1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 32 #include <linux/percpu.h> 33 #include <linux/rculist.h> 34 #include <linux/workqueue.h> 35 #include <linux/dynamic_queue_limits.h> 36 37 #include <net/net_namespace.h> 38 #ifdef CONFIG_DCB 39 #include <net/dcbnl.h> 40 #endif 41 #include <net/netprio_cgroup.h> 42 #include <net/xdp.h> 43 44 #include <linux/netdev_features.h> 45 #include <linux/neighbour.h> 46 #include <uapi/linux/netdevice.h> 47 #include <uapi/linux/if_bonding.h> 48 #include <uapi/linux/pkt_cls.h> 49 #include <linux/hashtable.h> 50 51 struct netpoll_info; 52 struct device; 53 struct ethtool_ops; 54 struct phy_device; 55 struct dsa_port; 56 struct ip_tunnel_parm; 57 struct macsec_context; 58 struct macsec_ops; 59 60 struct sfp_bus; 61 /* 802.11 specific */ 62 struct wireless_dev; 63 /* 802.15.4 specific */ 64 struct wpan_dev; 65 struct mpls_dev; 66 /* UDP Tunnel offloads */ 67 struct udp_tunnel_info; 68 struct udp_tunnel_nic_info; 69 struct udp_tunnel_nic; 70 struct bpf_prog; 71 struct xdp_buff; 72 73 void synchronize_net(void); 74 void netdev_set_default_ethtool_ops(struct net_device *dev, 75 const struct ethtool_ops *ops); 76 77 /* Backlog congestion levels */ 78 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 79 #define NET_RX_DROP 1 /* packet dropped */ 80 81 #define MAX_NEST_DEV 8 82 83 /* 84 * Transmit return codes: transmit return codes originate from three different 85 * namespaces: 86 * 87 * - qdisc return codes 88 * - driver transmit return codes 89 * - errno values 90 * 91 * Drivers are allowed to return any one of those in their hard_start_xmit() 92 * function. Real network devices commonly used with qdiscs should only return 93 * the driver transmit return codes though - when qdiscs are used, the actual 94 * transmission happens asynchronously, so the value is not propagated to 95 * higher layers. Virtual network devices transmit synchronously; in this case 96 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 97 * others are propagated to higher layers. 98 */ 99 100 /* qdisc ->enqueue() return codes. */ 101 #define NET_XMIT_SUCCESS 0x00 102 #define NET_XMIT_DROP 0x01 /* skb dropped */ 103 #define NET_XMIT_CN 0x02 /* congestion notification */ 104 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 105 106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 107 * indicates that the device will soon be dropping packets, or already drops 108 * some packets of the same priority; prompting us to send less aggressively. */ 109 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 110 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 111 112 /* Driver transmit return codes */ 113 #define NETDEV_TX_MASK 0xf0 114 115 enum netdev_tx { 116 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 117 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 118 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 119 }; 120 typedef enum netdev_tx netdev_tx_t; 121 122 /* 123 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 124 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 125 */ 126 static inline bool dev_xmit_complete(int rc) 127 { 128 /* 129 * Positive cases with an skb consumed by a driver: 130 * - successful transmission (rc == NETDEV_TX_OK) 131 * - error while transmitting (rc < 0) 132 * - error while queueing to a different device (rc & NET_XMIT_MASK) 133 */ 134 if (likely(rc < NET_XMIT_MASK)) 135 return true; 136 137 return false; 138 } 139 140 /* 141 * Compute the worst-case header length according to the protocols 142 * used. 143 */ 144 145 #if defined(CONFIG_HYPERV_NET) 146 # define LL_MAX_HEADER 128 147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 148 # if defined(CONFIG_MAC80211_MESH) 149 # define LL_MAX_HEADER 128 150 # else 151 # define LL_MAX_HEADER 96 152 # endif 153 #else 154 # define LL_MAX_HEADER 32 155 #endif 156 157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 158 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 159 #define MAX_HEADER LL_MAX_HEADER 160 #else 161 #define MAX_HEADER (LL_MAX_HEADER + 48) 162 #endif 163 164 /* 165 * Old network device statistics. Fields are native words 166 * (unsigned long) so they can be read and written atomically. 167 */ 168 169 struct net_device_stats { 170 unsigned long rx_packets; 171 unsigned long tx_packets; 172 unsigned long rx_bytes; 173 unsigned long tx_bytes; 174 unsigned long rx_errors; 175 unsigned long tx_errors; 176 unsigned long rx_dropped; 177 unsigned long tx_dropped; 178 unsigned long multicast; 179 unsigned long collisions; 180 unsigned long rx_length_errors; 181 unsigned long rx_over_errors; 182 unsigned long rx_crc_errors; 183 unsigned long rx_frame_errors; 184 unsigned long rx_fifo_errors; 185 unsigned long rx_missed_errors; 186 unsigned long tx_aborted_errors; 187 unsigned long tx_carrier_errors; 188 unsigned long tx_fifo_errors; 189 unsigned long tx_heartbeat_errors; 190 unsigned long tx_window_errors; 191 unsigned long rx_compressed; 192 unsigned long tx_compressed; 193 }; 194 195 196 #include <linux/cache.h> 197 #include <linux/skbuff.h> 198 199 #ifdef CONFIG_RPS 200 #include <linux/static_key.h> 201 extern struct static_key_false rps_needed; 202 extern struct static_key_false rfs_needed; 203 #endif 204 205 struct neighbour; 206 struct neigh_parms; 207 struct sk_buff; 208 209 struct netdev_hw_addr { 210 struct list_head list; 211 unsigned char addr[MAX_ADDR_LEN]; 212 unsigned char type; 213 #define NETDEV_HW_ADDR_T_LAN 1 214 #define NETDEV_HW_ADDR_T_SAN 2 215 #define NETDEV_HW_ADDR_T_UNICAST 3 216 #define NETDEV_HW_ADDR_T_MULTICAST 4 217 bool global_use; 218 int sync_cnt; 219 int refcount; 220 int synced; 221 struct rcu_head rcu_head; 222 }; 223 224 struct netdev_hw_addr_list { 225 struct list_head list; 226 int count; 227 }; 228 229 #define netdev_hw_addr_list_count(l) ((l)->count) 230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 231 #define netdev_hw_addr_list_for_each(ha, l) \ 232 list_for_each_entry(ha, &(l)->list, list) 233 234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 236 #define netdev_for_each_uc_addr(ha, dev) \ 237 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 238 239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 241 #define netdev_for_each_mc_addr(ha, dev) \ 242 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 243 244 struct hh_cache { 245 unsigned int hh_len; 246 seqlock_t hh_lock; 247 248 /* cached hardware header; allow for machine alignment needs. */ 249 #define HH_DATA_MOD 16 250 #define HH_DATA_OFF(__len) \ 251 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 252 #define HH_DATA_ALIGN(__len) \ 253 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 254 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 255 }; 256 257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 258 * Alternative is: 259 * dev->hard_header_len ? (dev->hard_header_len + 260 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 261 * 262 * We could use other alignment values, but we must maintain the 263 * relationship HH alignment <= LL alignment. 264 */ 265 #define LL_RESERVED_SPACE(dev) \ 266 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 268 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 269 270 struct header_ops { 271 int (*create) (struct sk_buff *skb, struct net_device *dev, 272 unsigned short type, const void *daddr, 273 const void *saddr, unsigned int len); 274 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 275 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 276 void (*cache_update)(struct hh_cache *hh, 277 const struct net_device *dev, 278 const unsigned char *haddr); 279 bool (*validate)(const char *ll_header, unsigned int len); 280 __be16 (*parse_protocol)(const struct sk_buff *skb); 281 }; 282 283 /* These flag bits are private to the generic network queueing 284 * layer; they may not be explicitly referenced by any other 285 * code. 286 */ 287 288 enum netdev_state_t { 289 __LINK_STATE_START, 290 __LINK_STATE_PRESENT, 291 __LINK_STATE_NOCARRIER, 292 __LINK_STATE_LINKWATCH_PENDING, 293 __LINK_STATE_DORMANT, 294 __LINK_STATE_TESTING, 295 }; 296 297 298 /* 299 * This structure holds boot-time configured netdevice settings. They 300 * are then used in the device probing. 301 */ 302 struct netdev_boot_setup { 303 char name[IFNAMSIZ]; 304 struct ifmap map; 305 }; 306 #define NETDEV_BOOT_SETUP_MAX 8 307 308 int __init netdev_boot_setup(char *str); 309 310 struct gro_list { 311 struct list_head list; 312 int count; 313 }; 314 315 /* 316 * size of gro hash buckets, must less than bit number of 317 * napi_struct::gro_bitmask 318 */ 319 #define GRO_HASH_BUCKETS 8 320 321 /* 322 * Structure for NAPI scheduling similar to tasklet but with weighting 323 */ 324 struct napi_struct { 325 /* The poll_list must only be managed by the entity which 326 * changes the state of the NAPI_STATE_SCHED bit. This means 327 * whoever atomically sets that bit can add this napi_struct 328 * to the per-CPU poll_list, and whoever clears that bit 329 * can remove from the list right before clearing the bit. 330 */ 331 struct list_head poll_list; 332 333 unsigned long state; 334 int weight; 335 int defer_hard_irqs_count; 336 unsigned long gro_bitmask; 337 int (*poll)(struct napi_struct *, int); 338 #ifdef CONFIG_NETPOLL 339 int poll_owner; 340 #endif 341 struct net_device *dev; 342 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 343 struct sk_buff *skb; 344 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 345 int rx_count; /* length of rx_list */ 346 struct hrtimer timer; 347 struct list_head dev_list; 348 struct hlist_node napi_hash_node; 349 unsigned int napi_id; 350 struct task_struct *thread; 351 }; 352 353 enum { 354 NAPI_STATE_SCHED, /* Poll is scheduled */ 355 NAPI_STATE_MISSED, /* reschedule a napi */ 356 NAPI_STATE_DISABLE, /* Disable pending */ 357 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 358 NAPI_STATE_LISTED, /* NAPI added to system lists */ 359 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 360 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 361 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 362 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 363 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 364 }; 365 366 enum { 367 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 368 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 369 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 370 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 371 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 372 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 373 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 374 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 375 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 376 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 377 }; 378 379 enum gro_result { 380 GRO_MERGED, 381 GRO_MERGED_FREE, 382 GRO_HELD, 383 GRO_NORMAL, 384 GRO_CONSUMED, 385 }; 386 typedef enum gro_result gro_result_t; 387 388 /* 389 * enum rx_handler_result - Possible return values for rx_handlers. 390 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 391 * further. 392 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 393 * case skb->dev was changed by rx_handler. 394 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 395 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 396 * 397 * rx_handlers are functions called from inside __netif_receive_skb(), to do 398 * special processing of the skb, prior to delivery to protocol handlers. 399 * 400 * Currently, a net_device can only have a single rx_handler registered. Trying 401 * to register a second rx_handler will return -EBUSY. 402 * 403 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 404 * To unregister a rx_handler on a net_device, use 405 * netdev_rx_handler_unregister(). 406 * 407 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 408 * do with the skb. 409 * 410 * If the rx_handler consumed the skb in some way, it should return 411 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 412 * the skb to be delivered in some other way. 413 * 414 * If the rx_handler changed skb->dev, to divert the skb to another 415 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 416 * new device will be called if it exists. 417 * 418 * If the rx_handler decides the skb should be ignored, it should return 419 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 420 * are registered on exact device (ptype->dev == skb->dev). 421 * 422 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 423 * delivered, it should return RX_HANDLER_PASS. 424 * 425 * A device without a registered rx_handler will behave as if rx_handler 426 * returned RX_HANDLER_PASS. 427 */ 428 429 enum rx_handler_result { 430 RX_HANDLER_CONSUMED, 431 RX_HANDLER_ANOTHER, 432 RX_HANDLER_EXACT, 433 RX_HANDLER_PASS, 434 }; 435 typedef enum rx_handler_result rx_handler_result_t; 436 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 437 438 void __napi_schedule(struct napi_struct *n); 439 void __napi_schedule_irqoff(struct napi_struct *n); 440 441 static inline bool napi_disable_pending(struct napi_struct *n) 442 { 443 return test_bit(NAPI_STATE_DISABLE, &n->state); 444 } 445 446 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 447 { 448 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 449 } 450 451 bool napi_schedule_prep(struct napi_struct *n); 452 453 /** 454 * napi_schedule - schedule NAPI poll 455 * @n: NAPI context 456 * 457 * Schedule NAPI poll routine to be called if it is not already 458 * running. 459 */ 460 static inline void napi_schedule(struct napi_struct *n) 461 { 462 if (napi_schedule_prep(n)) 463 __napi_schedule(n); 464 } 465 466 /** 467 * napi_schedule_irqoff - schedule NAPI poll 468 * @n: NAPI context 469 * 470 * Variant of napi_schedule(), assuming hard irqs are masked. 471 */ 472 static inline void napi_schedule_irqoff(struct napi_struct *n) 473 { 474 if (napi_schedule_prep(n)) 475 __napi_schedule_irqoff(n); 476 } 477 478 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 479 static inline bool napi_reschedule(struct napi_struct *napi) 480 { 481 if (napi_schedule_prep(napi)) { 482 __napi_schedule(napi); 483 return true; 484 } 485 return false; 486 } 487 488 bool napi_complete_done(struct napi_struct *n, int work_done); 489 /** 490 * napi_complete - NAPI processing complete 491 * @n: NAPI context 492 * 493 * Mark NAPI processing as complete. 494 * Consider using napi_complete_done() instead. 495 * Return false if device should avoid rearming interrupts. 496 */ 497 static inline bool napi_complete(struct napi_struct *n) 498 { 499 return napi_complete_done(n, 0); 500 } 501 502 int dev_set_threaded(struct net_device *dev, bool threaded); 503 504 /** 505 * napi_disable - prevent NAPI from scheduling 506 * @n: NAPI context 507 * 508 * Stop NAPI from being scheduled on this context. 509 * Waits till any outstanding processing completes. 510 */ 511 void napi_disable(struct napi_struct *n); 512 513 void napi_enable(struct napi_struct *n); 514 515 /** 516 * napi_synchronize - wait until NAPI is not running 517 * @n: NAPI context 518 * 519 * Wait until NAPI is done being scheduled on this context. 520 * Waits till any outstanding processing completes but 521 * does not disable future activations. 522 */ 523 static inline void napi_synchronize(const struct napi_struct *n) 524 { 525 if (IS_ENABLED(CONFIG_SMP)) 526 while (test_bit(NAPI_STATE_SCHED, &n->state)) 527 msleep(1); 528 else 529 barrier(); 530 } 531 532 /** 533 * napi_if_scheduled_mark_missed - if napi is running, set the 534 * NAPIF_STATE_MISSED 535 * @n: NAPI context 536 * 537 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 538 * NAPI is scheduled. 539 **/ 540 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 541 { 542 unsigned long val, new; 543 544 do { 545 val = READ_ONCE(n->state); 546 if (val & NAPIF_STATE_DISABLE) 547 return true; 548 549 if (!(val & NAPIF_STATE_SCHED)) 550 return false; 551 552 new = val | NAPIF_STATE_MISSED; 553 } while (cmpxchg(&n->state, val, new) != val); 554 555 return true; 556 } 557 558 enum netdev_queue_state_t { 559 __QUEUE_STATE_DRV_XOFF, 560 __QUEUE_STATE_STACK_XOFF, 561 __QUEUE_STATE_FROZEN, 562 }; 563 564 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 565 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 566 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 567 568 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 569 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 570 QUEUE_STATE_FROZEN) 571 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 572 QUEUE_STATE_FROZEN) 573 574 /* 575 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 576 * netif_tx_* functions below are used to manipulate this flag. The 577 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 578 * queue independently. The netif_xmit_*stopped functions below are called 579 * to check if the queue has been stopped by the driver or stack (either 580 * of the XOFF bits are set in the state). Drivers should not need to call 581 * netif_xmit*stopped functions, they should only be using netif_tx_*. 582 */ 583 584 struct netdev_queue { 585 /* 586 * read-mostly part 587 */ 588 struct net_device *dev; 589 struct Qdisc __rcu *qdisc; 590 struct Qdisc *qdisc_sleeping; 591 #ifdef CONFIG_SYSFS 592 struct kobject kobj; 593 #endif 594 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 595 int numa_node; 596 #endif 597 unsigned long tx_maxrate; 598 /* 599 * Number of TX timeouts for this queue 600 * (/sys/class/net/DEV/Q/trans_timeout) 601 */ 602 unsigned long trans_timeout; 603 604 /* Subordinate device that the queue has been assigned to */ 605 struct net_device *sb_dev; 606 #ifdef CONFIG_XDP_SOCKETS 607 struct xsk_buff_pool *pool; 608 #endif 609 /* 610 * write-mostly part 611 */ 612 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 613 int xmit_lock_owner; 614 /* 615 * Time (in jiffies) of last Tx 616 */ 617 unsigned long trans_start; 618 619 unsigned long state; 620 621 #ifdef CONFIG_BQL 622 struct dql dql; 623 #endif 624 } ____cacheline_aligned_in_smp; 625 626 extern int sysctl_fb_tunnels_only_for_init_net; 627 extern int sysctl_devconf_inherit_init_net; 628 629 /* 630 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 631 * == 1 : For initns only 632 * == 2 : For none. 633 */ 634 static inline bool net_has_fallback_tunnels(const struct net *net) 635 { 636 return !IS_ENABLED(CONFIG_SYSCTL) || 637 !sysctl_fb_tunnels_only_for_init_net || 638 (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1); 639 } 640 641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 642 { 643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 644 return q->numa_node; 645 #else 646 return NUMA_NO_NODE; 647 #endif 648 } 649 650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 651 { 652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 653 q->numa_node = node; 654 #endif 655 } 656 657 #ifdef CONFIG_RPS 658 /* 659 * This structure holds an RPS map which can be of variable length. The 660 * map is an array of CPUs. 661 */ 662 struct rps_map { 663 unsigned int len; 664 struct rcu_head rcu; 665 u16 cpus[]; 666 }; 667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 668 669 /* 670 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 671 * tail pointer for that CPU's input queue at the time of last enqueue, and 672 * a hardware filter index. 673 */ 674 struct rps_dev_flow { 675 u16 cpu; 676 u16 filter; 677 unsigned int last_qtail; 678 }; 679 #define RPS_NO_FILTER 0xffff 680 681 /* 682 * The rps_dev_flow_table structure contains a table of flow mappings. 683 */ 684 struct rps_dev_flow_table { 685 unsigned int mask; 686 struct rcu_head rcu; 687 struct rps_dev_flow flows[]; 688 }; 689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 690 ((_num) * sizeof(struct rps_dev_flow))) 691 692 /* 693 * The rps_sock_flow_table contains mappings of flows to the last CPU 694 * on which they were processed by the application (set in recvmsg). 695 * Each entry is a 32bit value. Upper part is the high-order bits 696 * of flow hash, lower part is CPU number. 697 * rps_cpu_mask is used to partition the space, depending on number of 698 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 699 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 700 * meaning we use 32-6=26 bits for the hash. 701 */ 702 struct rps_sock_flow_table { 703 u32 mask; 704 705 u32 ents[] ____cacheline_aligned_in_smp; 706 }; 707 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 708 709 #define RPS_NO_CPU 0xffff 710 711 extern u32 rps_cpu_mask; 712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 713 714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 715 u32 hash) 716 { 717 if (table && hash) { 718 unsigned int index = hash & table->mask; 719 u32 val = hash & ~rps_cpu_mask; 720 721 /* We only give a hint, preemption can change CPU under us */ 722 val |= raw_smp_processor_id(); 723 724 if (table->ents[index] != val) 725 table->ents[index] = val; 726 } 727 } 728 729 #ifdef CONFIG_RFS_ACCEL 730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 731 u16 filter_id); 732 #endif 733 #endif /* CONFIG_RPS */ 734 735 /* This structure contains an instance of an RX queue. */ 736 struct netdev_rx_queue { 737 #ifdef CONFIG_RPS 738 struct rps_map __rcu *rps_map; 739 struct rps_dev_flow_table __rcu *rps_flow_table; 740 #endif 741 struct kobject kobj; 742 struct net_device *dev; 743 struct xdp_rxq_info xdp_rxq; 744 #ifdef CONFIG_XDP_SOCKETS 745 struct xsk_buff_pool *pool; 746 #endif 747 } ____cacheline_aligned_in_smp; 748 749 /* 750 * RX queue sysfs structures and functions. 751 */ 752 struct rx_queue_attribute { 753 struct attribute attr; 754 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 755 ssize_t (*store)(struct netdev_rx_queue *queue, 756 const char *buf, size_t len); 757 }; 758 759 #ifdef CONFIG_XPS 760 /* 761 * This structure holds an XPS map which can be of variable length. The 762 * map is an array of queues. 763 */ 764 struct xps_map { 765 unsigned int len; 766 unsigned int alloc_len; 767 struct rcu_head rcu; 768 u16 queues[]; 769 }; 770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 772 - sizeof(struct xps_map)) / sizeof(u16)) 773 774 /* 775 * This structure holds all XPS maps for device. Maps are indexed by CPU. 776 */ 777 struct xps_dev_maps { 778 struct rcu_head rcu; 779 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 780 }; 781 782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 783 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 784 785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 786 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 787 788 #endif /* CONFIG_XPS */ 789 790 #define TC_MAX_QUEUE 16 791 #define TC_BITMASK 15 792 /* HW offloaded queuing disciplines txq count and offset maps */ 793 struct netdev_tc_txq { 794 u16 count; 795 u16 offset; 796 }; 797 798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 799 /* 800 * This structure is to hold information about the device 801 * configured to run FCoE protocol stack. 802 */ 803 struct netdev_fcoe_hbainfo { 804 char manufacturer[64]; 805 char serial_number[64]; 806 char hardware_version[64]; 807 char driver_version[64]; 808 char optionrom_version[64]; 809 char firmware_version[64]; 810 char model[256]; 811 char model_description[256]; 812 }; 813 #endif 814 815 #define MAX_PHYS_ITEM_ID_LEN 32 816 817 /* This structure holds a unique identifier to identify some 818 * physical item (port for example) used by a netdevice. 819 */ 820 struct netdev_phys_item_id { 821 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 822 unsigned char id_len; 823 }; 824 825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 826 struct netdev_phys_item_id *b) 827 { 828 return a->id_len == b->id_len && 829 memcmp(a->id, b->id, a->id_len) == 0; 830 } 831 832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 833 struct sk_buff *skb, 834 struct net_device *sb_dev); 835 836 enum tc_setup_type { 837 TC_SETUP_QDISC_MQPRIO, 838 TC_SETUP_CLSU32, 839 TC_SETUP_CLSFLOWER, 840 TC_SETUP_CLSMATCHALL, 841 TC_SETUP_CLSBPF, 842 TC_SETUP_BLOCK, 843 TC_SETUP_QDISC_CBS, 844 TC_SETUP_QDISC_RED, 845 TC_SETUP_QDISC_PRIO, 846 TC_SETUP_QDISC_MQ, 847 TC_SETUP_QDISC_ETF, 848 TC_SETUP_ROOT_QDISC, 849 TC_SETUP_QDISC_GRED, 850 TC_SETUP_QDISC_TAPRIO, 851 TC_SETUP_FT, 852 TC_SETUP_QDISC_ETS, 853 TC_SETUP_QDISC_TBF, 854 TC_SETUP_QDISC_FIFO, 855 TC_SETUP_QDISC_HTB, 856 }; 857 858 /* These structures hold the attributes of bpf state that are being passed 859 * to the netdevice through the bpf op. 860 */ 861 enum bpf_netdev_command { 862 /* Set or clear a bpf program used in the earliest stages of packet 863 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 864 * is responsible for calling bpf_prog_put on any old progs that are 865 * stored. In case of error, the callee need not release the new prog 866 * reference, but on success it takes ownership and must bpf_prog_put 867 * when it is no longer used. 868 */ 869 XDP_SETUP_PROG, 870 XDP_SETUP_PROG_HW, 871 /* BPF program for offload callbacks, invoked at program load time. */ 872 BPF_OFFLOAD_MAP_ALLOC, 873 BPF_OFFLOAD_MAP_FREE, 874 XDP_SETUP_XSK_POOL, 875 }; 876 877 struct bpf_prog_offload_ops; 878 struct netlink_ext_ack; 879 struct xdp_umem; 880 struct xdp_dev_bulk_queue; 881 struct bpf_xdp_link; 882 883 enum bpf_xdp_mode { 884 XDP_MODE_SKB = 0, 885 XDP_MODE_DRV = 1, 886 XDP_MODE_HW = 2, 887 __MAX_XDP_MODE 888 }; 889 890 struct bpf_xdp_entity { 891 struct bpf_prog *prog; 892 struct bpf_xdp_link *link; 893 }; 894 895 struct netdev_bpf { 896 enum bpf_netdev_command command; 897 union { 898 /* XDP_SETUP_PROG */ 899 struct { 900 u32 flags; 901 struct bpf_prog *prog; 902 struct netlink_ext_ack *extack; 903 }; 904 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 905 struct { 906 struct bpf_offloaded_map *offmap; 907 }; 908 /* XDP_SETUP_XSK_POOL */ 909 struct { 910 struct xsk_buff_pool *pool; 911 u16 queue_id; 912 } xsk; 913 }; 914 }; 915 916 /* Flags for ndo_xsk_wakeup. */ 917 #define XDP_WAKEUP_RX (1 << 0) 918 #define XDP_WAKEUP_TX (1 << 1) 919 920 #ifdef CONFIG_XFRM_OFFLOAD 921 struct xfrmdev_ops { 922 int (*xdo_dev_state_add) (struct xfrm_state *x); 923 void (*xdo_dev_state_delete) (struct xfrm_state *x); 924 void (*xdo_dev_state_free) (struct xfrm_state *x); 925 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 926 struct xfrm_state *x); 927 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 928 }; 929 #endif 930 931 struct dev_ifalias { 932 struct rcu_head rcuhead; 933 char ifalias[]; 934 }; 935 936 struct devlink; 937 struct tlsdev_ops; 938 939 struct netdev_name_node { 940 struct hlist_node hlist; 941 struct list_head list; 942 struct net_device *dev; 943 const char *name; 944 }; 945 946 int netdev_name_node_alt_create(struct net_device *dev, const char *name); 947 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name); 948 949 struct netdev_net_notifier { 950 struct list_head list; 951 struct notifier_block *nb; 952 }; 953 954 /* 955 * This structure defines the management hooks for network devices. 956 * The following hooks can be defined; unless noted otherwise, they are 957 * optional and can be filled with a null pointer. 958 * 959 * int (*ndo_init)(struct net_device *dev); 960 * This function is called once when a network device is registered. 961 * The network device can use this for any late stage initialization 962 * or semantic validation. It can fail with an error code which will 963 * be propagated back to register_netdev. 964 * 965 * void (*ndo_uninit)(struct net_device *dev); 966 * This function is called when device is unregistered or when registration 967 * fails. It is not called if init fails. 968 * 969 * int (*ndo_open)(struct net_device *dev); 970 * This function is called when a network device transitions to the up 971 * state. 972 * 973 * int (*ndo_stop)(struct net_device *dev); 974 * This function is called when a network device transitions to the down 975 * state. 976 * 977 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 978 * struct net_device *dev); 979 * Called when a packet needs to be transmitted. 980 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 981 * the queue before that can happen; it's for obsolete devices and weird 982 * corner cases, but the stack really does a non-trivial amount 983 * of useless work if you return NETDEV_TX_BUSY. 984 * Required; cannot be NULL. 985 * 986 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 987 * struct net_device *dev 988 * netdev_features_t features); 989 * Called by core transmit path to determine if device is capable of 990 * performing offload operations on a given packet. This is to give 991 * the device an opportunity to implement any restrictions that cannot 992 * be otherwise expressed by feature flags. The check is called with 993 * the set of features that the stack has calculated and it returns 994 * those the driver believes to be appropriate. 995 * 996 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 997 * struct net_device *sb_dev); 998 * Called to decide which queue to use when device supports multiple 999 * transmit queues. 1000 * 1001 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1002 * This function is called to allow device receiver to make 1003 * changes to configuration when multicast or promiscuous is enabled. 1004 * 1005 * void (*ndo_set_rx_mode)(struct net_device *dev); 1006 * This function is called device changes address list filtering. 1007 * If driver handles unicast address filtering, it should set 1008 * IFF_UNICAST_FLT in its priv_flags. 1009 * 1010 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1011 * This function is called when the Media Access Control address 1012 * needs to be changed. If this interface is not defined, the 1013 * MAC address can not be changed. 1014 * 1015 * int (*ndo_validate_addr)(struct net_device *dev); 1016 * Test if Media Access Control address is valid for the device. 1017 * 1018 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1019 * Called when a user requests an ioctl which can't be handled by 1020 * the generic interface code. If not defined ioctls return 1021 * not supported error code. 1022 * 1023 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1024 * Used to set network devices bus interface parameters. This interface 1025 * is retained for legacy reasons; new devices should use the bus 1026 * interface (PCI) for low level management. 1027 * 1028 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1029 * Called when a user wants to change the Maximum Transfer Unit 1030 * of a device. 1031 * 1032 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1033 * Callback used when the transmitter has not made any progress 1034 * for dev->watchdog ticks. 1035 * 1036 * void (*ndo_get_stats64)(struct net_device *dev, 1037 * struct rtnl_link_stats64 *storage); 1038 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1039 * Called when a user wants to get the network device usage 1040 * statistics. Drivers must do one of the following: 1041 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1042 * rtnl_link_stats64 structure passed by the caller. 1043 * 2. Define @ndo_get_stats to update a net_device_stats structure 1044 * (which should normally be dev->stats) and return a pointer to 1045 * it. The structure may be changed asynchronously only if each 1046 * field is written atomically. 1047 * 3. Update dev->stats asynchronously and atomically, and define 1048 * neither operation. 1049 * 1050 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1051 * Return true if this device supports offload stats of this attr_id. 1052 * 1053 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1054 * void *attr_data) 1055 * Get statistics for offload operations by attr_id. Write it into the 1056 * attr_data pointer. 1057 * 1058 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1059 * If device supports VLAN filtering this function is called when a 1060 * VLAN id is registered. 1061 * 1062 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1063 * If device supports VLAN filtering this function is called when a 1064 * VLAN id is unregistered. 1065 * 1066 * void (*ndo_poll_controller)(struct net_device *dev); 1067 * 1068 * SR-IOV management functions. 1069 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1070 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1071 * u8 qos, __be16 proto); 1072 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1073 * int max_tx_rate); 1074 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1075 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1076 * int (*ndo_get_vf_config)(struct net_device *dev, 1077 * int vf, struct ifla_vf_info *ivf); 1078 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1079 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1080 * struct nlattr *port[]); 1081 * 1082 * Enable or disable the VF ability to query its RSS Redirection Table and 1083 * Hash Key. This is needed since on some devices VF share this information 1084 * with PF and querying it may introduce a theoretical security risk. 1085 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1086 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1087 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1088 * void *type_data); 1089 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1090 * This is always called from the stack with the rtnl lock held and netif 1091 * tx queues stopped. This allows the netdevice to perform queue 1092 * management safely. 1093 * 1094 * Fiber Channel over Ethernet (FCoE) offload functions. 1095 * int (*ndo_fcoe_enable)(struct net_device *dev); 1096 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1097 * so the underlying device can perform whatever needed configuration or 1098 * initialization to support acceleration of FCoE traffic. 1099 * 1100 * int (*ndo_fcoe_disable)(struct net_device *dev); 1101 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1102 * so the underlying device can perform whatever needed clean-ups to 1103 * stop supporting acceleration of FCoE traffic. 1104 * 1105 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1106 * struct scatterlist *sgl, unsigned int sgc); 1107 * Called when the FCoE Initiator wants to initialize an I/O that 1108 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1109 * perform necessary setup and returns 1 to indicate the device is set up 1110 * successfully to perform DDP on this I/O, otherwise this returns 0. 1111 * 1112 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1113 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1114 * indicated by the FC exchange id 'xid', so the underlying device can 1115 * clean up and reuse resources for later DDP requests. 1116 * 1117 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1118 * struct scatterlist *sgl, unsigned int sgc); 1119 * Called when the FCoE Target wants to initialize an I/O that 1120 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1121 * perform necessary setup and returns 1 to indicate the device is set up 1122 * successfully to perform DDP on this I/O, otherwise this returns 0. 1123 * 1124 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1125 * struct netdev_fcoe_hbainfo *hbainfo); 1126 * Called when the FCoE Protocol stack wants information on the underlying 1127 * device. This information is utilized by the FCoE protocol stack to 1128 * register attributes with Fiber Channel management service as per the 1129 * FC-GS Fabric Device Management Information(FDMI) specification. 1130 * 1131 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1132 * Called when the underlying device wants to override default World Wide 1133 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1134 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1135 * protocol stack to use. 1136 * 1137 * RFS acceleration. 1138 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1139 * u16 rxq_index, u32 flow_id); 1140 * Set hardware filter for RFS. rxq_index is the target queue index; 1141 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1142 * Return the filter ID on success, or a negative error code. 1143 * 1144 * Slave management functions (for bridge, bonding, etc). 1145 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1146 * Called to make another netdev an underling. 1147 * 1148 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1149 * Called to release previously enslaved netdev. 1150 * 1151 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1152 * struct sk_buff *skb, 1153 * bool all_slaves); 1154 * Get the xmit slave of master device. If all_slaves is true, function 1155 * assume all the slaves can transmit. 1156 * 1157 * Feature/offload setting functions. 1158 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1159 * netdev_features_t features); 1160 * Adjusts the requested feature flags according to device-specific 1161 * constraints, and returns the resulting flags. Must not modify 1162 * the device state. 1163 * 1164 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1165 * Called to update device configuration to new features. Passed 1166 * feature set might be less than what was returned by ndo_fix_features()). 1167 * Must return >0 or -errno if it changed dev->features itself. 1168 * 1169 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1170 * struct net_device *dev, 1171 * const unsigned char *addr, u16 vid, u16 flags, 1172 * struct netlink_ext_ack *extack); 1173 * Adds an FDB entry to dev for addr. 1174 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1175 * struct net_device *dev, 1176 * const unsigned char *addr, u16 vid) 1177 * Deletes the FDB entry from dev coresponding to addr. 1178 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1179 * struct net_device *dev, struct net_device *filter_dev, 1180 * int *idx) 1181 * Used to add FDB entries to dump requests. Implementers should add 1182 * entries to skb and update idx with the number of entries. 1183 * 1184 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1185 * u16 flags, struct netlink_ext_ack *extack) 1186 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1187 * struct net_device *dev, u32 filter_mask, 1188 * int nlflags) 1189 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1190 * u16 flags); 1191 * 1192 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1193 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1194 * which do not represent real hardware may define this to allow their 1195 * userspace components to manage their virtual carrier state. Devices 1196 * that determine carrier state from physical hardware properties (eg 1197 * network cables) or protocol-dependent mechanisms (eg 1198 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1199 * 1200 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1201 * struct netdev_phys_item_id *ppid); 1202 * Called to get ID of physical port of this device. If driver does 1203 * not implement this, it is assumed that the hw is not able to have 1204 * multiple net devices on single physical port. 1205 * 1206 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1207 * struct netdev_phys_item_id *ppid) 1208 * Called to get the parent ID of the physical port of this device. 1209 * 1210 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1211 * struct net_device *dev) 1212 * Called by upper layer devices to accelerate switching or other 1213 * station functionality into hardware. 'pdev is the lowerdev 1214 * to use for the offload and 'dev' is the net device that will 1215 * back the offload. Returns a pointer to the private structure 1216 * the upper layer will maintain. 1217 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1218 * Called by upper layer device to delete the station created 1219 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1220 * the station and priv is the structure returned by the add 1221 * operation. 1222 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1223 * int queue_index, u32 maxrate); 1224 * Called when a user wants to set a max-rate limitation of specific 1225 * TX queue. 1226 * int (*ndo_get_iflink)(const struct net_device *dev); 1227 * Called to get the iflink value of this device. 1228 * void (*ndo_change_proto_down)(struct net_device *dev, 1229 * bool proto_down); 1230 * This function is used to pass protocol port error state information 1231 * to the switch driver. The switch driver can react to the proto_down 1232 * by doing a phys down on the associated switch port. 1233 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1234 * This function is used to get egress tunnel information for given skb. 1235 * This is useful for retrieving outer tunnel header parameters while 1236 * sampling packet. 1237 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1238 * This function is used to specify the headroom that the skb must 1239 * consider when allocation skb during packet reception. Setting 1240 * appropriate rx headroom value allows avoiding skb head copy on 1241 * forward. Setting a negative value resets the rx headroom to the 1242 * default value. 1243 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1244 * This function is used to set or query state related to XDP on the 1245 * netdevice and manage BPF offload. See definition of 1246 * enum bpf_netdev_command for details. 1247 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1248 * u32 flags); 1249 * This function is used to submit @n XDP packets for transmit on a 1250 * netdevice. Returns number of frames successfully transmitted, frames 1251 * that got dropped are freed/returned via xdp_return_frame(). 1252 * Returns negative number, means general error invoking ndo, meaning 1253 * no frames were xmit'ed and core-caller will free all frames. 1254 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1255 * This function is used to wake up the softirq, ksoftirqd or kthread 1256 * responsible for sending and/or receiving packets on a specific 1257 * queue id bound to an AF_XDP socket. The flags field specifies if 1258 * only RX, only Tx, or both should be woken up using the flags 1259 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1260 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1261 * Get devlink port instance associated with a given netdev. 1262 * Called with a reference on the netdevice and devlink locks only, 1263 * rtnl_lock is not held. 1264 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1265 * int cmd); 1266 * Add, change, delete or get information on an IPv4 tunnel. 1267 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1268 * If a device is paired with a peer device, return the peer instance. 1269 * The caller must be under RCU read context. 1270 */ 1271 struct net_device_ops { 1272 int (*ndo_init)(struct net_device *dev); 1273 void (*ndo_uninit)(struct net_device *dev); 1274 int (*ndo_open)(struct net_device *dev); 1275 int (*ndo_stop)(struct net_device *dev); 1276 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1277 struct net_device *dev); 1278 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1279 struct net_device *dev, 1280 netdev_features_t features); 1281 u16 (*ndo_select_queue)(struct net_device *dev, 1282 struct sk_buff *skb, 1283 struct net_device *sb_dev); 1284 void (*ndo_change_rx_flags)(struct net_device *dev, 1285 int flags); 1286 void (*ndo_set_rx_mode)(struct net_device *dev); 1287 int (*ndo_set_mac_address)(struct net_device *dev, 1288 void *addr); 1289 int (*ndo_validate_addr)(struct net_device *dev); 1290 int (*ndo_do_ioctl)(struct net_device *dev, 1291 struct ifreq *ifr, int cmd); 1292 int (*ndo_set_config)(struct net_device *dev, 1293 struct ifmap *map); 1294 int (*ndo_change_mtu)(struct net_device *dev, 1295 int new_mtu); 1296 int (*ndo_neigh_setup)(struct net_device *dev, 1297 struct neigh_parms *); 1298 void (*ndo_tx_timeout) (struct net_device *dev, 1299 unsigned int txqueue); 1300 1301 void (*ndo_get_stats64)(struct net_device *dev, 1302 struct rtnl_link_stats64 *storage); 1303 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1304 int (*ndo_get_offload_stats)(int attr_id, 1305 const struct net_device *dev, 1306 void *attr_data); 1307 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1308 1309 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1310 __be16 proto, u16 vid); 1311 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1312 __be16 proto, u16 vid); 1313 #ifdef CONFIG_NET_POLL_CONTROLLER 1314 void (*ndo_poll_controller)(struct net_device *dev); 1315 int (*ndo_netpoll_setup)(struct net_device *dev, 1316 struct netpoll_info *info); 1317 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1318 #endif 1319 int (*ndo_set_vf_mac)(struct net_device *dev, 1320 int queue, u8 *mac); 1321 int (*ndo_set_vf_vlan)(struct net_device *dev, 1322 int queue, u16 vlan, 1323 u8 qos, __be16 proto); 1324 int (*ndo_set_vf_rate)(struct net_device *dev, 1325 int vf, int min_tx_rate, 1326 int max_tx_rate); 1327 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1328 int vf, bool setting); 1329 int (*ndo_set_vf_trust)(struct net_device *dev, 1330 int vf, bool setting); 1331 int (*ndo_get_vf_config)(struct net_device *dev, 1332 int vf, 1333 struct ifla_vf_info *ivf); 1334 int (*ndo_set_vf_link_state)(struct net_device *dev, 1335 int vf, int link_state); 1336 int (*ndo_get_vf_stats)(struct net_device *dev, 1337 int vf, 1338 struct ifla_vf_stats 1339 *vf_stats); 1340 int (*ndo_set_vf_port)(struct net_device *dev, 1341 int vf, 1342 struct nlattr *port[]); 1343 int (*ndo_get_vf_port)(struct net_device *dev, 1344 int vf, struct sk_buff *skb); 1345 int (*ndo_get_vf_guid)(struct net_device *dev, 1346 int vf, 1347 struct ifla_vf_guid *node_guid, 1348 struct ifla_vf_guid *port_guid); 1349 int (*ndo_set_vf_guid)(struct net_device *dev, 1350 int vf, u64 guid, 1351 int guid_type); 1352 int (*ndo_set_vf_rss_query_en)( 1353 struct net_device *dev, 1354 int vf, bool setting); 1355 int (*ndo_setup_tc)(struct net_device *dev, 1356 enum tc_setup_type type, 1357 void *type_data); 1358 #if IS_ENABLED(CONFIG_FCOE) 1359 int (*ndo_fcoe_enable)(struct net_device *dev); 1360 int (*ndo_fcoe_disable)(struct net_device *dev); 1361 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1362 u16 xid, 1363 struct scatterlist *sgl, 1364 unsigned int sgc); 1365 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1366 u16 xid); 1367 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1368 u16 xid, 1369 struct scatterlist *sgl, 1370 unsigned int sgc); 1371 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1372 struct netdev_fcoe_hbainfo *hbainfo); 1373 #endif 1374 1375 #if IS_ENABLED(CONFIG_LIBFCOE) 1376 #define NETDEV_FCOE_WWNN 0 1377 #define NETDEV_FCOE_WWPN 1 1378 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1379 u64 *wwn, int type); 1380 #endif 1381 1382 #ifdef CONFIG_RFS_ACCEL 1383 int (*ndo_rx_flow_steer)(struct net_device *dev, 1384 const struct sk_buff *skb, 1385 u16 rxq_index, 1386 u32 flow_id); 1387 #endif 1388 int (*ndo_add_slave)(struct net_device *dev, 1389 struct net_device *slave_dev, 1390 struct netlink_ext_ack *extack); 1391 int (*ndo_del_slave)(struct net_device *dev, 1392 struct net_device *slave_dev); 1393 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1394 struct sk_buff *skb, 1395 bool all_slaves); 1396 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1397 struct sock *sk); 1398 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1399 netdev_features_t features); 1400 int (*ndo_set_features)(struct net_device *dev, 1401 netdev_features_t features); 1402 int (*ndo_neigh_construct)(struct net_device *dev, 1403 struct neighbour *n); 1404 void (*ndo_neigh_destroy)(struct net_device *dev, 1405 struct neighbour *n); 1406 1407 int (*ndo_fdb_add)(struct ndmsg *ndm, 1408 struct nlattr *tb[], 1409 struct net_device *dev, 1410 const unsigned char *addr, 1411 u16 vid, 1412 u16 flags, 1413 struct netlink_ext_ack *extack); 1414 int (*ndo_fdb_del)(struct ndmsg *ndm, 1415 struct nlattr *tb[], 1416 struct net_device *dev, 1417 const unsigned char *addr, 1418 u16 vid); 1419 int (*ndo_fdb_dump)(struct sk_buff *skb, 1420 struct netlink_callback *cb, 1421 struct net_device *dev, 1422 struct net_device *filter_dev, 1423 int *idx); 1424 int (*ndo_fdb_get)(struct sk_buff *skb, 1425 struct nlattr *tb[], 1426 struct net_device *dev, 1427 const unsigned char *addr, 1428 u16 vid, u32 portid, u32 seq, 1429 struct netlink_ext_ack *extack); 1430 int (*ndo_bridge_setlink)(struct net_device *dev, 1431 struct nlmsghdr *nlh, 1432 u16 flags, 1433 struct netlink_ext_ack *extack); 1434 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1435 u32 pid, u32 seq, 1436 struct net_device *dev, 1437 u32 filter_mask, 1438 int nlflags); 1439 int (*ndo_bridge_dellink)(struct net_device *dev, 1440 struct nlmsghdr *nlh, 1441 u16 flags); 1442 int (*ndo_change_carrier)(struct net_device *dev, 1443 bool new_carrier); 1444 int (*ndo_get_phys_port_id)(struct net_device *dev, 1445 struct netdev_phys_item_id *ppid); 1446 int (*ndo_get_port_parent_id)(struct net_device *dev, 1447 struct netdev_phys_item_id *ppid); 1448 int (*ndo_get_phys_port_name)(struct net_device *dev, 1449 char *name, size_t len); 1450 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1451 struct net_device *dev); 1452 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1453 void *priv); 1454 1455 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1456 int queue_index, 1457 u32 maxrate); 1458 int (*ndo_get_iflink)(const struct net_device *dev); 1459 int (*ndo_change_proto_down)(struct net_device *dev, 1460 bool proto_down); 1461 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1462 struct sk_buff *skb); 1463 void (*ndo_set_rx_headroom)(struct net_device *dev, 1464 int needed_headroom); 1465 int (*ndo_bpf)(struct net_device *dev, 1466 struct netdev_bpf *bpf); 1467 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1468 struct xdp_frame **xdp, 1469 u32 flags); 1470 int (*ndo_xsk_wakeup)(struct net_device *dev, 1471 u32 queue_id, u32 flags); 1472 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1473 int (*ndo_tunnel_ctl)(struct net_device *dev, 1474 struct ip_tunnel_parm *p, int cmd); 1475 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1476 }; 1477 1478 /** 1479 * enum netdev_priv_flags - &struct net_device priv_flags 1480 * 1481 * These are the &struct net_device, they are only set internally 1482 * by drivers and used in the kernel. These flags are invisible to 1483 * userspace; this means that the order of these flags can change 1484 * during any kernel release. 1485 * 1486 * You should have a pretty good reason to be extending these flags. 1487 * 1488 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1489 * @IFF_EBRIDGE: Ethernet bridging device 1490 * @IFF_BONDING: bonding master or slave 1491 * @IFF_ISATAP: ISATAP interface (RFC4214) 1492 * @IFF_WAN_HDLC: WAN HDLC device 1493 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1494 * release skb->dst 1495 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1496 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1497 * @IFF_MACVLAN_PORT: device used as macvlan port 1498 * @IFF_BRIDGE_PORT: device used as bridge port 1499 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1500 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1501 * @IFF_UNICAST_FLT: Supports unicast filtering 1502 * @IFF_TEAM_PORT: device used as team port 1503 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1504 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1505 * change when it's running 1506 * @IFF_MACVLAN: Macvlan device 1507 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1508 * underlying stacked devices 1509 * @IFF_L3MDEV_MASTER: device is an L3 master device 1510 * @IFF_NO_QUEUE: device can run without qdisc attached 1511 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1512 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1513 * @IFF_TEAM: device is a team device 1514 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1515 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1516 * entity (i.e. the master device for bridged veth) 1517 * @IFF_MACSEC: device is a MACsec device 1518 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1519 * @IFF_FAILOVER: device is a failover master device 1520 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1521 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1522 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1523 */ 1524 enum netdev_priv_flags { 1525 IFF_802_1Q_VLAN = 1<<0, 1526 IFF_EBRIDGE = 1<<1, 1527 IFF_BONDING = 1<<2, 1528 IFF_ISATAP = 1<<3, 1529 IFF_WAN_HDLC = 1<<4, 1530 IFF_XMIT_DST_RELEASE = 1<<5, 1531 IFF_DONT_BRIDGE = 1<<6, 1532 IFF_DISABLE_NETPOLL = 1<<7, 1533 IFF_MACVLAN_PORT = 1<<8, 1534 IFF_BRIDGE_PORT = 1<<9, 1535 IFF_OVS_DATAPATH = 1<<10, 1536 IFF_TX_SKB_SHARING = 1<<11, 1537 IFF_UNICAST_FLT = 1<<12, 1538 IFF_TEAM_PORT = 1<<13, 1539 IFF_SUPP_NOFCS = 1<<14, 1540 IFF_LIVE_ADDR_CHANGE = 1<<15, 1541 IFF_MACVLAN = 1<<16, 1542 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1543 IFF_L3MDEV_MASTER = 1<<18, 1544 IFF_NO_QUEUE = 1<<19, 1545 IFF_OPENVSWITCH = 1<<20, 1546 IFF_L3MDEV_SLAVE = 1<<21, 1547 IFF_TEAM = 1<<22, 1548 IFF_RXFH_CONFIGURED = 1<<23, 1549 IFF_PHONY_HEADROOM = 1<<24, 1550 IFF_MACSEC = 1<<25, 1551 IFF_NO_RX_HANDLER = 1<<26, 1552 IFF_FAILOVER = 1<<27, 1553 IFF_FAILOVER_SLAVE = 1<<28, 1554 IFF_L3MDEV_RX_HANDLER = 1<<29, 1555 IFF_LIVE_RENAME_OK = 1<<30, 1556 }; 1557 1558 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1559 #define IFF_EBRIDGE IFF_EBRIDGE 1560 #define IFF_BONDING IFF_BONDING 1561 #define IFF_ISATAP IFF_ISATAP 1562 #define IFF_WAN_HDLC IFF_WAN_HDLC 1563 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1564 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1565 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1566 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1567 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1568 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1569 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1570 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1571 #define IFF_TEAM_PORT IFF_TEAM_PORT 1572 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1573 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1574 #define IFF_MACVLAN IFF_MACVLAN 1575 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1576 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1577 #define IFF_NO_QUEUE IFF_NO_QUEUE 1578 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1579 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1580 #define IFF_TEAM IFF_TEAM 1581 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1582 #define IFF_MACSEC IFF_MACSEC 1583 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1584 #define IFF_FAILOVER IFF_FAILOVER 1585 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1586 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1587 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1588 1589 /* Specifies the type of the struct net_device::ml_priv pointer */ 1590 enum netdev_ml_priv_type { 1591 ML_PRIV_NONE, 1592 ML_PRIV_CAN, 1593 }; 1594 1595 /** 1596 * struct net_device - The DEVICE structure. 1597 * 1598 * Actually, this whole structure is a big mistake. It mixes I/O 1599 * data with strictly "high-level" data, and it has to know about 1600 * almost every data structure used in the INET module. 1601 * 1602 * @name: This is the first field of the "visible" part of this structure 1603 * (i.e. as seen by users in the "Space.c" file). It is the name 1604 * of the interface. 1605 * 1606 * @name_node: Name hashlist node 1607 * @ifalias: SNMP alias 1608 * @mem_end: Shared memory end 1609 * @mem_start: Shared memory start 1610 * @base_addr: Device I/O address 1611 * @irq: Device IRQ number 1612 * 1613 * @state: Generic network queuing layer state, see netdev_state_t 1614 * @dev_list: The global list of network devices 1615 * @napi_list: List entry used for polling NAPI devices 1616 * @unreg_list: List entry when we are unregistering the 1617 * device; see the function unregister_netdev 1618 * @close_list: List entry used when we are closing the device 1619 * @ptype_all: Device-specific packet handlers for all protocols 1620 * @ptype_specific: Device-specific, protocol-specific packet handlers 1621 * 1622 * @adj_list: Directly linked devices, like slaves for bonding 1623 * @features: Currently active device features 1624 * @hw_features: User-changeable features 1625 * 1626 * @wanted_features: User-requested features 1627 * @vlan_features: Mask of features inheritable by VLAN devices 1628 * 1629 * @hw_enc_features: Mask of features inherited by encapsulating devices 1630 * This field indicates what encapsulation 1631 * offloads the hardware is capable of doing, 1632 * and drivers will need to set them appropriately. 1633 * 1634 * @mpls_features: Mask of features inheritable by MPLS 1635 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1636 * 1637 * @ifindex: interface index 1638 * @group: The group the device belongs to 1639 * 1640 * @stats: Statistics struct, which was left as a legacy, use 1641 * rtnl_link_stats64 instead 1642 * 1643 * @rx_dropped: Dropped packets by core network, 1644 * do not use this in drivers 1645 * @tx_dropped: Dropped packets by core network, 1646 * do not use this in drivers 1647 * @rx_nohandler: nohandler dropped packets by core network on 1648 * inactive devices, do not use this in drivers 1649 * @carrier_up_count: Number of times the carrier has been up 1650 * @carrier_down_count: Number of times the carrier has been down 1651 * 1652 * @wireless_handlers: List of functions to handle Wireless Extensions, 1653 * instead of ioctl, 1654 * see <net/iw_handler.h> for details. 1655 * @wireless_data: Instance data managed by the core of wireless extensions 1656 * 1657 * @netdev_ops: Includes several pointers to callbacks, 1658 * if one wants to override the ndo_*() functions 1659 * @ethtool_ops: Management operations 1660 * @l3mdev_ops: Layer 3 master device operations 1661 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1662 * discovery handling. Necessary for e.g. 6LoWPAN. 1663 * @xfrmdev_ops: Transformation offload operations 1664 * @tlsdev_ops: Transport Layer Security offload operations 1665 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1666 * of Layer 2 headers. 1667 * 1668 * @flags: Interface flags (a la BSD) 1669 * @priv_flags: Like 'flags' but invisible to userspace, 1670 * see if.h for the definitions 1671 * @gflags: Global flags ( kept as legacy ) 1672 * @padded: How much padding added by alloc_netdev() 1673 * @operstate: RFC2863 operstate 1674 * @link_mode: Mapping policy to operstate 1675 * @if_port: Selectable AUI, TP, ... 1676 * @dma: DMA channel 1677 * @mtu: Interface MTU value 1678 * @min_mtu: Interface Minimum MTU value 1679 * @max_mtu: Interface Maximum MTU value 1680 * @type: Interface hardware type 1681 * @hard_header_len: Maximum hardware header length. 1682 * @min_header_len: Minimum hardware header length 1683 * 1684 * @needed_headroom: Extra headroom the hardware may need, but not in all 1685 * cases can this be guaranteed 1686 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1687 * cases can this be guaranteed. Some cases also use 1688 * LL_MAX_HEADER instead to allocate the skb 1689 * 1690 * interface address info: 1691 * 1692 * @perm_addr: Permanent hw address 1693 * @addr_assign_type: Hw address assignment type 1694 * @addr_len: Hardware address length 1695 * @upper_level: Maximum depth level of upper devices. 1696 * @lower_level: Maximum depth level of lower devices. 1697 * @neigh_priv_len: Used in neigh_alloc() 1698 * @dev_id: Used to differentiate devices that share 1699 * the same link layer address 1700 * @dev_port: Used to differentiate devices that share 1701 * the same function 1702 * @addr_list_lock: XXX: need comments on this one 1703 * @name_assign_type: network interface name assignment type 1704 * @uc_promisc: Counter that indicates promiscuous mode 1705 * has been enabled due to the need to listen to 1706 * additional unicast addresses in a device that 1707 * does not implement ndo_set_rx_mode() 1708 * @uc: unicast mac addresses 1709 * @mc: multicast mac addresses 1710 * @dev_addrs: list of device hw addresses 1711 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1712 * @promiscuity: Number of times the NIC is told to work in 1713 * promiscuous mode; if it becomes 0 the NIC will 1714 * exit promiscuous mode 1715 * @allmulti: Counter, enables or disables allmulticast mode 1716 * 1717 * @vlan_info: VLAN info 1718 * @dsa_ptr: dsa specific data 1719 * @tipc_ptr: TIPC specific data 1720 * @atalk_ptr: AppleTalk link 1721 * @ip_ptr: IPv4 specific data 1722 * @dn_ptr: DECnet specific data 1723 * @ip6_ptr: IPv6 specific data 1724 * @ax25_ptr: AX.25 specific data 1725 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1726 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1727 * device struct 1728 * @mpls_ptr: mpls_dev struct pointer 1729 * 1730 * @dev_addr: Hw address (before bcast, 1731 * because most packets are unicast) 1732 * 1733 * @_rx: Array of RX queues 1734 * @num_rx_queues: Number of RX queues 1735 * allocated at register_netdev() time 1736 * @real_num_rx_queues: Number of RX queues currently active in device 1737 * @xdp_prog: XDP sockets filter program pointer 1738 * @gro_flush_timeout: timeout for GRO layer in NAPI 1739 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1740 * allow to avoid NIC hard IRQ, on busy queues. 1741 * 1742 * @rx_handler: handler for received packets 1743 * @rx_handler_data: XXX: need comments on this one 1744 * @miniq_ingress: ingress/clsact qdisc specific data for 1745 * ingress processing 1746 * @ingress_queue: XXX: need comments on this one 1747 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1748 * @broadcast: hw bcast address 1749 * 1750 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1751 * indexed by RX queue number. Assigned by driver. 1752 * This must only be set if the ndo_rx_flow_steer 1753 * operation is defined 1754 * @index_hlist: Device index hash chain 1755 * 1756 * @_tx: Array of TX queues 1757 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1758 * @real_num_tx_queues: Number of TX queues currently active in device 1759 * @qdisc: Root qdisc from userspace point of view 1760 * @tx_queue_len: Max frames per queue allowed 1761 * @tx_global_lock: XXX: need comments on this one 1762 * @xdp_bulkq: XDP device bulk queue 1763 * @xps_cpus_map: all CPUs map for XPS device 1764 * @xps_rxqs_map: all RXQs map for XPS device 1765 * 1766 * @xps_maps: XXX: need comments on this one 1767 * @miniq_egress: clsact qdisc specific data for 1768 * egress processing 1769 * @qdisc_hash: qdisc hash table 1770 * @watchdog_timeo: Represents the timeout that is used by 1771 * the watchdog (see dev_watchdog()) 1772 * @watchdog_timer: List of timers 1773 * 1774 * @proto_down_reason: reason a netdev interface is held down 1775 * @pcpu_refcnt: Number of references to this device 1776 * @todo_list: Delayed register/unregister 1777 * @link_watch_list: XXX: need comments on this one 1778 * 1779 * @reg_state: Register/unregister state machine 1780 * @dismantle: Device is going to be freed 1781 * @rtnl_link_state: This enum represents the phases of creating 1782 * a new link 1783 * 1784 * @needs_free_netdev: Should unregister perform free_netdev? 1785 * @priv_destructor: Called from unregister 1786 * @npinfo: XXX: need comments on this one 1787 * @nd_net: Network namespace this network device is inside 1788 * 1789 * @ml_priv: Mid-layer private 1790 * @ml_priv_type: Mid-layer private type 1791 * @lstats: Loopback statistics 1792 * @tstats: Tunnel statistics 1793 * @dstats: Dummy statistics 1794 * @vstats: Virtual ethernet statistics 1795 * 1796 * @garp_port: GARP 1797 * @mrp_port: MRP 1798 * 1799 * @dev: Class/net/name entry 1800 * @sysfs_groups: Space for optional device, statistics and wireless 1801 * sysfs groups 1802 * 1803 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1804 * @rtnl_link_ops: Rtnl_link_ops 1805 * 1806 * @gso_max_size: Maximum size of generic segmentation offload 1807 * @gso_max_segs: Maximum number of segments that can be passed to the 1808 * NIC for GSO 1809 * 1810 * @dcbnl_ops: Data Center Bridging netlink ops 1811 * @num_tc: Number of traffic classes in the net device 1812 * @tc_to_txq: XXX: need comments on this one 1813 * @prio_tc_map: XXX: need comments on this one 1814 * 1815 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1816 * 1817 * @priomap: XXX: need comments on this one 1818 * @phydev: Physical device may attach itself 1819 * for hardware timestamping 1820 * @sfp_bus: attached &struct sfp_bus structure. 1821 * 1822 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1823 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1824 * 1825 * @proto_down: protocol port state information can be sent to the 1826 * switch driver and used to set the phys state of the 1827 * switch port. 1828 * 1829 * @wol_enabled: Wake-on-LAN is enabled 1830 * 1831 * @threaded: napi threaded mode is enabled 1832 * 1833 * @net_notifier_list: List of per-net netdev notifier block 1834 * that follow this device when it is moved 1835 * to another network namespace. 1836 * 1837 * @macsec_ops: MACsec offloading ops 1838 * 1839 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 1840 * offload capabilities of the device 1841 * @udp_tunnel_nic: UDP tunnel offload state 1842 * @xdp_state: stores info on attached XDP BPF programs 1843 * 1844 * @nested_level: Used as as a parameter of spin_lock_nested() of 1845 * dev->addr_list_lock. 1846 * @unlink_list: As netif_addr_lock() can be called recursively, 1847 * keep a list of interfaces to be deleted. 1848 * 1849 * FIXME: cleanup struct net_device such that network protocol info 1850 * moves out. 1851 */ 1852 1853 struct net_device { 1854 char name[IFNAMSIZ]; 1855 struct netdev_name_node *name_node; 1856 struct dev_ifalias __rcu *ifalias; 1857 /* 1858 * I/O specific fields 1859 * FIXME: Merge these and struct ifmap into one 1860 */ 1861 unsigned long mem_end; 1862 unsigned long mem_start; 1863 unsigned long base_addr; 1864 1865 /* 1866 * Some hardware also needs these fields (state,dev_list, 1867 * napi_list,unreg_list,close_list) but they are not 1868 * part of the usual set specified in Space.c. 1869 */ 1870 1871 unsigned long state; 1872 1873 struct list_head dev_list; 1874 struct list_head napi_list; 1875 struct list_head unreg_list; 1876 struct list_head close_list; 1877 struct list_head ptype_all; 1878 struct list_head ptype_specific; 1879 1880 struct { 1881 struct list_head upper; 1882 struct list_head lower; 1883 } adj_list; 1884 1885 /* Read-mostly cache-line for fast-path access */ 1886 unsigned int flags; 1887 unsigned int priv_flags; 1888 const struct net_device_ops *netdev_ops; 1889 int ifindex; 1890 unsigned short gflags; 1891 unsigned short hard_header_len; 1892 1893 /* Note : dev->mtu is often read without holding a lock. 1894 * Writers usually hold RTNL. 1895 * It is recommended to use READ_ONCE() to annotate the reads, 1896 * and to use WRITE_ONCE() to annotate the writes. 1897 */ 1898 unsigned int mtu; 1899 unsigned short needed_headroom; 1900 unsigned short needed_tailroom; 1901 1902 netdev_features_t features; 1903 netdev_features_t hw_features; 1904 netdev_features_t wanted_features; 1905 netdev_features_t vlan_features; 1906 netdev_features_t hw_enc_features; 1907 netdev_features_t mpls_features; 1908 netdev_features_t gso_partial_features; 1909 1910 unsigned int min_mtu; 1911 unsigned int max_mtu; 1912 unsigned short type; 1913 unsigned char min_header_len; 1914 unsigned char name_assign_type; 1915 1916 int group; 1917 1918 struct net_device_stats stats; /* not used by modern drivers */ 1919 1920 atomic_long_t rx_dropped; 1921 atomic_long_t tx_dropped; 1922 atomic_long_t rx_nohandler; 1923 1924 /* Stats to monitor link on/off, flapping */ 1925 atomic_t carrier_up_count; 1926 atomic_t carrier_down_count; 1927 1928 #ifdef CONFIG_WIRELESS_EXT 1929 const struct iw_handler_def *wireless_handlers; 1930 struct iw_public_data *wireless_data; 1931 #endif 1932 const struct ethtool_ops *ethtool_ops; 1933 #ifdef CONFIG_NET_L3_MASTER_DEV 1934 const struct l3mdev_ops *l3mdev_ops; 1935 #endif 1936 #if IS_ENABLED(CONFIG_IPV6) 1937 const struct ndisc_ops *ndisc_ops; 1938 #endif 1939 1940 #ifdef CONFIG_XFRM_OFFLOAD 1941 const struct xfrmdev_ops *xfrmdev_ops; 1942 #endif 1943 1944 #if IS_ENABLED(CONFIG_TLS_DEVICE) 1945 const struct tlsdev_ops *tlsdev_ops; 1946 #endif 1947 1948 const struct header_ops *header_ops; 1949 1950 unsigned char operstate; 1951 unsigned char link_mode; 1952 1953 unsigned char if_port; 1954 unsigned char dma; 1955 1956 /* Interface address info. */ 1957 unsigned char perm_addr[MAX_ADDR_LEN]; 1958 unsigned char addr_assign_type; 1959 unsigned char addr_len; 1960 unsigned char upper_level; 1961 unsigned char lower_level; 1962 1963 unsigned short neigh_priv_len; 1964 unsigned short dev_id; 1965 unsigned short dev_port; 1966 unsigned short padded; 1967 1968 spinlock_t addr_list_lock; 1969 int irq; 1970 1971 struct netdev_hw_addr_list uc; 1972 struct netdev_hw_addr_list mc; 1973 struct netdev_hw_addr_list dev_addrs; 1974 1975 #ifdef CONFIG_SYSFS 1976 struct kset *queues_kset; 1977 #endif 1978 #ifdef CONFIG_LOCKDEP 1979 struct list_head unlink_list; 1980 #endif 1981 unsigned int promiscuity; 1982 unsigned int allmulti; 1983 bool uc_promisc; 1984 #ifdef CONFIG_LOCKDEP 1985 unsigned char nested_level; 1986 #endif 1987 1988 1989 /* Protocol-specific pointers */ 1990 1991 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1992 struct vlan_info __rcu *vlan_info; 1993 #endif 1994 #if IS_ENABLED(CONFIG_NET_DSA) 1995 struct dsa_port *dsa_ptr; 1996 #endif 1997 #if IS_ENABLED(CONFIG_TIPC) 1998 struct tipc_bearer __rcu *tipc_ptr; 1999 #endif 2000 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 2001 void *atalk_ptr; 2002 #endif 2003 struct in_device __rcu *ip_ptr; 2004 #if IS_ENABLED(CONFIG_DECNET) 2005 struct dn_dev __rcu *dn_ptr; 2006 #endif 2007 struct inet6_dev __rcu *ip6_ptr; 2008 #if IS_ENABLED(CONFIG_AX25) 2009 void *ax25_ptr; 2010 #endif 2011 struct wireless_dev *ieee80211_ptr; 2012 struct wpan_dev *ieee802154_ptr; 2013 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2014 struct mpls_dev __rcu *mpls_ptr; 2015 #endif 2016 2017 /* 2018 * Cache lines mostly used on receive path (including eth_type_trans()) 2019 */ 2020 /* Interface address info used in eth_type_trans() */ 2021 unsigned char *dev_addr; 2022 2023 struct netdev_rx_queue *_rx; 2024 unsigned int num_rx_queues; 2025 unsigned int real_num_rx_queues; 2026 2027 struct bpf_prog __rcu *xdp_prog; 2028 unsigned long gro_flush_timeout; 2029 int napi_defer_hard_irqs; 2030 rx_handler_func_t __rcu *rx_handler; 2031 void __rcu *rx_handler_data; 2032 2033 #ifdef CONFIG_NET_CLS_ACT 2034 struct mini_Qdisc __rcu *miniq_ingress; 2035 #endif 2036 struct netdev_queue __rcu *ingress_queue; 2037 #ifdef CONFIG_NETFILTER_INGRESS 2038 struct nf_hook_entries __rcu *nf_hooks_ingress; 2039 #endif 2040 2041 unsigned char broadcast[MAX_ADDR_LEN]; 2042 #ifdef CONFIG_RFS_ACCEL 2043 struct cpu_rmap *rx_cpu_rmap; 2044 #endif 2045 struct hlist_node index_hlist; 2046 2047 /* 2048 * Cache lines mostly used on transmit path 2049 */ 2050 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2051 unsigned int num_tx_queues; 2052 unsigned int real_num_tx_queues; 2053 struct Qdisc *qdisc; 2054 unsigned int tx_queue_len; 2055 spinlock_t tx_global_lock; 2056 2057 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2058 2059 #ifdef CONFIG_XPS 2060 struct xps_dev_maps __rcu *xps_cpus_map; 2061 struct xps_dev_maps __rcu *xps_rxqs_map; 2062 #endif 2063 #ifdef CONFIG_NET_CLS_ACT 2064 struct mini_Qdisc __rcu *miniq_egress; 2065 #endif 2066 2067 #ifdef CONFIG_NET_SCHED 2068 DECLARE_HASHTABLE (qdisc_hash, 4); 2069 #endif 2070 /* These may be needed for future network-power-down code. */ 2071 struct timer_list watchdog_timer; 2072 int watchdog_timeo; 2073 2074 u32 proto_down_reason; 2075 2076 struct list_head todo_list; 2077 int __percpu *pcpu_refcnt; 2078 2079 struct list_head link_watch_list; 2080 2081 enum { NETREG_UNINITIALIZED=0, 2082 NETREG_REGISTERED, /* completed register_netdevice */ 2083 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2084 NETREG_UNREGISTERED, /* completed unregister todo */ 2085 NETREG_RELEASED, /* called free_netdev */ 2086 NETREG_DUMMY, /* dummy device for NAPI poll */ 2087 } reg_state:8; 2088 2089 bool dismantle; 2090 2091 enum { 2092 RTNL_LINK_INITIALIZED, 2093 RTNL_LINK_INITIALIZING, 2094 } rtnl_link_state:16; 2095 2096 bool needs_free_netdev; 2097 void (*priv_destructor)(struct net_device *dev); 2098 2099 #ifdef CONFIG_NETPOLL 2100 struct netpoll_info __rcu *npinfo; 2101 #endif 2102 2103 possible_net_t nd_net; 2104 2105 /* mid-layer private */ 2106 void *ml_priv; 2107 enum netdev_ml_priv_type ml_priv_type; 2108 2109 union { 2110 struct pcpu_lstats __percpu *lstats; 2111 struct pcpu_sw_netstats __percpu *tstats; 2112 struct pcpu_dstats __percpu *dstats; 2113 }; 2114 2115 #if IS_ENABLED(CONFIG_GARP) 2116 struct garp_port __rcu *garp_port; 2117 #endif 2118 #if IS_ENABLED(CONFIG_MRP) 2119 struct mrp_port __rcu *mrp_port; 2120 #endif 2121 2122 struct device dev; 2123 const struct attribute_group *sysfs_groups[4]; 2124 const struct attribute_group *sysfs_rx_queue_group; 2125 2126 const struct rtnl_link_ops *rtnl_link_ops; 2127 2128 /* for setting kernel sock attribute on TCP connection setup */ 2129 #define GSO_MAX_SIZE 65536 2130 unsigned int gso_max_size; 2131 #define GSO_MAX_SEGS 65535 2132 u16 gso_max_segs; 2133 2134 #ifdef CONFIG_DCB 2135 const struct dcbnl_rtnl_ops *dcbnl_ops; 2136 #endif 2137 s16 num_tc; 2138 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2139 u8 prio_tc_map[TC_BITMASK + 1]; 2140 2141 #if IS_ENABLED(CONFIG_FCOE) 2142 unsigned int fcoe_ddp_xid; 2143 #endif 2144 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2145 struct netprio_map __rcu *priomap; 2146 #endif 2147 struct phy_device *phydev; 2148 struct sfp_bus *sfp_bus; 2149 struct lock_class_key *qdisc_tx_busylock; 2150 struct lock_class_key *qdisc_running_key; 2151 bool proto_down; 2152 unsigned wol_enabled:1; 2153 unsigned threaded:1; 2154 2155 struct list_head net_notifier_list; 2156 2157 #if IS_ENABLED(CONFIG_MACSEC) 2158 /* MACsec management functions */ 2159 const struct macsec_ops *macsec_ops; 2160 #endif 2161 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2162 struct udp_tunnel_nic *udp_tunnel_nic; 2163 2164 /* protected by rtnl_lock */ 2165 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2166 }; 2167 #define to_net_dev(d) container_of(d, struct net_device, dev) 2168 2169 static inline bool netif_elide_gro(const struct net_device *dev) 2170 { 2171 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2172 return true; 2173 return false; 2174 } 2175 2176 #define NETDEV_ALIGN 32 2177 2178 static inline 2179 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2180 { 2181 return dev->prio_tc_map[prio & TC_BITMASK]; 2182 } 2183 2184 static inline 2185 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2186 { 2187 if (tc >= dev->num_tc) 2188 return -EINVAL; 2189 2190 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2191 return 0; 2192 } 2193 2194 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2195 void netdev_reset_tc(struct net_device *dev); 2196 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2197 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2198 2199 static inline 2200 int netdev_get_num_tc(struct net_device *dev) 2201 { 2202 return dev->num_tc; 2203 } 2204 2205 static inline void net_prefetch(void *p) 2206 { 2207 prefetch(p); 2208 #if L1_CACHE_BYTES < 128 2209 prefetch((u8 *)p + L1_CACHE_BYTES); 2210 #endif 2211 } 2212 2213 static inline void net_prefetchw(void *p) 2214 { 2215 prefetchw(p); 2216 #if L1_CACHE_BYTES < 128 2217 prefetchw((u8 *)p + L1_CACHE_BYTES); 2218 #endif 2219 } 2220 2221 void netdev_unbind_sb_channel(struct net_device *dev, 2222 struct net_device *sb_dev); 2223 int netdev_bind_sb_channel_queue(struct net_device *dev, 2224 struct net_device *sb_dev, 2225 u8 tc, u16 count, u16 offset); 2226 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2227 static inline int netdev_get_sb_channel(struct net_device *dev) 2228 { 2229 return max_t(int, -dev->num_tc, 0); 2230 } 2231 2232 static inline 2233 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2234 unsigned int index) 2235 { 2236 return &dev->_tx[index]; 2237 } 2238 2239 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2240 const struct sk_buff *skb) 2241 { 2242 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2243 } 2244 2245 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2246 void (*f)(struct net_device *, 2247 struct netdev_queue *, 2248 void *), 2249 void *arg) 2250 { 2251 unsigned int i; 2252 2253 for (i = 0; i < dev->num_tx_queues; i++) 2254 f(dev, &dev->_tx[i], arg); 2255 } 2256 2257 #define netdev_lockdep_set_classes(dev) \ 2258 { \ 2259 static struct lock_class_key qdisc_tx_busylock_key; \ 2260 static struct lock_class_key qdisc_running_key; \ 2261 static struct lock_class_key qdisc_xmit_lock_key; \ 2262 static struct lock_class_key dev_addr_list_lock_key; \ 2263 unsigned int i; \ 2264 \ 2265 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2266 (dev)->qdisc_running_key = &qdisc_running_key; \ 2267 lockdep_set_class(&(dev)->addr_list_lock, \ 2268 &dev_addr_list_lock_key); \ 2269 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2270 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2271 &qdisc_xmit_lock_key); \ 2272 } 2273 2274 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2275 struct net_device *sb_dev); 2276 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2277 struct sk_buff *skb, 2278 struct net_device *sb_dev); 2279 2280 /* returns the headroom that the master device needs to take in account 2281 * when forwarding to this dev 2282 */ 2283 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2284 { 2285 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2286 } 2287 2288 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2289 { 2290 if (dev->netdev_ops->ndo_set_rx_headroom) 2291 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2292 } 2293 2294 /* set the device rx headroom to the dev's default */ 2295 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2296 { 2297 netdev_set_rx_headroom(dev, -1); 2298 } 2299 2300 static inline void *netdev_get_ml_priv(struct net_device *dev, 2301 enum netdev_ml_priv_type type) 2302 { 2303 if (dev->ml_priv_type != type) 2304 return NULL; 2305 2306 return dev->ml_priv; 2307 } 2308 2309 static inline void netdev_set_ml_priv(struct net_device *dev, 2310 void *ml_priv, 2311 enum netdev_ml_priv_type type) 2312 { 2313 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2314 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2315 dev->ml_priv_type, type); 2316 WARN(!dev->ml_priv_type && dev->ml_priv, 2317 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2318 2319 dev->ml_priv = ml_priv; 2320 dev->ml_priv_type = type; 2321 } 2322 2323 /* 2324 * Net namespace inlines 2325 */ 2326 static inline 2327 struct net *dev_net(const struct net_device *dev) 2328 { 2329 return read_pnet(&dev->nd_net); 2330 } 2331 2332 static inline 2333 void dev_net_set(struct net_device *dev, struct net *net) 2334 { 2335 write_pnet(&dev->nd_net, net); 2336 } 2337 2338 /** 2339 * netdev_priv - access network device private data 2340 * @dev: network device 2341 * 2342 * Get network device private data 2343 */ 2344 static inline void *netdev_priv(const struct net_device *dev) 2345 { 2346 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2347 } 2348 2349 /* Set the sysfs physical device reference for the network logical device 2350 * if set prior to registration will cause a symlink during initialization. 2351 */ 2352 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2353 2354 /* Set the sysfs device type for the network logical device to allow 2355 * fine-grained identification of different network device types. For 2356 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2357 */ 2358 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2359 2360 /* Default NAPI poll() weight 2361 * Device drivers are strongly advised to not use bigger value 2362 */ 2363 #define NAPI_POLL_WEIGHT 64 2364 2365 /** 2366 * netif_napi_add - initialize a NAPI context 2367 * @dev: network device 2368 * @napi: NAPI context 2369 * @poll: polling function 2370 * @weight: default weight 2371 * 2372 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2373 * *any* of the other NAPI-related functions. 2374 */ 2375 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2376 int (*poll)(struct napi_struct *, int), int weight); 2377 2378 /** 2379 * netif_tx_napi_add - initialize a NAPI context 2380 * @dev: network device 2381 * @napi: NAPI context 2382 * @poll: polling function 2383 * @weight: default weight 2384 * 2385 * This variant of netif_napi_add() should be used from drivers using NAPI 2386 * to exclusively poll a TX queue. 2387 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2388 */ 2389 static inline void netif_tx_napi_add(struct net_device *dev, 2390 struct napi_struct *napi, 2391 int (*poll)(struct napi_struct *, int), 2392 int weight) 2393 { 2394 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2395 netif_napi_add(dev, napi, poll, weight); 2396 } 2397 2398 /** 2399 * __netif_napi_del - remove a NAPI context 2400 * @napi: NAPI context 2401 * 2402 * Warning: caller must observe RCU grace period before freeing memory 2403 * containing @napi. Drivers might want to call this helper to combine 2404 * all the needed RCU grace periods into a single one. 2405 */ 2406 void __netif_napi_del(struct napi_struct *napi); 2407 2408 /** 2409 * netif_napi_del - remove a NAPI context 2410 * @napi: NAPI context 2411 * 2412 * netif_napi_del() removes a NAPI context from the network device NAPI list 2413 */ 2414 static inline void netif_napi_del(struct napi_struct *napi) 2415 { 2416 __netif_napi_del(napi); 2417 synchronize_net(); 2418 } 2419 2420 struct napi_gro_cb { 2421 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2422 void *frag0; 2423 2424 /* Length of frag0. */ 2425 unsigned int frag0_len; 2426 2427 /* This indicates where we are processing relative to skb->data. */ 2428 int data_offset; 2429 2430 /* This is non-zero if the packet cannot be merged with the new skb. */ 2431 u16 flush; 2432 2433 /* Save the IP ID here and check when we get to the transport layer */ 2434 u16 flush_id; 2435 2436 /* Number of segments aggregated. */ 2437 u16 count; 2438 2439 /* Start offset for remote checksum offload */ 2440 u16 gro_remcsum_start; 2441 2442 /* jiffies when first packet was created/queued */ 2443 unsigned long age; 2444 2445 /* Used in ipv6_gro_receive() and foo-over-udp */ 2446 u16 proto; 2447 2448 /* This is non-zero if the packet may be of the same flow. */ 2449 u8 same_flow:1; 2450 2451 /* Used in tunnel GRO receive */ 2452 u8 encap_mark:1; 2453 2454 /* GRO checksum is valid */ 2455 u8 csum_valid:1; 2456 2457 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2458 u8 csum_cnt:3; 2459 2460 /* Free the skb? */ 2461 u8 free:2; 2462 #define NAPI_GRO_FREE 1 2463 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2464 2465 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2466 u8 is_ipv6:1; 2467 2468 /* Used in GRE, set in fou/gue_gro_receive */ 2469 u8 is_fou:1; 2470 2471 /* Used to determine if flush_id can be ignored */ 2472 u8 is_atomic:1; 2473 2474 /* Number of gro_receive callbacks this packet already went through */ 2475 u8 recursion_counter:4; 2476 2477 /* GRO is done by frag_list pointer chaining. */ 2478 u8 is_flist:1; 2479 2480 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2481 __wsum csum; 2482 2483 /* used in skb_gro_receive() slow path */ 2484 struct sk_buff *last; 2485 }; 2486 2487 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2488 2489 #define GRO_RECURSION_LIMIT 15 2490 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2491 { 2492 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2493 } 2494 2495 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2496 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2497 struct list_head *head, 2498 struct sk_buff *skb) 2499 { 2500 if (unlikely(gro_recursion_inc_test(skb))) { 2501 NAPI_GRO_CB(skb)->flush |= 1; 2502 return NULL; 2503 } 2504 2505 return cb(head, skb); 2506 } 2507 2508 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2509 struct sk_buff *); 2510 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2511 struct sock *sk, 2512 struct list_head *head, 2513 struct sk_buff *skb) 2514 { 2515 if (unlikely(gro_recursion_inc_test(skb))) { 2516 NAPI_GRO_CB(skb)->flush |= 1; 2517 return NULL; 2518 } 2519 2520 return cb(sk, head, skb); 2521 } 2522 2523 struct packet_type { 2524 __be16 type; /* This is really htons(ether_type). */ 2525 bool ignore_outgoing; 2526 struct net_device *dev; /* NULL is wildcarded here */ 2527 int (*func) (struct sk_buff *, 2528 struct net_device *, 2529 struct packet_type *, 2530 struct net_device *); 2531 void (*list_func) (struct list_head *, 2532 struct packet_type *, 2533 struct net_device *); 2534 bool (*id_match)(struct packet_type *ptype, 2535 struct sock *sk); 2536 void *af_packet_priv; 2537 struct list_head list; 2538 }; 2539 2540 struct offload_callbacks { 2541 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2542 netdev_features_t features); 2543 struct sk_buff *(*gro_receive)(struct list_head *head, 2544 struct sk_buff *skb); 2545 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2546 }; 2547 2548 struct packet_offload { 2549 __be16 type; /* This is really htons(ether_type). */ 2550 u16 priority; 2551 struct offload_callbacks callbacks; 2552 struct list_head list; 2553 }; 2554 2555 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2556 struct pcpu_sw_netstats { 2557 u64 rx_packets; 2558 u64 rx_bytes; 2559 u64 tx_packets; 2560 u64 tx_bytes; 2561 struct u64_stats_sync syncp; 2562 } __aligned(4 * sizeof(u64)); 2563 2564 struct pcpu_lstats { 2565 u64_stats_t packets; 2566 u64_stats_t bytes; 2567 struct u64_stats_sync syncp; 2568 } __aligned(2 * sizeof(u64)); 2569 2570 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2571 2572 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2573 { 2574 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2575 2576 u64_stats_update_begin(&tstats->syncp); 2577 tstats->rx_bytes += len; 2578 tstats->rx_packets++; 2579 u64_stats_update_end(&tstats->syncp); 2580 } 2581 2582 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2583 unsigned int packets, 2584 unsigned int len) 2585 { 2586 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2587 2588 u64_stats_update_begin(&tstats->syncp); 2589 tstats->tx_bytes += len; 2590 tstats->tx_packets += packets; 2591 u64_stats_update_end(&tstats->syncp); 2592 } 2593 2594 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2595 { 2596 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2597 2598 u64_stats_update_begin(&lstats->syncp); 2599 u64_stats_add(&lstats->bytes, len); 2600 u64_stats_inc(&lstats->packets); 2601 u64_stats_update_end(&lstats->syncp); 2602 } 2603 2604 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2605 ({ \ 2606 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2607 if (pcpu_stats) { \ 2608 int __cpu; \ 2609 for_each_possible_cpu(__cpu) { \ 2610 typeof(type) *stat; \ 2611 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2612 u64_stats_init(&stat->syncp); \ 2613 } \ 2614 } \ 2615 pcpu_stats; \ 2616 }) 2617 2618 #define netdev_alloc_pcpu_stats(type) \ 2619 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2620 2621 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2622 ({ \ 2623 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2624 if (pcpu_stats) { \ 2625 int __cpu; \ 2626 for_each_possible_cpu(__cpu) { \ 2627 typeof(type) *stat; \ 2628 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2629 u64_stats_init(&stat->syncp); \ 2630 } \ 2631 } \ 2632 pcpu_stats; \ 2633 }) 2634 2635 enum netdev_lag_tx_type { 2636 NETDEV_LAG_TX_TYPE_UNKNOWN, 2637 NETDEV_LAG_TX_TYPE_RANDOM, 2638 NETDEV_LAG_TX_TYPE_BROADCAST, 2639 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2640 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2641 NETDEV_LAG_TX_TYPE_HASH, 2642 }; 2643 2644 enum netdev_lag_hash { 2645 NETDEV_LAG_HASH_NONE, 2646 NETDEV_LAG_HASH_L2, 2647 NETDEV_LAG_HASH_L34, 2648 NETDEV_LAG_HASH_L23, 2649 NETDEV_LAG_HASH_E23, 2650 NETDEV_LAG_HASH_E34, 2651 NETDEV_LAG_HASH_VLAN_SRCMAC, 2652 NETDEV_LAG_HASH_UNKNOWN, 2653 }; 2654 2655 struct netdev_lag_upper_info { 2656 enum netdev_lag_tx_type tx_type; 2657 enum netdev_lag_hash hash_type; 2658 }; 2659 2660 struct netdev_lag_lower_state_info { 2661 u8 link_up : 1, 2662 tx_enabled : 1; 2663 }; 2664 2665 #include <linux/notifier.h> 2666 2667 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2668 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2669 * adding new types. 2670 */ 2671 enum netdev_cmd { 2672 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2673 NETDEV_DOWN, 2674 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2675 detected a hardware crash and restarted 2676 - we can use this eg to kick tcp sessions 2677 once done */ 2678 NETDEV_CHANGE, /* Notify device state change */ 2679 NETDEV_REGISTER, 2680 NETDEV_UNREGISTER, 2681 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2682 NETDEV_CHANGEADDR, /* notify after the address change */ 2683 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2684 NETDEV_GOING_DOWN, 2685 NETDEV_CHANGENAME, 2686 NETDEV_FEAT_CHANGE, 2687 NETDEV_BONDING_FAILOVER, 2688 NETDEV_PRE_UP, 2689 NETDEV_PRE_TYPE_CHANGE, 2690 NETDEV_POST_TYPE_CHANGE, 2691 NETDEV_POST_INIT, 2692 NETDEV_RELEASE, 2693 NETDEV_NOTIFY_PEERS, 2694 NETDEV_JOIN, 2695 NETDEV_CHANGEUPPER, 2696 NETDEV_RESEND_IGMP, 2697 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2698 NETDEV_CHANGEINFODATA, 2699 NETDEV_BONDING_INFO, 2700 NETDEV_PRECHANGEUPPER, 2701 NETDEV_CHANGELOWERSTATE, 2702 NETDEV_UDP_TUNNEL_PUSH_INFO, 2703 NETDEV_UDP_TUNNEL_DROP_INFO, 2704 NETDEV_CHANGE_TX_QUEUE_LEN, 2705 NETDEV_CVLAN_FILTER_PUSH_INFO, 2706 NETDEV_CVLAN_FILTER_DROP_INFO, 2707 NETDEV_SVLAN_FILTER_PUSH_INFO, 2708 NETDEV_SVLAN_FILTER_DROP_INFO, 2709 }; 2710 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2711 2712 int register_netdevice_notifier(struct notifier_block *nb); 2713 int unregister_netdevice_notifier(struct notifier_block *nb); 2714 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2715 int unregister_netdevice_notifier_net(struct net *net, 2716 struct notifier_block *nb); 2717 int register_netdevice_notifier_dev_net(struct net_device *dev, 2718 struct notifier_block *nb, 2719 struct netdev_net_notifier *nn); 2720 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2721 struct notifier_block *nb, 2722 struct netdev_net_notifier *nn); 2723 2724 struct netdev_notifier_info { 2725 struct net_device *dev; 2726 struct netlink_ext_ack *extack; 2727 }; 2728 2729 struct netdev_notifier_info_ext { 2730 struct netdev_notifier_info info; /* must be first */ 2731 union { 2732 u32 mtu; 2733 } ext; 2734 }; 2735 2736 struct netdev_notifier_change_info { 2737 struct netdev_notifier_info info; /* must be first */ 2738 unsigned int flags_changed; 2739 }; 2740 2741 struct netdev_notifier_changeupper_info { 2742 struct netdev_notifier_info info; /* must be first */ 2743 struct net_device *upper_dev; /* new upper dev */ 2744 bool master; /* is upper dev master */ 2745 bool linking; /* is the notification for link or unlink */ 2746 void *upper_info; /* upper dev info */ 2747 }; 2748 2749 struct netdev_notifier_changelowerstate_info { 2750 struct netdev_notifier_info info; /* must be first */ 2751 void *lower_state_info; /* is lower dev state */ 2752 }; 2753 2754 struct netdev_notifier_pre_changeaddr_info { 2755 struct netdev_notifier_info info; /* must be first */ 2756 const unsigned char *dev_addr; 2757 }; 2758 2759 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2760 struct net_device *dev) 2761 { 2762 info->dev = dev; 2763 info->extack = NULL; 2764 } 2765 2766 static inline struct net_device * 2767 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2768 { 2769 return info->dev; 2770 } 2771 2772 static inline struct netlink_ext_ack * 2773 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2774 { 2775 return info->extack; 2776 } 2777 2778 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2779 2780 2781 extern rwlock_t dev_base_lock; /* Device list lock */ 2782 2783 #define for_each_netdev(net, d) \ 2784 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2785 #define for_each_netdev_reverse(net, d) \ 2786 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2787 #define for_each_netdev_rcu(net, d) \ 2788 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2789 #define for_each_netdev_safe(net, d, n) \ 2790 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2791 #define for_each_netdev_continue(net, d) \ 2792 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2793 #define for_each_netdev_continue_reverse(net, d) \ 2794 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 2795 dev_list) 2796 #define for_each_netdev_continue_rcu(net, d) \ 2797 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2798 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2799 for_each_netdev_rcu(&init_net, slave) \ 2800 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2801 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2802 2803 static inline struct net_device *next_net_device(struct net_device *dev) 2804 { 2805 struct list_head *lh; 2806 struct net *net; 2807 2808 net = dev_net(dev); 2809 lh = dev->dev_list.next; 2810 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2811 } 2812 2813 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2814 { 2815 struct list_head *lh; 2816 struct net *net; 2817 2818 net = dev_net(dev); 2819 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2820 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2821 } 2822 2823 static inline struct net_device *first_net_device(struct net *net) 2824 { 2825 return list_empty(&net->dev_base_head) ? NULL : 2826 net_device_entry(net->dev_base_head.next); 2827 } 2828 2829 static inline struct net_device *first_net_device_rcu(struct net *net) 2830 { 2831 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2832 2833 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2834 } 2835 2836 int netdev_boot_setup_check(struct net_device *dev); 2837 unsigned long netdev_boot_base(const char *prefix, int unit); 2838 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2839 const char *hwaddr); 2840 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2841 void dev_add_pack(struct packet_type *pt); 2842 void dev_remove_pack(struct packet_type *pt); 2843 void __dev_remove_pack(struct packet_type *pt); 2844 void dev_add_offload(struct packet_offload *po); 2845 void dev_remove_offload(struct packet_offload *po); 2846 2847 int dev_get_iflink(const struct net_device *dev); 2848 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2849 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2850 unsigned short mask); 2851 struct net_device *dev_get_by_name(struct net *net, const char *name); 2852 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2853 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2854 int dev_alloc_name(struct net_device *dev, const char *name); 2855 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2856 void dev_close(struct net_device *dev); 2857 void dev_close_many(struct list_head *head, bool unlink); 2858 void dev_disable_lro(struct net_device *dev); 2859 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2860 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2861 struct net_device *sb_dev); 2862 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2863 struct net_device *sb_dev); 2864 2865 int dev_queue_xmit(struct sk_buff *skb); 2866 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2867 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2868 2869 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 2870 { 2871 int ret; 2872 2873 ret = __dev_direct_xmit(skb, queue_id); 2874 if (!dev_xmit_complete(ret)) 2875 kfree_skb(skb); 2876 return ret; 2877 } 2878 2879 int register_netdevice(struct net_device *dev); 2880 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2881 void unregister_netdevice_many(struct list_head *head); 2882 static inline void unregister_netdevice(struct net_device *dev) 2883 { 2884 unregister_netdevice_queue(dev, NULL); 2885 } 2886 2887 int netdev_refcnt_read(const struct net_device *dev); 2888 void free_netdev(struct net_device *dev); 2889 void netdev_freemem(struct net_device *dev); 2890 int init_dummy_netdev(struct net_device *dev); 2891 2892 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 2893 struct sk_buff *skb, 2894 bool all_slaves); 2895 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 2896 struct sock *sk); 2897 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2898 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2899 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2900 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2901 int netdev_get_name(struct net *net, char *name, int ifindex); 2902 int dev_restart(struct net_device *dev); 2903 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2904 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb); 2905 2906 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2907 { 2908 return NAPI_GRO_CB(skb)->data_offset; 2909 } 2910 2911 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2912 { 2913 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2914 } 2915 2916 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2917 { 2918 NAPI_GRO_CB(skb)->data_offset += len; 2919 } 2920 2921 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2922 unsigned int offset) 2923 { 2924 return NAPI_GRO_CB(skb)->frag0 + offset; 2925 } 2926 2927 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2928 { 2929 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2930 } 2931 2932 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2933 { 2934 NAPI_GRO_CB(skb)->frag0 = NULL; 2935 NAPI_GRO_CB(skb)->frag0_len = 0; 2936 } 2937 2938 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2939 unsigned int offset) 2940 { 2941 if (!pskb_may_pull(skb, hlen)) 2942 return NULL; 2943 2944 skb_gro_frag0_invalidate(skb); 2945 return skb->data + offset; 2946 } 2947 2948 static inline void *skb_gro_network_header(struct sk_buff *skb) 2949 { 2950 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2951 skb_network_offset(skb); 2952 } 2953 2954 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2955 const void *start, unsigned int len) 2956 { 2957 if (NAPI_GRO_CB(skb)->csum_valid) 2958 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2959 csum_partial(start, len, 0)); 2960 } 2961 2962 /* GRO checksum functions. These are logical equivalents of the normal 2963 * checksum functions (in skbuff.h) except that they operate on the GRO 2964 * offsets and fields in sk_buff. 2965 */ 2966 2967 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2968 2969 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2970 { 2971 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2972 } 2973 2974 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2975 bool zero_okay, 2976 __sum16 check) 2977 { 2978 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2979 skb_checksum_start_offset(skb) < 2980 skb_gro_offset(skb)) && 2981 !skb_at_gro_remcsum_start(skb) && 2982 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2983 (!zero_okay || check)); 2984 } 2985 2986 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2987 __wsum psum) 2988 { 2989 if (NAPI_GRO_CB(skb)->csum_valid && 2990 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2991 return 0; 2992 2993 NAPI_GRO_CB(skb)->csum = psum; 2994 2995 return __skb_gro_checksum_complete(skb); 2996 } 2997 2998 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2999 { 3000 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 3001 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 3002 NAPI_GRO_CB(skb)->csum_cnt--; 3003 } else { 3004 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 3005 * verified a new top level checksum or an encapsulated one 3006 * during GRO. This saves work if we fallback to normal path. 3007 */ 3008 __skb_incr_checksum_unnecessary(skb); 3009 } 3010 } 3011 3012 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 3013 compute_pseudo) \ 3014 ({ \ 3015 __sum16 __ret = 0; \ 3016 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 3017 __ret = __skb_gro_checksum_validate_complete(skb, \ 3018 compute_pseudo(skb, proto)); \ 3019 if (!__ret) \ 3020 skb_gro_incr_csum_unnecessary(skb); \ 3021 __ret; \ 3022 }) 3023 3024 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 3025 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 3026 3027 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 3028 compute_pseudo) \ 3029 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 3030 3031 #define skb_gro_checksum_simple_validate(skb) \ 3032 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 3033 3034 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 3035 { 3036 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 3037 !NAPI_GRO_CB(skb)->csum_valid); 3038 } 3039 3040 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 3041 __wsum pseudo) 3042 { 3043 NAPI_GRO_CB(skb)->csum = ~pseudo; 3044 NAPI_GRO_CB(skb)->csum_valid = 1; 3045 } 3046 3047 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \ 3048 do { \ 3049 if (__skb_gro_checksum_convert_check(skb)) \ 3050 __skb_gro_checksum_convert(skb, \ 3051 compute_pseudo(skb, proto)); \ 3052 } while (0) 3053 3054 struct gro_remcsum { 3055 int offset; 3056 __wsum delta; 3057 }; 3058 3059 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 3060 { 3061 grc->offset = 0; 3062 grc->delta = 0; 3063 } 3064 3065 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 3066 unsigned int off, size_t hdrlen, 3067 int start, int offset, 3068 struct gro_remcsum *grc, 3069 bool nopartial) 3070 { 3071 __wsum delta; 3072 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 3073 3074 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 3075 3076 if (!nopartial) { 3077 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 3078 return ptr; 3079 } 3080 3081 ptr = skb_gro_header_fast(skb, off); 3082 if (skb_gro_header_hard(skb, off + plen)) { 3083 ptr = skb_gro_header_slow(skb, off + plen, off); 3084 if (!ptr) 3085 return NULL; 3086 } 3087 3088 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 3089 start, offset); 3090 3091 /* Adjust skb->csum since we changed the packet */ 3092 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 3093 3094 grc->offset = off + hdrlen + offset; 3095 grc->delta = delta; 3096 3097 return ptr; 3098 } 3099 3100 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 3101 struct gro_remcsum *grc) 3102 { 3103 void *ptr; 3104 size_t plen = grc->offset + sizeof(u16); 3105 3106 if (!grc->delta) 3107 return; 3108 3109 ptr = skb_gro_header_fast(skb, grc->offset); 3110 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 3111 ptr = skb_gro_header_slow(skb, plen, grc->offset); 3112 if (!ptr) 3113 return; 3114 } 3115 3116 remcsum_unadjust((__sum16 *)ptr, grc->delta); 3117 } 3118 3119 #ifdef CONFIG_XFRM_OFFLOAD 3120 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 3121 { 3122 if (PTR_ERR(pp) != -EINPROGRESS) 3123 NAPI_GRO_CB(skb)->flush |= flush; 3124 } 3125 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 3126 struct sk_buff *pp, 3127 int flush, 3128 struct gro_remcsum *grc) 3129 { 3130 if (PTR_ERR(pp) != -EINPROGRESS) { 3131 NAPI_GRO_CB(skb)->flush |= flush; 3132 skb_gro_remcsum_cleanup(skb, grc); 3133 skb->remcsum_offload = 0; 3134 } 3135 } 3136 #else 3137 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 3138 { 3139 NAPI_GRO_CB(skb)->flush |= flush; 3140 } 3141 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 3142 struct sk_buff *pp, 3143 int flush, 3144 struct gro_remcsum *grc) 3145 { 3146 NAPI_GRO_CB(skb)->flush |= flush; 3147 skb_gro_remcsum_cleanup(skb, grc); 3148 skb->remcsum_offload = 0; 3149 } 3150 #endif 3151 3152 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3153 unsigned short type, 3154 const void *daddr, const void *saddr, 3155 unsigned int len) 3156 { 3157 if (!dev->header_ops || !dev->header_ops->create) 3158 return 0; 3159 3160 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3161 } 3162 3163 static inline int dev_parse_header(const struct sk_buff *skb, 3164 unsigned char *haddr) 3165 { 3166 const struct net_device *dev = skb->dev; 3167 3168 if (!dev->header_ops || !dev->header_ops->parse) 3169 return 0; 3170 return dev->header_ops->parse(skb, haddr); 3171 } 3172 3173 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3174 { 3175 const struct net_device *dev = skb->dev; 3176 3177 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3178 return 0; 3179 return dev->header_ops->parse_protocol(skb); 3180 } 3181 3182 /* ll_header must have at least hard_header_len allocated */ 3183 static inline bool dev_validate_header(const struct net_device *dev, 3184 char *ll_header, int len) 3185 { 3186 if (likely(len >= dev->hard_header_len)) 3187 return true; 3188 if (len < dev->min_header_len) 3189 return false; 3190 3191 if (capable(CAP_SYS_RAWIO)) { 3192 memset(ll_header + len, 0, dev->hard_header_len - len); 3193 return true; 3194 } 3195 3196 if (dev->header_ops && dev->header_ops->validate) 3197 return dev->header_ops->validate(ll_header, len); 3198 3199 return false; 3200 } 3201 3202 static inline bool dev_has_header(const struct net_device *dev) 3203 { 3204 return dev->header_ops && dev->header_ops->create; 3205 } 3206 3207 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 3208 int len, int size); 3209 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 3210 static inline int unregister_gifconf(unsigned int family) 3211 { 3212 return register_gifconf(family, NULL); 3213 } 3214 3215 #ifdef CONFIG_NET_FLOW_LIMIT 3216 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 3217 struct sd_flow_limit { 3218 u64 count; 3219 unsigned int num_buckets; 3220 unsigned int history_head; 3221 u16 history[FLOW_LIMIT_HISTORY]; 3222 u8 buckets[]; 3223 }; 3224 3225 extern int netdev_flow_limit_table_len; 3226 #endif /* CONFIG_NET_FLOW_LIMIT */ 3227 3228 /* 3229 * Incoming packets are placed on per-CPU queues 3230 */ 3231 struct softnet_data { 3232 struct list_head poll_list; 3233 struct sk_buff_head process_queue; 3234 3235 /* stats */ 3236 unsigned int processed; 3237 unsigned int time_squeeze; 3238 unsigned int received_rps; 3239 #ifdef CONFIG_RPS 3240 struct softnet_data *rps_ipi_list; 3241 #endif 3242 #ifdef CONFIG_NET_FLOW_LIMIT 3243 struct sd_flow_limit __rcu *flow_limit; 3244 #endif 3245 struct Qdisc *output_queue; 3246 struct Qdisc **output_queue_tailp; 3247 struct sk_buff *completion_queue; 3248 #ifdef CONFIG_XFRM_OFFLOAD 3249 struct sk_buff_head xfrm_backlog; 3250 #endif 3251 /* written and read only by owning cpu: */ 3252 struct { 3253 u16 recursion; 3254 u8 more; 3255 } xmit; 3256 #ifdef CONFIG_RPS 3257 /* input_queue_head should be written by cpu owning this struct, 3258 * and only read by other cpus. Worth using a cache line. 3259 */ 3260 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3261 3262 /* Elements below can be accessed between CPUs for RPS/RFS */ 3263 call_single_data_t csd ____cacheline_aligned_in_smp; 3264 struct softnet_data *rps_ipi_next; 3265 unsigned int cpu; 3266 unsigned int input_queue_tail; 3267 #endif 3268 unsigned int dropped; 3269 struct sk_buff_head input_pkt_queue; 3270 struct napi_struct backlog; 3271 3272 }; 3273 3274 static inline void input_queue_head_incr(struct softnet_data *sd) 3275 { 3276 #ifdef CONFIG_RPS 3277 sd->input_queue_head++; 3278 #endif 3279 } 3280 3281 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3282 unsigned int *qtail) 3283 { 3284 #ifdef CONFIG_RPS 3285 *qtail = ++sd->input_queue_tail; 3286 #endif 3287 } 3288 3289 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3290 3291 static inline int dev_recursion_level(void) 3292 { 3293 return this_cpu_read(softnet_data.xmit.recursion); 3294 } 3295 3296 #define XMIT_RECURSION_LIMIT 8 3297 static inline bool dev_xmit_recursion(void) 3298 { 3299 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3300 XMIT_RECURSION_LIMIT); 3301 } 3302 3303 static inline void dev_xmit_recursion_inc(void) 3304 { 3305 __this_cpu_inc(softnet_data.xmit.recursion); 3306 } 3307 3308 static inline void dev_xmit_recursion_dec(void) 3309 { 3310 __this_cpu_dec(softnet_data.xmit.recursion); 3311 } 3312 3313 void __netif_schedule(struct Qdisc *q); 3314 void netif_schedule_queue(struct netdev_queue *txq); 3315 3316 static inline void netif_tx_schedule_all(struct net_device *dev) 3317 { 3318 unsigned int i; 3319 3320 for (i = 0; i < dev->num_tx_queues; i++) 3321 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3322 } 3323 3324 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3325 { 3326 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3327 } 3328 3329 /** 3330 * netif_start_queue - allow transmit 3331 * @dev: network device 3332 * 3333 * Allow upper layers to call the device hard_start_xmit routine. 3334 */ 3335 static inline void netif_start_queue(struct net_device *dev) 3336 { 3337 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3338 } 3339 3340 static inline void netif_tx_start_all_queues(struct net_device *dev) 3341 { 3342 unsigned int i; 3343 3344 for (i = 0; i < dev->num_tx_queues; i++) { 3345 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3346 netif_tx_start_queue(txq); 3347 } 3348 } 3349 3350 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3351 3352 /** 3353 * netif_wake_queue - restart transmit 3354 * @dev: network device 3355 * 3356 * Allow upper layers to call the device hard_start_xmit routine. 3357 * Used for flow control when transmit resources are available. 3358 */ 3359 static inline void netif_wake_queue(struct net_device *dev) 3360 { 3361 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3362 } 3363 3364 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3365 { 3366 unsigned int i; 3367 3368 for (i = 0; i < dev->num_tx_queues; i++) { 3369 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3370 netif_tx_wake_queue(txq); 3371 } 3372 } 3373 3374 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3375 { 3376 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3377 } 3378 3379 /** 3380 * netif_stop_queue - stop transmitted packets 3381 * @dev: network device 3382 * 3383 * Stop upper layers calling the device hard_start_xmit routine. 3384 * Used for flow control when transmit resources are unavailable. 3385 */ 3386 static inline void netif_stop_queue(struct net_device *dev) 3387 { 3388 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3389 } 3390 3391 void netif_tx_stop_all_queues(struct net_device *dev); 3392 3393 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3394 { 3395 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3396 } 3397 3398 /** 3399 * netif_queue_stopped - test if transmit queue is flowblocked 3400 * @dev: network device 3401 * 3402 * Test if transmit queue on device is currently unable to send. 3403 */ 3404 static inline bool netif_queue_stopped(const struct net_device *dev) 3405 { 3406 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3407 } 3408 3409 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3410 { 3411 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3412 } 3413 3414 static inline bool 3415 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3416 { 3417 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3418 } 3419 3420 static inline bool 3421 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3422 { 3423 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3424 } 3425 3426 /** 3427 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3428 * @dev_queue: pointer to transmit queue 3429 * 3430 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3431 * to give appropriate hint to the CPU. 3432 */ 3433 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3434 { 3435 #ifdef CONFIG_BQL 3436 prefetchw(&dev_queue->dql.num_queued); 3437 #endif 3438 } 3439 3440 /** 3441 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3442 * @dev_queue: pointer to transmit queue 3443 * 3444 * BQL enabled drivers might use this helper in their TX completion path, 3445 * to give appropriate hint to the CPU. 3446 */ 3447 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3448 { 3449 #ifdef CONFIG_BQL 3450 prefetchw(&dev_queue->dql.limit); 3451 #endif 3452 } 3453 3454 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3455 unsigned int bytes) 3456 { 3457 #ifdef CONFIG_BQL 3458 dql_queued(&dev_queue->dql, bytes); 3459 3460 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3461 return; 3462 3463 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3464 3465 /* 3466 * The XOFF flag must be set before checking the dql_avail below, 3467 * because in netdev_tx_completed_queue we update the dql_completed 3468 * before checking the XOFF flag. 3469 */ 3470 smp_mb(); 3471 3472 /* check again in case another CPU has just made room avail */ 3473 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3474 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3475 #endif 3476 } 3477 3478 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3479 * that they should not test BQL status themselves. 3480 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3481 * skb of a batch. 3482 * Returns true if the doorbell must be used to kick the NIC. 3483 */ 3484 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3485 unsigned int bytes, 3486 bool xmit_more) 3487 { 3488 if (xmit_more) { 3489 #ifdef CONFIG_BQL 3490 dql_queued(&dev_queue->dql, bytes); 3491 #endif 3492 return netif_tx_queue_stopped(dev_queue); 3493 } 3494 netdev_tx_sent_queue(dev_queue, bytes); 3495 return true; 3496 } 3497 3498 /** 3499 * netdev_sent_queue - report the number of bytes queued to hardware 3500 * @dev: network device 3501 * @bytes: number of bytes queued to the hardware device queue 3502 * 3503 * Report the number of bytes queued for sending/completion to the network 3504 * device hardware queue. @bytes should be a good approximation and should 3505 * exactly match netdev_completed_queue() @bytes 3506 */ 3507 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3508 { 3509 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3510 } 3511 3512 static inline bool __netdev_sent_queue(struct net_device *dev, 3513 unsigned int bytes, 3514 bool xmit_more) 3515 { 3516 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3517 xmit_more); 3518 } 3519 3520 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3521 unsigned int pkts, unsigned int bytes) 3522 { 3523 #ifdef CONFIG_BQL 3524 if (unlikely(!bytes)) 3525 return; 3526 3527 dql_completed(&dev_queue->dql, bytes); 3528 3529 /* 3530 * Without the memory barrier there is a small possiblity that 3531 * netdev_tx_sent_queue will miss the update and cause the queue to 3532 * be stopped forever 3533 */ 3534 smp_mb(); 3535 3536 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3537 return; 3538 3539 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3540 netif_schedule_queue(dev_queue); 3541 #endif 3542 } 3543 3544 /** 3545 * netdev_completed_queue - report bytes and packets completed by device 3546 * @dev: network device 3547 * @pkts: actual number of packets sent over the medium 3548 * @bytes: actual number of bytes sent over the medium 3549 * 3550 * Report the number of bytes and packets transmitted by the network device 3551 * hardware queue over the physical medium, @bytes must exactly match the 3552 * @bytes amount passed to netdev_sent_queue() 3553 */ 3554 static inline void netdev_completed_queue(struct net_device *dev, 3555 unsigned int pkts, unsigned int bytes) 3556 { 3557 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3558 } 3559 3560 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3561 { 3562 #ifdef CONFIG_BQL 3563 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3564 dql_reset(&q->dql); 3565 #endif 3566 } 3567 3568 /** 3569 * netdev_reset_queue - reset the packets and bytes count of a network device 3570 * @dev_queue: network device 3571 * 3572 * Reset the bytes and packet count of a network device and clear the 3573 * software flow control OFF bit for this network device 3574 */ 3575 static inline void netdev_reset_queue(struct net_device *dev_queue) 3576 { 3577 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3578 } 3579 3580 /** 3581 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3582 * @dev: network device 3583 * @queue_index: given tx queue index 3584 * 3585 * Returns 0 if given tx queue index >= number of device tx queues, 3586 * otherwise returns the originally passed tx queue index. 3587 */ 3588 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3589 { 3590 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3591 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3592 dev->name, queue_index, 3593 dev->real_num_tx_queues); 3594 return 0; 3595 } 3596 3597 return queue_index; 3598 } 3599 3600 /** 3601 * netif_running - test if up 3602 * @dev: network device 3603 * 3604 * Test if the device has been brought up. 3605 */ 3606 static inline bool netif_running(const struct net_device *dev) 3607 { 3608 return test_bit(__LINK_STATE_START, &dev->state); 3609 } 3610 3611 /* 3612 * Routines to manage the subqueues on a device. We only need start, 3613 * stop, and a check if it's stopped. All other device management is 3614 * done at the overall netdevice level. 3615 * Also test the device if we're multiqueue. 3616 */ 3617 3618 /** 3619 * netif_start_subqueue - allow sending packets on subqueue 3620 * @dev: network device 3621 * @queue_index: sub queue index 3622 * 3623 * Start individual transmit queue of a device with multiple transmit queues. 3624 */ 3625 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3626 { 3627 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3628 3629 netif_tx_start_queue(txq); 3630 } 3631 3632 /** 3633 * netif_stop_subqueue - stop sending packets on subqueue 3634 * @dev: network device 3635 * @queue_index: sub queue index 3636 * 3637 * Stop individual transmit queue of a device with multiple transmit queues. 3638 */ 3639 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3640 { 3641 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3642 netif_tx_stop_queue(txq); 3643 } 3644 3645 /** 3646 * __netif_subqueue_stopped - test status of subqueue 3647 * @dev: network device 3648 * @queue_index: sub queue index 3649 * 3650 * Check individual transmit queue of a device with multiple transmit queues. 3651 */ 3652 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3653 u16 queue_index) 3654 { 3655 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3656 3657 return netif_tx_queue_stopped(txq); 3658 } 3659 3660 /** 3661 * netif_subqueue_stopped - test status of subqueue 3662 * @dev: network device 3663 * @skb: sub queue buffer pointer 3664 * 3665 * Check individual transmit queue of a device with multiple transmit queues. 3666 */ 3667 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3668 struct sk_buff *skb) 3669 { 3670 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3671 } 3672 3673 /** 3674 * netif_wake_subqueue - allow sending packets on subqueue 3675 * @dev: network device 3676 * @queue_index: sub queue index 3677 * 3678 * Resume individual transmit queue of a device with multiple transmit queues. 3679 */ 3680 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3681 { 3682 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3683 3684 netif_tx_wake_queue(txq); 3685 } 3686 3687 #ifdef CONFIG_XPS 3688 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3689 u16 index); 3690 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3691 u16 index, bool is_rxqs_map); 3692 3693 /** 3694 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3695 * @j: CPU/Rx queue index 3696 * @mask: bitmask of all cpus/rx queues 3697 * @nr_bits: number of bits in the bitmask 3698 * 3699 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3700 */ 3701 static inline bool netif_attr_test_mask(unsigned long j, 3702 const unsigned long *mask, 3703 unsigned int nr_bits) 3704 { 3705 cpu_max_bits_warn(j, nr_bits); 3706 return test_bit(j, mask); 3707 } 3708 3709 /** 3710 * netif_attr_test_online - Test for online CPU/Rx queue 3711 * @j: CPU/Rx queue index 3712 * @online_mask: bitmask for CPUs/Rx queues that are online 3713 * @nr_bits: number of bits in the bitmask 3714 * 3715 * Returns true if a CPU/Rx queue is online. 3716 */ 3717 static inline bool netif_attr_test_online(unsigned long j, 3718 const unsigned long *online_mask, 3719 unsigned int nr_bits) 3720 { 3721 cpu_max_bits_warn(j, nr_bits); 3722 3723 if (online_mask) 3724 return test_bit(j, online_mask); 3725 3726 return (j < nr_bits); 3727 } 3728 3729 /** 3730 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3731 * @n: CPU/Rx queue index 3732 * @srcp: the cpumask/Rx queue mask pointer 3733 * @nr_bits: number of bits in the bitmask 3734 * 3735 * Returns >= nr_bits if no further CPUs/Rx queues set. 3736 */ 3737 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3738 unsigned int nr_bits) 3739 { 3740 /* -1 is a legal arg here. */ 3741 if (n != -1) 3742 cpu_max_bits_warn(n, nr_bits); 3743 3744 if (srcp) 3745 return find_next_bit(srcp, nr_bits, n + 1); 3746 3747 return n + 1; 3748 } 3749 3750 /** 3751 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3752 * @n: CPU/Rx queue index 3753 * @src1p: the first CPUs/Rx queues mask pointer 3754 * @src2p: the second CPUs/Rx queues mask pointer 3755 * @nr_bits: number of bits in the bitmask 3756 * 3757 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3758 */ 3759 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3760 const unsigned long *src2p, 3761 unsigned int nr_bits) 3762 { 3763 /* -1 is a legal arg here. */ 3764 if (n != -1) 3765 cpu_max_bits_warn(n, nr_bits); 3766 3767 if (src1p && src2p) 3768 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3769 else if (src1p) 3770 return find_next_bit(src1p, nr_bits, n + 1); 3771 else if (src2p) 3772 return find_next_bit(src2p, nr_bits, n + 1); 3773 3774 return n + 1; 3775 } 3776 #else 3777 static inline int netif_set_xps_queue(struct net_device *dev, 3778 const struct cpumask *mask, 3779 u16 index) 3780 { 3781 return 0; 3782 } 3783 3784 static inline int __netif_set_xps_queue(struct net_device *dev, 3785 const unsigned long *mask, 3786 u16 index, bool is_rxqs_map) 3787 { 3788 return 0; 3789 } 3790 #endif 3791 3792 /** 3793 * netif_is_multiqueue - test if device has multiple transmit queues 3794 * @dev: network device 3795 * 3796 * Check if device has multiple transmit queues 3797 */ 3798 static inline bool netif_is_multiqueue(const struct net_device *dev) 3799 { 3800 return dev->num_tx_queues > 1; 3801 } 3802 3803 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3804 3805 #ifdef CONFIG_SYSFS 3806 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3807 #else 3808 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3809 unsigned int rxqs) 3810 { 3811 dev->real_num_rx_queues = rxqs; 3812 return 0; 3813 } 3814 #endif 3815 3816 static inline struct netdev_rx_queue * 3817 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3818 { 3819 return dev->_rx + rxq; 3820 } 3821 3822 #ifdef CONFIG_SYSFS 3823 static inline unsigned int get_netdev_rx_queue_index( 3824 struct netdev_rx_queue *queue) 3825 { 3826 struct net_device *dev = queue->dev; 3827 int index = queue - dev->_rx; 3828 3829 BUG_ON(index >= dev->num_rx_queues); 3830 return index; 3831 } 3832 #endif 3833 3834 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3835 int netif_get_num_default_rss_queues(void); 3836 3837 enum skb_free_reason { 3838 SKB_REASON_CONSUMED, 3839 SKB_REASON_DROPPED, 3840 }; 3841 3842 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3843 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3844 3845 /* 3846 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3847 * interrupt context or with hardware interrupts being disabled. 3848 * (in_irq() || irqs_disabled()) 3849 * 3850 * We provide four helpers that can be used in following contexts : 3851 * 3852 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3853 * replacing kfree_skb(skb) 3854 * 3855 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3856 * Typically used in place of consume_skb(skb) in TX completion path 3857 * 3858 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3859 * replacing kfree_skb(skb) 3860 * 3861 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3862 * and consumed a packet. Used in place of consume_skb(skb) 3863 */ 3864 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3865 { 3866 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3867 } 3868 3869 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3870 { 3871 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3872 } 3873 3874 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3875 { 3876 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3877 } 3878 3879 static inline void dev_consume_skb_any(struct sk_buff *skb) 3880 { 3881 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3882 } 3883 3884 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3885 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3886 int netif_rx(struct sk_buff *skb); 3887 int netif_rx_ni(struct sk_buff *skb); 3888 int netif_rx_any_context(struct sk_buff *skb); 3889 int netif_receive_skb(struct sk_buff *skb); 3890 int netif_receive_skb_core(struct sk_buff *skb); 3891 void netif_receive_skb_list(struct list_head *head); 3892 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3893 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3894 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3895 gro_result_t napi_gro_frags(struct napi_struct *napi); 3896 struct packet_offload *gro_find_receive_by_type(__be16 type); 3897 struct packet_offload *gro_find_complete_by_type(__be16 type); 3898 3899 static inline void napi_free_frags(struct napi_struct *napi) 3900 { 3901 kfree_skb(napi->skb); 3902 napi->skb = NULL; 3903 } 3904 3905 bool netdev_is_rx_handler_busy(struct net_device *dev); 3906 int netdev_rx_handler_register(struct net_device *dev, 3907 rx_handler_func_t *rx_handler, 3908 void *rx_handler_data); 3909 void netdev_rx_handler_unregister(struct net_device *dev); 3910 3911 bool dev_valid_name(const char *name); 3912 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3913 bool *need_copyout); 3914 int dev_ifconf(struct net *net, struct ifconf *, int); 3915 int dev_ethtool(struct net *net, struct ifreq *); 3916 unsigned int dev_get_flags(const struct net_device *); 3917 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3918 struct netlink_ext_ack *extack); 3919 int dev_change_flags(struct net_device *dev, unsigned int flags, 3920 struct netlink_ext_ack *extack); 3921 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3922 unsigned int gchanges); 3923 int dev_change_name(struct net_device *, const char *); 3924 int dev_set_alias(struct net_device *, const char *, size_t); 3925 int dev_get_alias(const struct net_device *, char *, size_t); 3926 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3927 int __dev_set_mtu(struct net_device *, int); 3928 int dev_validate_mtu(struct net_device *dev, int mtu, 3929 struct netlink_ext_ack *extack); 3930 int dev_set_mtu_ext(struct net_device *dev, int mtu, 3931 struct netlink_ext_ack *extack); 3932 int dev_set_mtu(struct net_device *, int); 3933 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3934 void dev_set_group(struct net_device *, int); 3935 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3936 struct netlink_ext_ack *extack); 3937 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3938 struct netlink_ext_ack *extack); 3939 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3940 struct netlink_ext_ack *extack); 3941 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3942 int dev_change_carrier(struct net_device *, bool new_carrier); 3943 int dev_get_phys_port_id(struct net_device *dev, 3944 struct netdev_phys_item_id *ppid); 3945 int dev_get_phys_port_name(struct net_device *dev, 3946 char *name, size_t len); 3947 int dev_get_port_parent_id(struct net_device *dev, 3948 struct netdev_phys_item_id *ppid, bool recurse); 3949 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3950 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3951 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down); 3952 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 3953 u32 value); 3954 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3955 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3956 struct netdev_queue *txq, int *ret); 3957 3958 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3959 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3960 int fd, int expected_fd, u32 flags); 3961 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3962 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3963 3964 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3965 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3966 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3967 bool is_skb_forwardable(const struct net_device *dev, 3968 const struct sk_buff *skb); 3969 3970 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 3971 const struct sk_buff *skb, 3972 const bool check_mtu) 3973 { 3974 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 3975 unsigned int len; 3976 3977 if (!(dev->flags & IFF_UP)) 3978 return false; 3979 3980 if (!check_mtu) 3981 return true; 3982 3983 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 3984 if (skb->len <= len) 3985 return true; 3986 3987 /* if TSO is enabled, we don't care about the length as the packet 3988 * could be forwarded without being segmented before 3989 */ 3990 if (skb_is_gso(skb)) 3991 return true; 3992 3993 return false; 3994 } 3995 3996 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3997 struct sk_buff *skb, 3998 const bool check_mtu) 3999 { 4000 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4001 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4002 atomic_long_inc(&dev->rx_dropped); 4003 kfree_skb(skb); 4004 return NET_RX_DROP; 4005 } 4006 4007 skb_scrub_packet(skb, true); 4008 skb->priority = 0; 4009 return 0; 4010 } 4011 4012 bool dev_nit_active(struct net_device *dev); 4013 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4014 4015 extern int netdev_budget; 4016 extern unsigned int netdev_budget_usecs; 4017 4018 /* Called by rtnetlink.c:rtnl_unlock() */ 4019 void netdev_run_todo(void); 4020 4021 /** 4022 * dev_put - release reference to device 4023 * @dev: network device 4024 * 4025 * Release reference to device to allow it to be freed. 4026 */ 4027 static inline void dev_put(struct net_device *dev) 4028 { 4029 this_cpu_dec(*dev->pcpu_refcnt); 4030 } 4031 4032 /** 4033 * dev_hold - get reference to device 4034 * @dev: network device 4035 * 4036 * Hold reference to device to keep it from being freed. 4037 */ 4038 static inline void dev_hold(struct net_device *dev) 4039 { 4040 this_cpu_inc(*dev->pcpu_refcnt); 4041 } 4042 4043 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4044 * and _off may be called from IRQ context, but it is caller 4045 * who is responsible for serialization of these calls. 4046 * 4047 * The name carrier is inappropriate, these functions should really be 4048 * called netif_lowerlayer_*() because they represent the state of any 4049 * kind of lower layer not just hardware media. 4050 */ 4051 4052 void linkwatch_init_dev(struct net_device *dev); 4053 void linkwatch_fire_event(struct net_device *dev); 4054 void linkwatch_forget_dev(struct net_device *dev); 4055 4056 /** 4057 * netif_carrier_ok - test if carrier present 4058 * @dev: network device 4059 * 4060 * Check if carrier is present on device 4061 */ 4062 static inline bool netif_carrier_ok(const struct net_device *dev) 4063 { 4064 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4065 } 4066 4067 unsigned long dev_trans_start(struct net_device *dev); 4068 4069 void __netdev_watchdog_up(struct net_device *dev); 4070 4071 void netif_carrier_on(struct net_device *dev); 4072 4073 void netif_carrier_off(struct net_device *dev); 4074 4075 /** 4076 * netif_dormant_on - mark device as dormant. 4077 * @dev: network device 4078 * 4079 * Mark device as dormant (as per RFC2863). 4080 * 4081 * The dormant state indicates that the relevant interface is not 4082 * actually in a condition to pass packets (i.e., it is not 'up') but is 4083 * in a "pending" state, waiting for some external event. For "on- 4084 * demand" interfaces, this new state identifies the situation where the 4085 * interface is waiting for events to place it in the up state. 4086 */ 4087 static inline void netif_dormant_on(struct net_device *dev) 4088 { 4089 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4090 linkwatch_fire_event(dev); 4091 } 4092 4093 /** 4094 * netif_dormant_off - set device as not dormant. 4095 * @dev: network device 4096 * 4097 * Device is not in dormant state. 4098 */ 4099 static inline void netif_dormant_off(struct net_device *dev) 4100 { 4101 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4102 linkwatch_fire_event(dev); 4103 } 4104 4105 /** 4106 * netif_dormant - test if device is dormant 4107 * @dev: network device 4108 * 4109 * Check if device is dormant. 4110 */ 4111 static inline bool netif_dormant(const struct net_device *dev) 4112 { 4113 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4114 } 4115 4116 4117 /** 4118 * netif_testing_on - mark device as under test. 4119 * @dev: network device 4120 * 4121 * Mark device as under test (as per RFC2863). 4122 * 4123 * The testing state indicates that some test(s) must be performed on 4124 * the interface. After completion, of the test, the interface state 4125 * will change to up, dormant, or down, as appropriate. 4126 */ 4127 static inline void netif_testing_on(struct net_device *dev) 4128 { 4129 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4130 linkwatch_fire_event(dev); 4131 } 4132 4133 /** 4134 * netif_testing_off - set device as not under test. 4135 * @dev: network device 4136 * 4137 * Device is not in testing state. 4138 */ 4139 static inline void netif_testing_off(struct net_device *dev) 4140 { 4141 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4142 linkwatch_fire_event(dev); 4143 } 4144 4145 /** 4146 * netif_testing - test if device is under test 4147 * @dev: network device 4148 * 4149 * Check if device is under test 4150 */ 4151 static inline bool netif_testing(const struct net_device *dev) 4152 { 4153 return test_bit(__LINK_STATE_TESTING, &dev->state); 4154 } 4155 4156 4157 /** 4158 * netif_oper_up - test if device is operational 4159 * @dev: network device 4160 * 4161 * Check if carrier is operational 4162 */ 4163 static inline bool netif_oper_up(const struct net_device *dev) 4164 { 4165 return (dev->operstate == IF_OPER_UP || 4166 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4167 } 4168 4169 /** 4170 * netif_device_present - is device available or removed 4171 * @dev: network device 4172 * 4173 * Check if device has not been removed from system. 4174 */ 4175 static inline bool netif_device_present(struct net_device *dev) 4176 { 4177 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4178 } 4179 4180 void netif_device_detach(struct net_device *dev); 4181 4182 void netif_device_attach(struct net_device *dev); 4183 4184 /* 4185 * Network interface message level settings 4186 */ 4187 4188 enum { 4189 NETIF_MSG_DRV_BIT, 4190 NETIF_MSG_PROBE_BIT, 4191 NETIF_MSG_LINK_BIT, 4192 NETIF_MSG_TIMER_BIT, 4193 NETIF_MSG_IFDOWN_BIT, 4194 NETIF_MSG_IFUP_BIT, 4195 NETIF_MSG_RX_ERR_BIT, 4196 NETIF_MSG_TX_ERR_BIT, 4197 NETIF_MSG_TX_QUEUED_BIT, 4198 NETIF_MSG_INTR_BIT, 4199 NETIF_MSG_TX_DONE_BIT, 4200 NETIF_MSG_RX_STATUS_BIT, 4201 NETIF_MSG_PKTDATA_BIT, 4202 NETIF_MSG_HW_BIT, 4203 NETIF_MSG_WOL_BIT, 4204 4205 /* When you add a new bit above, update netif_msg_class_names array 4206 * in net/ethtool/common.c 4207 */ 4208 NETIF_MSG_CLASS_COUNT, 4209 }; 4210 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4211 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4212 4213 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4214 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4215 4216 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4217 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4218 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4219 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4220 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4221 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4222 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4223 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4224 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4225 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4226 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4227 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4228 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4229 #define NETIF_MSG_HW __NETIF_MSG(HW) 4230 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4231 4232 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4233 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4234 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4235 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4236 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4237 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4238 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4239 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4240 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4241 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4242 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4243 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4244 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4245 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4246 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4247 4248 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4249 { 4250 /* use default */ 4251 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4252 return default_msg_enable_bits; 4253 if (debug_value == 0) /* no output */ 4254 return 0; 4255 /* set low N bits */ 4256 return (1U << debug_value) - 1; 4257 } 4258 4259 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4260 { 4261 spin_lock(&txq->_xmit_lock); 4262 txq->xmit_lock_owner = cpu; 4263 } 4264 4265 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4266 { 4267 __acquire(&txq->_xmit_lock); 4268 return true; 4269 } 4270 4271 static inline void __netif_tx_release(struct netdev_queue *txq) 4272 { 4273 __release(&txq->_xmit_lock); 4274 } 4275 4276 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4277 { 4278 spin_lock_bh(&txq->_xmit_lock); 4279 txq->xmit_lock_owner = smp_processor_id(); 4280 } 4281 4282 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4283 { 4284 bool ok = spin_trylock(&txq->_xmit_lock); 4285 if (likely(ok)) 4286 txq->xmit_lock_owner = smp_processor_id(); 4287 return ok; 4288 } 4289 4290 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4291 { 4292 txq->xmit_lock_owner = -1; 4293 spin_unlock(&txq->_xmit_lock); 4294 } 4295 4296 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4297 { 4298 txq->xmit_lock_owner = -1; 4299 spin_unlock_bh(&txq->_xmit_lock); 4300 } 4301 4302 static inline void txq_trans_update(struct netdev_queue *txq) 4303 { 4304 if (txq->xmit_lock_owner != -1) 4305 txq->trans_start = jiffies; 4306 } 4307 4308 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4309 static inline void netif_trans_update(struct net_device *dev) 4310 { 4311 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4312 4313 if (txq->trans_start != jiffies) 4314 txq->trans_start = jiffies; 4315 } 4316 4317 /** 4318 * netif_tx_lock - grab network device transmit lock 4319 * @dev: network device 4320 * 4321 * Get network device transmit lock 4322 */ 4323 static inline void netif_tx_lock(struct net_device *dev) 4324 { 4325 unsigned int i; 4326 int cpu; 4327 4328 spin_lock(&dev->tx_global_lock); 4329 cpu = smp_processor_id(); 4330 for (i = 0; i < dev->num_tx_queues; i++) { 4331 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4332 4333 /* We are the only thread of execution doing a 4334 * freeze, but we have to grab the _xmit_lock in 4335 * order to synchronize with threads which are in 4336 * the ->hard_start_xmit() handler and already 4337 * checked the frozen bit. 4338 */ 4339 __netif_tx_lock(txq, cpu); 4340 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 4341 __netif_tx_unlock(txq); 4342 } 4343 } 4344 4345 static inline void netif_tx_lock_bh(struct net_device *dev) 4346 { 4347 local_bh_disable(); 4348 netif_tx_lock(dev); 4349 } 4350 4351 static inline void netif_tx_unlock(struct net_device *dev) 4352 { 4353 unsigned int i; 4354 4355 for (i = 0; i < dev->num_tx_queues; i++) { 4356 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4357 4358 /* No need to grab the _xmit_lock here. If the 4359 * queue is not stopped for another reason, we 4360 * force a schedule. 4361 */ 4362 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 4363 netif_schedule_queue(txq); 4364 } 4365 spin_unlock(&dev->tx_global_lock); 4366 } 4367 4368 static inline void netif_tx_unlock_bh(struct net_device *dev) 4369 { 4370 netif_tx_unlock(dev); 4371 local_bh_enable(); 4372 } 4373 4374 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4375 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4376 __netif_tx_lock(txq, cpu); \ 4377 } else { \ 4378 __netif_tx_acquire(txq); \ 4379 } \ 4380 } 4381 4382 #define HARD_TX_TRYLOCK(dev, txq) \ 4383 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4384 __netif_tx_trylock(txq) : \ 4385 __netif_tx_acquire(txq)) 4386 4387 #define HARD_TX_UNLOCK(dev, txq) { \ 4388 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4389 __netif_tx_unlock(txq); \ 4390 } else { \ 4391 __netif_tx_release(txq); \ 4392 } \ 4393 } 4394 4395 static inline void netif_tx_disable(struct net_device *dev) 4396 { 4397 unsigned int i; 4398 int cpu; 4399 4400 local_bh_disable(); 4401 cpu = smp_processor_id(); 4402 spin_lock(&dev->tx_global_lock); 4403 for (i = 0; i < dev->num_tx_queues; i++) { 4404 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4405 4406 __netif_tx_lock(txq, cpu); 4407 netif_tx_stop_queue(txq); 4408 __netif_tx_unlock(txq); 4409 } 4410 spin_unlock(&dev->tx_global_lock); 4411 local_bh_enable(); 4412 } 4413 4414 static inline void netif_addr_lock(struct net_device *dev) 4415 { 4416 unsigned char nest_level = 0; 4417 4418 #ifdef CONFIG_LOCKDEP 4419 nest_level = dev->nested_level; 4420 #endif 4421 spin_lock_nested(&dev->addr_list_lock, nest_level); 4422 } 4423 4424 static inline void netif_addr_lock_bh(struct net_device *dev) 4425 { 4426 unsigned char nest_level = 0; 4427 4428 #ifdef CONFIG_LOCKDEP 4429 nest_level = dev->nested_level; 4430 #endif 4431 local_bh_disable(); 4432 spin_lock_nested(&dev->addr_list_lock, nest_level); 4433 } 4434 4435 static inline void netif_addr_unlock(struct net_device *dev) 4436 { 4437 spin_unlock(&dev->addr_list_lock); 4438 } 4439 4440 static inline void netif_addr_unlock_bh(struct net_device *dev) 4441 { 4442 spin_unlock_bh(&dev->addr_list_lock); 4443 } 4444 4445 /* 4446 * dev_addrs walker. Should be used only for read access. Call with 4447 * rcu_read_lock held. 4448 */ 4449 #define for_each_dev_addr(dev, ha) \ 4450 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4451 4452 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4453 4454 void ether_setup(struct net_device *dev); 4455 4456 /* Support for loadable net-drivers */ 4457 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4458 unsigned char name_assign_type, 4459 void (*setup)(struct net_device *), 4460 unsigned int txqs, unsigned int rxqs); 4461 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4462 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4463 4464 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4465 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4466 count) 4467 4468 int register_netdev(struct net_device *dev); 4469 void unregister_netdev(struct net_device *dev); 4470 4471 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4472 4473 /* General hardware address lists handling functions */ 4474 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4475 struct netdev_hw_addr_list *from_list, int addr_len); 4476 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4477 struct netdev_hw_addr_list *from_list, int addr_len); 4478 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4479 struct net_device *dev, 4480 int (*sync)(struct net_device *, const unsigned char *), 4481 int (*unsync)(struct net_device *, 4482 const unsigned char *)); 4483 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4484 struct net_device *dev, 4485 int (*sync)(struct net_device *, 4486 const unsigned char *, int), 4487 int (*unsync)(struct net_device *, 4488 const unsigned char *, int)); 4489 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4490 struct net_device *dev, 4491 int (*unsync)(struct net_device *, 4492 const unsigned char *, int)); 4493 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4494 struct net_device *dev, 4495 int (*unsync)(struct net_device *, 4496 const unsigned char *)); 4497 void __hw_addr_init(struct netdev_hw_addr_list *list); 4498 4499 /* Functions used for device addresses handling */ 4500 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4501 unsigned char addr_type); 4502 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4503 unsigned char addr_type); 4504 void dev_addr_flush(struct net_device *dev); 4505 int dev_addr_init(struct net_device *dev); 4506 4507 /* Functions used for unicast addresses handling */ 4508 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4509 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4510 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4511 int dev_uc_sync(struct net_device *to, struct net_device *from); 4512 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4513 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4514 void dev_uc_flush(struct net_device *dev); 4515 void dev_uc_init(struct net_device *dev); 4516 4517 /** 4518 * __dev_uc_sync - Synchonize device's unicast list 4519 * @dev: device to sync 4520 * @sync: function to call if address should be added 4521 * @unsync: function to call if address should be removed 4522 * 4523 * Add newly added addresses to the interface, and release 4524 * addresses that have been deleted. 4525 */ 4526 static inline int __dev_uc_sync(struct net_device *dev, 4527 int (*sync)(struct net_device *, 4528 const unsigned char *), 4529 int (*unsync)(struct net_device *, 4530 const unsigned char *)) 4531 { 4532 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4533 } 4534 4535 /** 4536 * __dev_uc_unsync - Remove synchronized addresses from device 4537 * @dev: device to sync 4538 * @unsync: function to call if address should be removed 4539 * 4540 * Remove all addresses that were added to the device by dev_uc_sync(). 4541 */ 4542 static inline void __dev_uc_unsync(struct net_device *dev, 4543 int (*unsync)(struct net_device *, 4544 const unsigned char *)) 4545 { 4546 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4547 } 4548 4549 /* Functions used for multicast addresses handling */ 4550 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4551 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4552 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4553 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4554 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4555 int dev_mc_sync(struct net_device *to, struct net_device *from); 4556 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4557 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4558 void dev_mc_flush(struct net_device *dev); 4559 void dev_mc_init(struct net_device *dev); 4560 4561 /** 4562 * __dev_mc_sync - Synchonize device's multicast list 4563 * @dev: device to sync 4564 * @sync: function to call if address should be added 4565 * @unsync: function to call if address should be removed 4566 * 4567 * Add newly added addresses to the interface, and release 4568 * addresses that have been deleted. 4569 */ 4570 static inline int __dev_mc_sync(struct net_device *dev, 4571 int (*sync)(struct net_device *, 4572 const unsigned char *), 4573 int (*unsync)(struct net_device *, 4574 const unsigned char *)) 4575 { 4576 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4577 } 4578 4579 /** 4580 * __dev_mc_unsync - Remove synchronized addresses from device 4581 * @dev: device to sync 4582 * @unsync: function to call if address should be removed 4583 * 4584 * Remove all addresses that were added to the device by dev_mc_sync(). 4585 */ 4586 static inline void __dev_mc_unsync(struct net_device *dev, 4587 int (*unsync)(struct net_device *, 4588 const unsigned char *)) 4589 { 4590 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4591 } 4592 4593 /* Functions used for secondary unicast and multicast support */ 4594 void dev_set_rx_mode(struct net_device *dev); 4595 void __dev_set_rx_mode(struct net_device *dev); 4596 int dev_set_promiscuity(struct net_device *dev, int inc); 4597 int dev_set_allmulti(struct net_device *dev, int inc); 4598 void netdev_state_change(struct net_device *dev); 4599 void __netdev_notify_peers(struct net_device *dev); 4600 void netdev_notify_peers(struct net_device *dev); 4601 void netdev_features_change(struct net_device *dev); 4602 /* Load a device via the kmod */ 4603 void dev_load(struct net *net, const char *name); 4604 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4605 struct rtnl_link_stats64 *storage); 4606 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4607 const struct net_device_stats *netdev_stats); 4608 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4609 const struct pcpu_sw_netstats __percpu *netstats); 4610 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4611 4612 extern int netdev_max_backlog; 4613 extern int netdev_tstamp_prequeue; 4614 extern int weight_p; 4615 extern int dev_weight_rx_bias; 4616 extern int dev_weight_tx_bias; 4617 extern int dev_rx_weight; 4618 extern int dev_tx_weight; 4619 extern int gro_normal_batch; 4620 4621 enum { 4622 NESTED_SYNC_IMM_BIT, 4623 NESTED_SYNC_TODO_BIT, 4624 }; 4625 4626 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4627 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4628 4629 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4630 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4631 4632 struct netdev_nested_priv { 4633 unsigned char flags; 4634 void *data; 4635 }; 4636 4637 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4638 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4639 struct list_head **iter); 4640 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4641 struct list_head **iter); 4642 4643 #ifdef CONFIG_LOCKDEP 4644 static LIST_HEAD(net_unlink_list); 4645 4646 static inline void net_unlink_todo(struct net_device *dev) 4647 { 4648 if (list_empty(&dev->unlink_list)) 4649 list_add_tail(&dev->unlink_list, &net_unlink_list); 4650 } 4651 #endif 4652 4653 /* iterate through upper list, must be called under RCU read lock */ 4654 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4655 for (iter = &(dev)->adj_list.upper, \ 4656 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4657 updev; \ 4658 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4659 4660 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4661 int (*fn)(struct net_device *upper_dev, 4662 struct netdev_nested_priv *priv), 4663 struct netdev_nested_priv *priv); 4664 4665 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4666 struct net_device *upper_dev); 4667 4668 bool netdev_has_any_upper_dev(struct net_device *dev); 4669 4670 void *netdev_lower_get_next_private(struct net_device *dev, 4671 struct list_head **iter); 4672 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4673 struct list_head **iter); 4674 4675 #define netdev_for_each_lower_private(dev, priv, iter) \ 4676 for (iter = (dev)->adj_list.lower.next, \ 4677 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4678 priv; \ 4679 priv = netdev_lower_get_next_private(dev, &(iter))) 4680 4681 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4682 for (iter = &(dev)->adj_list.lower, \ 4683 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4684 priv; \ 4685 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4686 4687 void *netdev_lower_get_next(struct net_device *dev, 4688 struct list_head **iter); 4689 4690 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4691 for (iter = (dev)->adj_list.lower.next, \ 4692 ldev = netdev_lower_get_next(dev, &(iter)); \ 4693 ldev; \ 4694 ldev = netdev_lower_get_next(dev, &(iter))) 4695 4696 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4697 struct list_head **iter); 4698 int netdev_walk_all_lower_dev(struct net_device *dev, 4699 int (*fn)(struct net_device *lower_dev, 4700 struct netdev_nested_priv *priv), 4701 struct netdev_nested_priv *priv); 4702 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4703 int (*fn)(struct net_device *lower_dev, 4704 struct netdev_nested_priv *priv), 4705 struct netdev_nested_priv *priv); 4706 4707 void *netdev_adjacent_get_private(struct list_head *adj_list); 4708 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4709 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4710 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4711 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4712 struct netlink_ext_ack *extack); 4713 int netdev_master_upper_dev_link(struct net_device *dev, 4714 struct net_device *upper_dev, 4715 void *upper_priv, void *upper_info, 4716 struct netlink_ext_ack *extack); 4717 void netdev_upper_dev_unlink(struct net_device *dev, 4718 struct net_device *upper_dev); 4719 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4720 struct net_device *new_dev, 4721 struct net_device *dev, 4722 struct netlink_ext_ack *extack); 4723 void netdev_adjacent_change_commit(struct net_device *old_dev, 4724 struct net_device *new_dev, 4725 struct net_device *dev); 4726 void netdev_adjacent_change_abort(struct net_device *old_dev, 4727 struct net_device *new_dev, 4728 struct net_device *dev); 4729 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4730 void *netdev_lower_dev_get_private(struct net_device *dev, 4731 struct net_device *lower_dev); 4732 void netdev_lower_state_changed(struct net_device *lower_dev, 4733 void *lower_state_info); 4734 4735 /* RSS keys are 40 or 52 bytes long */ 4736 #define NETDEV_RSS_KEY_LEN 52 4737 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4738 void netdev_rss_key_fill(void *buffer, size_t len); 4739 4740 int skb_checksum_help(struct sk_buff *skb); 4741 int skb_crc32c_csum_help(struct sk_buff *skb); 4742 int skb_csum_hwoffload_help(struct sk_buff *skb, 4743 const netdev_features_t features); 4744 4745 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4746 netdev_features_t features, bool tx_path); 4747 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4748 netdev_features_t features); 4749 4750 struct netdev_bonding_info { 4751 ifslave slave; 4752 ifbond master; 4753 }; 4754 4755 struct netdev_notifier_bonding_info { 4756 struct netdev_notifier_info info; /* must be first */ 4757 struct netdev_bonding_info bonding_info; 4758 }; 4759 4760 void netdev_bonding_info_change(struct net_device *dev, 4761 struct netdev_bonding_info *bonding_info); 4762 4763 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4764 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4765 #else 4766 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4767 const void *data) 4768 { 4769 } 4770 #endif 4771 4772 static inline 4773 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4774 { 4775 return __skb_gso_segment(skb, features, true); 4776 } 4777 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4778 4779 static inline bool can_checksum_protocol(netdev_features_t features, 4780 __be16 protocol) 4781 { 4782 if (protocol == htons(ETH_P_FCOE)) 4783 return !!(features & NETIF_F_FCOE_CRC); 4784 4785 /* Assume this is an IP checksum (not SCTP CRC) */ 4786 4787 if (features & NETIF_F_HW_CSUM) { 4788 /* Can checksum everything */ 4789 return true; 4790 } 4791 4792 switch (protocol) { 4793 case htons(ETH_P_IP): 4794 return !!(features & NETIF_F_IP_CSUM); 4795 case htons(ETH_P_IPV6): 4796 return !!(features & NETIF_F_IPV6_CSUM); 4797 default: 4798 return false; 4799 } 4800 } 4801 4802 #ifdef CONFIG_BUG 4803 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4804 #else 4805 static inline void netdev_rx_csum_fault(struct net_device *dev, 4806 struct sk_buff *skb) 4807 { 4808 } 4809 #endif 4810 /* rx skb timestamps */ 4811 void net_enable_timestamp(void); 4812 void net_disable_timestamp(void); 4813 4814 #ifdef CONFIG_PROC_FS 4815 int __init dev_proc_init(void); 4816 #else 4817 #define dev_proc_init() 0 4818 #endif 4819 4820 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4821 struct sk_buff *skb, struct net_device *dev, 4822 bool more) 4823 { 4824 __this_cpu_write(softnet_data.xmit.more, more); 4825 return ops->ndo_start_xmit(skb, dev); 4826 } 4827 4828 static inline bool netdev_xmit_more(void) 4829 { 4830 return __this_cpu_read(softnet_data.xmit.more); 4831 } 4832 4833 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4834 struct netdev_queue *txq, bool more) 4835 { 4836 const struct net_device_ops *ops = dev->netdev_ops; 4837 netdev_tx_t rc; 4838 4839 rc = __netdev_start_xmit(ops, skb, dev, more); 4840 if (rc == NETDEV_TX_OK) 4841 txq_trans_update(txq); 4842 4843 return rc; 4844 } 4845 4846 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4847 const void *ns); 4848 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4849 const void *ns); 4850 4851 extern const struct kobj_ns_type_operations net_ns_type_operations; 4852 4853 const char *netdev_drivername(const struct net_device *dev); 4854 4855 void linkwatch_run_queue(void); 4856 4857 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4858 netdev_features_t f2) 4859 { 4860 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4861 if (f1 & NETIF_F_HW_CSUM) 4862 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4863 else 4864 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4865 } 4866 4867 return f1 & f2; 4868 } 4869 4870 static inline netdev_features_t netdev_get_wanted_features( 4871 struct net_device *dev) 4872 { 4873 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4874 } 4875 netdev_features_t netdev_increment_features(netdev_features_t all, 4876 netdev_features_t one, netdev_features_t mask); 4877 4878 /* Allow TSO being used on stacked device : 4879 * Performing the GSO segmentation before last device 4880 * is a performance improvement. 4881 */ 4882 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4883 netdev_features_t mask) 4884 { 4885 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4886 } 4887 4888 int __netdev_update_features(struct net_device *dev); 4889 void netdev_update_features(struct net_device *dev); 4890 void netdev_change_features(struct net_device *dev); 4891 4892 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4893 struct net_device *dev); 4894 4895 netdev_features_t passthru_features_check(struct sk_buff *skb, 4896 struct net_device *dev, 4897 netdev_features_t features); 4898 netdev_features_t netif_skb_features(struct sk_buff *skb); 4899 4900 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4901 { 4902 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4903 4904 /* check flags correspondence */ 4905 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4906 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4907 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4908 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4909 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4910 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4911 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4912 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4913 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4914 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4915 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4916 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4917 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4918 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4919 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4920 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4921 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4922 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4923 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 4924 4925 return (features & feature) == feature; 4926 } 4927 4928 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4929 { 4930 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4931 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4932 } 4933 4934 static inline bool netif_needs_gso(struct sk_buff *skb, 4935 netdev_features_t features) 4936 { 4937 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4938 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4939 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4940 } 4941 4942 static inline void netif_set_gso_max_size(struct net_device *dev, 4943 unsigned int size) 4944 { 4945 dev->gso_max_size = size; 4946 } 4947 4948 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4949 int pulled_hlen, u16 mac_offset, 4950 int mac_len) 4951 { 4952 skb->protocol = protocol; 4953 skb->encapsulation = 1; 4954 skb_push(skb, pulled_hlen); 4955 skb_reset_transport_header(skb); 4956 skb->mac_header = mac_offset; 4957 skb->network_header = skb->mac_header + mac_len; 4958 skb->mac_len = mac_len; 4959 } 4960 4961 static inline bool netif_is_macsec(const struct net_device *dev) 4962 { 4963 return dev->priv_flags & IFF_MACSEC; 4964 } 4965 4966 static inline bool netif_is_macvlan(const struct net_device *dev) 4967 { 4968 return dev->priv_flags & IFF_MACVLAN; 4969 } 4970 4971 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4972 { 4973 return dev->priv_flags & IFF_MACVLAN_PORT; 4974 } 4975 4976 static inline bool netif_is_bond_master(const struct net_device *dev) 4977 { 4978 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4979 } 4980 4981 static inline bool netif_is_bond_slave(const struct net_device *dev) 4982 { 4983 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4984 } 4985 4986 static inline bool netif_supports_nofcs(struct net_device *dev) 4987 { 4988 return dev->priv_flags & IFF_SUPP_NOFCS; 4989 } 4990 4991 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 4992 { 4993 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 4994 } 4995 4996 static inline bool netif_is_l3_master(const struct net_device *dev) 4997 { 4998 return dev->priv_flags & IFF_L3MDEV_MASTER; 4999 } 5000 5001 static inline bool netif_is_l3_slave(const struct net_device *dev) 5002 { 5003 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5004 } 5005 5006 static inline bool netif_is_bridge_master(const struct net_device *dev) 5007 { 5008 return dev->priv_flags & IFF_EBRIDGE; 5009 } 5010 5011 static inline bool netif_is_bridge_port(const struct net_device *dev) 5012 { 5013 return dev->priv_flags & IFF_BRIDGE_PORT; 5014 } 5015 5016 static inline bool netif_is_ovs_master(const struct net_device *dev) 5017 { 5018 return dev->priv_flags & IFF_OPENVSWITCH; 5019 } 5020 5021 static inline bool netif_is_ovs_port(const struct net_device *dev) 5022 { 5023 return dev->priv_flags & IFF_OVS_DATAPATH; 5024 } 5025 5026 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5027 { 5028 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5029 } 5030 5031 static inline bool netif_is_team_master(const struct net_device *dev) 5032 { 5033 return dev->priv_flags & IFF_TEAM; 5034 } 5035 5036 static inline bool netif_is_team_port(const struct net_device *dev) 5037 { 5038 return dev->priv_flags & IFF_TEAM_PORT; 5039 } 5040 5041 static inline bool netif_is_lag_master(const struct net_device *dev) 5042 { 5043 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5044 } 5045 5046 static inline bool netif_is_lag_port(const struct net_device *dev) 5047 { 5048 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5049 } 5050 5051 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5052 { 5053 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5054 } 5055 5056 static inline bool netif_is_failover(const struct net_device *dev) 5057 { 5058 return dev->priv_flags & IFF_FAILOVER; 5059 } 5060 5061 static inline bool netif_is_failover_slave(const struct net_device *dev) 5062 { 5063 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5064 } 5065 5066 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5067 static inline void netif_keep_dst(struct net_device *dev) 5068 { 5069 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5070 } 5071 5072 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5073 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5074 { 5075 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5076 return dev->priv_flags & IFF_MACSEC; 5077 } 5078 5079 extern struct pernet_operations __net_initdata loopback_net_ops; 5080 5081 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5082 5083 /* netdev_printk helpers, similar to dev_printk */ 5084 5085 static inline const char *netdev_name(const struct net_device *dev) 5086 { 5087 if (!dev->name[0] || strchr(dev->name, '%')) 5088 return "(unnamed net_device)"; 5089 return dev->name; 5090 } 5091 5092 static inline bool netdev_unregistering(const struct net_device *dev) 5093 { 5094 return dev->reg_state == NETREG_UNREGISTERING; 5095 } 5096 5097 static inline const char *netdev_reg_state(const struct net_device *dev) 5098 { 5099 switch (dev->reg_state) { 5100 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5101 case NETREG_REGISTERED: return ""; 5102 case NETREG_UNREGISTERING: return " (unregistering)"; 5103 case NETREG_UNREGISTERED: return " (unregistered)"; 5104 case NETREG_RELEASED: return " (released)"; 5105 case NETREG_DUMMY: return " (dummy)"; 5106 } 5107 5108 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5109 return " (unknown)"; 5110 } 5111 5112 __printf(3, 4) __cold 5113 void netdev_printk(const char *level, const struct net_device *dev, 5114 const char *format, ...); 5115 __printf(2, 3) __cold 5116 void netdev_emerg(const struct net_device *dev, const char *format, ...); 5117 __printf(2, 3) __cold 5118 void netdev_alert(const struct net_device *dev, const char *format, ...); 5119 __printf(2, 3) __cold 5120 void netdev_crit(const struct net_device *dev, const char *format, ...); 5121 __printf(2, 3) __cold 5122 void netdev_err(const struct net_device *dev, const char *format, ...); 5123 __printf(2, 3) __cold 5124 void netdev_warn(const struct net_device *dev, const char *format, ...); 5125 __printf(2, 3) __cold 5126 void netdev_notice(const struct net_device *dev, const char *format, ...); 5127 __printf(2, 3) __cold 5128 void netdev_info(const struct net_device *dev, const char *format, ...); 5129 5130 #define netdev_level_once(level, dev, fmt, ...) \ 5131 do { \ 5132 static bool __print_once __read_mostly; \ 5133 \ 5134 if (!__print_once) { \ 5135 __print_once = true; \ 5136 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 5137 } \ 5138 } while (0) 5139 5140 #define netdev_emerg_once(dev, fmt, ...) \ 5141 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 5142 #define netdev_alert_once(dev, fmt, ...) \ 5143 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 5144 #define netdev_crit_once(dev, fmt, ...) \ 5145 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 5146 #define netdev_err_once(dev, fmt, ...) \ 5147 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 5148 #define netdev_warn_once(dev, fmt, ...) \ 5149 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 5150 #define netdev_notice_once(dev, fmt, ...) \ 5151 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 5152 #define netdev_info_once(dev, fmt, ...) \ 5153 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 5154 5155 #define MODULE_ALIAS_NETDEV(device) \ 5156 MODULE_ALIAS("netdev-" device) 5157 5158 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 5159 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 5160 #define netdev_dbg(__dev, format, args...) \ 5161 do { \ 5162 dynamic_netdev_dbg(__dev, format, ##args); \ 5163 } while (0) 5164 #elif defined(DEBUG) 5165 #define netdev_dbg(__dev, format, args...) \ 5166 netdev_printk(KERN_DEBUG, __dev, format, ##args) 5167 #else 5168 #define netdev_dbg(__dev, format, args...) \ 5169 ({ \ 5170 if (0) \ 5171 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 5172 }) 5173 #endif 5174 5175 #if defined(VERBOSE_DEBUG) 5176 #define netdev_vdbg netdev_dbg 5177 #else 5178 5179 #define netdev_vdbg(dev, format, args...) \ 5180 ({ \ 5181 if (0) \ 5182 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 5183 0; \ 5184 }) 5185 #endif 5186 5187 /* 5188 * netdev_WARN() acts like dev_printk(), but with the key difference 5189 * of using a WARN/WARN_ON to get the message out, including the 5190 * file/line information and a backtrace. 5191 */ 5192 #define netdev_WARN(dev, format, args...) \ 5193 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5194 netdev_reg_state(dev), ##args) 5195 5196 #define netdev_WARN_ONCE(dev, format, args...) \ 5197 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5198 netdev_reg_state(dev), ##args) 5199 5200 /* netif printk helpers, similar to netdev_printk */ 5201 5202 #define netif_printk(priv, type, level, dev, fmt, args...) \ 5203 do { \ 5204 if (netif_msg_##type(priv)) \ 5205 netdev_printk(level, (dev), fmt, ##args); \ 5206 } while (0) 5207 5208 #define netif_level(level, priv, type, dev, fmt, args...) \ 5209 do { \ 5210 if (netif_msg_##type(priv)) \ 5211 netdev_##level(dev, fmt, ##args); \ 5212 } while (0) 5213 5214 #define netif_emerg(priv, type, dev, fmt, args...) \ 5215 netif_level(emerg, priv, type, dev, fmt, ##args) 5216 #define netif_alert(priv, type, dev, fmt, args...) \ 5217 netif_level(alert, priv, type, dev, fmt, ##args) 5218 #define netif_crit(priv, type, dev, fmt, args...) \ 5219 netif_level(crit, priv, type, dev, fmt, ##args) 5220 #define netif_err(priv, type, dev, fmt, args...) \ 5221 netif_level(err, priv, type, dev, fmt, ##args) 5222 #define netif_warn(priv, type, dev, fmt, args...) \ 5223 netif_level(warn, priv, type, dev, fmt, ##args) 5224 #define netif_notice(priv, type, dev, fmt, args...) \ 5225 netif_level(notice, priv, type, dev, fmt, ##args) 5226 #define netif_info(priv, type, dev, fmt, args...) \ 5227 netif_level(info, priv, type, dev, fmt, ##args) 5228 5229 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 5230 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 5231 #define netif_dbg(priv, type, netdev, format, args...) \ 5232 do { \ 5233 if (netif_msg_##type(priv)) \ 5234 dynamic_netdev_dbg(netdev, format, ##args); \ 5235 } while (0) 5236 #elif defined(DEBUG) 5237 #define netif_dbg(priv, type, dev, format, args...) \ 5238 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 5239 #else 5240 #define netif_dbg(priv, type, dev, format, args...) \ 5241 ({ \ 5242 if (0) \ 5243 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 5244 0; \ 5245 }) 5246 #endif 5247 5248 /* if @cond then downgrade to debug, else print at @level */ 5249 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 5250 do { \ 5251 if (cond) \ 5252 netif_dbg(priv, type, netdev, fmt, ##args); \ 5253 else \ 5254 netif_ ## level(priv, type, netdev, fmt, ##args); \ 5255 } while (0) 5256 5257 #if defined(VERBOSE_DEBUG) 5258 #define netif_vdbg netif_dbg 5259 #else 5260 #define netif_vdbg(priv, type, dev, format, args...) \ 5261 ({ \ 5262 if (0) \ 5263 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 5264 0; \ 5265 }) 5266 #endif 5267 5268 /* 5269 * The list of packet types we will receive (as opposed to discard) 5270 * and the routines to invoke. 5271 * 5272 * Why 16. Because with 16 the only overlap we get on a hash of the 5273 * low nibble of the protocol value is RARP/SNAP/X.25. 5274 * 5275 * 0800 IP 5276 * 0001 802.3 5277 * 0002 AX.25 5278 * 0004 802.2 5279 * 8035 RARP 5280 * 0005 SNAP 5281 * 0805 X.25 5282 * 0806 ARP 5283 * 8137 IPX 5284 * 0009 Localtalk 5285 * 86DD IPv6 5286 */ 5287 #define PTYPE_HASH_SIZE (16) 5288 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5289 5290 extern struct net_device *blackhole_netdev; 5291 5292 #endif /* _LINUX_NETDEVICE_H */ 5293