xref: /openbmc/linux/include/linux/netdevice.h (revision dfe94d40)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <net/net_namespace.h>
38 #ifdef CONFIG_DCB
39 #include <net/dcbnl.h>
40 #endif
41 #include <net/netprio_cgroup.h>
42 #include <net/xdp.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <linux/hashtable.h>
50 
51 struct netpoll_info;
52 struct device;
53 struct ethtool_ops;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 				    const struct ethtool_ops *ops);
76 
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
79 #define NET_RX_DROP		1	/* packet dropped */
80 
81 #define MAX_NEST_DEV 8
82 
83 /*
84  * Transmit return codes: transmit return codes originate from three different
85  * namespaces:
86  *
87  * - qdisc return codes
88  * - driver transmit return codes
89  * - errno values
90  *
91  * Drivers are allowed to return any one of those in their hard_start_xmit()
92  * function. Real network devices commonly used with qdiscs should only return
93  * the driver transmit return codes though - when qdiscs are used, the actual
94  * transmission happens asynchronously, so the value is not propagated to
95  * higher layers. Virtual network devices transmit synchronously; in this case
96  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97  * others are propagated to higher layers.
98  */
99 
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS	0x00
102 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
103 #define NET_XMIT_CN		0x02	/* congestion notification	*/
104 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
105 
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107  * indicates that the device will soon be dropping packets, or already drops
108  * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111 
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK		0xf0
114 
115 enum netdev_tx {
116 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
117 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
118 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121 
122 /*
123  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125  */
126 static inline bool dev_xmit_complete(int rc)
127 {
128 	/*
129 	 * Positive cases with an skb consumed by a driver:
130 	 * - successful transmission (rc == NETDEV_TX_OK)
131 	 * - error while transmitting (rc < 0)
132 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 	 */
134 	if (likely(rc < NET_XMIT_MASK))
135 		return true;
136 
137 	return false;
138 }
139 
140 /*
141  *	Compute the worst-case header length according to the protocols
142  *	used.
143  */
144 
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156 
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163 
164 /*
165  *	Old network device statistics. Fields are native words
166  *	(unsigned long) so they can be read and written atomically.
167  */
168 
169 struct net_device_stats {
170 	unsigned long	rx_packets;
171 	unsigned long	tx_packets;
172 	unsigned long	rx_bytes;
173 	unsigned long	tx_bytes;
174 	unsigned long	rx_errors;
175 	unsigned long	tx_errors;
176 	unsigned long	rx_dropped;
177 	unsigned long	tx_dropped;
178 	unsigned long	multicast;
179 	unsigned long	collisions;
180 	unsigned long	rx_length_errors;
181 	unsigned long	rx_over_errors;
182 	unsigned long	rx_crc_errors;
183 	unsigned long	rx_frame_errors;
184 	unsigned long	rx_fifo_errors;
185 	unsigned long	rx_missed_errors;
186 	unsigned long	tx_aborted_errors;
187 	unsigned long	tx_carrier_errors;
188 	unsigned long	tx_fifo_errors;
189 	unsigned long	tx_heartbeat_errors;
190 	unsigned long	tx_window_errors;
191 	unsigned long	rx_compressed;
192 	unsigned long	tx_compressed;
193 };
194 
195 
196 #include <linux/cache.h>
197 #include <linux/skbuff.h>
198 
199 #ifdef CONFIG_RPS
200 #include <linux/static_key.h>
201 extern struct static_key_false rps_needed;
202 extern struct static_key_false rfs_needed;
203 #endif
204 
205 struct neighbour;
206 struct neigh_parms;
207 struct sk_buff;
208 
209 struct netdev_hw_addr {
210 	struct list_head	list;
211 	unsigned char		addr[MAX_ADDR_LEN];
212 	unsigned char		type;
213 #define NETDEV_HW_ADDR_T_LAN		1
214 #define NETDEV_HW_ADDR_T_SAN		2
215 #define NETDEV_HW_ADDR_T_UNICAST	3
216 #define NETDEV_HW_ADDR_T_MULTICAST	4
217 	bool			global_use;
218 	int			sync_cnt;
219 	int			refcount;
220 	int			synced;
221 	struct rcu_head		rcu_head;
222 };
223 
224 struct netdev_hw_addr_list {
225 	struct list_head	list;
226 	int			count;
227 };
228 
229 #define netdev_hw_addr_list_count(l) ((l)->count)
230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231 #define netdev_hw_addr_list_for_each(ha, l) \
232 	list_for_each_entry(ha, &(l)->list, list)
233 
234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236 #define netdev_for_each_uc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238 
239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241 #define netdev_for_each_mc_addr(ha, dev) \
242 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243 
244 struct hh_cache {
245 	unsigned int	hh_len;
246 	seqlock_t	hh_lock;
247 
248 	/* cached hardware header; allow for machine alignment needs.        */
249 #define HH_DATA_MOD	16
250 #define HH_DATA_OFF(__len) \
251 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252 #define HH_DATA_ALIGN(__len) \
253 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255 };
256 
257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258  * Alternative is:
259  *   dev->hard_header_len ? (dev->hard_header_len +
260  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261  *
262  * We could use other alignment values, but we must maintain the
263  * relationship HH alignment <= LL alignment.
264  */
265 #define LL_RESERVED_SPACE(dev) \
266 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269 
270 struct header_ops {
271 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
272 			   unsigned short type, const void *daddr,
273 			   const void *saddr, unsigned int len);
274 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 	void	(*cache_update)(struct hh_cache *hh,
277 				const struct net_device *dev,
278 				const unsigned char *haddr);
279 	bool	(*validate)(const char *ll_header, unsigned int len);
280 	__be16	(*parse_protocol)(const struct sk_buff *skb);
281 };
282 
283 /* These flag bits are private to the generic network queueing
284  * layer; they may not be explicitly referenced by any other
285  * code.
286  */
287 
288 enum netdev_state_t {
289 	__LINK_STATE_START,
290 	__LINK_STATE_PRESENT,
291 	__LINK_STATE_NOCARRIER,
292 	__LINK_STATE_LINKWATCH_PENDING,
293 	__LINK_STATE_DORMANT,
294 	__LINK_STATE_TESTING,
295 };
296 
297 
298 /*
299  * This structure holds boot-time configured netdevice settings. They
300  * are then used in the device probing.
301  */
302 struct netdev_boot_setup {
303 	char name[IFNAMSIZ];
304 	struct ifmap map;
305 };
306 #define NETDEV_BOOT_SETUP_MAX 8
307 
308 int __init netdev_boot_setup(char *str);
309 
310 struct gro_list {
311 	struct list_head	list;
312 	int			count;
313 };
314 
315 /*
316  * size of gro hash buckets, must less than bit number of
317  * napi_struct::gro_bitmask
318  */
319 #define GRO_HASH_BUCKETS	8
320 
321 /*
322  * Structure for NAPI scheduling similar to tasklet but with weighting
323  */
324 struct napi_struct {
325 	/* The poll_list must only be managed by the entity which
326 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
327 	 * whoever atomically sets that bit can add this napi_struct
328 	 * to the per-CPU poll_list, and whoever clears that bit
329 	 * can remove from the list right before clearing the bit.
330 	 */
331 	struct list_head	poll_list;
332 
333 	unsigned long		state;
334 	int			weight;
335 	int			defer_hard_irqs_count;
336 	unsigned long		gro_bitmask;
337 	int			(*poll)(struct napi_struct *, int);
338 #ifdef CONFIG_NETPOLL
339 	int			poll_owner;
340 #endif
341 	struct net_device	*dev;
342 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
343 	struct sk_buff		*skb;
344 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
345 	int			rx_count; /* length of rx_list */
346 	struct hrtimer		timer;
347 	struct list_head	dev_list;
348 	struct hlist_node	napi_hash_node;
349 	unsigned int		napi_id;
350 };
351 
352 enum {
353 	NAPI_STATE_SCHED,		/* Poll is scheduled */
354 	NAPI_STATE_MISSED,		/* reschedule a napi */
355 	NAPI_STATE_DISABLE,		/* Disable pending */
356 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
357 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
358 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
359 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
360 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
361 };
362 
363 enum {
364 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
365 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
366 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
367 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
368 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
369 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
370 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
371 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
372 };
373 
374 enum gro_result {
375 	GRO_MERGED,
376 	GRO_MERGED_FREE,
377 	GRO_HELD,
378 	GRO_NORMAL,
379 	GRO_DROP,
380 	GRO_CONSUMED,
381 };
382 typedef enum gro_result gro_result_t;
383 
384 /*
385  * enum rx_handler_result - Possible return values for rx_handlers.
386  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
387  * further.
388  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
389  * case skb->dev was changed by rx_handler.
390  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
391  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
392  *
393  * rx_handlers are functions called from inside __netif_receive_skb(), to do
394  * special processing of the skb, prior to delivery to protocol handlers.
395  *
396  * Currently, a net_device can only have a single rx_handler registered. Trying
397  * to register a second rx_handler will return -EBUSY.
398  *
399  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
400  * To unregister a rx_handler on a net_device, use
401  * netdev_rx_handler_unregister().
402  *
403  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
404  * do with the skb.
405  *
406  * If the rx_handler consumed the skb in some way, it should return
407  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
408  * the skb to be delivered in some other way.
409  *
410  * If the rx_handler changed skb->dev, to divert the skb to another
411  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
412  * new device will be called if it exists.
413  *
414  * If the rx_handler decides the skb should be ignored, it should return
415  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
416  * are registered on exact device (ptype->dev == skb->dev).
417  *
418  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
419  * delivered, it should return RX_HANDLER_PASS.
420  *
421  * A device without a registered rx_handler will behave as if rx_handler
422  * returned RX_HANDLER_PASS.
423  */
424 
425 enum rx_handler_result {
426 	RX_HANDLER_CONSUMED,
427 	RX_HANDLER_ANOTHER,
428 	RX_HANDLER_EXACT,
429 	RX_HANDLER_PASS,
430 };
431 typedef enum rx_handler_result rx_handler_result_t;
432 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
433 
434 void __napi_schedule(struct napi_struct *n);
435 void __napi_schedule_irqoff(struct napi_struct *n);
436 
437 static inline bool napi_disable_pending(struct napi_struct *n)
438 {
439 	return test_bit(NAPI_STATE_DISABLE, &n->state);
440 }
441 
442 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
443 {
444 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
445 }
446 
447 bool napi_schedule_prep(struct napi_struct *n);
448 
449 /**
450  *	napi_schedule - schedule NAPI poll
451  *	@n: NAPI context
452  *
453  * Schedule NAPI poll routine to be called if it is not already
454  * running.
455  */
456 static inline void napi_schedule(struct napi_struct *n)
457 {
458 	if (napi_schedule_prep(n))
459 		__napi_schedule(n);
460 }
461 
462 /**
463  *	napi_schedule_irqoff - schedule NAPI poll
464  *	@n: NAPI context
465  *
466  * Variant of napi_schedule(), assuming hard irqs are masked.
467  */
468 static inline void napi_schedule_irqoff(struct napi_struct *n)
469 {
470 	if (napi_schedule_prep(n))
471 		__napi_schedule_irqoff(n);
472 }
473 
474 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
475 static inline bool napi_reschedule(struct napi_struct *napi)
476 {
477 	if (napi_schedule_prep(napi)) {
478 		__napi_schedule(napi);
479 		return true;
480 	}
481 	return false;
482 }
483 
484 bool napi_complete_done(struct napi_struct *n, int work_done);
485 /**
486  *	napi_complete - NAPI processing complete
487  *	@n: NAPI context
488  *
489  * Mark NAPI processing as complete.
490  * Consider using napi_complete_done() instead.
491  * Return false if device should avoid rearming interrupts.
492  */
493 static inline bool napi_complete(struct napi_struct *n)
494 {
495 	return napi_complete_done(n, 0);
496 }
497 
498 /**
499  *	napi_disable - prevent NAPI from scheduling
500  *	@n: NAPI context
501  *
502  * Stop NAPI from being scheduled on this context.
503  * Waits till any outstanding processing completes.
504  */
505 void napi_disable(struct napi_struct *n);
506 
507 /**
508  *	napi_enable - enable NAPI scheduling
509  *	@n: NAPI context
510  *
511  * Resume NAPI from being scheduled on this context.
512  * Must be paired with napi_disable.
513  */
514 static inline void napi_enable(struct napi_struct *n)
515 {
516 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
517 	smp_mb__before_atomic();
518 	clear_bit(NAPI_STATE_SCHED, &n->state);
519 	clear_bit(NAPI_STATE_NPSVC, &n->state);
520 }
521 
522 /**
523  *	napi_synchronize - wait until NAPI is not running
524  *	@n: NAPI context
525  *
526  * Wait until NAPI is done being scheduled on this context.
527  * Waits till any outstanding processing completes but
528  * does not disable future activations.
529  */
530 static inline void napi_synchronize(const struct napi_struct *n)
531 {
532 	if (IS_ENABLED(CONFIG_SMP))
533 		while (test_bit(NAPI_STATE_SCHED, &n->state))
534 			msleep(1);
535 	else
536 		barrier();
537 }
538 
539 /**
540  *	napi_if_scheduled_mark_missed - if napi is running, set the
541  *	NAPIF_STATE_MISSED
542  *	@n: NAPI context
543  *
544  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
545  * NAPI is scheduled.
546  **/
547 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
548 {
549 	unsigned long val, new;
550 
551 	do {
552 		val = READ_ONCE(n->state);
553 		if (val & NAPIF_STATE_DISABLE)
554 			return true;
555 
556 		if (!(val & NAPIF_STATE_SCHED))
557 			return false;
558 
559 		new = val | NAPIF_STATE_MISSED;
560 	} while (cmpxchg(&n->state, val, new) != val);
561 
562 	return true;
563 }
564 
565 enum netdev_queue_state_t {
566 	__QUEUE_STATE_DRV_XOFF,
567 	__QUEUE_STATE_STACK_XOFF,
568 	__QUEUE_STATE_FROZEN,
569 };
570 
571 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
572 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
573 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
574 
575 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
576 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
577 					QUEUE_STATE_FROZEN)
578 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
579 					QUEUE_STATE_FROZEN)
580 
581 /*
582  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
583  * netif_tx_* functions below are used to manipulate this flag.  The
584  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
585  * queue independently.  The netif_xmit_*stopped functions below are called
586  * to check if the queue has been stopped by the driver or stack (either
587  * of the XOFF bits are set in the state).  Drivers should not need to call
588  * netif_xmit*stopped functions, they should only be using netif_tx_*.
589  */
590 
591 struct netdev_queue {
592 /*
593  * read-mostly part
594  */
595 	struct net_device	*dev;
596 	struct Qdisc __rcu	*qdisc;
597 	struct Qdisc		*qdisc_sleeping;
598 #ifdef CONFIG_SYSFS
599 	struct kobject		kobj;
600 #endif
601 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
602 	int			numa_node;
603 #endif
604 	unsigned long		tx_maxrate;
605 	/*
606 	 * Number of TX timeouts for this queue
607 	 * (/sys/class/net/DEV/Q/trans_timeout)
608 	 */
609 	unsigned long		trans_timeout;
610 
611 	/* Subordinate device that the queue has been assigned to */
612 	struct net_device	*sb_dev;
613 #ifdef CONFIG_XDP_SOCKETS
614 	struct xsk_buff_pool    *pool;
615 #endif
616 /*
617  * write-mostly part
618  */
619 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
620 	int			xmit_lock_owner;
621 	/*
622 	 * Time (in jiffies) of last Tx
623 	 */
624 	unsigned long		trans_start;
625 
626 	unsigned long		state;
627 
628 #ifdef CONFIG_BQL
629 	struct dql		dql;
630 #endif
631 } ____cacheline_aligned_in_smp;
632 
633 extern int sysctl_fb_tunnels_only_for_init_net;
634 extern int sysctl_devconf_inherit_init_net;
635 
636 /*
637  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
638  *                                     == 1 : For initns only
639  *                                     == 2 : For none.
640  */
641 static inline bool net_has_fallback_tunnels(const struct net *net)
642 {
643 	return !IS_ENABLED(CONFIG_SYSCTL) ||
644 	       !sysctl_fb_tunnels_only_for_init_net ||
645 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
646 }
647 
648 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
649 {
650 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
651 	return q->numa_node;
652 #else
653 	return NUMA_NO_NODE;
654 #endif
655 }
656 
657 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
658 {
659 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
660 	q->numa_node = node;
661 #endif
662 }
663 
664 #ifdef CONFIG_RPS
665 /*
666  * This structure holds an RPS map which can be of variable length.  The
667  * map is an array of CPUs.
668  */
669 struct rps_map {
670 	unsigned int len;
671 	struct rcu_head rcu;
672 	u16 cpus[];
673 };
674 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
675 
676 /*
677  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
678  * tail pointer for that CPU's input queue at the time of last enqueue, and
679  * a hardware filter index.
680  */
681 struct rps_dev_flow {
682 	u16 cpu;
683 	u16 filter;
684 	unsigned int last_qtail;
685 };
686 #define RPS_NO_FILTER 0xffff
687 
688 /*
689  * The rps_dev_flow_table structure contains a table of flow mappings.
690  */
691 struct rps_dev_flow_table {
692 	unsigned int mask;
693 	struct rcu_head rcu;
694 	struct rps_dev_flow flows[];
695 };
696 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
697     ((_num) * sizeof(struct rps_dev_flow)))
698 
699 /*
700  * The rps_sock_flow_table contains mappings of flows to the last CPU
701  * on which they were processed by the application (set in recvmsg).
702  * Each entry is a 32bit value. Upper part is the high-order bits
703  * of flow hash, lower part is CPU number.
704  * rps_cpu_mask is used to partition the space, depending on number of
705  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
706  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
707  * meaning we use 32-6=26 bits for the hash.
708  */
709 struct rps_sock_flow_table {
710 	u32	mask;
711 
712 	u32	ents[] ____cacheline_aligned_in_smp;
713 };
714 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
715 
716 #define RPS_NO_CPU 0xffff
717 
718 extern u32 rps_cpu_mask;
719 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
720 
721 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
722 					u32 hash)
723 {
724 	if (table && hash) {
725 		unsigned int index = hash & table->mask;
726 		u32 val = hash & ~rps_cpu_mask;
727 
728 		/* We only give a hint, preemption can change CPU under us */
729 		val |= raw_smp_processor_id();
730 
731 		if (table->ents[index] != val)
732 			table->ents[index] = val;
733 	}
734 }
735 
736 #ifdef CONFIG_RFS_ACCEL
737 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
738 			 u16 filter_id);
739 #endif
740 #endif /* CONFIG_RPS */
741 
742 /* This structure contains an instance of an RX queue. */
743 struct netdev_rx_queue {
744 #ifdef CONFIG_RPS
745 	struct rps_map __rcu		*rps_map;
746 	struct rps_dev_flow_table __rcu	*rps_flow_table;
747 #endif
748 	struct kobject			kobj;
749 	struct net_device		*dev;
750 	struct xdp_rxq_info		xdp_rxq;
751 #ifdef CONFIG_XDP_SOCKETS
752 	struct xsk_buff_pool            *pool;
753 #endif
754 } ____cacheline_aligned_in_smp;
755 
756 /*
757  * RX queue sysfs structures and functions.
758  */
759 struct rx_queue_attribute {
760 	struct attribute attr;
761 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
762 	ssize_t (*store)(struct netdev_rx_queue *queue,
763 			 const char *buf, size_t len);
764 };
765 
766 #ifdef CONFIG_XPS
767 /*
768  * This structure holds an XPS map which can be of variable length.  The
769  * map is an array of queues.
770  */
771 struct xps_map {
772 	unsigned int len;
773 	unsigned int alloc_len;
774 	struct rcu_head rcu;
775 	u16 queues[];
776 };
777 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
778 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
779        - sizeof(struct xps_map)) / sizeof(u16))
780 
781 /*
782  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
783  */
784 struct xps_dev_maps {
785 	struct rcu_head rcu;
786 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
787 };
788 
789 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
790 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
791 
792 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
793 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
794 
795 #endif /* CONFIG_XPS */
796 
797 #define TC_MAX_QUEUE	16
798 #define TC_BITMASK	15
799 /* HW offloaded queuing disciplines txq count and offset maps */
800 struct netdev_tc_txq {
801 	u16 count;
802 	u16 offset;
803 };
804 
805 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
806 /*
807  * This structure is to hold information about the device
808  * configured to run FCoE protocol stack.
809  */
810 struct netdev_fcoe_hbainfo {
811 	char	manufacturer[64];
812 	char	serial_number[64];
813 	char	hardware_version[64];
814 	char	driver_version[64];
815 	char	optionrom_version[64];
816 	char	firmware_version[64];
817 	char	model[256];
818 	char	model_description[256];
819 };
820 #endif
821 
822 #define MAX_PHYS_ITEM_ID_LEN 32
823 
824 /* This structure holds a unique identifier to identify some
825  * physical item (port for example) used by a netdevice.
826  */
827 struct netdev_phys_item_id {
828 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
829 	unsigned char id_len;
830 };
831 
832 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
833 					    struct netdev_phys_item_id *b)
834 {
835 	return a->id_len == b->id_len &&
836 	       memcmp(a->id, b->id, a->id_len) == 0;
837 }
838 
839 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
840 				       struct sk_buff *skb,
841 				       struct net_device *sb_dev);
842 
843 enum tc_setup_type {
844 	TC_SETUP_QDISC_MQPRIO,
845 	TC_SETUP_CLSU32,
846 	TC_SETUP_CLSFLOWER,
847 	TC_SETUP_CLSMATCHALL,
848 	TC_SETUP_CLSBPF,
849 	TC_SETUP_BLOCK,
850 	TC_SETUP_QDISC_CBS,
851 	TC_SETUP_QDISC_RED,
852 	TC_SETUP_QDISC_PRIO,
853 	TC_SETUP_QDISC_MQ,
854 	TC_SETUP_QDISC_ETF,
855 	TC_SETUP_ROOT_QDISC,
856 	TC_SETUP_QDISC_GRED,
857 	TC_SETUP_QDISC_TAPRIO,
858 	TC_SETUP_FT,
859 	TC_SETUP_QDISC_ETS,
860 	TC_SETUP_QDISC_TBF,
861 	TC_SETUP_QDISC_FIFO,
862 };
863 
864 /* These structures hold the attributes of bpf state that are being passed
865  * to the netdevice through the bpf op.
866  */
867 enum bpf_netdev_command {
868 	/* Set or clear a bpf program used in the earliest stages of packet
869 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
870 	 * is responsible for calling bpf_prog_put on any old progs that are
871 	 * stored. In case of error, the callee need not release the new prog
872 	 * reference, but on success it takes ownership and must bpf_prog_put
873 	 * when it is no longer used.
874 	 */
875 	XDP_SETUP_PROG,
876 	XDP_SETUP_PROG_HW,
877 	/* BPF program for offload callbacks, invoked at program load time. */
878 	BPF_OFFLOAD_MAP_ALLOC,
879 	BPF_OFFLOAD_MAP_FREE,
880 	XDP_SETUP_XSK_POOL,
881 };
882 
883 struct bpf_prog_offload_ops;
884 struct netlink_ext_ack;
885 struct xdp_umem;
886 struct xdp_dev_bulk_queue;
887 struct bpf_xdp_link;
888 
889 enum bpf_xdp_mode {
890 	XDP_MODE_SKB = 0,
891 	XDP_MODE_DRV = 1,
892 	XDP_MODE_HW = 2,
893 	__MAX_XDP_MODE
894 };
895 
896 struct bpf_xdp_entity {
897 	struct bpf_prog *prog;
898 	struct bpf_xdp_link *link;
899 };
900 
901 struct netdev_bpf {
902 	enum bpf_netdev_command command;
903 	union {
904 		/* XDP_SETUP_PROG */
905 		struct {
906 			u32 flags;
907 			struct bpf_prog *prog;
908 			struct netlink_ext_ack *extack;
909 		};
910 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
911 		struct {
912 			struct bpf_offloaded_map *offmap;
913 		};
914 		/* XDP_SETUP_XSK_POOL */
915 		struct {
916 			struct xsk_buff_pool *pool;
917 			u16 queue_id;
918 		} xsk;
919 	};
920 };
921 
922 /* Flags for ndo_xsk_wakeup. */
923 #define XDP_WAKEUP_RX (1 << 0)
924 #define XDP_WAKEUP_TX (1 << 1)
925 
926 #ifdef CONFIG_XFRM_OFFLOAD
927 struct xfrmdev_ops {
928 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
929 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
930 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
931 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
932 				       struct xfrm_state *x);
933 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
934 };
935 #endif
936 
937 struct dev_ifalias {
938 	struct rcu_head rcuhead;
939 	char ifalias[];
940 };
941 
942 struct devlink;
943 struct tlsdev_ops;
944 
945 struct netdev_name_node {
946 	struct hlist_node hlist;
947 	struct list_head list;
948 	struct net_device *dev;
949 	const char *name;
950 };
951 
952 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
953 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
954 
955 struct netdev_net_notifier {
956 	struct list_head list;
957 	struct notifier_block *nb;
958 };
959 
960 /*
961  * This structure defines the management hooks for network devices.
962  * The following hooks can be defined; unless noted otherwise, they are
963  * optional and can be filled with a null pointer.
964  *
965  * int (*ndo_init)(struct net_device *dev);
966  *     This function is called once when a network device is registered.
967  *     The network device can use this for any late stage initialization
968  *     or semantic validation. It can fail with an error code which will
969  *     be propagated back to register_netdev.
970  *
971  * void (*ndo_uninit)(struct net_device *dev);
972  *     This function is called when device is unregistered or when registration
973  *     fails. It is not called if init fails.
974  *
975  * int (*ndo_open)(struct net_device *dev);
976  *     This function is called when a network device transitions to the up
977  *     state.
978  *
979  * int (*ndo_stop)(struct net_device *dev);
980  *     This function is called when a network device transitions to the down
981  *     state.
982  *
983  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
984  *                               struct net_device *dev);
985  *	Called when a packet needs to be transmitted.
986  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
987  *	the queue before that can happen; it's for obsolete devices and weird
988  *	corner cases, but the stack really does a non-trivial amount
989  *	of useless work if you return NETDEV_TX_BUSY.
990  *	Required; cannot be NULL.
991  *
992  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
993  *					   struct net_device *dev
994  *					   netdev_features_t features);
995  *	Called by core transmit path to determine if device is capable of
996  *	performing offload operations on a given packet. This is to give
997  *	the device an opportunity to implement any restrictions that cannot
998  *	be otherwise expressed by feature flags. The check is called with
999  *	the set of features that the stack has calculated and it returns
1000  *	those the driver believes to be appropriate.
1001  *
1002  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1003  *                         struct net_device *sb_dev);
1004  *	Called to decide which queue to use when device supports multiple
1005  *	transmit queues.
1006  *
1007  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1008  *	This function is called to allow device receiver to make
1009  *	changes to configuration when multicast or promiscuous is enabled.
1010  *
1011  * void (*ndo_set_rx_mode)(struct net_device *dev);
1012  *	This function is called device changes address list filtering.
1013  *	If driver handles unicast address filtering, it should set
1014  *	IFF_UNICAST_FLT in its priv_flags.
1015  *
1016  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1017  *	This function  is called when the Media Access Control address
1018  *	needs to be changed. If this interface is not defined, the
1019  *	MAC address can not be changed.
1020  *
1021  * int (*ndo_validate_addr)(struct net_device *dev);
1022  *	Test if Media Access Control address is valid for the device.
1023  *
1024  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1025  *	Called when a user requests an ioctl which can't be handled by
1026  *	the generic interface code. If not defined ioctls return
1027  *	not supported error code.
1028  *
1029  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1030  *	Used to set network devices bus interface parameters. This interface
1031  *	is retained for legacy reasons; new devices should use the bus
1032  *	interface (PCI) for low level management.
1033  *
1034  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1035  *	Called when a user wants to change the Maximum Transfer Unit
1036  *	of a device.
1037  *
1038  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1039  *	Callback used when the transmitter has not made any progress
1040  *	for dev->watchdog ticks.
1041  *
1042  * void (*ndo_get_stats64)(struct net_device *dev,
1043  *                         struct rtnl_link_stats64 *storage);
1044  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1045  *	Called when a user wants to get the network device usage
1046  *	statistics. Drivers must do one of the following:
1047  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1048  *	   rtnl_link_stats64 structure passed by the caller.
1049  *	2. Define @ndo_get_stats to update a net_device_stats structure
1050  *	   (which should normally be dev->stats) and return a pointer to
1051  *	   it. The structure may be changed asynchronously only if each
1052  *	   field is written atomically.
1053  *	3. Update dev->stats asynchronously and atomically, and define
1054  *	   neither operation.
1055  *
1056  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1057  *	Return true if this device supports offload stats of this attr_id.
1058  *
1059  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1060  *	void *attr_data)
1061  *	Get statistics for offload operations by attr_id. Write it into the
1062  *	attr_data pointer.
1063  *
1064  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1065  *	If device supports VLAN filtering this function is called when a
1066  *	VLAN id is registered.
1067  *
1068  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1069  *	If device supports VLAN filtering this function is called when a
1070  *	VLAN id is unregistered.
1071  *
1072  * void (*ndo_poll_controller)(struct net_device *dev);
1073  *
1074  *	SR-IOV management functions.
1075  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1076  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1077  *			  u8 qos, __be16 proto);
1078  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1079  *			  int max_tx_rate);
1080  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1081  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1082  * int (*ndo_get_vf_config)(struct net_device *dev,
1083  *			    int vf, struct ifla_vf_info *ivf);
1084  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1085  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1086  *			  struct nlattr *port[]);
1087  *
1088  *      Enable or disable the VF ability to query its RSS Redirection Table and
1089  *      Hash Key. This is needed since on some devices VF share this information
1090  *      with PF and querying it may introduce a theoretical security risk.
1091  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1092  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1093  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1094  *		       void *type_data);
1095  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1096  *	This is always called from the stack with the rtnl lock held and netif
1097  *	tx queues stopped. This allows the netdevice to perform queue
1098  *	management safely.
1099  *
1100  *	Fiber Channel over Ethernet (FCoE) offload functions.
1101  * int (*ndo_fcoe_enable)(struct net_device *dev);
1102  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1103  *	so the underlying device can perform whatever needed configuration or
1104  *	initialization to support acceleration of FCoE traffic.
1105  *
1106  * int (*ndo_fcoe_disable)(struct net_device *dev);
1107  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1108  *	so the underlying device can perform whatever needed clean-ups to
1109  *	stop supporting acceleration of FCoE traffic.
1110  *
1111  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1112  *			     struct scatterlist *sgl, unsigned int sgc);
1113  *	Called when the FCoE Initiator wants to initialize an I/O that
1114  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1115  *	perform necessary setup and returns 1 to indicate the device is set up
1116  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1117  *
1118  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1119  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1120  *	indicated by the FC exchange id 'xid', so the underlying device can
1121  *	clean up and reuse resources for later DDP requests.
1122  *
1123  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1124  *			      struct scatterlist *sgl, unsigned int sgc);
1125  *	Called when the FCoE Target wants to initialize an I/O that
1126  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1127  *	perform necessary setup and returns 1 to indicate the device is set up
1128  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1129  *
1130  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1131  *			       struct netdev_fcoe_hbainfo *hbainfo);
1132  *	Called when the FCoE Protocol stack wants information on the underlying
1133  *	device. This information is utilized by the FCoE protocol stack to
1134  *	register attributes with Fiber Channel management service as per the
1135  *	FC-GS Fabric Device Management Information(FDMI) specification.
1136  *
1137  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1138  *	Called when the underlying device wants to override default World Wide
1139  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1140  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1141  *	protocol stack to use.
1142  *
1143  *	RFS acceleration.
1144  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1145  *			    u16 rxq_index, u32 flow_id);
1146  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1147  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1148  *	Return the filter ID on success, or a negative error code.
1149  *
1150  *	Slave management functions (for bridge, bonding, etc).
1151  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1152  *	Called to make another netdev an underling.
1153  *
1154  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1155  *	Called to release previously enslaved netdev.
1156  *
1157  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1158  *					    struct sk_buff *skb,
1159  *					    bool all_slaves);
1160  *	Get the xmit slave of master device. If all_slaves is true, function
1161  *	assume all the slaves can transmit.
1162  *
1163  *      Feature/offload setting functions.
1164  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1165  *		netdev_features_t features);
1166  *	Adjusts the requested feature flags according to device-specific
1167  *	constraints, and returns the resulting flags. Must not modify
1168  *	the device state.
1169  *
1170  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1171  *	Called to update device configuration to new features. Passed
1172  *	feature set might be less than what was returned by ndo_fix_features()).
1173  *	Must return >0 or -errno if it changed dev->features itself.
1174  *
1175  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1176  *		      struct net_device *dev,
1177  *		      const unsigned char *addr, u16 vid, u16 flags,
1178  *		      struct netlink_ext_ack *extack);
1179  *	Adds an FDB entry to dev for addr.
1180  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1181  *		      struct net_device *dev,
1182  *		      const unsigned char *addr, u16 vid)
1183  *	Deletes the FDB entry from dev coresponding to addr.
1184  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1185  *		       struct net_device *dev, struct net_device *filter_dev,
1186  *		       int *idx)
1187  *	Used to add FDB entries to dump requests. Implementers should add
1188  *	entries to skb and update idx with the number of entries.
1189  *
1190  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1191  *			     u16 flags, struct netlink_ext_ack *extack)
1192  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1193  *			     struct net_device *dev, u32 filter_mask,
1194  *			     int nlflags)
1195  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1196  *			     u16 flags);
1197  *
1198  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1199  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1200  *	which do not represent real hardware may define this to allow their
1201  *	userspace components to manage their virtual carrier state. Devices
1202  *	that determine carrier state from physical hardware properties (eg
1203  *	network cables) or protocol-dependent mechanisms (eg
1204  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1205  *
1206  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1207  *			       struct netdev_phys_item_id *ppid);
1208  *	Called to get ID of physical port of this device. If driver does
1209  *	not implement this, it is assumed that the hw is not able to have
1210  *	multiple net devices on single physical port.
1211  *
1212  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1213  *				 struct netdev_phys_item_id *ppid)
1214  *	Called to get the parent ID of the physical port of this device.
1215  *
1216  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1217  *			      struct udp_tunnel_info *ti);
1218  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1219  *	address family that a UDP tunnel is listnening to. It is called only
1220  *	when a new port starts listening. The operation is protected by the
1221  *	RTNL.
1222  *
1223  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1224  *			      struct udp_tunnel_info *ti);
1225  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1226  *	address family that the UDP tunnel is not listening to anymore. The
1227  *	operation is protected by the RTNL.
1228  *
1229  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1230  *				 struct net_device *dev)
1231  *	Called by upper layer devices to accelerate switching or other
1232  *	station functionality into hardware. 'pdev is the lowerdev
1233  *	to use for the offload and 'dev' is the net device that will
1234  *	back the offload. Returns a pointer to the private structure
1235  *	the upper layer will maintain.
1236  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1237  *	Called by upper layer device to delete the station created
1238  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1239  *	the station and priv is the structure returned by the add
1240  *	operation.
1241  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1242  *			     int queue_index, u32 maxrate);
1243  *	Called when a user wants to set a max-rate limitation of specific
1244  *	TX queue.
1245  * int (*ndo_get_iflink)(const struct net_device *dev);
1246  *	Called to get the iflink value of this device.
1247  * void (*ndo_change_proto_down)(struct net_device *dev,
1248  *				 bool proto_down);
1249  *	This function is used to pass protocol port error state information
1250  *	to the switch driver. The switch driver can react to the proto_down
1251  *      by doing a phys down on the associated switch port.
1252  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1253  *	This function is used to get egress tunnel information for given skb.
1254  *	This is useful for retrieving outer tunnel header parameters while
1255  *	sampling packet.
1256  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1257  *	This function is used to specify the headroom that the skb must
1258  *	consider when allocation skb during packet reception. Setting
1259  *	appropriate rx headroom value allows avoiding skb head copy on
1260  *	forward. Setting a negative value resets the rx headroom to the
1261  *	default value.
1262  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1263  *	This function is used to set or query state related to XDP on the
1264  *	netdevice and manage BPF offload. See definition of
1265  *	enum bpf_netdev_command for details.
1266  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1267  *			u32 flags);
1268  *	This function is used to submit @n XDP packets for transmit on a
1269  *	netdevice. Returns number of frames successfully transmitted, frames
1270  *	that got dropped are freed/returned via xdp_return_frame().
1271  *	Returns negative number, means general error invoking ndo, meaning
1272  *	no frames were xmit'ed and core-caller will free all frames.
1273  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1274  *      This function is used to wake up the softirq, ksoftirqd or kthread
1275  *	responsible for sending and/or receiving packets on a specific
1276  *	queue id bound to an AF_XDP socket. The flags field specifies if
1277  *	only RX, only Tx, or both should be woken up using the flags
1278  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1279  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1280  *	Get devlink port instance associated with a given netdev.
1281  *	Called with a reference on the netdevice and devlink locks only,
1282  *	rtnl_lock is not held.
1283  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1284  *			 int cmd);
1285  *	Add, change, delete or get information on an IPv4 tunnel.
1286  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1287  *	If a device is paired with a peer device, return the peer instance.
1288  *	The caller must be under RCU read context.
1289  */
1290 struct net_device_ops {
1291 	int			(*ndo_init)(struct net_device *dev);
1292 	void			(*ndo_uninit)(struct net_device *dev);
1293 	int			(*ndo_open)(struct net_device *dev);
1294 	int			(*ndo_stop)(struct net_device *dev);
1295 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1296 						  struct net_device *dev);
1297 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1298 						      struct net_device *dev,
1299 						      netdev_features_t features);
1300 	u16			(*ndo_select_queue)(struct net_device *dev,
1301 						    struct sk_buff *skb,
1302 						    struct net_device *sb_dev);
1303 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1304 						       int flags);
1305 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1306 	int			(*ndo_set_mac_address)(struct net_device *dev,
1307 						       void *addr);
1308 	int			(*ndo_validate_addr)(struct net_device *dev);
1309 	int			(*ndo_do_ioctl)(struct net_device *dev,
1310 					        struct ifreq *ifr, int cmd);
1311 	int			(*ndo_set_config)(struct net_device *dev,
1312 					          struct ifmap *map);
1313 	int			(*ndo_change_mtu)(struct net_device *dev,
1314 						  int new_mtu);
1315 	int			(*ndo_neigh_setup)(struct net_device *dev,
1316 						   struct neigh_parms *);
1317 	void			(*ndo_tx_timeout) (struct net_device *dev,
1318 						   unsigned int txqueue);
1319 
1320 	void			(*ndo_get_stats64)(struct net_device *dev,
1321 						   struct rtnl_link_stats64 *storage);
1322 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1323 	int			(*ndo_get_offload_stats)(int attr_id,
1324 							 const struct net_device *dev,
1325 							 void *attr_data);
1326 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1327 
1328 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1329 						       __be16 proto, u16 vid);
1330 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1331 						        __be16 proto, u16 vid);
1332 #ifdef CONFIG_NET_POLL_CONTROLLER
1333 	void                    (*ndo_poll_controller)(struct net_device *dev);
1334 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1335 						     struct netpoll_info *info);
1336 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1337 #endif
1338 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1339 						  int queue, u8 *mac);
1340 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1341 						   int queue, u16 vlan,
1342 						   u8 qos, __be16 proto);
1343 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1344 						   int vf, int min_tx_rate,
1345 						   int max_tx_rate);
1346 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1347 						       int vf, bool setting);
1348 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1349 						    int vf, bool setting);
1350 	int			(*ndo_get_vf_config)(struct net_device *dev,
1351 						     int vf,
1352 						     struct ifla_vf_info *ivf);
1353 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1354 							 int vf, int link_state);
1355 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1356 						    int vf,
1357 						    struct ifla_vf_stats
1358 						    *vf_stats);
1359 	int			(*ndo_set_vf_port)(struct net_device *dev,
1360 						   int vf,
1361 						   struct nlattr *port[]);
1362 	int			(*ndo_get_vf_port)(struct net_device *dev,
1363 						   int vf, struct sk_buff *skb);
1364 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1365 						   int vf,
1366 						   struct ifla_vf_guid *node_guid,
1367 						   struct ifla_vf_guid *port_guid);
1368 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1369 						   int vf, u64 guid,
1370 						   int guid_type);
1371 	int			(*ndo_set_vf_rss_query_en)(
1372 						   struct net_device *dev,
1373 						   int vf, bool setting);
1374 	int			(*ndo_setup_tc)(struct net_device *dev,
1375 						enum tc_setup_type type,
1376 						void *type_data);
1377 #if IS_ENABLED(CONFIG_FCOE)
1378 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1379 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1380 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1381 						      u16 xid,
1382 						      struct scatterlist *sgl,
1383 						      unsigned int sgc);
1384 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1385 						     u16 xid);
1386 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1387 						       u16 xid,
1388 						       struct scatterlist *sgl,
1389 						       unsigned int sgc);
1390 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1391 							struct netdev_fcoe_hbainfo *hbainfo);
1392 #endif
1393 
1394 #if IS_ENABLED(CONFIG_LIBFCOE)
1395 #define NETDEV_FCOE_WWNN 0
1396 #define NETDEV_FCOE_WWPN 1
1397 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1398 						    u64 *wwn, int type);
1399 #endif
1400 
1401 #ifdef CONFIG_RFS_ACCEL
1402 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1403 						     const struct sk_buff *skb,
1404 						     u16 rxq_index,
1405 						     u32 flow_id);
1406 #endif
1407 	int			(*ndo_add_slave)(struct net_device *dev,
1408 						 struct net_device *slave_dev,
1409 						 struct netlink_ext_ack *extack);
1410 	int			(*ndo_del_slave)(struct net_device *dev,
1411 						 struct net_device *slave_dev);
1412 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1413 						      struct sk_buff *skb,
1414 						      bool all_slaves);
1415 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1416 						    netdev_features_t features);
1417 	int			(*ndo_set_features)(struct net_device *dev,
1418 						    netdev_features_t features);
1419 	int			(*ndo_neigh_construct)(struct net_device *dev,
1420 						       struct neighbour *n);
1421 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1422 						     struct neighbour *n);
1423 
1424 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1425 					       struct nlattr *tb[],
1426 					       struct net_device *dev,
1427 					       const unsigned char *addr,
1428 					       u16 vid,
1429 					       u16 flags,
1430 					       struct netlink_ext_ack *extack);
1431 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1432 					       struct nlattr *tb[],
1433 					       struct net_device *dev,
1434 					       const unsigned char *addr,
1435 					       u16 vid);
1436 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1437 						struct netlink_callback *cb,
1438 						struct net_device *dev,
1439 						struct net_device *filter_dev,
1440 						int *idx);
1441 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1442 					       struct nlattr *tb[],
1443 					       struct net_device *dev,
1444 					       const unsigned char *addr,
1445 					       u16 vid, u32 portid, u32 seq,
1446 					       struct netlink_ext_ack *extack);
1447 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1448 						      struct nlmsghdr *nlh,
1449 						      u16 flags,
1450 						      struct netlink_ext_ack *extack);
1451 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1452 						      u32 pid, u32 seq,
1453 						      struct net_device *dev,
1454 						      u32 filter_mask,
1455 						      int nlflags);
1456 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1457 						      struct nlmsghdr *nlh,
1458 						      u16 flags);
1459 	int			(*ndo_change_carrier)(struct net_device *dev,
1460 						      bool new_carrier);
1461 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1462 							struct netdev_phys_item_id *ppid);
1463 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1464 							  struct netdev_phys_item_id *ppid);
1465 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1466 							  char *name, size_t len);
1467 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1468 						      struct udp_tunnel_info *ti);
1469 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1470 						      struct udp_tunnel_info *ti);
1471 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1472 							struct net_device *dev);
1473 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1474 							void *priv);
1475 
1476 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1477 						      int queue_index,
1478 						      u32 maxrate);
1479 	int			(*ndo_get_iflink)(const struct net_device *dev);
1480 	int			(*ndo_change_proto_down)(struct net_device *dev,
1481 							 bool proto_down);
1482 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1483 						       struct sk_buff *skb);
1484 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1485 						       int needed_headroom);
1486 	int			(*ndo_bpf)(struct net_device *dev,
1487 					   struct netdev_bpf *bpf);
1488 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1489 						struct xdp_frame **xdp,
1490 						u32 flags);
1491 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1492 						  u32 queue_id, u32 flags);
1493 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1494 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1495 						  struct ip_tunnel_parm *p, int cmd);
1496 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1497 };
1498 
1499 /**
1500  * enum netdev_priv_flags - &struct net_device priv_flags
1501  *
1502  * These are the &struct net_device, they are only set internally
1503  * by drivers and used in the kernel. These flags are invisible to
1504  * userspace; this means that the order of these flags can change
1505  * during any kernel release.
1506  *
1507  * You should have a pretty good reason to be extending these flags.
1508  *
1509  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1510  * @IFF_EBRIDGE: Ethernet bridging device
1511  * @IFF_BONDING: bonding master or slave
1512  * @IFF_ISATAP: ISATAP interface (RFC4214)
1513  * @IFF_WAN_HDLC: WAN HDLC device
1514  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1515  *	release skb->dst
1516  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1517  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1518  * @IFF_MACVLAN_PORT: device used as macvlan port
1519  * @IFF_BRIDGE_PORT: device used as bridge port
1520  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1521  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1522  * @IFF_UNICAST_FLT: Supports unicast filtering
1523  * @IFF_TEAM_PORT: device used as team port
1524  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1525  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1526  *	change when it's running
1527  * @IFF_MACVLAN: Macvlan device
1528  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1529  *	underlying stacked devices
1530  * @IFF_L3MDEV_MASTER: device is an L3 master device
1531  * @IFF_NO_QUEUE: device can run without qdisc attached
1532  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1533  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1534  * @IFF_TEAM: device is a team device
1535  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1536  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1537  *	entity (i.e. the master device for bridged veth)
1538  * @IFF_MACSEC: device is a MACsec device
1539  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1540  * @IFF_FAILOVER: device is a failover master device
1541  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1542  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1543  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1544  */
1545 enum netdev_priv_flags {
1546 	IFF_802_1Q_VLAN			= 1<<0,
1547 	IFF_EBRIDGE			= 1<<1,
1548 	IFF_BONDING			= 1<<2,
1549 	IFF_ISATAP			= 1<<3,
1550 	IFF_WAN_HDLC			= 1<<4,
1551 	IFF_XMIT_DST_RELEASE		= 1<<5,
1552 	IFF_DONT_BRIDGE			= 1<<6,
1553 	IFF_DISABLE_NETPOLL		= 1<<7,
1554 	IFF_MACVLAN_PORT		= 1<<8,
1555 	IFF_BRIDGE_PORT			= 1<<9,
1556 	IFF_OVS_DATAPATH		= 1<<10,
1557 	IFF_TX_SKB_SHARING		= 1<<11,
1558 	IFF_UNICAST_FLT			= 1<<12,
1559 	IFF_TEAM_PORT			= 1<<13,
1560 	IFF_SUPP_NOFCS			= 1<<14,
1561 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1562 	IFF_MACVLAN			= 1<<16,
1563 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1564 	IFF_L3MDEV_MASTER		= 1<<18,
1565 	IFF_NO_QUEUE			= 1<<19,
1566 	IFF_OPENVSWITCH			= 1<<20,
1567 	IFF_L3MDEV_SLAVE		= 1<<21,
1568 	IFF_TEAM			= 1<<22,
1569 	IFF_RXFH_CONFIGURED		= 1<<23,
1570 	IFF_PHONY_HEADROOM		= 1<<24,
1571 	IFF_MACSEC			= 1<<25,
1572 	IFF_NO_RX_HANDLER		= 1<<26,
1573 	IFF_FAILOVER			= 1<<27,
1574 	IFF_FAILOVER_SLAVE		= 1<<28,
1575 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1576 	IFF_LIVE_RENAME_OK		= 1<<30,
1577 };
1578 
1579 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1580 #define IFF_EBRIDGE			IFF_EBRIDGE
1581 #define IFF_BONDING			IFF_BONDING
1582 #define IFF_ISATAP			IFF_ISATAP
1583 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1584 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1585 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1586 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1587 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1588 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1589 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1590 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1591 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1592 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1593 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1594 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1595 #define IFF_MACVLAN			IFF_MACVLAN
1596 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1597 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1598 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1599 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1600 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1601 #define IFF_TEAM			IFF_TEAM
1602 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1603 #define IFF_MACSEC			IFF_MACSEC
1604 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1605 #define IFF_FAILOVER			IFF_FAILOVER
1606 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1607 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1608 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1609 
1610 /**
1611  *	struct net_device - The DEVICE structure.
1612  *
1613  *	Actually, this whole structure is a big mistake.  It mixes I/O
1614  *	data with strictly "high-level" data, and it has to know about
1615  *	almost every data structure used in the INET module.
1616  *
1617  *	@name:	This is the first field of the "visible" part of this structure
1618  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1619  *		of the interface.
1620  *
1621  *	@name_node:	Name hashlist node
1622  *	@ifalias:	SNMP alias
1623  *	@mem_end:	Shared memory end
1624  *	@mem_start:	Shared memory start
1625  *	@base_addr:	Device I/O address
1626  *	@irq:		Device IRQ number
1627  *
1628  *	@state:		Generic network queuing layer state, see netdev_state_t
1629  *	@dev_list:	The global list of network devices
1630  *	@napi_list:	List entry used for polling NAPI devices
1631  *	@unreg_list:	List entry  when we are unregistering the
1632  *			device; see the function unregister_netdev
1633  *	@close_list:	List entry used when we are closing the device
1634  *	@ptype_all:     Device-specific packet handlers for all protocols
1635  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1636  *
1637  *	@adj_list:	Directly linked devices, like slaves for bonding
1638  *	@features:	Currently active device features
1639  *	@hw_features:	User-changeable features
1640  *
1641  *	@wanted_features:	User-requested features
1642  *	@vlan_features:		Mask of features inheritable by VLAN devices
1643  *
1644  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1645  *				This field indicates what encapsulation
1646  *				offloads the hardware is capable of doing,
1647  *				and drivers will need to set them appropriately.
1648  *
1649  *	@mpls_features:	Mask of features inheritable by MPLS
1650  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1651  *
1652  *	@ifindex:	interface index
1653  *	@group:		The group the device belongs to
1654  *
1655  *	@stats:		Statistics struct, which was left as a legacy, use
1656  *			rtnl_link_stats64 instead
1657  *
1658  *	@rx_dropped:	Dropped packets by core network,
1659  *			do not use this in drivers
1660  *	@tx_dropped:	Dropped packets by core network,
1661  *			do not use this in drivers
1662  *	@rx_nohandler:	nohandler dropped packets by core network on
1663  *			inactive devices, do not use this in drivers
1664  *	@carrier_up_count:	Number of times the carrier has been up
1665  *	@carrier_down_count:	Number of times the carrier has been down
1666  *
1667  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1668  *				instead of ioctl,
1669  *				see <net/iw_handler.h> for details.
1670  *	@wireless_data:	Instance data managed by the core of wireless extensions
1671  *
1672  *	@netdev_ops:	Includes several pointers to callbacks,
1673  *			if one wants to override the ndo_*() functions
1674  *	@ethtool_ops:	Management operations
1675  *	@l3mdev_ops:	Layer 3 master device operations
1676  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1677  *			discovery handling. Necessary for e.g. 6LoWPAN.
1678  *	@xfrmdev_ops:	Transformation offload operations
1679  *	@tlsdev_ops:	Transport Layer Security offload operations
1680  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1681  *			of Layer 2 headers.
1682  *
1683  *	@flags:		Interface flags (a la BSD)
1684  *	@priv_flags:	Like 'flags' but invisible to userspace,
1685  *			see if.h for the definitions
1686  *	@gflags:	Global flags ( kept as legacy )
1687  *	@padded:	How much padding added by alloc_netdev()
1688  *	@operstate:	RFC2863 operstate
1689  *	@link_mode:	Mapping policy to operstate
1690  *	@if_port:	Selectable AUI, TP, ...
1691  *	@dma:		DMA channel
1692  *	@mtu:		Interface MTU value
1693  *	@min_mtu:	Interface Minimum MTU value
1694  *	@max_mtu:	Interface Maximum MTU value
1695  *	@type:		Interface hardware type
1696  *	@hard_header_len: Maximum hardware header length.
1697  *	@min_header_len:  Minimum hardware header length
1698  *
1699  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1700  *			  cases can this be guaranteed
1701  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1702  *			  cases can this be guaranteed. Some cases also use
1703  *			  LL_MAX_HEADER instead to allocate the skb
1704  *
1705  *	interface address info:
1706  *
1707  * 	@perm_addr:		Permanent hw address
1708  * 	@addr_assign_type:	Hw address assignment type
1709  * 	@addr_len:		Hardware address length
1710  *	@upper_level:		Maximum depth level of upper devices.
1711  *	@lower_level:		Maximum depth level of lower devices.
1712  *	@neigh_priv_len:	Used in neigh_alloc()
1713  * 	@dev_id:		Used to differentiate devices that share
1714  * 				the same link layer address
1715  * 	@dev_port:		Used to differentiate devices that share
1716  * 				the same function
1717  *	@addr_list_lock:	XXX: need comments on this one
1718  *	@name_assign_type:	network interface name assignment type
1719  *	@uc_promisc:		Counter that indicates promiscuous mode
1720  *				has been enabled due to the need to listen to
1721  *				additional unicast addresses in a device that
1722  *				does not implement ndo_set_rx_mode()
1723  *	@uc:			unicast mac addresses
1724  *	@mc:			multicast mac addresses
1725  *	@dev_addrs:		list of device hw addresses
1726  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1727  *	@promiscuity:		Number of times the NIC is told to work in
1728  *				promiscuous mode; if it becomes 0 the NIC will
1729  *				exit promiscuous mode
1730  *	@allmulti:		Counter, enables or disables allmulticast mode
1731  *
1732  *	@vlan_info:	VLAN info
1733  *	@dsa_ptr:	dsa specific data
1734  *	@tipc_ptr:	TIPC specific data
1735  *	@atalk_ptr:	AppleTalk link
1736  *	@ip_ptr:	IPv4 specific data
1737  *	@dn_ptr:	DECnet specific data
1738  *	@ip6_ptr:	IPv6 specific data
1739  *	@ax25_ptr:	AX.25 specific data
1740  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1741  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1742  *			 device struct
1743  *	@mpls_ptr:	mpls_dev struct pointer
1744  *
1745  *	@dev_addr:	Hw address (before bcast,
1746  *			because most packets are unicast)
1747  *
1748  *	@_rx:			Array of RX queues
1749  *	@num_rx_queues:		Number of RX queues
1750  *				allocated at register_netdev() time
1751  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1752  *	@xdp_prog:		XDP sockets filter program pointer
1753  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1754  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1755  *				allow to avoid NIC hard IRQ, on busy queues.
1756  *
1757  *	@rx_handler:		handler for received packets
1758  *	@rx_handler_data: 	XXX: need comments on this one
1759  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1760  *				ingress processing
1761  *	@ingress_queue:		XXX: need comments on this one
1762  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1763  *	@broadcast:		hw bcast address
1764  *
1765  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1766  *			indexed by RX queue number. Assigned by driver.
1767  *			This must only be set if the ndo_rx_flow_steer
1768  *			operation is defined
1769  *	@index_hlist:		Device index hash chain
1770  *
1771  *	@_tx:			Array of TX queues
1772  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1773  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1774  *	@qdisc:			Root qdisc from userspace point of view
1775  *	@tx_queue_len:		Max frames per queue allowed
1776  *	@tx_global_lock: 	XXX: need comments on this one
1777  *	@xdp_bulkq:		XDP device bulk queue
1778  *	@xps_cpus_map:		all CPUs map for XPS device
1779  *	@xps_rxqs_map:		all RXQs map for XPS device
1780  *
1781  *	@xps_maps:	XXX: need comments on this one
1782  *	@miniq_egress:		clsact qdisc specific data for
1783  *				egress processing
1784  *	@qdisc_hash:		qdisc hash table
1785  *	@watchdog_timeo:	Represents the timeout that is used by
1786  *				the watchdog (see dev_watchdog())
1787  *	@watchdog_timer:	List of timers
1788  *
1789  *	@proto_down_reason:	reason a netdev interface is held down
1790  *	@pcpu_refcnt:		Number of references to this device
1791  *	@todo_list:		Delayed register/unregister
1792  *	@link_watch_list:	XXX: need comments on this one
1793  *
1794  *	@reg_state:		Register/unregister state machine
1795  *	@dismantle:		Device is going to be freed
1796  *	@rtnl_link_state:	This enum represents the phases of creating
1797  *				a new link
1798  *
1799  *	@needs_free_netdev:	Should unregister perform free_netdev?
1800  *	@priv_destructor:	Called from unregister
1801  *	@npinfo:		XXX: need comments on this one
1802  * 	@nd_net:		Network namespace this network device is inside
1803  *
1804  * 	@ml_priv:	Mid-layer private
1805  * 	@lstats:	Loopback statistics
1806  * 	@tstats:	Tunnel statistics
1807  * 	@dstats:	Dummy statistics
1808  * 	@vstats:	Virtual ethernet statistics
1809  *
1810  *	@garp_port:	GARP
1811  *	@mrp_port:	MRP
1812  *
1813  *	@dev:		Class/net/name entry
1814  *	@sysfs_groups:	Space for optional device, statistics and wireless
1815  *			sysfs groups
1816  *
1817  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1818  *	@rtnl_link_ops:	Rtnl_link_ops
1819  *
1820  *	@gso_max_size:	Maximum size of generic segmentation offload
1821  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1822  *			NIC for GSO
1823  *
1824  *	@dcbnl_ops:	Data Center Bridging netlink ops
1825  *	@num_tc:	Number of traffic classes in the net device
1826  *	@tc_to_txq:	XXX: need comments on this one
1827  *	@prio_tc_map:	XXX: need comments on this one
1828  *
1829  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1830  *
1831  *	@priomap:	XXX: need comments on this one
1832  *	@phydev:	Physical device may attach itself
1833  *			for hardware timestamping
1834  *	@sfp_bus:	attached &struct sfp_bus structure.
1835  *
1836  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1837  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1838  *
1839  *	@proto_down:	protocol port state information can be sent to the
1840  *			switch driver and used to set the phys state of the
1841  *			switch port.
1842  *
1843  *	@wol_enabled:	Wake-on-LAN is enabled
1844  *
1845  *	@net_notifier_list:	List of per-net netdev notifier block
1846  *				that follow this device when it is moved
1847  *				to another network namespace.
1848  *
1849  *	@macsec_ops:    MACsec offloading ops
1850  *
1851  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1852  *				offload capabilities of the device
1853  *	@udp_tunnel_nic:	UDP tunnel offload state
1854  *	@xdp_state:		stores info on attached XDP BPF programs
1855  *
1856  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1857  *			dev->addr_list_lock.
1858  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1859  *			keep a list of interfaces to be deleted.
1860  *
1861  *	FIXME: cleanup struct net_device such that network protocol info
1862  *	moves out.
1863  */
1864 
1865 struct net_device {
1866 	char			name[IFNAMSIZ];
1867 	struct netdev_name_node	*name_node;
1868 	struct dev_ifalias	__rcu *ifalias;
1869 	/*
1870 	 *	I/O specific fields
1871 	 *	FIXME: Merge these and struct ifmap into one
1872 	 */
1873 	unsigned long		mem_end;
1874 	unsigned long		mem_start;
1875 	unsigned long		base_addr;
1876 	int			irq;
1877 
1878 	/*
1879 	 *	Some hardware also needs these fields (state,dev_list,
1880 	 *	napi_list,unreg_list,close_list) but they are not
1881 	 *	part of the usual set specified in Space.c.
1882 	 */
1883 
1884 	unsigned long		state;
1885 
1886 	struct list_head	dev_list;
1887 	struct list_head	napi_list;
1888 	struct list_head	unreg_list;
1889 	struct list_head	close_list;
1890 	struct list_head	ptype_all;
1891 	struct list_head	ptype_specific;
1892 
1893 	struct {
1894 		struct list_head upper;
1895 		struct list_head lower;
1896 	} adj_list;
1897 
1898 	netdev_features_t	features;
1899 	netdev_features_t	hw_features;
1900 	netdev_features_t	wanted_features;
1901 	netdev_features_t	vlan_features;
1902 	netdev_features_t	hw_enc_features;
1903 	netdev_features_t	mpls_features;
1904 	netdev_features_t	gso_partial_features;
1905 
1906 	int			ifindex;
1907 	int			group;
1908 
1909 	struct net_device_stats	stats;
1910 
1911 	atomic_long_t		rx_dropped;
1912 	atomic_long_t		tx_dropped;
1913 	atomic_long_t		rx_nohandler;
1914 
1915 	/* Stats to monitor link on/off, flapping */
1916 	atomic_t		carrier_up_count;
1917 	atomic_t		carrier_down_count;
1918 
1919 #ifdef CONFIG_WIRELESS_EXT
1920 	const struct iw_handler_def *wireless_handlers;
1921 	struct iw_public_data	*wireless_data;
1922 #endif
1923 	const struct net_device_ops *netdev_ops;
1924 	const struct ethtool_ops *ethtool_ops;
1925 #ifdef CONFIG_NET_L3_MASTER_DEV
1926 	const struct l3mdev_ops	*l3mdev_ops;
1927 #endif
1928 #if IS_ENABLED(CONFIG_IPV6)
1929 	const struct ndisc_ops *ndisc_ops;
1930 #endif
1931 
1932 #ifdef CONFIG_XFRM_OFFLOAD
1933 	const struct xfrmdev_ops *xfrmdev_ops;
1934 #endif
1935 
1936 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1937 	const struct tlsdev_ops *tlsdev_ops;
1938 #endif
1939 
1940 	const struct header_ops *header_ops;
1941 
1942 	unsigned int		flags;
1943 	unsigned int		priv_flags;
1944 
1945 	unsigned short		gflags;
1946 	unsigned short		padded;
1947 
1948 	unsigned char		operstate;
1949 	unsigned char		link_mode;
1950 
1951 	unsigned char		if_port;
1952 	unsigned char		dma;
1953 
1954 	/* Note : dev->mtu is often read without holding a lock.
1955 	 * Writers usually hold RTNL.
1956 	 * It is recommended to use READ_ONCE() to annotate the reads,
1957 	 * and to use WRITE_ONCE() to annotate the writes.
1958 	 */
1959 	unsigned int		mtu;
1960 	unsigned int		min_mtu;
1961 	unsigned int		max_mtu;
1962 	unsigned short		type;
1963 	unsigned short		hard_header_len;
1964 	unsigned char		min_header_len;
1965 	unsigned char		name_assign_type;
1966 
1967 	unsigned short		needed_headroom;
1968 	unsigned short		needed_tailroom;
1969 
1970 	/* Interface address info. */
1971 	unsigned char		perm_addr[MAX_ADDR_LEN];
1972 	unsigned char		addr_assign_type;
1973 	unsigned char		addr_len;
1974 	unsigned char		upper_level;
1975 	unsigned char		lower_level;
1976 
1977 	unsigned short		neigh_priv_len;
1978 	unsigned short          dev_id;
1979 	unsigned short          dev_port;
1980 	spinlock_t		addr_list_lock;
1981 
1982 	struct netdev_hw_addr_list	uc;
1983 	struct netdev_hw_addr_list	mc;
1984 	struct netdev_hw_addr_list	dev_addrs;
1985 
1986 #ifdef CONFIG_SYSFS
1987 	struct kset		*queues_kset;
1988 #endif
1989 #ifdef CONFIG_LOCKDEP
1990 	struct list_head	unlink_list;
1991 #endif
1992 	unsigned int		promiscuity;
1993 	unsigned int		allmulti;
1994 	bool			uc_promisc;
1995 #ifdef CONFIG_LOCKDEP
1996 	unsigned char		nested_level;
1997 #endif
1998 
1999 
2000 	/* Protocol-specific pointers */
2001 
2002 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2003 	struct vlan_info __rcu	*vlan_info;
2004 #endif
2005 #if IS_ENABLED(CONFIG_NET_DSA)
2006 	struct dsa_port		*dsa_ptr;
2007 #endif
2008 #if IS_ENABLED(CONFIG_TIPC)
2009 	struct tipc_bearer __rcu *tipc_ptr;
2010 #endif
2011 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2012 	void 			*atalk_ptr;
2013 #endif
2014 	struct in_device __rcu	*ip_ptr;
2015 #if IS_ENABLED(CONFIG_DECNET)
2016 	struct dn_dev __rcu     *dn_ptr;
2017 #endif
2018 	struct inet6_dev __rcu	*ip6_ptr;
2019 #if IS_ENABLED(CONFIG_AX25)
2020 	void			*ax25_ptr;
2021 #endif
2022 	struct wireless_dev	*ieee80211_ptr;
2023 	struct wpan_dev		*ieee802154_ptr;
2024 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2025 	struct mpls_dev __rcu	*mpls_ptr;
2026 #endif
2027 
2028 /*
2029  * Cache lines mostly used on receive path (including eth_type_trans())
2030  */
2031 	/* Interface address info used in eth_type_trans() */
2032 	unsigned char		*dev_addr;
2033 
2034 	struct netdev_rx_queue	*_rx;
2035 	unsigned int		num_rx_queues;
2036 	unsigned int		real_num_rx_queues;
2037 
2038 	struct bpf_prog __rcu	*xdp_prog;
2039 	unsigned long		gro_flush_timeout;
2040 	int			napi_defer_hard_irqs;
2041 	rx_handler_func_t __rcu	*rx_handler;
2042 	void __rcu		*rx_handler_data;
2043 
2044 #ifdef CONFIG_NET_CLS_ACT
2045 	struct mini_Qdisc __rcu	*miniq_ingress;
2046 #endif
2047 	struct netdev_queue __rcu *ingress_queue;
2048 #ifdef CONFIG_NETFILTER_INGRESS
2049 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2050 #endif
2051 
2052 	unsigned char		broadcast[MAX_ADDR_LEN];
2053 #ifdef CONFIG_RFS_ACCEL
2054 	struct cpu_rmap		*rx_cpu_rmap;
2055 #endif
2056 	struct hlist_node	index_hlist;
2057 
2058 /*
2059  * Cache lines mostly used on transmit path
2060  */
2061 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2062 	unsigned int		num_tx_queues;
2063 	unsigned int		real_num_tx_queues;
2064 	struct Qdisc		*qdisc;
2065 	unsigned int		tx_queue_len;
2066 	spinlock_t		tx_global_lock;
2067 
2068 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2069 
2070 #ifdef CONFIG_XPS
2071 	struct xps_dev_maps __rcu *xps_cpus_map;
2072 	struct xps_dev_maps __rcu *xps_rxqs_map;
2073 #endif
2074 #ifdef CONFIG_NET_CLS_ACT
2075 	struct mini_Qdisc __rcu	*miniq_egress;
2076 #endif
2077 
2078 #ifdef CONFIG_NET_SCHED
2079 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2080 #endif
2081 	/* These may be needed for future network-power-down code. */
2082 	struct timer_list	watchdog_timer;
2083 	int			watchdog_timeo;
2084 
2085 	u32                     proto_down_reason;
2086 
2087 	struct list_head	todo_list;
2088 	int __percpu		*pcpu_refcnt;
2089 
2090 	struct list_head	link_watch_list;
2091 
2092 	enum { NETREG_UNINITIALIZED=0,
2093 	       NETREG_REGISTERED,	/* completed register_netdevice */
2094 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2095 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2096 	       NETREG_RELEASED,		/* called free_netdev */
2097 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2098 	} reg_state:8;
2099 
2100 	bool dismantle;
2101 
2102 	enum {
2103 		RTNL_LINK_INITIALIZED,
2104 		RTNL_LINK_INITIALIZING,
2105 	} rtnl_link_state:16;
2106 
2107 	bool needs_free_netdev;
2108 	void (*priv_destructor)(struct net_device *dev);
2109 
2110 #ifdef CONFIG_NETPOLL
2111 	struct netpoll_info __rcu	*npinfo;
2112 #endif
2113 
2114 	possible_net_t			nd_net;
2115 
2116 	/* mid-layer private */
2117 	union {
2118 		void					*ml_priv;
2119 		struct pcpu_lstats __percpu		*lstats;
2120 		struct pcpu_sw_netstats __percpu	*tstats;
2121 		struct pcpu_dstats __percpu		*dstats;
2122 	};
2123 
2124 #if IS_ENABLED(CONFIG_GARP)
2125 	struct garp_port __rcu	*garp_port;
2126 #endif
2127 #if IS_ENABLED(CONFIG_MRP)
2128 	struct mrp_port __rcu	*mrp_port;
2129 #endif
2130 
2131 	struct device		dev;
2132 	const struct attribute_group *sysfs_groups[4];
2133 	const struct attribute_group *sysfs_rx_queue_group;
2134 
2135 	const struct rtnl_link_ops *rtnl_link_ops;
2136 
2137 	/* for setting kernel sock attribute on TCP connection setup */
2138 #define GSO_MAX_SIZE		65536
2139 	unsigned int		gso_max_size;
2140 #define GSO_MAX_SEGS		65535
2141 	u16			gso_max_segs;
2142 
2143 #ifdef CONFIG_DCB
2144 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2145 #endif
2146 	s16			num_tc;
2147 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2148 	u8			prio_tc_map[TC_BITMASK + 1];
2149 
2150 #if IS_ENABLED(CONFIG_FCOE)
2151 	unsigned int		fcoe_ddp_xid;
2152 #endif
2153 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2154 	struct netprio_map __rcu *priomap;
2155 #endif
2156 	struct phy_device	*phydev;
2157 	struct sfp_bus		*sfp_bus;
2158 	struct lock_class_key	*qdisc_tx_busylock;
2159 	struct lock_class_key	*qdisc_running_key;
2160 	bool			proto_down;
2161 	unsigned		wol_enabled:1;
2162 
2163 	struct list_head	net_notifier_list;
2164 
2165 #if IS_ENABLED(CONFIG_MACSEC)
2166 	/* MACsec management functions */
2167 	const struct macsec_ops *macsec_ops;
2168 #endif
2169 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2170 	struct udp_tunnel_nic	*udp_tunnel_nic;
2171 
2172 	/* protected by rtnl_lock */
2173 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2174 };
2175 #define to_net_dev(d) container_of(d, struct net_device, dev)
2176 
2177 static inline bool netif_elide_gro(const struct net_device *dev)
2178 {
2179 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2180 		return true;
2181 	return false;
2182 }
2183 
2184 #define	NETDEV_ALIGN		32
2185 
2186 static inline
2187 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2188 {
2189 	return dev->prio_tc_map[prio & TC_BITMASK];
2190 }
2191 
2192 static inline
2193 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2194 {
2195 	if (tc >= dev->num_tc)
2196 		return -EINVAL;
2197 
2198 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2199 	return 0;
2200 }
2201 
2202 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2203 void netdev_reset_tc(struct net_device *dev);
2204 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2205 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2206 
2207 static inline
2208 int netdev_get_num_tc(struct net_device *dev)
2209 {
2210 	return dev->num_tc;
2211 }
2212 
2213 static inline void net_prefetch(void *p)
2214 {
2215 	prefetch(p);
2216 #if L1_CACHE_BYTES < 128
2217 	prefetch((u8 *)p + L1_CACHE_BYTES);
2218 #endif
2219 }
2220 
2221 static inline void net_prefetchw(void *p)
2222 {
2223 	prefetchw(p);
2224 #if L1_CACHE_BYTES < 128
2225 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2226 #endif
2227 }
2228 
2229 void netdev_unbind_sb_channel(struct net_device *dev,
2230 			      struct net_device *sb_dev);
2231 int netdev_bind_sb_channel_queue(struct net_device *dev,
2232 				 struct net_device *sb_dev,
2233 				 u8 tc, u16 count, u16 offset);
2234 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2235 static inline int netdev_get_sb_channel(struct net_device *dev)
2236 {
2237 	return max_t(int, -dev->num_tc, 0);
2238 }
2239 
2240 static inline
2241 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2242 					 unsigned int index)
2243 {
2244 	return &dev->_tx[index];
2245 }
2246 
2247 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2248 						    const struct sk_buff *skb)
2249 {
2250 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2251 }
2252 
2253 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2254 					    void (*f)(struct net_device *,
2255 						      struct netdev_queue *,
2256 						      void *),
2257 					    void *arg)
2258 {
2259 	unsigned int i;
2260 
2261 	for (i = 0; i < dev->num_tx_queues; i++)
2262 		f(dev, &dev->_tx[i], arg);
2263 }
2264 
2265 #define netdev_lockdep_set_classes(dev)				\
2266 {								\
2267 	static struct lock_class_key qdisc_tx_busylock_key;	\
2268 	static struct lock_class_key qdisc_running_key;		\
2269 	static struct lock_class_key qdisc_xmit_lock_key;	\
2270 	static struct lock_class_key dev_addr_list_lock_key;	\
2271 	unsigned int i;						\
2272 								\
2273 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2274 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2275 	lockdep_set_class(&(dev)->addr_list_lock,		\
2276 			  &dev_addr_list_lock_key);		\
2277 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2278 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2279 				  &qdisc_xmit_lock_key);	\
2280 }
2281 
2282 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2283 		     struct net_device *sb_dev);
2284 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2285 					 struct sk_buff *skb,
2286 					 struct net_device *sb_dev);
2287 
2288 /* returns the headroom that the master device needs to take in account
2289  * when forwarding to this dev
2290  */
2291 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2292 {
2293 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2294 }
2295 
2296 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2297 {
2298 	if (dev->netdev_ops->ndo_set_rx_headroom)
2299 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2300 }
2301 
2302 /* set the device rx headroom to the dev's default */
2303 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2304 {
2305 	netdev_set_rx_headroom(dev, -1);
2306 }
2307 
2308 /*
2309  * Net namespace inlines
2310  */
2311 static inline
2312 struct net *dev_net(const struct net_device *dev)
2313 {
2314 	return read_pnet(&dev->nd_net);
2315 }
2316 
2317 static inline
2318 void dev_net_set(struct net_device *dev, struct net *net)
2319 {
2320 	write_pnet(&dev->nd_net, net);
2321 }
2322 
2323 /**
2324  *	netdev_priv - access network device private data
2325  *	@dev: network device
2326  *
2327  * Get network device private data
2328  */
2329 static inline void *netdev_priv(const struct net_device *dev)
2330 {
2331 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2332 }
2333 
2334 /* Set the sysfs physical device reference for the network logical device
2335  * if set prior to registration will cause a symlink during initialization.
2336  */
2337 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2338 
2339 /* Set the sysfs device type for the network logical device to allow
2340  * fine-grained identification of different network device types. For
2341  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2342  */
2343 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2344 
2345 /* Default NAPI poll() weight
2346  * Device drivers are strongly advised to not use bigger value
2347  */
2348 #define NAPI_POLL_WEIGHT 64
2349 
2350 /**
2351  *	netif_napi_add - initialize a NAPI context
2352  *	@dev:  network device
2353  *	@napi: NAPI context
2354  *	@poll: polling function
2355  *	@weight: default weight
2356  *
2357  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2358  * *any* of the other NAPI-related functions.
2359  */
2360 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2361 		    int (*poll)(struct napi_struct *, int), int weight);
2362 
2363 /**
2364  *	netif_tx_napi_add - initialize a NAPI context
2365  *	@dev:  network device
2366  *	@napi: NAPI context
2367  *	@poll: polling function
2368  *	@weight: default weight
2369  *
2370  * This variant of netif_napi_add() should be used from drivers using NAPI
2371  * to exclusively poll a TX queue.
2372  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2373  */
2374 static inline void netif_tx_napi_add(struct net_device *dev,
2375 				     struct napi_struct *napi,
2376 				     int (*poll)(struct napi_struct *, int),
2377 				     int weight)
2378 {
2379 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2380 	netif_napi_add(dev, napi, poll, weight);
2381 }
2382 
2383 /**
2384  *  __netif_napi_del - remove a NAPI context
2385  *  @napi: NAPI context
2386  *
2387  * Warning: caller must observe RCU grace period before freeing memory
2388  * containing @napi. Drivers might want to call this helper to combine
2389  * all the needed RCU grace periods into a single one.
2390  */
2391 void __netif_napi_del(struct napi_struct *napi);
2392 
2393 /**
2394  *  netif_napi_del - remove a NAPI context
2395  *  @napi: NAPI context
2396  *
2397  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2398  */
2399 static inline void netif_napi_del(struct napi_struct *napi)
2400 {
2401 	__netif_napi_del(napi);
2402 	synchronize_net();
2403 }
2404 
2405 struct napi_gro_cb {
2406 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2407 	void	*frag0;
2408 
2409 	/* Length of frag0. */
2410 	unsigned int frag0_len;
2411 
2412 	/* This indicates where we are processing relative to skb->data. */
2413 	int	data_offset;
2414 
2415 	/* This is non-zero if the packet cannot be merged with the new skb. */
2416 	u16	flush;
2417 
2418 	/* Save the IP ID here and check when we get to the transport layer */
2419 	u16	flush_id;
2420 
2421 	/* Number of segments aggregated. */
2422 	u16	count;
2423 
2424 	/* Start offset for remote checksum offload */
2425 	u16	gro_remcsum_start;
2426 
2427 	/* jiffies when first packet was created/queued */
2428 	unsigned long age;
2429 
2430 	/* Used in ipv6_gro_receive() and foo-over-udp */
2431 	u16	proto;
2432 
2433 	/* This is non-zero if the packet may be of the same flow. */
2434 	u8	same_flow:1;
2435 
2436 	/* Used in tunnel GRO receive */
2437 	u8	encap_mark:1;
2438 
2439 	/* GRO checksum is valid */
2440 	u8	csum_valid:1;
2441 
2442 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2443 	u8	csum_cnt:3;
2444 
2445 	/* Free the skb? */
2446 	u8	free:2;
2447 #define NAPI_GRO_FREE		  1
2448 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2449 
2450 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2451 	u8	is_ipv6:1;
2452 
2453 	/* Used in GRE, set in fou/gue_gro_receive */
2454 	u8	is_fou:1;
2455 
2456 	/* Used to determine if flush_id can be ignored */
2457 	u8	is_atomic:1;
2458 
2459 	/* Number of gro_receive callbacks this packet already went through */
2460 	u8 recursion_counter:4;
2461 
2462 	/* GRO is done by frag_list pointer chaining. */
2463 	u8	is_flist:1;
2464 
2465 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2466 	__wsum	csum;
2467 
2468 	/* used in skb_gro_receive() slow path */
2469 	struct sk_buff *last;
2470 };
2471 
2472 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2473 
2474 #define GRO_RECURSION_LIMIT 15
2475 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2476 {
2477 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2478 }
2479 
2480 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2481 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2482 					       struct list_head *head,
2483 					       struct sk_buff *skb)
2484 {
2485 	if (unlikely(gro_recursion_inc_test(skb))) {
2486 		NAPI_GRO_CB(skb)->flush |= 1;
2487 		return NULL;
2488 	}
2489 
2490 	return cb(head, skb);
2491 }
2492 
2493 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2494 					    struct sk_buff *);
2495 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2496 						  struct sock *sk,
2497 						  struct list_head *head,
2498 						  struct sk_buff *skb)
2499 {
2500 	if (unlikely(gro_recursion_inc_test(skb))) {
2501 		NAPI_GRO_CB(skb)->flush |= 1;
2502 		return NULL;
2503 	}
2504 
2505 	return cb(sk, head, skb);
2506 }
2507 
2508 struct packet_type {
2509 	__be16			type;	/* This is really htons(ether_type). */
2510 	bool			ignore_outgoing;
2511 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2512 	int			(*func) (struct sk_buff *,
2513 					 struct net_device *,
2514 					 struct packet_type *,
2515 					 struct net_device *);
2516 	void			(*list_func) (struct list_head *,
2517 					      struct packet_type *,
2518 					      struct net_device *);
2519 	bool			(*id_match)(struct packet_type *ptype,
2520 					    struct sock *sk);
2521 	void			*af_packet_priv;
2522 	struct list_head	list;
2523 };
2524 
2525 struct offload_callbacks {
2526 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2527 						netdev_features_t features);
2528 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2529 						struct sk_buff *skb);
2530 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2531 };
2532 
2533 struct packet_offload {
2534 	__be16			 type;	/* This is really htons(ether_type). */
2535 	u16			 priority;
2536 	struct offload_callbacks callbacks;
2537 	struct list_head	 list;
2538 };
2539 
2540 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2541 struct pcpu_sw_netstats {
2542 	u64     rx_packets;
2543 	u64     rx_bytes;
2544 	u64     tx_packets;
2545 	u64     tx_bytes;
2546 	struct u64_stats_sync   syncp;
2547 } __aligned(4 * sizeof(u64));
2548 
2549 struct pcpu_lstats {
2550 	u64_stats_t packets;
2551 	u64_stats_t bytes;
2552 	struct u64_stats_sync syncp;
2553 } __aligned(2 * sizeof(u64));
2554 
2555 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2556 
2557 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2558 {
2559 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2560 
2561 	u64_stats_update_begin(&tstats->syncp);
2562 	tstats->rx_bytes += len;
2563 	tstats->rx_packets++;
2564 	u64_stats_update_end(&tstats->syncp);
2565 }
2566 
2567 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2568 					  unsigned int packets,
2569 					  unsigned int len)
2570 {
2571 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2572 
2573 	u64_stats_update_begin(&tstats->syncp);
2574 	tstats->tx_bytes += len;
2575 	tstats->tx_packets += packets;
2576 	u64_stats_update_end(&tstats->syncp);
2577 }
2578 
2579 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2580 {
2581 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2582 
2583 	u64_stats_update_begin(&lstats->syncp);
2584 	u64_stats_add(&lstats->bytes, len);
2585 	u64_stats_inc(&lstats->packets);
2586 	u64_stats_update_end(&lstats->syncp);
2587 }
2588 
2589 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2590 ({									\
2591 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2592 	if (pcpu_stats)	{						\
2593 		int __cpu;						\
2594 		for_each_possible_cpu(__cpu) {				\
2595 			typeof(type) *stat;				\
2596 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2597 			u64_stats_init(&stat->syncp);			\
2598 		}							\
2599 	}								\
2600 	pcpu_stats;							\
2601 })
2602 
2603 #define netdev_alloc_pcpu_stats(type)					\
2604 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2605 
2606 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2607 ({									\
2608 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2609 	if (pcpu_stats) {						\
2610 		int __cpu;						\
2611 		for_each_possible_cpu(__cpu) {				\
2612 			typeof(type) *stat;				\
2613 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2614 			u64_stats_init(&stat->syncp);			\
2615 		}							\
2616 	}								\
2617 	pcpu_stats;							\
2618 })
2619 
2620 enum netdev_lag_tx_type {
2621 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2622 	NETDEV_LAG_TX_TYPE_RANDOM,
2623 	NETDEV_LAG_TX_TYPE_BROADCAST,
2624 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2625 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2626 	NETDEV_LAG_TX_TYPE_HASH,
2627 };
2628 
2629 enum netdev_lag_hash {
2630 	NETDEV_LAG_HASH_NONE,
2631 	NETDEV_LAG_HASH_L2,
2632 	NETDEV_LAG_HASH_L34,
2633 	NETDEV_LAG_HASH_L23,
2634 	NETDEV_LAG_HASH_E23,
2635 	NETDEV_LAG_HASH_E34,
2636 	NETDEV_LAG_HASH_UNKNOWN,
2637 };
2638 
2639 struct netdev_lag_upper_info {
2640 	enum netdev_lag_tx_type tx_type;
2641 	enum netdev_lag_hash hash_type;
2642 };
2643 
2644 struct netdev_lag_lower_state_info {
2645 	u8 link_up : 1,
2646 	   tx_enabled : 1;
2647 };
2648 
2649 #include <linux/notifier.h>
2650 
2651 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2652  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2653  * adding new types.
2654  */
2655 enum netdev_cmd {
2656 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2657 	NETDEV_DOWN,
2658 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2659 				   detected a hardware crash and restarted
2660 				   - we can use this eg to kick tcp sessions
2661 				   once done */
2662 	NETDEV_CHANGE,		/* Notify device state change */
2663 	NETDEV_REGISTER,
2664 	NETDEV_UNREGISTER,
2665 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2666 	NETDEV_CHANGEADDR,	/* notify after the address change */
2667 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2668 	NETDEV_GOING_DOWN,
2669 	NETDEV_CHANGENAME,
2670 	NETDEV_FEAT_CHANGE,
2671 	NETDEV_BONDING_FAILOVER,
2672 	NETDEV_PRE_UP,
2673 	NETDEV_PRE_TYPE_CHANGE,
2674 	NETDEV_POST_TYPE_CHANGE,
2675 	NETDEV_POST_INIT,
2676 	NETDEV_RELEASE,
2677 	NETDEV_NOTIFY_PEERS,
2678 	NETDEV_JOIN,
2679 	NETDEV_CHANGEUPPER,
2680 	NETDEV_RESEND_IGMP,
2681 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2682 	NETDEV_CHANGEINFODATA,
2683 	NETDEV_BONDING_INFO,
2684 	NETDEV_PRECHANGEUPPER,
2685 	NETDEV_CHANGELOWERSTATE,
2686 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2687 	NETDEV_UDP_TUNNEL_DROP_INFO,
2688 	NETDEV_CHANGE_TX_QUEUE_LEN,
2689 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2690 	NETDEV_CVLAN_FILTER_DROP_INFO,
2691 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2692 	NETDEV_SVLAN_FILTER_DROP_INFO,
2693 };
2694 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2695 
2696 int register_netdevice_notifier(struct notifier_block *nb);
2697 int unregister_netdevice_notifier(struct notifier_block *nb);
2698 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2699 int unregister_netdevice_notifier_net(struct net *net,
2700 				      struct notifier_block *nb);
2701 int register_netdevice_notifier_dev_net(struct net_device *dev,
2702 					struct notifier_block *nb,
2703 					struct netdev_net_notifier *nn);
2704 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2705 					  struct notifier_block *nb,
2706 					  struct netdev_net_notifier *nn);
2707 
2708 struct netdev_notifier_info {
2709 	struct net_device	*dev;
2710 	struct netlink_ext_ack	*extack;
2711 };
2712 
2713 struct netdev_notifier_info_ext {
2714 	struct netdev_notifier_info info; /* must be first */
2715 	union {
2716 		u32 mtu;
2717 	} ext;
2718 };
2719 
2720 struct netdev_notifier_change_info {
2721 	struct netdev_notifier_info info; /* must be first */
2722 	unsigned int flags_changed;
2723 };
2724 
2725 struct netdev_notifier_changeupper_info {
2726 	struct netdev_notifier_info info; /* must be first */
2727 	struct net_device *upper_dev; /* new upper dev */
2728 	bool master; /* is upper dev master */
2729 	bool linking; /* is the notification for link or unlink */
2730 	void *upper_info; /* upper dev info */
2731 };
2732 
2733 struct netdev_notifier_changelowerstate_info {
2734 	struct netdev_notifier_info info; /* must be first */
2735 	void *lower_state_info; /* is lower dev state */
2736 };
2737 
2738 struct netdev_notifier_pre_changeaddr_info {
2739 	struct netdev_notifier_info info; /* must be first */
2740 	const unsigned char *dev_addr;
2741 };
2742 
2743 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2744 					     struct net_device *dev)
2745 {
2746 	info->dev = dev;
2747 	info->extack = NULL;
2748 }
2749 
2750 static inline struct net_device *
2751 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2752 {
2753 	return info->dev;
2754 }
2755 
2756 static inline struct netlink_ext_ack *
2757 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2758 {
2759 	return info->extack;
2760 }
2761 
2762 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2763 
2764 
2765 extern rwlock_t				dev_base_lock;		/* Device list lock */
2766 
2767 #define for_each_netdev(net, d)		\
2768 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2769 #define for_each_netdev_reverse(net, d)	\
2770 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2771 #define for_each_netdev_rcu(net, d)		\
2772 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2773 #define for_each_netdev_safe(net, d, n)	\
2774 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2775 #define for_each_netdev_continue(net, d)		\
2776 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2777 #define for_each_netdev_continue_reverse(net, d)		\
2778 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2779 						     dev_list)
2780 #define for_each_netdev_continue_rcu(net, d)		\
2781 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2782 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2783 		for_each_netdev_rcu(&init_net, slave)	\
2784 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2785 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2786 
2787 static inline struct net_device *next_net_device(struct net_device *dev)
2788 {
2789 	struct list_head *lh;
2790 	struct net *net;
2791 
2792 	net = dev_net(dev);
2793 	lh = dev->dev_list.next;
2794 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2795 }
2796 
2797 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2798 {
2799 	struct list_head *lh;
2800 	struct net *net;
2801 
2802 	net = dev_net(dev);
2803 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2804 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2805 }
2806 
2807 static inline struct net_device *first_net_device(struct net *net)
2808 {
2809 	return list_empty(&net->dev_base_head) ? NULL :
2810 		net_device_entry(net->dev_base_head.next);
2811 }
2812 
2813 static inline struct net_device *first_net_device_rcu(struct net *net)
2814 {
2815 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2816 
2817 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2818 }
2819 
2820 int netdev_boot_setup_check(struct net_device *dev);
2821 unsigned long netdev_boot_base(const char *prefix, int unit);
2822 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2823 				       const char *hwaddr);
2824 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2825 void dev_add_pack(struct packet_type *pt);
2826 void dev_remove_pack(struct packet_type *pt);
2827 void __dev_remove_pack(struct packet_type *pt);
2828 void dev_add_offload(struct packet_offload *po);
2829 void dev_remove_offload(struct packet_offload *po);
2830 
2831 int dev_get_iflink(const struct net_device *dev);
2832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2833 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2834 				      unsigned short mask);
2835 struct net_device *dev_get_by_name(struct net *net, const char *name);
2836 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2837 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2838 int dev_alloc_name(struct net_device *dev, const char *name);
2839 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2840 void dev_close(struct net_device *dev);
2841 void dev_close_many(struct list_head *head, bool unlink);
2842 void dev_disable_lro(struct net_device *dev);
2843 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2844 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2845 		     struct net_device *sb_dev);
2846 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2847 		       struct net_device *sb_dev);
2848 
2849 int dev_queue_xmit(struct sk_buff *skb);
2850 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2851 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2852 
2853 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2854 {
2855 	int ret;
2856 
2857 	ret = __dev_direct_xmit(skb, queue_id);
2858 	if (!dev_xmit_complete(ret))
2859 		kfree_skb(skb);
2860 	return ret;
2861 }
2862 
2863 int register_netdevice(struct net_device *dev);
2864 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2865 void unregister_netdevice_many(struct list_head *head);
2866 static inline void unregister_netdevice(struct net_device *dev)
2867 {
2868 	unregister_netdevice_queue(dev, NULL);
2869 }
2870 
2871 int netdev_refcnt_read(const struct net_device *dev);
2872 void free_netdev(struct net_device *dev);
2873 void netdev_freemem(struct net_device *dev);
2874 int init_dummy_netdev(struct net_device *dev);
2875 
2876 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2877 					 struct sk_buff *skb,
2878 					 bool all_slaves);
2879 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2880 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2881 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2882 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2883 int netdev_get_name(struct net *net, char *name, int ifindex);
2884 int dev_restart(struct net_device *dev);
2885 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2886 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2887 
2888 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2889 {
2890 	return NAPI_GRO_CB(skb)->data_offset;
2891 }
2892 
2893 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2894 {
2895 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2896 }
2897 
2898 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2899 {
2900 	NAPI_GRO_CB(skb)->data_offset += len;
2901 }
2902 
2903 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2904 					unsigned int offset)
2905 {
2906 	return NAPI_GRO_CB(skb)->frag0 + offset;
2907 }
2908 
2909 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2910 {
2911 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2912 }
2913 
2914 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2915 {
2916 	NAPI_GRO_CB(skb)->frag0 = NULL;
2917 	NAPI_GRO_CB(skb)->frag0_len = 0;
2918 }
2919 
2920 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2921 					unsigned int offset)
2922 {
2923 	if (!pskb_may_pull(skb, hlen))
2924 		return NULL;
2925 
2926 	skb_gro_frag0_invalidate(skb);
2927 	return skb->data + offset;
2928 }
2929 
2930 static inline void *skb_gro_network_header(struct sk_buff *skb)
2931 {
2932 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2933 	       skb_network_offset(skb);
2934 }
2935 
2936 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2937 					const void *start, unsigned int len)
2938 {
2939 	if (NAPI_GRO_CB(skb)->csum_valid)
2940 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2941 						  csum_partial(start, len, 0));
2942 }
2943 
2944 /* GRO checksum functions. These are logical equivalents of the normal
2945  * checksum functions (in skbuff.h) except that they operate on the GRO
2946  * offsets and fields in sk_buff.
2947  */
2948 
2949 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2950 
2951 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2952 {
2953 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2954 }
2955 
2956 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2957 						      bool zero_okay,
2958 						      __sum16 check)
2959 {
2960 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2961 		skb_checksum_start_offset(skb) <
2962 		 skb_gro_offset(skb)) &&
2963 		!skb_at_gro_remcsum_start(skb) &&
2964 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2965 		(!zero_okay || check));
2966 }
2967 
2968 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2969 							   __wsum psum)
2970 {
2971 	if (NAPI_GRO_CB(skb)->csum_valid &&
2972 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2973 		return 0;
2974 
2975 	NAPI_GRO_CB(skb)->csum = psum;
2976 
2977 	return __skb_gro_checksum_complete(skb);
2978 }
2979 
2980 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2981 {
2982 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2983 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2984 		NAPI_GRO_CB(skb)->csum_cnt--;
2985 	} else {
2986 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2987 		 * verified a new top level checksum or an encapsulated one
2988 		 * during GRO. This saves work if we fallback to normal path.
2989 		 */
2990 		__skb_incr_checksum_unnecessary(skb);
2991 	}
2992 }
2993 
2994 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2995 				    compute_pseudo)			\
2996 ({									\
2997 	__sum16 __ret = 0;						\
2998 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2999 		__ret = __skb_gro_checksum_validate_complete(skb,	\
3000 				compute_pseudo(skb, proto));		\
3001 	if (!__ret)							\
3002 		skb_gro_incr_csum_unnecessary(skb);			\
3003 	__ret;								\
3004 })
3005 
3006 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
3007 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
3008 
3009 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
3010 					     compute_pseudo)		\
3011 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
3012 
3013 #define skb_gro_checksum_simple_validate(skb)				\
3014 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
3015 
3016 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3017 {
3018 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3019 		!NAPI_GRO_CB(skb)->csum_valid);
3020 }
3021 
3022 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3023 					      __wsum pseudo)
3024 {
3025 	NAPI_GRO_CB(skb)->csum = ~pseudo;
3026 	NAPI_GRO_CB(skb)->csum_valid = 1;
3027 }
3028 
3029 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
3030 do {									\
3031 	if (__skb_gro_checksum_convert_check(skb))			\
3032 		__skb_gro_checksum_convert(skb, 			\
3033 					   compute_pseudo(skb, proto));	\
3034 } while (0)
3035 
3036 struct gro_remcsum {
3037 	int offset;
3038 	__wsum delta;
3039 };
3040 
3041 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3042 {
3043 	grc->offset = 0;
3044 	grc->delta = 0;
3045 }
3046 
3047 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3048 					    unsigned int off, size_t hdrlen,
3049 					    int start, int offset,
3050 					    struct gro_remcsum *grc,
3051 					    bool nopartial)
3052 {
3053 	__wsum delta;
3054 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3055 
3056 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3057 
3058 	if (!nopartial) {
3059 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3060 		return ptr;
3061 	}
3062 
3063 	ptr = skb_gro_header_fast(skb, off);
3064 	if (skb_gro_header_hard(skb, off + plen)) {
3065 		ptr = skb_gro_header_slow(skb, off + plen, off);
3066 		if (!ptr)
3067 			return NULL;
3068 	}
3069 
3070 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3071 			       start, offset);
3072 
3073 	/* Adjust skb->csum since we changed the packet */
3074 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3075 
3076 	grc->offset = off + hdrlen + offset;
3077 	grc->delta = delta;
3078 
3079 	return ptr;
3080 }
3081 
3082 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3083 					   struct gro_remcsum *grc)
3084 {
3085 	void *ptr;
3086 	size_t plen = grc->offset + sizeof(u16);
3087 
3088 	if (!grc->delta)
3089 		return;
3090 
3091 	ptr = skb_gro_header_fast(skb, grc->offset);
3092 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3093 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3094 		if (!ptr)
3095 			return;
3096 	}
3097 
3098 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3099 }
3100 
3101 #ifdef CONFIG_XFRM_OFFLOAD
3102 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3103 {
3104 	if (PTR_ERR(pp) != -EINPROGRESS)
3105 		NAPI_GRO_CB(skb)->flush |= flush;
3106 }
3107 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3108 					       struct sk_buff *pp,
3109 					       int flush,
3110 					       struct gro_remcsum *grc)
3111 {
3112 	if (PTR_ERR(pp) != -EINPROGRESS) {
3113 		NAPI_GRO_CB(skb)->flush |= flush;
3114 		skb_gro_remcsum_cleanup(skb, grc);
3115 		skb->remcsum_offload = 0;
3116 	}
3117 }
3118 #else
3119 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3120 {
3121 	NAPI_GRO_CB(skb)->flush |= flush;
3122 }
3123 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3124 					       struct sk_buff *pp,
3125 					       int flush,
3126 					       struct gro_remcsum *grc)
3127 {
3128 	NAPI_GRO_CB(skb)->flush |= flush;
3129 	skb_gro_remcsum_cleanup(skb, grc);
3130 	skb->remcsum_offload = 0;
3131 }
3132 #endif
3133 
3134 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3135 				  unsigned short type,
3136 				  const void *daddr, const void *saddr,
3137 				  unsigned int len)
3138 {
3139 	if (!dev->header_ops || !dev->header_ops->create)
3140 		return 0;
3141 
3142 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3143 }
3144 
3145 static inline int dev_parse_header(const struct sk_buff *skb,
3146 				   unsigned char *haddr)
3147 {
3148 	const struct net_device *dev = skb->dev;
3149 
3150 	if (!dev->header_ops || !dev->header_ops->parse)
3151 		return 0;
3152 	return dev->header_ops->parse(skb, haddr);
3153 }
3154 
3155 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3156 {
3157 	const struct net_device *dev = skb->dev;
3158 
3159 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3160 		return 0;
3161 	return dev->header_ops->parse_protocol(skb);
3162 }
3163 
3164 /* ll_header must have at least hard_header_len allocated */
3165 static inline bool dev_validate_header(const struct net_device *dev,
3166 				       char *ll_header, int len)
3167 {
3168 	if (likely(len >= dev->hard_header_len))
3169 		return true;
3170 	if (len < dev->min_header_len)
3171 		return false;
3172 
3173 	if (capable(CAP_SYS_RAWIO)) {
3174 		memset(ll_header + len, 0, dev->hard_header_len - len);
3175 		return true;
3176 	}
3177 
3178 	if (dev->header_ops && dev->header_ops->validate)
3179 		return dev->header_ops->validate(ll_header, len);
3180 
3181 	return false;
3182 }
3183 
3184 static inline bool dev_has_header(const struct net_device *dev)
3185 {
3186 	return dev->header_ops && dev->header_ops->create;
3187 }
3188 
3189 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3190 			   int len, int size);
3191 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3192 static inline int unregister_gifconf(unsigned int family)
3193 {
3194 	return register_gifconf(family, NULL);
3195 }
3196 
3197 #ifdef CONFIG_NET_FLOW_LIMIT
3198 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3199 struct sd_flow_limit {
3200 	u64			count;
3201 	unsigned int		num_buckets;
3202 	unsigned int		history_head;
3203 	u16			history[FLOW_LIMIT_HISTORY];
3204 	u8			buckets[];
3205 };
3206 
3207 extern int netdev_flow_limit_table_len;
3208 #endif /* CONFIG_NET_FLOW_LIMIT */
3209 
3210 /*
3211  * Incoming packets are placed on per-CPU queues
3212  */
3213 struct softnet_data {
3214 	struct list_head	poll_list;
3215 	struct sk_buff_head	process_queue;
3216 
3217 	/* stats */
3218 	unsigned int		processed;
3219 	unsigned int		time_squeeze;
3220 	unsigned int		received_rps;
3221 #ifdef CONFIG_RPS
3222 	struct softnet_data	*rps_ipi_list;
3223 #endif
3224 #ifdef CONFIG_NET_FLOW_LIMIT
3225 	struct sd_flow_limit __rcu *flow_limit;
3226 #endif
3227 	struct Qdisc		*output_queue;
3228 	struct Qdisc		**output_queue_tailp;
3229 	struct sk_buff		*completion_queue;
3230 #ifdef CONFIG_XFRM_OFFLOAD
3231 	struct sk_buff_head	xfrm_backlog;
3232 #endif
3233 	/* written and read only by owning cpu: */
3234 	struct {
3235 		u16 recursion;
3236 		u8  more;
3237 	} xmit;
3238 #ifdef CONFIG_RPS
3239 	/* input_queue_head should be written by cpu owning this struct,
3240 	 * and only read by other cpus. Worth using a cache line.
3241 	 */
3242 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3243 
3244 	/* Elements below can be accessed between CPUs for RPS/RFS */
3245 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3246 	struct softnet_data	*rps_ipi_next;
3247 	unsigned int		cpu;
3248 	unsigned int		input_queue_tail;
3249 #endif
3250 	unsigned int		dropped;
3251 	struct sk_buff_head	input_pkt_queue;
3252 	struct napi_struct	backlog;
3253 
3254 };
3255 
3256 static inline void input_queue_head_incr(struct softnet_data *sd)
3257 {
3258 #ifdef CONFIG_RPS
3259 	sd->input_queue_head++;
3260 #endif
3261 }
3262 
3263 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3264 					      unsigned int *qtail)
3265 {
3266 #ifdef CONFIG_RPS
3267 	*qtail = ++sd->input_queue_tail;
3268 #endif
3269 }
3270 
3271 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3272 
3273 static inline int dev_recursion_level(void)
3274 {
3275 	return this_cpu_read(softnet_data.xmit.recursion);
3276 }
3277 
3278 #define XMIT_RECURSION_LIMIT	8
3279 static inline bool dev_xmit_recursion(void)
3280 {
3281 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3282 			XMIT_RECURSION_LIMIT);
3283 }
3284 
3285 static inline void dev_xmit_recursion_inc(void)
3286 {
3287 	__this_cpu_inc(softnet_data.xmit.recursion);
3288 }
3289 
3290 static inline void dev_xmit_recursion_dec(void)
3291 {
3292 	__this_cpu_dec(softnet_data.xmit.recursion);
3293 }
3294 
3295 void __netif_schedule(struct Qdisc *q);
3296 void netif_schedule_queue(struct netdev_queue *txq);
3297 
3298 static inline void netif_tx_schedule_all(struct net_device *dev)
3299 {
3300 	unsigned int i;
3301 
3302 	for (i = 0; i < dev->num_tx_queues; i++)
3303 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3304 }
3305 
3306 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3307 {
3308 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3309 }
3310 
3311 /**
3312  *	netif_start_queue - allow transmit
3313  *	@dev: network device
3314  *
3315  *	Allow upper layers to call the device hard_start_xmit routine.
3316  */
3317 static inline void netif_start_queue(struct net_device *dev)
3318 {
3319 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3320 }
3321 
3322 static inline void netif_tx_start_all_queues(struct net_device *dev)
3323 {
3324 	unsigned int i;
3325 
3326 	for (i = 0; i < dev->num_tx_queues; i++) {
3327 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3328 		netif_tx_start_queue(txq);
3329 	}
3330 }
3331 
3332 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3333 
3334 /**
3335  *	netif_wake_queue - restart transmit
3336  *	@dev: network device
3337  *
3338  *	Allow upper layers to call the device hard_start_xmit routine.
3339  *	Used for flow control when transmit resources are available.
3340  */
3341 static inline void netif_wake_queue(struct net_device *dev)
3342 {
3343 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3344 }
3345 
3346 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3347 {
3348 	unsigned int i;
3349 
3350 	for (i = 0; i < dev->num_tx_queues; i++) {
3351 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3352 		netif_tx_wake_queue(txq);
3353 	}
3354 }
3355 
3356 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3357 {
3358 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3359 }
3360 
3361 /**
3362  *	netif_stop_queue - stop transmitted packets
3363  *	@dev: network device
3364  *
3365  *	Stop upper layers calling the device hard_start_xmit routine.
3366  *	Used for flow control when transmit resources are unavailable.
3367  */
3368 static inline void netif_stop_queue(struct net_device *dev)
3369 {
3370 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3371 }
3372 
3373 void netif_tx_stop_all_queues(struct net_device *dev);
3374 
3375 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3376 {
3377 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3378 }
3379 
3380 /**
3381  *	netif_queue_stopped - test if transmit queue is flowblocked
3382  *	@dev: network device
3383  *
3384  *	Test if transmit queue on device is currently unable to send.
3385  */
3386 static inline bool netif_queue_stopped(const struct net_device *dev)
3387 {
3388 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3389 }
3390 
3391 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3392 {
3393 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3394 }
3395 
3396 static inline bool
3397 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3398 {
3399 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3400 }
3401 
3402 static inline bool
3403 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3404 {
3405 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3406 }
3407 
3408 /**
3409  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3410  *	@dev_queue: pointer to transmit queue
3411  *
3412  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3413  * to give appropriate hint to the CPU.
3414  */
3415 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3416 {
3417 #ifdef CONFIG_BQL
3418 	prefetchw(&dev_queue->dql.num_queued);
3419 #endif
3420 }
3421 
3422 /**
3423  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3424  *	@dev_queue: pointer to transmit queue
3425  *
3426  * BQL enabled drivers might use this helper in their TX completion path,
3427  * to give appropriate hint to the CPU.
3428  */
3429 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3430 {
3431 #ifdef CONFIG_BQL
3432 	prefetchw(&dev_queue->dql.limit);
3433 #endif
3434 }
3435 
3436 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3437 					unsigned int bytes)
3438 {
3439 #ifdef CONFIG_BQL
3440 	dql_queued(&dev_queue->dql, bytes);
3441 
3442 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3443 		return;
3444 
3445 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3446 
3447 	/*
3448 	 * The XOFF flag must be set before checking the dql_avail below,
3449 	 * because in netdev_tx_completed_queue we update the dql_completed
3450 	 * before checking the XOFF flag.
3451 	 */
3452 	smp_mb();
3453 
3454 	/* check again in case another CPU has just made room avail */
3455 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3456 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3457 #endif
3458 }
3459 
3460 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3461  * that they should not test BQL status themselves.
3462  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3463  * skb of a batch.
3464  * Returns true if the doorbell must be used to kick the NIC.
3465  */
3466 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3467 					  unsigned int bytes,
3468 					  bool xmit_more)
3469 {
3470 	if (xmit_more) {
3471 #ifdef CONFIG_BQL
3472 		dql_queued(&dev_queue->dql, bytes);
3473 #endif
3474 		return netif_tx_queue_stopped(dev_queue);
3475 	}
3476 	netdev_tx_sent_queue(dev_queue, bytes);
3477 	return true;
3478 }
3479 
3480 /**
3481  * 	netdev_sent_queue - report the number of bytes queued to hardware
3482  * 	@dev: network device
3483  * 	@bytes: number of bytes queued to the hardware device queue
3484  *
3485  * 	Report the number of bytes queued for sending/completion to the network
3486  * 	device hardware queue. @bytes should be a good approximation and should
3487  * 	exactly match netdev_completed_queue() @bytes
3488  */
3489 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3490 {
3491 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3492 }
3493 
3494 static inline bool __netdev_sent_queue(struct net_device *dev,
3495 				       unsigned int bytes,
3496 				       bool xmit_more)
3497 {
3498 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3499 				      xmit_more);
3500 }
3501 
3502 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3503 					     unsigned int pkts, unsigned int bytes)
3504 {
3505 #ifdef CONFIG_BQL
3506 	if (unlikely(!bytes))
3507 		return;
3508 
3509 	dql_completed(&dev_queue->dql, bytes);
3510 
3511 	/*
3512 	 * Without the memory barrier there is a small possiblity that
3513 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3514 	 * be stopped forever
3515 	 */
3516 	smp_mb();
3517 
3518 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3519 		return;
3520 
3521 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3522 		netif_schedule_queue(dev_queue);
3523 #endif
3524 }
3525 
3526 /**
3527  * 	netdev_completed_queue - report bytes and packets completed by device
3528  * 	@dev: network device
3529  * 	@pkts: actual number of packets sent over the medium
3530  * 	@bytes: actual number of bytes sent over the medium
3531  *
3532  * 	Report the number of bytes and packets transmitted by the network device
3533  * 	hardware queue over the physical medium, @bytes must exactly match the
3534  * 	@bytes amount passed to netdev_sent_queue()
3535  */
3536 static inline void netdev_completed_queue(struct net_device *dev,
3537 					  unsigned int pkts, unsigned int bytes)
3538 {
3539 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3540 }
3541 
3542 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3543 {
3544 #ifdef CONFIG_BQL
3545 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3546 	dql_reset(&q->dql);
3547 #endif
3548 }
3549 
3550 /**
3551  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3552  * 	@dev_queue: network device
3553  *
3554  * 	Reset the bytes and packet count of a network device and clear the
3555  * 	software flow control OFF bit for this network device
3556  */
3557 static inline void netdev_reset_queue(struct net_device *dev_queue)
3558 {
3559 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3560 }
3561 
3562 /**
3563  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3564  * 	@dev: network device
3565  * 	@queue_index: given tx queue index
3566  *
3567  * 	Returns 0 if given tx queue index >= number of device tx queues,
3568  * 	otherwise returns the originally passed tx queue index.
3569  */
3570 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3571 {
3572 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3573 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3574 				     dev->name, queue_index,
3575 				     dev->real_num_tx_queues);
3576 		return 0;
3577 	}
3578 
3579 	return queue_index;
3580 }
3581 
3582 /**
3583  *	netif_running - test if up
3584  *	@dev: network device
3585  *
3586  *	Test if the device has been brought up.
3587  */
3588 static inline bool netif_running(const struct net_device *dev)
3589 {
3590 	return test_bit(__LINK_STATE_START, &dev->state);
3591 }
3592 
3593 /*
3594  * Routines to manage the subqueues on a device.  We only need start,
3595  * stop, and a check if it's stopped.  All other device management is
3596  * done at the overall netdevice level.
3597  * Also test the device if we're multiqueue.
3598  */
3599 
3600 /**
3601  *	netif_start_subqueue - allow sending packets on subqueue
3602  *	@dev: network device
3603  *	@queue_index: sub queue index
3604  *
3605  * Start individual transmit queue of a device with multiple transmit queues.
3606  */
3607 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3608 {
3609 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3610 
3611 	netif_tx_start_queue(txq);
3612 }
3613 
3614 /**
3615  *	netif_stop_subqueue - stop sending packets on subqueue
3616  *	@dev: network device
3617  *	@queue_index: sub queue index
3618  *
3619  * Stop individual transmit queue of a device with multiple transmit queues.
3620  */
3621 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3622 {
3623 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3624 	netif_tx_stop_queue(txq);
3625 }
3626 
3627 /**
3628  *	__netif_subqueue_stopped - test status of subqueue
3629  *	@dev: network device
3630  *	@queue_index: sub queue index
3631  *
3632  * Check individual transmit queue of a device with multiple transmit queues.
3633  */
3634 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3635 					    u16 queue_index)
3636 {
3637 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3638 
3639 	return netif_tx_queue_stopped(txq);
3640 }
3641 
3642 /**
3643  *	netif_subqueue_stopped - test status of subqueue
3644  *	@dev: network device
3645  *	@skb: sub queue buffer pointer
3646  *
3647  * Check individual transmit queue of a device with multiple transmit queues.
3648  */
3649 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3650 					  struct sk_buff *skb)
3651 {
3652 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3653 }
3654 
3655 /**
3656  *	netif_wake_subqueue - allow sending packets on subqueue
3657  *	@dev: network device
3658  *	@queue_index: sub queue index
3659  *
3660  * Resume individual transmit queue of a device with multiple transmit queues.
3661  */
3662 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3663 {
3664 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3665 
3666 	netif_tx_wake_queue(txq);
3667 }
3668 
3669 #ifdef CONFIG_XPS
3670 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3671 			u16 index);
3672 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3673 			  u16 index, bool is_rxqs_map);
3674 
3675 /**
3676  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3677  *	@j: CPU/Rx queue index
3678  *	@mask: bitmask of all cpus/rx queues
3679  *	@nr_bits: number of bits in the bitmask
3680  *
3681  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3682  */
3683 static inline bool netif_attr_test_mask(unsigned long j,
3684 					const unsigned long *mask,
3685 					unsigned int nr_bits)
3686 {
3687 	cpu_max_bits_warn(j, nr_bits);
3688 	return test_bit(j, mask);
3689 }
3690 
3691 /**
3692  *	netif_attr_test_online - Test for online CPU/Rx queue
3693  *	@j: CPU/Rx queue index
3694  *	@online_mask: bitmask for CPUs/Rx queues that are online
3695  *	@nr_bits: number of bits in the bitmask
3696  *
3697  * Returns true if a CPU/Rx queue is online.
3698  */
3699 static inline bool netif_attr_test_online(unsigned long j,
3700 					  const unsigned long *online_mask,
3701 					  unsigned int nr_bits)
3702 {
3703 	cpu_max_bits_warn(j, nr_bits);
3704 
3705 	if (online_mask)
3706 		return test_bit(j, online_mask);
3707 
3708 	return (j < nr_bits);
3709 }
3710 
3711 /**
3712  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3713  *	@n: CPU/Rx queue index
3714  *	@srcp: the cpumask/Rx queue mask pointer
3715  *	@nr_bits: number of bits in the bitmask
3716  *
3717  * Returns >= nr_bits if no further CPUs/Rx queues set.
3718  */
3719 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3720 					       unsigned int nr_bits)
3721 {
3722 	/* -1 is a legal arg here. */
3723 	if (n != -1)
3724 		cpu_max_bits_warn(n, nr_bits);
3725 
3726 	if (srcp)
3727 		return find_next_bit(srcp, nr_bits, n + 1);
3728 
3729 	return n + 1;
3730 }
3731 
3732 /**
3733  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3734  *	@n: CPU/Rx queue index
3735  *	@src1p: the first CPUs/Rx queues mask pointer
3736  *	@src2p: the second CPUs/Rx queues mask pointer
3737  *	@nr_bits: number of bits in the bitmask
3738  *
3739  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3740  */
3741 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3742 					  const unsigned long *src2p,
3743 					  unsigned int nr_bits)
3744 {
3745 	/* -1 is a legal arg here. */
3746 	if (n != -1)
3747 		cpu_max_bits_warn(n, nr_bits);
3748 
3749 	if (src1p && src2p)
3750 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3751 	else if (src1p)
3752 		return find_next_bit(src1p, nr_bits, n + 1);
3753 	else if (src2p)
3754 		return find_next_bit(src2p, nr_bits, n + 1);
3755 
3756 	return n + 1;
3757 }
3758 #else
3759 static inline int netif_set_xps_queue(struct net_device *dev,
3760 				      const struct cpumask *mask,
3761 				      u16 index)
3762 {
3763 	return 0;
3764 }
3765 
3766 static inline int __netif_set_xps_queue(struct net_device *dev,
3767 					const unsigned long *mask,
3768 					u16 index, bool is_rxqs_map)
3769 {
3770 	return 0;
3771 }
3772 #endif
3773 
3774 /**
3775  *	netif_is_multiqueue - test if device has multiple transmit queues
3776  *	@dev: network device
3777  *
3778  * Check if device has multiple transmit queues
3779  */
3780 static inline bool netif_is_multiqueue(const struct net_device *dev)
3781 {
3782 	return dev->num_tx_queues > 1;
3783 }
3784 
3785 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3786 
3787 #ifdef CONFIG_SYSFS
3788 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3789 #else
3790 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3791 						unsigned int rxqs)
3792 {
3793 	dev->real_num_rx_queues = rxqs;
3794 	return 0;
3795 }
3796 #endif
3797 
3798 static inline struct netdev_rx_queue *
3799 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3800 {
3801 	return dev->_rx + rxq;
3802 }
3803 
3804 #ifdef CONFIG_SYSFS
3805 static inline unsigned int get_netdev_rx_queue_index(
3806 		struct netdev_rx_queue *queue)
3807 {
3808 	struct net_device *dev = queue->dev;
3809 	int index = queue - dev->_rx;
3810 
3811 	BUG_ON(index >= dev->num_rx_queues);
3812 	return index;
3813 }
3814 #endif
3815 
3816 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3817 int netif_get_num_default_rss_queues(void);
3818 
3819 enum skb_free_reason {
3820 	SKB_REASON_CONSUMED,
3821 	SKB_REASON_DROPPED,
3822 };
3823 
3824 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3825 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3826 
3827 /*
3828  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3829  * interrupt context or with hardware interrupts being disabled.
3830  * (in_irq() || irqs_disabled())
3831  *
3832  * We provide four helpers that can be used in following contexts :
3833  *
3834  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3835  *  replacing kfree_skb(skb)
3836  *
3837  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3838  *  Typically used in place of consume_skb(skb) in TX completion path
3839  *
3840  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3841  *  replacing kfree_skb(skb)
3842  *
3843  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3844  *  and consumed a packet. Used in place of consume_skb(skb)
3845  */
3846 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3847 {
3848 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3849 }
3850 
3851 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3852 {
3853 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3854 }
3855 
3856 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3857 {
3858 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3859 }
3860 
3861 static inline void dev_consume_skb_any(struct sk_buff *skb)
3862 {
3863 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3864 }
3865 
3866 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3867 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3868 int netif_rx(struct sk_buff *skb);
3869 int netif_rx_ni(struct sk_buff *skb);
3870 int netif_rx_any_context(struct sk_buff *skb);
3871 int netif_receive_skb(struct sk_buff *skb);
3872 int netif_receive_skb_core(struct sk_buff *skb);
3873 void netif_receive_skb_list(struct list_head *head);
3874 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3875 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3876 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3877 gro_result_t napi_gro_frags(struct napi_struct *napi);
3878 struct packet_offload *gro_find_receive_by_type(__be16 type);
3879 struct packet_offload *gro_find_complete_by_type(__be16 type);
3880 
3881 static inline void napi_free_frags(struct napi_struct *napi)
3882 {
3883 	kfree_skb(napi->skb);
3884 	napi->skb = NULL;
3885 }
3886 
3887 bool netdev_is_rx_handler_busy(struct net_device *dev);
3888 int netdev_rx_handler_register(struct net_device *dev,
3889 			       rx_handler_func_t *rx_handler,
3890 			       void *rx_handler_data);
3891 void netdev_rx_handler_unregister(struct net_device *dev);
3892 
3893 bool dev_valid_name(const char *name);
3894 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3895 		bool *need_copyout);
3896 int dev_ifconf(struct net *net, struct ifconf *, int);
3897 int dev_ethtool(struct net *net, struct ifreq *);
3898 unsigned int dev_get_flags(const struct net_device *);
3899 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3900 		       struct netlink_ext_ack *extack);
3901 int dev_change_flags(struct net_device *dev, unsigned int flags,
3902 		     struct netlink_ext_ack *extack);
3903 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3904 			unsigned int gchanges);
3905 int dev_change_name(struct net_device *, const char *);
3906 int dev_set_alias(struct net_device *, const char *, size_t);
3907 int dev_get_alias(const struct net_device *, char *, size_t);
3908 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3909 int __dev_set_mtu(struct net_device *, int);
3910 int dev_validate_mtu(struct net_device *dev, int mtu,
3911 		     struct netlink_ext_ack *extack);
3912 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3913 		    struct netlink_ext_ack *extack);
3914 int dev_set_mtu(struct net_device *, int);
3915 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3916 void dev_set_group(struct net_device *, int);
3917 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3918 			      struct netlink_ext_ack *extack);
3919 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3920 			struct netlink_ext_ack *extack);
3921 int dev_change_carrier(struct net_device *, bool new_carrier);
3922 int dev_get_phys_port_id(struct net_device *dev,
3923 			 struct netdev_phys_item_id *ppid);
3924 int dev_get_phys_port_name(struct net_device *dev,
3925 			   char *name, size_t len);
3926 int dev_get_port_parent_id(struct net_device *dev,
3927 			   struct netdev_phys_item_id *ppid, bool recurse);
3928 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3929 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3930 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3931 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3932 				  u32 value);
3933 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3934 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3935 				    struct netdev_queue *txq, int *ret);
3936 
3937 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3938 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3939 		      int fd, int expected_fd, u32 flags);
3940 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3941 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3942 
3943 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3944 
3945 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3946 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3947 bool is_skb_forwardable(const struct net_device *dev,
3948 			const struct sk_buff *skb);
3949 
3950 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3951 					       struct sk_buff *skb)
3952 {
3953 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3954 	    unlikely(!is_skb_forwardable(dev, skb))) {
3955 		atomic_long_inc(&dev->rx_dropped);
3956 		kfree_skb(skb);
3957 		return NET_RX_DROP;
3958 	}
3959 
3960 	skb_scrub_packet(skb, true);
3961 	skb->priority = 0;
3962 	return 0;
3963 }
3964 
3965 bool dev_nit_active(struct net_device *dev);
3966 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3967 
3968 extern int		netdev_budget;
3969 extern unsigned int	netdev_budget_usecs;
3970 
3971 /* Called by rtnetlink.c:rtnl_unlock() */
3972 void netdev_run_todo(void);
3973 
3974 /**
3975  *	dev_put - release reference to device
3976  *	@dev: network device
3977  *
3978  * Release reference to device to allow it to be freed.
3979  */
3980 static inline void dev_put(struct net_device *dev)
3981 {
3982 	this_cpu_dec(*dev->pcpu_refcnt);
3983 }
3984 
3985 /**
3986  *	dev_hold - get reference to device
3987  *	@dev: network device
3988  *
3989  * Hold reference to device to keep it from being freed.
3990  */
3991 static inline void dev_hold(struct net_device *dev)
3992 {
3993 	this_cpu_inc(*dev->pcpu_refcnt);
3994 }
3995 
3996 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3997  * and _off may be called from IRQ context, but it is caller
3998  * who is responsible for serialization of these calls.
3999  *
4000  * The name carrier is inappropriate, these functions should really be
4001  * called netif_lowerlayer_*() because they represent the state of any
4002  * kind of lower layer not just hardware media.
4003  */
4004 
4005 void linkwatch_init_dev(struct net_device *dev);
4006 void linkwatch_fire_event(struct net_device *dev);
4007 void linkwatch_forget_dev(struct net_device *dev);
4008 
4009 /**
4010  *	netif_carrier_ok - test if carrier present
4011  *	@dev: network device
4012  *
4013  * Check if carrier is present on device
4014  */
4015 static inline bool netif_carrier_ok(const struct net_device *dev)
4016 {
4017 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4018 }
4019 
4020 unsigned long dev_trans_start(struct net_device *dev);
4021 
4022 void __netdev_watchdog_up(struct net_device *dev);
4023 
4024 void netif_carrier_on(struct net_device *dev);
4025 
4026 void netif_carrier_off(struct net_device *dev);
4027 
4028 /**
4029  *	netif_dormant_on - mark device as dormant.
4030  *	@dev: network device
4031  *
4032  * Mark device as dormant (as per RFC2863).
4033  *
4034  * The dormant state indicates that the relevant interface is not
4035  * actually in a condition to pass packets (i.e., it is not 'up') but is
4036  * in a "pending" state, waiting for some external event.  For "on-
4037  * demand" interfaces, this new state identifies the situation where the
4038  * interface is waiting for events to place it in the up state.
4039  */
4040 static inline void netif_dormant_on(struct net_device *dev)
4041 {
4042 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4043 		linkwatch_fire_event(dev);
4044 }
4045 
4046 /**
4047  *	netif_dormant_off - set device as not dormant.
4048  *	@dev: network device
4049  *
4050  * Device is not in dormant state.
4051  */
4052 static inline void netif_dormant_off(struct net_device *dev)
4053 {
4054 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4055 		linkwatch_fire_event(dev);
4056 }
4057 
4058 /**
4059  *	netif_dormant - test if device is dormant
4060  *	@dev: network device
4061  *
4062  * Check if device is dormant.
4063  */
4064 static inline bool netif_dormant(const struct net_device *dev)
4065 {
4066 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4067 }
4068 
4069 
4070 /**
4071  *	netif_testing_on - mark device as under test.
4072  *	@dev: network device
4073  *
4074  * Mark device as under test (as per RFC2863).
4075  *
4076  * The testing state indicates that some test(s) must be performed on
4077  * the interface. After completion, of the test, the interface state
4078  * will change to up, dormant, or down, as appropriate.
4079  */
4080 static inline void netif_testing_on(struct net_device *dev)
4081 {
4082 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4083 		linkwatch_fire_event(dev);
4084 }
4085 
4086 /**
4087  *	netif_testing_off - set device as not under test.
4088  *	@dev: network device
4089  *
4090  * Device is not in testing state.
4091  */
4092 static inline void netif_testing_off(struct net_device *dev)
4093 {
4094 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4095 		linkwatch_fire_event(dev);
4096 }
4097 
4098 /**
4099  *	netif_testing - test if device is under test
4100  *	@dev: network device
4101  *
4102  * Check if device is under test
4103  */
4104 static inline bool netif_testing(const struct net_device *dev)
4105 {
4106 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4107 }
4108 
4109 
4110 /**
4111  *	netif_oper_up - test if device is operational
4112  *	@dev: network device
4113  *
4114  * Check if carrier is operational
4115  */
4116 static inline bool netif_oper_up(const struct net_device *dev)
4117 {
4118 	return (dev->operstate == IF_OPER_UP ||
4119 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4120 }
4121 
4122 /**
4123  *	netif_device_present - is device available or removed
4124  *	@dev: network device
4125  *
4126  * Check if device has not been removed from system.
4127  */
4128 static inline bool netif_device_present(struct net_device *dev)
4129 {
4130 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4131 }
4132 
4133 void netif_device_detach(struct net_device *dev);
4134 
4135 void netif_device_attach(struct net_device *dev);
4136 
4137 /*
4138  * Network interface message level settings
4139  */
4140 
4141 enum {
4142 	NETIF_MSG_DRV_BIT,
4143 	NETIF_MSG_PROBE_BIT,
4144 	NETIF_MSG_LINK_BIT,
4145 	NETIF_MSG_TIMER_BIT,
4146 	NETIF_MSG_IFDOWN_BIT,
4147 	NETIF_MSG_IFUP_BIT,
4148 	NETIF_MSG_RX_ERR_BIT,
4149 	NETIF_MSG_TX_ERR_BIT,
4150 	NETIF_MSG_TX_QUEUED_BIT,
4151 	NETIF_MSG_INTR_BIT,
4152 	NETIF_MSG_TX_DONE_BIT,
4153 	NETIF_MSG_RX_STATUS_BIT,
4154 	NETIF_MSG_PKTDATA_BIT,
4155 	NETIF_MSG_HW_BIT,
4156 	NETIF_MSG_WOL_BIT,
4157 
4158 	/* When you add a new bit above, update netif_msg_class_names array
4159 	 * in net/ethtool/common.c
4160 	 */
4161 	NETIF_MSG_CLASS_COUNT,
4162 };
4163 /* Both ethtool_ops interface and internal driver implementation use u32 */
4164 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4165 
4166 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4167 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4168 
4169 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4170 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4171 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4172 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4173 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4174 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4175 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4176 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4177 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4178 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4179 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4180 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4181 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4182 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4183 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4184 
4185 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4186 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4187 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4188 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4189 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4190 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4191 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4192 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4193 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4194 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4195 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4196 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4197 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4198 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4199 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4200 
4201 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4202 {
4203 	/* use default */
4204 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4205 		return default_msg_enable_bits;
4206 	if (debug_value == 0)	/* no output */
4207 		return 0;
4208 	/* set low N bits */
4209 	return (1U << debug_value) - 1;
4210 }
4211 
4212 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4213 {
4214 	spin_lock(&txq->_xmit_lock);
4215 	txq->xmit_lock_owner = cpu;
4216 }
4217 
4218 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4219 {
4220 	__acquire(&txq->_xmit_lock);
4221 	return true;
4222 }
4223 
4224 static inline void __netif_tx_release(struct netdev_queue *txq)
4225 {
4226 	__release(&txq->_xmit_lock);
4227 }
4228 
4229 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4230 {
4231 	spin_lock_bh(&txq->_xmit_lock);
4232 	txq->xmit_lock_owner = smp_processor_id();
4233 }
4234 
4235 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4236 {
4237 	bool ok = spin_trylock(&txq->_xmit_lock);
4238 	if (likely(ok))
4239 		txq->xmit_lock_owner = smp_processor_id();
4240 	return ok;
4241 }
4242 
4243 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4244 {
4245 	txq->xmit_lock_owner = -1;
4246 	spin_unlock(&txq->_xmit_lock);
4247 }
4248 
4249 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4250 {
4251 	txq->xmit_lock_owner = -1;
4252 	spin_unlock_bh(&txq->_xmit_lock);
4253 }
4254 
4255 static inline void txq_trans_update(struct netdev_queue *txq)
4256 {
4257 	if (txq->xmit_lock_owner != -1)
4258 		txq->trans_start = jiffies;
4259 }
4260 
4261 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4262 static inline void netif_trans_update(struct net_device *dev)
4263 {
4264 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4265 
4266 	if (txq->trans_start != jiffies)
4267 		txq->trans_start = jiffies;
4268 }
4269 
4270 /**
4271  *	netif_tx_lock - grab network device transmit lock
4272  *	@dev: network device
4273  *
4274  * Get network device transmit lock
4275  */
4276 static inline void netif_tx_lock(struct net_device *dev)
4277 {
4278 	unsigned int i;
4279 	int cpu;
4280 
4281 	spin_lock(&dev->tx_global_lock);
4282 	cpu = smp_processor_id();
4283 	for (i = 0; i < dev->num_tx_queues; i++) {
4284 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4285 
4286 		/* We are the only thread of execution doing a
4287 		 * freeze, but we have to grab the _xmit_lock in
4288 		 * order to synchronize with threads which are in
4289 		 * the ->hard_start_xmit() handler and already
4290 		 * checked the frozen bit.
4291 		 */
4292 		__netif_tx_lock(txq, cpu);
4293 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4294 		__netif_tx_unlock(txq);
4295 	}
4296 }
4297 
4298 static inline void netif_tx_lock_bh(struct net_device *dev)
4299 {
4300 	local_bh_disable();
4301 	netif_tx_lock(dev);
4302 }
4303 
4304 static inline void netif_tx_unlock(struct net_device *dev)
4305 {
4306 	unsigned int i;
4307 
4308 	for (i = 0; i < dev->num_tx_queues; i++) {
4309 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4310 
4311 		/* No need to grab the _xmit_lock here.  If the
4312 		 * queue is not stopped for another reason, we
4313 		 * force a schedule.
4314 		 */
4315 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4316 		netif_schedule_queue(txq);
4317 	}
4318 	spin_unlock(&dev->tx_global_lock);
4319 }
4320 
4321 static inline void netif_tx_unlock_bh(struct net_device *dev)
4322 {
4323 	netif_tx_unlock(dev);
4324 	local_bh_enable();
4325 }
4326 
4327 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4328 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4329 		__netif_tx_lock(txq, cpu);		\
4330 	} else {					\
4331 		__netif_tx_acquire(txq);		\
4332 	}						\
4333 }
4334 
4335 #define HARD_TX_TRYLOCK(dev, txq)			\
4336 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4337 		__netif_tx_trylock(txq) :		\
4338 		__netif_tx_acquire(txq))
4339 
4340 #define HARD_TX_UNLOCK(dev, txq) {			\
4341 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4342 		__netif_tx_unlock(txq);			\
4343 	} else {					\
4344 		__netif_tx_release(txq);		\
4345 	}						\
4346 }
4347 
4348 static inline void netif_tx_disable(struct net_device *dev)
4349 {
4350 	unsigned int i;
4351 	int cpu;
4352 
4353 	local_bh_disable();
4354 	cpu = smp_processor_id();
4355 	for (i = 0; i < dev->num_tx_queues; i++) {
4356 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4357 
4358 		__netif_tx_lock(txq, cpu);
4359 		netif_tx_stop_queue(txq);
4360 		__netif_tx_unlock(txq);
4361 	}
4362 	local_bh_enable();
4363 }
4364 
4365 static inline void netif_addr_lock(struct net_device *dev)
4366 {
4367 	unsigned char nest_level = 0;
4368 
4369 #ifdef CONFIG_LOCKDEP
4370 	nest_level = dev->nested_level;
4371 #endif
4372 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4373 }
4374 
4375 static inline void netif_addr_lock_bh(struct net_device *dev)
4376 {
4377 	unsigned char nest_level = 0;
4378 
4379 #ifdef CONFIG_LOCKDEP
4380 	nest_level = dev->nested_level;
4381 #endif
4382 	local_bh_disable();
4383 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4384 }
4385 
4386 static inline void netif_addr_unlock(struct net_device *dev)
4387 {
4388 	spin_unlock(&dev->addr_list_lock);
4389 }
4390 
4391 static inline void netif_addr_unlock_bh(struct net_device *dev)
4392 {
4393 	spin_unlock_bh(&dev->addr_list_lock);
4394 }
4395 
4396 /*
4397  * dev_addrs walker. Should be used only for read access. Call with
4398  * rcu_read_lock held.
4399  */
4400 #define for_each_dev_addr(dev, ha) \
4401 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4402 
4403 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4404 
4405 void ether_setup(struct net_device *dev);
4406 
4407 /* Support for loadable net-drivers */
4408 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4409 				    unsigned char name_assign_type,
4410 				    void (*setup)(struct net_device *),
4411 				    unsigned int txqs, unsigned int rxqs);
4412 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4413 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4414 
4415 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4416 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4417 			 count)
4418 
4419 int register_netdev(struct net_device *dev);
4420 void unregister_netdev(struct net_device *dev);
4421 
4422 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4423 
4424 /* General hardware address lists handling functions */
4425 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4426 		   struct netdev_hw_addr_list *from_list, int addr_len);
4427 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4428 		      struct netdev_hw_addr_list *from_list, int addr_len);
4429 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4430 		       struct net_device *dev,
4431 		       int (*sync)(struct net_device *, const unsigned char *),
4432 		       int (*unsync)(struct net_device *,
4433 				     const unsigned char *));
4434 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4435 			   struct net_device *dev,
4436 			   int (*sync)(struct net_device *,
4437 				       const unsigned char *, int),
4438 			   int (*unsync)(struct net_device *,
4439 					 const unsigned char *, int));
4440 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4441 			      struct net_device *dev,
4442 			      int (*unsync)(struct net_device *,
4443 					    const unsigned char *, int));
4444 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4445 			  struct net_device *dev,
4446 			  int (*unsync)(struct net_device *,
4447 					const unsigned char *));
4448 void __hw_addr_init(struct netdev_hw_addr_list *list);
4449 
4450 /* Functions used for device addresses handling */
4451 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4452 		 unsigned char addr_type);
4453 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4454 		 unsigned char addr_type);
4455 void dev_addr_flush(struct net_device *dev);
4456 int dev_addr_init(struct net_device *dev);
4457 
4458 /* Functions used for unicast addresses handling */
4459 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4460 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4461 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4462 int dev_uc_sync(struct net_device *to, struct net_device *from);
4463 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4464 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4465 void dev_uc_flush(struct net_device *dev);
4466 void dev_uc_init(struct net_device *dev);
4467 
4468 /**
4469  *  __dev_uc_sync - Synchonize device's unicast list
4470  *  @dev:  device to sync
4471  *  @sync: function to call if address should be added
4472  *  @unsync: function to call if address should be removed
4473  *
4474  *  Add newly added addresses to the interface, and release
4475  *  addresses that have been deleted.
4476  */
4477 static inline int __dev_uc_sync(struct net_device *dev,
4478 				int (*sync)(struct net_device *,
4479 					    const unsigned char *),
4480 				int (*unsync)(struct net_device *,
4481 					      const unsigned char *))
4482 {
4483 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4484 }
4485 
4486 /**
4487  *  __dev_uc_unsync - Remove synchronized addresses from device
4488  *  @dev:  device to sync
4489  *  @unsync: function to call if address should be removed
4490  *
4491  *  Remove all addresses that were added to the device by dev_uc_sync().
4492  */
4493 static inline void __dev_uc_unsync(struct net_device *dev,
4494 				   int (*unsync)(struct net_device *,
4495 						 const unsigned char *))
4496 {
4497 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4498 }
4499 
4500 /* Functions used for multicast addresses handling */
4501 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4502 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4503 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4504 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4505 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4506 int dev_mc_sync(struct net_device *to, struct net_device *from);
4507 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4508 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4509 void dev_mc_flush(struct net_device *dev);
4510 void dev_mc_init(struct net_device *dev);
4511 
4512 /**
4513  *  __dev_mc_sync - Synchonize device's multicast list
4514  *  @dev:  device to sync
4515  *  @sync: function to call if address should be added
4516  *  @unsync: function to call if address should be removed
4517  *
4518  *  Add newly added addresses to the interface, and release
4519  *  addresses that have been deleted.
4520  */
4521 static inline int __dev_mc_sync(struct net_device *dev,
4522 				int (*sync)(struct net_device *,
4523 					    const unsigned char *),
4524 				int (*unsync)(struct net_device *,
4525 					      const unsigned char *))
4526 {
4527 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4528 }
4529 
4530 /**
4531  *  __dev_mc_unsync - Remove synchronized addresses from device
4532  *  @dev:  device to sync
4533  *  @unsync: function to call if address should be removed
4534  *
4535  *  Remove all addresses that were added to the device by dev_mc_sync().
4536  */
4537 static inline void __dev_mc_unsync(struct net_device *dev,
4538 				   int (*unsync)(struct net_device *,
4539 						 const unsigned char *))
4540 {
4541 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4542 }
4543 
4544 /* Functions used for secondary unicast and multicast support */
4545 void dev_set_rx_mode(struct net_device *dev);
4546 void __dev_set_rx_mode(struct net_device *dev);
4547 int dev_set_promiscuity(struct net_device *dev, int inc);
4548 int dev_set_allmulti(struct net_device *dev, int inc);
4549 void netdev_state_change(struct net_device *dev);
4550 void __netdev_notify_peers(struct net_device *dev);
4551 void netdev_notify_peers(struct net_device *dev);
4552 void netdev_features_change(struct net_device *dev);
4553 /* Load a device via the kmod */
4554 void dev_load(struct net *net, const char *name);
4555 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4556 					struct rtnl_link_stats64 *storage);
4557 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4558 			     const struct net_device_stats *netdev_stats);
4559 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4560 			   const struct pcpu_sw_netstats __percpu *netstats);
4561 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4562 
4563 extern int		netdev_max_backlog;
4564 extern int		netdev_tstamp_prequeue;
4565 extern int		weight_p;
4566 extern int		dev_weight_rx_bias;
4567 extern int		dev_weight_tx_bias;
4568 extern int		dev_rx_weight;
4569 extern int		dev_tx_weight;
4570 extern int		gro_normal_batch;
4571 
4572 enum {
4573 	NESTED_SYNC_IMM_BIT,
4574 	NESTED_SYNC_TODO_BIT,
4575 };
4576 
4577 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4578 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4579 
4580 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4581 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4582 
4583 struct netdev_nested_priv {
4584 	unsigned char flags;
4585 	void *data;
4586 };
4587 
4588 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4589 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4590 						     struct list_head **iter);
4591 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4592 						     struct list_head **iter);
4593 
4594 #ifdef CONFIG_LOCKDEP
4595 static LIST_HEAD(net_unlink_list);
4596 
4597 static inline void net_unlink_todo(struct net_device *dev)
4598 {
4599 	if (list_empty(&dev->unlink_list))
4600 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4601 }
4602 #endif
4603 
4604 /* iterate through upper list, must be called under RCU read lock */
4605 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4606 	for (iter = &(dev)->adj_list.upper, \
4607 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4608 	     updev; \
4609 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4610 
4611 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4612 				  int (*fn)(struct net_device *upper_dev,
4613 					    struct netdev_nested_priv *priv),
4614 				  struct netdev_nested_priv *priv);
4615 
4616 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4617 				  struct net_device *upper_dev);
4618 
4619 bool netdev_has_any_upper_dev(struct net_device *dev);
4620 
4621 void *netdev_lower_get_next_private(struct net_device *dev,
4622 				    struct list_head **iter);
4623 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4624 					struct list_head **iter);
4625 
4626 #define netdev_for_each_lower_private(dev, priv, iter) \
4627 	for (iter = (dev)->adj_list.lower.next, \
4628 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4629 	     priv; \
4630 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4631 
4632 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4633 	for (iter = &(dev)->adj_list.lower, \
4634 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4635 	     priv; \
4636 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4637 
4638 void *netdev_lower_get_next(struct net_device *dev,
4639 				struct list_head **iter);
4640 
4641 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4642 	for (iter = (dev)->adj_list.lower.next, \
4643 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4644 	     ldev; \
4645 	     ldev = netdev_lower_get_next(dev, &(iter)))
4646 
4647 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4648 					     struct list_head **iter);
4649 int netdev_walk_all_lower_dev(struct net_device *dev,
4650 			      int (*fn)(struct net_device *lower_dev,
4651 					struct netdev_nested_priv *priv),
4652 			      struct netdev_nested_priv *priv);
4653 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4654 				  int (*fn)(struct net_device *lower_dev,
4655 					    struct netdev_nested_priv *priv),
4656 				  struct netdev_nested_priv *priv);
4657 
4658 void *netdev_adjacent_get_private(struct list_head *adj_list);
4659 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4660 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4661 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4662 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4663 			  struct netlink_ext_ack *extack);
4664 int netdev_master_upper_dev_link(struct net_device *dev,
4665 				 struct net_device *upper_dev,
4666 				 void *upper_priv, void *upper_info,
4667 				 struct netlink_ext_ack *extack);
4668 void netdev_upper_dev_unlink(struct net_device *dev,
4669 			     struct net_device *upper_dev);
4670 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4671 				   struct net_device *new_dev,
4672 				   struct net_device *dev,
4673 				   struct netlink_ext_ack *extack);
4674 void netdev_adjacent_change_commit(struct net_device *old_dev,
4675 				   struct net_device *new_dev,
4676 				   struct net_device *dev);
4677 void netdev_adjacent_change_abort(struct net_device *old_dev,
4678 				  struct net_device *new_dev,
4679 				  struct net_device *dev);
4680 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4681 void *netdev_lower_dev_get_private(struct net_device *dev,
4682 				   struct net_device *lower_dev);
4683 void netdev_lower_state_changed(struct net_device *lower_dev,
4684 				void *lower_state_info);
4685 
4686 /* RSS keys are 40 or 52 bytes long */
4687 #define NETDEV_RSS_KEY_LEN 52
4688 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4689 void netdev_rss_key_fill(void *buffer, size_t len);
4690 
4691 int skb_checksum_help(struct sk_buff *skb);
4692 int skb_crc32c_csum_help(struct sk_buff *skb);
4693 int skb_csum_hwoffload_help(struct sk_buff *skb,
4694 			    const netdev_features_t features);
4695 
4696 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4697 				  netdev_features_t features, bool tx_path);
4698 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4699 				    netdev_features_t features);
4700 
4701 struct netdev_bonding_info {
4702 	ifslave	slave;
4703 	ifbond	master;
4704 };
4705 
4706 struct netdev_notifier_bonding_info {
4707 	struct netdev_notifier_info info; /* must be first */
4708 	struct netdev_bonding_info  bonding_info;
4709 };
4710 
4711 void netdev_bonding_info_change(struct net_device *dev,
4712 				struct netdev_bonding_info *bonding_info);
4713 
4714 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4715 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4716 #else
4717 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4718 				  const void *data)
4719 {
4720 }
4721 #endif
4722 
4723 static inline
4724 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4725 {
4726 	return __skb_gso_segment(skb, features, true);
4727 }
4728 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4729 
4730 static inline bool can_checksum_protocol(netdev_features_t features,
4731 					 __be16 protocol)
4732 {
4733 	if (protocol == htons(ETH_P_FCOE))
4734 		return !!(features & NETIF_F_FCOE_CRC);
4735 
4736 	/* Assume this is an IP checksum (not SCTP CRC) */
4737 
4738 	if (features & NETIF_F_HW_CSUM) {
4739 		/* Can checksum everything */
4740 		return true;
4741 	}
4742 
4743 	switch (protocol) {
4744 	case htons(ETH_P_IP):
4745 		return !!(features & NETIF_F_IP_CSUM);
4746 	case htons(ETH_P_IPV6):
4747 		return !!(features & NETIF_F_IPV6_CSUM);
4748 	default:
4749 		return false;
4750 	}
4751 }
4752 
4753 #ifdef CONFIG_BUG
4754 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4755 #else
4756 static inline void netdev_rx_csum_fault(struct net_device *dev,
4757 					struct sk_buff *skb)
4758 {
4759 }
4760 #endif
4761 /* rx skb timestamps */
4762 void net_enable_timestamp(void);
4763 void net_disable_timestamp(void);
4764 
4765 #ifdef CONFIG_PROC_FS
4766 int __init dev_proc_init(void);
4767 #else
4768 #define dev_proc_init() 0
4769 #endif
4770 
4771 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4772 					      struct sk_buff *skb, struct net_device *dev,
4773 					      bool more)
4774 {
4775 	__this_cpu_write(softnet_data.xmit.more, more);
4776 	return ops->ndo_start_xmit(skb, dev);
4777 }
4778 
4779 static inline bool netdev_xmit_more(void)
4780 {
4781 	return __this_cpu_read(softnet_data.xmit.more);
4782 }
4783 
4784 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4785 					    struct netdev_queue *txq, bool more)
4786 {
4787 	const struct net_device_ops *ops = dev->netdev_ops;
4788 	netdev_tx_t rc;
4789 
4790 	rc = __netdev_start_xmit(ops, skb, dev, more);
4791 	if (rc == NETDEV_TX_OK)
4792 		txq_trans_update(txq);
4793 
4794 	return rc;
4795 }
4796 
4797 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4798 				const void *ns);
4799 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4800 				 const void *ns);
4801 
4802 extern const struct kobj_ns_type_operations net_ns_type_operations;
4803 
4804 const char *netdev_drivername(const struct net_device *dev);
4805 
4806 void linkwatch_run_queue(void);
4807 
4808 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4809 							  netdev_features_t f2)
4810 {
4811 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4812 		if (f1 & NETIF_F_HW_CSUM)
4813 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4814 		else
4815 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4816 	}
4817 
4818 	return f1 & f2;
4819 }
4820 
4821 static inline netdev_features_t netdev_get_wanted_features(
4822 	struct net_device *dev)
4823 {
4824 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4825 }
4826 netdev_features_t netdev_increment_features(netdev_features_t all,
4827 	netdev_features_t one, netdev_features_t mask);
4828 
4829 /* Allow TSO being used on stacked device :
4830  * Performing the GSO segmentation before last device
4831  * is a performance improvement.
4832  */
4833 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4834 							netdev_features_t mask)
4835 {
4836 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4837 }
4838 
4839 int __netdev_update_features(struct net_device *dev);
4840 void netdev_update_features(struct net_device *dev);
4841 void netdev_change_features(struct net_device *dev);
4842 
4843 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4844 					struct net_device *dev);
4845 
4846 netdev_features_t passthru_features_check(struct sk_buff *skb,
4847 					  struct net_device *dev,
4848 					  netdev_features_t features);
4849 netdev_features_t netif_skb_features(struct sk_buff *skb);
4850 
4851 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4852 {
4853 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4854 
4855 	/* check flags correspondence */
4856 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4857 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4858 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4859 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4860 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4861 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4862 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4863 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4864 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4865 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4866 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4867 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4868 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4869 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4870 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4871 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4872 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4873 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4874 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4875 
4876 	return (features & feature) == feature;
4877 }
4878 
4879 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4880 {
4881 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4882 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4883 }
4884 
4885 static inline bool netif_needs_gso(struct sk_buff *skb,
4886 				   netdev_features_t features)
4887 {
4888 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4889 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4890 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4891 }
4892 
4893 static inline void netif_set_gso_max_size(struct net_device *dev,
4894 					  unsigned int size)
4895 {
4896 	dev->gso_max_size = size;
4897 }
4898 
4899 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4900 					int pulled_hlen, u16 mac_offset,
4901 					int mac_len)
4902 {
4903 	skb->protocol = protocol;
4904 	skb->encapsulation = 1;
4905 	skb_push(skb, pulled_hlen);
4906 	skb_reset_transport_header(skb);
4907 	skb->mac_header = mac_offset;
4908 	skb->network_header = skb->mac_header + mac_len;
4909 	skb->mac_len = mac_len;
4910 }
4911 
4912 static inline bool netif_is_macsec(const struct net_device *dev)
4913 {
4914 	return dev->priv_flags & IFF_MACSEC;
4915 }
4916 
4917 static inline bool netif_is_macvlan(const struct net_device *dev)
4918 {
4919 	return dev->priv_flags & IFF_MACVLAN;
4920 }
4921 
4922 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4923 {
4924 	return dev->priv_flags & IFF_MACVLAN_PORT;
4925 }
4926 
4927 static inline bool netif_is_bond_master(const struct net_device *dev)
4928 {
4929 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4930 }
4931 
4932 static inline bool netif_is_bond_slave(const struct net_device *dev)
4933 {
4934 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4935 }
4936 
4937 static inline bool netif_supports_nofcs(struct net_device *dev)
4938 {
4939 	return dev->priv_flags & IFF_SUPP_NOFCS;
4940 }
4941 
4942 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4943 {
4944 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4945 }
4946 
4947 static inline bool netif_is_l3_master(const struct net_device *dev)
4948 {
4949 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4950 }
4951 
4952 static inline bool netif_is_l3_slave(const struct net_device *dev)
4953 {
4954 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4955 }
4956 
4957 static inline bool netif_is_bridge_master(const struct net_device *dev)
4958 {
4959 	return dev->priv_flags & IFF_EBRIDGE;
4960 }
4961 
4962 static inline bool netif_is_bridge_port(const struct net_device *dev)
4963 {
4964 	return dev->priv_flags & IFF_BRIDGE_PORT;
4965 }
4966 
4967 static inline bool netif_is_ovs_master(const struct net_device *dev)
4968 {
4969 	return dev->priv_flags & IFF_OPENVSWITCH;
4970 }
4971 
4972 static inline bool netif_is_ovs_port(const struct net_device *dev)
4973 {
4974 	return dev->priv_flags & IFF_OVS_DATAPATH;
4975 }
4976 
4977 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4978 {
4979 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4980 }
4981 
4982 static inline bool netif_is_team_master(const struct net_device *dev)
4983 {
4984 	return dev->priv_flags & IFF_TEAM;
4985 }
4986 
4987 static inline bool netif_is_team_port(const struct net_device *dev)
4988 {
4989 	return dev->priv_flags & IFF_TEAM_PORT;
4990 }
4991 
4992 static inline bool netif_is_lag_master(const struct net_device *dev)
4993 {
4994 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4995 }
4996 
4997 static inline bool netif_is_lag_port(const struct net_device *dev)
4998 {
4999 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5000 }
5001 
5002 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5003 {
5004 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5005 }
5006 
5007 static inline bool netif_is_failover(const struct net_device *dev)
5008 {
5009 	return dev->priv_flags & IFF_FAILOVER;
5010 }
5011 
5012 static inline bool netif_is_failover_slave(const struct net_device *dev)
5013 {
5014 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5015 }
5016 
5017 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5018 static inline void netif_keep_dst(struct net_device *dev)
5019 {
5020 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5021 }
5022 
5023 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5024 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5025 {
5026 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5027 	return dev->priv_flags & IFF_MACSEC;
5028 }
5029 
5030 extern struct pernet_operations __net_initdata loopback_net_ops;
5031 
5032 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5033 
5034 /* netdev_printk helpers, similar to dev_printk */
5035 
5036 static inline const char *netdev_name(const struct net_device *dev)
5037 {
5038 	if (!dev->name[0] || strchr(dev->name, '%'))
5039 		return "(unnamed net_device)";
5040 	return dev->name;
5041 }
5042 
5043 static inline bool netdev_unregistering(const struct net_device *dev)
5044 {
5045 	return dev->reg_state == NETREG_UNREGISTERING;
5046 }
5047 
5048 static inline const char *netdev_reg_state(const struct net_device *dev)
5049 {
5050 	switch (dev->reg_state) {
5051 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5052 	case NETREG_REGISTERED: return "";
5053 	case NETREG_UNREGISTERING: return " (unregistering)";
5054 	case NETREG_UNREGISTERED: return " (unregistered)";
5055 	case NETREG_RELEASED: return " (released)";
5056 	case NETREG_DUMMY: return " (dummy)";
5057 	}
5058 
5059 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5060 	return " (unknown)";
5061 }
5062 
5063 __printf(3, 4) __cold
5064 void netdev_printk(const char *level, const struct net_device *dev,
5065 		   const char *format, ...);
5066 __printf(2, 3) __cold
5067 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5068 __printf(2, 3) __cold
5069 void netdev_alert(const struct net_device *dev, const char *format, ...);
5070 __printf(2, 3) __cold
5071 void netdev_crit(const struct net_device *dev, const char *format, ...);
5072 __printf(2, 3) __cold
5073 void netdev_err(const struct net_device *dev, const char *format, ...);
5074 __printf(2, 3) __cold
5075 void netdev_warn(const struct net_device *dev, const char *format, ...);
5076 __printf(2, 3) __cold
5077 void netdev_notice(const struct net_device *dev, const char *format, ...);
5078 __printf(2, 3) __cold
5079 void netdev_info(const struct net_device *dev, const char *format, ...);
5080 
5081 #define netdev_level_once(level, dev, fmt, ...)			\
5082 do {								\
5083 	static bool __print_once __read_mostly;			\
5084 								\
5085 	if (!__print_once) {					\
5086 		__print_once = true;				\
5087 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5088 	}							\
5089 } while (0)
5090 
5091 #define netdev_emerg_once(dev, fmt, ...) \
5092 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5093 #define netdev_alert_once(dev, fmt, ...) \
5094 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5095 #define netdev_crit_once(dev, fmt, ...) \
5096 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5097 #define netdev_err_once(dev, fmt, ...) \
5098 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5099 #define netdev_warn_once(dev, fmt, ...) \
5100 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5101 #define netdev_notice_once(dev, fmt, ...) \
5102 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5103 #define netdev_info_once(dev, fmt, ...) \
5104 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5105 
5106 #define MODULE_ALIAS_NETDEV(device) \
5107 	MODULE_ALIAS("netdev-" device)
5108 
5109 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5110 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5111 #define netdev_dbg(__dev, format, args...)			\
5112 do {								\
5113 	dynamic_netdev_dbg(__dev, format, ##args);		\
5114 } while (0)
5115 #elif defined(DEBUG)
5116 #define netdev_dbg(__dev, format, args...)			\
5117 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5118 #else
5119 #define netdev_dbg(__dev, format, args...)			\
5120 ({								\
5121 	if (0)							\
5122 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5123 })
5124 #endif
5125 
5126 #if defined(VERBOSE_DEBUG)
5127 #define netdev_vdbg	netdev_dbg
5128 #else
5129 
5130 #define netdev_vdbg(dev, format, args...)			\
5131 ({								\
5132 	if (0)							\
5133 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5134 	0;							\
5135 })
5136 #endif
5137 
5138 /*
5139  * netdev_WARN() acts like dev_printk(), but with the key difference
5140  * of using a WARN/WARN_ON to get the message out, including the
5141  * file/line information and a backtrace.
5142  */
5143 #define netdev_WARN(dev, format, args...)			\
5144 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5145 	     netdev_reg_state(dev), ##args)
5146 
5147 #define netdev_WARN_ONCE(dev, format, args...)				\
5148 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5149 		  netdev_reg_state(dev), ##args)
5150 
5151 /* netif printk helpers, similar to netdev_printk */
5152 
5153 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5154 do {					  			\
5155 	if (netif_msg_##type(priv))				\
5156 		netdev_printk(level, (dev), fmt, ##args);	\
5157 } while (0)
5158 
5159 #define netif_level(level, priv, type, dev, fmt, args...)	\
5160 do {								\
5161 	if (netif_msg_##type(priv))				\
5162 		netdev_##level(dev, fmt, ##args);		\
5163 } while (0)
5164 
5165 #define netif_emerg(priv, type, dev, fmt, args...)		\
5166 	netif_level(emerg, priv, type, dev, fmt, ##args)
5167 #define netif_alert(priv, type, dev, fmt, args...)		\
5168 	netif_level(alert, priv, type, dev, fmt, ##args)
5169 #define netif_crit(priv, type, dev, fmt, args...)		\
5170 	netif_level(crit, priv, type, dev, fmt, ##args)
5171 #define netif_err(priv, type, dev, fmt, args...)		\
5172 	netif_level(err, priv, type, dev, fmt, ##args)
5173 #define netif_warn(priv, type, dev, fmt, args...)		\
5174 	netif_level(warn, priv, type, dev, fmt, ##args)
5175 #define netif_notice(priv, type, dev, fmt, args...)		\
5176 	netif_level(notice, priv, type, dev, fmt, ##args)
5177 #define netif_info(priv, type, dev, fmt, args...)		\
5178 	netif_level(info, priv, type, dev, fmt, ##args)
5179 
5180 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5181 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5182 #define netif_dbg(priv, type, netdev, format, args...)		\
5183 do {								\
5184 	if (netif_msg_##type(priv))				\
5185 		dynamic_netdev_dbg(netdev, format, ##args);	\
5186 } while (0)
5187 #elif defined(DEBUG)
5188 #define netif_dbg(priv, type, dev, format, args...)		\
5189 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5190 #else
5191 #define netif_dbg(priv, type, dev, format, args...)			\
5192 ({									\
5193 	if (0)								\
5194 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5195 	0;								\
5196 })
5197 #endif
5198 
5199 /* if @cond then downgrade to debug, else print at @level */
5200 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5201 	do {                                                              \
5202 		if (cond)                                                 \
5203 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5204 		else                                                      \
5205 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5206 	} while (0)
5207 
5208 #if defined(VERBOSE_DEBUG)
5209 #define netif_vdbg	netif_dbg
5210 #else
5211 #define netif_vdbg(priv, type, dev, format, args...)		\
5212 ({								\
5213 	if (0)							\
5214 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5215 	0;							\
5216 })
5217 #endif
5218 
5219 /*
5220  *	The list of packet types we will receive (as opposed to discard)
5221  *	and the routines to invoke.
5222  *
5223  *	Why 16. Because with 16 the only overlap we get on a hash of the
5224  *	low nibble of the protocol value is RARP/SNAP/X.25.
5225  *
5226  *		0800	IP
5227  *		0001	802.3
5228  *		0002	AX.25
5229  *		0004	802.2
5230  *		8035	RARP
5231  *		0005	SNAP
5232  *		0805	X.25
5233  *		0806	ARP
5234  *		8137	IPX
5235  *		0009	Localtalk
5236  *		86DD	IPv6
5237  */
5238 #define PTYPE_HASH_SIZE	(16)
5239 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5240 
5241 extern struct net_device *blackhole_netdev;
5242 
5243 #endif	/* _LINUX_NETDEVICE_H */
5244