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3594 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3595 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3596 int netdev_master_upper_dev_link(struct net_device *dev,
3597 				 struct net_device *upper_dev);
3598 int netdev_master_upper_dev_link_private(struct net_device *dev,
3599 					 struct net_device *upper_dev,
3600 					 void *private);
3601 void netdev_upper_dev_unlink(struct net_device *dev,
3602 			     struct net_device *upper_dev);
3603 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3604 void *netdev_lower_dev_get_private(struct net_device *dev,
3605 				   struct net_device *lower_dev);
3606 
3607 /* RSS keys are 40 or 52 bytes long */
3608 #define NETDEV_RSS_KEY_LEN 52
3609 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3610 void netdev_rss_key_fill(void *buffer, size_t len);
3611 
3612 int dev_get_nest_level(struct net_device *dev,
3613 		       bool (*type_check)(struct net_device *dev));
3614 int skb_checksum_help(struct sk_buff *skb);
3615 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3616 				  netdev_features_t features, bool tx_path);
3617 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3618 				    netdev_features_t features);
3619 
3620 struct netdev_bonding_info {
3621 	ifslave	slave;
3622 	ifbond	master;
3623 };
3624 
3625 struct netdev_notifier_bonding_info {
3626 	struct netdev_notifier_info info; /* must be first */
3627 	struct netdev_bonding_info  bonding_info;
3628 };
3629 
3630 void netdev_bonding_info_change(struct net_device *dev,
3631 				struct netdev_bonding_info *bonding_info);
3632 
3633 static inline
3634 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3635 {
3636 	return __skb_gso_segment(skb, features, true);
3637 }
3638 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3639 
3640 static inline bool can_checksum_protocol(netdev_features_t features,
3641 					 __be16 protocol)
3642 {
3643 	return ((features & NETIF_F_GEN_CSUM) ||
3644 		((features & NETIF_F_V4_CSUM) &&
3645 		 protocol == htons(ETH_P_IP)) ||
3646 		((features & NETIF_F_V6_CSUM) &&
3647 		 protocol == htons(ETH_P_IPV6)) ||
3648 		((features & NETIF_F_FCOE_CRC) &&
3649 		 protocol == htons(ETH_P_FCOE)));
3650 }
3651 
3652 #ifdef CONFIG_BUG
3653 void netdev_rx_csum_fault(struct net_device *dev);
3654 #else
3655 static inline void netdev_rx_csum_fault(struct net_device *dev)
3656 {
3657 }
3658 #endif
3659 /* rx skb timestamps */
3660 void net_enable_timestamp(void);
3661 void net_disable_timestamp(void);
3662 
3663 #ifdef CONFIG_PROC_FS
3664 int __init dev_proc_init(void);
3665 #else
3666 #define dev_proc_init() 0
3667 #endif
3668 
3669 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3670 					      struct sk_buff *skb, struct net_device *dev,
3671 					      bool more)
3672 {
3673 	skb->xmit_more = more ? 1 : 0;
3674 	return ops->ndo_start_xmit(skb, dev);
3675 }
3676 
3677 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3678 					    struct netdev_queue *txq, bool more)
3679 {
3680 	const struct net_device_ops *ops = dev->netdev_ops;
3681 	int rc;
3682 
3683 	rc = __netdev_start_xmit(ops, skb, dev, more);
3684 	if (rc == NETDEV_TX_OK)
3685 		txq_trans_update(txq);
3686 
3687 	return rc;
3688 }
3689 
3690 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3691 				const void *ns);
3692 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3693 				 const void *ns);
3694 
3695 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3696 {
3697 	return netdev_class_create_file_ns(class_attr, NULL);
3698 }
3699 
3700 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3701 {
3702 	netdev_class_remove_file_ns(class_attr, NULL);
3703 }
3704 
3705 extern struct kobj_ns_type_operations net_ns_type_operations;
3706 
3707 const char *netdev_drivername(const struct net_device *dev);
3708 
3709 void linkwatch_run_queue(void);
3710 
3711 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3712 							  netdev_features_t f2)
3713 {
3714 	if (f1 & NETIF_F_GEN_CSUM)
3715 		f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3716 	if (f2 & NETIF_F_GEN_CSUM)
3717 		f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3718 	f1 &= f2;
3719 	if (f1 & NETIF_F_GEN_CSUM)
3720 		f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3721 
3722 	return f1;
3723 }
3724 
3725 static inline netdev_features_t netdev_get_wanted_features(
3726 	struct net_device *dev)
3727 {
3728 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3729 }
3730 netdev_features_t netdev_increment_features(netdev_features_t all,
3731 	netdev_features_t one, netdev_features_t mask);
3732 
3733 /* Allow TSO being used on stacked device :
3734  * Performing the GSO segmentation before last device
3735  * is a performance improvement.
3736  */
3737 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3738 							netdev_features_t mask)
3739 {
3740 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3741 }
3742 
3743 int __netdev_update_features(struct net_device *dev);
3744 void netdev_update_features(struct net_device *dev);
3745 void netdev_change_features(struct net_device *dev);
3746 
3747 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3748 					struct net_device *dev);
3749 
3750 netdev_features_t passthru_features_check(struct sk_buff *skb,
3751 					  struct net_device *dev,
3752 					  netdev_features_t features);
3753 netdev_features_t netif_skb_features(struct sk_buff *skb);
3754 
3755 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3756 {
3757 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3758 
3759 	/* check flags correspondence */
3760 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3761 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3762 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3763 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3764 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3765 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3766 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3767 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3768 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3769 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3770 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3771 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3772 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3773 
3774 	return (features & feature) == feature;
3775 }
3776 
3777 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3778 {
3779 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3780 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3781 }
3782 
3783 static inline bool netif_needs_gso(struct sk_buff *skb,
3784 				   netdev_features_t features)
3785 {
3786 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3787 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3788 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3789 }
3790 
3791 static inline void netif_set_gso_max_size(struct net_device *dev,
3792 					  unsigned int size)
3793 {
3794 	dev->gso_max_size = size;
3795 }
3796 
3797 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3798 					int pulled_hlen, u16 mac_offset,
3799 					int mac_len)
3800 {
3801 	skb->protocol = protocol;
3802 	skb->encapsulation = 1;
3803 	skb_push(skb, pulled_hlen);
3804 	skb_reset_transport_header(skb);
3805 	skb->mac_header = mac_offset;
3806 	skb->network_header = skb->mac_header + mac_len;
3807 	skb->mac_len = mac_len;
3808 }
3809 
3810 static inline bool netif_is_macvlan(struct net_device *dev)
3811 {
3812 	return dev->priv_flags & IFF_MACVLAN;
3813 }
3814 
3815 static inline bool netif_is_macvlan_port(struct net_device *dev)
3816 {
3817 	return dev->priv_flags & IFF_MACVLAN_PORT;
3818 }
3819 
3820 static inline bool netif_is_ipvlan(struct net_device *dev)
3821 {
3822 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
3823 }
3824 
3825 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3826 {
3827 	return dev->priv_flags & IFF_IPVLAN_MASTER;
3828 }
3829 
3830 static inline bool netif_is_bond_master(struct net_device *dev)
3831 {
3832 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3833 }
3834 
3835 static inline bool netif_is_bond_slave(struct net_device *dev)
3836 {
3837 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3838 }
3839 
3840 static inline bool netif_supports_nofcs(struct net_device *dev)
3841 {
3842 	return dev->priv_flags & IFF_SUPP_NOFCS;
3843 }
3844 
3845 static inline bool netif_is_l3_master(const struct net_device *dev)
3846 {
3847 	return dev->priv_flags & IFF_L3MDEV_MASTER;
3848 }
3849 
3850 static inline bool netif_is_l3_slave(const struct net_device *dev)
3851 {
3852 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
3853 }
3854 
3855 static inline bool netif_is_bridge_master(const struct net_device *dev)
3856 {
3857 	return dev->priv_flags & IFF_EBRIDGE;
3858 }
3859 
3860 static inline bool netif_is_bridge_port(const struct net_device *dev)
3861 {
3862 	return dev->priv_flags & IFF_BRIDGE_PORT;
3863 }
3864 
3865 static inline bool netif_is_ovs_master(const struct net_device *dev)
3866 {
3867 	return dev->priv_flags & IFF_OPENVSWITCH;
3868 }
3869 
3870 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3871 static inline void netif_keep_dst(struct net_device *dev)
3872 {
3873 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3874 }
3875 
3876 extern struct pernet_operations __net_initdata loopback_net_ops;
3877 
3878 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3879 
3880 /* netdev_printk helpers, similar to dev_printk */
3881 
3882 static inline const char *netdev_name(const struct net_device *dev)
3883 {
3884 	if (!dev->name[0] || strchr(dev->name, '%'))
3885 		return "(unnamed net_device)";
3886 	return dev->name;
3887 }
3888 
3889 static inline const char *netdev_reg_state(const struct net_device *dev)
3890 {
3891 	switch (dev->reg_state) {
3892 	case NETREG_UNINITIALIZED: return " (uninitialized)";
3893 	case NETREG_REGISTERED: return "";
3894 	case NETREG_UNREGISTERING: return " (unregistering)";
3895 	case NETREG_UNREGISTERED: return " (unregistered)";
3896 	case NETREG_RELEASED: return " (released)";
3897 	case NETREG_DUMMY: return " (dummy)";
3898 	}
3899 
3900 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3901 	return " (unknown)";
3902 }
3903 
3904 __printf(3, 4)
3905 void netdev_printk(const char *level, const struct net_device *dev,
3906 		   const char *format, ...);
3907 __printf(2, 3)
3908 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3909 __printf(2, 3)
3910 void netdev_alert(const struct net_device *dev, const char *format, ...);
3911 __printf(2, 3)
3912 void netdev_crit(const struct net_device *dev, const char *format, ...);
3913 __printf(2, 3)
3914 void netdev_err(const struct net_device *dev, const char *format, ...);
3915 __printf(2, 3)
3916 void netdev_warn(const struct net_device *dev, const char *format, ...);
3917 __printf(2, 3)
3918 void netdev_notice(const struct net_device *dev, const char *format, ...);
3919 __printf(2, 3)
3920 void netdev_info(const struct net_device *dev, const char *format, ...);
3921 
3922 #define MODULE_ALIAS_NETDEV(device) \
3923 	MODULE_ALIAS("netdev-" device)
3924 
3925 #if defined(CONFIG_DYNAMIC_DEBUG)
3926 #define netdev_dbg(__dev, format, args...)			\
3927 do {								\
3928 	dynamic_netdev_dbg(__dev, format, ##args);		\
3929 } while (0)
3930 #elif defined(DEBUG)
3931 #define netdev_dbg(__dev, format, args...)			\
3932 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3933 #else
3934 #define netdev_dbg(__dev, format, args...)			\
3935 ({								\
3936 	if (0)							\
3937 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3938 })
3939 #endif
3940 
3941 #if defined(VERBOSE_DEBUG)
3942 #define netdev_vdbg	netdev_dbg
3943 #else
3944 
3945 #define netdev_vdbg(dev, format, args...)			\
3946 ({								\
3947 	if (0)							\
3948 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3949 	0;							\
3950 })
3951 #endif
3952 
3953 /*
3954  * netdev_WARN() acts like dev_printk(), but with the key difference
3955  * of using a WARN/WARN_ON to get the message out, including the
3956  * file/line information and a backtrace.
3957  */
3958 #define netdev_WARN(dev, format, args...)			\
3959 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
3960 	     netdev_reg_state(dev), ##args)
3961 
3962 /* netif printk helpers, similar to netdev_printk */
3963 
3964 #define netif_printk(priv, type, level, dev, fmt, args...)	\
3965 do {					  			\
3966 	if (netif_msg_##type(priv))				\
3967 		netdev_printk(level, (dev), fmt, ##args);	\
3968 } while (0)
3969 
3970 #define netif_level(level, priv, type, dev, fmt, args...)	\
3971 do {								\
3972 	if (netif_msg_##type(priv))				\
3973 		netdev_##level(dev, fmt, ##args);		\
3974 } while (0)
3975 
3976 #define netif_emerg(priv, type, dev, fmt, args...)		\
3977 	netif_level(emerg, priv, type, dev, fmt, ##args)
3978 #define netif_alert(priv, type, dev, fmt, args...)		\
3979 	netif_level(alert, priv, type, dev, fmt, ##args)
3980 #define netif_crit(priv, type, dev, fmt, args...)		\
3981 	netif_level(crit, priv, type, dev, fmt, ##args)
3982 #define netif_err(priv, type, dev, fmt, args...)		\
3983 	netif_level(err, priv, type, dev, fmt, ##args)
3984 #define netif_warn(priv, type, dev, fmt, args...)		\
3985 	netif_level(warn, priv, type, dev, fmt, ##args)
3986 #define netif_notice(priv, type, dev, fmt, args...)		\
3987 	netif_level(notice, priv, type, dev, fmt, ##args)
3988 #define netif_info(priv, type, dev, fmt, args...)		\
3989 	netif_level(info, priv, type, dev, fmt, ##args)
3990 
3991 #if defined(CONFIG_DYNAMIC_DEBUG)
3992 #define netif_dbg(priv, type, netdev, format, args...)		\
3993 do {								\
3994 	if (netif_msg_##type(priv))				\
3995 		dynamic_netdev_dbg(netdev, format, ##args);	\
3996 } while (0)
3997 #elif defined(DEBUG)
3998 #define netif_dbg(priv, type, dev, format, args...)		\
3999 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4000 #else
4001 #define netif_dbg(priv, type, dev, format, args...)			\
4002 ({									\
4003 	if (0)								\
4004 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4005 	0;								\
4006 })
4007 #endif
4008 
4009 #if defined(VERBOSE_DEBUG)
4010 #define netif_vdbg	netif_dbg
4011 #else
4012 #define netif_vdbg(priv, type, dev, format, args...)		\
4013 ({								\
4014 	if (0)							\
4015 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4016 	0;							\
4017 })
4018 #endif
4019 
4020 /*
4021  *	The list of packet types we will receive (as opposed to discard)
4022  *	and the routines to invoke.
4023  *
4024  *	Why 16. Because with 16 the only overlap we get on a hash of the
4025  *	low nibble of the protocol value is RARP/SNAP/X.25.
4026  *
4027  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4028  *             sure which should go first, but I bet it won't make much
4029  *             difference if we are running VLANs.  The good news is that
4030  *             this protocol won't be in the list unless compiled in, so
4031  *             the average user (w/out VLANs) will not be adversely affected.
4032  *             --BLG
4033  *
4034  *		0800	IP
4035  *		8100    802.1Q VLAN
4036  *		0001	802.3
4037  *		0002	AX.25
4038  *		0004	802.2
4039  *		8035	RARP
4040  *		0005	SNAP
4041  *		0805	X.25
4042  *		0806	ARP
4043  *		8137	IPX
4044  *		0009	Localtalk
4045  *		86DD	IPv6
4046  */
4047 #define PTYPE_HASH_SIZE	(16)
4048 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4049 
4050 #endif	/* _LINUX_NETDEVICE_H */
4051