1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/workqueue.h> 39 #include <linux/dynamic_queue_limits.h> 40 41 #include <linux/ethtool.h> 42 #include <net/net_namespace.h> 43 #ifdef CONFIG_DCB 44 #include <net/dcbnl.h> 45 #endif 46 #include <net/netprio_cgroup.h> 47 #include <net/xdp.h> 48 49 #include <linux/netdev_features.h> 50 #include <linux/neighbour.h> 51 #include <uapi/linux/netdevice.h> 52 #include <uapi/linux/if_bonding.h> 53 #include <uapi/linux/pkt_cls.h> 54 #include <linux/hashtable.h> 55 56 struct netpoll_info; 57 struct device; 58 struct phy_device; 59 struct dsa_port; 60 61 struct sfp_bus; 62 /* 802.11 specific */ 63 struct wireless_dev; 64 /* 802.15.4 specific */ 65 struct wpan_dev; 66 struct mpls_dev; 67 /* UDP Tunnel offloads */ 68 struct udp_tunnel_info; 69 struct bpf_prog; 70 struct xdp_buff; 71 72 void netdev_set_default_ethtool_ops(struct net_device *dev, 73 const struct ethtool_ops *ops); 74 75 /* Backlog congestion levels */ 76 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 77 #define NET_RX_DROP 1 /* packet dropped */ 78 79 /* 80 * Transmit return codes: transmit return codes originate from three different 81 * namespaces: 82 * 83 * - qdisc return codes 84 * - driver transmit return codes 85 * - errno values 86 * 87 * Drivers are allowed to return any one of those in their hard_start_xmit() 88 * function. Real network devices commonly used with qdiscs should only return 89 * the driver transmit return codes though - when qdiscs are used, the actual 90 * transmission happens asynchronously, so the value is not propagated to 91 * higher layers. Virtual network devices transmit synchronously; in this case 92 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 93 * others are propagated to higher layers. 94 */ 95 96 /* qdisc ->enqueue() return codes. */ 97 #define NET_XMIT_SUCCESS 0x00 98 #define NET_XMIT_DROP 0x01 /* skb dropped */ 99 #define NET_XMIT_CN 0x02 /* congestion notification */ 100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 101 102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 103 * indicates that the device will soon be dropping packets, or already drops 104 * some packets of the same priority; prompting us to send less aggressively. */ 105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 107 108 /* Driver transmit return codes */ 109 #define NETDEV_TX_MASK 0xf0 110 111 enum netdev_tx { 112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 113 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 115 }; 116 typedef enum netdev_tx netdev_tx_t; 117 118 /* 119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 121 */ 122 static inline bool dev_xmit_complete(int rc) 123 { 124 /* 125 * Positive cases with an skb consumed by a driver: 126 * - successful transmission (rc == NETDEV_TX_OK) 127 * - error while transmitting (rc < 0) 128 * - error while queueing to a different device (rc & NET_XMIT_MASK) 129 */ 130 if (likely(rc < NET_XMIT_MASK)) 131 return true; 132 133 return false; 134 } 135 136 /* 137 * Compute the worst-case header length according to the protocols 138 * used. 139 */ 140 141 #if defined(CONFIG_HYPERV_NET) 142 # define LL_MAX_HEADER 128 143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 144 # if defined(CONFIG_MAC80211_MESH) 145 # define LL_MAX_HEADER 128 146 # else 147 # define LL_MAX_HEADER 96 148 # endif 149 #else 150 # define LL_MAX_HEADER 32 151 #endif 152 153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 154 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 155 #define MAX_HEADER LL_MAX_HEADER 156 #else 157 #define MAX_HEADER (LL_MAX_HEADER + 48) 158 #endif 159 160 /* 161 * Old network device statistics. Fields are native words 162 * (unsigned long) so they can be read and written atomically. 163 */ 164 165 struct net_device_stats { 166 unsigned long rx_packets; 167 unsigned long tx_packets; 168 unsigned long rx_bytes; 169 unsigned long tx_bytes; 170 unsigned long rx_errors; 171 unsigned long tx_errors; 172 unsigned long rx_dropped; 173 unsigned long tx_dropped; 174 unsigned long multicast; 175 unsigned long collisions; 176 unsigned long rx_length_errors; 177 unsigned long rx_over_errors; 178 unsigned long rx_crc_errors; 179 unsigned long rx_frame_errors; 180 unsigned long rx_fifo_errors; 181 unsigned long rx_missed_errors; 182 unsigned long tx_aborted_errors; 183 unsigned long tx_carrier_errors; 184 unsigned long tx_fifo_errors; 185 unsigned long tx_heartbeat_errors; 186 unsigned long tx_window_errors; 187 unsigned long rx_compressed; 188 unsigned long tx_compressed; 189 }; 190 191 192 #include <linux/cache.h> 193 #include <linux/skbuff.h> 194 195 #ifdef CONFIG_RPS 196 #include <linux/static_key.h> 197 extern struct static_key rps_needed; 198 extern struct static_key rfs_needed; 199 #endif 200 201 struct neighbour; 202 struct neigh_parms; 203 struct sk_buff; 204 205 struct netdev_hw_addr { 206 struct list_head list; 207 unsigned char addr[MAX_ADDR_LEN]; 208 unsigned char type; 209 #define NETDEV_HW_ADDR_T_LAN 1 210 #define NETDEV_HW_ADDR_T_SAN 2 211 #define NETDEV_HW_ADDR_T_SLAVE 3 212 #define NETDEV_HW_ADDR_T_UNICAST 4 213 #define NETDEV_HW_ADDR_T_MULTICAST 5 214 bool global_use; 215 int sync_cnt; 216 int refcount; 217 int synced; 218 struct rcu_head rcu_head; 219 }; 220 221 struct netdev_hw_addr_list { 222 struct list_head list; 223 int count; 224 }; 225 226 #define netdev_hw_addr_list_count(l) ((l)->count) 227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 228 #define netdev_hw_addr_list_for_each(ha, l) \ 229 list_for_each_entry(ha, &(l)->list, list) 230 231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 233 #define netdev_for_each_uc_addr(ha, dev) \ 234 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 235 236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 238 #define netdev_for_each_mc_addr(ha, dev) \ 239 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 240 241 struct hh_cache { 242 unsigned int hh_len; 243 seqlock_t hh_lock; 244 245 /* cached hardware header; allow for machine alignment needs. */ 246 #define HH_DATA_MOD 16 247 #define HH_DATA_OFF(__len) \ 248 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 249 #define HH_DATA_ALIGN(__len) \ 250 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 251 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 252 }; 253 254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 255 * Alternative is: 256 * dev->hard_header_len ? (dev->hard_header_len + 257 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 258 * 259 * We could use other alignment values, but we must maintain the 260 * relationship HH alignment <= LL alignment. 261 */ 262 #define LL_RESERVED_SPACE(dev) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 265 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 266 267 struct header_ops { 268 int (*create) (struct sk_buff *skb, struct net_device *dev, 269 unsigned short type, const void *daddr, 270 const void *saddr, unsigned int len); 271 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 272 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 273 void (*cache_update)(struct hh_cache *hh, 274 const struct net_device *dev, 275 const unsigned char *haddr); 276 bool (*validate)(const char *ll_header, unsigned int len); 277 }; 278 279 /* These flag bits are private to the generic network queueing 280 * layer; they may not be explicitly referenced by any other 281 * code. 282 */ 283 284 enum netdev_state_t { 285 __LINK_STATE_START, 286 __LINK_STATE_PRESENT, 287 __LINK_STATE_NOCARRIER, 288 __LINK_STATE_LINKWATCH_PENDING, 289 __LINK_STATE_DORMANT, 290 }; 291 292 293 /* 294 * This structure holds boot-time configured netdevice settings. They 295 * are then used in the device probing. 296 */ 297 struct netdev_boot_setup { 298 char name[IFNAMSIZ]; 299 struct ifmap map; 300 }; 301 #define NETDEV_BOOT_SETUP_MAX 8 302 303 int __init netdev_boot_setup(char *str); 304 305 struct gro_list { 306 struct list_head list; 307 int count; 308 }; 309 310 /* 311 * size of gro hash buckets, must less than bit number of 312 * napi_struct::gro_bitmask 313 */ 314 #define GRO_HASH_BUCKETS 8 315 316 /* 317 * Structure for NAPI scheduling similar to tasklet but with weighting 318 */ 319 struct napi_struct { 320 /* The poll_list must only be managed by the entity which 321 * changes the state of the NAPI_STATE_SCHED bit. This means 322 * whoever atomically sets that bit can add this napi_struct 323 * to the per-CPU poll_list, and whoever clears that bit 324 * can remove from the list right before clearing the bit. 325 */ 326 struct list_head poll_list; 327 328 unsigned long state; 329 int weight; 330 unsigned long gro_bitmask; 331 int (*poll)(struct napi_struct *, int); 332 #ifdef CONFIG_NETPOLL 333 int poll_owner; 334 #endif 335 struct net_device *dev; 336 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 337 struct sk_buff *skb; 338 struct hrtimer timer; 339 struct list_head dev_list; 340 struct hlist_node napi_hash_node; 341 unsigned int napi_id; 342 }; 343 344 enum { 345 NAPI_STATE_SCHED, /* Poll is scheduled */ 346 NAPI_STATE_MISSED, /* reschedule a napi */ 347 NAPI_STATE_DISABLE, /* Disable pending */ 348 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 349 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 350 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 351 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 352 }; 353 354 enum { 355 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 356 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 357 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 358 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 359 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 360 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 361 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 362 }; 363 364 enum gro_result { 365 GRO_MERGED, 366 GRO_MERGED_FREE, 367 GRO_HELD, 368 GRO_NORMAL, 369 GRO_DROP, 370 GRO_CONSUMED, 371 }; 372 typedef enum gro_result gro_result_t; 373 374 /* 375 * enum rx_handler_result - Possible return values for rx_handlers. 376 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 377 * further. 378 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 379 * case skb->dev was changed by rx_handler. 380 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 381 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 382 * 383 * rx_handlers are functions called from inside __netif_receive_skb(), to do 384 * special processing of the skb, prior to delivery to protocol handlers. 385 * 386 * Currently, a net_device can only have a single rx_handler registered. Trying 387 * to register a second rx_handler will return -EBUSY. 388 * 389 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 390 * To unregister a rx_handler on a net_device, use 391 * netdev_rx_handler_unregister(). 392 * 393 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 394 * do with the skb. 395 * 396 * If the rx_handler consumed the skb in some way, it should return 397 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 398 * the skb to be delivered in some other way. 399 * 400 * If the rx_handler changed skb->dev, to divert the skb to another 401 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 402 * new device will be called if it exists. 403 * 404 * If the rx_handler decides the skb should be ignored, it should return 405 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 406 * are registered on exact device (ptype->dev == skb->dev). 407 * 408 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 409 * delivered, it should return RX_HANDLER_PASS. 410 * 411 * A device without a registered rx_handler will behave as if rx_handler 412 * returned RX_HANDLER_PASS. 413 */ 414 415 enum rx_handler_result { 416 RX_HANDLER_CONSUMED, 417 RX_HANDLER_ANOTHER, 418 RX_HANDLER_EXACT, 419 RX_HANDLER_PASS, 420 }; 421 typedef enum rx_handler_result rx_handler_result_t; 422 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 423 424 void __napi_schedule(struct napi_struct *n); 425 void __napi_schedule_irqoff(struct napi_struct *n); 426 427 static inline bool napi_disable_pending(struct napi_struct *n) 428 { 429 return test_bit(NAPI_STATE_DISABLE, &n->state); 430 } 431 432 bool napi_schedule_prep(struct napi_struct *n); 433 434 /** 435 * napi_schedule - schedule NAPI poll 436 * @n: NAPI context 437 * 438 * Schedule NAPI poll routine to be called if it is not already 439 * running. 440 */ 441 static inline void napi_schedule(struct napi_struct *n) 442 { 443 if (napi_schedule_prep(n)) 444 __napi_schedule(n); 445 } 446 447 /** 448 * napi_schedule_irqoff - schedule NAPI poll 449 * @n: NAPI context 450 * 451 * Variant of napi_schedule(), assuming hard irqs are masked. 452 */ 453 static inline void napi_schedule_irqoff(struct napi_struct *n) 454 { 455 if (napi_schedule_prep(n)) 456 __napi_schedule_irqoff(n); 457 } 458 459 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 460 static inline bool napi_reschedule(struct napi_struct *napi) 461 { 462 if (napi_schedule_prep(napi)) { 463 __napi_schedule(napi); 464 return true; 465 } 466 return false; 467 } 468 469 bool napi_complete_done(struct napi_struct *n, int work_done); 470 /** 471 * napi_complete - NAPI processing complete 472 * @n: NAPI context 473 * 474 * Mark NAPI processing as complete. 475 * Consider using napi_complete_done() instead. 476 * Return false if device should avoid rearming interrupts. 477 */ 478 static inline bool napi_complete(struct napi_struct *n) 479 { 480 return napi_complete_done(n, 0); 481 } 482 483 /** 484 * napi_hash_del - remove a NAPI from global table 485 * @napi: NAPI context 486 * 487 * Warning: caller must observe RCU grace period 488 * before freeing memory containing @napi, if 489 * this function returns true. 490 * Note: core networking stack automatically calls it 491 * from netif_napi_del(). 492 * Drivers might want to call this helper to combine all 493 * the needed RCU grace periods into a single one. 494 */ 495 bool napi_hash_del(struct napi_struct *napi); 496 497 /** 498 * napi_disable - prevent NAPI from scheduling 499 * @n: NAPI context 500 * 501 * Stop NAPI from being scheduled on this context. 502 * Waits till any outstanding processing completes. 503 */ 504 void napi_disable(struct napi_struct *n); 505 506 /** 507 * napi_enable - enable NAPI scheduling 508 * @n: NAPI context 509 * 510 * Resume NAPI from being scheduled on this context. 511 * Must be paired with napi_disable. 512 */ 513 static inline void napi_enable(struct napi_struct *n) 514 { 515 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 516 smp_mb__before_atomic(); 517 clear_bit(NAPI_STATE_SCHED, &n->state); 518 clear_bit(NAPI_STATE_NPSVC, &n->state); 519 } 520 521 /** 522 * napi_synchronize - wait until NAPI is not running 523 * @n: NAPI context 524 * 525 * Wait until NAPI is done being scheduled on this context. 526 * Waits till any outstanding processing completes but 527 * does not disable future activations. 528 */ 529 static inline void napi_synchronize(const struct napi_struct *n) 530 { 531 if (IS_ENABLED(CONFIG_SMP)) 532 while (test_bit(NAPI_STATE_SCHED, &n->state)) 533 msleep(1); 534 else 535 barrier(); 536 } 537 538 /** 539 * napi_if_scheduled_mark_missed - if napi is running, set the 540 * NAPIF_STATE_MISSED 541 * @n: NAPI context 542 * 543 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 544 * NAPI is scheduled. 545 **/ 546 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 547 { 548 unsigned long val, new; 549 550 do { 551 val = READ_ONCE(n->state); 552 if (val & NAPIF_STATE_DISABLE) 553 return true; 554 555 if (!(val & NAPIF_STATE_SCHED)) 556 return false; 557 558 new = val | NAPIF_STATE_MISSED; 559 } while (cmpxchg(&n->state, val, new) != val); 560 561 return true; 562 } 563 564 enum netdev_queue_state_t { 565 __QUEUE_STATE_DRV_XOFF, 566 __QUEUE_STATE_STACK_XOFF, 567 __QUEUE_STATE_FROZEN, 568 }; 569 570 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 571 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 572 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 573 574 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 575 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 576 QUEUE_STATE_FROZEN) 577 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 578 QUEUE_STATE_FROZEN) 579 580 /* 581 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 582 * netif_tx_* functions below are used to manipulate this flag. The 583 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 584 * queue independently. The netif_xmit_*stopped functions below are called 585 * to check if the queue has been stopped by the driver or stack (either 586 * of the XOFF bits are set in the state). Drivers should not need to call 587 * netif_xmit*stopped functions, they should only be using netif_tx_*. 588 */ 589 590 struct netdev_queue { 591 /* 592 * read-mostly part 593 */ 594 struct net_device *dev; 595 struct Qdisc __rcu *qdisc; 596 struct Qdisc *qdisc_sleeping; 597 #ifdef CONFIG_SYSFS 598 struct kobject kobj; 599 #endif 600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 601 int numa_node; 602 #endif 603 unsigned long tx_maxrate; 604 /* 605 * Number of TX timeouts for this queue 606 * (/sys/class/net/DEV/Q/trans_timeout) 607 */ 608 unsigned long trans_timeout; 609 610 /* Subordinate device that the queue has been assigned to */ 611 struct net_device *sb_dev; 612 /* 613 * write-mostly part 614 */ 615 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 616 int xmit_lock_owner; 617 /* 618 * Time (in jiffies) of last Tx 619 */ 620 unsigned long trans_start; 621 622 unsigned long state; 623 624 #ifdef CONFIG_BQL 625 struct dql dql; 626 #endif 627 } ____cacheline_aligned_in_smp; 628 629 extern int sysctl_fb_tunnels_only_for_init_net; 630 631 static inline bool net_has_fallback_tunnels(const struct net *net) 632 { 633 return net == &init_net || 634 !IS_ENABLED(CONFIG_SYSCTL) || 635 !sysctl_fb_tunnels_only_for_init_net; 636 } 637 638 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 639 { 640 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 641 return q->numa_node; 642 #else 643 return NUMA_NO_NODE; 644 #endif 645 } 646 647 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 648 { 649 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 650 q->numa_node = node; 651 #endif 652 } 653 654 #ifdef CONFIG_RPS 655 /* 656 * This structure holds an RPS map which can be of variable length. The 657 * map is an array of CPUs. 658 */ 659 struct rps_map { 660 unsigned int len; 661 struct rcu_head rcu; 662 u16 cpus[0]; 663 }; 664 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 665 666 /* 667 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 668 * tail pointer for that CPU's input queue at the time of last enqueue, and 669 * a hardware filter index. 670 */ 671 struct rps_dev_flow { 672 u16 cpu; 673 u16 filter; 674 unsigned int last_qtail; 675 }; 676 #define RPS_NO_FILTER 0xffff 677 678 /* 679 * The rps_dev_flow_table structure contains a table of flow mappings. 680 */ 681 struct rps_dev_flow_table { 682 unsigned int mask; 683 struct rcu_head rcu; 684 struct rps_dev_flow flows[0]; 685 }; 686 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 687 ((_num) * sizeof(struct rps_dev_flow))) 688 689 /* 690 * The rps_sock_flow_table contains mappings of flows to the last CPU 691 * on which they were processed by the application (set in recvmsg). 692 * Each entry is a 32bit value. Upper part is the high-order bits 693 * of flow hash, lower part is CPU number. 694 * rps_cpu_mask is used to partition the space, depending on number of 695 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 696 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 697 * meaning we use 32-6=26 bits for the hash. 698 */ 699 struct rps_sock_flow_table { 700 u32 mask; 701 702 u32 ents[0] ____cacheline_aligned_in_smp; 703 }; 704 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 705 706 #define RPS_NO_CPU 0xffff 707 708 extern u32 rps_cpu_mask; 709 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 710 711 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 712 u32 hash) 713 { 714 if (table && hash) { 715 unsigned int index = hash & table->mask; 716 u32 val = hash & ~rps_cpu_mask; 717 718 /* We only give a hint, preemption can change CPU under us */ 719 val |= raw_smp_processor_id(); 720 721 if (table->ents[index] != val) 722 table->ents[index] = val; 723 } 724 } 725 726 #ifdef CONFIG_RFS_ACCEL 727 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 728 u16 filter_id); 729 #endif 730 #endif /* CONFIG_RPS */ 731 732 /* This structure contains an instance of an RX queue. */ 733 struct netdev_rx_queue { 734 #ifdef CONFIG_RPS 735 struct rps_map __rcu *rps_map; 736 struct rps_dev_flow_table __rcu *rps_flow_table; 737 #endif 738 struct kobject kobj; 739 struct net_device *dev; 740 struct xdp_rxq_info xdp_rxq; 741 } ____cacheline_aligned_in_smp; 742 743 /* 744 * RX queue sysfs structures and functions. 745 */ 746 struct rx_queue_attribute { 747 struct attribute attr; 748 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 749 ssize_t (*store)(struct netdev_rx_queue *queue, 750 const char *buf, size_t len); 751 }; 752 753 #ifdef CONFIG_XPS 754 /* 755 * This structure holds an XPS map which can be of variable length. The 756 * map is an array of queues. 757 */ 758 struct xps_map { 759 unsigned int len; 760 unsigned int alloc_len; 761 struct rcu_head rcu; 762 u16 queues[0]; 763 }; 764 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 765 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 766 - sizeof(struct xps_map)) / sizeof(u16)) 767 768 /* 769 * This structure holds all XPS maps for device. Maps are indexed by CPU. 770 */ 771 struct xps_dev_maps { 772 struct rcu_head rcu; 773 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */ 774 }; 775 776 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 777 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 778 779 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 780 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 781 782 #endif /* CONFIG_XPS */ 783 784 #define TC_MAX_QUEUE 16 785 #define TC_BITMASK 15 786 /* HW offloaded queuing disciplines txq count and offset maps */ 787 struct netdev_tc_txq { 788 u16 count; 789 u16 offset; 790 }; 791 792 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 793 /* 794 * This structure is to hold information about the device 795 * configured to run FCoE protocol stack. 796 */ 797 struct netdev_fcoe_hbainfo { 798 char manufacturer[64]; 799 char serial_number[64]; 800 char hardware_version[64]; 801 char driver_version[64]; 802 char optionrom_version[64]; 803 char firmware_version[64]; 804 char model[256]; 805 char model_description[256]; 806 }; 807 #endif 808 809 #define MAX_PHYS_ITEM_ID_LEN 32 810 811 /* This structure holds a unique identifier to identify some 812 * physical item (port for example) used by a netdevice. 813 */ 814 struct netdev_phys_item_id { 815 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 816 unsigned char id_len; 817 }; 818 819 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 820 struct netdev_phys_item_id *b) 821 { 822 return a->id_len == b->id_len && 823 memcmp(a->id, b->id, a->id_len) == 0; 824 } 825 826 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 827 struct sk_buff *skb, 828 struct net_device *sb_dev); 829 830 enum tc_setup_type { 831 TC_SETUP_QDISC_MQPRIO, 832 TC_SETUP_CLSU32, 833 TC_SETUP_CLSFLOWER, 834 TC_SETUP_CLSMATCHALL, 835 TC_SETUP_CLSBPF, 836 TC_SETUP_BLOCK, 837 TC_SETUP_QDISC_CBS, 838 TC_SETUP_QDISC_RED, 839 TC_SETUP_QDISC_PRIO, 840 TC_SETUP_QDISC_MQ, 841 TC_SETUP_QDISC_ETF, 842 }; 843 844 /* These structures hold the attributes of bpf state that are being passed 845 * to the netdevice through the bpf op. 846 */ 847 enum bpf_netdev_command { 848 /* Set or clear a bpf program used in the earliest stages of packet 849 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 850 * is responsible for calling bpf_prog_put on any old progs that are 851 * stored. In case of error, the callee need not release the new prog 852 * reference, but on success it takes ownership and must bpf_prog_put 853 * when it is no longer used. 854 */ 855 XDP_SETUP_PROG, 856 XDP_SETUP_PROG_HW, 857 XDP_QUERY_PROG, 858 XDP_QUERY_PROG_HW, 859 /* BPF program for offload callbacks, invoked at program load time. */ 860 BPF_OFFLOAD_VERIFIER_PREP, 861 BPF_OFFLOAD_TRANSLATE, 862 BPF_OFFLOAD_DESTROY, 863 BPF_OFFLOAD_MAP_ALLOC, 864 BPF_OFFLOAD_MAP_FREE, 865 XDP_QUERY_XSK_UMEM, 866 XDP_SETUP_XSK_UMEM, 867 }; 868 869 struct bpf_prog_offload_ops; 870 struct netlink_ext_ack; 871 struct xdp_umem; 872 873 struct netdev_bpf { 874 enum bpf_netdev_command command; 875 union { 876 /* XDP_SETUP_PROG */ 877 struct { 878 u32 flags; 879 struct bpf_prog *prog; 880 struct netlink_ext_ack *extack; 881 }; 882 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */ 883 struct { 884 u32 prog_id; 885 /* flags with which program was installed */ 886 u32 prog_flags; 887 }; 888 /* BPF_OFFLOAD_VERIFIER_PREP */ 889 struct { 890 struct bpf_prog *prog; 891 const struct bpf_prog_offload_ops *ops; /* callee set */ 892 } verifier; 893 /* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */ 894 struct { 895 struct bpf_prog *prog; 896 } offload; 897 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 898 struct { 899 struct bpf_offloaded_map *offmap; 900 }; 901 /* XDP_QUERY_XSK_UMEM, XDP_SETUP_XSK_UMEM */ 902 struct { 903 struct xdp_umem *umem; /* out for query*/ 904 u16 queue_id; /* in for query */ 905 } xsk; 906 }; 907 }; 908 909 #ifdef CONFIG_XFRM_OFFLOAD 910 struct xfrmdev_ops { 911 int (*xdo_dev_state_add) (struct xfrm_state *x); 912 void (*xdo_dev_state_delete) (struct xfrm_state *x); 913 void (*xdo_dev_state_free) (struct xfrm_state *x); 914 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 915 struct xfrm_state *x); 916 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 917 }; 918 #endif 919 920 #if IS_ENABLED(CONFIG_TLS_DEVICE) 921 enum tls_offload_ctx_dir { 922 TLS_OFFLOAD_CTX_DIR_RX, 923 TLS_OFFLOAD_CTX_DIR_TX, 924 }; 925 926 struct tls_crypto_info; 927 struct tls_context; 928 929 struct tlsdev_ops { 930 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 931 enum tls_offload_ctx_dir direction, 932 struct tls_crypto_info *crypto_info, 933 u32 start_offload_tcp_sn); 934 void (*tls_dev_del)(struct net_device *netdev, 935 struct tls_context *ctx, 936 enum tls_offload_ctx_dir direction); 937 void (*tls_dev_resync_rx)(struct net_device *netdev, 938 struct sock *sk, u32 seq, u64 rcd_sn); 939 }; 940 #endif 941 942 struct dev_ifalias { 943 struct rcu_head rcuhead; 944 char ifalias[]; 945 }; 946 947 /* 948 * This structure defines the management hooks for network devices. 949 * The following hooks can be defined; unless noted otherwise, they are 950 * optional and can be filled with a null pointer. 951 * 952 * int (*ndo_init)(struct net_device *dev); 953 * This function is called once when a network device is registered. 954 * The network device can use this for any late stage initialization 955 * or semantic validation. It can fail with an error code which will 956 * be propagated back to register_netdev. 957 * 958 * void (*ndo_uninit)(struct net_device *dev); 959 * This function is called when device is unregistered or when registration 960 * fails. It is not called if init fails. 961 * 962 * int (*ndo_open)(struct net_device *dev); 963 * This function is called when a network device transitions to the up 964 * state. 965 * 966 * int (*ndo_stop)(struct net_device *dev); 967 * This function is called when a network device transitions to the down 968 * state. 969 * 970 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 971 * struct net_device *dev); 972 * Called when a packet needs to be transmitted. 973 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 974 * the queue before that can happen; it's for obsolete devices and weird 975 * corner cases, but the stack really does a non-trivial amount 976 * of useless work if you return NETDEV_TX_BUSY. 977 * Required; cannot be NULL. 978 * 979 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 980 * struct net_device *dev 981 * netdev_features_t features); 982 * Called by core transmit path to determine if device is capable of 983 * performing offload operations on a given packet. This is to give 984 * the device an opportunity to implement any restrictions that cannot 985 * be otherwise expressed by feature flags. The check is called with 986 * the set of features that the stack has calculated and it returns 987 * those the driver believes to be appropriate. 988 * 989 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 990 * struct net_device *sb_dev, 991 * select_queue_fallback_t fallback); 992 * Called to decide which queue to use when device supports multiple 993 * transmit queues. 994 * 995 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 996 * This function is called to allow device receiver to make 997 * changes to configuration when multicast or promiscuous is enabled. 998 * 999 * void (*ndo_set_rx_mode)(struct net_device *dev); 1000 * This function is called device changes address list filtering. 1001 * If driver handles unicast address filtering, it should set 1002 * IFF_UNICAST_FLT in its priv_flags. 1003 * 1004 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1005 * This function is called when the Media Access Control address 1006 * needs to be changed. If this interface is not defined, the 1007 * MAC address can not be changed. 1008 * 1009 * int (*ndo_validate_addr)(struct net_device *dev); 1010 * Test if Media Access Control address is valid for the device. 1011 * 1012 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1013 * Called when a user requests an ioctl which can't be handled by 1014 * the generic interface code. If not defined ioctls return 1015 * not supported error code. 1016 * 1017 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1018 * Used to set network devices bus interface parameters. This interface 1019 * is retained for legacy reasons; new devices should use the bus 1020 * interface (PCI) for low level management. 1021 * 1022 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1023 * Called when a user wants to change the Maximum Transfer Unit 1024 * of a device. 1025 * 1026 * void (*ndo_tx_timeout)(struct net_device *dev); 1027 * Callback used when the transmitter has not made any progress 1028 * for dev->watchdog ticks. 1029 * 1030 * void (*ndo_get_stats64)(struct net_device *dev, 1031 * struct rtnl_link_stats64 *storage); 1032 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1033 * Called when a user wants to get the network device usage 1034 * statistics. Drivers must do one of the following: 1035 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1036 * rtnl_link_stats64 structure passed by the caller. 1037 * 2. Define @ndo_get_stats to update a net_device_stats structure 1038 * (which should normally be dev->stats) and return a pointer to 1039 * it. The structure may be changed asynchronously only if each 1040 * field is written atomically. 1041 * 3. Update dev->stats asynchronously and atomically, and define 1042 * neither operation. 1043 * 1044 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1045 * Return true if this device supports offload stats of this attr_id. 1046 * 1047 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1048 * void *attr_data) 1049 * Get statistics for offload operations by attr_id. Write it into the 1050 * attr_data pointer. 1051 * 1052 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1053 * If device supports VLAN filtering this function is called when a 1054 * VLAN id is registered. 1055 * 1056 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1057 * If device supports VLAN filtering this function is called when a 1058 * VLAN id is unregistered. 1059 * 1060 * void (*ndo_poll_controller)(struct net_device *dev); 1061 * 1062 * SR-IOV management functions. 1063 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1064 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1065 * u8 qos, __be16 proto); 1066 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1067 * int max_tx_rate); 1068 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1069 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1070 * int (*ndo_get_vf_config)(struct net_device *dev, 1071 * int vf, struct ifla_vf_info *ivf); 1072 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1073 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1074 * struct nlattr *port[]); 1075 * 1076 * Enable or disable the VF ability to query its RSS Redirection Table and 1077 * Hash Key. This is needed since on some devices VF share this information 1078 * with PF and querying it may introduce a theoretical security risk. 1079 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1080 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1081 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1082 * void *type_data); 1083 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1084 * This is always called from the stack with the rtnl lock held and netif 1085 * tx queues stopped. This allows the netdevice to perform queue 1086 * management safely. 1087 * 1088 * Fiber Channel over Ethernet (FCoE) offload functions. 1089 * int (*ndo_fcoe_enable)(struct net_device *dev); 1090 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1091 * so the underlying device can perform whatever needed configuration or 1092 * initialization to support acceleration of FCoE traffic. 1093 * 1094 * int (*ndo_fcoe_disable)(struct net_device *dev); 1095 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1096 * so the underlying device can perform whatever needed clean-ups to 1097 * stop supporting acceleration of FCoE traffic. 1098 * 1099 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1100 * struct scatterlist *sgl, unsigned int sgc); 1101 * Called when the FCoE Initiator wants to initialize an I/O that 1102 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1103 * perform necessary setup and returns 1 to indicate the device is set up 1104 * successfully to perform DDP on this I/O, otherwise this returns 0. 1105 * 1106 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1107 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1108 * indicated by the FC exchange id 'xid', so the underlying device can 1109 * clean up and reuse resources for later DDP requests. 1110 * 1111 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1112 * struct scatterlist *sgl, unsigned int sgc); 1113 * Called when the FCoE Target wants to initialize an I/O that 1114 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1115 * perform necessary setup and returns 1 to indicate the device is set up 1116 * successfully to perform DDP on this I/O, otherwise this returns 0. 1117 * 1118 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1119 * struct netdev_fcoe_hbainfo *hbainfo); 1120 * Called when the FCoE Protocol stack wants information on the underlying 1121 * device. This information is utilized by the FCoE protocol stack to 1122 * register attributes with Fiber Channel management service as per the 1123 * FC-GS Fabric Device Management Information(FDMI) specification. 1124 * 1125 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1126 * Called when the underlying device wants to override default World Wide 1127 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1128 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1129 * protocol stack to use. 1130 * 1131 * RFS acceleration. 1132 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1133 * u16 rxq_index, u32 flow_id); 1134 * Set hardware filter for RFS. rxq_index is the target queue index; 1135 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1136 * Return the filter ID on success, or a negative error code. 1137 * 1138 * Slave management functions (for bridge, bonding, etc). 1139 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1140 * Called to make another netdev an underling. 1141 * 1142 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1143 * Called to release previously enslaved netdev. 1144 * 1145 * Feature/offload setting functions. 1146 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1147 * netdev_features_t features); 1148 * Adjusts the requested feature flags according to device-specific 1149 * constraints, and returns the resulting flags. Must not modify 1150 * the device state. 1151 * 1152 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1153 * Called to update device configuration to new features. Passed 1154 * feature set might be less than what was returned by ndo_fix_features()). 1155 * Must return >0 or -errno if it changed dev->features itself. 1156 * 1157 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1158 * struct net_device *dev, 1159 * const unsigned char *addr, u16 vid, u16 flags) 1160 * Adds an FDB entry to dev for addr. 1161 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1162 * struct net_device *dev, 1163 * const unsigned char *addr, u16 vid) 1164 * Deletes the FDB entry from dev coresponding to addr. 1165 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1166 * struct net_device *dev, struct net_device *filter_dev, 1167 * int *idx) 1168 * Used to add FDB entries to dump requests. Implementers should add 1169 * entries to skb and update idx with the number of entries. 1170 * 1171 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1172 * u16 flags) 1173 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1174 * struct net_device *dev, u32 filter_mask, 1175 * int nlflags) 1176 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1177 * u16 flags); 1178 * 1179 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1180 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1181 * which do not represent real hardware may define this to allow their 1182 * userspace components to manage their virtual carrier state. Devices 1183 * that determine carrier state from physical hardware properties (eg 1184 * network cables) or protocol-dependent mechanisms (eg 1185 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1186 * 1187 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1188 * struct netdev_phys_item_id *ppid); 1189 * Called to get ID of physical port of this device. If driver does 1190 * not implement this, it is assumed that the hw is not able to have 1191 * multiple net devices on single physical port. 1192 * 1193 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1194 * struct udp_tunnel_info *ti); 1195 * Called by UDP tunnel to notify a driver about the UDP port and socket 1196 * address family that a UDP tunnel is listnening to. It is called only 1197 * when a new port starts listening. The operation is protected by the 1198 * RTNL. 1199 * 1200 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1201 * struct udp_tunnel_info *ti); 1202 * Called by UDP tunnel to notify the driver about a UDP port and socket 1203 * address family that the UDP tunnel is not listening to anymore. The 1204 * operation is protected by the RTNL. 1205 * 1206 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1207 * struct net_device *dev) 1208 * Called by upper layer devices to accelerate switching or other 1209 * station functionality into hardware. 'pdev is the lowerdev 1210 * to use for the offload and 'dev' is the net device that will 1211 * back the offload. Returns a pointer to the private structure 1212 * the upper layer will maintain. 1213 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1214 * Called by upper layer device to delete the station created 1215 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1216 * the station and priv is the structure returned by the add 1217 * operation. 1218 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1219 * int queue_index, u32 maxrate); 1220 * Called when a user wants to set a max-rate limitation of specific 1221 * TX queue. 1222 * int (*ndo_get_iflink)(const struct net_device *dev); 1223 * Called to get the iflink value of this device. 1224 * void (*ndo_change_proto_down)(struct net_device *dev, 1225 * bool proto_down); 1226 * This function is used to pass protocol port error state information 1227 * to the switch driver. The switch driver can react to the proto_down 1228 * by doing a phys down on the associated switch port. 1229 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1230 * This function is used to get egress tunnel information for given skb. 1231 * This is useful for retrieving outer tunnel header parameters while 1232 * sampling packet. 1233 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1234 * This function is used to specify the headroom that the skb must 1235 * consider when allocation skb during packet reception. Setting 1236 * appropriate rx headroom value allows avoiding skb head copy on 1237 * forward. Setting a negative value resets the rx headroom to the 1238 * default value. 1239 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1240 * This function is used to set or query state related to XDP on the 1241 * netdevice and manage BPF offload. See definition of 1242 * enum bpf_netdev_command for details. 1243 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1244 * u32 flags); 1245 * This function is used to submit @n XDP packets for transmit on a 1246 * netdevice. Returns number of frames successfully transmitted, frames 1247 * that got dropped are freed/returned via xdp_return_frame(). 1248 * Returns negative number, means general error invoking ndo, meaning 1249 * no frames were xmit'ed and core-caller will free all frames. 1250 */ 1251 struct net_device_ops { 1252 int (*ndo_init)(struct net_device *dev); 1253 void (*ndo_uninit)(struct net_device *dev); 1254 int (*ndo_open)(struct net_device *dev); 1255 int (*ndo_stop)(struct net_device *dev); 1256 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1257 struct net_device *dev); 1258 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1259 struct net_device *dev, 1260 netdev_features_t features); 1261 u16 (*ndo_select_queue)(struct net_device *dev, 1262 struct sk_buff *skb, 1263 struct net_device *sb_dev, 1264 select_queue_fallback_t fallback); 1265 void (*ndo_change_rx_flags)(struct net_device *dev, 1266 int flags); 1267 void (*ndo_set_rx_mode)(struct net_device *dev); 1268 int (*ndo_set_mac_address)(struct net_device *dev, 1269 void *addr); 1270 int (*ndo_validate_addr)(struct net_device *dev); 1271 int (*ndo_do_ioctl)(struct net_device *dev, 1272 struct ifreq *ifr, int cmd); 1273 int (*ndo_set_config)(struct net_device *dev, 1274 struct ifmap *map); 1275 int (*ndo_change_mtu)(struct net_device *dev, 1276 int new_mtu); 1277 int (*ndo_neigh_setup)(struct net_device *dev, 1278 struct neigh_parms *); 1279 void (*ndo_tx_timeout) (struct net_device *dev); 1280 1281 void (*ndo_get_stats64)(struct net_device *dev, 1282 struct rtnl_link_stats64 *storage); 1283 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1284 int (*ndo_get_offload_stats)(int attr_id, 1285 const struct net_device *dev, 1286 void *attr_data); 1287 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1288 1289 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1290 __be16 proto, u16 vid); 1291 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1292 __be16 proto, u16 vid); 1293 #ifdef CONFIG_NET_POLL_CONTROLLER 1294 void (*ndo_poll_controller)(struct net_device *dev); 1295 int (*ndo_netpoll_setup)(struct net_device *dev, 1296 struct netpoll_info *info); 1297 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1298 #endif 1299 int (*ndo_set_vf_mac)(struct net_device *dev, 1300 int queue, u8 *mac); 1301 int (*ndo_set_vf_vlan)(struct net_device *dev, 1302 int queue, u16 vlan, 1303 u8 qos, __be16 proto); 1304 int (*ndo_set_vf_rate)(struct net_device *dev, 1305 int vf, int min_tx_rate, 1306 int max_tx_rate); 1307 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1308 int vf, bool setting); 1309 int (*ndo_set_vf_trust)(struct net_device *dev, 1310 int vf, bool setting); 1311 int (*ndo_get_vf_config)(struct net_device *dev, 1312 int vf, 1313 struct ifla_vf_info *ivf); 1314 int (*ndo_set_vf_link_state)(struct net_device *dev, 1315 int vf, int link_state); 1316 int (*ndo_get_vf_stats)(struct net_device *dev, 1317 int vf, 1318 struct ifla_vf_stats 1319 *vf_stats); 1320 int (*ndo_set_vf_port)(struct net_device *dev, 1321 int vf, 1322 struct nlattr *port[]); 1323 int (*ndo_get_vf_port)(struct net_device *dev, 1324 int vf, struct sk_buff *skb); 1325 int (*ndo_set_vf_guid)(struct net_device *dev, 1326 int vf, u64 guid, 1327 int guid_type); 1328 int (*ndo_set_vf_rss_query_en)( 1329 struct net_device *dev, 1330 int vf, bool setting); 1331 int (*ndo_setup_tc)(struct net_device *dev, 1332 enum tc_setup_type type, 1333 void *type_data); 1334 #if IS_ENABLED(CONFIG_FCOE) 1335 int (*ndo_fcoe_enable)(struct net_device *dev); 1336 int (*ndo_fcoe_disable)(struct net_device *dev); 1337 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1338 u16 xid, 1339 struct scatterlist *sgl, 1340 unsigned int sgc); 1341 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1342 u16 xid); 1343 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1344 u16 xid, 1345 struct scatterlist *sgl, 1346 unsigned int sgc); 1347 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1348 struct netdev_fcoe_hbainfo *hbainfo); 1349 #endif 1350 1351 #if IS_ENABLED(CONFIG_LIBFCOE) 1352 #define NETDEV_FCOE_WWNN 0 1353 #define NETDEV_FCOE_WWPN 1 1354 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1355 u64 *wwn, int type); 1356 #endif 1357 1358 #ifdef CONFIG_RFS_ACCEL 1359 int (*ndo_rx_flow_steer)(struct net_device *dev, 1360 const struct sk_buff *skb, 1361 u16 rxq_index, 1362 u32 flow_id); 1363 #endif 1364 int (*ndo_add_slave)(struct net_device *dev, 1365 struct net_device *slave_dev, 1366 struct netlink_ext_ack *extack); 1367 int (*ndo_del_slave)(struct net_device *dev, 1368 struct net_device *slave_dev); 1369 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1370 netdev_features_t features); 1371 int (*ndo_set_features)(struct net_device *dev, 1372 netdev_features_t features); 1373 int (*ndo_neigh_construct)(struct net_device *dev, 1374 struct neighbour *n); 1375 void (*ndo_neigh_destroy)(struct net_device *dev, 1376 struct neighbour *n); 1377 1378 int (*ndo_fdb_add)(struct ndmsg *ndm, 1379 struct nlattr *tb[], 1380 struct net_device *dev, 1381 const unsigned char *addr, 1382 u16 vid, 1383 u16 flags); 1384 int (*ndo_fdb_del)(struct ndmsg *ndm, 1385 struct nlattr *tb[], 1386 struct net_device *dev, 1387 const unsigned char *addr, 1388 u16 vid); 1389 int (*ndo_fdb_dump)(struct sk_buff *skb, 1390 struct netlink_callback *cb, 1391 struct net_device *dev, 1392 struct net_device *filter_dev, 1393 int *idx); 1394 1395 int (*ndo_bridge_setlink)(struct net_device *dev, 1396 struct nlmsghdr *nlh, 1397 u16 flags); 1398 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1399 u32 pid, u32 seq, 1400 struct net_device *dev, 1401 u32 filter_mask, 1402 int nlflags); 1403 int (*ndo_bridge_dellink)(struct net_device *dev, 1404 struct nlmsghdr *nlh, 1405 u16 flags); 1406 int (*ndo_change_carrier)(struct net_device *dev, 1407 bool new_carrier); 1408 int (*ndo_get_phys_port_id)(struct net_device *dev, 1409 struct netdev_phys_item_id *ppid); 1410 int (*ndo_get_phys_port_name)(struct net_device *dev, 1411 char *name, size_t len); 1412 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1413 struct udp_tunnel_info *ti); 1414 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1415 struct udp_tunnel_info *ti); 1416 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1417 struct net_device *dev); 1418 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1419 void *priv); 1420 1421 int (*ndo_get_lock_subclass)(struct net_device *dev); 1422 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1423 int queue_index, 1424 u32 maxrate); 1425 int (*ndo_get_iflink)(const struct net_device *dev); 1426 int (*ndo_change_proto_down)(struct net_device *dev, 1427 bool proto_down); 1428 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1429 struct sk_buff *skb); 1430 void (*ndo_set_rx_headroom)(struct net_device *dev, 1431 int needed_headroom); 1432 int (*ndo_bpf)(struct net_device *dev, 1433 struct netdev_bpf *bpf); 1434 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1435 struct xdp_frame **xdp, 1436 u32 flags); 1437 int (*ndo_xsk_async_xmit)(struct net_device *dev, 1438 u32 queue_id); 1439 }; 1440 1441 /** 1442 * enum net_device_priv_flags - &struct net_device priv_flags 1443 * 1444 * These are the &struct net_device, they are only set internally 1445 * by drivers and used in the kernel. These flags are invisible to 1446 * userspace; this means that the order of these flags can change 1447 * during any kernel release. 1448 * 1449 * You should have a pretty good reason to be extending these flags. 1450 * 1451 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1452 * @IFF_EBRIDGE: Ethernet bridging device 1453 * @IFF_BONDING: bonding master or slave 1454 * @IFF_ISATAP: ISATAP interface (RFC4214) 1455 * @IFF_WAN_HDLC: WAN HDLC device 1456 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1457 * release skb->dst 1458 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1459 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1460 * @IFF_MACVLAN_PORT: device used as macvlan port 1461 * @IFF_BRIDGE_PORT: device used as bridge port 1462 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1463 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1464 * @IFF_UNICAST_FLT: Supports unicast filtering 1465 * @IFF_TEAM_PORT: device used as team port 1466 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1467 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1468 * change when it's running 1469 * @IFF_MACVLAN: Macvlan device 1470 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1471 * underlying stacked devices 1472 * @IFF_L3MDEV_MASTER: device is an L3 master device 1473 * @IFF_NO_QUEUE: device can run without qdisc attached 1474 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1475 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1476 * @IFF_TEAM: device is a team device 1477 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1478 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1479 * entity (i.e. the master device for bridged veth) 1480 * @IFF_MACSEC: device is a MACsec device 1481 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1482 * @IFF_FAILOVER: device is a failover master device 1483 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1484 */ 1485 enum netdev_priv_flags { 1486 IFF_802_1Q_VLAN = 1<<0, 1487 IFF_EBRIDGE = 1<<1, 1488 IFF_BONDING = 1<<2, 1489 IFF_ISATAP = 1<<3, 1490 IFF_WAN_HDLC = 1<<4, 1491 IFF_XMIT_DST_RELEASE = 1<<5, 1492 IFF_DONT_BRIDGE = 1<<6, 1493 IFF_DISABLE_NETPOLL = 1<<7, 1494 IFF_MACVLAN_PORT = 1<<8, 1495 IFF_BRIDGE_PORT = 1<<9, 1496 IFF_OVS_DATAPATH = 1<<10, 1497 IFF_TX_SKB_SHARING = 1<<11, 1498 IFF_UNICAST_FLT = 1<<12, 1499 IFF_TEAM_PORT = 1<<13, 1500 IFF_SUPP_NOFCS = 1<<14, 1501 IFF_LIVE_ADDR_CHANGE = 1<<15, 1502 IFF_MACVLAN = 1<<16, 1503 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1504 IFF_L3MDEV_MASTER = 1<<18, 1505 IFF_NO_QUEUE = 1<<19, 1506 IFF_OPENVSWITCH = 1<<20, 1507 IFF_L3MDEV_SLAVE = 1<<21, 1508 IFF_TEAM = 1<<22, 1509 IFF_RXFH_CONFIGURED = 1<<23, 1510 IFF_PHONY_HEADROOM = 1<<24, 1511 IFF_MACSEC = 1<<25, 1512 IFF_NO_RX_HANDLER = 1<<26, 1513 IFF_FAILOVER = 1<<27, 1514 IFF_FAILOVER_SLAVE = 1<<28, 1515 }; 1516 1517 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1518 #define IFF_EBRIDGE IFF_EBRIDGE 1519 #define IFF_BONDING IFF_BONDING 1520 #define IFF_ISATAP IFF_ISATAP 1521 #define IFF_WAN_HDLC IFF_WAN_HDLC 1522 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1523 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1524 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1525 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1526 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1527 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1528 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1529 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1530 #define IFF_TEAM_PORT IFF_TEAM_PORT 1531 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1532 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1533 #define IFF_MACVLAN IFF_MACVLAN 1534 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1535 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1536 #define IFF_NO_QUEUE IFF_NO_QUEUE 1537 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1538 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1539 #define IFF_TEAM IFF_TEAM 1540 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1541 #define IFF_MACSEC IFF_MACSEC 1542 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1543 #define IFF_FAILOVER IFF_FAILOVER 1544 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1545 1546 /** 1547 * struct net_device - The DEVICE structure. 1548 * 1549 * Actually, this whole structure is a big mistake. It mixes I/O 1550 * data with strictly "high-level" data, and it has to know about 1551 * almost every data structure used in the INET module. 1552 * 1553 * @name: This is the first field of the "visible" part of this structure 1554 * (i.e. as seen by users in the "Space.c" file). It is the name 1555 * of the interface. 1556 * 1557 * @name_hlist: Device name hash chain, please keep it close to name[] 1558 * @ifalias: SNMP alias 1559 * @mem_end: Shared memory end 1560 * @mem_start: Shared memory start 1561 * @base_addr: Device I/O address 1562 * @irq: Device IRQ number 1563 * 1564 * @state: Generic network queuing layer state, see netdev_state_t 1565 * @dev_list: The global list of network devices 1566 * @napi_list: List entry used for polling NAPI devices 1567 * @unreg_list: List entry when we are unregistering the 1568 * device; see the function unregister_netdev 1569 * @close_list: List entry used when we are closing the device 1570 * @ptype_all: Device-specific packet handlers for all protocols 1571 * @ptype_specific: Device-specific, protocol-specific packet handlers 1572 * 1573 * @adj_list: Directly linked devices, like slaves for bonding 1574 * @features: Currently active device features 1575 * @hw_features: User-changeable features 1576 * 1577 * @wanted_features: User-requested features 1578 * @vlan_features: Mask of features inheritable by VLAN devices 1579 * 1580 * @hw_enc_features: Mask of features inherited by encapsulating devices 1581 * This field indicates what encapsulation 1582 * offloads the hardware is capable of doing, 1583 * and drivers will need to set them appropriately. 1584 * 1585 * @mpls_features: Mask of features inheritable by MPLS 1586 * 1587 * @ifindex: interface index 1588 * @group: The group the device belongs to 1589 * 1590 * @stats: Statistics struct, which was left as a legacy, use 1591 * rtnl_link_stats64 instead 1592 * 1593 * @rx_dropped: Dropped packets by core network, 1594 * do not use this in drivers 1595 * @tx_dropped: Dropped packets by core network, 1596 * do not use this in drivers 1597 * @rx_nohandler: nohandler dropped packets by core network on 1598 * inactive devices, do not use this in drivers 1599 * @carrier_up_count: Number of times the carrier has been up 1600 * @carrier_down_count: Number of times the carrier has been down 1601 * 1602 * @wireless_handlers: List of functions to handle Wireless Extensions, 1603 * instead of ioctl, 1604 * see <net/iw_handler.h> for details. 1605 * @wireless_data: Instance data managed by the core of wireless extensions 1606 * 1607 * @netdev_ops: Includes several pointers to callbacks, 1608 * if one wants to override the ndo_*() functions 1609 * @ethtool_ops: Management operations 1610 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1611 * discovery handling. Necessary for e.g. 6LoWPAN. 1612 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1613 * of Layer 2 headers. 1614 * 1615 * @flags: Interface flags (a la BSD) 1616 * @priv_flags: Like 'flags' but invisible to userspace, 1617 * see if.h for the definitions 1618 * @gflags: Global flags ( kept as legacy ) 1619 * @padded: How much padding added by alloc_netdev() 1620 * @operstate: RFC2863 operstate 1621 * @link_mode: Mapping policy to operstate 1622 * @if_port: Selectable AUI, TP, ... 1623 * @dma: DMA channel 1624 * @mtu: Interface MTU value 1625 * @min_mtu: Interface Minimum MTU value 1626 * @max_mtu: Interface Maximum MTU value 1627 * @type: Interface hardware type 1628 * @hard_header_len: Maximum hardware header length. 1629 * @min_header_len: Minimum hardware header length 1630 * 1631 * @needed_headroom: Extra headroom the hardware may need, but not in all 1632 * cases can this be guaranteed 1633 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1634 * cases can this be guaranteed. Some cases also use 1635 * LL_MAX_HEADER instead to allocate the skb 1636 * 1637 * interface address info: 1638 * 1639 * @perm_addr: Permanent hw address 1640 * @addr_assign_type: Hw address assignment type 1641 * @addr_len: Hardware address length 1642 * @neigh_priv_len: Used in neigh_alloc() 1643 * @dev_id: Used to differentiate devices that share 1644 * the same link layer address 1645 * @dev_port: Used to differentiate devices that share 1646 * the same function 1647 * @addr_list_lock: XXX: need comments on this one 1648 * @uc_promisc: Counter that indicates promiscuous mode 1649 * has been enabled due to the need to listen to 1650 * additional unicast addresses in a device that 1651 * does not implement ndo_set_rx_mode() 1652 * @uc: unicast mac addresses 1653 * @mc: multicast mac addresses 1654 * @dev_addrs: list of device hw addresses 1655 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1656 * @promiscuity: Number of times the NIC is told to work in 1657 * promiscuous mode; if it becomes 0 the NIC will 1658 * exit promiscuous mode 1659 * @allmulti: Counter, enables or disables allmulticast mode 1660 * 1661 * @vlan_info: VLAN info 1662 * @dsa_ptr: dsa specific data 1663 * @tipc_ptr: TIPC specific data 1664 * @atalk_ptr: AppleTalk link 1665 * @ip_ptr: IPv4 specific data 1666 * @dn_ptr: DECnet specific data 1667 * @ip6_ptr: IPv6 specific data 1668 * @ax25_ptr: AX.25 specific data 1669 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1670 * 1671 * @dev_addr: Hw address (before bcast, 1672 * because most packets are unicast) 1673 * 1674 * @_rx: Array of RX queues 1675 * @num_rx_queues: Number of RX queues 1676 * allocated at register_netdev() time 1677 * @real_num_rx_queues: Number of RX queues currently active in device 1678 * 1679 * @rx_handler: handler for received packets 1680 * @rx_handler_data: XXX: need comments on this one 1681 * @miniq_ingress: ingress/clsact qdisc specific data for 1682 * ingress processing 1683 * @ingress_queue: XXX: need comments on this one 1684 * @broadcast: hw bcast address 1685 * 1686 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1687 * indexed by RX queue number. Assigned by driver. 1688 * This must only be set if the ndo_rx_flow_steer 1689 * operation is defined 1690 * @index_hlist: Device index hash chain 1691 * 1692 * @_tx: Array of TX queues 1693 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1694 * @real_num_tx_queues: Number of TX queues currently active in device 1695 * @qdisc: Root qdisc from userspace point of view 1696 * @tx_queue_len: Max frames per queue allowed 1697 * @tx_global_lock: XXX: need comments on this one 1698 * 1699 * @xps_maps: XXX: need comments on this one 1700 * @miniq_egress: clsact qdisc specific data for 1701 * egress processing 1702 * @watchdog_timeo: Represents the timeout that is used by 1703 * the watchdog (see dev_watchdog()) 1704 * @watchdog_timer: List of timers 1705 * 1706 * @pcpu_refcnt: Number of references to this device 1707 * @todo_list: Delayed register/unregister 1708 * @link_watch_list: XXX: need comments on this one 1709 * 1710 * @reg_state: Register/unregister state machine 1711 * @dismantle: Device is going to be freed 1712 * @rtnl_link_state: This enum represents the phases of creating 1713 * a new link 1714 * 1715 * @needs_free_netdev: Should unregister perform free_netdev? 1716 * @priv_destructor: Called from unregister 1717 * @npinfo: XXX: need comments on this one 1718 * @nd_net: Network namespace this network device is inside 1719 * 1720 * @ml_priv: Mid-layer private 1721 * @lstats: Loopback statistics 1722 * @tstats: Tunnel statistics 1723 * @dstats: Dummy statistics 1724 * @vstats: Virtual ethernet statistics 1725 * 1726 * @garp_port: GARP 1727 * @mrp_port: MRP 1728 * 1729 * @dev: Class/net/name entry 1730 * @sysfs_groups: Space for optional device, statistics and wireless 1731 * sysfs groups 1732 * 1733 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1734 * @rtnl_link_ops: Rtnl_link_ops 1735 * 1736 * @gso_max_size: Maximum size of generic segmentation offload 1737 * @gso_max_segs: Maximum number of segments that can be passed to the 1738 * NIC for GSO 1739 * 1740 * @dcbnl_ops: Data Center Bridging netlink ops 1741 * @num_tc: Number of traffic classes in the net device 1742 * @tc_to_txq: XXX: need comments on this one 1743 * @prio_tc_map: XXX: need comments on this one 1744 * 1745 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1746 * 1747 * @priomap: XXX: need comments on this one 1748 * @phydev: Physical device may attach itself 1749 * for hardware timestamping 1750 * @sfp_bus: attached &struct sfp_bus structure. 1751 * 1752 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1753 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1754 * 1755 * @proto_down: protocol port state information can be sent to the 1756 * switch driver and used to set the phys state of the 1757 * switch port. 1758 * 1759 * FIXME: cleanup struct net_device such that network protocol info 1760 * moves out. 1761 */ 1762 1763 struct net_device { 1764 char name[IFNAMSIZ]; 1765 struct hlist_node name_hlist; 1766 struct dev_ifalias __rcu *ifalias; 1767 /* 1768 * I/O specific fields 1769 * FIXME: Merge these and struct ifmap into one 1770 */ 1771 unsigned long mem_end; 1772 unsigned long mem_start; 1773 unsigned long base_addr; 1774 int irq; 1775 1776 /* 1777 * Some hardware also needs these fields (state,dev_list, 1778 * napi_list,unreg_list,close_list) but they are not 1779 * part of the usual set specified in Space.c. 1780 */ 1781 1782 unsigned long state; 1783 1784 struct list_head dev_list; 1785 struct list_head napi_list; 1786 struct list_head unreg_list; 1787 struct list_head close_list; 1788 struct list_head ptype_all; 1789 struct list_head ptype_specific; 1790 1791 struct { 1792 struct list_head upper; 1793 struct list_head lower; 1794 } adj_list; 1795 1796 netdev_features_t features; 1797 netdev_features_t hw_features; 1798 netdev_features_t wanted_features; 1799 netdev_features_t vlan_features; 1800 netdev_features_t hw_enc_features; 1801 netdev_features_t mpls_features; 1802 netdev_features_t gso_partial_features; 1803 1804 int ifindex; 1805 int group; 1806 1807 struct net_device_stats stats; 1808 1809 atomic_long_t rx_dropped; 1810 atomic_long_t tx_dropped; 1811 atomic_long_t rx_nohandler; 1812 1813 /* Stats to monitor link on/off, flapping */ 1814 atomic_t carrier_up_count; 1815 atomic_t carrier_down_count; 1816 1817 #ifdef CONFIG_WIRELESS_EXT 1818 const struct iw_handler_def *wireless_handlers; 1819 struct iw_public_data *wireless_data; 1820 #endif 1821 const struct net_device_ops *netdev_ops; 1822 const struct ethtool_ops *ethtool_ops; 1823 #ifdef CONFIG_NET_SWITCHDEV 1824 const struct switchdev_ops *switchdev_ops; 1825 #endif 1826 #ifdef CONFIG_NET_L3_MASTER_DEV 1827 const struct l3mdev_ops *l3mdev_ops; 1828 #endif 1829 #if IS_ENABLED(CONFIG_IPV6) 1830 const struct ndisc_ops *ndisc_ops; 1831 #endif 1832 1833 #ifdef CONFIG_XFRM_OFFLOAD 1834 const struct xfrmdev_ops *xfrmdev_ops; 1835 #endif 1836 1837 #if IS_ENABLED(CONFIG_TLS_DEVICE) 1838 const struct tlsdev_ops *tlsdev_ops; 1839 #endif 1840 1841 const struct header_ops *header_ops; 1842 1843 unsigned int flags; 1844 unsigned int priv_flags; 1845 1846 unsigned short gflags; 1847 unsigned short padded; 1848 1849 unsigned char operstate; 1850 unsigned char link_mode; 1851 1852 unsigned char if_port; 1853 unsigned char dma; 1854 1855 unsigned int mtu; 1856 unsigned int min_mtu; 1857 unsigned int max_mtu; 1858 unsigned short type; 1859 unsigned short hard_header_len; 1860 unsigned char min_header_len; 1861 1862 unsigned short needed_headroom; 1863 unsigned short needed_tailroom; 1864 1865 /* Interface address info. */ 1866 unsigned char perm_addr[MAX_ADDR_LEN]; 1867 unsigned char addr_assign_type; 1868 unsigned char addr_len; 1869 unsigned short neigh_priv_len; 1870 unsigned short dev_id; 1871 unsigned short dev_port; 1872 spinlock_t addr_list_lock; 1873 unsigned char name_assign_type; 1874 bool uc_promisc; 1875 struct netdev_hw_addr_list uc; 1876 struct netdev_hw_addr_list mc; 1877 struct netdev_hw_addr_list dev_addrs; 1878 1879 #ifdef CONFIG_SYSFS 1880 struct kset *queues_kset; 1881 #endif 1882 unsigned int promiscuity; 1883 unsigned int allmulti; 1884 1885 1886 /* Protocol-specific pointers */ 1887 1888 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1889 struct vlan_info __rcu *vlan_info; 1890 #endif 1891 #if IS_ENABLED(CONFIG_NET_DSA) 1892 struct dsa_port *dsa_ptr; 1893 #endif 1894 #if IS_ENABLED(CONFIG_TIPC) 1895 struct tipc_bearer __rcu *tipc_ptr; 1896 #endif 1897 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1898 void *atalk_ptr; 1899 #endif 1900 struct in_device __rcu *ip_ptr; 1901 #if IS_ENABLED(CONFIG_DECNET) 1902 struct dn_dev __rcu *dn_ptr; 1903 #endif 1904 struct inet6_dev __rcu *ip6_ptr; 1905 #if IS_ENABLED(CONFIG_AX25) 1906 void *ax25_ptr; 1907 #endif 1908 struct wireless_dev *ieee80211_ptr; 1909 struct wpan_dev *ieee802154_ptr; 1910 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1911 struct mpls_dev __rcu *mpls_ptr; 1912 #endif 1913 1914 /* 1915 * Cache lines mostly used on receive path (including eth_type_trans()) 1916 */ 1917 /* Interface address info used in eth_type_trans() */ 1918 unsigned char *dev_addr; 1919 1920 struct netdev_rx_queue *_rx; 1921 unsigned int num_rx_queues; 1922 unsigned int real_num_rx_queues; 1923 1924 struct bpf_prog __rcu *xdp_prog; 1925 unsigned long gro_flush_timeout; 1926 rx_handler_func_t __rcu *rx_handler; 1927 void __rcu *rx_handler_data; 1928 1929 #ifdef CONFIG_NET_CLS_ACT 1930 struct mini_Qdisc __rcu *miniq_ingress; 1931 #endif 1932 struct netdev_queue __rcu *ingress_queue; 1933 #ifdef CONFIG_NETFILTER_INGRESS 1934 struct nf_hook_entries __rcu *nf_hooks_ingress; 1935 #endif 1936 1937 unsigned char broadcast[MAX_ADDR_LEN]; 1938 #ifdef CONFIG_RFS_ACCEL 1939 struct cpu_rmap *rx_cpu_rmap; 1940 #endif 1941 struct hlist_node index_hlist; 1942 1943 /* 1944 * Cache lines mostly used on transmit path 1945 */ 1946 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1947 unsigned int num_tx_queues; 1948 unsigned int real_num_tx_queues; 1949 struct Qdisc *qdisc; 1950 #ifdef CONFIG_NET_SCHED 1951 DECLARE_HASHTABLE (qdisc_hash, 4); 1952 #endif 1953 unsigned int tx_queue_len; 1954 spinlock_t tx_global_lock; 1955 int watchdog_timeo; 1956 1957 #ifdef CONFIG_XPS 1958 struct xps_dev_maps __rcu *xps_cpus_map; 1959 struct xps_dev_maps __rcu *xps_rxqs_map; 1960 #endif 1961 #ifdef CONFIG_NET_CLS_ACT 1962 struct mini_Qdisc __rcu *miniq_egress; 1963 #endif 1964 1965 /* These may be needed for future network-power-down code. */ 1966 struct timer_list watchdog_timer; 1967 1968 int __percpu *pcpu_refcnt; 1969 struct list_head todo_list; 1970 1971 struct list_head link_watch_list; 1972 1973 enum { NETREG_UNINITIALIZED=0, 1974 NETREG_REGISTERED, /* completed register_netdevice */ 1975 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1976 NETREG_UNREGISTERED, /* completed unregister todo */ 1977 NETREG_RELEASED, /* called free_netdev */ 1978 NETREG_DUMMY, /* dummy device for NAPI poll */ 1979 } reg_state:8; 1980 1981 bool dismantle; 1982 1983 enum { 1984 RTNL_LINK_INITIALIZED, 1985 RTNL_LINK_INITIALIZING, 1986 } rtnl_link_state:16; 1987 1988 bool needs_free_netdev; 1989 void (*priv_destructor)(struct net_device *dev); 1990 1991 #ifdef CONFIG_NETPOLL 1992 struct netpoll_info __rcu *npinfo; 1993 #endif 1994 1995 possible_net_t nd_net; 1996 1997 /* mid-layer private */ 1998 union { 1999 void *ml_priv; 2000 struct pcpu_lstats __percpu *lstats; 2001 struct pcpu_sw_netstats __percpu *tstats; 2002 struct pcpu_dstats __percpu *dstats; 2003 struct pcpu_vstats __percpu *vstats; 2004 }; 2005 2006 #if IS_ENABLED(CONFIG_GARP) 2007 struct garp_port __rcu *garp_port; 2008 #endif 2009 #if IS_ENABLED(CONFIG_MRP) 2010 struct mrp_port __rcu *mrp_port; 2011 #endif 2012 2013 struct device dev; 2014 const struct attribute_group *sysfs_groups[4]; 2015 const struct attribute_group *sysfs_rx_queue_group; 2016 2017 const struct rtnl_link_ops *rtnl_link_ops; 2018 2019 /* for setting kernel sock attribute on TCP connection setup */ 2020 #define GSO_MAX_SIZE 65536 2021 unsigned int gso_max_size; 2022 #define GSO_MAX_SEGS 65535 2023 u16 gso_max_segs; 2024 2025 #ifdef CONFIG_DCB 2026 const struct dcbnl_rtnl_ops *dcbnl_ops; 2027 #endif 2028 s16 num_tc; 2029 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2030 u8 prio_tc_map[TC_BITMASK + 1]; 2031 2032 #if IS_ENABLED(CONFIG_FCOE) 2033 unsigned int fcoe_ddp_xid; 2034 #endif 2035 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2036 struct netprio_map __rcu *priomap; 2037 #endif 2038 struct phy_device *phydev; 2039 struct sfp_bus *sfp_bus; 2040 struct lock_class_key *qdisc_tx_busylock; 2041 struct lock_class_key *qdisc_running_key; 2042 bool proto_down; 2043 }; 2044 #define to_net_dev(d) container_of(d, struct net_device, dev) 2045 2046 static inline bool netif_elide_gro(const struct net_device *dev) 2047 { 2048 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2049 return true; 2050 return false; 2051 } 2052 2053 #define NETDEV_ALIGN 32 2054 2055 static inline 2056 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2057 { 2058 return dev->prio_tc_map[prio & TC_BITMASK]; 2059 } 2060 2061 static inline 2062 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2063 { 2064 if (tc >= dev->num_tc) 2065 return -EINVAL; 2066 2067 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2068 return 0; 2069 } 2070 2071 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2072 void netdev_reset_tc(struct net_device *dev); 2073 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2074 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2075 2076 static inline 2077 int netdev_get_num_tc(struct net_device *dev) 2078 { 2079 return dev->num_tc; 2080 } 2081 2082 void netdev_unbind_sb_channel(struct net_device *dev, 2083 struct net_device *sb_dev); 2084 int netdev_bind_sb_channel_queue(struct net_device *dev, 2085 struct net_device *sb_dev, 2086 u8 tc, u16 count, u16 offset); 2087 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2088 static inline int netdev_get_sb_channel(struct net_device *dev) 2089 { 2090 return max_t(int, -dev->num_tc, 0); 2091 } 2092 2093 static inline 2094 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2095 unsigned int index) 2096 { 2097 return &dev->_tx[index]; 2098 } 2099 2100 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2101 const struct sk_buff *skb) 2102 { 2103 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2104 } 2105 2106 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2107 void (*f)(struct net_device *, 2108 struct netdev_queue *, 2109 void *), 2110 void *arg) 2111 { 2112 unsigned int i; 2113 2114 for (i = 0; i < dev->num_tx_queues; i++) 2115 f(dev, &dev->_tx[i], arg); 2116 } 2117 2118 #define netdev_lockdep_set_classes(dev) \ 2119 { \ 2120 static struct lock_class_key qdisc_tx_busylock_key; \ 2121 static struct lock_class_key qdisc_running_key; \ 2122 static struct lock_class_key qdisc_xmit_lock_key; \ 2123 static struct lock_class_key dev_addr_list_lock_key; \ 2124 unsigned int i; \ 2125 \ 2126 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2127 (dev)->qdisc_running_key = &qdisc_running_key; \ 2128 lockdep_set_class(&(dev)->addr_list_lock, \ 2129 &dev_addr_list_lock_key); \ 2130 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2131 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2132 &qdisc_xmit_lock_key); \ 2133 } 2134 2135 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 2136 struct sk_buff *skb, 2137 struct net_device *sb_dev); 2138 2139 /* returns the headroom that the master device needs to take in account 2140 * when forwarding to this dev 2141 */ 2142 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2143 { 2144 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2145 } 2146 2147 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2148 { 2149 if (dev->netdev_ops->ndo_set_rx_headroom) 2150 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2151 } 2152 2153 /* set the device rx headroom to the dev's default */ 2154 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2155 { 2156 netdev_set_rx_headroom(dev, -1); 2157 } 2158 2159 /* 2160 * Net namespace inlines 2161 */ 2162 static inline 2163 struct net *dev_net(const struct net_device *dev) 2164 { 2165 return read_pnet(&dev->nd_net); 2166 } 2167 2168 static inline 2169 void dev_net_set(struct net_device *dev, struct net *net) 2170 { 2171 write_pnet(&dev->nd_net, net); 2172 } 2173 2174 /** 2175 * netdev_priv - access network device private data 2176 * @dev: network device 2177 * 2178 * Get network device private data 2179 */ 2180 static inline void *netdev_priv(const struct net_device *dev) 2181 { 2182 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2183 } 2184 2185 /* Set the sysfs physical device reference for the network logical device 2186 * if set prior to registration will cause a symlink during initialization. 2187 */ 2188 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2189 2190 /* Set the sysfs device type for the network logical device to allow 2191 * fine-grained identification of different network device types. For 2192 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2193 */ 2194 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2195 2196 /* Default NAPI poll() weight 2197 * Device drivers are strongly advised to not use bigger value 2198 */ 2199 #define NAPI_POLL_WEIGHT 64 2200 2201 /** 2202 * netif_napi_add - initialize a NAPI context 2203 * @dev: network device 2204 * @napi: NAPI context 2205 * @poll: polling function 2206 * @weight: default weight 2207 * 2208 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2209 * *any* of the other NAPI-related functions. 2210 */ 2211 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2212 int (*poll)(struct napi_struct *, int), int weight); 2213 2214 /** 2215 * netif_tx_napi_add - initialize a NAPI context 2216 * @dev: network device 2217 * @napi: NAPI context 2218 * @poll: polling function 2219 * @weight: default weight 2220 * 2221 * This variant of netif_napi_add() should be used from drivers using NAPI 2222 * to exclusively poll a TX queue. 2223 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2224 */ 2225 static inline void netif_tx_napi_add(struct net_device *dev, 2226 struct napi_struct *napi, 2227 int (*poll)(struct napi_struct *, int), 2228 int weight) 2229 { 2230 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2231 netif_napi_add(dev, napi, poll, weight); 2232 } 2233 2234 /** 2235 * netif_napi_del - remove a NAPI context 2236 * @napi: NAPI context 2237 * 2238 * netif_napi_del() removes a NAPI context from the network device NAPI list 2239 */ 2240 void netif_napi_del(struct napi_struct *napi); 2241 2242 struct napi_gro_cb { 2243 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2244 void *frag0; 2245 2246 /* Length of frag0. */ 2247 unsigned int frag0_len; 2248 2249 /* This indicates where we are processing relative to skb->data. */ 2250 int data_offset; 2251 2252 /* This is non-zero if the packet cannot be merged with the new skb. */ 2253 u16 flush; 2254 2255 /* Save the IP ID here and check when we get to the transport layer */ 2256 u16 flush_id; 2257 2258 /* Number of segments aggregated. */ 2259 u16 count; 2260 2261 /* Start offset for remote checksum offload */ 2262 u16 gro_remcsum_start; 2263 2264 /* jiffies when first packet was created/queued */ 2265 unsigned long age; 2266 2267 /* Used in ipv6_gro_receive() and foo-over-udp */ 2268 u16 proto; 2269 2270 /* This is non-zero if the packet may be of the same flow. */ 2271 u8 same_flow:1; 2272 2273 /* Used in tunnel GRO receive */ 2274 u8 encap_mark:1; 2275 2276 /* GRO checksum is valid */ 2277 u8 csum_valid:1; 2278 2279 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2280 u8 csum_cnt:3; 2281 2282 /* Free the skb? */ 2283 u8 free:2; 2284 #define NAPI_GRO_FREE 1 2285 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2286 2287 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2288 u8 is_ipv6:1; 2289 2290 /* Used in GRE, set in fou/gue_gro_receive */ 2291 u8 is_fou:1; 2292 2293 /* Used to determine if flush_id can be ignored */ 2294 u8 is_atomic:1; 2295 2296 /* Number of gro_receive callbacks this packet already went through */ 2297 u8 recursion_counter:4; 2298 2299 /* 1 bit hole */ 2300 2301 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2302 __wsum csum; 2303 2304 /* used in skb_gro_receive() slow path */ 2305 struct sk_buff *last; 2306 }; 2307 2308 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2309 2310 #define GRO_RECURSION_LIMIT 15 2311 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2312 { 2313 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2314 } 2315 2316 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2317 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2318 struct list_head *head, 2319 struct sk_buff *skb) 2320 { 2321 if (unlikely(gro_recursion_inc_test(skb))) { 2322 NAPI_GRO_CB(skb)->flush |= 1; 2323 return NULL; 2324 } 2325 2326 return cb(head, skb); 2327 } 2328 2329 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2330 struct sk_buff *); 2331 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2332 struct sock *sk, 2333 struct list_head *head, 2334 struct sk_buff *skb) 2335 { 2336 if (unlikely(gro_recursion_inc_test(skb))) { 2337 NAPI_GRO_CB(skb)->flush |= 1; 2338 return NULL; 2339 } 2340 2341 return cb(sk, head, skb); 2342 } 2343 2344 struct packet_type { 2345 __be16 type; /* This is really htons(ether_type). */ 2346 bool ignore_outgoing; 2347 struct net_device *dev; /* NULL is wildcarded here */ 2348 int (*func) (struct sk_buff *, 2349 struct net_device *, 2350 struct packet_type *, 2351 struct net_device *); 2352 void (*list_func) (struct list_head *, 2353 struct packet_type *, 2354 struct net_device *); 2355 bool (*id_match)(struct packet_type *ptype, 2356 struct sock *sk); 2357 void *af_packet_priv; 2358 struct list_head list; 2359 }; 2360 2361 struct offload_callbacks { 2362 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2363 netdev_features_t features); 2364 struct sk_buff *(*gro_receive)(struct list_head *head, 2365 struct sk_buff *skb); 2366 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2367 }; 2368 2369 struct packet_offload { 2370 __be16 type; /* This is really htons(ether_type). */ 2371 u16 priority; 2372 struct offload_callbacks callbacks; 2373 struct list_head list; 2374 }; 2375 2376 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2377 struct pcpu_sw_netstats { 2378 u64 rx_packets; 2379 u64 rx_bytes; 2380 u64 tx_packets; 2381 u64 tx_bytes; 2382 struct u64_stats_sync syncp; 2383 }; 2384 2385 struct pcpu_lstats { 2386 u64 packets; 2387 u64 bytes; 2388 struct u64_stats_sync syncp; 2389 }; 2390 2391 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2392 ({ \ 2393 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2394 if (pcpu_stats) { \ 2395 int __cpu; \ 2396 for_each_possible_cpu(__cpu) { \ 2397 typeof(type) *stat; \ 2398 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2399 u64_stats_init(&stat->syncp); \ 2400 } \ 2401 } \ 2402 pcpu_stats; \ 2403 }) 2404 2405 #define netdev_alloc_pcpu_stats(type) \ 2406 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2407 2408 enum netdev_lag_tx_type { 2409 NETDEV_LAG_TX_TYPE_UNKNOWN, 2410 NETDEV_LAG_TX_TYPE_RANDOM, 2411 NETDEV_LAG_TX_TYPE_BROADCAST, 2412 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2413 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2414 NETDEV_LAG_TX_TYPE_HASH, 2415 }; 2416 2417 enum netdev_lag_hash { 2418 NETDEV_LAG_HASH_NONE, 2419 NETDEV_LAG_HASH_L2, 2420 NETDEV_LAG_HASH_L34, 2421 NETDEV_LAG_HASH_L23, 2422 NETDEV_LAG_HASH_E23, 2423 NETDEV_LAG_HASH_E34, 2424 NETDEV_LAG_HASH_UNKNOWN, 2425 }; 2426 2427 struct netdev_lag_upper_info { 2428 enum netdev_lag_tx_type tx_type; 2429 enum netdev_lag_hash hash_type; 2430 }; 2431 2432 struct netdev_lag_lower_state_info { 2433 u8 link_up : 1, 2434 tx_enabled : 1; 2435 }; 2436 2437 #include <linux/notifier.h> 2438 2439 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2440 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2441 * adding new types. 2442 */ 2443 enum netdev_cmd { 2444 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2445 NETDEV_DOWN, 2446 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2447 detected a hardware crash and restarted 2448 - we can use this eg to kick tcp sessions 2449 once done */ 2450 NETDEV_CHANGE, /* Notify device state change */ 2451 NETDEV_REGISTER, 2452 NETDEV_UNREGISTER, 2453 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2454 NETDEV_CHANGEADDR, 2455 NETDEV_GOING_DOWN, 2456 NETDEV_CHANGENAME, 2457 NETDEV_FEAT_CHANGE, 2458 NETDEV_BONDING_FAILOVER, 2459 NETDEV_PRE_UP, 2460 NETDEV_PRE_TYPE_CHANGE, 2461 NETDEV_POST_TYPE_CHANGE, 2462 NETDEV_POST_INIT, 2463 NETDEV_RELEASE, 2464 NETDEV_NOTIFY_PEERS, 2465 NETDEV_JOIN, 2466 NETDEV_CHANGEUPPER, 2467 NETDEV_RESEND_IGMP, 2468 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2469 NETDEV_CHANGEINFODATA, 2470 NETDEV_BONDING_INFO, 2471 NETDEV_PRECHANGEUPPER, 2472 NETDEV_CHANGELOWERSTATE, 2473 NETDEV_UDP_TUNNEL_PUSH_INFO, 2474 NETDEV_UDP_TUNNEL_DROP_INFO, 2475 NETDEV_CHANGE_TX_QUEUE_LEN, 2476 NETDEV_CVLAN_FILTER_PUSH_INFO, 2477 NETDEV_CVLAN_FILTER_DROP_INFO, 2478 NETDEV_SVLAN_FILTER_PUSH_INFO, 2479 NETDEV_SVLAN_FILTER_DROP_INFO, 2480 }; 2481 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2482 2483 int register_netdevice_notifier(struct notifier_block *nb); 2484 int unregister_netdevice_notifier(struct notifier_block *nb); 2485 2486 struct netdev_notifier_info { 2487 struct net_device *dev; 2488 struct netlink_ext_ack *extack; 2489 }; 2490 2491 struct netdev_notifier_change_info { 2492 struct netdev_notifier_info info; /* must be first */ 2493 unsigned int flags_changed; 2494 }; 2495 2496 struct netdev_notifier_changeupper_info { 2497 struct netdev_notifier_info info; /* must be first */ 2498 struct net_device *upper_dev; /* new upper dev */ 2499 bool master; /* is upper dev master */ 2500 bool linking; /* is the notification for link or unlink */ 2501 void *upper_info; /* upper dev info */ 2502 }; 2503 2504 struct netdev_notifier_changelowerstate_info { 2505 struct netdev_notifier_info info; /* must be first */ 2506 void *lower_state_info; /* is lower dev state */ 2507 }; 2508 2509 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2510 struct net_device *dev) 2511 { 2512 info->dev = dev; 2513 info->extack = NULL; 2514 } 2515 2516 static inline struct net_device * 2517 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2518 { 2519 return info->dev; 2520 } 2521 2522 static inline struct netlink_ext_ack * 2523 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2524 { 2525 return info->extack; 2526 } 2527 2528 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2529 2530 2531 extern rwlock_t dev_base_lock; /* Device list lock */ 2532 2533 #define for_each_netdev(net, d) \ 2534 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2535 #define for_each_netdev_reverse(net, d) \ 2536 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2537 #define for_each_netdev_rcu(net, d) \ 2538 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2539 #define for_each_netdev_safe(net, d, n) \ 2540 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2541 #define for_each_netdev_continue(net, d) \ 2542 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2543 #define for_each_netdev_continue_rcu(net, d) \ 2544 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2545 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2546 for_each_netdev_rcu(&init_net, slave) \ 2547 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2548 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2549 2550 static inline struct net_device *next_net_device(struct net_device *dev) 2551 { 2552 struct list_head *lh; 2553 struct net *net; 2554 2555 net = dev_net(dev); 2556 lh = dev->dev_list.next; 2557 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2558 } 2559 2560 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2561 { 2562 struct list_head *lh; 2563 struct net *net; 2564 2565 net = dev_net(dev); 2566 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2567 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2568 } 2569 2570 static inline struct net_device *first_net_device(struct net *net) 2571 { 2572 return list_empty(&net->dev_base_head) ? NULL : 2573 net_device_entry(net->dev_base_head.next); 2574 } 2575 2576 static inline struct net_device *first_net_device_rcu(struct net *net) 2577 { 2578 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2579 2580 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2581 } 2582 2583 int netdev_boot_setup_check(struct net_device *dev); 2584 unsigned long netdev_boot_base(const char *prefix, int unit); 2585 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2586 const char *hwaddr); 2587 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2588 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2589 void dev_add_pack(struct packet_type *pt); 2590 void dev_remove_pack(struct packet_type *pt); 2591 void __dev_remove_pack(struct packet_type *pt); 2592 void dev_add_offload(struct packet_offload *po); 2593 void dev_remove_offload(struct packet_offload *po); 2594 2595 int dev_get_iflink(const struct net_device *dev); 2596 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2597 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2598 unsigned short mask); 2599 struct net_device *dev_get_by_name(struct net *net, const char *name); 2600 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2601 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2602 int dev_alloc_name(struct net_device *dev, const char *name); 2603 int dev_open(struct net_device *dev); 2604 void dev_close(struct net_device *dev); 2605 void dev_close_many(struct list_head *head, bool unlink); 2606 void dev_disable_lro(struct net_device *dev); 2607 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2608 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2609 struct net_device *sb_dev, 2610 select_queue_fallback_t fallback); 2611 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2612 struct net_device *sb_dev, 2613 select_queue_fallback_t fallback); 2614 int dev_queue_xmit(struct sk_buff *skb); 2615 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2616 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2617 int register_netdevice(struct net_device *dev); 2618 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2619 void unregister_netdevice_many(struct list_head *head); 2620 static inline void unregister_netdevice(struct net_device *dev) 2621 { 2622 unregister_netdevice_queue(dev, NULL); 2623 } 2624 2625 int netdev_refcnt_read(const struct net_device *dev); 2626 void free_netdev(struct net_device *dev); 2627 void netdev_freemem(struct net_device *dev); 2628 void synchronize_net(void); 2629 int init_dummy_netdev(struct net_device *dev); 2630 2631 DECLARE_PER_CPU(int, xmit_recursion); 2632 #define XMIT_RECURSION_LIMIT 10 2633 2634 static inline int dev_recursion_level(void) 2635 { 2636 return this_cpu_read(xmit_recursion); 2637 } 2638 2639 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2640 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2641 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2642 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2643 int netdev_get_name(struct net *net, char *name, int ifindex); 2644 int dev_restart(struct net_device *dev); 2645 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2646 2647 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2648 { 2649 return NAPI_GRO_CB(skb)->data_offset; 2650 } 2651 2652 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2653 { 2654 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2655 } 2656 2657 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2658 { 2659 NAPI_GRO_CB(skb)->data_offset += len; 2660 } 2661 2662 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2663 unsigned int offset) 2664 { 2665 return NAPI_GRO_CB(skb)->frag0 + offset; 2666 } 2667 2668 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2669 { 2670 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2671 } 2672 2673 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2674 { 2675 NAPI_GRO_CB(skb)->frag0 = NULL; 2676 NAPI_GRO_CB(skb)->frag0_len = 0; 2677 } 2678 2679 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2680 unsigned int offset) 2681 { 2682 if (!pskb_may_pull(skb, hlen)) 2683 return NULL; 2684 2685 skb_gro_frag0_invalidate(skb); 2686 return skb->data + offset; 2687 } 2688 2689 static inline void *skb_gro_network_header(struct sk_buff *skb) 2690 { 2691 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2692 skb_network_offset(skb); 2693 } 2694 2695 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2696 const void *start, unsigned int len) 2697 { 2698 if (NAPI_GRO_CB(skb)->csum_valid) 2699 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2700 csum_partial(start, len, 0)); 2701 } 2702 2703 /* GRO checksum functions. These are logical equivalents of the normal 2704 * checksum functions (in skbuff.h) except that they operate on the GRO 2705 * offsets and fields in sk_buff. 2706 */ 2707 2708 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2709 2710 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2711 { 2712 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2713 } 2714 2715 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2716 bool zero_okay, 2717 __sum16 check) 2718 { 2719 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2720 skb_checksum_start_offset(skb) < 2721 skb_gro_offset(skb)) && 2722 !skb_at_gro_remcsum_start(skb) && 2723 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2724 (!zero_okay || check)); 2725 } 2726 2727 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2728 __wsum psum) 2729 { 2730 if (NAPI_GRO_CB(skb)->csum_valid && 2731 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2732 return 0; 2733 2734 NAPI_GRO_CB(skb)->csum = psum; 2735 2736 return __skb_gro_checksum_complete(skb); 2737 } 2738 2739 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2740 { 2741 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2742 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2743 NAPI_GRO_CB(skb)->csum_cnt--; 2744 } else { 2745 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2746 * verified a new top level checksum or an encapsulated one 2747 * during GRO. This saves work if we fallback to normal path. 2748 */ 2749 __skb_incr_checksum_unnecessary(skb); 2750 } 2751 } 2752 2753 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2754 compute_pseudo) \ 2755 ({ \ 2756 __sum16 __ret = 0; \ 2757 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2758 __ret = __skb_gro_checksum_validate_complete(skb, \ 2759 compute_pseudo(skb, proto)); \ 2760 if (!__ret) \ 2761 skb_gro_incr_csum_unnecessary(skb); \ 2762 __ret; \ 2763 }) 2764 2765 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2766 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2767 2768 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2769 compute_pseudo) \ 2770 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2771 2772 #define skb_gro_checksum_simple_validate(skb) \ 2773 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2774 2775 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2776 { 2777 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2778 !NAPI_GRO_CB(skb)->csum_valid); 2779 } 2780 2781 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2782 __sum16 check, __wsum pseudo) 2783 { 2784 NAPI_GRO_CB(skb)->csum = ~pseudo; 2785 NAPI_GRO_CB(skb)->csum_valid = 1; 2786 } 2787 2788 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2789 do { \ 2790 if (__skb_gro_checksum_convert_check(skb)) \ 2791 __skb_gro_checksum_convert(skb, check, \ 2792 compute_pseudo(skb, proto)); \ 2793 } while (0) 2794 2795 struct gro_remcsum { 2796 int offset; 2797 __wsum delta; 2798 }; 2799 2800 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2801 { 2802 grc->offset = 0; 2803 grc->delta = 0; 2804 } 2805 2806 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2807 unsigned int off, size_t hdrlen, 2808 int start, int offset, 2809 struct gro_remcsum *grc, 2810 bool nopartial) 2811 { 2812 __wsum delta; 2813 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2814 2815 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2816 2817 if (!nopartial) { 2818 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2819 return ptr; 2820 } 2821 2822 ptr = skb_gro_header_fast(skb, off); 2823 if (skb_gro_header_hard(skb, off + plen)) { 2824 ptr = skb_gro_header_slow(skb, off + plen, off); 2825 if (!ptr) 2826 return NULL; 2827 } 2828 2829 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2830 start, offset); 2831 2832 /* Adjust skb->csum since we changed the packet */ 2833 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2834 2835 grc->offset = off + hdrlen + offset; 2836 grc->delta = delta; 2837 2838 return ptr; 2839 } 2840 2841 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2842 struct gro_remcsum *grc) 2843 { 2844 void *ptr; 2845 size_t plen = grc->offset + sizeof(u16); 2846 2847 if (!grc->delta) 2848 return; 2849 2850 ptr = skb_gro_header_fast(skb, grc->offset); 2851 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2852 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2853 if (!ptr) 2854 return; 2855 } 2856 2857 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2858 } 2859 2860 #ifdef CONFIG_XFRM_OFFLOAD 2861 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2862 { 2863 if (PTR_ERR(pp) != -EINPROGRESS) 2864 NAPI_GRO_CB(skb)->flush |= flush; 2865 } 2866 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2867 struct sk_buff *pp, 2868 int flush, 2869 struct gro_remcsum *grc) 2870 { 2871 if (PTR_ERR(pp) != -EINPROGRESS) { 2872 NAPI_GRO_CB(skb)->flush |= flush; 2873 skb_gro_remcsum_cleanup(skb, grc); 2874 skb->remcsum_offload = 0; 2875 } 2876 } 2877 #else 2878 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2879 { 2880 NAPI_GRO_CB(skb)->flush |= flush; 2881 } 2882 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2883 struct sk_buff *pp, 2884 int flush, 2885 struct gro_remcsum *grc) 2886 { 2887 NAPI_GRO_CB(skb)->flush |= flush; 2888 skb_gro_remcsum_cleanup(skb, grc); 2889 skb->remcsum_offload = 0; 2890 } 2891 #endif 2892 2893 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2894 unsigned short type, 2895 const void *daddr, const void *saddr, 2896 unsigned int len) 2897 { 2898 if (!dev->header_ops || !dev->header_ops->create) 2899 return 0; 2900 2901 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2902 } 2903 2904 static inline int dev_parse_header(const struct sk_buff *skb, 2905 unsigned char *haddr) 2906 { 2907 const struct net_device *dev = skb->dev; 2908 2909 if (!dev->header_ops || !dev->header_ops->parse) 2910 return 0; 2911 return dev->header_ops->parse(skb, haddr); 2912 } 2913 2914 /* ll_header must have at least hard_header_len allocated */ 2915 static inline bool dev_validate_header(const struct net_device *dev, 2916 char *ll_header, int len) 2917 { 2918 if (likely(len >= dev->hard_header_len)) 2919 return true; 2920 if (len < dev->min_header_len) 2921 return false; 2922 2923 if (capable(CAP_SYS_RAWIO)) { 2924 memset(ll_header + len, 0, dev->hard_header_len - len); 2925 return true; 2926 } 2927 2928 if (dev->header_ops && dev->header_ops->validate) 2929 return dev->header_ops->validate(ll_header, len); 2930 2931 return false; 2932 } 2933 2934 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 2935 int len, int size); 2936 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2937 static inline int unregister_gifconf(unsigned int family) 2938 { 2939 return register_gifconf(family, NULL); 2940 } 2941 2942 #ifdef CONFIG_NET_FLOW_LIMIT 2943 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2944 struct sd_flow_limit { 2945 u64 count; 2946 unsigned int num_buckets; 2947 unsigned int history_head; 2948 u16 history[FLOW_LIMIT_HISTORY]; 2949 u8 buckets[]; 2950 }; 2951 2952 extern int netdev_flow_limit_table_len; 2953 #endif /* CONFIG_NET_FLOW_LIMIT */ 2954 2955 /* 2956 * Incoming packets are placed on per-CPU queues 2957 */ 2958 struct softnet_data { 2959 struct list_head poll_list; 2960 struct sk_buff_head process_queue; 2961 2962 /* stats */ 2963 unsigned int processed; 2964 unsigned int time_squeeze; 2965 unsigned int received_rps; 2966 #ifdef CONFIG_RPS 2967 struct softnet_data *rps_ipi_list; 2968 #endif 2969 #ifdef CONFIG_NET_FLOW_LIMIT 2970 struct sd_flow_limit __rcu *flow_limit; 2971 #endif 2972 struct Qdisc *output_queue; 2973 struct Qdisc **output_queue_tailp; 2974 struct sk_buff *completion_queue; 2975 #ifdef CONFIG_XFRM_OFFLOAD 2976 struct sk_buff_head xfrm_backlog; 2977 #endif 2978 #ifdef CONFIG_RPS 2979 /* input_queue_head should be written by cpu owning this struct, 2980 * and only read by other cpus. Worth using a cache line. 2981 */ 2982 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2983 2984 /* Elements below can be accessed between CPUs for RPS/RFS */ 2985 call_single_data_t csd ____cacheline_aligned_in_smp; 2986 struct softnet_data *rps_ipi_next; 2987 unsigned int cpu; 2988 unsigned int input_queue_tail; 2989 #endif 2990 unsigned int dropped; 2991 struct sk_buff_head input_pkt_queue; 2992 struct napi_struct backlog; 2993 2994 }; 2995 2996 static inline void input_queue_head_incr(struct softnet_data *sd) 2997 { 2998 #ifdef CONFIG_RPS 2999 sd->input_queue_head++; 3000 #endif 3001 } 3002 3003 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3004 unsigned int *qtail) 3005 { 3006 #ifdef CONFIG_RPS 3007 *qtail = ++sd->input_queue_tail; 3008 #endif 3009 } 3010 3011 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3012 3013 void __netif_schedule(struct Qdisc *q); 3014 void netif_schedule_queue(struct netdev_queue *txq); 3015 3016 static inline void netif_tx_schedule_all(struct net_device *dev) 3017 { 3018 unsigned int i; 3019 3020 for (i = 0; i < dev->num_tx_queues; i++) 3021 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3022 } 3023 3024 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3025 { 3026 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3027 } 3028 3029 /** 3030 * netif_start_queue - allow transmit 3031 * @dev: network device 3032 * 3033 * Allow upper layers to call the device hard_start_xmit routine. 3034 */ 3035 static inline void netif_start_queue(struct net_device *dev) 3036 { 3037 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3038 } 3039 3040 static inline void netif_tx_start_all_queues(struct net_device *dev) 3041 { 3042 unsigned int i; 3043 3044 for (i = 0; i < dev->num_tx_queues; i++) { 3045 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3046 netif_tx_start_queue(txq); 3047 } 3048 } 3049 3050 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3051 3052 /** 3053 * netif_wake_queue - restart transmit 3054 * @dev: network device 3055 * 3056 * Allow upper layers to call the device hard_start_xmit routine. 3057 * Used for flow control when transmit resources are available. 3058 */ 3059 static inline void netif_wake_queue(struct net_device *dev) 3060 { 3061 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3062 } 3063 3064 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3065 { 3066 unsigned int i; 3067 3068 for (i = 0; i < dev->num_tx_queues; i++) { 3069 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3070 netif_tx_wake_queue(txq); 3071 } 3072 } 3073 3074 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3075 { 3076 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3077 } 3078 3079 /** 3080 * netif_stop_queue - stop transmitted packets 3081 * @dev: network device 3082 * 3083 * Stop upper layers calling the device hard_start_xmit routine. 3084 * Used for flow control when transmit resources are unavailable. 3085 */ 3086 static inline void netif_stop_queue(struct net_device *dev) 3087 { 3088 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3089 } 3090 3091 void netif_tx_stop_all_queues(struct net_device *dev); 3092 3093 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3094 { 3095 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3096 } 3097 3098 /** 3099 * netif_queue_stopped - test if transmit queue is flowblocked 3100 * @dev: network device 3101 * 3102 * Test if transmit queue on device is currently unable to send. 3103 */ 3104 static inline bool netif_queue_stopped(const struct net_device *dev) 3105 { 3106 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3107 } 3108 3109 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3110 { 3111 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3112 } 3113 3114 static inline bool 3115 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3116 { 3117 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3118 } 3119 3120 static inline bool 3121 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3122 { 3123 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3124 } 3125 3126 /** 3127 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3128 * @dev_queue: pointer to transmit queue 3129 * 3130 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3131 * to give appropriate hint to the CPU. 3132 */ 3133 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3134 { 3135 #ifdef CONFIG_BQL 3136 prefetchw(&dev_queue->dql.num_queued); 3137 #endif 3138 } 3139 3140 /** 3141 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3142 * @dev_queue: pointer to transmit queue 3143 * 3144 * BQL enabled drivers might use this helper in their TX completion path, 3145 * to give appropriate hint to the CPU. 3146 */ 3147 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3148 { 3149 #ifdef CONFIG_BQL 3150 prefetchw(&dev_queue->dql.limit); 3151 #endif 3152 } 3153 3154 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3155 unsigned int bytes) 3156 { 3157 #ifdef CONFIG_BQL 3158 dql_queued(&dev_queue->dql, bytes); 3159 3160 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3161 return; 3162 3163 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3164 3165 /* 3166 * The XOFF flag must be set before checking the dql_avail below, 3167 * because in netdev_tx_completed_queue we update the dql_completed 3168 * before checking the XOFF flag. 3169 */ 3170 smp_mb(); 3171 3172 /* check again in case another CPU has just made room avail */ 3173 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3174 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3175 #endif 3176 } 3177 3178 /** 3179 * netdev_sent_queue - report the number of bytes queued to hardware 3180 * @dev: network device 3181 * @bytes: number of bytes queued to the hardware device queue 3182 * 3183 * Report the number of bytes queued for sending/completion to the network 3184 * device hardware queue. @bytes should be a good approximation and should 3185 * exactly match netdev_completed_queue() @bytes 3186 */ 3187 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3188 { 3189 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3190 } 3191 3192 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3193 unsigned int pkts, unsigned int bytes) 3194 { 3195 #ifdef CONFIG_BQL 3196 if (unlikely(!bytes)) 3197 return; 3198 3199 dql_completed(&dev_queue->dql, bytes); 3200 3201 /* 3202 * Without the memory barrier there is a small possiblity that 3203 * netdev_tx_sent_queue will miss the update and cause the queue to 3204 * be stopped forever 3205 */ 3206 smp_mb(); 3207 3208 if (dql_avail(&dev_queue->dql) < 0) 3209 return; 3210 3211 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3212 netif_schedule_queue(dev_queue); 3213 #endif 3214 } 3215 3216 /** 3217 * netdev_completed_queue - report bytes and packets completed by device 3218 * @dev: network device 3219 * @pkts: actual number of packets sent over the medium 3220 * @bytes: actual number of bytes sent over the medium 3221 * 3222 * Report the number of bytes and packets transmitted by the network device 3223 * hardware queue over the physical medium, @bytes must exactly match the 3224 * @bytes amount passed to netdev_sent_queue() 3225 */ 3226 static inline void netdev_completed_queue(struct net_device *dev, 3227 unsigned int pkts, unsigned int bytes) 3228 { 3229 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3230 } 3231 3232 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3233 { 3234 #ifdef CONFIG_BQL 3235 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3236 dql_reset(&q->dql); 3237 #endif 3238 } 3239 3240 /** 3241 * netdev_reset_queue - reset the packets and bytes count of a network device 3242 * @dev_queue: network device 3243 * 3244 * Reset the bytes and packet count of a network device and clear the 3245 * software flow control OFF bit for this network device 3246 */ 3247 static inline void netdev_reset_queue(struct net_device *dev_queue) 3248 { 3249 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3250 } 3251 3252 /** 3253 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3254 * @dev: network device 3255 * @queue_index: given tx queue index 3256 * 3257 * Returns 0 if given tx queue index >= number of device tx queues, 3258 * otherwise returns the originally passed tx queue index. 3259 */ 3260 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3261 { 3262 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3263 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3264 dev->name, queue_index, 3265 dev->real_num_tx_queues); 3266 return 0; 3267 } 3268 3269 return queue_index; 3270 } 3271 3272 /** 3273 * netif_running - test if up 3274 * @dev: network device 3275 * 3276 * Test if the device has been brought up. 3277 */ 3278 static inline bool netif_running(const struct net_device *dev) 3279 { 3280 return test_bit(__LINK_STATE_START, &dev->state); 3281 } 3282 3283 /* 3284 * Routines to manage the subqueues on a device. We only need start, 3285 * stop, and a check if it's stopped. All other device management is 3286 * done at the overall netdevice level. 3287 * Also test the device if we're multiqueue. 3288 */ 3289 3290 /** 3291 * netif_start_subqueue - allow sending packets on subqueue 3292 * @dev: network device 3293 * @queue_index: sub queue index 3294 * 3295 * Start individual transmit queue of a device with multiple transmit queues. 3296 */ 3297 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3298 { 3299 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3300 3301 netif_tx_start_queue(txq); 3302 } 3303 3304 /** 3305 * netif_stop_subqueue - stop sending packets on subqueue 3306 * @dev: network device 3307 * @queue_index: sub queue index 3308 * 3309 * Stop individual transmit queue of a device with multiple transmit queues. 3310 */ 3311 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3312 { 3313 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3314 netif_tx_stop_queue(txq); 3315 } 3316 3317 /** 3318 * netif_subqueue_stopped - test status of subqueue 3319 * @dev: network device 3320 * @queue_index: sub queue index 3321 * 3322 * Check individual transmit queue of a device with multiple transmit queues. 3323 */ 3324 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3325 u16 queue_index) 3326 { 3327 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3328 3329 return netif_tx_queue_stopped(txq); 3330 } 3331 3332 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3333 struct sk_buff *skb) 3334 { 3335 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3336 } 3337 3338 /** 3339 * netif_wake_subqueue - allow sending packets on subqueue 3340 * @dev: network device 3341 * @queue_index: sub queue index 3342 * 3343 * Resume individual transmit queue of a device with multiple transmit queues. 3344 */ 3345 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3346 { 3347 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3348 3349 netif_tx_wake_queue(txq); 3350 } 3351 3352 #ifdef CONFIG_XPS 3353 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3354 u16 index); 3355 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3356 u16 index, bool is_rxqs_map); 3357 3358 /** 3359 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3360 * @j: CPU/Rx queue index 3361 * @mask: bitmask of all cpus/rx queues 3362 * @nr_bits: number of bits in the bitmask 3363 * 3364 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3365 */ 3366 static inline bool netif_attr_test_mask(unsigned long j, 3367 const unsigned long *mask, 3368 unsigned int nr_bits) 3369 { 3370 cpu_max_bits_warn(j, nr_bits); 3371 return test_bit(j, mask); 3372 } 3373 3374 /** 3375 * netif_attr_test_online - Test for online CPU/Rx queue 3376 * @j: CPU/Rx queue index 3377 * @online_mask: bitmask for CPUs/Rx queues that are online 3378 * @nr_bits: number of bits in the bitmask 3379 * 3380 * Returns true if a CPU/Rx queue is online. 3381 */ 3382 static inline bool netif_attr_test_online(unsigned long j, 3383 const unsigned long *online_mask, 3384 unsigned int nr_bits) 3385 { 3386 cpu_max_bits_warn(j, nr_bits); 3387 3388 if (online_mask) 3389 return test_bit(j, online_mask); 3390 3391 return (j < nr_bits); 3392 } 3393 3394 /** 3395 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3396 * @n: CPU/Rx queue index 3397 * @srcp: the cpumask/Rx queue mask pointer 3398 * @nr_bits: number of bits in the bitmask 3399 * 3400 * Returns >= nr_bits if no further CPUs/Rx queues set. 3401 */ 3402 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3403 unsigned int nr_bits) 3404 { 3405 /* -1 is a legal arg here. */ 3406 if (n != -1) 3407 cpu_max_bits_warn(n, nr_bits); 3408 3409 if (srcp) 3410 return find_next_bit(srcp, nr_bits, n + 1); 3411 3412 return n + 1; 3413 } 3414 3415 /** 3416 * netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p 3417 * @n: CPU/Rx queue index 3418 * @src1p: the first CPUs/Rx queues mask pointer 3419 * @src2p: the second CPUs/Rx queues mask pointer 3420 * @nr_bits: number of bits in the bitmask 3421 * 3422 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3423 */ 3424 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3425 const unsigned long *src2p, 3426 unsigned int nr_bits) 3427 { 3428 /* -1 is a legal arg here. */ 3429 if (n != -1) 3430 cpu_max_bits_warn(n, nr_bits); 3431 3432 if (src1p && src2p) 3433 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3434 else if (src1p) 3435 return find_next_bit(src1p, nr_bits, n + 1); 3436 else if (src2p) 3437 return find_next_bit(src2p, nr_bits, n + 1); 3438 3439 return n + 1; 3440 } 3441 #else 3442 static inline int netif_set_xps_queue(struct net_device *dev, 3443 const struct cpumask *mask, 3444 u16 index) 3445 { 3446 return 0; 3447 } 3448 3449 static inline int __netif_set_xps_queue(struct net_device *dev, 3450 const unsigned long *mask, 3451 u16 index, bool is_rxqs_map) 3452 { 3453 return 0; 3454 } 3455 #endif 3456 3457 /** 3458 * netif_is_multiqueue - test if device has multiple transmit queues 3459 * @dev: network device 3460 * 3461 * Check if device has multiple transmit queues 3462 */ 3463 static inline bool netif_is_multiqueue(const struct net_device *dev) 3464 { 3465 return dev->num_tx_queues > 1; 3466 } 3467 3468 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3469 3470 #ifdef CONFIG_SYSFS 3471 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3472 #else 3473 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3474 unsigned int rxqs) 3475 { 3476 dev->real_num_rx_queues = rxqs; 3477 return 0; 3478 } 3479 #endif 3480 3481 static inline struct netdev_rx_queue * 3482 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3483 { 3484 return dev->_rx + rxq; 3485 } 3486 3487 #ifdef CONFIG_SYSFS 3488 static inline unsigned int get_netdev_rx_queue_index( 3489 struct netdev_rx_queue *queue) 3490 { 3491 struct net_device *dev = queue->dev; 3492 int index = queue - dev->_rx; 3493 3494 BUG_ON(index >= dev->num_rx_queues); 3495 return index; 3496 } 3497 #endif 3498 3499 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3500 int netif_get_num_default_rss_queues(void); 3501 3502 enum skb_free_reason { 3503 SKB_REASON_CONSUMED, 3504 SKB_REASON_DROPPED, 3505 }; 3506 3507 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3508 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3509 3510 /* 3511 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3512 * interrupt context or with hardware interrupts being disabled. 3513 * (in_irq() || irqs_disabled()) 3514 * 3515 * We provide four helpers that can be used in following contexts : 3516 * 3517 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3518 * replacing kfree_skb(skb) 3519 * 3520 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3521 * Typically used in place of consume_skb(skb) in TX completion path 3522 * 3523 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3524 * replacing kfree_skb(skb) 3525 * 3526 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3527 * and consumed a packet. Used in place of consume_skb(skb) 3528 */ 3529 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3530 { 3531 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3532 } 3533 3534 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3535 { 3536 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3537 } 3538 3539 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3540 { 3541 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3542 } 3543 3544 static inline void dev_consume_skb_any(struct sk_buff *skb) 3545 { 3546 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3547 } 3548 3549 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3550 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3551 int netif_rx(struct sk_buff *skb); 3552 int netif_rx_ni(struct sk_buff *skb); 3553 int netif_receive_skb(struct sk_buff *skb); 3554 int netif_receive_skb_core(struct sk_buff *skb); 3555 void netif_receive_skb_list(struct list_head *head); 3556 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3557 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3558 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3559 gro_result_t napi_gro_frags(struct napi_struct *napi); 3560 struct packet_offload *gro_find_receive_by_type(__be16 type); 3561 struct packet_offload *gro_find_complete_by_type(__be16 type); 3562 3563 static inline void napi_free_frags(struct napi_struct *napi) 3564 { 3565 kfree_skb(napi->skb); 3566 napi->skb = NULL; 3567 } 3568 3569 bool netdev_is_rx_handler_busy(struct net_device *dev); 3570 int netdev_rx_handler_register(struct net_device *dev, 3571 rx_handler_func_t *rx_handler, 3572 void *rx_handler_data); 3573 void netdev_rx_handler_unregister(struct net_device *dev); 3574 3575 bool dev_valid_name(const char *name); 3576 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3577 bool *need_copyout); 3578 int dev_ifconf(struct net *net, struct ifconf *, int); 3579 int dev_ethtool(struct net *net, struct ifreq *); 3580 unsigned int dev_get_flags(const struct net_device *); 3581 int __dev_change_flags(struct net_device *, unsigned int flags); 3582 int dev_change_flags(struct net_device *, unsigned int); 3583 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3584 unsigned int gchanges); 3585 int dev_change_name(struct net_device *, const char *); 3586 int dev_set_alias(struct net_device *, const char *, size_t); 3587 int dev_get_alias(const struct net_device *, char *, size_t); 3588 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3589 int __dev_set_mtu(struct net_device *, int); 3590 int dev_set_mtu_ext(struct net_device *dev, int mtu, 3591 struct netlink_ext_ack *extack); 3592 int dev_set_mtu(struct net_device *, int); 3593 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3594 void dev_set_group(struct net_device *, int); 3595 int dev_set_mac_address(struct net_device *, struct sockaddr *); 3596 int dev_change_carrier(struct net_device *, bool new_carrier); 3597 int dev_get_phys_port_id(struct net_device *dev, 3598 struct netdev_phys_item_id *ppid); 3599 int dev_get_phys_port_name(struct net_device *dev, 3600 char *name, size_t len); 3601 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3602 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3603 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3604 struct netdev_queue *txq, int *ret); 3605 3606 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3607 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3608 int fd, u32 flags); 3609 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3610 enum bpf_netdev_command cmd); 3611 int xdp_umem_query(struct net_device *dev, u16 queue_id); 3612 3613 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3614 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3615 bool is_skb_forwardable(const struct net_device *dev, 3616 const struct sk_buff *skb); 3617 3618 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3619 struct sk_buff *skb) 3620 { 3621 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3622 unlikely(!is_skb_forwardable(dev, skb))) { 3623 atomic_long_inc(&dev->rx_dropped); 3624 kfree_skb(skb); 3625 return NET_RX_DROP; 3626 } 3627 3628 skb_scrub_packet(skb, true); 3629 skb->priority = 0; 3630 return 0; 3631 } 3632 3633 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3634 3635 extern int netdev_budget; 3636 extern unsigned int netdev_budget_usecs; 3637 3638 /* Called by rtnetlink.c:rtnl_unlock() */ 3639 void netdev_run_todo(void); 3640 3641 /** 3642 * dev_put - release reference to device 3643 * @dev: network device 3644 * 3645 * Release reference to device to allow it to be freed. 3646 */ 3647 static inline void dev_put(struct net_device *dev) 3648 { 3649 this_cpu_dec(*dev->pcpu_refcnt); 3650 } 3651 3652 /** 3653 * dev_hold - get reference to device 3654 * @dev: network device 3655 * 3656 * Hold reference to device to keep it from being freed. 3657 */ 3658 static inline void dev_hold(struct net_device *dev) 3659 { 3660 this_cpu_inc(*dev->pcpu_refcnt); 3661 } 3662 3663 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3664 * and _off may be called from IRQ context, but it is caller 3665 * who is responsible for serialization of these calls. 3666 * 3667 * The name carrier is inappropriate, these functions should really be 3668 * called netif_lowerlayer_*() because they represent the state of any 3669 * kind of lower layer not just hardware media. 3670 */ 3671 3672 void linkwatch_init_dev(struct net_device *dev); 3673 void linkwatch_fire_event(struct net_device *dev); 3674 void linkwatch_forget_dev(struct net_device *dev); 3675 3676 /** 3677 * netif_carrier_ok - test if carrier present 3678 * @dev: network device 3679 * 3680 * Check if carrier is present on device 3681 */ 3682 static inline bool netif_carrier_ok(const struct net_device *dev) 3683 { 3684 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3685 } 3686 3687 unsigned long dev_trans_start(struct net_device *dev); 3688 3689 void __netdev_watchdog_up(struct net_device *dev); 3690 3691 void netif_carrier_on(struct net_device *dev); 3692 3693 void netif_carrier_off(struct net_device *dev); 3694 3695 /** 3696 * netif_dormant_on - mark device as dormant. 3697 * @dev: network device 3698 * 3699 * Mark device as dormant (as per RFC2863). 3700 * 3701 * The dormant state indicates that the relevant interface is not 3702 * actually in a condition to pass packets (i.e., it is not 'up') but is 3703 * in a "pending" state, waiting for some external event. For "on- 3704 * demand" interfaces, this new state identifies the situation where the 3705 * interface is waiting for events to place it in the up state. 3706 */ 3707 static inline void netif_dormant_on(struct net_device *dev) 3708 { 3709 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3710 linkwatch_fire_event(dev); 3711 } 3712 3713 /** 3714 * netif_dormant_off - set device as not dormant. 3715 * @dev: network device 3716 * 3717 * Device is not in dormant state. 3718 */ 3719 static inline void netif_dormant_off(struct net_device *dev) 3720 { 3721 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3722 linkwatch_fire_event(dev); 3723 } 3724 3725 /** 3726 * netif_dormant - test if device is dormant 3727 * @dev: network device 3728 * 3729 * Check if device is dormant. 3730 */ 3731 static inline bool netif_dormant(const struct net_device *dev) 3732 { 3733 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3734 } 3735 3736 3737 /** 3738 * netif_oper_up - test if device is operational 3739 * @dev: network device 3740 * 3741 * Check if carrier is operational 3742 */ 3743 static inline bool netif_oper_up(const struct net_device *dev) 3744 { 3745 return (dev->operstate == IF_OPER_UP || 3746 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3747 } 3748 3749 /** 3750 * netif_device_present - is device available or removed 3751 * @dev: network device 3752 * 3753 * Check if device has not been removed from system. 3754 */ 3755 static inline bool netif_device_present(struct net_device *dev) 3756 { 3757 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3758 } 3759 3760 void netif_device_detach(struct net_device *dev); 3761 3762 void netif_device_attach(struct net_device *dev); 3763 3764 /* 3765 * Network interface message level settings 3766 */ 3767 3768 enum { 3769 NETIF_MSG_DRV = 0x0001, 3770 NETIF_MSG_PROBE = 0x0002, 3771 NETIF_MSG_LINK = 0x0004, 3772 NETIF_MSG_TIMER = 0x0008, 3773 NETIF_MSG_IFDOWN = 0x0010, 3774 NETIF_MSG_IFUP = 0x0020, 3775 NETIF_MSG_RX_ERR = 0x0040, 3776 NETIF_MSG_TX_ERR = 0x0080, 3777 NETIF_MSG_TX_QUEUED = 0x0100, 3778 NETIF_MSG_INTR = 0x0200, 3779 NETIF_MSG_TX_DONE = 0x0400, 3780 NETIF_MSG_RX_STATUS = 0x0800, 3781 NETIF_MSG_PKTDATA = 0x1000, 3782 NETIF_MSG_HW = 0x2000, 3783 NETIF_MSG_WOL = 0x4000, 3784 }; 3785 3786 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3787 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3788 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3789 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3790 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3791 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3792 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3793 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3794 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3795 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3796 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3797 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3798 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3799 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3800 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3801 3802 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3803 { 3804 /* use default */ 3805 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3806 return default_msg_enable_bits; 3807 if (debug_value == 0) /* no output */ 3808 return 0; 3809 /* set low N bits */ 3810 return (1 << debug_value) - 1; 3811 } 3812 3813 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3814 { 3815 spin_lock(&txq->_xmit_lock); 3816 txq->xmit_lock_owner = cpu; 3817 } 3818 3819 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3820 { 3821 __acquire(&txq->_xmit_lock); 3822 return true; 3823 } 3824 3825 static inline void __netif_tx_release(struct netdev_queue *txq) 3826 { 3827 __release(&txq->_xmit_lock); 3828 } 3829 3830 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3831 { 3832 spin_lock_bh(&txq->_xmit_lock); 3833 txq->xmit_lock_owner = smp_processor_id(); 3834 } 3835 3836 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3837 { 3838 bool ok = spin_trylock(&txq->_xmit_lock); 3839 if (likely(ok)) 3840 txq->xmit_lock_owner = smp_processor_id(); 3841 return ok; 3842 } 3843 3844 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3845 { 3846 txq->xmit_lock_owner = -1; 3847 spin_unlock(&txq->_xmit_lock); 3848 } 3849 3850 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3851 { 3852 txq->xmit_lock_owner = -1; 3853 spin_unlock_bh(&txq->_xmit_lock); 3854 } 3855 3856 static inline void txq_trans_update(struct netdev_queue *txq) 3857 { 3858 if (txq->xmit_lock_owner != -1) 3859 txq->trans_start = jiffies; 3860 } 3861 3862 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3863 static inline void netif_trans_update(struct net_device *dev) 3864 { 3865 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3866 3867 if (txq->trans_start != jiffies) 3868 txq->trans_start = jiffies; 3869 } 3870 3871 /** 3872 * netif_tx_lock - grab network device transmit lock 3873 * @dev: network device 3874 * 3875 * Get network device transmit lock 3876 */ 3877 static inline void netif_tx_lock(struct net_device *dev) 3878 { 3879 unsigned int i; 3880 int cpu; 3881 3882 spin_lock(&dev->tx_global_lock); 3883 cpu = smp_processor_id(); 3884 for (i = 0; i < dev->num_tx_queues; i++) { 3885 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3886 3887 /* We are the only thread of execution doing a 3888 * freeze, but we have to grab the _xmit_lock in 3889 * order to synchronize with threads which are in 3890 * the ->hard_start_xmit() handler and already 3891 * checked the frozen bit. 3892 */ 3893 __netif_tx_lock(txq, cpu); 3894 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3895 __netif_tx_unlock(txq); 3896 } 3897 } 3898 3899 static inline void netif_tx_lock_bh(struct net_device *dev) 3900 { 3901 local_bh_disable(); 3902 netif_tx_lock(dev); 3903 } 3904 3905 static inline void netif_tx_unlock(struct net_device *dev) 3906 { 3907 unsigned int i; 3908 3909 for (i = 0; i < dev->num_tx_queues; i++) { 3910 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3911 3912 /* No need to grab the _xmit_lock here. If the 3913 * queue is not stopped for another reason, we 3914 * force a schedule. 3915 */ 3916 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3917 netif_schedule_queue(txq); 3918 } 3919 spin_unlock(&dev->tx_global_lock); 3920 } 3921 3922 static inline void netif_tx_unlock_bh(struct net_device *dev) 3923 { 3924 netif_tx_unlock(dev); 3925 local_bh_enable(); 3926 } 3927 3928 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3929 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3930 __netif_tx_lock(txq, cpu); \ 3931 } else { \ 3932 __netif_tx_acquire(txq); \ 3933 } \ 3934 } 3935 3936 #define HARD_TX_TRYLOCK(dev, txq) \ 3937 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3938 __netif_tx_trylock(txq) : \ 3939 __netif_tx_acquire(txq)) 3940 3941 #define HARD_TX_UNLOCK(dev, txq) { \ 3942 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3943 __netif_tx_unlock(txq); \ 3944 } else { \ 3945 __netif_tx_release(txq); \ 3946 } \ 3947 } 3948 3949 static inline void netif_tx_disable(struct net_device *dev) 3950 { 3951 unsigned int i; 3952 int cpu; 3953 3954 local_bh_disable(); 3955 cpu = smp_processor_id(); 3956 for (i = 0; i < dev->num_tx_queues; i++) { 3957 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3958 3959 __netif_tx_lock(txq, cpu); 3960 netif_tx_stop_queue(txq); 3961 __netif_tx_unlock(txq); 3962 } 3963 local_bh_enable(); 3964 } 3965 3966 static inline void netif_addr_lock(struct net_device *dev) 3967 { 3968 spin_lock(&dev->addr_list_lock); 3969 } 3970 3971 static inline void netif_addr_lock_nested(struct net_device *dev) 3972 { 3973 int subclass = SINGLE_DEPTH_NESTING; 3974 3975 if (dev->netdev_ops->ndo_get_lock_subclass) 3976 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3977 3978 spin_lock_nested(&dev->addr_list_lock, subclass); 3979 } 3980 3981 static inline void netif_addr_lock_bh(struct net_device *dev) 3982 { 3983 spin_lock_bh(&dev->addr_list_lock); 3984 } 3985 3986 static inline void netif_addr_unlock(struct net_device *dev) 3987 { 3988 spin_unlock(&dev->addr_list_lock); 3989 } 3990 3991 static inline void netif_addr_unlock_bh(struct net_device *dev) 3992 { 3993 spin_unlock_bh(&dev->addr_list_lock); 3994 } 3995 3996 /* 3997 * dev_addrs walker. Should be used only for read access. Call with 3998 * rcu_read_lock held. 3999 */ 4000 #define for_each_dev_addr(dev, ha) \ 4001 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4002 4003 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4004 4005 void ether_setup(struct net_device *dev); 4006 4007 /* Support for loadable net-drivers */ 4008 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4009 unsigned char name_assign_type, 4010 void (*setup)(struct net_device *), 4011 unsigned int txqs, unsigned int rxqs); 4012 int dev_get_valid_name(struct net *net, struct net_device *dev, 4013 const char *name); 4014 4015 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4016 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4017 4018 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4019 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4020 count) 4021 4022 int register_netdev(struct net_device *dev); 4023 void unregister_netdev(struct net_device *dev); 4024 4025 /* General hardware address lists handling functions */ 4026 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4027 struct netdev_hw_addr_list *from_list, int addr_len); 4028 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4029 struct netdev_hw_addr_list *from_list, int addr_len); 4030 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4031 struct net_device *dev, 4032 int (*sync)(struct net_device *, const unsigned char *), 4033 int (*unsync)(struct net_device *, 4034 const unsigned char *)); 4035 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4036 struct net_device *dev, 4037 int (*unsync)(struct net_device *, 4038 const unsigned char *)); 4039 void __hw_addr_init(struct netdev_hw_addr_list *list); 4040 4041 /* Functions used for device addresses handling */ 4042 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4043 unsigned char addr_type); 4044 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4045 unsigned char addr_type); 4046 void dev_addr_flush(struct net_device *dev); 4047 int dev_addr_init(struct net_device *dev); 4048 4049 /* Functions used for unicast addresses handling */ 4050 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4051 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4052 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4053 int dev_uc_sync(struct net_device *to, struct net_device *from); 4054 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4055 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4056 void dev_uc_flush(struct net_device *dev); 4057 void dev_uc_init(struct net_device *dev); 4058 4059 /** 4060 * __dev_uc_sync - Synchonize device's unicast list 4061 * @dev: device to sync 4062 * @sync: function to call if address should be added 4063 * @unsync: function to call if address should be removed 4064 * 4065 * Add newly added addresses to the interface, and release 4066 * addresses that have been deleted. 4067 */ 4068 static inline int __dev_uc_sync(struct net_device *dev, 4069 int (*sync)(struct net_device *, 4070 const unsigned char *), 4071 int (*unsync)(struct net_device *, 4072 const unsigned char *)) 4073 { 4074 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4075 } 4076 4077 /** 4078 * __dev_uc_unsync - Remove synchronized addresses from device 4079 * @dev: device to sync 4080 * @unsync: function to call if address should be removed 4081 * 4082 * Remove all addresses that were added to the device by dev_uc_sync(). 4083 */ 4084 static inline void __dev_uc_unsync(struct net_device *dev, 4085 int (*unsync)(struct net_device *, 4086 const unsigned char *)) 4087 { 4088 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4089 } 4090 4091 /* Functions used for multicast addresses handling */ 4092 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4093 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4094 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4095 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4096 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4097 int dev_mc_sync(struct net_device *to, struct net_device *from); 4098 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4099 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4100 void dev_mc_flush(struct net_device *dev); 4101 void dev_mc_init(struct net_device *dev); 4102 4103 /** 4104 * __dev_mc_sync - Synchonize device's multicast list 4105 * @dev: device to sync 4106 * @sync: function to call if address should be added 4107 * @unsync: function to call if address should be removed 4108 * 4109 * Add newly added addresses to the interface, and release 4110 * addresses that have been deleted. 4111 */ 4112 static inline int __dev_mc_sync(struct net_device *dev, 4113 int (*sync)(struct net_device *, 4114 const unsigned char *), 4115 int (*unsync)(struct net_device *, 4116 const unsigned char *)) 4117 { 4118 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4119 } 4120 4121 /** 4122 * __dev_mc_unsync - Remove synchronized addresses from device 4123 * @dev: device to sync 4124 * @unsync: function to call if address should be removed 4125 * 4126 * Remove all addresses that were added to the device by dev_mc_sync(). 4127 */ 4128 static inline void __dev_mc_unsync(struct net_device *dev, 4129 int (*unsync)(struct net_device *, 4130 const unsigned char *)) 4131 { 4132 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4133 } 4134 4135 /* Functions used for secondary unicast and multicast support */ 4136 void dev_set_rx_mode(struct net_device *dev); 4137 void __dev_set_rx_mode(struct net_device *dev); 4138 int dev_set_promiscuity(struct net_device *dev, int inc); 4139 int dev_set_allmulti(struct net_device *dev, int inc); 4140 void netdev_state_change(struct net_device *dev); 4141 void netdev_notify_peers(struct net_device *dev); 4142 void netdev_features_change(struct net_device *dev); 4143 /* Load a device via the kmod */ 4144 void dev_load(struct net *net, const char *name); 4145 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4146 struct rtnl_link_stats64 *storage); 4147 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4148 const struct net_device_stats *netdev_stats); 4149 4150 extern int netdev_max_backlog; 4151 extern int netdev_tstamp_prequeue; 4152 extern int weight_p; 4153 extern int dev_weight_rx_bias; 4154 extern int dev_weight_tx_bias; 4155 extern int dev_rx_weight; 4156 extern int dev_tx_weight; 4157 4158 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4159 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4160 struct list_head **iter); 4161 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4162 struct list_head **iter); 4163 4164 /* iterate through upper list, must be called under RCU read lock */ 4165 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4166 for (iter = &(dev)->adj_list.upper, \ 4167 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4168 updev; \ 4169 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4170 4171 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4172 int (*fn)(struct net_device *upper_dev, 4173 void *data), 4174 void *data); 4175 4176 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4177 struct net_device *upper_dev); 4178 4179 bool netdev_has_any_upper_dev(struct net_device *dev); 4180 4181 void *netdev_lower_get_next_private(struct net_device *dev, 4182 struct list_head **iter); 4183 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4184 struct list_head **iter); 4185 4186 #define netdev_for_each_lower_private(dev, priv, iter) \ 4187 for (iter = (dev)->adj_list.lower.next, \ 4188 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4189 priv; \ 4190 priv = netdev_lower_get_next_private(dev, &(iter))) 4191 4192 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4193 for (iter = &(dev)->adj_list.lower, \ 4194 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4195 priv; \ 4196 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4197 4198 void *netdev_lower_get_next(struct net_device *dev, 4199 struct list_head **iter); 4200 4201 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4202 for (iter = (dev)->adj_list.lower.next, \ 4203 ldev = netdev_lower_get_next(dev, &(iter)); \ 4204 ldev; \ 4205 ldev = netdev_lower_get_next(dev, &(iter))) 4206 4207 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 4208 struct list_head **iter); 4209 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 4210 struct list_head **iter); 4211 4212 int netdev_walk_all_lower_dev(struct net_device *dev, 4213 int (*fn)(struct net_device *lower_dev, 4214 void *data), 4215 void *data); 4216 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4217 int (*fn)(struct net_device *lower_dev, 4218 void *data), 4219 void *data); 4220 4221 void *netdev_adjacent_get_private(struct list_head *adj_list); 4222 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4223 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4224 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4225 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4226 struct netlink_ext_ack *extack); 4227 int netdev_master_upper_dev_link(struct net_device *dev, 4228 struct net_device *upper_dev, 4229 void *upper_priv, void *upper_info, 4230 struct netlink_ext_ack *extack); 4231 void netdev_upper_dev_unlink(struct net_device *dev, 4232 struct net_device *upper_dev); 4233 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4234 void *netdev_lower_dev_get_private(struct net_device *dev, 4235 struct net_device *lower_dev); 4236 void netdev_lower_state_changed(struct net_device *lower_dev, 4237 void *lower_state_info); 4238 4239 /* RSS keys are 40 or 52 bytes long */ 4240 #define NETDEV_RSS_KEY_LEN 52 4241 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4242 void netdev_rss_key_fill(void *buffer, size_t len); 4243 4244 int dev_get_nest_level(struct net_device *dev); 4245 int skb_checksum_help(struct sk_buff *skb); 4246 int skb_crc32c_csum_help(struct sk_buff *skb); 4247 int skb_csum_hwoffload_help(struct sk_buff *skb, 4248 const netdev_features_t features); 4249 4250 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4251 netdev_features_t features, bool tx_path); 4252 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4253 netdev_features_t features); 4254 4255 struct netdev_bonding_info { 4256 ifslave slave; 4257 ifbond master; 4258 }; 4259 4260 struct netdev_notifier_bonding_info { 4261 struct netdev_notifier_info info; /* must be first */ 4262 struct netdev_bonding_info bonding_info; 4263 }; 4264 4265 void netdev_bonding_info_change(struct net_device *dev, 4266 struct netdev_bonding_info *bonding_info); 4267 4268 static inline 4269 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4270 { 4271 return __skb_gso_segment(skb, features, true); 4272 } 4273 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4274 4275 static inline bool can_checksum_protocol(netdev_features_t features, 4276 __be16 protocol) 4277 { 4278 if (protocol == htons(ETH_P_FCOE)) 4279 return !!(features & NETIF_F_FCOE_CRC); 4280 4281 /* Assume this is an IP checksum (not SCTP CRC) */ 4282 4283 if (features & NETIF_F_HW_CSUM) { 4284 /* Can checksum everything */ 4285 return true; 4286 } 4287 4288 switch (protocol) { 4289 case htons(ETH_P_IP): 4290 return !!(features & NETIF_F_IP_CSUM); 4291 case htons(ETH_P_IPV6): 4292 return !!(features & NETIF_F_IPV6_CSUM); 4293 default: 4294 return false; 4295 } 4296 } 4297 4298 #ifdef CONFIG_BUG 4299 void netdev_rx_csum_fault(struct net_device *dev); 4300 #else 4301 static inline void netdev_rx_csum_fault(struct net_device *dev) 4302 { 4303 } 4304 #endif 4305 /* rx skb timestamps */ 4306 void net_enable_timestamp(void); 4307 void net_disable_timestamp(void); 4308 4309 #ifdef CONFIG_PROC_FS 4310 int __init dev_proc_init(void); 4311 #else 4312 #define dev_proc_init() 0 4313 #endif 4314 4315 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4316 struct sk_buff *skb, struct net_device *dev, 4317 bool more) 4318 { 4319 skb->xmit_more = more ? 1 : 0; 4320 return ops->ndo_start_xmit(skb, dev); 4321 } 4322 4323 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4324 struct netdev_queue *txq, bool more) 4325 { 4326 const struct net_device_ops *ops = dev->netdev_ops; 4327 int rc; 4328 4329 rc = __netdev_start_xmit(ops, skb, dev, more); 4330 if (rc == NETDEV_TX_OK) 4331 txq_trans_update(txq); 4332 4333 return rc; 4334 } 4335 4336 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4337 const void *ns); 4338 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4339 const void *ns); 4340 4341 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4342 { 4343 return netdev_class_create_file_ns(class_attr, NULL); 4344 } 4345 4346 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4347 { 4348 netdev_class_remove_file_ns(class_attr, NULL); 4349 } 4350 4351 extern const struct kobj_ns_type_operations net_ns_type_operations; 4352 4353 const char *netdev_drivername(const struct net_device *dev); 4354 4355 void linkwatch_run_queue(void); 4356 4357 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4358 netdev_features_t f2) 4359 { 4360 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4361 if (f1 & NETIF_F_HW_CSUM) 4362 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4363 else 4364 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4365 } 4366 4367 return f1 & f2; 4368 } 4369 4370 static inline netdev_features_t netdev_get_wanted_features( 4371 struct net_device *dev) 4372 { 4373 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4374 } 4375 netdev_features_t netdev_increment_features(netdev_features_t all, 4376 netdev_features_t one, netdev_features_t mask); 4377 4378 /* Allow TSO being used on stacked device : 4379 * Performing the GSO segmentation before last device 4380 * is a performance improvement. 4381 */ 4382 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4383 netdev_features_t mask) 4384 { 4385 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4386 } 4387 4388 int __netdev_update_features(struct net_device *dev); 4389 void netdev_update_features(struct net_device *dev); 4390 void netdev_change_features(struct net_device *dev); 4391 4392 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4393 struct net_device *dev); 4394 4395 netdev_features_t passthru_features_check(struct sk_buff *skb, 4396 struct net_device *dev, 4397 netdev_features_t features); 4398 netdev_features_t netif_skb_features(struct sk_buff *skb); 4399 4400 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4401 { 4402 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4403 4404 /* check flags correspondence */ 4405 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4406 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4407 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4408 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4409 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4410 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4411 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4412 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4413 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4414 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4415 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4416 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4417 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4418 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4419 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4420 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4421 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4422 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4423 4424 return (features & feature) == feature; 4425 } 4426 4427 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4428 { 4429 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4430 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4431 } 4432 4433 static inline bool netif_needs_gso(struct sk_buff *skb, 4434 netdev_features_t features) 4435 { 4436 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4437 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4438 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4439 } 4440 4441 static inline void netif_set_gso_max_size(struct net_device *dev, 4442 unsigned int size) 4443 { 4444 dev->gso_max_size = size; 4445 } 4446 4447 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4448 int pulled_hlen, u16 mac_offset, 4449 int mac_len) 4450 { 4451 skb->protocol = protocol; 4452 skb->encapsulation = 1; 4453 skb_push(skb, pulled_hlen); 4454 skb_reset_transport_header(skb); 4455 skb->mac_header = mac_offset; 4456 skb->network_header = skb->mac_header + mac_len; 4457 skb->mac_len = mac_len; 4458 } 4459 4460 static inline bool netif_is_macsec(const struct net_device *dev) 4461 { 4462 return dev->priv_flags & IFF_MACSEC; 4463 } 4464 4465 static inline bool netif_is_macvlan(const struct net_device *dev) 4466 { 4467 return dev->priv_flags & IFF_MACVLAN; 4468 } 4469 4470 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4471 { 4472 return dev->priv_flags & IFF_MACVLAN_PORT; 4473 } 4474 4475 static inline bool netif_is_bond_master(const struct net_device *dev) 4476 { 4477 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4478 } 4479 4480 static inline bool netif_is_bond_slave(const struct net_device *dev) 4481 { 4482 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4483 } 4484 4485 static inline bool netif_supports_nofcs(struct net_device *dev) 4486 { 4487 return dev->priv_flags & IFF_SUPP_NOFCS; 4488 } 4489 4490 static inline bool netif_is_l3_master(const struct net_device *dev) 4491 { 4492 return dev->priv_flags & IFF_L3MDEV_MASTER; 4493 } 4494 4495 static inline bool netif_is_l3_slave(const struct net_device *dev) 4496 { 4497 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4498 } 4499 4500 static inline bool netif_is_bridge_master(const struct net_device *dev) 4501 { 4502 return dev->priv_flags & IFF_EBRIDGE; 4503 } 4504 4505 static inline bool netif_is_bridge_port(const struct net_device *dev) 4506 { 4507 return dev->priv_flags & IFF_BRIDGE_PORT; 4508 } 4509 4510 static inline bool netif_is_ovs_master(const struct net_device *dev) 4511 { 4512 return dev->priv_flags & IFF_OPENVSWITCH; 4513 } 4514 4515 static inline bool netif_is_ovs_port(const struct net_device *dev) 4516 { 4517 return dev->priv_flags & IFF_OVS_DATAPATH; 4518 } 4519 4520 static inline bool netif_is_team_master(const struct net_device *dev) 4521 { 4522 return dev->priv_flags & IFF_TEAM; 4523 } 4524 4525 static inline bool netif_is_team_port(const struct net_device *dev) 4526 { 4527 return dev->priv_flags & IFF_TEAM_PORT; 4528 } 4529 4530 static inline bool netif_is_lag_master(const struct net_device *dev) 4531 { 4532 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4533 } 4534 4535 static inline bool netif_is_lag_port(const struct net_device *dev) 4536 { 4537 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4538 } 4539 4540 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4541 { 4542 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4543 } 4544 4545 static inline bool netif_is_failover(const struct net_device *dev) 4546 { 4547 return dev->priv_flags & IFF_FAILOVER; 4548 } 4549 4550 static inline bool netif_is_failover_slave(const struct net_device *dev) 4551 { 4552 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4553 } 4554 4555 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4556 static inline void netif_keep_dst(struct net_device *dev) 4557 { 4558 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4559 } 4560 4561 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4562 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4563 { 4564 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4565 return dev->priv_flags & IFF_MACSEC; 4566 } 4567 4568 extern struct pernet_operations __net_initdata loopback_net_ops; 4569 4570 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4571 4572 /* netdev_printk helpers, similar to dev_printk */ 4573 4574 static inline const char *netdev_name(const struct net_device *dev) 4575 { 4576 if (!dev->name[0] || strchr(dev->name, '%')) 4577 return "(unnamed net_device)"; 4578 return dev->name; 4579 } 4580 4581 static inline bool netdev_unregistering(const struct net_device *dev) 4582 { 4583 return dev->reg_state == NETREG_UNREGISTERING; 4584 } 4585 4586 static inline const char *netdev_reg_state(const struct net_device *dev) 4587 { 4588 switch (dev->reg_state) { 4589 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4590 case NETREG_REGISTERED: return ""; 4591 case NETREG_UNREGISTERING: return " (unregistering)"; 4592 case NETREG_UNREGISTERED: return " (unregistered)"; 4593 case NETREG_RELEASED: return " (released)"; 4594 case NETREG_DUMMY: return " (dummy)"; 4595 } 4596 4597 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4598 return " (unknown)"; 4599 } 4600 4601 __printf(3, 4) 4602 void netdev_printk(const char *level, const struct net_device *dev, 4603 const char *format, ...); 4604 __printf(2, 3) 4605 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4606 __printf(2, 3) 4607 void netdev_alert(const struct net_device *dev, const char *format, ...); 4608 __printf(2, 3) 4609 void netdev_crit(const struct net_device *dev, const char *format, ...); 4610 __printf(2, 3) 4611 void netdev_err(const struct net_device *dev, const char *format, ...); 4612 __printf(2, 3) 4613 void netdev_warn(const struct net_device *dev, const char *format, ...); 4614 __printf(2, 3) 4615 void netdev_notice(const struct net_device *dev, const char *format, ...); 4616 __printf(2, 3) 4617 void netdev_info(const struct net_device *dev, const char *format, ...); 4618 4619 #define netdev_level_once(level, dev, fmt, ...) \ 4620 do { \ 4621 static bool __print_once __read_mostly; \ 4622 \ 4623 if (!__print_once) { \ 4624 __print_once = true; \ 4625 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4626 } \ 4627 } while (0) 4628 4629 #define netdev_emerg_once(dev, fmt, ...) \ 4630 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4631 #define netdev_alert_once(dev, fmt, ...) \ 4632 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4633 #define netdev_crit_once(dev, fmt, ...) \ 4634 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4635 #define netdev_err_once(dev, fmt, ...) \ 4636 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4637 #define netdev_warn_once(dev, fmt, ...) \ 4638 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4639 #define netdev_notice_once(dev, fmt, ...) \ 4640 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4641 #define netdev_info_once(dev, fmt, ...) \ 4642 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4643 4644 #define MODULE_ALIAS_NETDEV(device) \ 4645 MODULE_ALIAS("netdev-" device) 4646 4647 #if defined(CONFIG_DYNAMIC_DEBUG) 4648 #define netdev_dbg(__dev, format, args...) \ 4649 do { \ 4650 dynamic_netdev_dbg(__dev, format, ##args); \ 4651 } while (0) 4652 #elif defined(DEBUG) 4653 #define netdev_dbg(__dev, format, args...) \ 4654 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4655 #else 4656 #define netdev_dbg(__dev, format, args...) \ 4657 ({ \ 4658 if (0) \ 4659 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4660 }) 4661 #endif 4662 4663 #if defined(VERBOSE_DEBUG) 4664 #define netdev_vdbg netdev_dbg 4665 #else 4666 4667 #define netdev_vdbg(dev, format, args...) \ 4668 ({ \ 4669 if (0) \ 4670 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4671 0; \ 4672 }) 4673 #endif 4674 4675 /* 4676 * netdev_WARN() acts like dev_printk(), but with the key difference 4677 * of using a WARN/WARN_ON to get the message out, including the 4678 * file/line information and a backtrace. 4679 */ 4680 #define netdev_WARN(dev, format, args...) \ 4681 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4682 netdev_reg_state(dev), ##args) 4683 4684 #define netdev_WARN_ONCE(dev, format, args...) \ 4685 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4686 netdev_reg_state(dev), ##args) 4687 4688 /* netif printk helpers, similar to netdev_printk */ 4689 4690 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4691 do { \ 4692 if (netif_msg_##type(priv)) \ 4693 netdev_printk(level, (dev), fmt, ##args); \ 4694 } while (0) 4695 4696 #define netif_level(level, priv, type, dev, fmt, args...) \ 4697 do { \ 4698 if (netif_msg_##type(priv)) \ 4699 netdev_##level(dev, fmt, ##args); \ 4700 } while (0) 4701 4702 #define netif_emerg(priv, type, dev, fmt, args...) \ 4703 netif_level(emerg, priv, type, dev, fmt, ##args) 4704 #define netif_alert(priv, type, dev, fmt, args...) \ 4705 netif_level(alert, priv, type, dev, fmt, ##args) 4706 #define netif_crit(priv, type, dev, fmt, args...) \ 4707 netif_level(crit, priv, type, dev, fmt, ##args) 4708 #define netif_err(priv, type, dev, fmt, args...) \ 4709 netif_level(err, priv, type, dev, fmt, ##args) 4710 #define netif_warn(priv, type, dev, fmt, args...) \ 4711 netif_level(warn, priv, type, dev, fmt, ##args) 4712 #define netif_notice(priv, type, dev, fmt, args...) \ 4713 netif_level(notice, priv, type, dev, fmt, ##args) 4714 #define netif_info(priv, type, dev, fmt, args...) \ 4715 netif_level(info, priv, type, dev, fmt, ##args) 4716 4717 #if defined(CONFIG_DYNAMIC_DEBUG) 4718 #define netif_dbg(priv, type, netdev, format, args...) \ 4719 do { \ 4720 if (netif_msg_##type(priv)) \ 4721 dynamic_netdev_dbg(netdev, format, ##args); \ 4722 } while (0) 4723 #elif defined(DEBUG) 4724 #define netif_dbg(priv, type, dev, format, args...) \ 4725 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4726 #else 4727 #define netif_dbg(priv, type, dev, format, args...) \ 4728 ({ \ 4729 if (0) \ 4730 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4731 0; \ 4732 }) 4733 #endif 4734 4735 /* if @cond then downgrade to debug, else print at @level */ 4736 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4737 do { \ 4738 if (cond) \ 4739 netif_dbg(priv, type, netdev, fmt, ##args); \ 4740 else \ 4741 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4742 } while (0) 4743 4744 #if defined(VERBOSE_DEBUG) 4745 #define netif_vdbg netif_dbg 4746 #else 4747 #define netif_vdbg(priv, type, dev, format, args...) \ 4748 ({ \ 4749 if (0) \ 4750 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4751 0; \ 4752 }) 4753 #endif 4754 4755 /* 4756 * The list of packet types we will receive (as opposed to discard) 4757 * and the routines to invoke. 4758 * 4759 * Why 16. Because with 16 the only overlap we get on a hash of the 4760 * low nibble of the protocol value is RARP/SNAP/X.25. 4761 * 4762 * 0800 IP 4763 * 0001 802.3 4764 * 0002 AX.25 4765 * 0004 802.2 4766 * 8035 RARP 4767 * 0005 SNAP 4768 * 0805 X.25 4769 * 0806 ARP 4770 * 8137 IPX 4771 * 0009 Localtalk 4772 * 86DD IPv6 4773 */ 4774 #define PTYPE_HASH_SIZE (16) 4775 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4776 4777 #endif /* _LINUX_NETDEVICE_H */ 4778