xref: /openbmc/linux/include/linux/netdevice.h (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <linux/prefetch.h>
34 #include <asm/cache.h>
35 #include <asm/byteorder.h>
36 
37 #include <linux/percpu.h>
38 #include <linux/rculist.h>
39 #include <linux/dmaengine.h>
40 #include <linux/workqueue.h>
41 #include <linux/dynamic_queue_limits.h>
42 
43 #include <linux/ethtool.h>
44 #include <net/net_namespace.h>
45 #include <net/dsa.h>
46 #ifdef CONFIG_DCB
47 #include <net/dcbnl.h>
48 #endif
49 #include <net/netprio_cgroup.h>
50 
51 #include <linux/netdev_features.h>
52 #include <linux/neighbour.h>
53 #include <uapi/linux/netdevice.h>
54 #include <uapi/linux/if_bonding.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 /* 802.11 specific */
60 struct wireless_dev;
61 /* 802.15.4 specific */
62 struct wpan_dev;
63 
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 				    const struct ethtool_ops *ops);
66 
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
69 #define NET_RX_DROP		1	/* packet dropped */
70 
71 /*
72  * Transmit return codes: transmit return codes originate from three different
73  * namespaces:
74  *
75  * - qdisc return codes
76  * - driver transmit return codes
77  * - errno values
78  *
79  * Drivers are allowed to return any one of those in their hard_start_xmit()
80  * function. Real network devices commonly used with qdiscs should only return
81  * the driver transmit return codes though - when qdiscs are used, the actual
82  * transmission happens asynchronously, so the value is not propagated to
83  * higher layers. Virtual network devices transmit synchronously, in this case
84  * the driver transmit return codes are consumed by dev_queue_xmit(), all
85  * others are propagated to higher layers.
86  */
87 
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS	0x00
90 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
91 #define NET_XMIT_CN		0x02	/* congestion notification	*/
92 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
93 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
94 
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96  * indicates that the device will soon be dropping packets, or already drops
97  * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100 
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK		0xf0
103 
104 enum netdev_tx {
105 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
106 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
107 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
108 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111 
112 /*
113  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115  */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 	/*
119 	 * Positive cases with an skb consumed by a driver:
120 	 * - successful transmission (rc == NETDEV_TX_OK)
121 	 * - error while transmitting (rc < 0)
122 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 	 */
124 	if (likely(rc < NET_XMIT_MASK))
125 		return true;
126 
127 	return false;
128 }
129 
130 /*
131  *	Compute the worst case header length according to the protocols
132  *	used.
133  */
134 
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 #  define LL_MAX_HEADER 128
138 # else
139 #  define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144 
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151 
152 /*
153  *	Old network device statistics. Fields are native words
154  *	(unsigned long) so they can be read and written atomically.
155  */
156 
157 struct net_device_stats {
158 	unsigned long	rx_packets;
159 	unsigned long	tx_packets;
160 	unsigned long	rx_bytes;
161 	unsigned long	tx_bytes;
162 	unsigned long	rx_errors;
163 	unsigned long	tx_errors;
164 	unsigned long	rx_dropped;
165 	unsigned long	tx_dropped;
166 	unsigned long	multicast;
167 	unsigned long	collisions;
168 	unsigned long	rx_length_errors;
169 	unsigned long	rx_over_errors;
170 	unsigned long	rx_crc_errors;
171 	unsigned long	rx_frame_errors;
172 	unsigned long	rx_fifo_errors;
173 	unsigned long	rx_missed_errors;
174 	unsigned long	tx_aborted_errors;
175 	unsigned long	tx_carrier_errors;
176 	unsigned long	tx_fifo_errors;
177 	unsigned long	tx_heartbeat_errors;
178 	unsigned long	tx_window_errors;
179 	unsigned long	rx_compressed;
180 	unsigned long	tx_compressed;
181 };
182 
183 
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186 
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191 
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195 
196 struct netdev_hw_addr {
197 	struct list_head	list;
198 	unsigned char		addr[MAX_ADDR_LEN];
199 	unsigned char		type;
200 #define NETDEV_HW_ADDR_T_LAN		1
201 #define NETDEV_HW_ADDR_T_SAN		2
202 #define NETDEV_HW_ADDR_T_SLAVE		3
203 #define NETDEV_HW_ADDR_T_UNICAST	4
204 #define NETDEV_HW_ADDR_T_MULTICAST	5
205 	bool			global_use;
206 	int			sync_cnt;
207 	int			refcount;
208 	int			synced;
209 	struct rcu_head		rcu_head;
210 };
211 
212 struct netdev_hw_addr_list {
213 	struct list_head	list;
214 	int			count;
215 };
216 
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 	list_for_each_entry(ha, &(l)->list, list)
221 
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226 
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231 
232 struct hh_cache {
233 	u16		hh_len;
234 	u16		__pad;
235 	seqlock_t	hh_lock;
236 
237 	/* cached hardware header; allow for machine alignment needs.        */
238 #define HH_DATA_MOD	16
239 #define HH_DATA_OFF(__len) \
240 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245 
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247  * Alternative is:
248  *   dev->hard_header_len ? (dev->hard_header_len +
249  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250  *
251  * We could use other alignment values, but we must maintain the
252  * relationship HH alignment <= LL alignment.
253  */
254 #define LL_RESERVED_SPACE(dev) \
255 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 
259 struct header_ops {
260 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
261 			   unsigned short type, const void *daddr,
262 			   const void *saddr, unsigned int len);
263 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 	int	(*rebuild)(struct sk_buff *skb);
265 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
266 	void	(*cache_update)(struct hh_cache *hh,
267 				const struct net_device *dev,
268 				const unsigned char *haddr);
269 };
270 
271 /* These flag bits are private to the generic network queueing
272  * layer, they may not be explicitly referenced by any other
273  * code.
274  */
275 
276 enum netdev_state_t {
277 	__LINK_STATE_START,
278 	__LINK_STATE_PRESENT,
279 	__LINK_STATE_NOCARRIER,
280 	__LINK_STATE_LINKWATCH_PENDING,
281 	__LINK_STATE_DORMANT,
282 };
283 
284 
285 /*
286  * This structure holds at boot time configured netdevice settings. They
287  * are then used in the device probing.
288  */
289 struct netdev_boot_setup {
290 	char name[IFNAMSIZ];
291 	struct ifmap map;
292 };
293 #define NETDEV_BOOT_SETUP_MAX 8
294 
295 int __init netdev_boot_setup(char *str);
296 
297 /*
298  * Structure for NAPI scheduling similar to tasklet but with weighting
299  */
300 struct napi_struct {
301 	/* The poll_list must only be managed by the entity which
302 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
303 	 * whoever atomically sets that bit can add this napi_struct
304 	 * to the per-cpu poll_list, and whoever clears that bit
305 	 * can remove from the list right before clearing the bit.
306 	 */
307 	struct list_head	poll_list;
308 
309 	unsigned long		state;
310 	int			weight;
311 	unsigned int		gro_count;
312 	int			(*poll)(struct napi_struct *, int);
313 #ifdef CONFIG_NETPOLL
314 	spinlock_t		poll_lock;
315 	int			poll_owner;
316 #endif
317 	struct net_device	*dev;
318 	struct sk_buff		*gro_list;
319 	struct sk_buff		*skb;
320 	struct hrtimer		timer;
321 	struct list_head	dev_list;
322 	struct hlist_node	napi_hash_node;
323 	unsigned int		napi_id;
324 };
325 
326 enum {
327 	NAPI_STATE_SCHED,	/* Poll is scheduled */
328 	NAPI_STATE_DISABLE,	/* Disable pending */
329 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
330 	NAPI_STATE_HASHED,	/* In NAPI hash */
331 };
332 
333 enum gro_result {
334 	GRO_MERGED,
335 	GRO_MERGED_FREE,
336 	GRO_HELD,
337 	GRO_NORMAL,
338 	GRO_DROP,
339 };
340 typedef enum gro_result gro_result_t;
341 
342 /*
343  * enum rx_handler_result - Possible return values for rx_handlers.
344  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
345  * further.
346  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
347  * case skb->dev was changed by rx_handler.
348  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
349  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
350  *
351  * rx_handlers are functions called from inside __netif_receive_skb(), to do
352  * special processing of the skb, prior to delivery to protocol handlers.
353  *
354  * Currently, a net_device can only have a single rx_handler registered. Trying
355  * to register a second rx_handler will return -EBUSY.
356  *
357  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
358  * To unregister a rx_handler on a net_device, use
359  * netdev_rx_handler_unregister().
360  *
361  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
362  * do with the skb.
363  *
364  * If the rx_handler consumed to skb in some way, it should return
365  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
366  * the skb to be delivered in some other ways.
367  *
368  * If the rx_handler changed skb->dev, to divert the skb to another
369  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
370  * new device will be called if it exists.
371  *
372  * If the rx_handler consider the skb should be ignored, it should return
373  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
374  * are registered on exact device (ptype->dev == skb->dev).
375  *
376  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
377  * delivered, it should return RX_HANDLER_PASS.
378  *
379  * A device without a registered rx_handler will behave as if rx_handler
380  * returned RX_HANDLER_PASS.
381  */
382 
383 enum rx_handler_result {
384 	RX_HANDLER_CONSUMED,
385 	RX_HANDLER_ANOTHER,
386 	RX_HANDLER_EXACT,
387 	RX_HANDLER_PASS,
388 };
389 typedef enum rx_handler_result rx_handler_result_t;
390 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
391 
392 void __napi_schedule(struct napi_struct *n);
393 void __napi_schedule_irqoff(struct napi_struct *n);
394 
395 static inline bool napi_disable_pending(struct napi_struct *n)
396 {
397 	return test_bit(NAPI_STATE_DISABLE, &n->state);
398 }
399 
400 /**
401  *	napi_schedule_prep - check if napi can be scheduled
402  *	@n: napi context
403  *
404  * Test if NAPI routine is already running, and if not mark
405  * it as running.  This is used as a condition variable
406  * insure only one NAPI poll instance runs.  We also make
407  * sure there is no pending NAPI disable.
408  */
409 static inline bool napi_schedule_prep(struct napi_struct *n)
410 {
411 	return !napi_disable_pending(n) &&
412 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
413 }
414 
415 /**
416  *	napi_schedule - schedule NAPI poll
417  *	@n: napi context
418  *
419  * Schedule NAPI poll routine to be called if it is not already
420  * running.
421  */
422 static inline void napi_schedule(struct napi_struct *n)
423 {
424 	if (napi_schedule_prep(n))
425 		__napi_schedule(n);
426 }
427 
428 /**
429  *	napi_schedule_irqoff - schedule NAPI poll
430  *	@n: napi context
431  *
432  * Variant of napi_schedule(), assuming hard irqs are masked.
433  */
434 static inline void napi_schedule_irqoff(struct napi_struct *n)
435 {
436 	if (napi_schedule_prep(n))
437 		__napi_schedule_irqoff(n);
438 }
439 
440 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
441 static inline bool napi_reschedule(struct napi_struct *napi)
442 {
443 	if (napi_schedule_prep(napi)) {
444 		__napi_schedule(napi);
445 		return true;
446 	}
447 	return false;
448 }
449 
450 void __napi_complete(struct napi_struct *n);
451 void napi_complete_done(struct napi_struct *n, int work_done);
452 /**
453  *	napi_complete - NAPI processing complete
454  *	@n: napi context
455  *
456  * Mark NAPI processing as complete.
457  * Consider using napi_complete_done() instead.
458  */
459 static inline void napi_complete(struct napi_struct *n)
460 {
461 	return napi_complete_done(n, 0);
462 }
463 
464 /**
465  *	napi_by_id - lookup a NAPI by napi_id
466  *	@napi_id: hashed napi_id
467  *
468  * lookup @napi_id in napi_hash table
469  * must be called under rcu_read_lock()
470  */
471 struct napi_struct *napi_by_id(unsigned int napi_id);
472 
473 /**
474  *	napi_hash_add - add a NAPI to global hashtable
475  *	@napi: napi context
476  *
477  * generate a new napi_id and store a @napi under it in napi_hash
478  */
479 void napi_hash_add(struct napi_struct *napi);
480 
481 /**
482  *	napi_hash_del - remove a NAPI from global table
483  *	@napi: napi context
484  *
485  * Warning: caller must observe rcu grace period
486  * before freeing memory containing @napi
487  */
488 void napi_hash_del(struct napi_struct *napi);
489 
490 /**
491  *	napi_disable - prevent NAPI from scheduling
492  *	@n: napi context
493  *
494  * Stop NAPI from being scheduled on this context.
495  * Waits till any outstanding processing completes.
496  */
497 void napi_disable(struct napi_struct *n);
498 
499 /**
500  *	napi_enable - enable NAPI scheduling
501  *	@n: napi context
502  *
503  * Resume NAPI from being scheduled on this context.
504  * Must be paired with napi_disable.
505  */
506 static inline void napi_enable(struct napi_struct *n)
507 {
508 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
509 	smp_mb__before_atomic();
510 	clear_bit(NAPI_STATE_SCHED, &n->state);
511 }
512 
513 #ifdef CONFIG_SMP
514 /**
515  *	napi_synchronize - wait until NAPI is not running
516  *	@n: napi context
517  *
518  * Wait until NAPI is done being scheduled on this context.
519  * Waits till any outstanding processing completes but
520  * does not disable future activations.
521  */
522 static inline void napi_synchronize(const struct napi_struct *n)
523 {
524 	while (test_bit(NAPI_STATE_SCHED, &n->state))
525 		msleep(1);
526 }
527 #else
528 # define napi_synchronize(n)	barrier()
529 #endif
530 
531 enum netdev_queue_state_t {
532 	__QUEUE_STATE_DRV_XOFF,
533 	__QUEUE_STATE_STACK_XOFF,
534 	__QUEUE_STATE_FROZEN,
535 };
536 
537 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
538 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
539 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
540 
541 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
542 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
543 					QUEUE_STATE_FROZEN)
544 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
545 					QUEUE_STATE_FROZEN)
546 
547 /*
548  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
549  * netif_tx_* functions below are used to manipulate this flag.  The
550  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
551  * queue independently.  The netif_xmit_*stopped functions below are called
552  * to check if the queue has been stopped by the driver or stack (either
553  * of the XOFF bits are set in the state).  Drivers should not need to call
554  * netif_xmit*stopped functions, they should only be using netif_tx_*.
555  */
556 
557 struct netdev_queue {
558 /*
559  * read mostly part
560  */
561 	struct net_device	*dev;
562 	struct Qdisc __rcu	*qdisc;
563 	struct Qdisc		*qdisc_sleeping;
564 #ifdef CONFIG_SYSFS
565 	struct kobject		kobj;
566 #endif
567 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
568 	int			numa_node;
569 #endif
570 /*
571  * write mostly part
572  */
573 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
574 	int			xmit_lock_owner;
575 	/*
576 	 * please use this field instead of dev->trans_start
577 	 */
578 	unsigned long		trans_start;
579 
580 	/*
581 	 * Number of TX timeouts for this queue
582 	 * (/sys/class/net/DEV/Q/trans_timeout)
583 	 */
584 	unsigned long		trans_timeout;
585 
586 	unsigned long		state;
587 
588 #ifdef CONFIG_BQL
589 	struct dql		dql;
590 #endif
591 } ____cacheline_aligned_in_smp;
592 
593 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
594 {
595 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
596 	return q->numa_node;
597 #else
598 	return NUMA_NO_NODE;
599 #endif
600 }
601 
602 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
603 {
604 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
605 	q->numa_node = node;
606 #endif
607 }
608 
609 #ifdef CONFIG_RPS
610 /*
611  * This structure holds an RPS map which can be of variable length.  The
612  * map is an array of CPUs.
613  */
614 struct rps_map {
615 	unsigned int len;
616 	struct rcu_head rcu;
617 	u16 cpus[0];
618 };
619 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
620 
621 /*
622  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
623  * tail pointer for that CPU's input queue at the time of last enqueue, and
624  * a hardware filter index.
625  */
626 struct rps_dev_flow {
627 	u16 cpu;
628 	u16 filter;
629 	unsigned int last_qtail;
630 };
631 #define RPS_NO_FILTER 0xffff
632 
633 /*
634  * The rps_dev_flow_table structure contains a table of flow mappings.
635  */
636 struct rps_dev_flow_table {
637 	unsigned int mask;
638 	struct rcu_head rcu;
639 	struct rps_dev_flow flows[0];
640 };
641 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
642     ((_num) * sizeof(struct rps_dev_flow)))
643 
644 /*
645  * The rps_sock_flow_table contains mappings of flows to the last CPU
646  * on which they were processed by the application (set in recvmsg).
647  * Each entry is a 32bit value. Upper part is the high order bits
648  * of flow hash, lower part is cpu number.
649  * rps_cpu_mask is used to partition the space, depending on number of
650  * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
651  * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
652  * meaning we use 32-6=26 bits for the hash.
653  */
654 struct rps_sock_flow_table {
655 	u32	mask;
656 
657 	u32	ents[0] ____cacheline_aligned_in_smp;
658 };
659 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
660 
661 #define RPS_NO_CPU 0xffff
662 
663 extern u32 rps_cpu_mask;
664 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
665 
666 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
667 					u32 hash)
668 {
669 	if (table && hash) {
670 		unsigned int index = hash & table->mask;
671 		u32 val = hash & ~rps_cpu_mask;
672 
673 		/* We only give a hint, preemption can change cpu under us */
674 		val |= raw_smp_processor_id();
675 
676 		if (table->ents[index] != val)
677 			table->ents[index] = val;
678 	}
679 }
680 
681 #ifdef CONFIG_RFS_ACCEL
682 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
683 			 u16 filter_id);
684 #endif
685 #endif /* CONFIG_RPS */
686 
687 /* This structure contains an instance of an RX queue. */
688 struct netdev_rx_queue {
689 #ifdef CONFIG_RPS
690 	struct rps_map __rcu		*rps_map;
691 	struct rps_dev_flow_table __rcu	*rps_flow_table;
692 #endif
693 	struct kobject			kobj;
694 	struct net_device		*dev;
695 } ____cacheline_aligned_in_smp;
696 
697 /*
698  * RX queue sysfs structures and functions.
699  */
700 struct rx_queue_attribute {
701 	struct attribute attr;
702 	ssize_t (*show)(struct netdev_rx_queue *queue,
703 	    struct rx_queue_attribute *attr, char *buf);
704 	ssize_t (*store)(struct netdev_rx_queue *queue,
705 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
706 };
707 
708 #ifdef CONFIG_XPS
709 /*
710  * This structure holds an XPS map which can be of variable length.  The
711  * map is an array of queues.
712  */
713 struct xps_map {
714 	unsigned int len;
715 	unsigned int alloc_len;
716 	struct rcu_head rcu;
717 	u16 queues[0];
718 };
719 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
720 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
721     / sizeof(u16))
722 
723 /*
724  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
725  */
726 struct xps_dev_maps {
727 	struct rcu_head rcu;
728 	struct xps_map __rcu *cpu_map[0];
729 };
730 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
731     (nr_cpu_ids * sizeof(struct xps_map *)))
732 #endif /* CONFIG_XPS */
733 
734 #define TC_MAX_QUEUE	16
735 #define TC_BITMASK	15
736 /* HW offloaded queuing disciplines txq count and offset maps */
737 struct netdev_tc_txq {
738 	u16 count;
739 	u16 offset;
740 };
741 
742 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
743 /*
744  * This structure is to hold information about the device
745  * configured to run FCoE protocol stack.
746  */
747 struct netdev_fcoe_hbainfo {
748 	char	manufacturer[64];
749 	char	serial_number[64];
750 	char	hardware_version[64];
751 	char	driver_version[64];
752 	char	optionrom_version[64];
753 	char	firmware_version[64];
754 	char	model[256];
755 	char	model_description[256];
756 };
757 #endif
758 
759 #define MAX_PHYS_ITEM_ID_LEN 32
760 
761 /* This structure holds a unique identifier to identify some
762  * physical item (port for example) used by a netdevice.
763  */
764 struct netdev_phys_item_id {
765 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
766 	unsigned char id_len;
767 };
768 
769 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
770 				       struct sk_buff *skb);
771 
772 /*
773  * This structure defines the management hooks for network devices.
774  * The following hooks can be defined; unless noted otherwise, they are
775  * optional and can be filled with a null pointer.
776  *
777  * int (*ndo_init)(struct net_device *dev);
778  *     This function is called once when network device is registered.
779  *     The network device can use this to any late stage initializaton
780  *     or semantic validattion. It can fail with an error code which will
781  *     be propogated back to register_netdev
782  *
783  * void (*ndo_uninit)(struct net_device *dev);
784  *     This function is called when device is unregistered or when registration
785  *     fails. It is not called if init fails.
786  *
787  * int (*ndo_open)(struct net_device *dev);
788  *     This function is called when network device transistions to the up
789  *     state.
790  *
791  * int (*ndo_stop)(struct net_device *dev);
792  *     This function is called when network device transistions to the down
793  *     state.
794  *
795  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
796  *                               struct net_device *dev);
797  *	Called when a packet needs to be transmitted.
798  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
799  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
800  *	Required can not be NULL.
801  *
802  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
803  *                         void *accel_priv, select_queue_fallback_t fallback);
804  *	Called to decide which queue to when device supports multiple
805  *	transmit queues.
806  *
807  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
808  *	This function is called to allow device receiver to make
809  *	changes to configuration when multicast or promiscious is enabled.
810  *
811  * void (*ndo_set_rx_mode)(struct net_device *dev);
812  *	This function is called device changes address list filtering.
813  *	If driver handles unicast address filtering, it should set
814  *	IFF_UNICAST_FLT to its priv_flags.
815  *
816  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
817  *	This function  is called when the Media Access Control address
818  *	needs to be changed. If this interface is not defined, the
819  *	mac address can not be changed.
820  *
821  * int (*ndo_validate_addr)(struct net_device *dev);
822  *	Test if Media Access Control address is valid for the device.
823  *
824  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
825  *	Called when a user request an ioctl which can't be handled by
826  *	the generic interface code. If not defined ioctl's return
827  *	not supported error code.
828  *
829  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
830  *	Used to set network devices bus interface parameters. This interface
831  *	is retained for legacy reason, new devices should use the bus
832  *	interface (PCI) for low level management.
833  *
834  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
835  *	Called when a user wants to change the Maximum Transfer Unit
836  *	of a device. If not defined, any request to change MTU will
837  *	will return an error.
838  *
839  * void (*ndo_tx_timeout)(struct net_device *dev);
840  *	Callback uses when the transmitter has not made any progress
841  *	for dev->watchdog ticks.
842  *
843  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
844  *                      struct rtnl_link_stats64 *storage);
845  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
846  *	Called when a user wants to get the network device usage
847  *	statistics. Drivers must do one of the following:
848  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
849  *	   rtnl_link_stats64 structure passed by the caller.
850  *	2. Define @ndo_get_stats to update a net_device_stats structure
851  *	   (which should normally be dev->stats) and return a pointer to
852  *	   it. The structure may be changed asynchronously only if each
853  *	   field is written atomically.
854  *	3. Update dev->stats asynchronously and atomically, and define
855  *	   neither operation.
856  *
857  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
858  *	If device support VLAN filtering this function is called when a
859  *	VLAN id is registered.
860  *
861  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
862  *	If device support VLAN filtering this function is called when a
863  *	VLAN id is unregistered.
864  *
865  * void (*ndo_poll_controller)(struct net_device *dev);
866  *
867  *	SR-IOV management functions.
868  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
869  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
870  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
871  *			  int max_tx_rate);
872  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
873  * int (*ndo_get_vf_config)(struct net_device *dev,
874  *			    int vf, struct ifla_vf_info *ivf);
875  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
876  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
877  *			  struct nlattr *port[]);
878  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
879  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
880  * 	Called to setup 'tc' number of traffic classes in the net device. This
881  * 	is always called from the stack with the rtnl lock held and netif tx
882  * 	queues stopped. This allows the netdevice to perform queue management
883  * 	safely.
884  *
885  *	Fiber Channel over Ethernet (FCoE) offload functions.
886  * int (*ndo_fcoe_enable)(struct net_device *dev);
887  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
888  *	so the underlying device can perform whatever needed configuration or
889  *	initialization to support acceleration of FCoE traffic.
890  *
891  * int (*ndo_fcoe_disable)(struct net_device *dev);
892  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
893  *	so the underlying device can perform whatever needed clean-ups to
894  *	stop supporting acceleration of FCoE traffic.
895  *
896  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
897  *			     struct scatterlist *sgl, unsigned int sgc);
898  *	Called when the FCoE Initiator wants to initialize an I/O that
899  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
900  *	perform necessary setup and returns 1 to indicate the device is set up
901  *	successfully to perform DDP on this I/O, otherwise this returns 0.
902  *
903  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
904  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
905  *	indicated by the FC exchange id 'xid', so the underlying device can
906  *	clean up and reuse resources for later DDP requests.
907  *
908  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
909  *			      struct scatterlist *sgl, unsigned int sgc);
910  *	Called when the FCoE Target wants to initialize an I/O that
911  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
912  *	perform necessary setup and returns 1 to indicate the device is set up
913  *	successfully to perform DDP on this I/O, otherwise this returns 0.
914  *
915  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
916  *			       struct netdev_fcoe_hbainfo *hbainfo);
917  *	Called when the FCoE Protocol stack wants information on the underlying
918  *	device. This information is utilized by the FCoE protocol stack to
919  *	register attributes with Fiber Channel management service as per the
920  *	FC-GS Fabric Device Management Information(FDMI) specification.
921  *
922  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
923  *	Called when the underlying device wants to override default World Wide
924  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
925  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
926  *	protocol stack to use.
927  *
928  *	RFS acceleration.
929  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
930  *			    u16 rxq_index, u32 flow_id);
931  *	Set hardware filter for RFS.  rxq_index is the target queue index;
932  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
933  *	Return the filter ID on success, or a negative error code.
934  *
935  *	Slave management functions (for bridge, bonding, etc).
936  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
937  *	Called to make another netdev an underling.
938  *
939  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
940  *	Called to release previously enslaved netdev.
941  *
942  *      Feature/offload setting functions.
943  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
944  *		netdev_features_t features);
945  *	Adjusts the requested feature flags according to device-specific
946  *	constraints, and returns the resulting flags. Must not modify
947  *	the device state.
948  *
949  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
950  *	Called to update device configuration to new features. Passed
951  *	feature set might be less than what was returned by ndo_fix_features()).
952  *	Must return >0 or -errno if it changed dev->features itself.
953  *
954  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
955  *		      struct net_device *dev,
956  *		      const unsigned char *addr, u16 vid, u16 flags)
957  *	Adds an FDB entry to dev for addr.
958  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
959  *		      struct net_device *dev,
960  *		      const unsigned char *addr, u16 vid)
961  *	Deletes the FDB entry from dev coresponding to addr.
962  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
963  *		       struct net_device *dev, struct net_device *filter_dev,
964  *		       int idx)
965  *	Used to add FDB entries to dump requests. Implementers should add
966  *	entries to skb and update idx with the number of entries.
967  *
968  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
969  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
970  *			     struct net_device *dev, u32 filter_mask)
971  *
972  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
973  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
974  *	which do not represent real hardware may define this to allow their
975  *	userspace components to manage their virtual carrier state. Devices
976  *	that determine carrier state from physical hardware properties (eg
977  *	network cables) or protocol-dependent mechanisms (eg
978  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
979  *
980  * int (*ndo_get_phys_port_id)(struct net_device *dev,
981  *			       struct netdev_phys_item_id *ppid);
982  *	Called to get ID of physical port of this device. If driver does
983  *	not implement this, it is assumed that the hw is not able to have
984  *	multiple net devices on single physical port.
985  *
986  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
987  *			      sa_family_t sa_family, __be16 port);
988  *	Called by vxlan to notiy a driver about the UDP port and socket
989  *	address family that vxlan is listnening to. It is called only when
990  *	a new port starts listening. The operation is protected by the
991  *	vxlan_net->sock_lock.
992  *
993  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
994  *			      sa_family_t sa_family, __be16 port);
995  *	Called by vxlan to notify the driver about a UDP port and socket
996  *	address family that vxlan is not listening to anymore. The operation
997  *	is protected by the vxlan_net->sock_lock.
998  *
999  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1000  *				 struct net_device *dev)
1001  *	Called by upper layer devices to accelerate switching or other
1002  *	station functionality into hardware. 'pdev is the lowerdev
1003  *	to use for the offload and 'dev' is the net device that will
1004  *	back the offload. Returns a pointer to the private structure
1005  *	the upper layer will maintain.
1006  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1007  *	Called by upper layer device to delete the station created
1008  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1009  *	the station and priv is the structure returned by the add
1010  *	operation.
1011  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1012  *				      struct net_device *dev,
1013  *				      void *priv);
1014  *	Callback to use for xmit over the accelerated station. This
1015  *	is used in place of ndo_start_xmit on accelerated net
1016  *	devices.
1017  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1018  *					    struct net_device *dev
1019  *					    netdev_features_t features);
1020  *	Called by core transmit path to determine if device is capable of
1021  *	performing offload operations on a given packet. This is to give
1022  *	the device an opportunity to implement any restrictions that cannot
1023  *	be otherwise expressed by feature flags. The check is called with
1024  *	the set of features that the stack has calculated and it returns
1025  *	those the driver believes to be appropriate.
1026  *
1027  * int (*ndo_switch_parent_id_get)(struct net_device *dev,
1028  *				   struct netdev_phys_item_id *psid);
1029  *	Called to get an ID of the switch chip this port is part of.
1030  *	If driver implements this, it indicates that it represents a port
1031  *	of a switch chip.
1032  * int (*ndo_switch_port_stp_update)(struct net_device *dev, u8 state);
1033  *	Called to notify switch device port of bridge port STP
1034  *	state change.
1035  */
1036 struct net_device_ops {
1037 	int			(*ndo_init)(struct net_device *dev);
1038 	void			(*ndo_uninit)(struct net_device *dev);
1039 	int			(*ndo_open)(struct net_device *dev);
1040 	int			(*ndo_stop)(struct net_device *dev);
1041 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1042 						   struct net_device *dev);
1043 	u16			(*ndo_select_queue)(struct net_device *dev,
1044 						    struct sk_buff *skb,
1045 						    void *accel_priv,
1046 						    select_queue_fallback_t fallback);
1047 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1048 						       int flags);
1049 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1050 	int			(*ndo_set_mac_address)(struct net_device *dev,
1051 						       void *addr);
1052 	int			(*ndo_validate_addr)(struct net_device *dev);
1053 	int			(*ndo_do_ioctl)(struct net_device *dev,
1054 					        struct ifreq *ifr, int cmd);
1055 	int			(*ndo_set_config)(struct net_device *dev,
1056 					          struct ifmap *map);
1057 	int			(*ndo_change_mtu)(struct net_device *dev,
1058 						  int new_mtu);
1059 	int			(*ndo_neigh_setup)(struct net_device *dev,
1060 						   struct neigh_parms *);
1061 	void			(*ndo_tx_timeout) (struct net_device *dev);
1062 
1063 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1064 						     struct rtnl_link_stats64 *storage);
1065 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1066 
1067 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1068 						       __be16 proto, u16 vid);
1069 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1070 						        __be16 proto, u16 vid);
1071 #ifdef CONFIG_NET_POLL_CONTROLLER
1072 	void                    (*ndo_poll_controller)(struct net_device *dev);
1073 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1074 						     struct netpoll_info *info);
1075 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1076 #endif
1077 #ifdef CONFIG_NET_RX_BUSY_POLL
1078 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1079 #endif
1080 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1081 						  int queue, u8 *mac);
1082 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1083 						   int queue, u16 vlan, u8 qos);
1084 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1085 						   int vf, int min_tx_rate,
1086 						   int max_tx_rate);
1087 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1088 						       int vf, bool setting);
1089 	int			(*ndo_get_vf_config)(struct net_device *dev,
1090 						     int vf,
1091 						     struct ifla_vf_info *ivf);
1092 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1093 							 int vf, int link_state);
1094 	int			(*ndo_set_vf_port)(struct net_device *dev,
1095 						   int vf,
1096 						   struct nlattr *port[]);
1097 	int			(*ndo_get_vf_port)(struct net_device *dev,
1098 						   int vf, struct sk_buff *skb);
1099 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1100 #if IS_ENABLED(CONFIG_FCOE)
1101 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1102 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1103 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1104 						      u16 xid,
1105 						      struct scatterlist *sgl,
1106 						      unsigned int sgc);
1107 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1108 						     u16 xid);
1109 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1110 						       u16 xid,
1111 						       struct scatterlist *sgl,
1112 						       unsigned int sgc);
1113 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1114 							struct netdev_fcoe_hbainfo *hbainfo);
1115 #endif
1116 
1117 #if IS_ENABLED(CONFIG_LIBFCOE)
1118 #define NETDEV_FCOE_WWNN 0
1119 #define NETDEV_FCOE_WWPN 1
1120 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1121 						    u64 *wwn, int type);
1122 #endif
1123 
1124 #ifdef CONFIG_RFS_ACCEL
1125 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1126 						     const struct sk_buff *skb,
1127 						     u16 rxq_index,
1128 						     u32 flow_id);
1129 #endif
1130 	int			(*ndo_add_slave)(struct net_device *dev,
1131 						 struct net_device *slave_dev);
1132 	int			(*ndo_del_slave)(struct net_device *dev,
1133 						 struct net_device *slave_dev);
1134 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1135 						    netdev_features_t features);
1136 	int			(*ndo_set_features)(struct net_device *dev,
1137 						    netdev_features_t features);
1138 	int			(*ndo_neigh_construct)(struct neighbour *n);
1139 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1140 
1141 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1142 					       struct nlattr *tb[],
1143 					       struct net_device *dev,
1144 					       const unsigned char *addr,
1145 					       u16 vid,
1146 					       u16 flags);
1147 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1148 					       struct nlattr *tb[],
1149 					       struct net_device *dev,
1150 					       const unsigned char *addr,
1151 					       u16 vid);
1152 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1153 						struct netlink_callback *cb,
1154 						struct net_device *dev,
1155 						struct net_device *filter_dev,
1156 						int idx);
1157 
1158 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1159 						      struct nlmsghdr *nlh,
1160 						      u16 flags);
1161 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1162 						      u32 pid, u32 seq,
1163 						      struct net_device *dev,
1164 						      u32 filter_mask);
1165 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1166 						      struct nlmsghdr *nlh,
1167 						      u16 flags);
1168 	int			(*ndo_change_carrier)(struct net_device *dev,
1169 						      bool new_carrier);
1170 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1171 							struct netdev_phys_item_id *ppid);
1172 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1173 						      sa_family_t sa_family,
1174 						      __be16 port);
1175 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1176 						      sa_family_t sa_family,
1177 						      __be16 port);
1178 
1179 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1180 							struct net_device *dev);
1181 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1182 							void *priv);
1183 
1184 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1185 							struct net_device *dev,
1186 							void *priv);
1187 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1188 	netdev_features_t	(*ndo_features_check) (struct sk_buff *skb,
1189 						       struct net_device *dev,
1190 						       netdev_features_t features);
1191 #ifdef CONFIG_NET_SWITCHDEV
1192 	int			(*ndo_switch_parent_id_get)(struct net_device *dev,
1193 							    struct netdev_phys_item_id *psid);
1194 	int			(*ndo_switch_port_stp_update)(struct net_device *dev,
1195 							      u8 state);
1196 #endif
1197 };
1198 
1199 /**
1200  * enum net_device_priv_flags - &struct net_device priv_flags
1201  *
1202  * These are the &struct net_device, they are only set internally
1203  * by drivers and used in the kernel. These flags are invisible to
1204  * userspace, this means that the order of these flags can change
1205  * during any kernel release.
1206  *
1207  * You should have a pretty good reason to be extending these flags.
1208  *
1209  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1210  * @IFF_EBRIDGE: Ethernet bridging device
1211  * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1212  * @IFF_MASTER_8023AD: bonding master, 802.3ad
1213  * @IFF_MASTER_ALB: bonding master, balance-alb
1214  * @IFF_BONDING: bonding master or slave
1215  * @IFF_SLAVE_NEEDARP: need ARPs for validation
1216  * @IFF_ISATAP: ISATAP interface (RFC4214)
1217  * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1218  * @IFF_WAN_HDLC: WAN HDLC device
1219  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1220  *	release skb->dst
1221  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1222  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1223  * @IFF_MACVLAN_PORT: device used as macvlan port
1224  * @IFF_BRIDGE_PORT: device used as bridge port
1225  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1226  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1227  * @IFF_UNICAST_FLT: Supports unicast filtering
1228  * @IFF_TEAM_PORT: device used as team port
1229  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1230  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1231  *	change when it's running
1232  * @IFF_MACVLAN: Macvlan device
1233  */
1234 enum netdev_priv_flags {
1235 	IFF_802_1Q_VLAN			= 1<<0,
1236 	IFF_EBRIDGE			= 1<<1,
1237 	IFF_SLAVE_INACTIVE		= 1<<2,
1238 	IFF_MASTER_8023AD		= 1<<3,
1239 	IFF_MASTER_ALB			= 1<<4,
1240 	IFF_BONDING			= 1<<5,
1241 	IFF_SLAVE_NEEDARP		= 1<<6,
1242 	IFF_ISATAP			= 1<<7,
1243 	IFF_MASTER_ARPMON		= 1<<8,
1244 	IFF_WAN_HDLC			= 1<<9,
1245 	IFF_XMIT_DST_RELEASE		= 1<<10,
1246 	IFF_DONT_BRIDGE			= 1<<11,
1247 	IFF_DISABLE_NETPOLL		= 1<<12,
1248 	IFF_MACVLAN_PORT		= 1<<13,
1249 	IFF_BRIDGE_PORT			= 1<<14,
1250 	IFF_OVS_DATAPATH		= 1<<15,
1251 	IFF_TX_SKB_SHARING		= 1<<16,
1252 	IFF_UNICAST_FLT			= 1<<17,
1253 	IFF_TEAM_PORT			= 1<<18,
1254 	IFF_SUPP_NOFCS			= 1<<19,
1255 	IFF_LIVE_ADDR_CHANGE		= 1<<20,
1256 	IFF_MACVLAN			= 1<<21,
1257 	IFF_XMIT_DST_RELEASE_PERM	= 1<<22,
1258 	IFF_IPVLAN_MASTER		= 1<<23,
1259 	IFF_IPVLAN_SLAVE		= 1<<24,
1260 };
1261 
1262 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1263 #define IFF_EBRIDGE			IFF_EBRIDGE
1264 #define IFF_SLAVE_INACTIVE		IFF_SLAVE_INACTIVE
1265 #define IFF_MASTER_8023AD		IFF_MASTER_8023AD
1266 #define IFF_MASTER_ALB			IFF_MASTER_ALB
1267 #define IFF_BONDING			IFF_BONDING
1268 #define IFF_SLAVE_NEEDARP		IFF_SLAVE_NEEDARP
1269 #define IFF_ISATAP			IFF_ISATAP
1270 #define IFF_MASTER_ARPMON		IFF_MASTER_ARPMON
1271 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1272 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1273 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1274 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1275 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1276 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1277 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1278 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1279 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1280 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1281 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1282 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1283 #define IFF_MACVLAN			IFF_MACVLAN
1284 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1285 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1286 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1287 
1288 /**
1289  *	struct net_device - The DEVICE structure.
1290  *		Actually, this whole structure is a big mistake.  It mixes I/O
1291  *		data with strictly "high-level" data, and it has to know about
1292  *		almost every data structure used in the INET module.
1293  *
1294  *	@name:	This is the first field of the "visible" part of this structure
1295  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1296  *	 	of the interface.
1297  *
1298  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1299  *	@ifalias:	SNMP alias
1300  *	@mem_end:	Shared memory end
1301  *	@mem_start:	Shared memory start
1302  *	@base_addr:	Device I/O address
1303  *	@irq:		Device IRQ number
1304  *
1305  *	@state:		Generic network queuing layer state, see netdev_state_t
1306  *	@dev_list:	The global list of network devices
1307  *	@napi_list:	List entry, that is used for polling napi devices
1308  *	@unreg_list:	List entry, that is used, when we are unregistering the
1309  *			device, see the function unregister_netdev
1310  *	@close_list:	List entry, that is used, when we are closing the device
1311  *
1312  *	@adj_list:	Directly linked devices, like slaves for bonding
1313  *	@all_adj_list:	All linked devices, *including* neighbours
1314  *	@features:	Currently active device features
1315  *	@hw_features:	User-changeable features
1316  *
1317  *	@wanted_features:	User-requested features
1318  *	@vlan_features:		Mask of features inheritable by VLAN devices
1319  *
1320  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1321  *				This field indicates what encapsulation
1322  *				offloads the hardware is capable of doing,
1323  *				and drivers will need to set them appropriately.
1324  *
1325  *	@mpls_features:	Mask of features inheritable by MPLS
1326  *
1327  *	@ifindex:	interface index
1328  *	@iflink:	unique device identifier
1329  *
1330  *	@stats:		Statistics struct, which was left as a legacy, use
1331  *			rtnl_link_stats64 instead
1332  *
1333  *	@rx_dropped:	Dropped packets by core network,
1334  *			do not use this in drivers
1335  *	@tx_dropped:	Dropped packets by core network,
1336  *			do not use this in drivers
1337  *
1338  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1339  *
1340  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1341  *				instead of ioctl,
1342  *				see <net/iw_handler.h> for details.
1343  *	@wireless_data:	Instance data managed by the core of wireless extensions
1344  *
1345  *	@netdev_ops:	Includes several pointers to callbacks,
1346  *			if one wants to override the ndo_*() functions
1347  *	@ethtool_ops:	Management operations
1348  *	@fwd_ops:	Management operations
1349  *	@header_ops:	Includes callbacks for creating,parsing,rebuilding,etc
1350  *			of Layer 2 headers.
1351  *
1352  *	@flags:		Interface flags (a la BSD)
1353  *	@priv_flags:	Like 'flags' but invisible to userspace,
1354  *			see if.h for the definitions
1355  *	@gflags:	Global flags ( kept as legacy )
1356  *	@padded:	How much padding added by alloc_netdev()
1357  *	@operstate:	RFC2863 operstate
1358  *	@link_mode:	Mapping policy to operstate
1359  *	@if_port:	Selectable AUI, TP, ...
1360  *	@dma:		DMA channel
1361  *	@mtu:		Interface MTU value
1362  *	@type:		Interface hardware type
1363  *	@hard_header_len: Hardware header length
1364  *
1365  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1366  *			  cases can this be guaranteed
1367  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1368  *			  cases can this be guaranteed. Some cases also use
1369  *			  LL_MAX_HEADER instead to allocate the skb
1370  *
1371  *	interface address info:
1372  *
1373  * 	@perm_addr:		Permanent hw address
1374  * 	@addr_assign_type:	Hw address assignment type
1375  * 	@addr_len:		Hardware address length
1376  * 	@neigh_priv_len;	Used in neigh_alloc(),
1377  * 				initialized only in atm/clip.c
1378  * 	@dev_id:		Used to differentiate devices that share
1379  * 				the same link layer address
1380  * 	@dev_port:		Used to differentiate devices that share
1381  * 				the same function
1382  *	@addr_list_lock:	XXX: need comments on this one
1383  *	@uc:			unicast mac addresses
1384  *	@mc:			multicast mac addresses
1385  *	@dev_addrs:		list of device hw addresses
1386  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1387  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1388  *				has been enabled due to the need to listen to
1389  *				additional unicast addresses in a device that
1390  *				does not implement ndo_set_rx_mode()
1391  *	@promiscuity:		Number of times, the NIC is told to work in
1392  *				Promiscuous mode, if it becomes 0 the NIC will
1393  *				exit from working in Promiscuous mode
1394  *	@allmulti:		Counter, enables or disables allmulticast mode
1395  *
1396  *	@vlan_info:	VLAN info
1397  *	@dsa_ptr:	dsa specific data
1398  *	@tipc_ptr:	TIPC specific data
1399  *	@atalk_ptr:	AppleTalk link
1400  *	@ip_ptr:	IPv4 specific data
1401  *	@dn_ptr:	DECnet specific data
1402  *	@ip6_ptr:	IPv6 specific data
1403  *	@ax25_ptr:	AX.25 specific data
1404  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1405  *
1406  *	@last_rx:	Time of last Rx
1407  *	@dev_addr:	Hw address (before bcast,
1408  *			because most packets are unicast)
1409  *
1410  *	@_rx:			Array of RX queues
1411  *	@num_rx_queues:		Number of RX queues
1412  *				allocated at register_netdev() time
1413  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1414  *
1415  *	@rx_handler:		handler for received packets
1416  *	@rx_handler_data: 	XXX: need comments on this one
1417  *	@ingress_queue:		XXX: need comments on this one
1418  *	@broadcast:		hw bcast address
1419  *
1420  *	@_tx:			Array of TX queues
1421  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1422  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1423  *	@qdisc:			Root qdisc from userspace point of view
1424  *	@tx_queue_len:		Max frames per queue allowed
1425  *	@tx_global_lock: 	XXX: need comments on this one
1426  *
1427  *	@xps_maps:	XXX: need comments on this one
1428  *
1429  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1430  *			indexed by RX queue number. Assigned by driver.
1431  *			This must only be set if the ndo_rx_flow_steer
1432  *			operation is defined
1433  *
1434  *	@trans_start:		Time (in jiffies) of last Tx
1435  *	@watchdog_timeo:	Represents the timeout that is used by
1436  *				the watchdog ( see dev_watchdog() )
1437  *	@watchdog_timer:	List of timers
1438  *
1439  *	@pcpu_refcnt:		Number of references to this device
1440  *	@todo_list:		Delayed register/unregister
1441  *	@index_hlist:		Device index hash chain
1442  *	@link_watch_list:	XXX: need comments on this one
1443  *
1444  *	@reg_state:		Register/unregister state machine
1445  *	@dismantle:		Device is going to be freed
1446  *	@rtnl_link_state:	This enum represents the phases of creating
1447  *				a new link
1448  *
1449  *	@destructor:		Called from unregister,
1450  *				can be used to call free_netdev
1451  *	@npinfo:		XXX: need comments on this one
1452  * 	@nd_net:		Network namespace this network device is inside
1453  *
1454  * 	@ml_priv:	Mid-layer private
1455  * 	@lstats:	Loopback statistics
1456  * 	@tstats:	Tunnel statistics
1457  * 	@dstats:	Dummy statistics
1458  * 	@vstats:	Virtual ethernet statistics
1459  *
1460  *	@garp_port:	GARP
1461  *	@mrp_port:	MRP
1462  *
1463  *	@dev:		Class/net/name entry
1464  *	@sysfs_groups:	Space for optional device, statistics and wireless
1465  *			sysfs groups
1466  *
1467  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1468  *	@rtnl_link_ops:	Rtnl_link_ops
1469  *
1470  *	@gso_max_size:	Maximum size of generic segmentation offload
1471  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1472  *			NIC for GSO
1473  *	@gso_min_segs:	Minimum number of segments that can be passed to the
1474  *			NIC for GSO
1475  *
1476  *	@dcbnl_ops:	Data Center Bridging netlink ops
1477  *	@num_tc:	Number of traffic classes in the net device
1478  *	@tc_to_txq:	XXX: need comments on this one
1479  *	@prio_tc_map	XXX: need comments on this one
1480  *
1481  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1482  *
1483  *	@priomap:	XXX: need comments on this one
1484  *	@phydev:	Physical device may attach itself
1485  *			for hardware timestamping
1486  *
1487  *	@qdisc_tx_busylock:	XXX: need comments on this one
1488  *
1489  *	@group:		The group, that the device belongs to
1490  *	@pm_qos_req:	Power Management QoS object
1491  *
1492  *	FIXME: cleanup struct net_device such that network protocol info
1493  *	moves out.
1494  */
1495 
1496 struct net_device {
1497 	char			name[IFNAMSIZ];
1498 	struct hlist_node	name_hlist;
1499 	char 			*ifalias;
1500 	/*
1501 	 *	I/O specific fields
1502 	 *	FIXME: Merge these and struct ifmap into one
1503 	 */
1504 	unsigned long		mem_end;
1505 	unsigned long		mem_start;
1506 	unsigned long		base_addr;
1507 	int			irq;
1508 
1509 	/*
1510 	 *	Some hardware also needs these fields (state,dev_list,
1511 	 *	napi_list,unreg_list,close_list) but they are not
1512 	 *	part of the usual set specified in Space.c.
1513 	 */
1514 
1515 	unsigned long		state;
1516 
1517 	struct list_head	dev_list;
1518 	struct list_head	napi_list;
1519 	struct list_head	unreg_list;
1520 	struct list_head	close_list;
1521 	struct list_head	ptype_all;
1522 	struct list_head	ptype_specific;
1523 
1524 	struct {
1525 		struct list_head upper;
1526 		struct list_head lower;
1527 	} adj_list;
1528 
1529 	struct {
1530 		struct list_head upper;
1531 		struct list_head lower;
1532 	} all_adj_list;
1533 
1534 	netdev_features_t	features;
1535 	netdev_features_t	hw_features;
1536 	netdev_features_t	wanted_features;
1537 	netdev_features_t	vlan_features;
1538 	netdev_features_t	hw_enc_features;
1539 	netdev_features_t	mpls_features;
1540 
1541 	int			ifindex;
1542 	int			iflink;
1543 
1544 	struct net_device_stats	stats;
1545 
1546 	atomic_long_t		rx_dropped;
1547 	atomic_long_t		tx_dropped;
1548 
1549 	atomic_t		carrier_changes;
1550 
1551 #ifdef CONFIG_WIRELESS_EXT
1552 	const struct iw_handler_def *	wireless_handlers;
1553 	struct iw_public_data *	wireless_data;
1554 #endif
1555 	const struct net_device_ops *netdev_ops;
1556 	const struct ethtool_ops *ethtool_ops;
1557 	const struct forwarding_accel_ops *fwd_ops;
1558 
1559 	const struct header_ops *header_ops;
1560 
1561 	unsigned int		flags;
1562 	unsigned int		priv_flags;
1563 
1564 	unsigned short		gflags;
1565 	unsigned short		padded;
1566 
1567 	unsigned char		operstate;
1568 	unsigned char		link_mode;
1569 
1570 	unsigned char		if_port;
1571 	unsigned char		dma;
1572 
1573 	unsigned int		mtu;
1574 	unsigned short		type;
1575 	unsigned short		hard_header_len;
1576 
1577 	unsigned short		needed_headroom;
1578 	unsigned short		needed_tailroom;
1579 
1580 	/* Interface address info. */
1581 	unsigned char		perm_addr[MAX_ADDR_LEN];
1582 	unsigned char		addr_assign_type;
1583 	unsigned char		addr_len;
1584 	unsigned short		neigh_priv_len;
1585 	unsigned short          dev_id;
1586 	unsigned short          dev_port;
1587 	spinlock_t		addr_list_lock;
1588 	struct netdev_hw_addr_list	uc;
1589 	struct netdev_hw_addr_list	mc;
1590 	struct netdev_hw_addr_list	dev_addrs;
1591 
1592 #ifdef CONFIG_SYSFS
1593 	struct kset		*queues_kset;
1594 #endif
1595 
1596 	unsigned char		name_assign_type;
1597 
1598 	bool			uc_promisc;
1599 	unsigned int		promiscuity;
1600 	unsigned int		allmulti;
1601 
1602 
1603 	/* Protocol specific pointers */
1604 
1605 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1606 	struct vlan_info __rcu	*vlan_info;
1607 #endif
1608 #if IS_ENABLED(CONFIG_NET_DSA)
1609 	struct dsa_switch_tree	*dsa_ptr;
1610 #endif
1611 #if IS_ENABLED(CONFIG_TIPC)
1612 	struct tipc_bearer __rcu *tipc_ptr;
1613 #endif
1614 	void 			*atalk_ptr;
1615 	struct in_device __rcu	*ip_ptr;
1616 	struct dn_dev __rcu     *dn_ptr;
1617 	struct inet6_dev __rcu	*ip6_ptr;
1618 	void			*ax25_ptr;
1619 	struct wireless_dev	*ieee80211_ptr;
1620 	struct wpan_dev		*ieee802154_ptr;
1621 
1622 /*
1623  * Cache lines mostly used on receive path (including eth_type_trans())
1624  */
1625 	unsigned long		last_rx;
1626 
1627 	/* Interface address info used in eth_type_trans() */
1628 	unsigned char		*dev_addr;
1629 
1630 
1631 #ifdef CONFIG_SYSFS
1632 	struct netdev_rx_queue	*_rx;
1633 
1634 	unsigned int		num_rx_queues;
1635 	unsigned int		real_num_rx_queues;
1636 
1637 #endif
1638 
1639 	unsigned long		gro_flush_timeout;
1640 	rx_handler_func_t __rcu	*rx_handler;
1641 	void __rcu		*rx_handler_data;
1642 
1643 	struct netdev_queue __rcu *ingress_queue;
1644 	unsigned char		broadcast[MAX_ADDR_LEN];
1645 
1646 
1647 /*
1648  * Cache lines mostly used on transmit path
1649  */
1650 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1651 	unsigned int		num_tx_queues;
1652 	unsigned int		real_num_tx_queues;
1653 	struct Qdisc		*qdisc;
1654 	unsigned long		tx_queue_len;
1655 	spinlock_t		tx_global_lock;
1656 
1657 #ifdef CONFIG_XPS
1658 	struct xps_dev_maps __rcu *xps_maps;
1659 #endif
1660 #ifdef CONFIG_RFS_ACCEL
1661 	struct cpu_rmap		*rx_cpu_rmap;
1662 #endif
1663 
1664 	/* These may be needed for future network-power-down code. */
1665 
1666 	/*
1667 	 * trans_start here is expensive for high speed devices on SMP,
1668 	 * please use netdev_queue->trans_start instead.
1669 	 */
1670 	unsigned long		trans_start;
1671 
1672 	int			watchdog_timeo;
1673 	struct timer_list	watchdog_timer;
1674 
1675 	int __percpu		*pcpu_refcnt;
1676 	struct list_head	todo_list;
1677 
1678 	struct hlist_node	index_hlist;
1679 	struct list_head	link_watch_list;
1680 
1681 	enum { NETREG_UNINITIALIZED=0,
1682 	       NETREG_REGISTERED,	/* completed register_netdevice */
1683 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1684 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1685 	       NETREG_RELEASED,		/* called free_netdev */
1686 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1687 	} reg_state:8;
1688 
1689 	bool dismantle;
1690 
1691 	enum {
1692 		RTNL_LINK_INITIALIZED,
1693 		RTNL_LINK_INITIALIZING,
1694 	} rtnl_link_state:16;
1695 
1696 	void (*destructor)(struct net_device *dev);
1697 
1698 #ifdef CONFIG_NETPOLL
1699 	struct netpoll_info __rcu	*npinfo;
1700 #endif
1701 
1702 #ifdef CONFIG_NET_NS
1703 	struct net		*nd_net;
1704 #endif
1705 
1706 	/* mid-layer private */
1707 	union {
1708 		void					*ml_priv;
1709 		struct pcpu_lstats __percpu		*lstats;
1710 		struct pcpu_sw_netstats __percpu	*tstats;
1711 		struct pcpu_dstats __percpu		*dstats;
1712 		struct pcpu_vstats __percpu		*vstats;
1713 	};
1714 
1715 	struct garp_port __rcu	*garp_port;
1716 	struct mrp_port __rcu	*mrp_port;
1717 
1718 	struct device	dev;
1719 	const struct attribute_group *sysfs_groups[4];
1720 	const struct attribute_group *sysfs_rx_queue_group;
1721 
1722 	const struct rtnl_link_ops *rtnl_link_ops;
1723 
1724 	/* for setting kernel sock attribute on TCP connection setup */
1725 #define GSO_MAX_SIZE		65536
1726 	unsigned int		gso_max_size;
1727 #define GSO_MAX_SEGS		65535
1728 	u16			gso_max_segs;
1729 	u16			gso_min_segs;
1730 #ifdef CONFIG_DCB
1731 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1732 #endif
1733 	u8 num_tc;
1734 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1735 	u8 prio_tc_map[TC_BITMASK + 1];
1736 
1737 #if IS_ENABLED(CONFIG_FCOE)
1738 	unsigned int		fcoe_ddp_xid;
1739 #endif
1740 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1741 	struct netprio_map __rcu *priomap;
1742 #endif
1743 	struct phy_device *phydev;
1744 	struct lock_class_key *qdisc_tx_busylock;
1745 	int group;
1746 	struct pm_qos_request	pm_qos_req;
1747 };
1748 #define to_net_dev(d) container_of(d, struct net_device, dev)
1749 
1750 #define	NETDEV_ALIGN		32
1751 
1752 static inline
1753 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1754 {
1755 	return dev->prio_tc_map[prio & TC_BITMASK];
1756 }
1757 
1758 static inline
1759 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1760 {
1761 	if (tc >= dev->num_tc)
1762 		return -EINVAL;
1763 
1764 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1765 	return 0;
1766 }
1767 
1768 static inline
1769 void netdev_reset_tc(struct net_device *dev)
1770 {
1771 	dev->num_tc = 0;
1772 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1773 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1774 }
1775 
1776 static inline
1777 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1778 {
1779 	if (tc >= dev->num_tc)
1780 		return -EINVAL;
1781 
1782 	dev->tc_to_txq[tc].count = count;
1783 	dev->tc_to_txq[tc].offset = offset;
1784 	return 0;
1785 }
1786 
1787 static inline
1788 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1789 {
1790 	if (num_tc > TC_MAX_QUEUE)
1791 		return -EINVAL;
1792 
1793 	dev->num_tc = num_tc;
1794 	return 0;
1795 }
1796 
1797 static inline
1798 int netdev_get_num_tc(struct net_device *dev)
1799 {
1800 	return dev->num_tc;
1801 }
1802 
1803 static inline
1804 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1805 					 unsigned int index)
1806 {
1807 	return &dev->_tx[index];
1808 }
1809 
1810 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1811 						    const struct sk_buff *skb)
1812 {
1813 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1814 }
1815 
1816 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1817 					    void (*f)(struct net_device *,
1818 						      struct netdev_queue *,
1819 						      void *),
1820 					    void *arg)
1821 {
1822 	unsigned int i;
1823 
1824 	for (i = 0; i < dev->num_tx_queues; i++)
1825 		f(dev, &dev->_tx[i], arg);
1826 }
1827 
1828 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1829 				    struct sk_buff *skb,
1830 				    void *accel_priv);
1831 
1832 /*
1833  * Net namespace inlines
1834  */
1835 static inline
1836 struct net *dev_net(const struct net_device *dev)
1837 {
1838 	return read_pnet(&dev->nd_net);
1839 }
1840 
1841 static inline
1842 void dev_net_set(struct net_device *dev, struct net *net)
1843 {
1844 #ifdef CONFIG_NET_NS
1845 	release_net(dev->nd_net);
1846 	dev->nd_net = hold_net(net);
1847 #endif
1848 }
1849 
1850 static inline bool netdev_uses_dsa(struct net_device *dev)
1851 {
1852 #if IS_ENABLED(CONFIG_NET_DSA)
1853 	if (dev->dsa_ptr != NULL)
1854 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1855 #endif
1856 	return false;
1857 }
1858 
1859 /**
1860  *	netdev_priv - access network device private data
1861  *	@dev: network device
1862  *
1863  * Get network device private data
1864  */
1865 static inline void *netdev_priv(const struct net_device *dev)
1866 {
1867 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1868 }
1869 
1870 /* Set the sysfs physical device reference for the network logical device
1871  * if set prior to registration will cause a symlink during initialization.
1872  */
1873 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1874 
1875 /* Set the sysfs device type for the network logical device to allow
1876  * fine-grained identification of different network device types. For
1877  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1878  */
1879 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1880 
1881 /* Default NAPI poll() weight
1882  * Device drivers are strongly advised to not use bigger value
1883  */
1884 #define NAPI_POLL_WEIGHT 64
1885 
1886 /**
1887  *	netif_napi_add - initialize a napi context
1888  *	@dev:  network device
1889  *	@napi: napi context
1890  *	@poll: polling function
1891  *	@weight: default weight
1892  *
1893  * netif_napi_add() must be used to initialize a napi context prior to calling
1894  * *any* of the other napi related functions.
1895  */
1896 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1897 		    int (*poll)(struct napi_struct *, int), int weight);
1898 
1899 /**
1900  *  netif_napi_del - remove a napi context
1901  *  @napi: napi context
1902  *
1903  *  netif_napi_del() removes a napi context from the network device napi list
1904  */
1905 void netif_napi_del(struct napi_struct *napi);
1906 
1907 struct napi_gro_cb {
1908 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1909 	void *frag0;
1910 
1911 	/* Length of frag0. */
1912 	unsigned int frag0_len;
1913 
1914 	/* This indicates where we are processing relative to skb->data. */
1915 	int data_offset;
1916 
1917 	/* This is non-zero if the packet cannot be merged with the new skb. */
1918 	u16	flush;
1919 
1920 	/* Save the IP ID here and check when we get to the transport layer */
1921 	u16	flush_id;
1922 
1923 	/* Number of segments aggregated. */
1924 	u16	count;
1925 
1926 	/* Start offset for remote checksum offload */
1927 	u16	gro_remcsum_start;
1928 
1929 	/* jiffies when first packet was created/queued */
1930 	unsigned long age;
1931 
1932 	/* Used in ipv6_gro_receive() and foo-over-udp */
1933 	u16	proto;
1934 
1935 	/* This is non-zero if the packet may be of the same flow. */
1936 	u8	same_flow:1;
1937 
1938 	/* Used in udp_gro_receive */
1939 	u8	udp_mark:1;
1940 
1941 	/* GRO checksum is valid */
1942 	u8	csum_valid:1;
1943 
1944 	/* Number of checksums via CHECKSUM_UNNECESSARY */
1945 	u8	csum_cnt:3;
1946 
1947 	/* Free the skb? */
1948 	u8	free:2;
1949 #define NAPI_GRO_FREE		  1
1950 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1951 
1952 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
1953 	u8	is_ipv6:1;
1954 
1955 	/* 7 bit hole */
1956 
1957 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
1958 	__wsum	csum;
1959 
1960 	/* used in skb_gro_receive() slow path */
1961 	struct sk_buff *last;
1962 };
1963 
1964 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1965 
1966 struct packet_type {
1967 	__be16			type;	/* This is really htons(ether_type). */
1968 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1969 	int			(*func) (struct sk_buff *,
1970 					 struct net_device *,
1971 					 struct packet_type *,
1972 					 struct net_device *);
1973 	bool			(*id_match)(struct packet_type *ptype,
1974 					    struct sock *sk);
1975 	void			*af_packet_priv;
1976 	struct list_head	list;
1977 };
1978 
1979 struct offload_callbacks {
1980 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1981 						netdev_features_t features);
1982 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1983 						 struct sk_buff *skb);
1984 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
1985 };
1986 
1987 struct packet_offload {
1988 	__be16			 type;	/* This is really htons(ether_type). */
1989 	struct offload_callbacks callbacks;
1990 	struct list_head	 list;
1991 };
1992 
1993 struct udp_offload;
1994 
1995 struct udp_offload_callbacks {
1996 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1997 						 struct sk_buff *skb,
1998 						 struct udp_offload *uoff);
1999 	int			(*gro_complete)(struct sk_buff *skb,
2000 						int nhoff,
2001 						struct udp_offload *uoff);
2002 };
2003 
2004 struct udp_offload {
2005 	__be16			 port;
2006 	u8			 ipproto;
2007 	struct udp_offload_callbacks callbacks;
2008 };
2009 
2010 /* often modified stats are per cpu, other are shared (netdev->stats) */
2011 struct pcpu_sw_netstats {
2012 	u64     rx_packets;
2013 	u64     rx_bytes;
2014 	u64     tx_packets;
2015 	u64     tx_bytes;
2016 	struct u64_stats_sync   syncp;
2017 };
2018 
2019 #define netdev_alloc_pcpu_stats(type)				\
2020 ({								\
2021 	typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2022 	if (pcpu_stats)	{					\
2023 		int i;						\
2024 		for_each_possible_cpu(i) {			\
2025 			typeof(type) *stat;			\
2026 			stat = per_cpu_ptr(pcpu_stats, i);	\
2027 			u64_stats_init(&stat->syncp);		\
2028 		}						\
2029 	}							\
2030 	pcpu_stats;						\
2031 })
2032 
2033 #include <linux/notifier.h>
2034 
2035 /* netdevice notifier chain. Please remember to update the rtnetlink
2036  * notification exclusion list in rtnetlink_event() when adding new
2037  * types.
2038  */
2039 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2040 #define NETDEV_DOWN	0x0002
2041 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2042 				   detected a hardware crash and restarted
2043 				   - we can use this eg to kick tcp sessions
2044 				   once done */
2045 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2046 #define NETDEV_REGISTER 0x0005
2047 #define NETDEV_UNREGISTER	0x0006
2048 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2049 #define NETDEV_CHANGEADDR	0x0008
2050 #define NETDEV_GOING_DOWN	0x0009
2051 #define NETDEV_CHANGENAME	0x000A
2052 #define NETDEV_FEAT_CHANGE	0x000B
2053 #define NETDEV_BONDING_FAILOVER 0x000C
2054 #define NETDEV_PRE_UP		0x000D
2055 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2056 #define NETDEV_POST_TYPE_CHANGE	0x000F
2057 #define NETDEV_POST_INIT	0x0010
2058 #define NETDEV_UNREGISTER_FINAL 0x0011
2059 #define NETDEV_RELEASE		0x0012
2060 #define NETDEV_NOTIFY_PEERS	0x0013
2061 #define NETDEV_JOIN		0x0014
2062 #define NETDEV_CHANGEUPPER	0x0015
2063 #define NETDEV_RESEND_IGMP	0x0016
2064 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2065 #define NETDEV_CHANGEINFODATA	0x0018
2066 #define NETDEV_BONDING_INFO	0x0019
2067 
2068 int register_netdevice_notifier(struct notifier_block *nb);
2069 int unregister_netdevice_notifier(struct notifier_block *nb);
2070 
2071 struct netdev_notifier_info {
2072 	struct net_device *dev;
2073 };
2074 
2075 struct netdev_notifier_change_info {
2076 	struct netdev_notifier_info info; /* must be first */
2077 	unsigned int flags_changed;
2078 };
2079 
2080 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2081 					     struct net_device *dev)
2082 {
2083 	info->dev = dev;
2084 }
2085 
2086 static inline struct net_device *
2087 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2088 {
2089 	return info->dev;
2090 }
2091 
2092 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2093 
2094 
2095 extern rwlock_t				dev_base_lock;		/* Device list lock */
2096 
2097 #define for_each_netdev(net, d)		\
2098 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2099 #define for_each_netdev_reverse(net, d)	\
2100 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2101 #define for_each_netdev_rcu(net, d)		\
2102 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2103 #define for_each_netdev_safe(net, d, n)	\
2104 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2105 #define for_each_netdev_continue(net, d)		\
2106 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2107 #define for_each_netdev_continue_rcu(net, d)		\
2108 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2109 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2110 		for_each_netdev_rcu(&init_net, slave)	\
2111 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2112 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2113 
2114 static inline struct net_device *next_net_device(struct net_device *dev)
2115 {
2116 	struct list_head *lh;
2117 	struct net *net;
2118 
2119 	net = dev_net(dev);
2120 	lh = dev->dev_list.next;
2121 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2122 }
2123 
2124 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2125 {
2126 	struct list_head *lh;
2127 	struct net *net;
2128 
2129 	net = dev_net(dev);
2130 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2131 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2132 }
2133 
2134 static inline struct net_device *first_net_device(struct net *net)
2135 {
2136 	return list_empty(&net->dev_base_head) ? NULL :
2137 		net_device_entry(net->dev_base_head.next);
2138 }
2139 
2140 static inline struct net_device *first_net_device_rcu(struct net *net)
2141 {
2142 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2143 
2144 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2145 }
2146 
2147 int netdev_boot_setup_check(struct net_device *dev);
2148 unsigned long netdev_boot_base(const char *prefix, int unit);
2149 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2150 				       const char *hwaddr);
2151 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2152 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2153 void dev_add_pack(struct packet_type *pt);
2154 void dev_remove_pack(struct packet_type *pt);
2155 void __dev_remove_pack(struct packet_type *pt);
2156 void dev_add_offload(struct packet_offload *po);
2157 void dev_remove_offload(struct packet_offload *po);
2158 
2159 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2160 				      unsigned short mask);
2161 struct net_device *dev_get_by_name(struct net *net, const char *name);
2162 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2163 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2164 int dev_alloc_name(struct net_device *dev, const char *name);
2165 int dev_open(struct net_device *dev);
2166 int dev_close(struct net_device *dev);
2167 void dev_disable_lro(struct net_device *dev);
2168 int dev_loopback_xmit(struct sk_buff *newskb);
2169 int dev_queue_xmit(struct sk_buff *skb);
2170 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2171 int register_netdevice(struct net_device *dev);
2172 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2173 void unregister_netdevice_many(struct list_head *head);
2174 static inline void unregister_netdevice(struct net_device *dev)
2175 {
2176 	unregister_netdevice_queue(dev, NULL);
2177 }
2178 
2179 int netdev_refcnt_read(const struct net_device *dev);
2180 void free_netdev(struct net_device *dev);
2181 void netdev_freemem(struct net_device *dev);
2182 void synchronize_net(void);
2183 int init_dummy_netdev(struct net_device *dev);
2184 
2185 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2186 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2187 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2188 int netdev_get_name(struct net *net, char *name, int ifindex);
2189 int dev_restart(struct net_device *dev);
2190 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2191 
2192 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2193 {
2194 	return NAPI_GRO_CB(skb)->data_offset;
2195 }
2196 
2197 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2198 {
2199 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2200 }
2201 
2202 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2203 {
2204 	NAPI_GRO_CB(skb)->data_offset += len;
2205 }
2206 
2207 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2208 					unsigned int offset)
2209 {
2210 	return NAPI_GRO_CB(skb)->frag0 + offset;
2211 }
2212 
2213 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2214 {
2215 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2216 }
2217 
2218 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2219 					unsigned int offset)
2220 {
2221 	if (!pskb_may_pull(skb, hlen))
2222 		return NULL;
2223 
2224 	NAPI_GRO_CB(skb)->frag0 = NULL;
2225 	NAPI_GRO_CB(skb)->frag0_len = 0;
2226 	return skb->data + offset;
2227 }
2228 
2229 static inline void *skb_gro_network_header(struct sk_buff *skb)
2230 {
2231 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2232 	       skb_network_offset(skb);
2233 }
2234 
2235 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2236 					const void *start, unsigned int len)
2237 {
2238 	if (NAPI_GRO_CB(skb)->csum_valid)
2239 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2240 						  csum_partial(start, len, 0));
2241 }
2242 
2243 /* GRO checksum functions. These are logical equivalents of the normal
2244  * checksum functions (in skbuff.h) except that they operate on the GRO
2245  * offsets and fields in sk_buff.
2246  */
2247 
2248 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2249 
2250 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2251 {
2252 	return (NAPI_GRO_CB(skb)->gro_remcsum_start - skb_headroom(skb) ==
2253 		skb_gro_offset(skb));
2254 }
2255 
2256 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2257 						      bool zero_okay,
2258 						      __sum16 check)
2259 {
2260 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2261 		skb_checksum_start_offset(skb) <
2262 		 skb_gro_offset(skb)) &&
2263 		!skb_at_gro_remcsum_start(skb) &&
2264 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2265 		(!zero_okay || check));
2266 }
2267 
2268 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2269 							   __wsum psum)
2270 {
2271 	if (NAPI_GRO_CB(skb)->csum_valid &&
2272 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2273 		return 0;
2274 
2275 	NAPI_GRO_CB(skb)->csum = psum;
2276 
2277 	return __skb_gro_checksum_complete(skb);
2278 }
2279 
2280 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2281 {
2282 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2283 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2284 		NAPI_GRO_CB(skb)->csum_cnt--;
2285 	} else {
2286 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2287 		 * verified a new top level checksum or an encapsulated one
2288 		 * during GRO. This saves work if we fallback to normal path.
2289 		 */
2290 		__skb_incr_checksum_unnecessary(skb);
2291 	}
2292 }
2293 
2294 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2295 				    compute_pseudo)			\
2296 ({									\
2297 	__sum16 __ret = 0;						\
2298 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2299 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2300 				compute_pseudo(skb, proto));		\
2301 	if (__ret)							\
2302 		__skb_mark_checksum_bad(skb);				\
2303 	else								\
2304 		skb_gro_incr_csum_unnecessary(skb);			\
2305 	__ret;								\
2306 })
2307 
2308 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2309 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2310 
2311 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2312 					     compute_pseudo)		\
2313 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2314 
2315 #define skb_gro_checksum_simple_validate(skb)				\
2316 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2317 
2318 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2319 {
2320 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2321 		!NAPI_GRO_CB(skb)->csum_valid);
2322 }
2323 
2324 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2325 					      __sum16 check, __wsum pseudo)
2326 {
2327 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2328 	NAPI_GRO_CB(skb)->csum_valid = 1;
2329 }
2330 
2331 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2332 do {									\
2333 	if (__skb_gro_checksum_convert_check(skb))			\
2334 		__skb_gro_checksum_convert(skb, check,			\
2335 					   compute_pseudo(skb, proto));	\
2336 } while (0)
2337 
2338 struct gro_remcsum {
2339 	int offset;
2340 	__wsum delta;
2341 };
2342 
2343 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2344 {
2345 	grc->delta = 0;
2346 }
2347 
2348 static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2349 					   int start, int offset,
2350 					   struct gro_remcsum *grc,
2351 					   bool nopartial)
2352 {
2353 	__wsum delta;
2354 
2355 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2356 
2357 	if (!nopartial) {
2358 		NAPI_GRO_CB(skb)->gro_remcsum_start =
2359 		    ((unsigned char *)ptr + start) - skb->head;
2360 		return;
2361 	}
2362 
2363 	delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset);
2364 
2365 	/* Adjust skb->csum since we changed the packet */
2366 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2367 
2368 	grc->offset = (ptr + offset) - (void *)skb->head;
2369 	grc->delta = delta;
2370 }
2371 
2372 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2373 					   struct gro_remcsum *grc)
2374 {
2375 	if (!grc->delta)
2376 		return;
2377 
2378 	remcsum_unadjust((__sum16 *)(skb->head + grc->offset), grc->delta);
2379 }
2380 
2381 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2382 				  unsigned short type,
2383 				  const void *daddr, const void *saddr,
2384 				  unsigned int len)
2385 {
2386 	if (!dev->header_ops || !dev->header_ops->create)
2387 		return 0;
2388 
2389 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2390 }
2391 
2392 static inline int dev_parse_header(const struct sk_buff *skb,
2393 				   unsigned char *haddr)
2394 {
2395 	const struct net_device *dev = skb->dev;
2396 
2397 	if (!dev->header_ops || !dev->header_ops->parse)
2398 		return 0;
2399 	return dev->header_ops->parse(skb, haddr);
2400 }
2401 
2402 static inline int dev_rebuild_header(struct sk_buff *skb)
2403 {
2404 	const struct net_device *dev = skb->dev;
2405 
2406 	if (!dev->header_ops || !dev->header_ops->rebuild)
2407 		return 0;
2408 	return dev->header_ops->rebuild(skb);
2409 }
2410 
2411 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2412 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2413 static inline int unregister_gifconf(unsigned int family)
2414 {
2415 	return register_gifconf(family, NULL);
2416 }
2417 
2418 #ifdef CONFIG_NET_FLOW_LIMIT
2419 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2420 struct sd_flow_limit {
2421 	u64			count;
2422 	unsigned int		num_buckets;
2423 	unsigned int		history_head;
2424 	u16			history[FLOW_LIMIT_HISTORY];
2425 	u8			buckets[];
2426 };
2427 
2428 extern int netdev_flow_limit_table_len;
2429 #endif /* CONFIG_NET_FLOW_LIMIT */
2430 
2431 /*
2432  * Incoming packets are placed on per-cpu queues
2433  */
2434 struct softnet_data {
2435 	struct list_head	poll_list;
2436 	struct sk_buff_head	process_queue;
2437 
2438 	/* stats */
2439 	unsigned int		processed;
2440 	unsigned int		time_squeeze;
2441 	unsigned int		cpu_collision;
2442 	unsigned int		received_rps;
2443 #ifdef CONFIG_RPS
2444 	struct softnet_data	*rps_ipi_list;
2445 #endif
2446 #ifdef CONFIG_NET_FLOW_LIMIT
2447 	struct sd_flow_limit __rcu *flow_limit;
2448 #endif
2449 	struct Qdisc		*output_queue;
2450 	struct Qdisc		**output_queue_tailp;
2451 	struct sk_buff		*completion_queue;
2452 
2453 #ifdef CONFIG_RPS
2454 	/* Elements below can be accessed between CPUs for RPS */
2455 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2456 	struct softnet_data	*rps_ipi_next;
2457 	unsigned int		cpu;
2458 	unsigned int		input_queue_head;
2459 	unsigned int		input_queue_tail;
2460 #endif
2461 	unsigned int		dropped;
2462 	struct sk_buff_head	input_pkt_queue;
2463 	struct napi_struct	backlog;
2464 
2465 };
2466 
2467 static inline void input_queue_head_incr(struct softnet_data *sd)
2468 {
2469 #ifdef CONFIG_RPS
2470 	sd->input_queue_head++;
2471 #endif
2472 }
2473 
2474 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2475 					      unsigned int *qtail)
2476 {
2477 #ifdef CONFIG_RPS
2478 	*qtail = ++sd->input_queue_tail;
2479 #endif
2480 }
2481 
2482 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2483 
2484 void __netif_schedule(struct Qdisc *q);
2485 void netif_schedule_queue(struct netdev_queue *txq);
2486 
2487 static inline void netif_tx_schedule_all(struct net_device *dev)
2488 {
2489 	unsigned int i;
2490 
2491 	for (i = 0; i < dev->num_tx_queues; i++)
2492 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2493 }
2494 
2495 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2496 {
2497 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2498 }
2499 
2500 /**
2501  *	netif_start_queue - allow transmit
2502  *	@dev: network device
2503  *
2504  *	Allow upper layers to call the device hard_start_xmit routine.
2505  */
2506 static inline void netif_start_queue(struct net_device *dev)
2507 {
2508 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2509 }
2510 
2511 static inline void netif_tx_start_all_queues(struct net_device *dev)
2512 {
2513 	unsigned int i;
2514 
2515 	for (i = 0; i < dev->num_tx_queues; i++) {
2516 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2517 		netif_tx_start_queue(txq);
2518 	}
2519 }
2520 
2521 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2522 
2523 /**
2524  *	netif_wake_queue - restart transmit
2525  *	@dev: network device
2526  *
2527  *	Allow upper layers to call the device hard_start_xmit routine.
2528  *	Used for flow control when transmit resources are available.
2529  */
2530 static inline void netif_wake_queue(struct net_device *dev)
2531 {
2532 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2533 }
2534 
2535 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2536 {
2537 	unsigned int i;
2538 
2539 	for (i = 0; i < dev->num_tx_queues; i++) {
2540 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2541 		netif_tx_wake_queue(txq);
2542 	}
2543 }
2544 
2545 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2546 {
2547 	if (WARN_ON(!dev_queue)) {
2548 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2549 		return;
2550 	}
2551 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2552 }
2553 
2554 /**
2555  *	netif_stop_queue - stop transmitted packets
2556  *	@dev: network device
2557  *
2558  *	Stop upper layers calling the device hard_start_xmit routine.
2559  *	Used for flow control when transmit resources are unavailable.
2560  */
2561 static inline void netif_stop_queue(struct net_device *dev)
2562 {
2563 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2564 }
2565 
2566 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2567 {
2568 	unsigned int i;
2569 
2570 	for (i = 0; i < dev->num_tx_queues; i++) {
2571 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2572 		netif_tx_stop_queue(txq);
2573 	}
2574 }
2575 
2576 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2577 {
2578 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2579 }
2580 
2581 /**
2582  *	netif_queue_stopped - test if transmit queue is flowblocked
2583  *	@dev: network device
2584  *
2585  *	Test if transmit queue on device is currently unable to send.
2586  */
2587 static inline bool netif_queue_stopped(const struct net_device *dev)
2588 {
2589 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2590 }
2591 
2592 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2593 {
2594 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2595 }
2596 
2597 static inline bool
2598 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2599 {
2600 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2601 }
2602 
2603 static inline bool
2604 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2605 {
2606 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2607 }
2608 
2609 /**
2610  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2611  *	@dev_queue: pointer to transmit queue
2612  *
2613  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2614  * to give appropriate hint to the cpu.
2615  */
2616 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2617 {
2618 #ifdef CONFIG_BQL
2619 	prefetchw(&dev_queue->dql.num_queued);
2620 #endif
2621 }
2622 
2623 /**
2624  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2625  *	@dev_queue: pointer to transmit queue
2626  *
2627  * BQL enabled drivers might use this helper in their TX completion path,
2628  * to give appropriate hint to the cpu.
2629  */
2630 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2631 {
2632 #ifdef CONFIG_BQL
2633 	prefetchw(&dev_queue->dql.limit);
2634 #endif
2635 }
2636 
2637 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2638 					unsigned int bytes)
2639 {
2640 #ifdef CONFIG_BQL
2641 	dql_queued(&dev_queue->dql, bytes);
2642 
2643 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2644 		return;
2645 
2646 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2647 
2648 	/*
2649 	 * The XOFF flag must be set before checking the dql_avail below,
2650 	 * because in netdev_tx_completed_queue we update the dql_completed
2651 	 * before checking the XOFF flag.
2652 	 */
2653 	smp_mb();
2654 
2655 	/* check again in case another CPU has just made room avail */
2656 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2657 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2658 #endif
2659 }
2660 
2661 /**
2662  * 	netdev_sent_queue - report the number of bytes queued to hardware
2663  * 	@dev: network device
2664  * 	@bytes: number of bytes queued to the hardware device queue
2665  *
2666  * 	Report the number of bytes queued for sending/completion to the network
2667  * 	device hardware queue. @bytes should be a good approximation and should
2668  * 	exactly match netdev_completed_queue() @bytes
2669  */
2670 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2671 {
2672 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2673 }
2674 
2675 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2676 					     unsigned int pkts, unsigned int bytes)
2677 {
2678 #ifdef CONFIG_BQL
2679 	if (unlikely(!bytes))
2680 		return;
2681 
2682 	dql_completed(&dev_queue->dql, bytes);
2683 
2684 	/*
2685 	 * Without the memory barrier there is a small possiblity that
2686 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2687 	 * be stopped forever
2688 	 */
2689 	smp_mb();
2690 
2691 	if (dql_avail(&dev_queue->dql) < 0)
2692 		return;
2693 
2694 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2695 		netif_schedule_queue(dev_queue);
2696 #endif
2697 }
2698 
2699 /**
2700  * 	netdev_completed_queue - report bytes and packets completed by device
2701  * 	@dev: network device
2702  * 	@pkts: actual number of packets sent over the medium
2703  * 	@bytes: actual number of bytes sent over the medium
2704  *
2705  * 	Report the number of bytes and packets transmitted by the network device
2706  * 	hardware queue over the physical medium, @bytes must exactly match the
2707  * 	@bytes amount passed to netdev_sent_queue()
2708  */
2709 static inline void netdev_completed_queue(struct net_device *dev,
2710 					  unsigned int pkts, unsigned int bytes)
2711 {
2712 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2713 }
2714 
2715 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2716 {
2717 #ifdef CONFIG_BQL
2718 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2719 	dql_reset(&q->dql);
2720 #endif
2721 }
2722 
2723 /**
2724  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2725  * 	@dev_queue: network device
2726  *
2727  * 	Reset the bytes and packet count of a network device and clear the
2728  * 	software flow control OFF bit for this network device
2729  */
2730 static inline void netdev_reset_queue(struct net_device *dev_queue)
2731 {
2732 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2733 }
2734 
2735 /**
2736  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2737  * 	@dev: network device
2738  * 	@queue_index: given tx queue index
2739  *
2740  * 	Returns 0 if given tx queue index >= number of device tx queues,
2741  * 	otherwise returns the originally passed tx queue index.
2742  */
2743 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2744 {
2745 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2746 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2747 				     dev->name, queue_index,
2748 				     dev->real_num_tx_queues);
2749 		return 0;
2750 	}
2751 
2752 	return queue_index;
2753 }
2754 
2755 /**
2756  *	netif_running - test if up
2757  *	@dev: network device
2758  *
2759  *	Test if the device has been brought up.
2760  */
2761 static inline bool netif_running(const struct net_device *dev)
2762 {
2763 	return test_bit(__LINK_STATE_START, &dev->state);
2764 }
2765 
2766 /*
2767  * Routines to manage the subqueues on a device.  We only need start
2768  * stop, and a check if it's stopped.  All other device management is
2769  * done at the overall netdevice level.
2770  * Also test the device if we're multiqueue.
2771  */
2772 
2773 /**
2774  *	netif_start_subqueue - allow sending packets on subqueue
2775  *	@dev: network device
2776  *	@queue_index: sub queue index
2777  *
2778  * Start individual transmit queue of a device with multiple transmit queues.
2779  */
2780 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2781 {
2782 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2783 
2784 	netif_tx_start_queue(txq);
2785 }
2786 
2787 /**
2788  *	netif_stop_subqueue - stop sending packets on subqueue
2789  *	@dev: network device
2790  *	@queue_index: sub queue index
2791  *
2792  * Stop individual transmit queue of a device with multiple transmit queues.
2793  */
2794 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2795 {
2796 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2797 	netif_tx_stop_queue(txq);
2798 }
2799 
2800 /**
2801  *	netif_subqueue_stopped - test status of subqueue
2802  *	@dev: network device
2803  *	@queue_index: sub queue index
2804  *
2805  * Check individual transmit queue of a device with multiple transmit queues.
2806  */
2807 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2808 					    u16 queue_index)
2809 {
2810 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2811 
2812 	return netif_tx_queue_stopped(txq);
2813 }
2814 
2815 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2816 					  struct sk_buff *skb)
2817 {
2818 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2819 }
2820 
2821 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2822 
2823 #ifdef CONFIG_XPS
2824 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2825 			u16 index);
2826 #else
2827 static inline int netif_set_xps_queue(struct net_device *dev,
2828 				      const struct cpumask *mask,
2829 				      u16 index)
2830 {
2831 	return 0;
2832 }
2833 #endif
2834 
2835 /*
2836  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2837  * as a distribution range limit for the returned value.
2838  */
2839 static inline u16 skb_tx_hash(const struct net_device *dev,
2840 			      struct sk_buff *skb)
2841 {
2842 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2843 }
2844 
2845 /**
2846  *	netif_is_multiqueue - test if device has multiple transmit queues
2847  *	@dev: network device
2848  *
2849  * Check if device has multiple transmit queues
2850  */
2851 static inline bool netif_is_multiqueue(const struct net_device *dev)
2852 {
2853 	return dev->num_tx_queues > 1;
2854 }
2855 
2856 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2857 
2858 #ifdef CONFIG_SYSFS
2859 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2860 #else
2861 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2862 						unsigned int rxq)
2863 {
2864 	return 0;
2865 }
2866 #endif
2867 
2868 #ifdef CONFIG_SYSFS
2869 static inline unsigned int get_netdev_rx_queue_index(
2870 		struct netdev_rx_queue *queue)
2871 {
2872 	struct net_device *dev = queue->dev;
2873 	int index = queue - dev->_rx;
2874 
2875 	BUG_ON(index >= dev->num_rx_queues);
2876 	return index;
2877 }
2878 #endif
2879 
2880 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2881 int netif_get_num_default_rss_queues(void);
2882 
2883 enum skb_free_reason {
2884 	SKB_REASON_CONSUMED,
2885 	SKB_REASON_DROPPED,
2886 };
2887 
2888 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2889 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2890 
2891 /*
2892  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2893  * interrupt context or with hardware interrupts being disabled.
2894  * (in_irq() || irqs_disabled())
2895  *
2896  * We provide four helpers that can be used in following contexts :
2897  *
2898  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2899  *  replacing kfree_skb(skb)
2900  *
2901  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2902  *  Typically used in place of consume_skb(skb) in TX completion path
2903  *
2904  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2905  *  replacing kfree_skb(skb)
2906  *
2907  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2908  *  and consumed a packet. Used in place of consume_skb(skb)
2909  */
2910 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2911 {
2912 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2913 }
2914 
2915 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2916 {
2917 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2918 }
2919 
2920 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2921 {
2922 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2923 }
2924 
2925 static inline void dev_consume_skb_any(struct sk_buff *skb)
2926 {
2927 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2928 }
2929 
2930 int netif_rx(struct sk_buff *skb);
2931 int netif_rx_ni(struct sk_buff *skb);
2932 int netif_receive_skb(struct sk_buff *skb);
2933 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2934 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2935 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2936 gro_result_t napi_gro_frags(struct napi_struct *napi);
2937 struct packet_offload *gro_find_receive_by_type(__be16 type);
2938 struct packet_offload *gro_find_complete_by_type(__be16 type);
2939 
2940 static inline void napi_free_frags(struct napi_struct *napi)
2941 {
2942 	kfree_skb(napi->skb);
2943 	napi->skb = NULL;
2944 }
2945 
2946 int netdev_rx_handler_register(struct net_device *dev,
2947 			       rx_handler_func_t *rx_handler,
2948 			       void *rx_handler_data);
2949 void netdev_rx_handler_unregister(struct net_device *dev);
2950 
2951 bool dev_valid_name(const char *name);
2952 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2953 int dev_ethtool(struct net *net, struct ifreq *);
2954 unsigned int dev_get_flags(const struct net_device *);
2955 int __dev_change_flags(struct net_device *, unsigned int flags);
2956 int dev_change_flags(struct net_device *, unsigned int);
2957 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2958 			unsigned int gchanges);
2959 int dev_change_name(struct net_device *, const char *);
2960 int dev_set_alias(struct net_device *, const char *, size_t);
2961 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2962 int dev_set_mtu(struct net_device *, int);
2963 void dev_set_group(struct net_device *, int);
2964 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2965 int dev_change_carrier(struct net_device *, bool new_carrier);
2966 int dev_get_phys_port_id(struct net_device *dev,
2967 			 struct netdev_phys_item_id *ppid);
2968 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2969 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2970 				    struct netdev_queue *txq, int *ret);
2971 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2972 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2973 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2974 
2975 extern int		netdev_budget;
2976 
2977 /* Called by rtnetlink.c:rtnl_unlock() */
2978 void netdev_run_todo(void);
2979 
2980 /**
2981  *	dev_put - release reference to device
2982  *	@dev: network device
2983  *
2984  * Release reference to device to allow it to be freed.
2985  */
2986 static inline void dev_put(struct net_device *dev)
2987 {
2988 	this_cpu_dec(*dev->pcpu_refcnt);
2989 }
2990 
2991 /**
2992  *	dev_hold - get reference to device
2993  *	@dev: network device
2994  *
2995  * Hold reference to device to keep it from being freed.
2996  */
2997 static inline void dev_hold(struct net_device *dev)
2998 {
2999 	this_cpu_inc(*dev->pcpu_refcnt);
3000 }
3001 
3002 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3003  * and _off may be called from IRQ context, but it is caller
3004  * who is responsible for serialization of these calls.
3005  *
3006  * The name carrier is inappropriate, these functions should really be
3007  * called netif_lowerlayer_*() because they represent the state of any
3008  * kind of lower layer not just hardware media.
3009  */
3010 
3011 void linkwatch_init_dev(struct net_device *dev);
3012 void linkwatch_fire_event(struct net_device *dev);
3013 void linkwatch_forget_dev(struct net_device *dev);
3014 
3015 /**
3016  *	netif_carrier_ok - test if carrier present
3017  *	@dev: network device
3018  *
3019  * Check if carrier is present on device
3020  */
3021 static inline bool netif_carrier_ok(const struct net_device *dev)
3022 {
3023 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3024 }
3025 
3026 unsigned long dev_trans_start(struct net_device *dev);
3027 
3028 void __netdev_watchdog_up(struct net_device *dev);
3029 
3030 void netif_carrier_on(struct net_device *dev);
3031 
3032 void netif_carrier_off(struct net_device *dev);
3033 
3034 /**
3035  *	netif_dormant_on - mark device as dormant.
3036  *	@dev: network device
3037  *
3038  * Mark device as dormant (as per RFC2863).
3039  *
3040  * The dormant state indicates that the relevant interface is not
3041  * actually in a condition to pass packets (i.e., it is not 'up') but is
3042  * in a "pending" state, waiting for some external event.  For "on-
3043  * demand" interfaces, this new state identifies the situation where the
3044  * interface is waiting for events to place it in the up state.
3045  *
3046  */
3047 static inline void netif_dormant_on(struct net_device *dev)
3048 {
3049 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3050 		linkwatch_fire_event(dev);
3051 }
3052 
3053 /**
3054  *	netif_dormant_off - set device as not dormant.
3055  *	@dev: network device
3056  *
3057  * Device is not in dormant state.
3058  */
3059 static inline void netif_dormant_off(struct net_device *dev)
3060 {
3061 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3062 		linkwatch_fire_event(dev);
3063 }
3064 
3065 /**
3066  *	netif_dormant - test if carrier present
3067  *	@dev: network device
3068  *
3069  * Check if carrier is present on device
3070  */
3071 static inline bool netif_dormant(const struct net_device *dev)
3072 {
3073 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3074 }
3075 
3076 
3077 /**
3078  *	netif_oper_up - test if device is operational
3079  *	@dev: network device
3080  *
3081  * Check if carrier is operational
3082  */
3083 static inline bool netif_oper_up(const struct net_device *dev)
3084 {
3085 	return (dev->operstate == IF_OPER_UP ||
3086 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3087 }
3088 
3089 /**
3090  *	netif_device_present - is device available or removed
3091  *	@dev: network device
3092  *
3093  * Check if device has not been removed from system.
3094  */
3095 static inline bool netif_device_present(struct net_device *dev)
3096 {
3097 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3098 }
3099 
3100 void netif_device_detach(struct net_device *dev);
3101 
3102 void netif_device_attach(struct net_device *dev);
3103 
3104 /*
3105  * Network interface message level settings
3106  */
3107 
3108 enum {
3109 	NETIF_MSG_DRV		= 0x0001,
3110 	NETIF_MSG_PROBE		= 0x0002,
3111 	NETIF_MSG_LINK		= 0x0004,
3112 	NETIF_MSG_TIMER		= 0x0008,
3113 	NETIF_MSG_IFDOWN	= 0x0010,
3114 	NETIF_MSG_IFUP		= 0x0020,
3115 	NETIF_MSG_RX_ERR	= 0x0040,
3116 	NETIF_MSG_TX_ERR	= 0x0080,
3117 	NETIF_MSG_TX_QUEUED	= 0x0100,
3118 	NETIF_MSG_INTR		= 0x0200,
3119 	NETIF_MSG_TX_DONE	= 0x0400,
3120 	NETIF_MSG_RX_STATUS	= 0x0800,
3121 	NETIF_MSG_PKTDATA	= 0x1000,
3122 	NETIF_MSG_HW		= 0x2000,
3123 	NETIF_MSG_WOL		= 0x4000,
3124 };
3125 
3126 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3127 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3128 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3129 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3130 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3131 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3132 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3133 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3134 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3135 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3136 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3137 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3138 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3139 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3140 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3141 
3142 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3143 {
3144 	/* use default */
3145 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3146 		return default_msg_enable_bits;
3147 	if (debug_value == 0)	/* no output */
3148 		return 0;
3149 	/* set low N bits */
3150 	return (1 << debug_value) - 1;
3151 }
3152 
3153 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3154 {
3155 	spin_lock(&txq->_xmit_lock);
3156 	txq->xmit_lock_owner = cpu;
3157 }
3158 
3159 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3160 {
3161 	spin_lock_bh(&txq->_xmit_lock);
3162 	txq->xmit_lock_owner = smp_processor_id();
3163 }
3164 
3165 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3166 {
3167 	bool ok = spin_trylock(&txq->_xmit_lock);
3168 	if (likely(ok))
3169 		txq->xmit_lock_owner = smp_processor_id();
3170 	return ok;
3171 }
3172 
3173 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3174 {
3175 	txq->xmit_lock_owner = -1;
3176 	spin_unlock(&txq->_xmit_lock);
3177 }
3178 
3179 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3180 {
3181 	txq->xmit_lock_owner = -1;
3182 	spin_unlock_bh(&txq->_xmit_lock);
3183 }
3184 
3185 static inline void txq_trans_update(struct netdev_queue *txq)
3186 {
3187 	if (txq->xmit_lock_owner != -1)
3188 		txq->trans_start = jiffies;
3189 }
3190 
3191 /**
3192  *	netif_tx_lock - grab network device transmit lock
3193  *	@dev: network device
3194  *
3195  * Get network device transmit lock
3196  */
3197 static inline void netif_tx_lock(struct net_device *dev)
3198 {
3199 	unsigned int i;
3200 	int cpu;
3201 
3202 	spin_lock(&dev->tx_global_lock);
3203 	cpu = smp_processor_id();
3204 	for (i = 0; i < dev->num_tx_queues; i++) {
3205 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3206 
3207 		/* We are the only thread of execution doing a
3208 		 * freeze, but we have to grab the _xmit_lock in
3209 		 * order to synchronize with threads which are in
3210 		 * the ->hard_start_xmit() handler and already
3211 		 * checked the frozen bit.
3212 		 */
3213 		__netif_tx_lock(txq, cpu);
3214 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3215 		__netif_tx_unlock(txq);
3216 	}
3217 }
3218 
3219 static inline void netif_tx_lock_bh(struct net_device *dev)
3220 {
3221 	local_bh_disable();
3222 	netif_tx_lock(dev);
3223 }
3224 
3225 static inline void netif_tx_unlock(struct net_device *dev)
3226 {
3227 	unsigned int i;
3228 
3229 	for (i = 0; i < dev->num_tx_queues; i++) {
3230 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3231 
3232 		/* No need to grab the _xmit_lock here.  If the
3233 		 * queue is not stopped for another reason, we
3234 		 * force a schedule.
3235 		 */
3236 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3237 		netif_schedule_queue(txq);
3238 	}
3239 	spin_unlock(&dev->tx_global_lock);
3240 }
3241 
3242 static inline void netif_tx_unlock_bh(struct net_device *dev)
3243 {
3244 	netif_tx_unlock(dev);
3245 	local_bh_enable();
3246 }
3247 
3248 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3249 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3250 		__netif_tx_lock(txq, cpu);		\
3251 	}						\
3252 }
3253 
3254 #define HARD_TX_TRYLOCK(dev, txq)			\
3255 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3256 		__netif_tx_trylock(txq) :		\
3257 		true )
3258 
3259 #define HARD_TX_UNLOCK(dev, txq) {			\
3260 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3261 		__netif_tx_unlock(txq);			\
3262 	}						\
3263 }
3264 
3265 static inline void netif_tx_disable(struct net_device *dev)
3266 {
3267 	unsigned int i;
3268 	int cpu;
3269 
3270 	local_bh_disable();
3271 	cpu = smp_processor_id();
3272 	for (i = 0; i < dev->num_tx_queues; i++) {
3273 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3274 
3275 		__netif_tx_lock(txq, cpu);
3276 		netif_tx_stop_queue(txq);
3277 		__netif_tx_unlock(txq);
3278 	}
3279 	local_bh_enable();
3280 }
3281 
3282 static inline void netif_addr_lock(struct net_device *dev)
3283 {
3284 	spin_lock(&dev->addr_list_lock);
3285 }
3286 
3287 static inline void netif_addr_lock_nested(struct net_device *dev)
3288 {
3289 	int subclass = SINGLE_DEPTH_NESTING;
3290 
3291 	if (dev->netdev_ops->ndo_get_lock_subclass)
3292 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3293 
3294 	spin_lock_nested(&dev->addr_list_lock, subclass);
3295 }
3296 
3297 static inline void netif_addr_lock_bh(struct net_device *dev)
3298 {
3299 	spin_lock_bh(&dev->addr_list_lock);
3300 }
3301 
3302 static inline void netif_addr_unlock(struct net_device *dev)
3303 {
3304 	spin_unlock(&dev->addr_list_lock);
3305 }
3306 
3307 static inline void netif_addr_unlock_bh(struct net_device *dev)
3308 {
3309 	spin_unlock_bh(&dev->addr_list_lock);
3310 }
3311 
3312 /*
3313  * dev_addrs walker. Should be used only for read access. Call with
3314  * rcu_read_lock held.
3315  */
3316 #define for_each_dev_addr(dev, ha) \
3317 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3318 
3319 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3320 
3321 void ether_setup(struct net_device *dev);
3322 
3323 /* Support for loadable net-drivers */
3324 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3325 				    unsigned char name_assign_type,
3326 				    void (*setup)(struct net_device *),
3327 				    unsigned int txqs, unsigned int rxqs);
3328 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3329 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3330 
3331 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3332 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3333 			 count)
3334 
3335 int register_netdev(struct net_device *dev);
3336 void unregister_netdev(struct net_device *dev);
3337 
3338 /* General hardware address lists handling functions */
3339 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3340 		   struct netdev_hw_addr_list *from_list, int addr_len);
3341 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3342 		      struct netdev_hw_addr_list *from_list, int addr_len);
3343 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3344 		       struct net_device *dev,
3345 		       int (*sync)(struct net_device *, const unsigned char *),
3346 		       int (*unsync)(struct net_device *,
3347 				     const unsigned char *));
3348 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3349 			  struct net_device *dev,
3350 			  int (*unsync)(struct net_device *,
3351 					const unsigned char *));
3352 void __hw_addr_init(struct netdev_hw_addr_list *list);
3353 
3354 /* Functions used for device addresses handling */
3355 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3356 		 unsigned char addr_type);
3357 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3358 		 unsigned char addr_type);
3359 void dev_addr_flush(struct net_device *dev);
3360 int dev_addr_init(struct net_device *dev);
3361 
3362 /* Functions used for unicast addresses handling */
3363 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3364 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3365 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3366 int dev_uc_sync(struct net_device *to, struct net_device *from);
3367 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3368 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3369 void dev_uc_flush(struct net_device *dev);
3370 void dev_uc_init(struct net_device *dev);
3371 
3372 /**
3373  *  __dev_uc_sync - Synchonize device's unicast list
3374  *  @dev:  device to sync
3375  *  @sync: function to call if address should be added
3376  *  @unsync: function to call if address should be removed
3377  *
3378  *  Add newly added addresses to the interface, and release
3379  *  addresses that have been deleted.
3380  **/
3381 static inline int __dev_uc_sync(struct net_device *dev,
3382 				int (*sync)(struct net_device *,
3383 					    const unsigned char *),
3384 				int (*unsync)(struct net_device *,
3385 					      const unsigned char *))
3386 {
3387 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3388 }
3389 
3390 /**
3391  *  __dev_uc_unsync - Remove synchronized addresses from device
3392  *  @dev:  device to sync
3393  *  @unsync: function to call if address should be removed
3394  *
3395  *  Remove all addresses that were added to the device by dev_uc_sync().
3396  **/
3397 static inline void __dev_uc_unsync(struct net_device *dev,
3398 				   int (*unsync)(struct net_device *,
3399 						 const unsigned char *))
3400 {
3401 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3402 }
3403 
3404 /* Functions used for multicast addresses handling */
3405 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3406 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3407 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3408 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3409 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3410 int dev_mc_sync(struct net_device *to, struct net_device *from);
3411 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3412 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3413 void dev_mc_flush(struct net_device *dev);
3414 void dev_mc_init(struct net_device *dev);
3415 
3416 /**
3417  *  __dev_mc_sync - Synchonize device's multicast list
3418  *  @dev:  device to sync
3419  *  @sync: function to call if address should be added
3420  *  @unsync: function to call if address should be removed
3421  *
3422  *  Add newly added addresses to the interface, and release
3423  *  addresses that have been deleted.
3424  **/
3425 static inline int __dev_mc_sync(struct net_device *dev,
3426 				int (*sync)(struct net_device *,
3427 					    const unsigned char *),
3428 				int (*unsync)(struct net_device *,
3429 					      const unsigned char *))
3430 {
3431 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3432 }
3433 
3434 /**
3435  *  __dev_mc_unsync - Remove synchronized addresses from device
3436  *  @dev:  device to sync
3437  *  @unsync: function to call if address should be removed
3438  *
3439  *  Remove all addresses that were added to the device by dev_mc_sync().
3440  **/
3441 static inline void __dev_mc_unsync(struct net_device *dev,
3442 				   int (*unsync)(struct net_device *,
3443 						 const unsigned char *))
3444 {
3445 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3446 }
3447 
3448 /* Functions used for secondary unicast and multicast support */
3449 void dev_set_rx_mode(struct net_device *dev);
3450 void __dev_set_rx_mode(struct net_device *dev);
3451 int dev_set_promiscuity(struct net_device *dev, int inc);
3452 int dev_set_allmulti(struct net_device *dev, int inc);
3453 void netdev_state_change(struct net_device *dev);
3454 void netdev_notify_peers(struct net_device *dev);
3455 void netdev_features_change(struct net_device *dev);
3456 /* Load a device via the kmod */
3457 void dev_load(struct net *net, const char *name);
3458 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3459 					struct rtnl_link_stats64 *storage);
3460 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3461 			     const struct net_device_stats *netdev_stats);
3462 
3463 extern int		netdev_max_backlog;
3464 extern int		netdev_tstamp_prequeue;
3465 extern int		weight_p;
3466 extern int		bpf_jit_enable;
3467 
3468 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3469 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3470 						     struct list_head **iter);
3471 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3472 						     struct list_head **iter);
3473 
3474 /* iterate through upper list, must be called under RCU read lock */
3475 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3476 	for (iter = &(dev)->adj_list.upper, \
3477 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3478 	     updev; \
3479 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3480 
3481 /* iterate through upper list, must be called under RCU read lock */
3482 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3483 	for (iter = &(dev)->all_adj_list.upper, \
3484 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3485 	     updev; \
3486 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3487 
3488 void *netdev_lower_get_next_private(struct net_device *dev,
3489 				    struct list_head **iter);
3490 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3491 					struct list_head **iter);
3492 
3493 #define netdev_for_each_lower_private(dev, priv, iter) \
3494 	for (iter = (dev)->adj_list.lower.next, \
3495 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3496 	     priv; \
3497 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3498 
3499 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3500 	for (iter = &(dev)->adj_list.lower, \
3501 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3502 	     priv; \
3503 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3504 
3505 void *netdev_lower_get_next(struct net_device *dev,
3506 				struct list_head **iter);
3507 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3508 	for (iter = &(dev)->adj_list.lower, \
3509 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3510 	     ldev; \
3511 	     ldev = netdev_lower_get_next(dev, &(iter)))
3512 
3513 void *netdev_adjacent_get_private(struct list_head *adj_list);
3514 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3515 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3516 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3517 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3518 int netdev_master_upper_dev_link(struct net_device *dev,
3519 				 struct net_device *upper_dev);
3520 int netdev_master_upper_dev_link_private(struct net_device *dev,
3521 					 struct net_device *upper_dev,
3522 					 void *private);
3523 void netdev_upper_dev_unlink(struct net_device *dev,
3524 			     struct net_device *upper_dev);
3525 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3526 void *netdev_lower_dev_get_private(struct net_device *dev,
3527 				   struct net_device *lower_dev);
3528 
3529 /* RSS keys are 40 or 52 bytes long */
3530 #define NETDEV_RSS_KEY_LEN 52
3531 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3532 void netdev_rss_key_fill(void *buffer, size_t len);
3533 
3534 int dev_get_nest_level(struct net_device *dev,
3535 		       bool (*type_check)(struct net_device *dev));
3536 int skb_checksum_help(struct sk_buff *skb);
3537 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3538 				  netdev_features_t features, bool tx_path);
3539 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3540 				    netdev_features_t features);
3541 
3542 struct netdev_bonding_info {
3543 	ifslave	slave;
3544 	ifbond	master;
3545 };
3546 
3547 struct netdev_notifier_bonding_info {
3548 	struct netdev_notifier_info info; /* must be first */
3549 	struct netdev_bonding_info  bonding_info;
3550 };
3551 
3552 void netdev_bonding_info_change(struct net_device *dev,
3553 				struct netdev_bonding_info *bonding_info);
3554 
3555 static inline
3556 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3557 {
3558 	return __skb_gso_segment(skb, features, true);
3559 }
3560 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3561 
3562 static inline bool can_checksum_protocol(netdev_features_t features,
3563 					 __be16 protocol)
3564 {
3565 	return ((features & NETIF_F_GEN_CSUM) ||
3566 		((features & NETIF_F_V4_CSUM) &&
3567 		 protocol == htons(ETH_P_IP)) ||
3568 		((features & NETIF_F_V6_CSUM) &&
3569 		 protocol == htons(ETH_P_IPV6)) ||
3570 		((features & NETIF_F_FCOE_CRC) &&
3571 		 protocol == htons(ETH_P_FCOE)));
3572 }
3573 
3574 #ifdef CONFIG_BUG
3575 void netdev_rx_csum_fault(struct net_device *dev);
3576 #else
3577 static inline void netdev_rx_csum_fault(struct net_device *dev)
3578 {
3579 }
3580 #endif
3581 /* rx skb timestamps */
3582 void net_enable_timestamp(void);
3583 void net_disable_timestamp(void);
3584 
3585 #ifdef CONFIG_PROC_FS
3586 int __init dev_proc_init(void);
3587 #else
3588 #define dev_proc_init() 0
3589 #endif
3590 
3591 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3592 					      struct sk_buff *skb, struct net_device *dev,
3593 					      bool more)
3594 {
3595 	skb->xmit_more = more ? 1 : 0;
3596 	return ops->ndo_start_xmit(skb, dev);
3597 }
3598 
3599 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3600 					    struct netdev_queue *txq, bool more)
3601 {
3602 	const struct net_device_ops *ops = dev->netdev_ops;
3603 	int rc;
3604 
3605 	rc = __netdev_start_xmit(ops, skb, dev, more);
3606 	if (rc == NETDEV_TX_OK)
3607 		txq_trans_update(txq);
3608 
3609 	return rc;
3610 }
3611 
3612 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3613 				const void *ns);
3614 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3615 				 const void *ns);
3616 
3617 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3618 {
3619 	return netdev_class_create_file_ns(class_attr, NULL);
3620 }
3621 
3622 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3623 {
3624 	netdev_class_remove_file_ns(class_attr, NULL);
3625 }
3626 
3627 extern struct kobj_ns_type_operations net_ns_type_operations;
3628 
3629 const char *netdev_drivername(const struct net_device *dev);
3630 
3631 void linkwatch_run_queue(void);
3632 
3633 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3634 							  netdev_features_t f2)
3635 {
3636 	if (f1 & NETIF_F_GEN_CSUM)
3637 		f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3638 	if (f2 & NETIF_F_GEN_CSUM)
3639 		f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3640 	f1 &= f2;
3641 	if (f1 & NETIF_F_GEN_CSUM)
3642 		f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3643 
3644 	return f1;
3645 }
3646 
3647 static inline netdev_features_t netdev_get_wanted_features(
3648 	struct net_device *dev)
3649 {
3650 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3651 }
3652 netdev_features_t netdev_increment_features(netdev_features_t all,
3653 	netdev_features_t one, netdev_features_t mask);
3654 
3655 /* Allow TSO being used on stacked device :
3656  * Performing the GSO segmentation before last device
3657  * is a performance improvement.
3658  */
3659 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3660 							netdev_features_t mask)
3661 {
3662 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3663 }
3664 
3665 int __netdev_update_features(struct net_device *dev);
3666 void netdev_update_features(struct net_device *dev);
3667 void netdev_change_features(struct net_device *dev);
3668 
3669 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3670 					struct net_device *dev);
3671 
3672 netdev_features_t netif_skb_features(struct sk_buff *skb);
3673 
3674 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3675 {
3676 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3677 
3678 	/* check flags correspondence */
3679 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3680 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3681 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3682 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3683 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3684 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3685 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3686 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3687 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3688 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3689 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3690 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3691 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3692 
3693 	return (features & feature) == feature;
3694 }
3695 
3696 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3697 {
3698 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3699 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3700 }
3701 
3702 static inline bool netif_needs_gso(struct net_device *dev, struct sk_buff *skb,
3703 				   netdev_features_t features)
3704 {
3705 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3706 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3707 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3708 }
3709 
3710 static inline void netif_set_gso_max_size(struct net_device *dev,
3711 					  unsigned int size)
3712 {
3713 	dev->gso_max_size = size;
3714 }
3715 
3716 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3717 					int pulled_hlen, u16 mac_offset,
3718 					int mac_len)
3719 {
3720 	skb->protocol = protocol;
3721 	skb->encapsulation = 1;
3722 	skb_push(skb, pulled_hlen);
3723 	skb_reset_transport_header(skb);
3724 	skb->mac_header = mac_offset;
3725 	skb->network_header = skb->mac_header + mac_len;
3726 	skb->mac_len = mac_len;
3727 }
3728 
3729 static inline bool netif_is_macvlan(struct net_device *dev)
3730 {
3731 	return dev->priv_flags & IFF_MACVLAN;
3732 }
3733 
3734 static inline bool netif_is_macvlan_port(struct net_device *dev)
3735 {
3736 	return dev->priv_flags & IFF_MACVLAN_PORT;
3737 }
3738 
3739 static inline bool netif_is_ipvlan(struct net_device *dev)
3740 {
3741 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
3742 }
3743 
3744 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3745 {
3746 	return dev->priv_flags & IFF_IPVLAN_MASTER;
3747 }
3748 
3749 static inline bool netif_is_bond_master(struct net_device *dev)
3750 {
3751 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3752 }
3753 
3754 static inline bool netif_is_bond_slave(struct net_device *dev)
3755 {
3756 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3757 }
3758 
3759 static inline bool netif_supports_nofcs(struct net_device *dev)
3760 {
3761 	return dev->priv_flags & IFF_SUPP_NOFCS;
3762 }
3763 
3764 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3765 static inline void netif_keep_dst(struct net_device *dev)
3766 {
3767 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3768 }
3769 
3770 extern struct pernet_operations __net_initdata loopback_net_ops;
3771 
3772 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3773 
3774 /* netdev_printk helpers, similar to dev_printk */
3775 
3776 static inline const char *netdev_name(const struct net_device *dev)
3777 {
3778 	if (!dev->name[0] || strchr(dev->name, '%'))
3779 		return "(unnamed net_device)";
3780 	return dev->name;
3781 }
3782 
3783 static inline const char *netdev_reg_state(const struct net_device *dev)
3784 {
3785 	switch (dev->reg_state) {
3786 	case NETREG_UNINITIALIZED: return " (uninitialized)";
3787 	case NETREG_REGISTERED: return "";
3788 	case NETREG_UNREGISTERING: return " (unregistering)";
3789 	case NETREG_UNREGISTERED: return " (unregistered)";
3790 	case NETREG_RELEASED: return " (released)";
3791 	case NETREG_DUMMY: return " (dummy)";
3792 	}
3793 
3794 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3795 	return " (unknown)";
3796 }
3797 
3798 __printf(3, 4)
3799 void netdev_printk(const char *level, const struct net_device *dev,
3800 		   const char *format, ...);
3801 __printf(2, 3)
3802 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3803 __printf(2, 3)
3804 void netdev_alert(const struct net_device *dev, const char *format, ...);
3805 __printf(2, 3)
3806 void netdev_crit(const struct net_device *dev, const char *format, ...);
3807 __printf(2, 3)
3808 void netdev_err(const struct net_device *dev, const char *format, ...);
3809 __printf(2, 3)
3810 void netdev_warn(const struct net_device *dev, const char *format, ...);
3811 __printf(2, 3)
3812 void netdev_notice(const struct net_device *dev, const char *format, ...);
3813 __printf(2, 3)
3814 void netdev_info(const struct net_device *dev, const char *format, ...);
3815 
3816 #define MODULE_ALIAS_NETDEV(device) \
3817 	MODULE_ALIAS("netdev-" device)
3818 
3819 #if defined(CONFIG_DYNAMIC_DEBUG)
3820 #define netdev_dbg(__dev, format, args...)			\
3821 do {								\
3822 	dynamic_netdev_dbg(__dev, format, ##args);		\
3823 } while (0)
3824 #elif defined(DEBUG)
3825 #define netdev_dbg(__dev, format, args...)			\
3826 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3827 #else
3828 #define netdev_dbg(__dev, format, args...)			\
3829 ({								\
3830 	if (0)							\
3831 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3832 })
3833 #endif
3834 
3835 #if defined(VERBOSE_DEBUG)
3836 #define netdev_vdbg	netdev_dbg
3837 #else
3838 
3839 #define netdev_vdbg(dev, format, args...)			\
3840 ({								\
3841 	if (0)							\
3842 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3843 	0;							\
3844 })
3845 #endif
3846 
3847 /*
3848  * netdev_WARN() acts like dev_printk(), but with the key difference
3849  * of using a WARN/WARN_ON to get the message out, including the
3850  * file/line information and a backtrace.
3851  */
3852 #define netdev_WARN(dev, format, args...)			\
3853 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
3854 	     netdev_reg_state(dev), ##args)
3855 
3856 /* netif printk helpers, similar to netdev_printk */
3857 
3858 #define netif_printk(priv, type, level, dev, fmt, args...)	\
3859 do {					  			\
3860 	if (netif_msg_##type(priv))				\
3861 		netdev_printk(level, (dev), fmt, ##args);	\
3862 } while (0)
3863 
3864 #define netif_level(level, priv, type, dev, fmt, args...)	\
3865 do {								\
3866 	if (netif_msg_##type(priv))				\
3867 		netdev_##level(dev, fmt, ##args);		\
3868 } while (0)
3869 
3870 #define netif_emerg(priv, type, dev, fmt, args...)		\
3871 	netif_level(emerg, priv, type, dev, fmt, ##args)
3872 #define netif_alert(priv, type, dev, fmt, args...)		\
3873 	netif_level(alert, priv, type, dev, fmt, ##args)
3874 #define netif_crit(priv, type, dev, fmt, args...)		\
3875 	netif_level(crit, priv, type, dev, fmt, ##args)
3876 #define netif_err(priv, type, dev, fmt, args...)		\
3877 	netif_level(err, priv, type, dev, fmt, ##args)
3878 #define netif_warn(priv, type, dev, fmt, args...)		\
3879 	netif_level(warn, priv, type, dev, fmt, ##args)
3880 #define netif_notice(priv, type, dev, fmt, args...)		\
3881 	netif_level(notice, priv, type, dev, fmt, ##args)
3882 #define netif_info(priv, type, dev, fmt, args...)		\
3883 	netif_level(info, priv, type, dev, fmt, ##args)
3884 
3885 #if defined(CONFIG_DYNAMIC_DEBUG)
3886 #define netif_dbg(priv, type, netdev, format, args...)		\
3887 do {								\
3888 	if (netif_msg_##type(priv))				\
3889 		dynamic_netdev_dbg(netdev, format, ##args);	\
3890 } while (0)
3891 #elif defined(DEBUG)
3892 #define netif_dbg(priv, type, dev, format, args...)		\
3893 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3894 #else
3895 #define netif_dbg(priv, type, dev, format, args...)			\
3896 ({									\
3897 	if (0)								\
3898 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3899 	0;								\
3900 })
3901 #endif
3902 
3903 #if defined(VERBOSE_DEBUG)
3904 #define netif_vdbg	netif_dbg
3905 #else
3906 #define netif_vdbg(priv, type, dev, format, args...)		\
3907 ({								\
3908 	if (0)							\
3909 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3910 	0;							\
3911 })
3912 #endif
3913 
3914 /*
3915  *	The list of packet types we will receive (as opposed to discard)
3916  *	and the routines to invoke.
3917  *
3918  *	Why 16. Because with 16 the only overlap we get on a hash of the
3919  *	low nibble of the protocol value is RARP/SNAP/X.25.
3920  *
3921  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3922  *             sure which should go first, but I bet it won't make much
3923  *             difference if we are running VLANs.  The good news is that
3924  *             this protocol won't be in the list unless compiled in, so
3925  *             the average user (w/out VLANs) will not be adversely affected.
3926  *             --BLG
3927  *
3928  *		0800	IP
3929  *		8100    802.1Q VLAN
3930  *		0001	802.3
3931  *		0002	AX.25
3932  *		0004	802.2
3933  *		8035	RARP
3934  *		0005	SNAP
3935  *		0805	X.25
3936  *		0806	ARP
3937  *		8137	IPX
3938  *		0009	Localtalk
3939  *		86DD	IPv6
3940  */
3941 #define PTYPE_HASH_SIZE	(16)
3942 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
3943 
3944 #endif	/* _LINUX_NETDEVICE_H */
3945