xref: /openbmc/linux/include/linux/netdevice.h (revision dcabb06bf127b3e0d3fbc94a2b65dd56c2725851)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <net/net_namespace.h>
38 #ifdef CONFIG_DCB
39 #include <net/dcbnl.h>
40 #endif
41 #include <net/netprio_cgroup.h>
42 #include <net/xdp.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <linux/hashtable.h>
50 
51 struct netpoll_info;
52 struct device;
53 struct ethtool_ops;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 				    const struct ethtool_ops *ops);
76 
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
79 #define NET_RX_DROP		1	/* packet dropped */
80 
81 #define MAX_NEST_DEV 8
82 
83 /*
84  * Transmit return codes: transmit return codes originate from three different
85  * namespaces:
86  *
87  * - qdisc return codes
88  * - driver transmit return codes
89  * - errno values
90  *
91  * Drivers are allowed to return any one of those in their hard_start_xmit()
92  * function. Real network devices commonly used with qdiscs should only return
93  * the driver transmit return codes though - when qdiscs are used, the actual
94  * transmission happens asynchronously, so the value is not propagated to
95  * higher layers. Virtual network devices transmit synchronously; in this case
96  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97  * others are propagated to higher layers.
98  */
99 
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS	0x00
102 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
103 #define NET_XMIT_CN		0x02	/* congestion notification	*/
104 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
105 
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107  * indicates that the device will soon be dropping packets, or already drops
108  * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111 
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK		0xf0
114 
115 enum netdev_tx {
116 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
117 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
118 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121 
122 /*
123  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125  */
126 static inline bool dev_xmit_complete(int rc)
127 {
128 	/*
129 	 * Positive cases with an skb consumed by a driver:
130 	 * - successful transmission (rc == NETDEV_TX_OK)
131 	 * - error while transmitting (rc < 0)
132 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 	 */
134 	if (likely(rc < NET_XMIT_MASK))
135 		return true;
136 
137 	return false;
138 }
139 
140 /*
141  *	Compute the worst-case header length according to the protocols
142  *	used.
143  */
144 
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156 
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163 
164 /*
165  *	Old network device statistics. Fields are native words
166  *	(unsigned long) so they can be read and written atomically.
167  */
168 
169 struct net_device_stats {
170 	unsigned long	rx_packets;
171 	unsigned long	tx_packets;
172 	unsigned long	rx_bytes;
173 	unsigned long	tx_bytes;
174 	unsigned long	rx_errors;
175 	unsigned long	tx_errors;
176 	unsigned long	rx_dropped;
177 	unsigned long	tx_dropped;
178 	unsigned long	multicast;
179 	unsigned long	collisions;
180 	unsigned long	rx_length_errors;
181 	unsigned long	rx_over_errors;
182 	unsigned long	rx_crc_errors;
183 	unsigned long	rx_frame_errors;
184 	unsigned long	rx_fifo_errors;
185 	unsigned long	rx_missed_errors;
186 	unsigned long	tx_aborted_errors;
187 	unsigned long	tx_carrier_errors;
188 	unsigned long	tx_fifo_errors;
189 	unsigned long	tx_heartbeat_errors;
190 	unsigned long	tx_window_errors;
191 	unsigned long	rx_compressed;
192 	unsigned long	tx_compressed;
193 };
194 
195 
196 #include <linux/cache.h>
197 #include <linux/skbuff.h>
198 
199 #ifdef CONFIG_RPS
200 #include <linux/static_key.h>
201 extern struct static_key_false rps_needed;
202 extern struct static_key_false rfs_needed;
203 #endif
204 
205 struct neighbour;
206 struct neigh_parms;
207 struct sk_buff;
208 
209 struct netdev_hw_addr {
210 	struct list_head	list;
211 	unsigned char		addr[MAX_ADDR_LEN];
212 	unsigned char		type;
213 #define NETDEV_HW_ADDR_T_LAN		1
214 #define NETDEV_HW_ADDR_T_SAN		2
215 #define NETDEV_HW_ADDR_T_UNICAST	3
216 #define NETDEV_HW_ADDR_T_MULTICAST	4
217 	bool			global_use;
218 	int			sync_cnt;
219 	int			refcount;
220 	int			synced;
221 	struct rcu_head		rcu_head;
222 };
223 
224 struct netdev_hw_addr_list {
225 	struct list_head	list;
226 	int			count;
227 };
228 
229 #define netdev_hw_addr_list_count(l) ((l)->count)
230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231 #define netdev_hw_addr_list_for_each(ha, l) \
232 	list_for_each_entry(ha, &(l)->list, list)
233 
234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236 #define netdev_for_each_uc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238 
239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241 #define netdev_for_each_mc_addr(ha, dev) \
242 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243 
244 struct hh_cache {
245 	unsigned int	hh_len;
246 	seqlock_t	hh_lock;
247 
248 	/* cached hardware header; allow for machine alignment needs.        */
249 #define HH_DATA_MOD	16
250 #define HH_DATA_OFF(__len) \
251 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252 #define HH_DATA_ALIGN(__len) \
253 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255 };
256 
257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258  * Alternative is:
259  *   dev->hard_header_len ? (dev->hard_header_len +
260  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261  *
262  * We could use other alignment values, but we must maintain the
263  * relationship HH alignment <= LL alignment.
264  */
265 #define LL_RESERVED_SPACE(dev) \
266 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269 
270 struct header_ops {
271 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
272 			   unsigned short type, const void *daddr,
273 			   const void *saddr, unsigned int len);
274 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 	void	(*cache_update)(struct hh_cache *hh,
277 				const struct net_device *dev,
278 				const unsigned char *haddr);
279 	bool	(*validate)(const char *ll_header, unsigned int len);
280 	__be16	(*parse_protocol)(const struct sk_buff *skb);
281 };
282 
283 /* These flag bits are private to the generic network queueing
284  * layer; they may not be explicitly referenced by any other
285  * code.
286  */
287 
288 enum netdev_state_t {
289 	__LINK_STATE_START,
290 	__LINK_STATE_PRESENT,
291 	__LINK_STATE_NOCARRIER,
292 	__LINK_STATE_LINKWATCH_PENDING,
293 	__LINK_STATE_DORMANT,
294 	__LINK_STATE_TESTING,
295 };
296 
297 
298 /*
299  * This structure holds boot-time configured netdevice settings. They
300  * are then used in the device probing.
301  */
302 struct netdev_boot_setup {
303 	char name[IFNAMSIZ];
304 	struct ifmap map;
305 };
306 #define NETDEV_BOOT_SETUP_MAX 8
307 
308 int __init netdev_boot_setup(char *str);
309 
310 struct gro_list {
311 	struct list_head	list;
312 	int			count;
313 };
314 
315 /*
316  * size of gro hash buckets, must less than bit number of
317  * napi_struct::gro_bitmask
318  */
319 #define GRO_HASH_BUCKETS	8
320 
321 /*
322  * Structure for NAPI scheduling similar to tasklet but with weighting
323  */
324 struct napi_struct {
325 	/* The poll_list must only be managed by the entity which
326 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
327 	 * whoever atomically sets that bit can add this napi_struct
328 	 * to the per-CPU poll_list, and whoever clears that bit
329 	 * can remove from the list right before clearing the bit.
330 	 */
331 	struct list_head	poll_list;
332 
333 	unsigned long		state;
334 	int			weight;
335 	int			defer_hard_irqs_count;
336 	unsigned long		gro_bitmask;
337 	int			(*poll)(struct napi_struct *, int);
338 #ifdef CONFIG_NETPOLL
339 	int			poll_owner;
340 #endif
341 	struct net_device	*dev;
342 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
343 	struct sk_buff		*skb;
344 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
345 	int			rx_count; /* length of rx_list */
346 	struct hrtimer		timer;
347 	struct list_head	dev_list;
348 	struct hlist_node	napi_hash_node;
349 	unsigned int		napi_id;
350 	struct task_struct	*thread;
351 };
352 
353 enum {
354 	NAPI_STATE_SCHED,		/* Poll is scheduled */
355 	NAPI_STATE_MISSED,		/* reschedule a napi */
356 	NAPI_STATE_DISABLE,		/* Disable pending */
357 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
358 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
359 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
360 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
361 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
362 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
363 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
364 };
365 
366 enum {
367 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
368 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
369 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
370 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
371 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
372 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
373 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
374 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
375 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
376 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
377 };
378 
379 enum gro_result {
380 	GRO_MERGED,
381 	GRO_MERGED_FREE,
382 	GRO_HELD,
383 	GRO_NORMAL,
384 	GRO_CONSUMED,
385 };
386 typedef enum gro_result gro_result_t;
387 
388 /*
389  * enum rx_handler_result - Possible return values for rx_handlers.
390  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
391  * further.
392  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
393  * case skb->dev was changed by rx_handler.
394  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
395  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
396  *
397  * rx_handlers are functions called from inside __netif_receive_skb(), to do
398  * special processing of the skb, prior to delivery to protocol handlers.
399  *
400  * Currently, a net_device can only have a single rx_handler registered. Trying
401  * to register a second rx_handler will return -EBUSY.
402  *
403  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
404  * To unregister a rx_handler on a net_device, use
405  * netdev_rx_handler_unregister().
406  *
407  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
408  * do with the skb.
409  *
410  * If the rx_handler consumed the skb in some way, it should return
411  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
412  * the skb to be delivered in some other way.
413  *
414  * If the rx_handler changed skb->dev, to divert the skb to another
415  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
416  * new device will be called if it exists.
417  *
418  * If the rx_handler decides the skb should be ignored, it should return
419  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
420  * are registered on exact device (ptype->dev == skb->dev).
421  *
422  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
423  * delivered, it should return RX_HANDLER_PASS.
424  *
425  * A device without a registered rx_handler will behave as if rx_handler
426  * returned RX_HANDLER_PASS.
427  */
428 
429 enum rx_handler_result {
430 	RX_HANDLER_CONSUMED,
431 	RX_HANDLER_ANOTHER,
432 	RX_HANDLER_EXACT,
433 	RX_HANDLER_PASS,
434 };
435 typedef enum rx_handler_result rx_handler_result_t;
436 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
437 
438 void __napi_schedule(struct napi_struct *n);
439 void __napi_schedule_irqoff(struct napi_struct *n);
440 
441 static inline bool napi_disable_pending(struct napi_struct *n)
442 {
443 	return test_bit(NAPI_STATE_DISABLE, &n->state);
444 }
445 
446 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
447 {
448 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
449 }
450 
451 bool napi_schedule_prep(struct napi_struct *n);
452 
453 /**
454  *	napi_schedule - schedule NAPI poll
455  *	@n: NAPI context
456  *
457  * Schedule NAPI poll routine to be called if it is not already
458  * running.
459  */
460 static inline void napi_schedule(struct napi_struct *n)
461 {
462 	if (napi_schedule_prep(n))
463 		__napi_schedule(n);
464 }
465 
466 /**
467  *	napi_schedule_irqoff - schedule NAPI poll
468  *	@n: NAPI context
469  *
470  * Variant of napi_schedule(), assuming hard irqs are masked.
471  */
472 static inline void napi_schedule_irqoff(struct napi_struct *n)
473 {
474 	if (napi_schedule_prep(n))
475 		__napi_schedule_irqoff(n);
476 }
477 
478 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
479 static inline bool napi_reschedule(struct napi_struct *napi)
480 {
481 	if (napi_schedule_prep(napi)) {
482 		__napi_schedule(napi);
483 		return true;
484 	}
485 	return false;
486 }
487 
488 bool napi_complete_done(struct napi_struct *n, int work_done);
489 /**
490  *	napi_complete - NAPI processing complete
491  *	@n: NAPI context
492  *
493  * Mark NAPI processing as complete.
494  * Consider using napi_complete_done() instead.
495  * Return false if device should avoid rearming interrupts.
496  */
497 static inline bool napi_complete(struct napi_struct *n)
498 {
499 	return napi_complete_done(n, 0);
500 }
501 
502 int dev_set_threaded(struct net_device *dev, bool threaded);
503 
504 /**
505  *	napi_disable - prevent NAPI from scheduling
506  *	@n: NAPI context
507  *
508  * Stop NAPI from being scheduled on this context.
509  * Waits till any outstanding processing completes.
510  */
511 void napi_disable(struct napi_struct *n);
512 
513 void napi_enable(struct napi_struct *n);
514 
515 /**
516  *	napi_synchronize - wait until NAPI is not running
517  *	@n: NAPI context
518  *
519  * Wait until NAPI is done being scheduled on this context.
520  * Waits till any outstanding processing completes but
521  * does not disable future activations.
522  */
523 static inline void napi_synchronize(const struct napi_struct *n)
524 {
525 	if (IS_ENABLED(CONFIG_SMP))
526 		while (test_bit(NAPI_STATE_SCHED, &n->state))
527 			msleep(1);
528 	else
529 		barrier();
530 }
531 
532 /**
533  *	napi_if_scheduled_mark_missed - if napi is running, set the
534  *	NAPIF_STATE_MISSED
535  *	@n: NAPI context
536  *
537  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
538  * NAPI is scheduled.
539  **/
540 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
541 {
542 	unsigned long val, new;
543 
544 	do {
545 		val = READ_ONCE(n->state);
546 		if (val & NAPIF_STATE_DISABLE)
547 			return true;
548 
549 		if (!(val & NAPIF_STATE_SCHED))
550 			return false;
551 
552 		new = val | NAPIF_STATE_MISSED;
553 	} while (cmpxchg(&n->state, val, new) != val);
554 
555 	return true;
556 }
557 
558 enum netdev_queue_state_t {
559 	__QUEUE_STATE_DRV_XOFF,
560 	__QUEUE_STATE_STACK_XOFF,
561 	__QUEUE_STATE_FROZEN,
562 };
563 
564 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
565 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
566 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
567 
568 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
569 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
570 					QUEUE_STATE_FROZEN)
571 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
572 					QUEUE_STATE_FROZEN)
573 
574 /*
575  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
576  * netif_tx_* functions below are used to manipulate this flag.  The
577  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
578  * queue independently.  The netif_xmit_*stopped functions below are called
579  * to check if the queue has been stopped by the driver or stack (either
580  * of the XOFF bits are set in the state).  Drivers should not need to call
581  * netif_xmit*stopped functions, they should only be using netif_tx_*.
582  */
583 
584 struct netdev_queue {
585 /*
586  * read-mostly part
587  */
588 	struct net_device	*dev;
589 	struct Qdisc __rcu	*qdisc;
590 	struct Qdisc		*qdisc_sleeping;
591 #ifdef CONFIG_SYSFS
592 	struct kobject		kobj;
593 #endif
594 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
595 	int			numa_node;
596 #endif
597 	unsigned long		tx_maxrate;
598 	/*
599 	 * Number of TX timeouts for this queue
600 	 * (/sys/class/net/DEV/Q/trans_timeout)
601 	 */
602 	unsigned long		trans_timeout;
603 
604 	/* Subordinate device that the queue has been assigned to */
605 	struct net_device	*sb_dev;
606 #ifdef CONFIG_XDP_SOCKETS
607 	struct xsk_buff_pool    *pool;
608 #endif
609 /*
610  * write-mostly part
611  */
612 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
613 	int			xmit_lock_owner;
614 	/*
615 	 * Time (in jiffies) of last Tx
616 	 */
617 	unsigned long		trans_start;
618 
619 	unsigned long		state;
620 
621 #ifdef CONFIG_BQL
622 	struct dql		dql;
623 #endif
624 } ____cacheline_aligned_in_smp;
625 
626 extern int sysctl_fb_tunnels_only_for_init_net;
627 extern int sysctl_devconf_inherit_init_net;
628 
629 /*
630  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
631  *                                     == 1 : For initns only
632  *                                     == 2 : For none.
633  */
634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636 	return !IS_ENABLED(CONFIG_SYSCTL) ||
637 	       !sysctl_fb_tunnels_only_for_init_net ||
638 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
639 }
640 
641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 	return q->numa_node;
645 #else
646 	return NUMA_NO_NODE;
647 #endif
648 }
649 
650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 	q->numa_node = node;
654 #endif
655 }
656 
657 #ifdef CONFIG_RPS
658 /*
659  * This structure holds an RPS map which can be of variable length.  The
660  * map is an array of CPUs.
661  */
662 struct rps_map {
663 	unsigned int len;
664 	struct rcu_head rcu;
665 	u16 cpus[];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668 
669 /*
670  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671  * tail pointer for that CPU's input queue at the time of last enqueue, and
672  * a hardware filter index.
673  */
674 struct rps_dev_flow {
675 	u16 cpu;
676 	u16 filter;
677 	unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680 
681 /*
682  * The rps_dev_flow_table structure contains a table of flow mappings.
683  */
684 struct rps_dev_flow_table {
685 	unsigned int mask;
686 	struct rcu_head rcu;
687 	struct rps_dev_flow flows[];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690     ((_num) * sizeof(struct rps_dev_flow)))
691 
692 /*
693  * The rps_sock_flow_table contains mappings of flows to the last CPU
694  * on which they were processed by the application (set in recvmsg).
695  * Each entry is a 32bit value. Upper part is the high-order bits
696  * of flow hash, lower part is CPU number.
697  * rps_cpu_mask is used to partition the space, depending on number of
698  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700  * meaning we use 32-6=26 bits for the hash.
701  */
702 struct rps_sock_flow_table {
703 	u32	mask;
704 
705 	u32	ents[] ____cacheline_aligned_in_smp;
706 };
707 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708 
709 #define RPS_NO_CPU 0xffff
710 
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713 
714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 					u32 hash)
716 {
717 	if (table && hash) {
718 		unsigned int index = hash & table->mask;
719 		u32 val = hash & ~rps_cpu_mask;
720 
721 		/* We only give a hint, preemption can change CPU under us */
722 		val |= raw_smp_processor_id();
723 
724 		if (table->ents[index] != val)
725 			table->ents[index] = val;
726 	}
727 }
728 
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 			 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734 
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 	struct rps_map __rcu		*rps_map;
739 	struct rps_dev_flow_table __rcu	*rps_flow_table;
740 #endif
741 	struct kobject			kobj;
742 	struct net_device		*dev;
743 	struct xdp_rxq_info		xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 	struct xsk_buff_pool            *pool;
746 #endif
747 } ____cacheline_aligned_in_smp;
748 
749 /*
750  * RX queue sysfs structures and functions.
751  */
752 struct rx_queue_attribute {
753 	struct attribute attr;
754 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 	ssize_t (*store)(struct netdev_rx_queue *queue,
756 			 const char *buf, size_t len);
757 };
758 
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765 	unsigned int len;
766 	unsigned int alloc_len;
767 	struct rcu_head rcu;
768 	u16 queues[];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773 
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  */
777 struct xps_dev_maps {
778 	struct rcu_head rcu;
779 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
780 };
781 
782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
783 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784 
785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
787 
788 #endif /* CONFIG_XPS */
789 
790 #define TC_MAX_QUEUE	16
791 #define TC_BITMASK	15
792 /* HW offloaded queuing disciplines txq count and offset maps */
793 struct netdev_tc_txq {
794 	u16 count;
795 	u16 offset;
796 };
797 
798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799 /*
800  * This structure is to hold information about the device
801  * configured to run FCoE protocol stack.
802  */
803 struct netdev_fcoe_hbainfo {
804 	char	manufacturer[64];
805 	char	serial_number[64];
806 	char	hardware_version[64];
807 	char	driver_version[64];
808 	char	optionrom_version[64];
809 	char	firmware_version[64];
810 	char	model[256];
811 	char	model_description[256];
812 };
813 #endif
814 
815 #define MAX_PHYS_ITEM_ID_LEN 32
816 
817 /* This structure holds a unique identifier to identify some
818  * physical item (port for example) used by a netdevice.
819  */
820 struct netdev_phys_item_id {
821 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 	unsigned char id_len;
823 };
824 
825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 					    struct netdev_phys_item_id *b)
827 {
828 	return a->id_len == b->id_len &&
829 	       memcmp(a->id, b->id, a->id_len) == 0;
830 }
831 
832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 				       struct sk_buff *skb,
834 				       struct net_device *sb_dev);
835 
836 enum tc_setup_type {
837 	TC_SETUP_QDISC_MQPRIO,
838 	TC_SETUP_CLSU32,
839 	TC_SETUP_CLSFLOWER,
840 	TC_SETUP_CLSMATCHALL,
841 	TC_SETUP_CLSBPF,
842 	TC_SETUP_BLOCK,
843 	TC_SETUP_QDISC_CBS,
844 	TC_SETUP_QDISC_RED,
845 	TC_SETUP_QDISC_PRIO,
846 	TC_SETUP_QDISC_MQ,
847 	TC_SETUP_QDISC_ETF,
848 	TC_SETUP_ROOT_QDISC,
849 	TC_SETUP_QDISC_GRED,
850 	TC_SETUP_QDISC_TAPRIO,
851 	TC_SETUP_FT,
852 	TC_SETUP_QDISC_ETS,
853 	TC_SETUP_QDISC_TBF,
854 	TC_SETUP_QDISC_FIFO,
855 	TC_SETUP_QDISC_HTB,
856 };
857 
858 /* These structures hold the attributes of bpf state that are being passed
859  * to the netdevice through the bpf op.
860  */
861 enum bpf_netdev_command {
862 	/* Set or clear a bpf program used in the earliest stages of packet
863 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
864 	 * is responsible for calling bpf_prog_put on any old progs that are
865 	 * stored. In case of error, the callee need not release the new prog
866 	 * reference, but on success it takes ownership and must bpf_prog_put
867 	 * when it is no longer used.
868 	 */
869 	XDP_SETUP_PROG,
870 	XDP_SETUP_PROG_HW,
871 	/* BPF program for offload callbacks, invoked at program load time. */
872 	BPF_OFFLOAD_MAP_ALLOC,
873 	BPF_OFFLOAD_MAP_FREE,
874 	XDP_SETUP_XSK_POOL,
875 };
876 
877 struct bpf_prog_offload_ops;
878 struct netlink_ext_ack;
879 struct xdp_umem;
880 struct xdp_dev_bulk_queue;
881 struct bpf_xdp_link;
882 
883 enum bpf_xdp_mode {
884 	XDP_MODE_SKB = 0,
885 	XDP_MODE_DRV = 1,
886 	XDP_MODE_HW = 2,
887 	__MAX_XDP_MODE
888 };
889 
890 struct bpf_xdp_entity {
891 	struct bpf_prog *prog;
892 	struct bpf_xdp_link *link;
893 };
894 
895 struct netdev_bpf {
896 	enum bpf_netdev_command command;
897 	union {
898 		/* XDP_SETUP_PROG */
899 		struct {
900 			u32 flags;
901 			struct bpf_prog *prog;
902 			struct netlink_ext_ack *extack;
903 		};
904 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
905 		struct {
906 			struct bpf_offloaded_map *offmap;
907 		};
908 		/* XDP_SETUP_XSK_POOL */
909 		struct {
910 			struct xsk_buff_pool *pool;
911 			u16 queue_id;
912 		} xsk;
913 	};
914 };
915 
916 /* Flags for ndo_xsk_wakeup. */
917 #define XDP_WAKEUP_RX (1 << 0)
918 #define XDP_WAKEUP_TX (1 << 1)
919 
920 #ifdef CONFIG_XFRM_OFFLOAD
921 struct xfrmdev_ops {
922 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
923 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
924 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
925 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
926 				       struct xfrm_state *x);
927 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
928 };
929 #endif
930 
931 struct dev_ifalias {
932 	struct rcu_head rcuhead;
933 	char ifalias[];
934 };
935 
936 struct devlink;
937 struct tlsdev_ops;
938 
939 struct netdev_name_node {
940 	struct hlist_node hlist;
941 	struct list_head list;
942 	struct net_device *dev;
943 	const char *name;
944 };
945 
946 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
947 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
948 
949 struct netdev_net_notifier {
950 	struct list_head list;
951 	struct notifier_block *nb;
952 };
953 
954 /*
955  * This structure defines the management hooks for network devices.
956  * The following hooks can be defined; unless noted otherwise, they are
957  * optional and can be filled with a null pointer.
958  *
959  * int (*ndo_init)(struct net_device *dev);
960  *     This function is called once when a network device is registered.
961  *     The network device can use this for any late stage initialization
962  *     or semantic validation. It can fail with an error code which will
963  *     be propagated back to register_netdev.
964  *
965  * void (*ndo_uninit)(struct net_device *dev);
966  *     This function is called when device is unregistered or when registration
967  *     fails. It is not called if init fails.
968  *
969  * int (*ndo_open)(struct net_device *dev);
970  *     This function is called when a network device transitions to the up
971  *     state.
972  *
973  * int (*ndo_stop)(struct net_device *dev);
974  *     This function is called when a network device transitions to the down
975  *     state.
976  *
977  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
978  *                               struct net_device *dev);
979  *	Called when a packet needs to be transmitted.
980  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
981  *	the queue before that can happen; it's for obsolete devices and weird
982  *	corner cases, but the stack really does a non-trivial amount
983  *	of useless work if you return NETDEV_TX_BUSY.
984  *	Required; cannot be NULL.
985  *
986  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
987  *					   struct net_device *dev
988  *					   netdev_features_t features);
989  *	Called by core transmit path to determine if device is capable of
990  *	performing offload operations on a given packet. This is to give
991  *	the device an opportunity to implement any restrictions that cannot
992  *	be otherwise expressed by feature flags. The check is called with
993  *	the set of features that the stack has calculated and it returns
994  *	those the driver believes to be appropriate.
995  *
996  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
997  *                         struct net_device *sb_dev);
998  *	Called to decide which queue to use when device supports multiple
999  *	transmit queues.
1000  *
1001  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1002  *	This function is called to allow device receiver to make
1003  *	changes to configuration when multicast or promiscuous is enabled.
1004  *
1005  * void (*ndo_set_rx_mode)(struct net_device *dev);
1006  *	This function is called device changes address list filtering.
1007  *	If driver handles unicast address filtering, it should set
1008  *	IFF_UNICAST_FLT in its priv_flags.
1009  *
1010  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1011  *	This function  is called when the Media Access Control address
1012  *	needs to be changed. If this interface is not defined, the
1013  *	MAC address can not be changed.
1014  *
1015  * int (*ndo_validate_addr)(struct net_device *dev);
1016  *	Test if Media Access Control address is valid for the device.
1017  *
1018  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1019  *	Called when a user requests an ioctl which can't be handled by
1020  *	the generic interface code. If not defined ioctls return
1021  *	not supported error code.
1022  *
1023  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1024  *	Used to set network devices bus interface parameters. This interface
1025  *	is retained for legacy reasons; new devices should use the bus
1026  *	interface (PCI) for low level management.
1027  *
1028  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1029  *	Called when a user wants to change the Maximum Transfer Unit
1030  *	of a device.
1031  *
1032  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1033  *	Callback used when the transmitter has not made any progress
1034  *	for dev->watchdog ticks.
1035  *
1036  * void (*ndo_get_stats64)(struct net_device *dev,
1037  *                         struct rtnl_link_stats64 *storage);
1038  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1039  *	Called when a user wants to get the network device usage
1040  *	statistics. Drivers must do one of the following:
1041  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1042  *	   rtnl_link_stats64 structure passed by the caller.
1043  *	2. Define @ndo_get_stats to update a net_device_stats structure
1044  *	   (which should normally be dev->stats) and return a pointer to
1045  *	   it. The structure may be changed asynchronously only if each
1046  *	   field is written atomically.
1047  *	3. Update dev->stats asynchronously and atomically, and define
1048  *	   neither operation.
1049  *
1050  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1051  *	Return true if this device supports offload stats of this attr_id.
1052  *
1053  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1054  *	void *attr_data)
1055  *	Get statistics for offload operations by attr_id. Write it into the
1056  *	attr_data pointer.
1057  *
1058  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1059  *	If device supports VLAN filtering this function is called when a
1060  *	VLAN id is registered.
1061  *
1062  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1063  *	If device supports VLAN filtering this function is called when a
1064  *	VLAN id is unregistered.
1065  *
1066  * void (*ndo_poll_controller)(struct net_device *dev);
1067  *
1068  *	SR-IOV management functions.
1069  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1070  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1071  *			  u8 qos, __be16 proto);
1072  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1073  *			  int max_tx_rate);
1074  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1075  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1076  * int (*ndo_get_vf_config)(struct net_device *dev,
1077  *			    int vf, struct ifla_vf_info *ivf);
1078  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1079  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1080  *			  struct nlattr *port[]);
1081  *
1082  *      Enable or disable the VF ability to query its RSS Redirection Table and
1083  *      Hash Key. This is needed since on some devices VF share this information
1084  *      with PF and querying it may introduce a theoretical security risk.
1085  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1086  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1087  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1088  *		       void *type_data);
1089  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1090  *	This is always called from the stack with the rtnl lock held and netif
1091  *	tx queues stopped. This allows the netdevice to perform queue
1092  *	management safely.
1093  *
1094  *	Fiber Channel over Ethernet (FCoE) offload functions.
1095  * int (*ndo_fcoe_enable)(struct net_device *dev);
1096  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1097  *	so the underlying device can perform whatever needed configuration or
1098  *	initialization to support acceleration of FCoE traffic.
1099  *
1100  * int (*ndo_fcoe_disable)(struct net_device *dev);
1101  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1102  *	so the underlying device can perform whatever needed clean-ups to
1103  *	stop supporting acceleration of FCoE traffic.
1104  *
1105  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1106  *			     struct scatterlist *sgl, unsigned int sgc);
1107  *	Called when the FCoE Initiator wants to initialize an I/O that
1108  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1109  *	perform necessary setup and returns 1 to indicate the device is set up
1110  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1111  *
1112  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1113  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1114  *	indicated by the FC exchange id 'xid', so the underlying device can
1115  *	clean up and reuse resources for later DDP requests.
1116  *
1117  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1118  *			      struct scatterlist *sgl, unsigned int sgc);
1119  *	Called when the FCoE Target wants to initialize an I/O that
1120  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1121  *	perform necessary setup and returns 1 to indicate the device is set up
1122  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1123  *
1124  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1125  *			       struct netdev_fcoe_hbainfo *hbainfo);
1126  *	Called when the FCoE Protocol stack wants information on the underlying
1127  *	device. This information is utilized by the FCoE protocol stack to
1128  *	register attributes with Fiber Channel management service as per the
1129  *	FC-GS Fabric Device Management Information(FDMI) specification.
1130  *
1131  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1132  *	Called when the underlying device wants to override default World Wide
1133  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1134  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1135  *	protocol stack to use.
1136  *
1137  *	RFS acceleration.
1138  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1139  *			    u16 rxq_index, u32 flow_id);
1140  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1141  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1142  *	Return the filter ID on success, or a negative error code.
1143  *
1144  *	Slave management functions (for bridge, bonding, etc).
1145  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1146  *	Called to make another netdev an underling.
1147  *
1148  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1149  *	Called to release previously enslaved netdev.
1150  *
1151  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1152  *					    struct sk_buff *skb,
1153  *					    bool all_slaves);
1154  *	Get the xmit slave of master device. If all_slaves is true, function
1155  *	assume all the slaves can transmit.
1156  *
1157  *      Feature/offload setting functions.
1158  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1159  *		netdev_features_t features);
1160  *	Adjusts the requested feature flags according to device-specific
1161  *	constraints, and returns the resulting flags. Must not modify
1162  *	the device state.
1163  *
1164  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1165  *	Called to update device configuration to new features. Passed
1166  *	feature set might be less than what was returned by ndo_fix_features()).
1167  *	Must return >0 or -errno if it changed dev->features itself.
1168  *
1169  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1170  *		      struct net_device *dev,
1171  *		      const unsigned char *addr, u16 vid, u16 flags,
1172  *		      struct netlink_ext_ack *extack);
1173  *	Adds an FDB entry to dev for addr.
1174  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1175  *		      struct net_device *dev,
1176  *		      const unsigned char *addr, u16 vid)
1177  *	Deletes the FDB entry from dev coresponding to addr.
1178  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1179  *		       struct net_device *dev, struct net_device *filter_dev,
1180  *		       int *idx)
1181  *	Used to add FDB entries to dump requests. Implementers should add
1182  *	entries to skb and update idx with the number of entries.
1183  *
1184  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1185  *			     u16 flags, struct netlink_ext_ack *extack)
1186  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1187  *			     struct net_device *dev, u32 filter_mask,
1188  *			     int nlflags)
1189  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1190  *			     u16 flags);
1191  *
1192  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1193  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1194  *	which do not represent real hardware may define this to allow their
1195  *	userspace components to manage their virtual carrier state. Devices
1196  *	that determine carrier state from physical hardware properties (eg
1197  *	network cables) or protocol-dependent mechanisms (eg
1198  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1199  *
1200  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1201  *			       struct netdev_phys_item_id *ppid);
1202  *	Called to get ID of physical port of this device. If driver does
1203  *	not implement this, it is assumed that the hw is not able to have
1204  *	multiple net devices on single physical port.
1205  *
1206  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1207  *				 struct netdev_phys_item_id *ppid)
1208  *	Called to get the parent ID of the physical port of this device.
1209  *
1210  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1211  *				 struct net_device *dev)
1212  *	Called by upper layer devices to accelerate switching or other
1213  *	station functionality into hardware. 'pdev is the lowerdev
1214  *	to use for the offload and 'dev' is the net device that will
1215  *	back the offload. Returns a pointer to the private structure
1216  *	the upper layer will maintain.
1217  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1218  *	Called by upper layer device to delete the station created
1219  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1220  *	the station and priv is the structure returned by the add
1221  *	operation.
1222  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1223  *			     int queue_index, u32 maxrate);
1224  *	Called when a user wants to set a max-rate limitation of specific
1225  *	TX queue.
1226  * int (*ndo_get_iflink)(const struct net_device *dev);
1227  *	Called to get the iflink value of this device.
1228  * void (*ndo_change_proto_down)(struct net_device *dev,
1229  *				 bool proto_down);
1230  *	This function is used to pass protocol port error state information
1231  *	to the switch driver. The switch driver can react to the proto_down
1232  *      by doing a phys down on the associated switch port.
1233  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1234  *	This function is used to get egress tunnel information for given skb.
1235  *	This is useful for retrieving outer tunnel header parameters while
1236  *	sampling packet.
1237  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1238  *	This function is used to specify the headroom that the skb must
1239  *	consider when allocation skb during packet reception. Setting
1240  *	appropriate rx headroom value allows avoiding skb head copy on
1241  *	forward. Setting a negative value resets the rx headroom to the
1242  *	default value.
1243  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1244  *	This function is used to set or query state related to XDP on the
1245  *	netdevice and manage BPF offload. See definition of
1246  *	enum bpf_netdev_command for details.
1247  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1248  *			u32 flags);
1249  *	This function is used to submit @n XDP packets for transmit on a
1250  *	netdevice. Returns number of frames successfully transmitted, frames
1251  *	that got dropped are freed/returned via xdp_return_frame().
1252  *	Returns negative number, means general error invoking ndo, meaning
1253  *	no frames were xmit'ed and core-caller will free all frames.
1254  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1255  *      This function is used to wake up the softirq, ksoftirqd or kthread
1256  *	responsible for sending and/or receiving packets on a specific
1257  *	queue id bound to an AF_XDP socket. The flags field specifies if
1258  *	only RX, only Tx, or both should be woken up using the flags
1259  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1260  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1261  *	Get devlink port instance associated with a given netdev.
1262  *	Called with a reference on the netdevice and devlink locks only,
1263  *	rtnl_lock is not held.
1264  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1265  *			 int cmd);
1266  *	Add, change, delete or get information on an IPv4 tunnel.
1267  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1268  *	If a device is paired with a peer device, return the peer instance.
1269  *	The caller must be under RCU read context.
1270  */
1271 struct net_device_ops {
1272 	int			(*ndo_init)(struct net_device *dev);
1273 	void			(*ndo_uninit)(struct net_device *dev);
1274 	int			(*ndo_open)(struct net_device *dev);
1275 	int			(*ndo_stop)(struct net_device *dev);
1276 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1277 						  struct net_device *dev);
1278 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1279 						      struct net_device *dev,
1280 						      netdev_features_t features);
1281 	u16			(*ndo_select_queue)(struct net_device *dev,
1282 						    struct sk_buff *skb,
1283 						    struct net_device *sb_dev);
1284 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1285 						       int flags);
1286 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1287 	int			(*ndo_set_mac_address)(struct net_device *dev,
1288 						       void *addr);
1289 	int			(*ndo_validate_addr)(struct net_device *dev);
1290 	int			(*ndo_do_ioctl)(struct net_device *dev,
1291 					        struct ifreq *ifr, int cmd);
1292 	int			(*ndo_set_config)(struct net_device *dev,
1293 					          struct ifmap *map);
1294 	int			(*ndo_change_mtu)(struct net_device *dev,
1295 						  int new_mtu);
1296 	int			(*ndo_neigh_setup)(struct net_device *dev,
1297 						   struct neigh_parms *);
1298 	void			(*ndo_tx_timeout) (struct net_device *dev,
1299 						   unsigned int txqueue);
1300 
1301 	void			(*ndo_get_stats64)(struct net_device *dev,
1302 						   struct rtnl_link_stats64 *storage);
1303 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1304 	int			(*ndo_get_offload_stats)(int attr_id,
1305 							 const struct net_device *dev,
1306 							 void *attr_data);
1307 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1308 
1309 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1310 						       __be16 proto, u16 vid);
1311 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1312 						        __be16 proto, u16 vid);
1313 #ifdef CONFIG_NET_POLL_CONTROLLER
1314 	void                    (*ndo_poll_controller)(struct net_device *dev);
1315 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1316 						     struct netpoll_info *info);
1317 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1318 #endif
1319 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1320 						  int queue, u8 *mac);
1321 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1322 						   int queue, u16 vlan,
1323 						   u8 qos, __be16 proto);
1324 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1325 						   int vf, int min_tx_rate,
1326 						   int max_tx_rate);
1327 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1328 						       int vf, bool setting);
1329 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1330 						    int vf, bool setting);
1331 	int			(*ndo_get_vf_config)(struct net_device *dev,
1332 						     int vf,
1333 						     struct ifla_vf_info *ivf);
1334 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1335 							 int vf, int link_state);
1336 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1337 						    int vf,
1338 						    struct ifla_vf_stats
1339 						    *vf_stats);
1340 	int			(*ndo_set_vf_port)(struct net_device *dev,
1341 						   int vf,
1342 						   struct nlattr *port[]);
1343 	int			(*ndo_get_vf_port)(struct net_device *dev,
1344 						   int vf, struct sk_buff *skb);
1345 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1346 						   int vf,
1347 						   struct ifla_vf_guid *node_guid,
1348 						   struct ifla_vf_guid *port_guid);
1349 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1350 						   int vf, u64 guid,
1351 						   int guid_type);
1352 	int			(*ndo_set_vf_rss_query_en)(
1353 						   struct net_device *dev,
1354 						   int vf, bool setting);
1355 	int			(*ndo_setup_tc)(struct net_device *dev,
1356 						enum tc_setup_type type,
1357 						void *type_data);
1358 #if IS_ENABLED(CONFIG_FCOE)
1359 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1360 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1361 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1362 						      u16 xid,
1363 						      struct scatterlist *sgl,
1364 						      unsigned int sgc);
1365 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1366 						     u16 xid);
1367 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1368 						       u16 xid,
1369 						       struct scatterlist *sgl,
1370 						       unsigned int sgc);
1371 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1372 							struct netdev_fcoe_hbainfo *hbainfo);
1373 #endif
1374 
1375 #if IS_ENABLED(CONFIG_LIBFCOE)
1376 #define NETDEV_FCOE_WWNN 0
1377 #define NETDEV_FCOE_WWPN 1
1378 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1379 						    u64 *wwn, int type);
1380 #endif
1381 
1382 #ifdef CONFIG_RFS_ACCEL
1383 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1384 						     const struct sk_buff *skb,
1385 						     u16 rxq_index,
1386 						     u32 flow_id);
1387 #endif
1388 	int			(*ndo_add_slave)(struct net_device *dev,
1389 						 struct net_device *slave_dev,
1390 						 struct netlink_ext_ack *extack);
1391 	int			(*ndo_del_slave)(struct net_device *dev,
1392 						 struct net_device *slave_dev);
1393 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1394 						      struct sk_buff *skb,
1395 						      bool all_slaves);
1396 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1397 							struct sock *sk);
1398 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1399 						    netdev_features_t features);
1400 	int			(*ndo_set_features)(struct net_device *dev,
1401 						    netdev_features_t features);
1402 	int			(*ndo_neigh_construct)(struct net_device *dev,
1403 						       struct neighbour *n);
1404 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1405 						     struct neighbour *n);
1406 
1407 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1408 					       struct nlattr *tb[],
1409 					       struct net_device *dev,
1410 					       const unsigned char *addr,
1411 					       u16 vid,
1412 					       u16 flags,
1413 					       struct netlink_ext_ack *extack);
1414 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1415 					       struct nlattr *tb[],
1416 					       struct net_device *dev,
1417 					       const unsigned char *addr,
1418 					       u16 vid);
1419 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1420 						struct netlink_callback *cb,
1421 						struct net_device *dev,
1422 						struct net_device *filter_dev,
1423 						int *idx);
1424 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1425 					       struct nlattr *tb[],
1426 					       struct net_device *dev,
1427 					       const unsigned char *addr,
1428 					       u16 vid, u32 portid, u32 seq,
1429 					       struct netlink_ext_ack *extack);
1430 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1431 						      struct nlmsghdr *nlh,
1432 						      u16 flags,
1433 						      struct netlink_ext_ack *extack);
1434 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1435 						      u32 pid, u32 seq,
1436 						      struct net_device *dev,
1437 						      u32 filter_mask,
1438 						      int nlflags);
1439 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1440 						      struct nlmsghdr *nlh,
1441 						      u16 flags);
1442 	int			(*ndo_change_carrier)(struct net_device *dev,
1443 						      bool new_carrier);
1444 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1445 							struct netdev_phys_item_id *ppid);
1446 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1447 							  struct netdev_phys_item_id *ppid);
1448 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1449 							  char *name, size_t len);
1450 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1451 							struct net_device *dev);
1452 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1453 							void *priv);
1454 
1455 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1456 						      int queue_index,
1457 						      u32 maxrate);
1458 	int			(*ndo_get_iflink)(const struct net_device *dev);
1459 	int			(*ndo_change_proto_down)(struct net_device *dev,
1460 							 bool proto_down);
1461 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1462 						       struct sk_buff *skb);
1463 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1464 						       int needed_headroom);
1465 	int			(*ndo_bpf)(struct net_device *dev,
1466 					   struct netdev_bpf *bpf);
1467 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1468 						struct xdp_frame **xdp,
1469 						u32 flags);
1470 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1471 						  u32 queue_id, u32 flags);
1472 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1473 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1474 						  struct ip_tunnel_parm *p, int cmd);
1475 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1476 };
1477 
1478 /**
1479  * enum netdev_priv_flags - &struct net_device priv_flags
1480  *
1481  * These are the &struct net_device, they are only set internally
1482  * by drivers and used in the kernel. These flags are invisible to
1483  * userspace; this means that the order of these flags can change
1484  * during any kernel release.
1485  *
1486  * You should have a pretty good reason to be extending these flags.
1487  *
1488  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1489  * @IFF_EBRIDGE: Ethernet bridging device
1490  * @IFF_BONDING: bonding master or slave
1491  * @IFF_ISATAP: ISATAP interface (RFC4214)
1492  * @IFF_WAN_HDLC: WAN HDLC device
1493  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1494  *	release skb->dst
1495  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1496  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1497  * @IFF_MACVLAN_PORT: device used as macvlan port
1498  * @IFF_BRIDGE_PORT: device used as bridge port
1499  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1500  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1501  * @IFF_UNICAST_FLT: Supports unicast filtering
1502  * @IFF_TEAM_PORT: device used as team port
1503  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1504  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1505  *	change when it's running
1506  * @IFF_MACVLAN: Macvlan device
1507  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1508  *	underlying stacked devices
1509  * @IFF_L3MDEV_MASTER: device is an L3 master device
1510  * @IFF_NO_QUEUE: device can run without qdisc attached
1511  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1512  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1513  * @IFF_TEAM: device is a team device
1514  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1515  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1516  *	entity (i.e. the master device for bridged veth)
1517  * @IFF_MACSEC: device is a MACsec device
1518  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1519  * @IFF_FAILOVER: device is a failover master device
1520  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1521  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1522  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1523  */
1524 enum netdev_priv_flags {
1525 	IFF_802_1Q_VLAN			= 1<<0,
1526 	IFF_EBRIDGE			= 1<<1,
1527 	IFF_BONDING			= 1<<2,
1528 	IFF_ISATAP			= 1<<3,
1529 	IFF_WAN_HDLC			= 1<<4,
1530 	IFF_XMIT_DST_RELEASE		= 1<<5,
1531 	IFF_DONT_BRIDGE			= 1<<6,
1532 	IFF_DISABLE_NETPOLL		= 1<<7,
1533 	IFF_MACVLAN_PORT		= 1<<8,
1534 	IFF_BRIDGE_PORT			= 1<<9,
1535 	IFF_OVS_DATAPATH		= 1<<10,
1536 	IFF_TX_SKB_SHARING		= 1<<11,
1537 	IFF_UNICAST_FLT			= 1<<12,
1538 	IFF_TEAM_PORT			= 1<<13,
1539 	IFF_SUPP_NOFCS			= 1<<14,
1540 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1541 	IFF_MACVLAN			= 1<<16,
1542 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1543 	IFF_L3MDEV_MASTER		= 1<<18,
1544 	IFF_NO_QUEUE			= 1<<19,
1545 	IFF_OPENVSWITCH			= 1<<20,
1546 	IFF_L3MDEV_SLAVE		= 1<<21,
1547 	IFF_TEAM			= 1<<22,
1548 	IFF_RXFH_CONFIGURED		= 1<<23,
1549 	IFF_PHONY_HEADROOM		= 1<<24,
1550 	IFF_MACSEC			= 1<<25,
1551 	IFF_NO_RX_HANDLER		= 1<<26,
1552 	IFF_FAILOVER			= 1<<27,
1553 	IFF_FAILOVER_SLAVE		= 1<<28,
1554 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1555 	IFF_LIVE_RENAME_OK		= 1<<30,
1556 };
1557 
1558 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1559 #define IFF_EBRIDGE			IFF_EBRIDGE
1560 #define IFF_BONDING			IFF_BONDING
1561 #define IFF_ISATAP			IFF_ISATAP
1562 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1563 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1564 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1565 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1566 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1567 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1568 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1569 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1570 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1571 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1572 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1573 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1574 #define IFF_MACVLAN			IFF_MACVLAN
1575 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1576 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1577 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1578 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1579 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1580 #define IFF_TEAM			IFF_TEAM
1581 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1582 #define IFF_MACSEC			IFF_MACSEC
1583 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1584 #define IFF_FAILOVER			IFF_FAILOVER
1585 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1586 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1587 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1588 
1589 /* Specifies the type of the struct net_device::ml_priv pointer */
1590 enum netdev_ml_priv_type {
1591 	ML_PRIV_NONE,
1592 	ML_PRIV_CAN,
1593 };
1594 
1595 /**
1596  *	struct net_device - The DEVICE structure.
1597  *
1598  *	Actually, this whole structure is a big mistake.  It mixes I/O
1599  *	data with strictly "high-level" data, and it has to know about
1600  *	almost every data structure used in the INET module.
1601  *
1602  *	@name:	This is the first field of the "visible" part of this structure
1603  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1604  *		of the interface.
1605  *
1606  *	@name_node:	Name hashlist node
1607  *	@ifalias:	SNMP alias
1608  *	@mem_end:	Shared memory end
1609  *	@mem_start:	Shared memory start
1610  *	@base_addr:	Device I/O address
1611  *	@irq:		Device IRQ number
1612  *
1613  *	@state:		Generic network queuing layer state, see netdev_state_t
1614  *	@dev_list:	The global list of network devices
1615  *	@napi_list:	List entry used for polling NAPI devices
1616  *	@unreg_list:	List entry  when we are unregistering the
1617  *			device; see the function unregister_netdev
1618  *	@close_list:	List entry used when we are closing the device
1619  *	@ptype_all:     Device-specific packet handlers for all protocols
1620  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1621  *
1622  *	@adj_list:	Directly linked devices, like slaves for bonding
1623  *	@features:	Currently active device features
1624  *	@hw_features:	User-changeable features
1625  *
1626  *	@wanted_features:	User-requested features
1627  *	@vlan_features:		Mask of features inheritable by VLAN devices
1628  *
1629  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1630  *				This field indicates what encapsulation
1631  *				offloads the hardware is capable of doing,
1632  *				and drivers will need to set them appropriately.
1633  *
1634  *	@mpls_features:	Mask of features inheritable by MPLS
1635  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1636  *
1637  *	@ifindex:	interface index
1638  *	@group:		The group the device belongs to
1639  *
1640  *	@stats:		Statistics struct, which was left as a legacy, use
1641  *			rtnl_link_stats64 instead
1642  *
1643  *	@rx_dropped:	Dropped packets by core network,
1644  *			do not use this in drivers
1645  *	@tx_dropped:	Dropped packets by core network,
1646  *			do not use this in drivers
1647  *	@rx_nohandler:	nohandler dropped packets by core network on
1648  *			inactive devices, do not use this in drivers
1649  *	@carrier_up_count:	Number of times the carrier has been up
1650  *	@carrier_down_count:	Number of times the carrier has been down
1651  *
1652  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1653  *				instead of ioctl,
1654  *				see <net/iw_handler.h> for details.
1655  *	@wireless_data:	Instance data managed by the core of wireless extensions
1656  *
1657  *	@netdev_ops:	Includes several pointers to callbacks,
1658  *			if one wants to override the ndo_*() functions
1659  *	@ethtool_ops:	Management operations
1660  *	@l3mdev_ops:	Layer 3 master device operations
1661  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1662  *			discovery handling. Necessary for e.g. 6LoWPAN.
1663  *	@xfrmdev_ops:	Transformation offload operations
1664  *	@tlsdev_ops:	Transport Layer Security offload operations
1665  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1666  *			of Layer 2 headers.
1667  *
1668  *	@flags:		Interface flags (a la BSD)
1669  *	@priv_flags:	Like 'flags' but invisible to userspace,
1670  *			see if.h for the definitions
1671  *	@gflags:	Global flags ( kept as legacy )
1672  *	@padded:	How much padding added by alloc_netdev()
1673  *	@operstate:	RFC2863 operstate
1674  *	@link_mode:	Mapping policy to operstate
1675  *	@if_port:	Selectable AUI, TP, ...
1676  *	@dma:		DMA channel
1677  *	@mtu:		Interface MTU value
1678  *	@min_mtu:	Interface Minimum MTU value
1679  *	@max_mtu:	Interface Maximum MTU value
1680  *	@type:		Interface hardware type
1681  *	@hard_header_len: Maximum hardware header length.
1682  *	@min_header_len:  Minimum hardware header length
1683  *
1684  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1685  *			  cases can this be guaranteed
1686  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1687  *			  cases can this be guaranteed. Some cases also use
1688  *			  LL_MAX_HEADER instead to allocate the skb
1689  *
1690  *	interface address info:
1691  *
1692  * 	@perm_addr:		Permanent hw address
1693  * 	@addr_assign_type:	Hw address assignment type
1694  * 	@addr_len:		Hardware address length
1695  *	@upper_level:		Maximum depth level of upper devices.
1696  *	@lower_level:		Maximum depth level of lower devices.
1697  *	@neigh_priv_len:	Used in neigh_alloc()
1698  * 	@dev_id:		Used to differentiate devices that share
1699  * 				the same link layer address
1700  * 	@dev_port:		Used to differentiate devices that share
1701  * 				the same function
1702  *	@addr_list_lock:	XXX: need comments on this one
1703  *	@name_assign_type:	network interface name assignment type
1704  *	@uc_promisc:		Counter that indicates promiscuous mode
1705  *				has been enabled due to the need to listen to
1706  *				additional unicast addresses in a device that
1707  *				does not implement ndo_set_rx_mode()
1708  *	@uc:			unicast mac addresses
1709  *	@mc:			multicast mac addresses
1710  *	@dev_addrs:		list of device hw addresses
1711  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1712  *	@promiscuity:		Number of times the NIC is told to work in
1713  *				promiscuous mode; if it becomes 0 the NIC will
1714  *				exit promiscuous mode
1715  *	@allmulti:		Counter, enables or disables allmulticast mode
1716  *
1717  *	@vlan_info:	VLAN info
1718  *	@dsa_ptr:	dsa specific data
1719  *	@tipc_ptr:	TIPC specific data
1720  *	@atalk_ptr:	AppleTalk link
1721  *	@ip_ptr:	IPv4 specific data
1722  *	@dn_ptr:	DECnet specific data
1723  *	@ip6_ptr:	IPv6 specific data
1724  *	@ax25_ptr:	AX.25 specific data
1725  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1726  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1727  *			 device struct
1728  *	@mpls_ptr:	mpls_dev struct pointer
1729  *
1730  *	@dev_addr:	Hw address (before bcast,
1731  *			because most packets are unicast)
1732  *
1733  *	@_rx:			Array of RX queues
1734  *	@num_rx_queues:		Number of RX queues
1735  *				allocated at register_netdev() time
1736  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1737  *	@xdp_prog:		XDP sockets filter program pointer
1738  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1739  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1740  *				allow to avoid NIC hard IRQ, on busy queues.
1741  *
1742  *	@rx_handler:		handler for received packets
1743  *	@rx_handler_data: 	XXX: need comments on this one
1744  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1745  *				ingress processing
1746  *	@ingress_queue:		XXX: need comments on this one
1747  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1748  *	@broadcast:		hw bcast address
1749  *
1750  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1751  *			indexed by RX queue number. Assigned by driver.
1752  *			This must only be set if the ndo_rx_flow_steer
1753  *			operation is defined
1754  *	@index_hlist:		Device index hash chain
1755  *
1756  *	@_tx:			Array of TX queues
1757  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1758  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1759  *	@qdisc:			Root qdisc from userspace point of view
1760  *	@tx_queue_len:		Max frames per queue allowed
1761  *	@tx_global_lock: 	XXX: need comments on this one
1762  *	@xdp_bulkq:		XDP device bulk queue
1763  *	@xps_cpus_map:		all CPUs map for XPS device
1764  *	@xps_rxqs_map:		all RXQs map for XPS device
1765  *
1766  *	@xps_maps:	XXX: need comments on this one
1767  *	@miniq_egress:		clsact qdisc specific data for
1768  *				egress processing
1769  *	@qdisc_hash:		qdisc hash table
1770  *	@watchdog_timeo:	Represents the timeout that is used by
1771  *				the watchdog (see dev_watchdog())
1772  *	@watchdog_timer:	List of timers
1773  *
1774  *	@proto_down_reason:	reason a netdev interface is held down
1775  *	@pcpu_refcnt:		Number of references to this device
1776  *	@todo_list:		Delayed register/unregister
1777  *	@link_watch_list:	XXX: need comments on this one
1778  *
1779  *	@reg_state:		Register/unregister state machine
1780  *	@dismantle:		Device is going to be freed
1781  *	@rtnl_link_state:	This enum represents the phases of creating
1782  *				a new link
1783  *
1784  *	@needs_free_netdev:	Should unregister perform free_netdev?
1785  *	@priv_destructor:	Called from unregister
1786  *	@npinfo:		XXX: need comments on this one
1787  * 	@nd_net:		Network namespace this network device is inside
1788  *
1789  * 	@ml_priv:	Mid-layer private
1790  *	@ml_priv_type:  Mid-layer private type
1791  * 	@lstats:	Loopback statistics
1792  * 	@tstats:	Tunnel statistics
1793  * 	@dstats:	Dummy statistics
1794  * 	@vstats:	Virtual ethernet statistics
1795  *
1796  *	@garp_port:	GARP
1797  *	@mrp_port:	MRP
1798  *
1799  *	@dev:		Class/net/name entry
1800  *	@sysfs_groups:	Space for optional device, statistics and wireless
1801  *			sysfs groups
1802  *
1803  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1804  *	@rtnl_link_ops:	Rtnl_link_ops
1805  *
1806  *	@gso_max_size:	Maximum size of generic segmentation offload
1807  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1808  *			NIC for GSO
1809  *
1810  *	@dcbnl_ops:	Data Center Bridging netlink ops
1811  *	@num_tc:	Number of traffic classes in the net device
1812  *	@tc_to_txq:	XXX: need comments on this one
1813  *	@prio_tc_map:	XXX: need comments on this one
1814  *
1815  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1816  *
1817  *	@priomap:	XXX: need comments on this one
1818  *	@phydev:	Physical device may attach itself
1819  *			for hardware timestamping
1820  *	@sfp_bus:	attached &struct sfp_bus structure.
1821  *
1822  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1823  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1824  *
1825  *	@proto_down:	protocol port state information can be sent to the
1826  *			switch driver and used to set the phys state of the
1827  *			switch port.
1828  *
1829  *	@wol_enabled:	Wake-on-LAN is enabled
1830  *
1831  *	@threaded:	napi threaded mode is enabled
1832  *
1833  *	@net_notifier_list:	List of per-net netdev notifier block
1834  *				that follow this device when it is moved
1835  *				to another network namespace.
1836  *
1837  *	@macsec_ops:    MACsec offloading ops
1838  *
1839  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1840  *				offload capabilities of the device
1841  *	@udp_tunnel_nic:	UDP tunnel offload state
1842  *	@xdp_state:		stores info on attached XDP BPF programs
1843  *
1844  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1845  *			dev->addr_list_lock.
1846  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1847  *			keep a list of interfaces to be deleted.
1848  *
1849  *	FIXME: cleanup struct net_device such that network protocol info
1850  *	moves out.
1851  */
1852 
1853 struct net_device {
1854 	char			name[IFNAMSIZ];
1855 	struct netdev_name_node	*name_node;
1856 	struct dev_ifalias	__rcu *ifalias;
1857 	/*
1858 	 *	I/O specific fields
1859 	 *	FIXME: Merge these and struct ifmap into one
1860 	 */
1861 	unsigned long		mem_end;
1862 	unsigned long		mem_start;
1863 	unsigned long		base_addr;
1864 
1865 	/*
1866 	 *	Some hardware also needs these fields (state,dev_list,
1867 	 *	napi_list,unreg_list,close_list) but they are not
1868 	 *	part of the usual set specified in Space.c.
1869 	 */
1870 
1871 	unsigned long		state;
1872 
1873 	struct list_head	dev_list;
1874 	struct list_head	napi_list;
1875 	struct list_head	unreg_list;
1876 	struct list_head	close_list;
1877 	struct list_head	ptype_all;
1878 	struct list_head	ptype_specific;
1879 
1880 	struct {
1881 		struct list_head upper;
1882 		struct list_head lower;
1883 	} adj_list;
1884 
1885 	/* Read-mostly cache-line for fast-path access */
1886 	unsigned int		flags;
1887 	unsigned int		priv_flags;
1888 	const struct net_device_ops *netdev_ops;
1889 	int			ifindex;
1890 	unsigned short		gflags;
1891 	unsigned short		hard_header_len;
1892 
1893 	/* Note : dev->mtu is often read without holding a lock.
1894 	 * Writers usually hold RTNL.
1895 	 * It is recommended to use READ_ONCE() to annotate the reads,
1896 	 * and to use WRITE_ONCE() to annotate the writes.
1897 	 */
1898 	unsigned int		mtu;
1899 	unsigned short		needed_headroom;
1900 	unsigned short		needed_tailroom;
1901 
1902 	netdev_features_t	features;
1903 	netdev_features_t	hw_features;
1904 	netdev_features_t	wanted_features;
1905 	netdev_features_t	vlan_features;
1906 	netdev_features_t	hw_enc_features;
1907 	netdev_features_t	mpls_features;
1908 	netdev_features_t	gso_partial_features;
1909 
1910 	unsigned int		min_mtu;
1911 	unsigned int		max_mtu;
1912 	unsigned short		type;
1913 	unsigned char		min_header_len;
1914 	unsigned char		name_assign_type;
1915 
1916 	int			group;
1917 
1918 	struct net_device_stats	stats; /* not used by modern drivers */
1919 
1920 	atomic_long_t		rx_dropped;
1921 	atomic_long_t		tx_dropped;
1922 	atomic_long_t		rx_nohandler;
1923 
1924 	/* Stats to monitor link on/off, flapping */
1925 	atomic_t		carrier_up_count;
1926 	atomic_t		carrier_down_count;
1927 
1928 #ifdef CONFIG_WIRELESS_EXT
1929 	const struct iw_handler_def *wireless_handlers;
1930 	struct iw_public_data	*wireless_data;
1931 #endif
1932 	const struct ethtool_ops *ethtool_ops;
1933 #ifdef CONFIG_NET_L3_MASTER_DEV
1934 	const struct l3mdev_ops	*l3mdev_ops;
1935 #endif
1936 #if IS_ENABLED(CONFIG_IPV6)
1937 	const struct ndisc_ops *ndisc_ops;
1938 #endif
1939 
1940 #ifdef CONFIG_XFRM_OFFLOAD
1941 	const struct xfrmdev_ops *xfrmdev_ops;
1942 #endif
1943 
1944 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1945 	const struct tlsdev_ops *tlsdev_ops;
1946 #endif
1947 
1948 	const struct header_ops *header_ops;
1949 
1950 	unsigned char		operstate;
1951 	unsigned char		link_mode;
1952 
1953 	unsigned char		if_port;
1954 	unsigned char		dma;
1955 
1956 	/* Interface address info. */
1957 	unsigned char		perm_addr[MAX_ADDR_LEN];
1958 	unsigned char		addr_assign_type;
1959 	unsigned char		addr_len;
1960 	unsigned char		upper_level;
1961 	unsigned char		lower_level;
1962 
1963 	unsigned short		neigh_priv_len;
1964 	unsigned short          dev_id;
1965 	unsigned short          dev_port;
1966 	unsigned short		padded;
1967 
1968 	spinlock_t		addr_list_lock;
1969 	int			irq;
1970 
1971 	struct netdev_hw_addr_list	uc;
1972 	struct netdev_hw_addr_list	mc;
1973 	struct netdev_hw_addr_list	dev_addrs;
1974 
1975 #ifdef CONFIG_SYSFS
1976 	struct kset		*queues_kset;
1977 #endif
1978 #ifdef CONFIG_LOCKDEP
1979 	struct list_head	unlink_list;
1980 #endif
1981 	unsigned int		promiscuity;
1982 	unsigned int		allmulti;
1983 	bool			uc_promisc;
1984 #ifdef CONFIG_LOCKDEP
1985 	unsigned char		nested_level;
1986 #endif
1987 
1988 
1989 	/* Protocol-specific pointers */
1990 
1991 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1992 	struct vlan_info __rcu	*vlan_info;
1993 #endif
1994 #if IS_ENABLED(CONFIG_NET_DSA)
1995 	struct dsa_port		*dsa_ptr;
1996 #endif
1997 #if IS_ENABLED(CONFIG_TIPC)
1998 	struct tipc_bearer __rcu *tipc_ptr;
1999 #endif
2000 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2001 	void 			*atalk_ptr;
2002 #endif
2003 	struct in_device __rcu	*ip_ptr;
2004 #if IS_ENABLED(CONFIG_DECNET)
2005 	struct dn_dev __rcu     *dn_ptr;
2006 #endif
2007 	struct inet6_dev __rcu	*ip6_ptr;
2008 #if IS_ENABLED(CONFIG_AX25)
2009 	void			*ax25_ptr;
2010 #endif
2011 	struct wireless_dev	*ieee80211_ptr;
2012 	struct wpan_dev		*ieee802154_ptr;
2013 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2014 	struct mpls_dev __rcu	*mpls_ptr;
2015 #endif
2016 
2017 /*
2018  * Cache lines mostly used on receive path (including eth_type_trans())
2019  */
2020 	/* Interface address info used in eth_type_trans() */
2021 	unsigned char		*dev_addr;
2022 
2023 	struct netdev_rx_queue	*_rx;
2024 	unsigned int		num_rx_queues;
2025 	unsigned int		real_num_rx_queues;
2026 
2027 	struct bpf_prog __rcu	*xdp_prog;
2028 	unsigned long		gro_flush_timeout;
2029 	int			napi_defer_hard_irqs;
2030 	rx_handler_func_t __rcu	*rx_handler;
2031 	void __rcu		*rx_handler_data;
2032 
2033 #ifdef CONFIG_NET_CLS_ACT
2034 	struct mini_Qdisc __rcu	*miniq_ingress;
2035 #endif
2036 	struct netdev_queue __rcu *ingress_queue;
2037 #ifdef CONFIG_NETFILTER_INGRESS
2038 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2039 #endif
2040 
2041 	unsigned char		broadcast[MAX_ADDR_LEN];
2042 #ifdef CONFIG_RFS_ACCEL
2043 	struct cpu_rmap		*rx_cpu_rmap;
2044 #endif
2045 	struct hlist_node	index_hlist;
2046 
2047 /*
2048  * Cache lines mostly used on transmit path
2049  */
2050 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2051 	unsigned int		num_tx_queues;
2052 	unsigned int		real_num_tx_queues;
2053 	struct Qdisc		*qdisc;
2054 	unsigned int		tx_queue_len;
2055 	spinlock_t		tx_global_lock;
2056 
2057 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2058 
2059 #ifdef CONFIG_XPS
2060 	struct xps_dev_maps __rcu *xps_cpus_map;
2061 	struct xps_dev_maps __rcu *xps_rxqs_map;
2062 #endif
2063 #ifdef CONFIG_NET_CLS_ACT
2064 	struct mini_Qdisc __rcu	*miniq_egress;
2065 #endif
2066 
2067 #ifdef CONFIG_NET_SCHED
2068 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2069 #endif
2070 	/* These may be needed for future network-power-down code. */
2071 	struct timer_list	watchdog_timer;
2072 	int			watchdog_timeo;
2073 
2074 	u32                     proto_down_reason;
2075 
2076 	struct list_head	todo_list;
2077 	int __percpu		*pcpu_refcnt;
2078 
2079 	struct list_head	link_watch_list;
2080 
2081 	enum { NETREG_UNINITIALIZED=0,
2082 	       NETREG_REGISTERED,	/* completed register_netdevice */
2083 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2084 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2085 	       NETREG_RELEASED,		/* called free_netdev */
2086 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2087 	} reg_state:8;
2088 
2089 	bool dismantle;
2090 
2091 	enum {
2092 		RTNL_LINK_INITIALIZED,
2093 		RTNL_LINK_INITIALIZING,
2094 	} rtnl_link_state:16;
2095 
2096 	bool needs_free_netdev;
2097 	void (*priv_destructor)(struct net_device *dev);
2098 
2099 #ifdef CONFIG_NETPOLL
2100 	struct netpoll_info __rcu	*npinfo;
2101 #endif
2102 
2103 	possible_net_t			nd_net;
2104 
2105 	/* mid-layer private */
2106 	void				*ml_priv;
2107 	enum netdev_ml_priv_type	ml_priv_type;
2108 
2109 	union {
2110 		struct pcpu_lstats __percpu		*lstats;
2111 		struct pcpu_sw_netstats __percpu	*tstats;
2112 		struct pcpu_dstats __percpu		*dstats;
2113 	};
2114 
2115 #if IS_ENABLED(CONFIG_GARP)
2116 	struct garp_port __rcu	*garp_port;
2117 #endif
2118 #if IS_ENABLED(CONFIG_MRP)
2119 	struct mrp_port __rcu	*mrp_port;
2120 #endif
2121 
2122 	struct device		dev;
2123 	const struct attribute_group *sysfs_groups[4];
2124 	const struct attribute_group *sysfs_rx_queue_group;
2125 
2126 	const struct rtnl_link_ops *rtnl_link_ops;
2127 
2128 	/* for setting kernel sock attribute on TCP connection setup */
2129 #define GSO_MAX_SIZE		65536
2130 	unsigned int		gso_max_size;
2131 #define GSO_MAX_SEGS		65535
2132 	u16			gso_max_segs;
2133 
2134 #ifdef CONFIG_DCB
2135 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2136 #endif
2137 	s16			num_tc;
2138 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2139 	u8			prio_tc_map[TC_BITMASK + 1];
2140 
2141 #if IS_ENABLED(CONFIG_FCOE)
2142 	unsigned int		fcoe_ddp_xid;
2143 #endif
2144 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2145 	struct netprio_map __rcu *priomap;
2146 #endif
2147 	struct phy_device	*phydev;
2148 	struct sfp_bus		*sfp_bus;
2149 	struct lock_class_key	*qdisc_tx_busylock;
2150 	struct lock_class_key	*qdisc_running_key;
2151 	bool			proto_down;
2152 	unsigned		wol_enabled:1;
2153 	unsigned		threaded:1;
2154 
2155 	struct list_head	net_notifier_list;
2156 
2157 #if IS_ENABLED(CONFIG_MACSEC)
2158 	/* MACsec management functions */
2159 	const struct macsec_ops *macsec_ops;
2160 #endif
2161 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2162 	struct udp_tunnel_nic	*udp_tunnel_nic;
2163 
2164 	/* protected by rtnl_lock */
2165 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2166 };
2167 #define to_net_dev(d) container_of(d, struct net_device, dev)
2168 
2169 static inline bool netif_elide_gro(const struct net_device *dev)
2170 {
2171 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2172 		return true;
2173 	return false;
2174 }
2175 
2176 #define	NETDEV_ALIGN		32
2177 
2178 static inline
2179 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2180 {
2181 	return dev->prio_tc_map[prio & TC_BITMASK];
2182 }
2183 
2184 static inline
2185 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2186 {
2187 	if (tc >= dev->num_tc)
2188 		return -EINVAL;
2189 
2190 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2191 	return 0;
2192 }
2193 
2194 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2195 void netdev_reset_tc(struct net_device *dev);
2196 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2197 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2198 
2199 static inline
2200 int netdev_get_num_tc(struct net_device *dev)
2201 {
2202 	return dev->num_tc;
2203 }
2204 
2205 static inline void net_prefetch(void *p)
2206 {
2207 	prefetch(p);
2208 #if L1_CACHE_BYTES < 128
2209 	prefetch((u8 *)p + L1_CACHE_BYTES);
2210 #endif
2211 }
2212 
2213 static inline void net_prefetchw(void *p)
2214 {
2215 	prefetchw(p);
2216 #if L1_CACHE_BYTES < 128
2217 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2218 #endif
2219 }
2220 
2221 void netdev_unbind_sb_channel(struct net_device *dev,
2222 			      struct net_device *sb_dev);
2223 int netdev_bind_sb_channel_queue(struct net_device *dev,
2224 				 struct net_device *sb_dev,
2225 				 u8 tc, u16 count, u16 offset);
2226 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2227 static inline int netdev_get_sb_channel(struct net_device *dev)
2228 {
2229 	return max_t(int, -dev->num_tc, 0);
2230 }
2231 
2232 static inline
2233 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2234 					 unsigned int index)
2235 {
2236 	return &dev->_tx[index];
2237 }
2238 
2239 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2240 						    const struct sk_buff *skb)
2241 {
2242 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2243 }
2244 
2245 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2246 					    void (*f)(struct net_device *,
2247 						      struct netdev_queue *,
2248 						      void *),
2249 					    void *arg)
2250 {
2251 	unsigned int i;
2252 
2253 	for (i = 0; i < dev->num_tx_queues; i++)
2254 		f(dev, &dev->_tx[i], arg);
2255 }
2256 
2257 #define netdev_lockdep_set_classes(dev)				\
2258 {								\
2259 	static struct lock_class_key qdisc_tx_busylock_key;	\
2260 	static struct lock_class_key qdisc_running_key;		\
2261 	static struct lock_class_key qdisc_xmit_lock_key;	\
2262 	static struct lock_class_key dev_addr_list_lock_key;	\
2263 	unsigned int i;						\
2264 								\
2265 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2266 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2267 	lockdep_set_class(&(dev)->addr_list_lock,		\
2268 			  &dev_addr_list_lock_key);		\
2269 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2270 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2271 				  &qdisc_xmit_lock_key);	\
2272 }
2273 
2274 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2275 		     struct net_device *sb_dev);
2276 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2277 					 struct sk_buff *skb,
2278 					 struct net_device *sb_dev);
2279 
2280 /* returns the headroom that the master device needs to take in account
2281  * when forwarding to this dev
2282  */
2283 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2284 {
2285 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2286 }
2287 
2288 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2289 {
2290 	if (dev->netdev_ops->ndo_set_rx_headroom)
2291 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2292 }
2293 
2294 /* set the device rx headroom to the dev's default */
2295 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2296 {
2297 	netdev_set_rx_headroom(dev, -1);
2298 }
2299 
2300 static inline void *netdev_get_ml_priv(struct net_device *dev,
2301 				       enum netdev_ml_priv_type type)
2302 {
2303 	if (dev->ml_priv_type != type)
2304 		return NULL;
2305 
2306 	return dev->ml_priv;
2307 }
2308 
2309 static inline void netdev_set_ml_priv(struct net_device *dev,
2310 				      void *ml_priv,
2311 				      enum netdev_ml_priv_type type)
2312 {
2313 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2314 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2315 	     dev->ml_priv_type, type);
2316 	WARN(!dev->ml_priv_type && dev->ml_priv,
2317 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2318 
2319 	dev->ml_priv = ml_priv;
2320 	dev->ml_priv_type = type;
2321 }
2322 
2323 /*
2324  * Net namespace inlines
2325  */
2326 static inline
2327 struct net *dev_net(const struct net_device *dev)
2328 {
2329 	return read_pnet(&dev->nd_net);
2330 }
2331 
2332 static inline
2333 void dev_net_set(struct net_device *dev, struct net *net)
2334 {
2335 	write_pnet(&dev->nd_net, net);
2336 }
2337 
2338 /**
2339  *	netdev_priv - access network device private data
2340  *	@dev: network device
2341  *
2342  * Get network device private data
2343  */
2344 static inline void *netdev_priv(const struct net_device *dev)
2345 {
2346 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2347 }
2348 
2349 /* Set the sysfs physical device reference for the network logical device
2350  * if set prior to registration will cause a symlink during initialization.
2351  */
2352 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2353 
2354 /* Set the sysfs device type for the network logical device to allow
2355  * fine-grained identification of different network device types. For
2356  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2357  */
2358 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2359 
2360 /* Default NAPI poll() weight
2361  * Device drivers are strongly advised to not use bigger value
2362  */
2363 #define NAPI_POLL_WEIGHT 64
2364 
2365 /**
2366  *	netif_napi_add - initialize a NAPI context
2367  *	@dev:  network device
2368  *	@napi: NAPI context
2369  *	@poll: polling function
2370  *	@weight: default weight
2371  *
2372  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2373  * *any* of the other NAPI-related functions.
2374  */
2375 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2376 		    int (*poll)(struct napi_struct *, int), int weight);
2377 
2378 /**
2379  *	netif_tx_napi_add - initialize a NAPI context
2380  *	@dev:  network device
2381  *	@napi: NAPI context
2382  *	@poll: polling function
2383  *	@weight: default weight
2384  *
2385  * This variant of netif_napi_add() should be used from drivers using NAPI
2386  * to exclusively poll a TX queue.
2387  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2388  */
2389 static inline void netif_tx_napi_add(struct net_device *dev,
2390 				     struct napi_struct *napi,
2391 				     int (*poll)(struct napi_struct *, int),
2392 				     int weight)
2393 {
2394 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2395 	netif_napi_add(dev, napi, poll, weight);
2396 }
2397 
2398 /**
2399  *  __netif_napi_del - remove a NAPI context
2400  *  @napi: NAPI context
2401  *
2402  * Warning: caller must observe RCU grace period before freeing memory
2403  * containing @napi. Drivers might want to call this helper to combine
2404  * all the needed RCU grace periods into a single one.
2405  */
2406 void __netif_napi_del(struct napi_struct *napi);
2407 
2408 /**
2409  *  netif_napi_del - remove a NAPI context
2410  *  @napi: NAPI context
2411  *
2412  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2413  */
2414 static inline void netif_napi_del(struct napi_struct *napi)
2415 {
2416 	__netif_napi_del(napi);
2417 	synchronize_net();
2418 }
2419 
2420 struct napi_gro_cb {
2421 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2422 	void	*frag0;
2423 
2424 	/* Length of frag0. */
2425 	unsigned int frag0_len;
2426 
2427 	/* This indicates where we are processing relative to skb->data. */
2428 	int	data_offset;
2429 
2430 	/* This is non-zero if the packet cannot be merged with the new skb. */
2431 	u16	flush;
2432 
2433 	/* Save the IP ID here and check when we get to the transport layer */
2434 	u16	flush_id;
2435 
2436 	/* Number of segments aggregated. */
2437 	u16	count;
2438 
2439 	/* Start offset for remote checksum offload */
2440 	u16	gro_remcsum_start;
2441 
2442 	/* jiffies when first packet was created/queued */
2443 	unsigned long age;
2444 
2445 	/* Used in ipv6_gro_receive() and foo-over-udp */
2446 	u16	proto;
2447 
2448 	/* This is non-zero if the packet may be of the same flow. */
2449 	u8	same_flow:1;
2450 
2451 	/* Used in tunnel GRO receive */
2452 	u8	encap_mark:1;
2453 
2454 	/* GRO checksum is valid */
2455 	u8	csum_valid:1;
2456 
2457 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2458 	u8	csum_cnt:3;
2459 
2460 	/* Free the skb? */
2461 	u8	free:2;
2462 #define NAPI_GRO_FREE		  1
2463 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2464 
2465 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2466 	u8	is_ipv6:1;
2467 
2468 	/* Used in GRE, set in fou/gue_gro_receive */
2469 	u8	is_fou:1;
2470 
2471 	/* Used to determine if flush_id can be ignored */
2472 	u8	is_atomic:1;
2473 
2474 	/* Number of gro_receive callbacks this packet already went through */
2475 	u8 recursion_counter:4;
2476 
2477 	/* GRO is done by frag_list pointer chaining. */
2478 	u8	is_flist:1;
2479 
2480 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2481 	__wsum	csum;
2482 
2483 	/* used in skb_gro_receive() slow path */
2484 	struct sk_buff *last;
2485 };
2486 
2487 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2488 
2489 #define GRO_RECURSION_LIMIT 15
2490 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2491 {
2492 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2493 }
2494 
2495 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2496 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2497 					       struct list_head *head,
2498 					       struct sk_buff *skb)
2499 {
2500 	if (unlikely(gro_recursion_inc_test(skb))) {
2501 		NAPI_GRO_CB(skb)->flush |= 1;
2502 		return NULL;
2503 	}
2504 
2505 	return cb(head, skb);
2506 }
2507 
2508 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2509 					    struct sk_buff *);
2510 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2511 						  struct sock *sk,
2512 						  struct list_head *head,
2513 						  struct sk_buff *skb)
2514 {
2515 	if (unlikely(gro_recursion_inc_test(skb))) {
2516 		NAPI_GRO_CB(skb)->flush |= 1;
2517 		return NULL;
2518 	}
2519 
2520 	return cb(sk, head, skb);
2521 }
2522 
2523 struct packet_type {
2524 	__be16			type;	/* This is really htons(ether_type). */
2525 	bool			ignore_outgoing;
2526 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2527 	int			(*func) (struct sk_buff *,
2528 					 struct net_device *,
2529 					 struct packet_type *,
2530 					 struct net_device *);
2531 	void			(*list_func) (struct list_head *,
2532 					      struct packet_type *,
2533 					      struct net_device *);
2534 	bool			(*id_match)(struct packet_type *ptype,
2535 					    struct sock *sk);
2536 	void			*af_packet_priv;
2537 	struct list_head	list;
2538 };
2539 
2540 struct offload_callbacks {
2541 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2542 						netdev_features_t features);
2543 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2544 						struct sk_buff *skb);
2545 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2546 };
2547 
2548 struct packet_offload {
2549 	__be16			 type;	/* This is really htons(ether_type). */
2550 	u16			 priority;
2551 	struct offload_callbacks callbacks;
2552 	struct list_head	 list;
2553 };
2554 
2555 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2556 struct pcpu_sw_netstats {
2557 	u64     rx_packets;
2558 	u64     rx_bytes;
2559 	u64     tx_packets;
2560 	u64     tx_bytes;
2561 	struct u64_stats_sync   syncp;
2562 } __aligned(4 * sizeof(u64));
2563 
2564 struct pcpu_lstats {
2565 	u64_stats_t packets;
2566 	u64_stats_t bytes;
2567 	struct u64_stats_sync syncp;
2568 } __aligned(2 * sizeof(u64));
2569 
2570 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2571 
2572 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2573 {
2574 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2575 
2576 	u64_stats_update_begin(&tstats->syncp);
2577 	tstats->rx_bytes += len;
2578 	tstats->rx_packets++;
2579 	u64_stats_update_end(&tstats->syncp);
2580 }
2581 
2582 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2583 					  unsigned int packets,
2584 					  unsigned int len)
2585 {
2586 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2587 
2588 	u64_stats_update_begin(&tstats->syncp);
2589 	tstats->tx_bytes += len;
2590 	tstats->tx_packets += packets;
2591 	u64_stats_update_end(&tstats->syncp);
2592 }
2593 
2594 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2595 {
2596 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2597 
2598 	u64_stats_update_begin(&lstats->syncp);
2599 	u64_stats_add(&lstats->bytes, len);
2600 	u64_stats_inc(&lstats->packets);
2601 	u64_stats_update_end(&lstats->syncp);
2602 }
2603 
2604 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2605 ({									\
2606 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2607 	if (pcpu_stats)	{						\
2608 		int __cpu;						\
2609 		for_each_possible_cpu(__cpu) {				\
2610 			typeof(type) *stat;				\
2611 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2612 			u64_stats_init(&stat->syncp);			\
2613 		}							\
2614 	}								\
2615 	pcpu_stats;							\
2616 })
2617 
2618 #define netdev_alloc_pcpu_stats(type)					\
2619 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2620 
2621 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2622 ({									\
2623 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2624 	if (pcpu_stats) {						\
2625 		int __cpu;						\
2626 		for_each_possible_cpu(__cpu) {				\
2627 			typeof(type) *stat;				\
2628 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2629 			u64_stats_init(&stat->syncp);			\
2630 		}							\
2631 	}								\
2632 	pcpu_stats;							\
2633 })
2634 
2635 enum netdev_lag_tx_type {
2636 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2637 	NETDEV_LAG_TX_TYPE_RANDOM,
2638 	NETDEV_LAG_TX_TYPE_BROADCAST,
2639 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2640 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2641 	NETDEV_LAG_TX_TYPE_HASH,
2642 };
2643 
2644 enum netdev_lag_hash {
2645 	NETDEV_LAG_HASH_NONE,
2646 	NETDEV_LAG_HASH_L2,
2647 	NETDEV_LAG_HASH_L34,
2648 	NETDEV_LAG_HASH_L23,
2649 	NETDEV_LAG_HASH_E23,
2650 	NETDEV_LAG_HASH_E34,
2651 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2652 	NETDEV_LAG_HASH_UNKNOWN,
2653 };
2654 
2655 struct netdev_lag_upper_info {
2656 	enum netdev_lag_tx_type tx_type;
2657 	enum netdev_lag_hash hash_type;
2658 };
2659 
2660 struct netdev_lag_lower_state_info {
2661 	u8 link_up : 1,
2662 	   tx_enabled : 1;
2663 };
2664 
2665 #include <linux/notifier.h>
2666 
2667 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2668  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2669  * adding new types.
2670  */
2671 enum netdev_cmd {
2672 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2673 	NETDEV_DOWN,
2674 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2675 				   detected a hardware crash and restarted
2676 				   - we can use this eg to kick tcp sessions
2677 				   once done */
2678 	NETDEV_CHANGE,		/* Notify device state change */
2679 	NETDEV_REGISTER,
2680 	NETDEV_UNREGISTER,
2681 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2682 	NETDEV_CHANGEADDR,	/* notify after the address change */
2683 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2684 	NETDEV_GOING_DOWN,
2685 	NETDEV_CHANGENAME,
2686 	NETDEV_FEAT_CHANGE,
2687 	NETDEV_BONDING_FAILOVER,
2688 	NETDEV_PRE_UP,
2689 	NETDEV_PRE_TYPE_CHANGE,
2690 	NETDEV_POST_TYPE_CHANGE,
2691 	NETDEV_POST_INIT,
2692 	NETDEV_RELEASE,
2693 	NETDEV_NOTIFY_PEERS,
2694 	NETDEV_JOIN,
2695 	NETDEV_CHANGEUPPER,
2696 	NETDEV_RESEND_IGMP,
2697 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2698 	NETDEV_CHANGEINFODATA,
2699 	NETDEV_BONDING_INFO,
2700 	NETDEV_PRECHANGEUPPER,
2701 	NETDEV_CHANGELOWERSTATE,
2702 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2703 	NETDEV_UDP_TUNNEL_DROP_INFO,
2704 	NETDEV_CHANGE_TX_QUEUE_LEN,
2705 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2706 	NETDEV_CVLAN_FILTER_DROP_INFO,
2707 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2708 	NETDEV_SVLAN_FILTER_DROP_INFO,
2709 };
2710 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2711 
2712 int register_netdevice_notifier(struct notifier_block *nb);
2713 int unregister_netdevice_notifier(struct notifier_block *nb);
2714 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2715 int unregister_netdevice_notifier_net(struct net *net,
2716 				      struct notifier_block *nb);
2717 int register_netdevice_notifier_dev_net(struct net_device *dev,
2718 					struct notifier_block *nb,
2719 					struct netdev_net_notifier *nn);
2720 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2721 					  struct notifier_block *nb,
2722 					  struct netdev_net_notifier *nn);
2723 
2724 struct netdev_notifier_info {
2725 	struct net_device	*dev;
2726 	struct netlink_ext_ack	*extack;
2727 };
2728 
2729 struct netdev_notifier_info_ext {
2730 	struct netdev_notifier_info info; /* must be first */
2731 	union {
2732 		u32 mtu;
2733 	} ext;
2734 };
2735 
2736 struct netdev_notifier_change_info {
2737 	struct netdev_notifier_info info; /* must be first */
2738 	unsigned int flags_changed;
2739 };
2740 
2741 struct netdev_notifier_changeupper_info {
2742 	struct netdev_notifier_info info; /* must be first */
2743 	struct net_device *upper_dev; /* new upper dev */
2744 	bool master; /* is upper dev master */
2745 	bool linking; /* is the notification for link or unlink */
2746 	void *upper_info; /* upper dev info */
2747 };
2748 
2749 struct netdev_notifier_changelowerstate_info {
2750 	struct netdev_notifier_info info; /* must be first */
2751 	void *lower_state_info; /* is lower dev state */
2752 };
2753 
2754 struct netdev_notifier_pre_changeaddr_info {
2755 	struct netdev_notifier_info info; /* must be first */
2756 	const unsigned char *dev_addr;
2757 };
2758 
2759 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2760 					     struct net_device *dev)
2761 {
2762 	info->dev = dev;
2763 	info->extack = NULL;
2764 }
2765 
2766 static inline struct net_device *
2767 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2768 {
2769 	return info->dev;
2770 }
2771 
2772 static inline struct netlink_ext_ack *
2773 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2774 {
2775 	return info->extack;
2776 }
2777 
2778 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2779 
2780 
2781 extern rwlock_t				dev_base_lock;		/* Device list lock */
2782 
2783 #define for_each_netdev(net, d)		\
2784 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2785 #define for_each_netdev_reverse(net, d)	\
2786 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2787 #define for_each_netdev_rcu(net, d)		\
2788 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2789 #define for_each_netdev_safe(net, d, n)	\
2790 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2791 #define for_each_netdev_continue(net, d)		\
2792 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2793 #define for_each_netdev_continue_reverse(net, d)		\
2794 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2795 						     dev_list)
2796 #define for_each_netdev_continue_rcu(net, d)		\
2797 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2798 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2799 		for_each_netdev_rcu(&init_net, slave)	\
2800 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2801 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2802 
2803 static inline struct net_device *next_net_device(struct net_device *dev)
2804 {
2805 	struct list_head *lh;
2806 	struct net *net;
2807 
2808 	net = dev_net(dev);
2809 	lh = dev->dev_list.next;
2810 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2811 }
2812 
2813 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2814 {
2815 	struct list_head *lh;
2816 	struct net *net;
2817 
2818 	net = dev_net(dev);
2819 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2820 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2821 }
2822 
2823 static inline struct net_device *first_net_device(struct net *net)
2824 {
2825 	return list_empty(&net->dev_base_head) ? NULL :
2826 		net_device_entry(net->dev_base_head.next);
2827 }
2828 
2829 static inline struct net_device *first_net_device_rcu(struct net *net)
2830 {
2831 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2832 
2833 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2834 }
2835 
2836 int netdev_boot_setup_check(struct net_device *dev);
2837 unsigned long netdev_boot_base(const char *prefix, int unit);
2838 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2839 				       const char *hwaddr);
2840 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2841 void dev_add_pack(struct packet_type *pt);
2842 void dev_remove_pack(struct packet_type *pt);
2843 void __dev_remove_pack(struct packet_type *pt);
2844 void dev_add_offload(struct packet_offload *po);
2845 void dev_remove_offload(struct packet_offload *po);
2846 
2847 int dev_get_iflink(const struct net_device *dev);
2848 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2849 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2850 				      unsigned short mask);
2851 struct net_device *dev_get_by_name(struct net *net, const char *name);
2852 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2853 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2854 int dev_alloc_name(struct net_device *dev, const char *name);
2855 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2856 void dev_close(struct net_device *dev);
2857 void dev_close_many(struct list_head *head, bool unlink);
2858 void dev_disable_lro(struct net_device *dev);
2859 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2860 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2861 		     struct net_device *sb_dev);
2862 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2863 		       struct net_device *sb_dev);
2864 
2865 int dev_queue_xmit(struct sk_buff *skb);
2866 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2867 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2868 
2869 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2870 {
2871 	int ret;
2872 
2873 	ret = __dev_direct_xmit(skb, queue_id);
2874 	if (!dev_xmit_complete(ret))
2875 		kfree_skb(skb);
2876 	return ret;
2877 }
2878 
2879 int register_netdevice(struct net_device *dev);
2880 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2881 void unregister_netdevice_many(struct list_head *head);
2882 static inline void unregister_netdevice(struct net_device *dev)
2883 {
2884 	unregister_netdevice_queue(dev, NULL);
2885 }
2886 
2887 int netdev_refcnt_read(const struct net_device *dev);
2888 void free_netdev(struct net_device *dev);
2889 void netdev_freemem(struct net_device *dev);
2890 int init_dummy_netdev(struct net_device *dev);
2891 
2892 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2893 					 struct sk_buff *skb,
2894 					 bool all_slaves);
2895 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
2896 					    struct sock *sk);
2897 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2898 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2899 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2900 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2901 int netdev_get_name(struct net *net, char *name, int ifindex);
2902 int dev_restart(struct net_device *dev);
2903 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2904 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2905 
2906 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2907 {
2908 	return NAPI_GRO_CB(skb)->data_offset;
2909 }
2910 
2911 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2912 {
2913 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2914 }
2915 
2916 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2917 {
2918 	NAPI_GRO_CB(skb)->data_offset += len;
2919 }
2920 
2921 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2922 					unsigned int offset)
2923 {
2924 	return NAPI_GRO_CB(skb)->frag0 + offset;
2925 }
2926 
2927 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2928 {
2929 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2930 }
2931 
2932 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2933 {
2934 	NAPI_GRO_CB(skb)->frag0 = NULL;
2935 	NAPI_GRO_CB(skb)->frag0_len = 0;
2936 }
2937 
2938 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2939 					unsigned int offset)
2940 {
2941 	if (!pskb_may_pull(skb, hlen))
2942 		return NULL;
2943 
2944 	skb_gro_frag0_invalidate(skb);
2945 	return skb->data + offset;
2946 }
2947 
2948 static inline void *skb_gro_network_header(struct sk_buff *skb)
2949 {
2950 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2951 	       skb_network_offset(skb);
2952 }
2953 
2954 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2955 					const void *start, unsigned int len)
2956 {
2957 	if (NAPI_GRO_CB(skb)->csum_valid)
2958 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2959 						  csum_partial(start, len, 0));
2960 }
2961 
2962 /* GRO checksum functions. These are logical equivalents of the normal
2963  * checksum functions (in skbuff.h) except that they operate on the GRO
2964  * offsets and fields in sk_buff.
2965  */
2966 
2967 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2968 
2969 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2970 {
2971 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2972 }
2973 
2974 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2975 						      bool zero_okay,
2976 						      __sum16 check)
2977 {
2978 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2979 		skb_checksum_start_offset(skb) <
2980 		 skb_gro_offset(skb)) &&
2981 		!skb_at_gro_remcsum_start(skb) &&
2982 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2983 		(!zero_okay || check));
2984 }
2985 
2986 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2987 							   __wsum psum)
2988 {
2989 	if (NAPI_GRO_CB(skb)->csum_valid &&
2990 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2991 		return 0;
2992 
2993 	NAPI_GRO_CB(skb)->csum = psum;
2994 
2995 	return __skb_gro_checksum_complete(skb);
2996 }
2997 
2998 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2999 {
3000 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
3001 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
3002 		NAPI_GRO_CB(skb)->csum_cnt--;
3003 	} else {
3004 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
3005 		 * verified a new top level checksum or an encapsulated one
3006 		 * during GRO. This saves work if we fallback to normal path.
3007 		 */
3008 		__skb_incr_checksum_unnecessary(skb);
3009 	}
3010 }
3011 
3012 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
3013 				    compute_pseudo)			\
3014 ({									\
3015 	__sum16 __ret = 0;						\
3016 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
3017 		__ret = __skb_gro_checksum_validate_complete(skb,	\
3018 				compute_pseudo(skb, proto));		\
3019 	if (!__ret)							\
3020 		skb_gro_incr_csum_unnecessary(skb);			\
3021 	__ret;								\
3022 })
3023 
3024 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
3025 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
3026 
3027 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
3028 					     compute_pseudo)		\
3029 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
3030 
3031 #define skb_gro_checksum_simple_validate(skb)				\
3032 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
3033 
3034 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3035 {
3036 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3037 		!NAPI_GRO_CB(skb)->csum_valid);
3038 }
3039 
3040 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3041 					      __wsum pseudo)
3042 {
3043 	NAPI_GRO_CB(skb)->csum = ~pseudo;
3044 	NAPI_GRO_CB(skb)->csum_valid = 1;
3045 }
3046 
3047 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
3048 do {									\
3049 	if (__skb_gro_checksum_convert_check(skb))			\
3050 		__skb_gro_checksum_convert(skb, 			\
3051 					   compute_pseudo(skb, proto));	\
3052 } while (0)
3053 
3054 struct gro_remcsum {
3055 	int offset;
3056 	__wsum delta;
3057 };
3058 
3059 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3060 {
3061 	grc->offset = 0;
3062 	grc->delta = 0;
3063 }
3064 
3065 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3066 					    unsigned int off, size_t hdrlen,
3067 					    int start, int offset,
3068 					    struct gro_remcsum *grc,
3069 					    bool nopartial)
3070 {
3071 	__wsum delta;
3072 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3073 
3074 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3075 
3076 	if (!nopartial) {
3077 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3078 		return ptr;
3079 	}
3080 
3081 	ptr = skb_gro_header_fast(skb, off);
3082 	if (skb_gro_header_hard(skb, off + plen)) {
3083 		ptr = skb_gro_header_slow(skb, off + plen, off);
3084 		if (!ptr)
3085 			return NULL;
3086 	}
3087 
3088 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3089 			       start, offset);
3090 
3091 	/* Adjust skb->csum since we changed the packet */
3092 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3093 
3094 	grc->offset = off + hdrlen + offset;
3095 	grc->delta = delta;
3096 
3097 	return ptr;
3098 }
3099 
3100 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3101 					   struct gro_remcsum *grc)
3102 {
3103 	void *ptr;
3104 	size_t plen = grc->offset + sizeof(u16);
3105 
3106 	if (!grc->delta)
3107 		return;
3108 
3109 	ptr = skb_gro_header_fast(skb, grc->offset);
3110 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3111 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3112 		if (!ptr)
3113 			return;
3114 	}
3115 
3116 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3117 }
3118 
3119 #ifdef CONFIG_XFRM_OFFLOAD
3120 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3121 {
3122 	if (PTR_ERR(pp) != -EINPROGRESS)
3123 		NAPI_GRO_CB(skb)->flush |= flush;
3124 }
3125 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3126 					       struct sk_buff *pp,
3127 					       int flush,
3128 					       struct gro_remcsum *grc)
3129 {
3130 	if (PTR_ERR(pp) != -EINPROGRESS) {
3131 		NAPI_GRO_CB(skb)->flush |= flush;
3132 		skb_gro_remcsum_cleanup(skb, grc);
3133 		skb->remcsum_offload = 0;
3134 	}
3135 }
3136 #else
3137 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3138 {
3139 	NAPI_GRO_CB(skb)->flush |= flush;
3140 }
3141 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3142 					       struct sk_buff *pp,
3143 					       int flush,
3144 					       struct gro_remcsum *grc)
3145 {
3146 	NAPI_GRO_CB(skb)->flush |= flush;
3147 	skb_gro_remcsum_cleanup(skb, grc);
3148 	skb->remcsum_offload = 0;
3149 }
3150 #endif
3151 
3152 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3153 				  unsigned short type,
3154 				  const void *daddr, const void *saddr,
3155 				  unsigned int len)
3156 {
3157 	if (!dev->header_ops || !dev->header_ops->create)
3158 		return 0;
3159 
3160 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3161 }
3162 
3163 static inline int dev_parse_header(const struct sk_buff *skb,
3164 				   unsigned char *haddr)
3165 {
3166 	const struct net_device *dev = skb->dev;
3167 
3168 	if (!dev->header_ops || !dev->header_ops->parse)
3169 		return 0;
3170 	return dev->header_ops->parse(skb, haddr);
3171 }
3172 
3173 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3174 {
3175 	const struct net_device *dev = skb->dev;
3176 
3177 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3178 		return 0;
3179 	return dev->header_ops->parse_protocol(skb);
3180 }
3181 
3182 /* ll_header must have at least hard_header_len allocated */
3183 static inline bool dev_validate_header(const struct net_device *dev,
3184 				       char *ll_header, int len)
3185 {
3186 	if (likely(len >= dev->hard_header_len))
3187 		return true;
3188 	if (len < dev->min_header_len)
3189 		return false;
3190 
3191 	if (capable(CAP_SYS_RAWIO)) {
3192 		memset(ll_header + len, 0, dev->hard_header_len - len);
3193 		return true;
3194 	}
3195 
3196 	if (dev->header_ops && dev->header_ops->validate)
3197 		return dev->header_ops->validate(ll_header, len);
3198 
3199 	return false;
3200 }
3201 
3202 static inline bool dev_has_header(const struct net_device *dev)
3203 {
3204 	return dev->header_ops && dev->header_ops->create;
3205 }
3206 
3207 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3208 			   int len, int size);
3209 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3210 static inline int unregister_gifconf(unsigned int family)
3211 {
3212 	return register_gifconf(family, NULL);
3213 }
3214 
3215 #ifdef CONFIG_NET_FLOW_LIMIT
3216 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3217 struct sd_flow_limit {
3218 	u64			count;
3219 	unsigned int		num_buckets;
3220 	unsigned int		history_head;
3221 	u16			history[FLOW_LIMIT_HISTORY];
3222 	u8			buckets[];
3223 };
3224 
3225 extern int netdev_flow_limit_table_len;
3226 #endif /* CONFIG_NET_FLOW_LIMIT */
3227 
3228 /*
3229  * Incoming packets are placed on per-CPU queues
3230  */
3231 struct softnet_data {
3232 	struct list_head	poll_list;
3233 	struct sk_buff_head	process_queue;
3234 
3235 	/* stats */
3236 	unsigned int		processed;
3237 	unsigned int		time_squeeze;
3238 	unsigned int		received_rps;
3239 #ifdef CONFIG_RPS
3240 	struct softnet_data	*rps_ipi_list;
3241 #endif
3242 #ifdef CONFIG_NET_FLOW_LIMIT
3243 	struct sd_flow_limit __rcu *flow_limit;
3244 #endif
3245 	struct Qdisc		*output_queue;
3246 	struct Qdisc		**output_queue_tailp;
3247 	struct sk_buff		*completion_queue;
3248 #ifdef CONFIG_XFRM_OFFLOAD
3249 	struct sk_buff_head	xfrm_backlog;
3250 #endif
3251 	/* written and read only by owning cpu: */
3252 	struct {
3253 		u16 recursion;
3254 		u8  more;
3255 	} xmit;
3256 #ifdef CONFIG_RPS
3257 	/* input_queue_head should be written by cpu owning this struct,
3258 	 * and only read by other cpus. Worth using a cache line.
3259 	 */
3260 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3261 
3262 	/* Elements below can be accessed between CPUs for RPS/RFS */
3263 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3264 	struct softnet_data	*rps_ipi_next;
3265 	unsigned int		cpu;
3266 	unsigned int		input_queue_tail;
3267 #endif
3268 	unsigned int		dropped;
3269 	struct sk_buff_head	input_pkt_queue;
3270 	struct napi_struct	backlog;
3271 
3272 };
3273 
3274 static inline void input_queue_head_incr(struct softnet_data *sd)
3275 {
3276 #ifdef CONFIG_RPS
3277 	sd->input_queue_head++;
3278 #endif
3279 }
3280 
3281 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3282 					      unsigned int *qtail)
3283 {
3284 #ifdef CONFIG_RPS
3285 	*qtail = ++sd->input_queue_tail;
3286 #endif
3287 }
3288 
3289 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3290 
3291 static inline int dev_recursion_level(void)
3292 {
3293 	return this_cpu_read(softnet_data.xmit.recursion);
3294 }
3295 
3296 #define XMIT_RECURSION_LIMIT	8
3297 static inline bool dev_xmit_recursion(void)
3298 {
3299 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3300 			XMIT_RECURSION_LIMIT);
3301 }
3302 
3303 static inline void dev_xmit_recursion_inc(void)
3304 {
3305 	__this_cpu_inc(softnet_data.xmit.recursion);
3306 }
3307 
3308 static inline void dev_xmit_recursion_dec(void)
3309 {
3310 	__this_cpu_dec(softnet_data.xmit.recursion);
3311 }
3312 
3313 void __netif_schedule(struct Qdisc *q);
3314 void netif_schedule_queue(struct netdev_queue *txq);
3315 
3316 static inline void netif_tx_schedule_all(struct net_device *dev)
3317 {
3318 	unsigned int i;
3319 
3320 	for (i = 0; i < dev->num_tx_queues; i++)
3321 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3322 }
3323 
3324 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3325 {
3326 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3327 }
3328 
3329 /**
3330  *	netif_start_queue - allow transmit
3331  *	@dev: network device
3332  *
3333  *	Allow upper layers to call the device hard_start_xmit routine.
3334  */
3335 static inline void netif_start_queue(struct net_device *dev)
3336 {
3337 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3338 }
3339 
3340 static inline void netif_tx_start_all_queues(struct net_device *dev)
3341 {
3342 	unsigned int i;
3343 
3344 	for (i = 0; i < dev->num_tx_queues; i++) {
3345 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3346 		netif_tx_start_queue(txq);
3347 	}
3348 }
3349 
3350 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3351 
3352 /**
3353  *	netif_wake_queue - restart transmit
3354  *	@dev: network device
3355  *
3356  *	Allow upper layers to call the device hard_start_xmit routine.
3357  *	Used for flow control when transmit resources are available.
3358  */
3359 static inline void netif_wake_queue(struct net_device *dev)
3360 {
3361 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3362 }
3363 
3364 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3365 {
3366 	unsigned int i;
3367 
3368 	for (i = 0; i < dev->num_tx_queues; i++) {
3369 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3370 		netif_tx_wake_queue(txq);
3371 	}
3372 }
3373 
3374 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3375 {
3376 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3377 }
3378 
3379 /**
3380  *	netif_stop_queue - stop transmitted packets
3381  *	@dev: network device
3382  *
3383  *	Stop upper layers calling the device hard_start_xmit routine.
3384  *	Used for flow control when transmit resources are unavailable.
3385  */
3386 static inline void netif_stop_queue(struct net_device *dev)
3387 {
3388 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3389 }
3390 
3391 void netif_tx_stop_all_queues(struct net_device *dev);
3392 
3393 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3394 {
3395 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3396 }
3397 
3398 /**
3399  *	netif_queue_stopped - test if transmit queue is flowblocked
3400  *	@dev: network device
3401  *
3402  *	Test if transmit queue on device is currently unable to send.
3403  */
3404 static inline bool netif_queue_stopped(const struct net_device *dev)
3405 {
3406 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3407 }
3408 
3409 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3410 {
3411 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3412 }
3413 
3414 static inline bool
3415 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3416 {
3417 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3418 }
3419 
3420 static inline bool
3421 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3422 {
3423 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3424 }
3425 
3426 /**
3427  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3428  *	@dev_queue: pointer to transmit queue
3429  *
3430  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3431  * to give appropriate hint to the CPU.
3432  */
3433 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3434 {
3435 #ifdef CONFIG_BQL
3436 	prefetchw(&dev_queue->dql.num_queued);
3437 #endif
3438 }
3439 
3440 /**
3441  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3442  *	@dev_queue: pointer to transmit queue
3443  *
3444  * BQL enabled drivers might use this helper in their TX completion path,
3445  * to give appropriate hint to the CPU.
3446  */
3447 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3448 {
3449 #ifdef CONFIG_BQL
3450 	prefetchw(&dev_queue->dql.limit);
3451 #endif
3452 }
3453 
3454 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3455 					unsigned int bytes)
3456 {
3457 #ifdef CONFIG_BQL
3458 	dql_queued(&dev_queue->dql, bytes);
3459 
3460 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3461 		return;
3462 
3463 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3464 
3465 	/*
3466 	 * The XOFF flag must be set before checking the dql_avail below,
3467 	 * because in netdev_tx_completed_queue we update the dql_completed
3468 	 * before checking the XOFF flag.
3469 	 */
3470 	smp_mb();
3471 
3472 	/* check again in case another CPU has just made room avail */
3473 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3474 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3475 #endif
3476 }
3477 
3478 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3479  * that they should not test BQL status themselves.
3480  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3481  * skb of a batch.
3482  * Returns true if the doorbell must be used to kick the NIC.
3483  */
3484 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3485 					  unsigned int bytes,
3486 					  bool xmit_more)
3487 {
3488 	if (xmit_more) {
3489 #ifdef CONFIG_BQL
3490 		dql_queued(&dev_queue->dql, bytes);
3491 #endif
3492 		return netif_tx_queue_stopped(dev_queue);
3493 	}
3494 	netdev_tx_sent_queue(dev_queue, bytes);
3495 	return true;
3496 }
3497 
3498 /**
3499  * 	netdev_sent_queue - report the number of bytes queued to hardware
3500  * 	@dev: network device
3501  * 	@bytes: number of bytes queued to the hardware device queue
3502  *
3503  * 	Report the number of bytes queued for sending/completion to the network
3504  * 	device hardware queue. @bytes should be a good approximation and should
3505  * 	exactly match netdev_completed_queue() @bytes
3506  */
3507 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3508 {
3509 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3510 }
3511 
3512 static inline bool __netdev_sent_queue(struct net_device *dev,
3513 				       unsigned int bytes,
3514 				       bool xmit_more)
3515 {
3516 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3517 				      xmit_more);
3518 }
3519 
3520 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3521 					     unsigned int pkts, unsigned int bytes)
3522 {
3523 #ifdef CONFIG_BQL
3524 	if (unlikely(!bytes))
3525 		return;
3526 
3527 	dql_completed(&dev_queue->dql, bytes);
3528 
3529 	/*
3530 	 * Without the memory barrier there is a small possiblity that
3531 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3532 	 * be stopped forever
3533 	 */
3534 	smp_mb();
3535 
3536 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3537 		return;
3538 
3539 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3540 		netif_schedule_queue(dev_queue);
3541 #endif
3542 }
3543 
3544 /**
3545  * 	netdev_completed_queue - report bytes and packets completed by device
3546  * 	@dev: network device
3547  * 	@pkts: actual number of packets sent over the medium
3548  * 	@bytes: actual number of bytes sent over the medium
3549  *
3550  * 	Report the number of bytes and packets transmitted by the network device
3551  * 	hardware queue over the physical medium, @bytes must exactly match the
3552  * 	@bytes amount passed to netdev_sent_queue()
3553  */
3554 static inline void netdev_completed_queue(struct net_device *dev,
3555 					  unsigned int pkts, unsigned int bytes)
3556 {
3557 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3558 }
3559 
3560 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3561 {
3562 #ifdef CONFIG_BQL
3563 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3564 	dql_reset(&q->dql);
3565 #endif
3566 }
3567 
3568 /**
3569  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3570  * 	@dev_queue: network device
3571  *
3572  * 	Reset the bytes and packet count of a network device and clear the
3573  * 	software flow control OFF bit for this network device
3574  */
3575 static inline void netdev_reset_queue(struct net_device *dev_queue)
3576 {
3577 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3578 }
3579 
3580 /**
3581  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3582  * 	@dev: network device
3583  * 	@queue_index: given tx queue index
3584  *
3585  * 	Returns 0 if given tx queue index >= number of device tx queues,
3586  * 	otherwise returns the originally passed tx queue index.
3587  */
3588 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3589 {
3590 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3591 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3592 				     dev->name, queue_index,
3593 				     dev->real_num_tx_queues);
3594 		return 0;
3595 	}
3596 
3597 	return queue_index;
3598 }
3599 
3600 /**
3601  *	netif_running - test if up
3602  *	@dev: network device
3603  *
3604  *	Test if the device has been brought up.
3605  */
3606 static inline bool netif_running(const struct net_device *dev)
3607 {
3608 	return test_bit(__LINK_STATE_START, &dev->state);
3609 }
3610 
3611 /*
3612  * Routines to manage the subqueues on a device.  We only need start,
3613  * stop, and a check if it's stopped.  All other device management is
3614  * done at the overall netdevice level.
3615  * Also test the device if we're multiqueue.
3616  */
3617 
3618 /**
3619  *	netif_start_subqueue - allow sending packets on subqueue
3620  *	@dev: network device
3621  *	@queue_index: sub queue index
3622  *
3623  * Start individual transmit queue of a device with multiple transmit queues.
3624  */
3625 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3626 {
3627 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3628 
3629 	netif_tx_start_queue(txq);
3630 }
3631 
3632 /**
3633  *	netif_stop_subqueue - stop sending packets on subqueue
3634  *	@dev: network device
3635  *	@queue_index: sub queue index
3636  *
3637  * Stop individual transmit queue of a device with multiple transmit queues.
3638  */
3639 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3640 {
3641 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3642 	netif_tx_stop_queue(txq);
3643 }
3644 
3645 /**
3646  *	__netif_subqueue_stopped - test status of subqueue
3647  *	@dev: network device
3648  *	@queue_index: sub queue index
3649  *
3650  * Check individual transmit queue of a device with multiple transmit queues.
3651  */
3652 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3653 					    u16 queue_index)
3654 {
3655 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3656 
3657 	return netif_tx_queue_stopped(txq);
3658 }
3659 
3660 /**
3661  *	netif_subqueue_stopped - test status of subqueue
3662  *	@dev: network device
3663  *	@skb: sub queue buffer pointer
3664  *
3665  * Check individual transmit queue of a device with multiple transmit queues.
3666  */
3667 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3668 					  struct sk_buff *skb)
3669 {
3670 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3671 }
3672 
3673 /**
3674  *	netif_wake_subqueue - allow sending packets on subqueue
3675  *	@dev: network device
3676  *	@queue_index: sub queue index
3677  *
3678  * Resume individual transmit queue of a device with multiple transmit queues.
3679  */
3680 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3681 {
3682 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3683 
3684 	netif_tx_wake_queue(txq);
3685 }
3686 
3687 #ifdef CONFIG_XPS
3688 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3689 			u16 index);
3690 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3691 			  u16 index, bool is_rxqs_map);
3692 
3693 /**
3694  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3695  *	@j: CPU/Rx queue index
3696  *	@mask: bitmask of all cpus/rx queues
3697  *	@nr_bits: number of bits in the bitmask
3698  *
3699  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3700  */
3701 static inline bool netif_attr_test_mask(unsigned long j,
3702 					const unsigned long *mask,
3703 					unsigned int nr_bits)
3704 {
3705 	cpu_max_bits_warn(j, nr_bits);
3706 	return test_bit(j, mask);
3707 }
3708 
3709 /**
3710  *	netif_attr_test_online - Test for online CPU/Rx queue
3711  *	@j: CPU/Rx queue index
3712  *	@online_mask: bitmask for CPUs/Rx queues that are online
3713  *	@nr_bits: number of bits in the bitmask
3714  *
3715  * Returns true if a CPU/Rx queue is online.
3716  */
3717 static inline bool netif_attr_test_online(unsigned long j,
3718 					  const unsigned long *online_mask,
3719 					  unsigned int nr_bits)
3720 {
3721 	cpu_max_bits_warn(j, nr_bits);
3722 
3723 	if (online_mask)
3724 		return test_bit(j, online_mask);
3725 
3726 	return (j < nr_bits);
3727 }
3728 
3729 /**
3730  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3731  *	@n: CPU/Rx queue index
3732  *	@srcp: the cpumask/Rx queue mask pointer
3733  *	@nr_bits: number of bits in the bitmask
3734  *
3735  * Returns >= nr_bits if no further CPUs/Rx queues set.
3736  */
3737 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3738 					       unsigned int nr_bits)
3739 {
3740 	/* -1 is a legal arg here. */
3741 	if (n != -1)
3742 		cpu_max_bits_warn(n, nr_bits);
3743 
3744 	if (srcp)
3745 		return find_next_bit(srcp, nr_bits, n + 1);
3746 
3747 	return n + 1;
3748 }
3749 
3750 /**
3751  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3752  *	@n: CPU/Rx queue index
3753  *	@src1p: the first CPUs/Rx queues mask pointer
3754  *	@src2p: the second CPUs/Rx queues mask pointer
3755  *	@nr_bits: number of bits in the bitmask
3756  *
3757  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3758  */
3759 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3760 					  const unsigned long *src2p,
3761 					  unsigned int nr_bits)
3762 {
3763 	/* -1 is a legal arg here. */
3764 	if (n != -1)
3765 		cpu_max_bits_warn(n, nr_bits);
3766 
3767 	if (src1p && src2p)
3768 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3769 	else if (src1p)
3770 		return find_next_bit(src1p, nr_bits, n + 1);
3771 	else if (src2p)
3772 		return find_next_bit(src2p, nr_bits, n + 1);
3773 
3774 	return n + 1;
3775 }
3776 #else
3777 static inline int netif_set_xps_queue(struct net_device *dev,
3778 				      const struct cpumask *mask,
3779 				      u16 index)
3780 {
3781 	return 0;
3782 }
3783 
3784 static inline int __netif_set_xps_queue(struct net_device *dev,
3785 					const unsigned long *mask,
3786 					u16 index, bool is_rxqs_map)
3787 {
3788 	return 0;
3789 }
3790 #endif
3791 
3792 /**
3793  *	netif_is_multiqueue - test if device has multiple transmit queues
3794  *	@dev: network device
3795  *
3796  * Check if device has multiple transmit queues
3797  */
3798 static inline bool netif_is_multiqueue(const struct net_device *dev)
3799 {
3800 	return dev->num_tx_queues > 1;
3801 }
3802 
3803 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3804 
3805 #ifdef CONFIG_SYSFS
3806 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3807 #else
3808 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3809 						unsigned int rxqs)
3810 {
3811 	dev->real_num_rx_queues = rxqs;
3812 	return 0;
3813 }
3814 #endif
3815 
3816 static inline struct netdev_rx_queue *
3817 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3818 {
3819 	return dev->_rx + rxq;
3820 }
3821 
3822 #ifdef CONFIG_SYSFS
3823 static inline unsigned int get_netdev_rx_queue_index(
3824 		struct netdev_rx_queue *queue)
3825 {
3826 	struct net_device *dev = queue->dev;
3827 	int index = queue - dev->_rx;
3828 
3829 	BUG_ON(index >= dev->num_rx_queues);
3830 	return index;
3831 }
3832 #endif
3833 
3834 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3835 int netif_get_num_default_rss_queues(void);
3836 
3837 enum skb_free_reason {
3838 	SKB_REASON_CONSUMED,
3839 	SKB_REASON_DROPPED,
3840 };
3841 
3842 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3843 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3844 
3845 /*
3846  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3847  * interrupt context or with hardware interrupts being disabled.
3848  * (in_irq() || irqs_disabled())
3849  *
3850  * We provide four helpers that can be used in following contexts :
3851  *
3852  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3853  *  replacing kfree_skb(skb)
3854  *
3855  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3856  *  Typically used in place of consume_skb(skb) in TX completion path
3857  *
3858  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3859  *  replacing kfree_skb(skb)
3860  *
3861  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3862  *  and consumed a packet. Used in place of consume_skb(skb)
3863  */
3864 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3865 {
3866 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3867 }
3868 
3869 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3870 {
3871 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3872 }
3873 
3874 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3875 {
3876 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3877 }
3878 
3879 static inline void dev_consume_skb_any(struct sk_buff *skb)
3880 {
3881 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3882 }
3883 
3884 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3885 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3886 int netif_rx(struct sk_buff *skb);
3887 int netif_rx_ni(struct sk_buff *skb);
3888 int netif_rx_any_context(struct sk_buff *skb);
3889 int netif_receive_skb(struct sk_buff *skb);
3890 int netif_receive_skb_core(struct sk_buff *skb);
3891 void netif_receive_skb_list(struct list_head *head);
3892 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3893 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3894 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3895 gro_result_t napi_gro_frags(struct napi_struct *napi);
3896 struct packet_offload *gro_find_receive_by_type(__be16 type);
3897 struct packet_offload *gro_find_complete_by_type(__be16 type);
3898 
3899 static inline void napi_free_frags(struct napi_struct *napi)
3900 {
3901 	kfree_skb(napi->skb);
3902 	napi->skb = NULL;
3903 }
3904 
3905 bool netdev_is_rx_handler_busy(struct net_device *dev);
3906 int netdev_rx_handler_register(struct net_device *dev,
3907 			       rx_handler_func_t *rx_handler,
3908 			       void *rx_handler_data);
3909 void netdev_rx_handler_unregister(struct net_device *dev);
3910 
3911 bool dev_valid_name(const char *name);
3912 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3913 		bool *need_copyout);
3914 int dev_ifconf(struct net *net, struct ifconf *, int);
3915 int dev_ethtool(struct net *net, struct ifreq *);
3916 unsigned int dev_get_flags(const struct net_device *);
3917 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3918 		       struct netlink_ext_ack *extack);
3919 int dev_change_flags(struct net_device *dev, unsigned int flags,
3920 		     struct netlink_ext_ack *extack);
3921 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3922 			unsigned int gchanges);
3923 int dev_change_name(struct net_device *, const char *);
3924 int dev_set_alias(struct net_device *, const char *, size_t);
3925 int dev_get_alias(const struct net_device *, char *, size_t);
3926 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3927 int __dev_set_mtu(struct net_device *, int);
3928 int dev_validate_mtu(struct net_device *dev, int mtu,
3929 		     struct netlink_ext_ack *extack);
3930 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3931 		    struct netlink_ext_ack *extack);
3932 int dev_set_mtu(struct net_device *, int);
3933 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3934 void dev_set_group(struct net_device *, int);
3935 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3936 			      struct netlink_ext_ack *extack);
3937 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3938 			struct netlink_ext_ack *extack);
3939 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3940 			     struct netlink_ext_ack *extack);
3941 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3942 int dev_change_carrier(struct net_device *, bool new_carrier);
3943 int dev_get_phys_port_id(struct net_device *dev,
3944 			 struct netdev_phys_item_id *ppid);
3945 int dev_get_phys_port_name(struct net_device *dev,
3946 			   char *name, size_t len);
3947 int dev_get_port_parent_id(struct net_device *dev,
3948 			   struct netdev_phys_item_id *ppid, bool recurse);
3949 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3950 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3951 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3952 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3953 				  u32 value);
3954 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3955 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3956 				    struct netdev_queue *txq, int *ret);
3957 
3958 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3959 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3960 		      int fd, int expected_fd, u32 flags);
3961 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3962 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3963 
3964 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3965 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3966 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3967 bool is_skb_forwardable(const struct net_device *dev,
3968 			const struct sk_buff *skb);
3969 
3970 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3971 						 const struct sk_buff *skb,
3972 						 const bool check_mtu)
3973 {
3974 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3975 	unsigned int len;
3976 
3977 	if (!(dev->flags & IFF_UP))
3978 		return false;
3979 
3980 	if (!check_mtu)
3981 		return true;
3982 
3983 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3984 	if (skb->len <= len)
3985 		return true;
3986 
3987 	/* if TSO is enabled, we don't care about the length as the packet
3988 	 * could be forwarded without being segmented before
3989 	 */
3990 	if (skb_is_gso(skb))
3991 		return true;
3992 
3993 	return false;
3994 }
3995 
3996 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3997 					       struct sk_buff *skb,
3998 					       const bool check_mtu)
3999 {
4000 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4001 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4002 		atomic_long_inc(&dev->rx_dropped);
4003 		kfree_skb(skb);
4004 		return NET_RX_DROP;
4005 	}
4006 
4007 	skb_scrub_packet(skb, true);
4008 	skb->priority = 0;
4009 	return 0;
4010 }
4011 
4012 bool dev_nit_active(struct net_device *dev);
4013 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4014 
4015 extern int		netdev_budget;
4016 extern unsigned int	netdev_budget_usecs;
4017 
4018 /* Called by rtnetlink.c:rtnl_unlock() */
4019 void netdev_run_todo(void);
4020 
4021 /**
4022  *	dev_put - release reference to device
4023  *	@dev: network device
4024  *
4025  * Release reference to device to allow it to be freed.
4026  */
4027 static inline void dev_put(struct net_device *dev)
4028 {
4029 	this_cpu_dec(*dev->pcpu_refcnt);
4030 }
4031 
4032 /**
4033  *	dev_hold - get reference to device
4034  *	@dev: network device
4035  *
4036  * Hold reference to device to keep it from being freed.
4037  */
4038 static inline void dev_hold(struct net_device *dev)
4039 {
4040 	this_cpu_inc(*dev->pcpu_refcnt);
4041 }
4042 
4043 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4044  * and _off may be called from IRQ context, but it is caller
4045  * who is responsible for serialization of these calls.
4046  *
4047  * The name carrier is inappropriate, these functions should really be
4048  * called netif_lowerlayer_*() because they represent the state of any
4049  * kind of lower layer not just hardware media.
4050  */
4051 
4052 void linkwatch_init_dev(struct net_device *dev);
4053 void linkwatch_fire_event(struct net_device *dev);
4054 void linkwatch_forget_dev(struct net_device *dev);
4055 
4056 /**
4057  *	netif_carrier_ok - test if carrier present
4058  *	@dev: network device
4059  *
4060  * Check if carrier is present on device
4061  */
4062 static inline bool netif_carrier_ok(const struct net_device *dev)
4063 {
4064 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4065 }
4066 
4067 unsigned long dev_trans_start(struct net_device *dev);
4068 
4069 void __netdev_watchdog_up(struct net_device *dev);
4070 
4071 void netif_carrier_on(struct net_device *dev);
4072 
4073 void netif_carrier_off(struct net_device *dev);
4074 
4075 /**
4076  *	netif_dormant_on - mark device as dormant.
4077  *	@dev: network device
4078  *
4079  * Mark device as dormant (as per RFC2863).
4080  *
4081  * The dormant state indicates that the relevant interface is not
4082  * actually in a condition to pass packets (i.e., it is not 'up') but is
4083  * in a "pending" state, waiting for some external event.  For "on-
4084  * demand" interfaces, this new state identifies the situation where the
4085  * interface is waiting for events to place it in the up state.
4086  */
4087 static inline void netif_dormant_on(struct net_device *dev)
4088 {
4089 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4090 		linkwatch_fire_event(dev);
4091 }
4092 
4093 /**
4094  *	netif_dormant_off - set device as not dormant.
4095  *	@dev: network device
4096  *
4097  * Device is not in dormant state.
4098  */
4099 static inline void netif_dormant_off(struct net_device *dev)
4100 {
4101 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4102 		linkwatch_fire_event(dev);
4103 }
4104 
4105 /**
4106  *	netif_dormant - test if device is dormant
4107  *	@dev: network device
4108  *
4109  * Check if device is dormant.
4110  */
4111 static inline bool netif_dormant(const struct net_device *dev)
4112 {
4113 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4114 }
4115 
4116 
4117 /**
4118  *	netif_testing_on - mark device as under test.
4119  *	@dev: network device
4120  *
4121  * Mark device as under test (as per RFC2863).
4122  *
4123  * The testing state indicates that some test(s) must be performed on
4124  * the interface. After completion, of the test, the interface state
4125  * will change to up, dormant, or down, as appropriate.
4126  */
4127 static inline void netif_testing_on(struct net_device *dev)
4128 {
4129 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4130 		linkwatch_fire_event(dev);
4131 }
4132 
4133 /**
4134  *	netif_testing_off - set device as not under test.
4135  *	@dev: network device
4136  *
4137  * Device is not in testing state.
4138  */
4139 static inline void netif_testing_off(struct net_device *dev)
4140 {
4141 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4142 		linkwatch_fire_event(dev);
4143 }
4144 
4145 /**
4146  *	netif_testing - test if device is under test
4147  *	@dev: network device
4148  *
4149  * Check if device is under test
4150  */
4151 static inline bool netif_testing(const struct net_device *dev)
4152 {
4153 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4154 }
4155 
4156 
4157 /**
4158  *	netif_oper_up - test if device is operational
4159  *	@dev: network device
4160  *
4161  * Check if carrier is operational
4162  */
4163 static inline bool netif_oper_up(const struct net_device *dev)
4164 {
4165 	return (dev->operstate == IF_OPER_UP ||
4166 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4167 }
4168 
4169 /**
4170  *	netif_device_present - is device available or removed
4171  *	@dev: network device
4172  *
4173  * Check if device has not been removed from system.
4174  */
4175 static inline bool netif_device_present(struct net_device *dev)
4176 {
4177 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4178 }
4179 
4180 void netif_device_detach(struct net_device *dev);
4181 
4182 void netif_device_attach(struct net_device *dev);
4183 
4184 /*
4185  * Network interface message level settings
4186  */
4187 
4188 enum {
4189 	NETIF_MSG_DRV_BIT,
4190 	NETIF_MSG_PROBE_BIT,
4191 	NETIF_MSG_LINK_BIT,
4192 	NETIF_MSG_TIMER_BIT,
4193 	NETIF_MSG_IFDOWN_BIT,
4194 	NETIF_MSG_IFUP_BIT,
4195 	NETIF_MSG_RX_ERR_BIT,
4196 	NETIF_MSG_TX_ERR_BIT,
4197 	NETIF_MSG_TX_QUEUED_BIT,
4198 	NETIF_MSG_INTR_BIT,
4199 	NETIF_MSG_TX_DONE_BIT,
4200 	NETIF_MSG_RX_STATUS_BIT,
4201 	NETIF_MSG_PKTDATA_BIT,
4202 	NETIF_MSG_HW_BIT,
4203 	NETIF_MSG_WOL_BIT,
4204 
4205 	/* When you add a new bit above, update netif_msg_class_names array
4206 	 * in net/ethtool/common.c
4207 	 */
4208 	NETIF_MSG_CLASS_COUNT,
4209 };
4210 /* Both ethtool_ops interface and internal driver implementation use u32 */
4211 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4212 
4213 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4214 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4215 
4216 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4217 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4218 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4219 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4220 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4221 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4222 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4223 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4224 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4225 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4226 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4227 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4228 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4229 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4230 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4231 
4232 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4233 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4234 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4235 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4236 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4237 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4238 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4239 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4240 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4241 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4242 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4243 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4244 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4245 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4246 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4247 
4248 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4249 {
4250 	/* use default */
4251 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4252 		return default_msg_enable_bits;
4253 	if (debug_value == 0)	/* no output */
4254 		return 0;
4255 	/* set low N bits */
4256 	return (1U << debug_value) - 1;
4257 }
4258 
4259 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4260 {
4261 	spin_lock(&txq->_xmit_lock);
4262 	txq->xmit_lock_owner = cpu;
4263 }
4264 
4265 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4266 {
4267 	__acquire(&txq->_xmit_lock);
4268 	return true;
4269 }
4270 
4271 static inline void __netif_tx_release(struct netdev_queue *txq)
4272 {
4273 	__release(&txq->_xmit_lock);
4274 }
4275 
4276 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4277 {
4278 	spin_lock_bh(&txq->_xmit_lock);
4279 	txq->xmit_lock_owner = smp_processor_id();
4280 }
4281 
4282 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4283 {
4284 	bool ok = spin_trylock(&txq->_xmit_lock);
4285 	if (likely(ok))
4286 		txq->xmit_lock_owner = smp_processor_id();
4287 	return ok;
4288 }
4289 
4290 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4291 {
4292 	txq->xmit_lock_owner = -1;
4293 	spin_unlock(&txq->_xmit_lock);
4294 }
4295 
4296 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4297 {
4298 	txq->xmit_lock_owner = -1;
4299 	spin_unlock_bh(&txq->_xmit_lock);
4300 }
4301 
4302 static inline void txq_trans_update(struct netdev_queue *txq)
4303 {
4304 	if (txq->xmit_lock_owner != -1)
4305 		txq->trans_start = jiffies;
4306 }
4307 
4308 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4309 static inline void netif_trans_update(struct net_device *dev)
4310 {
4311 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4312 
4313 	if (txq->trans_start != jiffies)
4314 		txq->trans_start = jiffies;
4315 }
4316 
4317 /**
4318  *	netif_tx_lock - grab network device transmit lock
4319  *	@dev: network device
4320  *
4321  * Get network device transmit lock
4322  */
4323 static inline void netif_tx_lock(struct net_device *dev)
4324 {
4325 	unsigned int i;
4326 	int cpu;
4327 
4328 	spin_lock(&dev->tx_global_lock);
4329 	cpu = smp_processor_id();
4330 	for (i = 0; i < dev->num_tx_queues; i++) {
4331 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4332 
4333 		/* We are the only thread of execution doing a
4334 		 * freeze, but we have to grab the _xmit_lock in
4335 		 * order to synchronize with threads which are in
4336 		 * the ->hard_start_xmit() handler and already
4337 		 * checked the frozen bit.
4338 		 */
4339 		__netif_tx_lock(txq, cpu);
4340 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4341 		__netif_tx_unlock(txq);
4342 	}
4343 }
4344 
4345 static inline void netif_tx_lock_bh(struct net_device *dev)
4346 {
4347 	local_bh_disable();
4348 	netif_tx_lock(dev);
4349 }
4350 
4351 static inline void netif_tx_unlock(struct net_device *dev)
4352 {
4353 	unsigned int i;
4354 
4355 	for (i = 0; i < dev->num_tx_queues; i++) {
4356 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4357 
4358 		/* No need to grab the _xmit_lock here.  If the
4359 		 * queue is not stopped for another reason, we
4360 		 * force a schedule.
4361 		 */
4362 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4363 		netif_schedule_queue(txq);
4364 	}
4365 	spin_unlock(&dev->tx_global_lock);
4366 }
4367 
4368 static inline void netif_tx_unlock_bh(struct net_device *dev)
4369 {
4370 	netif_tx_unlock(dev);
4371 	local_bh_enable();
4372 }
4373 
4374 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4375 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4376 		__netif_tx_lock(txq, cpu);		\
4377 	} else {					\
4378 		__netif_tx_acquire(txq);		\
4379 	}						\
4380 }
4381 
4382 #define HARD_TX_TRYLOCK(dev, txq)			\
4383 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4384 		__netif_tx_trylock(txq) :		\
4385 		__netif_tx_acquire(txq))
4386 
4387 #define HARD_TX_UNLOCK(dev, txq) {			\
4388 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4389 		__netif_tx_unlock(txq);			\
4390 	} else {					\
4391 		__netif_tx_release(txq);		\
4392 	}						\
4393 }
4394 
4395 static inline void netif_tx_disable(struct net_device *dev)
4396 {
4397 	unsigned int i;
4398 	int cpu;
4399 
4400 	local_bh_disable();
4401 	cpu = smp_processor_id();
4402 	spin_lock(&dev->tx_global_lock);
4403 	for (i = 0; i < dev->num_tx_queues; i++) {
4404 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4405 
4406 		__netif_tx_lock(txq, cpu);
4407 		netif_tx_stop_queue(txq);
4408 		__netif_tx_unlock(txq);
4409 	}
4410 	spin_unlock(&dev->tx_global_lock);
4411 	local_bh_enable();
4412 }
4413 
4414 static inline void netif_addr_lock(struct net_device *dev)
4415 {
4416 	unsigned char nest_level = 0;
4417 
4418 #ifdef CONFIG_LOCKDEP
4419 	nest_level = dev->nested_level;
4420 #endif
4421 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4422 }
4423 
4424 static inline void netif_addr_lock_bh(struct net_device *dev)
4425 {
4426 	unsigned char nest_level = 0;
4427 
4428 #ifdef CONFIG_LOCKDEP
4429 	nest_level = dev->nested_level;
4430 #endif
4431 	local_bh_disable();
4432 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4433 }
4434 
4435 static inline void netif_addr_unlock(struct net_device *dev)
4436 {
4437 	spin_unlock(&dev->addr_list_lock);
4438 }
4439 
4440 static inline void netif_addr_unlock_bh(struct net_device *dev)
4441 {
4442 	spin_unlock_bh(&dev->addr_list_lock);
4443 }
4444 
4445 /*
4446  * dev_addrs walker. Should be used only for read access. Call with
4447  * rcu_read_lock held.
4448  */
4449 #define for_each_dev_addr(dev, ha) \
4450 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4451 
4452 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4453 
4454 void ether_setup(struct net_device *dev);
4455 
4456 /* Support for loadable net-drivers */
4457 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4458 				    unsigned char name_assign_type,
4459 				    void (*setup)(struct net_device *),
4460 				    unsigned int txqs, unsigned int rxqs);
4461 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4462 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4463 
4464 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4465 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4466 			 count)
4467 
4468 int register_netdev(struct net_device *dev);
4469 void unregister_netdev(struct net_device *dev);
4470 
4471 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4472 
4473 /* General hardware address lists handling functions */
4474 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4475 		   struct netdev_hw_addr_list *from_list, int addr_len);
4476 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4477 		      struct netdev_hw_addr_list *from_list, int addr_len);
4478 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4479 		       struct net_device *dev,
4480 		       int (*sync)(struct net_device *, const unsigned char *),
4481 		       int (*unsync)(struct net_device *,
4482 				     const unsigned char *));
4483 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4484 			   struct net_device *dev,
4485 			   int (*sync)(struct net_device *,
4486 				       const unsigned char *, int),
4487 			   int (*unsync)(struct net_device *,
4488 					 const unsigned char *, int));
4489 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4490 			      struct net_device *dev,
4491 			      int (*unsync)(struct net_device *,
4492 					    const unsigned char *, int));
4493 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4494 			  struct net_device *dev,
4495 			  int (*unsync)(struct net_device *,
4496 					const unsigned char *));
4497 void __hw_addr_init(struct netdev_hw_addr_list *list);
4498 
4499 /* Functions used for device addresses handling */
4500 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4501 		 unsigned char addr_type);
4502 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4503 		 unsigned char addr_type);
4504 void dev_addr_flush(struct net_device *dev);
4505 int dev_addr_init(struct net_device *dev);
4506 
4507 /* Functions used for unicast addresses handling */
4508 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4509 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4510 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4511 int dev_uc_sync(struct net_device *to, struct net_device *from);
4512 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4513 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4514 void dev_uc_flush(struct net_device *dev);
4515 void dev_uc_init(struct net_device *dev);
4516 
4517 /**
4518  *  __dev_uc_sync - Synchonize device's unicast list
4519  *  @dev:  device to sync
4520  *  @sync: function to call if address should be added
4521  *  @unsync: function to call if address should be removed
4522  *
4523  *  Add newly added addresses to the interface, and release
4524  *  addresses that have been deleted.
4525  */
4526 static inline int __dev_uc_sync(struct net_device *dev,
4527 				int (*sync)(struct net_device *,
4528 					    const unsigned char *),
4529 				int (*unsync)(struct net_device *,
4530 					      const unsigned char *))
4531 {
4532 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4533 }
4534 
4535 /**
4536  *  __dev_uc_unsync - Remove synchronized addresses from device
4537  *  @dev:  device to sync
4538  *  @unsync: function to call if address should be removed
4539  *
4540  *  Remove all addresses that were added to the device by dev_uc_sync().
4541  */
4542 static inline void __dev_uc_unsync(struct net_device *dev,
4543 				   int (*unsync)(struct net_device *,
4544 						 const unsigned char *))
4545 {
4546 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4547 }
4548 
4549 /* Functions used for multicast addresses handling */
4550 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4551 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4552 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4553 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4554 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4555 int dev_mc_sync(struct net_device *to, struct net_device *from);
4556 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4557 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4558 void dev_mc_flush(struct net_device *dev);
4559 void dev_mc_init(struct net_device *dev);
4560 
4561 /**
4562  *  __dev_mc_sync - Synchonize device's multicast list
4563  *  @dev:  device to sync
4564  *  @sync: function to call if address should be added
4565  *  @unsync: function to call if address should be removed
4566  *
4567  *  Add newly added addresses to the interface, and release
4568  *  addresses that have been deleted.
4569  */
4570 static inline int __dev_mc_sync(struct net_device *dev,
4571 				int (*sync)(struct net_device *,
4572 					    const unsigned char *),
4573 				int (*unsync)(struct net_device *,
4574 					      const unsigned char *))
4575 {
4576 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4577 }
4578 
4579 /**
4580  *  __dev_mc_unsync - Remove synchronized addresses from device
4581  *  @dev:  device to sync
4582  *  @unsync: function to call if address should be removed
4583  *
4584  *  Remove all addresses that were added to the device by dev_mc_sync().
4585  */
4586 static inline void __dev_mc_unsync(struct net_device *dev,
4587 				   int (*unsync)(struct net_device *,
4588 						 const unsigned char *))
4589 {
4590 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4591 }
4592 
4593 /* Functions used for secondary unicast and multicast support */
4594 void dev_set_rx_mode(struct net_device *dev);
4595 void __dev_set_rx_mode(struct net_device *dev);
4596 int dev_set_promiscuity(struct net_device *dev, int inc);
4597 int dev_set_allmulti(struct net_device *dev, int inc);
4598 void netdev_state_change(struct net_device *dev);
4599 void __netdev_notify_peers(struct net_device *dev);
4600 void netdev_notify_peers(struct net_device *dev);
4601 void netdev_features_change(struct net_device *dev);
4602 /* Load a device via the kmod */
4603 void dev_load(struct net *net, const char *name);
4604 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4605 					struct rtnl_link_stats64 *storage);
4606 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4607 			     const struct net_device_stats *netdev_stats);
4608 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4609 			   const struct pcpu_sw_netstats __percpu *netstats);
4610 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4611 
4612 extern int		netdev_max_backlog;
4613 extern int		netdev_tstamp_prequeue;
4614 extern int		weight_p;
4615 extern int		dev_weight_rx_bias;
4616 extern int		dev_weight_tx_bias;
4617 extern int		dev_rx_weight;
4618 extern int		dev_tx_weight;
4619 extern int		gro_normal_batch;
4620 
4621 enum {
4622 	NESTED_SYNC_IMM_BIT,
4623 	NESTED_SYNC_TODO_BIT,
4624 };
4625 
4626 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4627 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4628 
4629 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4630 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4631 
4632 struct netdev_nested_priv {
4633 	unsigned char flags;
4634 	void *data;
4635 };
4636 
4637 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4638 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4639 						     struct list_head **iter);
4640 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4641 						     struct list_head **iter);
4642 
4643 #ifdef CONFIG_LOCKDEP
4644 static LIST_HEAD(net_unlink_list);
4645 
4646 static inline void net_unlink_todo(struct net_device *dev)
4647 {
4648 	if (list_empty(&dev->unlink_list))
4649 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4650 }
4651 #endif
4652 
4653 /* iterate through upper list, must be called under RCU read lock */
4654 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4655 	for (iter = &(dev)->adj_list.upper, \
4656 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4657 	     updev; \
4658 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4659 
4660 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4661 				  int (*fn)(struct net_device *upper_dev,
4662 					    struct netdev_nested_priv *priv),
4663 				  struct netdev_nested_priv *priv);
4664 
4665 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4666 				  struct net_device *upper_dev);
4667 
4668 bool netdev_has_any_upper_dev(struct net_device *dev);
4669 
4670 void *netdev_lower_get_next_private(struct net_device *dev,
4671 				    struct list_head **iter);
4672 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4673 					struct list_head **iter);
4674 
4675 #define netdev_for_each_lower_private(dev, priv, iter) \
4676 	for (iter = (dev)->adj_list.lower.next, \
4677 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4678 	     priv; \
4679 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4680 
4681 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4682 	for (iter = &(dev)->adj_list.lower, \
4683 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4684 	     priv; \
4685 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4686 
4687 void *netdev_lower_get_next(struct net_device *dev,
4688 				struct list_head **iter);
4689 
4690 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4691 	for (iter = (dev)->adj_list.lower.next, \
4692 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4693 	     ldev; \
4694 	     ldev = netdev_lower_get_next(dev, &(iter)))
4695 
4696 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4697 					     struct list_head **iter);
4698 int netdev_walk_all_lower_dev(struct net_device *dev,
4699 			      int (*fn)(struct net_device *lower_dev,
4700 					struct netdev_nested_priv *priv),
4701 			      struct netdev_nested_priv *priv);
4702 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4703 				  int (*fn)(struct net_device *lower_dev,
4704 					    struct netdev_nested_priv *priv),
4705 				  struct netdev_nested_priv *priv);
4706 
4707 void *netdev_adjacent_get_private(struct list_head *adj_list);
4708 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4709 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4710 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4711 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4712 			  struct netlink_ext_ack *extack);
4713 int netdev_master_upper_dev_link(struct net_device *dev,
4714 				 struct net_device *upper_dev,
4715 				 void *upper_priv, void *upper_info,
4716 				 struct netlink_ext_ack *extack);
4717 void netdev_upper_dev_unlink(struct net_device *dev,
4718 			     struct net_device *upper_dev);
4719 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4720 				   struct net_device *new_dev,
4721 				   struct net_device *dev,
4722 				   struct netlink_ext_ack *extack);
4723 void netdev_adjacent_change_commit(struct net_device *old_dev,
4724 				   struct net_device *new_dev,
4725 				   struct net_device *dev);
4726 void netdev_adjacent_change_abort(struct net_device *old_dev,
4727 				  struct net_device *new_dev,
4728 				  struct net_device *dev);
4729 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4730 void *netdev_lower_dev_get_private(struct net_device *dev,
4731 				   struct net_device *lower_dev);
4732 void netdev_lower_state_changed(struct net_device *lower_dev,
4733 				void *lower_state_info);
4734 
4735 /* RSS keys are 40 or 52 bytes long */
4736 #define NETDEV_RSS_KEY_LEN 52
4737 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4738 void netdev_rss_key_fill(void *buffer, size_t len);
4739 
4740 int skb_checksum_help(struct sk_buff *skb);
4741 int skb_crc32c_csum_help(struct sk_buff *skb);
4742 int skb_csum_hwoffload_help(struct sk_buff *skb,
4743 			    const netdev_features_t features);
4744 
4745 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4746 				  netdev_features_t features, bool tx_path);
4747 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4748 				    netdev_features_t features);
4749 
4750 struct netdev_bonding_info {
4751 	ifslave	slave;
4752 	ifbond	master;
4753 };
4754 
4755 struct netdev_notifier_bonding_info {
4756 	struct netdev_notifier_info info; /* must be first */
4757 	struct netdev_bonding_info  bonding_info;
4758 };
4759 
4760 void netdev_bonding_info_change(struct net_device *dev,
4761 				struct netdev_bonding_info *bonding_info);
4762 
4763 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4764 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4765 #else
4766 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4767 				  const void *data)
4768 {
4769 }
4770 #endif
4771 
4772 static inline
4773 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4774 {
4775 	return __skb_gso_segment(skb, features, true);
4776 }
4777 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4778 
4779 static inline bool can_checksum_protocol(netdev_features_t features,
4780 					 __be16 protocol)
4781 {
4782 	if (protocol == htons(ETH_P_FCOE))
4783 		return !!(features & NETIF_F_FCOE_CRC);
4784 
4785 	/* Assume this is an IP checksum (not SCTP CRC) */
4786 
4787 	if (features & NETIF_F_HW_CSUM) {
4788 		/* Can checksum everything */
4789 		return true;
4790 	}
4791 
4792 	switch (protocol) {
4793 	case htons(ETH_P_IP):
4794 		return !!(features & NETIF_F_IP_CSUM);
4795 	case htons(ETH_P_IPV6):
4796 		return !!(features & NETIF_F_IPV6_CSUM);
4797 	default:
4798 		return false;
4799 	}
4800 }
4801 
4802 #ifdef CONFIG_BUG
4803 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4804 #else
4805 static inline void netdev_rx_csum_fault(struct net_device *dev,
4806 					struct sk_buff *skb)
4807 {
4808 }
4809 #endif
4810 /* rx skb timestamps */
4811 void net_enable_timestamp(void);
4812 void net_disable_timestamp(void);
4813 
4814 #ifdef CONFIG_PROC_FS
4815 int __init dev_proc_init(void);
4816 #else
4817 #define dev_proc_init() 0
4818 #endif
4819 
4820 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4821 					      struct sk_buff *skb, struct net_device *dev,
4822 					      bool more)
4823 {
4824 	__this_cpu_write(softnet_data.xmit.more, more);
4825 	return ops->ndo_start_xmit(skb, dev);
4826 }
4827 
4828 static inline bool netdev_xmit_more(void)
4829 {
4830 	return __this_cpu_read(softnet_data.xmit.more);
4831 }
4832 
4833 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4834 					    struct netdev_queue *txq, bool more)
4835 {
4836 	const struct net_device_ops *ops = dev->netdev_ops;
4837 	netdev_tx_t rc;
4838 
4839 	rc = __netdev_start_xmit(ops, skb, dev, more);
4840 	if (rc == NETDEV_TX_OK)
4841 		txq_trans_update(txq);
4842 
4843 	return rc;
4844 }
4845 
4846 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4847 				const void *ns);
4848 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4849 				 const void *ns);
4850 
4851 extern const struct kobj_ns_type_operations net_ns_type_operations;
4852 
4853 const char *netdev_drivername(const struct net_device *dev);
4854 
4855 void linkwatch_run_queue(void);
4856 
4857 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4858 							  netdev_features_t f2)
4859 {
4860 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4861 		if (f1 & NETIF_F_HW_CSUM)
4862 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4863 		else
4864 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4865 	}
4866 
4867 	return f1 & f2;
4868 }
4869 
4870 static inline netdev_features_t netdev_get_wanted_features(
4871 	struct net_device *dev)
4872 {
4873 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4874 }
4875 netdev_features_t netdev_increment_features(netdev_features_t all,
4876 	netdev_features_t one, netdev_features_t mask);
4877 
4878 /* Allow TSO being used on stacked device :
4879  * Performing the GSO segmentation before last device
4880  * is a performance improvement.
4881  */
4882 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4883 							netdev_features_t mask)
4884 {
4885 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4886 }
4887 
4888 int __netdev_update_features(struct net_device *dev);
4889 void netdev_update_features(struct net_device *dev);
4890 void netdev_change_features(struct net_device *dev);
4891 
4892 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4893 					struct net_device *dev);
4894 
4895 netdev_features_t passthru_features_check(struct sk_buff *skb,
4896 					  struct net_device *dev,
4897 					  netdev_features_t features);
4898 netdev_features_t netif_skb_features(struct sk_buff *skb);
4899 
4900 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4901 {
4902 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4903 
4904 	/* check flags correspondence */
4905 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4906 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4907 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4908 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4909 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4910 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4911 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4912 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4913 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4914 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4915 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4916 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4917 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4918 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4919 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4920 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4921 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4922 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4923 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4924 
4925 	return (features & feature) == feature;
4926 }
4927 
4928 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4929 {
4930 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4931 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4932 }
4933 
4934 static inline bool netif_needs_gso(struct sk_buff *skb,
4935 				   netdev_features_t features)
4936 {
4937 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4938 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4939 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4940 }
4941 
4942 static inline void netif_set_gso_max_size(struct net_device *dev,
4943 					  unsigned int size)
4944 {
4945 	dev->gso_max_size = size;
4946 }
4947 
4948 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4949 					int pulled_hlen, u16 mac_offset,
4950 					int mac_len)
4951 {
4952 	skb->protocol = protocol;
4953 	skb->encapsulation = 1;
4954 	skb_push(skb, pulled_hlen);
4955 	skb_reset_transport_header(skb);
4956 	skb->mac_header = mac_offset;
4957 	skb->network_header = skb->mac_header + mac_len;
4958 	skb->mac_len = mac_len;
4959 }
4960 
4961 static inline bool netif_is_macsec(const struct net_device *dev)
4962 {
4963 	return dev->priv_flags & IFF_MACSEC;
4964 }
4965 
4966 static inline bool netif_is_macvlan(const struct net_device *dev)
4967 {
4968 	return dev->priv_flags & IFF_MACVLAN;
4969 }
4970 
4971 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4972 {
4973 	return dev->priv_flags & IFF_MACVLAN_PORT;
4974 }
4975 
4976 static inline bool netif_is_bond_master(const struct net_device *dev)
4977 {
4978 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4979 }
4980 
4981 static inline bool netif_is_bond_slave(const struct net_device *dev)
4982 {
4983 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4984 }
4985 
4986 static inline bool netif_supports_nofcs(struct net_device *dev)
4987 {
4988 	return dev->priv_flags & IFF_SUPP_NOFCS;
4989 }
4990 
4991 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4992 {
4993 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4994 }
4995 
4996 static inline bool netif_is_l3_master(const struct net_device *dev)
4997 {
4998 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4999 }
5000 
5001 static inline bool netif_is_l3_slave(const struct net_device *dev)
5002 {
5003 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5004 }
5005 
5006 static inline bool netif_is_bridge_master(const struct net_device *dev)
5007 {
5008 	return dev->priv_flags & IFF_EBRIDGE;
5009 }
5010 
5011 static inline bool netif_is_bridge_port(const struct net_device *dev)
5012 {
5013 	return dev->priv_flags & IFF_BRIDGE_PORT;
5014 }
5015 
5016 static inline bool netif_is_ovs_master(const struct net_device *dev)
5017 {
5018 	return dev->priv_flags & IFF_OPENVSWITCH;
5019 }
5020 
5021 static inline bool netif_is_ovs_port(const struct net_device *dev)
5022 {
5023 	return dev->priv_flags & IFF_OVS_DATAPATH;
5024 }
5025 
5026 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5027 {
5028 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5029 }
5030 
5031 static inline bool netif_is_team_master(const struct net_device *dev)
5032 {
5033 	return dev->priv_flags & IFF_TEAM;
5034 }
5035 
5036 static inline bool netif_is_team_port(const struct net_device *dev)
5037 {
5038 	return dev->priv_flags & IFF_TEAM_PORT;
5039 }
5040 
5041 static inline bool netif_is_lag_master(const struct net_device *dev)
5042 {
5043 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5044 }
5045 
5046 static inline bool netif_is_lag_port(const struct net_device *dev)
5047 {
5048 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5049 }
5050 
5051 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5052 {
5053 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5054 }
5055 
5056 static inline bool netif_is_failover(const struct net_device *dev)
5057 {
5058 	return dev->priv_flags & IFF_FAILOVER;
5059 }
5060 
5061 static inline bool netif_is_failover_slave(const struct net_device *dev)
5062 {
5063 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5064 }
5065 
5066 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5067 static inline void netif_keep_dst(struct net_device *dev)
5068 {
5069 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5070 }
5071 
5072 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5073 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5074 {
5075 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5076 	return dev->priv_flags & IFF_MACSEC;
5077 }
5078 
5079 extern struct pernet_operations __net_initdata loopback_net_ops;
5080 
5081 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5082 
5083 /* netdev_printk helpers, similar to dev_printk */
5084 
5085 static inline const char *netdev_name(const struct net_device *dev)
5086 {
5087 	if (!dev->name[0] || strchr(dev->name, '%'))
5088 		return "(unnamed net_device)";
5089 	return dev->name;
5090 }
5091 
5092 static inline bool netdev_unregistering(const struct net_device *dev)
5093 {
5094 	return dev->reg_state == NETREG_UNREGISTERING;
5095 }
5096 
5097 static inline const char *netdev_reg_state(const struct net_device *dev)
5098 {
5099 	switch (dev->reg_state) {
5100 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5101 	case NETREG_REGISTERED: return "";
5102 	case NETREG_UNREGISTERING: return " (unregistering)";
5103 	case NETREG_UNREGISTERED: return " (unregistered)";
5104 	case NETREG_RELEASED: return " (released)";
5105 	case NETREG_DUMMY: return " (dummy)";
5106 	}
5107 
5108 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5109 	return " (unknown)";
5110 }
5111 
5112 __printf(3, 4) __cold
5113 void netdev_printk(const char *level, const struct net_device *dev,
5114 		   const char *format, ...);
5115 __printf(2, 3) __cold
5116 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5117 __printf(2, 3) __cold
5118 void netdev_alert(const struct net_device *dev, const char *format, ...);
5119 __printf(2, 3) __cold
5120 void netdev_crit(const struct net_device *dev, const char *format, ...);
5121 __printf(2, 3) __cold
5122 void netdev_err(const struct net_device *dev, const char *format, ...);
5123 __printf(2, 3) __cold
5124 void netdev_warn(const struct net_device *dev, const char *format, ...);
5125 __printf(2, 3) __cold
5126 void netdev_notice(const struct net_device *dev, const char *format, ...);
5127 __printf(2, 3) __cold
5128 void netdev_info(const struct net_device *dev, const char *format, ...);
5129 
5130 #define netdev_level_once(level, dev, fmt, ...)			\
5131 do {								\
5132 	static bool __print_once __read_mostly;			\
5133 								\
5134 	if (!__print_once) {					\
5135 		__print_once = true;				\
5136 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5137 	}							\
5138 } while (0)
5139 
5140 #define netdev_emerg_once(dev, fmt, ...) \
5141 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5142 #define netdev_alert_once(dev, fmt, ...) \
5143 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5144 #define netdev_crit_once(dev, fmt, ...) \
5145 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5146 #define netdev_err_once(dev, fmt, ...) \
5147 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5148 #define netdev_warn_once(dev, fmt, ...) \
5149 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5150 #define netdev_notice_once(dev, fmt, ...) \
5151 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5152 #define netdev_info_once(dev, fmt, ...) \
5153 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5154 
5155 #define MODULE_ALIAS_NETDEV(device) \
5156 	MODULE_ALIAS("netdev-" device)
5157 
5158 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5159 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5160 #define netdev_dbg(__dev, format, args...)			\
5161 do {								\
5162 	dynamic_netdev_dbg(__dev, format, ##args);		\
5163 } while (0)
5164 #elif defined(DEBUG)
5165 #define netdev_dbg(__dev, format, args...)			\
5166 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5167 #else
5168 #define netdev_dbg(__dev, format, args...)			\
5169 ({								\
5170 	if (0)							\
5171 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5172 })
5173 #endif
5174 
5175 #if defined(VERBOSE_DEBUG)
5176 #define netdev_vdbg	netdev_dbg
5177 #else
5178 
5179 #define netdev_vdbg(dev, format, args...)			\
5180 ({								\
5181 	if (0)							\
5182 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5183 	0;							\
5184 })
5185 #endif
5186 
5187 /*
5188  * netdev_WARN() acts like dev_printk(), but with the key difference
5189  * of using a WARN/WARN_ON to get the message out, including the
5190  * file/line information and a backtrace.
5191  */
5192 #define netdev_WARN(dev, format, args...)			\
5193 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5194 	     netdev_reg_state(dev), ##args)
5195 
5196 #define netdev_WARN_ONCE(dev, format, args...)				\
5197 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5198 		  netdev_reg_state(dev), ##args)
5199 
5200 /* netif printk helpers, similar to netdev_printk */
5201 
5202 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5203 do {					  			\
5204 	if (netif_msg_##type(priv))				\
5205 		netdev_printk(level, (dev), fmt, ##args);	\
5206 } while (0)
5207 
5208 #define netif_level(level, priv, type, dev, fmt, args...)	\
5209 do {								\
5210 	if (netif_msg_##type(priv))				\
5211 		netdev_##level(dev, fmt, ##args);		\
5212 } while (0)
5213 
5214 #define netif_emerg(priv, type, dev, fmt, args...)		\
5215 	netif_level(emerg, priv, type, dev, fmt, ##args)
5216 #define netif_alert(priv, type, dev, fmt, args...)		\
5217 	netif_level(alert, priv, type, dev, fmt, ##args)
5218 #define netif_crit(priv, type, dev, fmt, args...)		\
5219 	netif_level(crit, priv, type, dev, fmt, ##args)
5220 #define netif_err(priv, type, dev, fmt, args...)		\
5221 	netif_level(err, priv, type, dev, fmt, ##args)
5222 #define netif_warn(priv, type, dev, fmt, args...)		\
5223 	netif_level(warn, priv, type, dev, fmt, ##args)
5224 #define netif_notice(priv, type, dev, fmt, args...)		\
5225 	netif_level(notice, priv, type, dev, fmt, ##args)
5226 #define netif_info(priv, type, dev, fmt, args...)		\
5227 	netif_level(info, priv, type, dev, fmt, ##args)
5228 
5229 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5230 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5231 #define netif_dbg(priv, type, netdev, format, args...)		\
5232 do {								\
5233 	if (netif_msg_##type(priv))				\
5234 		dynamic_netdev_dbg(netdev, format, ##args);	\
5235 } while (0)
5236 #elif defined(DEBUG)
5237 #define netif_dbg(priv, type, dev, format, args...)		\
5238 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5239 #else
5240 #define netif_dbg(priv, type, dev, format, args...)			\
5241 ({									\
5242 	if (0)								\
5243 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5244 	0;								\
5245 })
5246 #endif
5247 
5248 /* if @cond then downgrade to debug, else print at @level */
5249 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5250 	do {                                                              \
5251 		if (cond)                                                 \
5252 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5253 		else                                                      \
5254 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5255 	} while (0)
5256 
5257 #if defined(VERBOSE_DEBUG)
5258 #define netif_vdbg	netif_dbg
5259 #else
5260 #define netif_vdbg(priv, type, dev, format, args...)		\
5261 ({								\
5262 	if (0)							\
5263 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5264 	0;							\
5265 })
5266 #endif
5267 
5268 /*
5269  *	The list of packet types we will receive (as opposed to discard)
5270  *	and the routines to invoke.
5271  *
5272  *	Why 16. Because with 16 the only overlap we get on a hash of the
5273  *	low nibble of the protocol value is RARP/SNAP/X.25.
5274  *
5275  *		0800	IP
5276  *		0001	802.3
5277  *		0002	AX.25
5278  *		0004	802.2
5279  *		8035	RARP
5280  *		0005	SNAP
5281  *		0805	X.25
5282  *		0806	ARP
5283  *		8137	IPX
5284  *		0009	Localtalk
5285  *		86DD	IPv6
5286  */
5287 #define PTYPE_HASH_SIZE	(16)
5288 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5289 
5290 extern struct net_device *blackhole_netdev;
5291 
5292 #endif	/* _LINUX_NETDEVICE_H */
5293