xref: /openbmc/linux/include/linux/netdevice.h (revision d6fd48ef)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <uapi/linux/netdev.h>
51 #include <linux/hashtable.h>
52 #include <linux/rbtree.h>
53 #include <net/net_trackers.h>
54 #include <net/net_debug.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct ethtool_ops;
59 struct phy_device;
60 struct dsa_port;
61 struct ip_tunnel_parm;
62 struct macsec_context;
63 struct macsec_ops;
64 struct netdev_name_node;
65 struct sd_flow_limit;
66 struct sfp_bus;
67 /* 802.11 specific */
68 struct wireless_dev;
69 /* 802.15.4 specific */
70 struct wpan_dev;
71 struct mpls_dev;
72 /* UDP Tunnel offloads */
73 struct udp_tunnel_info;
74 struct udp_tunnel_nic_info;
75 struct udp_tunnel_nic;
76 struct bpf_prog;
77 struct xdp_buff;
78 struct xdp_md;
79 
80 void synchronize_net(void);
81 void netdev_set_default_ethtool_ops(struct net_device *dev,
82 				    const struct ethtool_ops *ops);
83 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
84 
85 /* Backlog congestion levels */
86 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
87 #define NET_RX_DROP		1	/* packet dropped */
88 
89 #define MAX_NEST_DEV 8
90 
91 /*
92  * Transmit return codes: transmit return codes originate from three different
93  * namespaces:
94  *
95  * - qdisc return codes
96  * - driver transmit return codes
97  * - errno values
98  *
99  * Drivers are allowed to return any one of those in their hard_start_xmit()
100  * function. Real network devices commonly used with qdiscs should only return
101  * the driver transmit return codes though - when qdiscs are used, the actual
102  * transmission happens asynchronously, so the value is not propagated to
103  * higher layers. Virtual network devices transmit synchronously; in this case
104  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
105  * others are propagated to higher layers.
106  */
107 
108 /* qdisc ->enqueue() return codes. */
109 #define NET_XMIT_SUCCESS	0x00
110 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
111 #define NET_XMIT_CN		0x02	/* congestion notification	*/
112 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
113 
114 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
115  * indicates that the device will soon be dropping packets, or already drops
116  * some packets of the same priority; prompting us to send less aggressively. */
117 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
118 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
119 
120 /* Driver transmit return codes */
121 #define NETDEV_TX_MASK		0xf0
122 
123 enum netdev_tx {
124 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
125 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
126 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
127 };
128 typedef enum netdev_tx netdev_tx_t;
129 
130 /*
131  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
132  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
133  */
134 static inline bool dev_xmit_complete(int rc)
135 {
136 	/*
137 	 * Positive cases with an skb consumed by a driver:
138 	 * - successful transmission (rc == NETDEV_TX_OK)
139 	 * - error while transmitting (rc < 0)
140 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
141 	 */
142 	if (likely(rc < NET_XMIT_MASK))
143 		return true;
144 
145 	return false;
146 }
147 
148 /*
149  *	Compute the worst-case header length according to the protocols
150  *	used.
151  */
152 
153 #if defined(CONFIG_HYPERV_NET)
154 # define LL_MAX_HEADER 128
155 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
156 # if defined(CONFIG_MAC80211_MESH)
157 #  define LL_MAX_HEADER 128
158 # else
159 #  define LL_MAX_HEADER 96
160 # endif
161 #else
162 # define LL_MAX_HEADER 32
163 #endif
164 
165 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
166     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
167 #define MAX_HEADER LL_MAX_HEADER
168 #else
169 #define MAX_HEADER (LL_MAX_HEADER + 48)
170 #endif
171 
172 /*
173  *	Old network device statistics. Fields are native words
174  *	(unsigned long) so they can be read and written atomically.
175  */
176 
177 #define NET_DEV_STAT(FIELD)			\
178 	union {					\
179 		unsigned long FIELD;		\
180 		atomic_long_t __##FIELD;	\
181 	}
182 
183 struct net_device_stats {
184 	NET_DEV_STAT(rx_packets);
185 	NET_DEV_STAT(tx_packets);
186 	NET_DEV_STAT(rx_bytes);
187 	NET_DEV_STAT(tx_bytes);
188 	NET_DEV_STAT(rx_errors);
189 	NET_DEV_STAT(tx_errors);
190 	NET_DEV_STAT(rx_dropped);
191 	NET_DEV_STAT(tx_dropped);
192 	NET_DEV_STAT(multicast);
193 	NET_DEV_STAT(collisions);
194 	NET_DEV_STAT(rx_length_errors);
195 	NET_DEV_STAT(rx_over_errors);
196 	NET_DEV_STAT(rx_crc_errors);
197 	NET_DEV_STAT(rx_frame_errors);
198 	NET_DEV_STAT(rx_fifo_errors);
199 	NET_DEV_STAT(rx_missed_errors);
200 	NET_DEV_STAT(tx_aborted_errors);
201 	NET_DEV_STAT(tx_carrier_errors);
202 	NET_DEV_STAT(tx_fifo_errors);
203 	NET_DEV_STAT(tx_heartbeat_errors);
204 	NET_DEV_STAT(tx_window_errors);
205 	NET_DEV_STAT(rx_compressed);
206 	NET_DEV_STAT(tx_compressed);
207 };
208 #undef NET_DEV_STAT
209 
210 /* per-cpu stats, allocated on demand.
211  * Try to fit them in a single cache line, for dev_get_stats() sake.
212  */
213 struct net_device_core_stats {
214 	unsigned long	rx_dropped;
215 	unsigned long	tx_dropped;
216 	unsigned long	rx_nohandler;
217 	unsigned long	rx_otherhost_dropped;
218 } __aligned(4 * sizeof(unsigned long));
219 
220 #include <linux/cache.h>
221 #include <linux/skbuff.h>
222 
223 #ifdef CONFIG_RPS
224 #include <linux/static_key.h>
225 extern struct static_key_false rps_needed;
226 extern struct static_key_false rfs_needed;
227 #endif
228 
229 struct neighbour;
230 struct neigh_parms;
231 struct sk_buff;
232 
233 struct netdev_hw_addr {
234 	struct list_head	list;
235 	struct rb_node		node;
236 	unsigned char		addr[MAX_ADDR_LEN];
237 	unsigned char		type;
238 #define NETDEV_HW_ADDR_T_LAN		1
239 #define NETDEV_HW_ADDR_T_SAN		2
240 #define NETDEV_HW_ADDR_T_UNICAST	3
241 #define NETDEV_HW_ADDR_T_MULTICAST	4
242 	bool			global_use;
243 	int			sync_cnt;
244 	int			refcount;
245 	int			synced;
246 	struct rcu_head		rcu_head;
247 };
248 
249 struct netdev_hw_addr_list {
250 	struct list_head	list;
251 	int			count;
252 
253 	/* Auxiliary tree for faster lookup on addition and deletion */
254 	struct rb_root		tree;
255 };
256 
257 #define netdev_hw_addr_list_count(l) ((l)->count)
258 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
259 #define netdev_hw_addr_list_for_each(ha, l) \
260 	list_for_each_entry(ha, &(l)->list, list)
261 
262 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
263 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
264 #define netdev_for_each_uc_addr(ha, dev) \
265 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
266 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
267 	netdev_for_each_uc_addr((_ha), (_dev)) \
268 		if ((_ha)->sync_cnt)
269 
270 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
271 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
272 #define netdev_for_each_mc_addr(ha, dev) \
273 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
274 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
275 	netdev_for_each_mc_addr((_ha), (_dev)) \
276 		if ((_ha)->sync_cnt)
277 
278 struct hh_cache {
279 	unsigned int	hh_len;
280 	seqlock_t	hh_lock;
281 
282 	/* cached hardware header; allow for machine alignment needs.        */
283 #define HH_DATA_MOD	16
284 #define HH_DATA_OFF(__len) \
285 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
286 #define HH_DATA_ALIGN(__len) \
287 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
288 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
289 };
290 
291 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
292  * Alternative is:
293  *   dev->hard_header_len ? (dev->hard_header_len +
294  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
295  *
296  * We could use other alignment values, but we must maintain the
297  * relationship HH alignment <= LL alignment.
298  */
299 #define LL_RESERVED_SPACE(dev) \
300 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
301 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
302 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
303 
304 struct header_ops {
305 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
306 			   unsigned short type, const void *daddr,
307 			   const void *saddr, unsigned int len);
308 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
309 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
310 	void	(*cache_update)(struct hh_cache *hh,
311 				const struct net_device *dev,
312 				const unsigned char *haddr);
313 	bool	(*validate)(const char *ll_header, unsigned int len);
314 	__be16	(*parse_protocol)(const struct sk_buff *skb);
315 };
316 
317 /* These flag bits are private to the generic network queueing
318  * layer; they may not be explicitly referenced by any other
319  * code.
320  */
321 
322 enum netdev_state_t {
323 	__LINK_STATE_START,
324 	__LINK_STATE_PRESENT,
325 	__LINK_STATE_NOCARRIER,
326 	__LINK_STATE_LINKWATCH_PENDING,
327 	__LINK_STATE_DORMANT,
328 	__LINK_STATE_TESTING,
329 };
330 
331 struct gro_list {
332 	struct list_head	list;
333 	int			count;
334 };
335 
336 /*
337  * size of gro hash buckets, must less than bit number of
338  * napi_struct::gro_bitmask
339  */
340 #define GRO_HASH_BUCKETS	8
341 
342 /*
343  * Structure for NAPI scheduling similar to tasklet but with weighting
344  */
345 struct napi_struct {
346 	/* The poll_list must only be managed by the entity which
347 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
348 	 * whoever atomically sets that bit can add this napi_struct
349 	 * to the per-CPU poll_list, and whoever clears that bit
350 	 * can remove from the list right before clearing the bit.
351 	 */
352 	struct list_head	poll_list;
353 
354 	unsigned long		state;
355 	int			weight;
356 	int			defer_hard_irqs_count;
357 	unsigned long		gro_bitmask;
358 	int			(*poll)(struct napi_struct *, int);
359 #ifdef CONFIG_NETPOLL
360 	int			poll_owner;
361 #endif
362 	struct net_device	*dev;
363 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
364 	struct sk_buff		*skb;
365 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
366 	int			rx_count; /* length of rx_list */
367 	struct hrtimer		timer;
368 	struct list_head	dev_list;
369 	struct hlist_node	napi_hash_node;
370 	unsigned int		napi_id;
371 	struct task_struct	*thread;
372 };
373 
374 enum {
375 	NAPI_STATE_SCHED,		/* Poll is scheduled */
376 	NAPI_STATE_MISSED,		/* reschedule a napi */
377 	NAPI_STATE_DISABLE,		/* Disable pending */
378 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
379 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
380 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
381 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
382 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
383 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
384 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
385 };
386 
387 enum {
388 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
389 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
390 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
391 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
392 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
393 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
394 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
395 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
396 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
397 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
398 };
399 
400 enum gro_result {
401 	GRO_MERGED,
402 	GRO_MERGED_FREE,
403 	GRO_HELD,
404 	GRO_NORMAL,
405 	GRO_CONSUMED,
406 };
407 typedef enum gro_result gro_result_t;
408 
409 /*
410  * enum rx_handler_result - Possible return values for rx_handlers.
411  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
412  * further.
413  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
414  * case skb->dev was changed by rx_handler.
415  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
416  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
417  *
418  * rx_handlers are functions called from inside __netif_receive_skb(), to do
419  * special processing of the skb, prior to delivery to protocol handlers.
420  *
421  * Currently, a net_device can only have a single rx_handler registered. Trying
422  * to register a second rx_handler will return -EBUSY.
423  *
424  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
425  * To unregister a rx_handler on a net_device, use
426  * netdev_rx_handler_unregister().
427  *
428  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
429  * do with the skb.
430  *
431  * If the rx_handler consumed the skb in some way, it should return
432  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
433  * the skb to be delivered in some other way.
434  *
435  * If the rx_handler changed skb->dev, to divert the skb to another
436  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
437  * new device will be called if it exists.
438  *
439  * If the rx_handler decides the skb should be ignored, it should return
440  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
441  * are registered on exact device (ptype->dev == skb->dev).
442  *
443  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
444  * delivered, it should return RX_HANDLER_PASS.
445  *
446  * A device without a registered rx_handler will behave as if rx_handler
447  * returned RX_HANDLER_PASS.
448  */
449 
450 enum rx_handler_result {
451 	RX_HANDLER_CONSUMED,
452 	RX_HANDLER_ANOTHER,
453 	RX_HANDLER_EXACT,
454 	RX_HANDLER_PASS,
455 };
456 typedef enum rx_handler_result rx_handler_result_t;
457 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
458 
459 void __napi_schedule(struct napi_struct *n);
460 void __napi_schedule_irqoff(struct napi_struct *n);
461 
462 static inline bool napi_disable_pending(struct napi_struct *n)
463 {
464 	return test_bit(NAPI_STATE_DISABLE, &n->state);
465 }
466 
467 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
468 {
469 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
470 }
471 
472 bool napi_schedule_prep(struct napi_struct *n);
473 
474 /**
475  *	napi_schedule - schedule NAPI poll
476  *	@n: NAPI context
477  *
478  * Schedule NAPI poll routine to be called if it is not already
479  * running.
480  */
481 static inline void napi_schedule(struct napi_struct *n)
482 {
483 	if (napi_schedule_prep(n))
484 		__napi_schedule(n);
485 }
486 
487 /**
488  *	napi_schedule_irqoff - schedule NAPI poll
489  *	@n: NAPI context
490  *
491  * Variant of napi_schedule(), assuming hard irqs are masked.
492  */
493 static inline void napi_schedule_irqoff(struct napi_struct *n)
494 {
495 	if (napi_schedule_prep(n))
496 		__napi_schedule_irqoff(n);
497 }
498 
499 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
500 static inline bool napi_reschedule(struct napi_struct *napi)
501 {
502 	if (napi_schedule_prep(napi)) {
503 		__napi_schedule(napi);
504 		return true;
505 	}
506 	return false;
507 }
508 
509 bool napi_complete_done(struct napi_struct *n, int work_done);
510 /**
511  *	napi_complete - NAPI processing complete
512  *	@n: NAPI context
513  *
514  * Mark NAPI processing as complete.
515  * Consider using napi_complete_done() instead.
516  * Return false if device should avoid rearming interrupts.
517  */
518 static inline bool napi_complete(struct napi_struct *n)
519 {
520 	return napi_complete_done(n, 0);
521 }
522 
523 int dev_set_threaded(struct net_device *dev, bool threaded);
524 
525 /**
526  *	napi_disable - prevent NAPI from scheduling
527  *	@n: NAPI context
528  *
529  * Stop NAPI from being scheduled on this context.
530  * Waits till any outstanding processing completes.
531  */
532 void napi_disable(struct napi_struct *n);
533 
534 void napi_enable(struct napi_struct *n);
535 
536 /**
537  *	napi_synchronize - wait until NAPI is not running
538  *	@n: NAPI context
539  *
540  * Wait until NAPI is done being scheduled on this context.
541  * Waits till any outstanding processing completes but
542  * does not disable future activations.
543  */
544 static inline void napi_synchronize(const struct napi_struct *n)
545 {
546 	if (IS_ENABLED(CONFIG_SMP))
547 		while (test_bit(NAPI_STATE_SCHED, &n->state))
548 			msleep(1);
549 	else
550 		barrier();
551 }
552 
553 /**
554  *	napi_if_scheduled_mark_missed - if napi is running, set the
555  *	NAPIF_STATE_MISSED
556  *	@n: NAPI context
557  *
558  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
559  * NAPI is scheduled.
560  **/
561 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
562 {
563 	unsigned long val, new;
564 
565 	val = READ_ONCE(n->state);
566 	do {
567 		if (val & NAPIF_STATE_DISABLE)
568 			return true;
569 
570 		if (!(val & NAPIF_STATE_SCHED))
571 			return false;
572 
573 		new = val | NAPIF_STATE_MISSED;
574 	} while (!try_cmpxchg(&n->state, &val, new));
575 
576 	return true;
577 }
578 
579 enum netdev_queue_state_t {
580 	__QUEUE_STATE_DRV_XOFF,
581 	__QUEUE_STATE_STACK_XOFF,
582 	__QUEUE_STATE_FROZEN,
583 };
584 
585 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
586 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
587 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
588 
589 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
590 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
591 					QUEUE_STATE_FROZEN)
592 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
593 					QUEUE_STATE_FROZEN)
594 
595 /*
596  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
597  * netif_tx_* functions below are used to manipulate this flag.  The
598  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
599  * queue independently.  The netif_xmit_*stopped functions below are called
600  * to check if the queue has been stopped by the driver or stack (either
601  * of the XOFF bits are set in the state).  Drivers should not need to call
602  * netif_xmit*stopped functions, they should only be using netif_tx_*.
603  */
604 
605 struct netdev_queue {
606 /*
607  * read-mostly part
608  */
609 	struct net_device	*dev;
610 	netdevice_tracker	dev_tracker;
611 
612 	struct Qdisc __rcu	*qdisc;
613 	struct Qdisc		*qdisc_sleeping;
614 #ifdef CONFIG_SYSFS
615 	struct kobject		kobj;
616 #endif
617 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
618 	int			numa_node;
619 #endif
620 	unsigned long		tx_maxrate;
621 	/*
622 	 * Number of TX timeouts for this queue
623 	 * (/sys/class/net/DEV/Q/trans_timeout)
624 	 */
625 	atomic_long_t		trans_timeout;
626 
627 	/* Subordinate device that the queue has been assigned to */
628 	struct net_device	*sb_dev;
629 #ifdef CONFIG_XDP_SOCKETS
630 	struct xsk_buff_pool    *pool;
631 #endif
632 /*
633  * write-mostly part
634  */
635 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
636 	int			xmit_lock_owner;
637 	/*
638 	 * Time (in jiffies) of last Tx
639 	 */
640 	unsigned long		trans_start;
641 
642 	unsigned long		state;
643 
644 #ifdef CONFIG_BQL
645 	struct dql		dql;
646 #endif
647 } ____cacheline_aligned_in_smp;
648 
649 extern int sysctl_fb_tunnels_only_for_init_net;
650 extern int sysctl_devconf_inherit_init_net;
651 
652 /*
653  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
654  *                                     == 1 : For initns only
655  *                                     == 2 : For none.
656  */
657 static inline bool net_has_fallback_tunnels(const struct net *net)
658 {
659 #if IS_ENABLED(CONFIG_SYSCTL)
660 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
661 
662 	return !fb_tunnels_only_for_init_net ||
663 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
664 #else
665 	return true;
666 #endif
667 }
668 
669 static inline int net_inherit_devconf(void)
670 {
671 #if IS_ENABLED(CONFIG_SYSCTL)
672 	return READ_ONCE(sysctl_devconf_inherit_init_net);
673 #else
674 	return 0;
675 #endif
676 }
677 
678 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
679 {
680 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
681 	return q->numa_node;
682 #else
683 	return NUMA_NO_NODE;
684 #endif
685 }
686 
687 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
688 {
689 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
690 	q->numa_node = node;
691 #endif
692 }
693 
694 #ifdef CONFIG_RPS
695 /*
696  * This structure holds an RPS map which can be of variable length.  The
697  * map is an array of CPUs.
698  */
699 struct rps_map {
700 	unsigned int len;
701 	struct rcu_head rcu;
702 	u16 cpus[];
703 };
704 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
705 
706 /*
707  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
708  * tail pointer for that CPU's input queue at the time of last enqueue, and
709  * a hardware filter index.
710  */
711 struct rps_dev_flow {
712 	u16 cpu;
713 	u16 filter;
714 	unsigned int last_qtail;
715 };
716 #define RPS_NO_FILTER 0xffff
717 
718 /*
719  * The rps_dev_flow_table structure contains a table of flow mappings.
720  */
721 struct rps_dev_flow_table {
722 	unsigned int mask;
723 	struct rcu_head rcu;
724 	struct rps_dev_flow flows[];
725 };
726 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
727     ((_num) * sizeof(struct rps_dev_flow)))
728 
729 /*
730  * The rps_sock_flow_table contains mappings of flows to the last CPU
731  * on which they were processed by the application (set in recvmsg).
732  * Each entry is a 32bit value. Upper part is the high-order bits
733  * of flow hash, lower part is CPU number.
734  * rps_cpu_mask is used to partition the space, depending on number of
735  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
736  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
737  * meaning we use 32-6=26 bits for the hash.
738  */
739 struct rps_sock_flow_table {
740 	u32	mask;
741 
742 	u32	ents[] ____cacheline_aligned_in_smp;
743 };
744 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
745 
746 #define RPS_NO_CPU 0xffff
747 
748 extern u32 rps_cpu_mask;
749 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
750 
751 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
752 					u32 hash)
753 {
754 	if (table && hash) {
755 		unsigned int index = hash & table->mask;
756 		u32 val = hash & ~rps_cpu_mask;
757 
758 		/* We only give a hint, preemption can change CPU under us */
759 		val |= raw_smp_processor_id();
760 
761 		if (table->ents[index] != val)
762 			table->ents[index] = val;
763 	}
764 }
765 
766 #ifdef CONFIG_RFS_ACCEL
767 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
768 			 u16 filter_id);
769 #endif
770 #endif /* CONFIG_RPS */
771 
772 /* This structure contains an instance of an RX queue. */
773 struct netdev_rx_queue {
774 	struct xdp_rxq_info		xdp_rxq;
775 #ifdef CONFIG_RPS
776 	struct rps_map __rcu		*rps_map;
777 	struct rps_dev_flow_table __rcu	*rps_flow_table;
778 #endif
779 	struct kobject			kobj;
780 	struct net_device		*dev;
781 	netdevice_tracker		dev_tracker;
782 
783 #ifdef CONFIG_XDP_SOCKETS
784 	struct xsk_buff_pool            *pool;
785 #endif
786 } ____cacheline_aligned_in_smp;
787 
788 /*
789  * RX queue sysfs structures and functions.
790  */
791 struct rx_queue_attribute {
792 	struct attribute attr;
793 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
794 	ssize_t (*store)(struct netdev_rx_queue *queue,
795 			 const char *buf, size_t len);
796 };
797 
798 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
799 enum xps_map_type {
800 	XPS_CPUS = 0,
801 	XPS_RXQS,
802 	XPS_MAPS_MAX,
803 };
804 
805 #ifdef CONFIG_XPS
806 /*
807  * This structure holds an XPS map which can be of variable length.  The
808  * map is an array of queues.
809  */
810 struct xps_map {
811 	unsigned int len;
812 	unsigned int alloc_len;
813 	struct rcu_head rcu;
814 	u16 queues[];
815 };
816 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
817 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
818        - sizeof(struct xps_map)) / sizeof(u16))
819 
820 /*
821  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
822  *
823  * We keep track of the number of cpus/rxqs used when the struct is allocated,
824  * in nr_ids. This will help not accessing out-of-bound memory.
825  *
826  * We keep track of the number of traffic classes used when the struct is
827  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
828  * not crossing its upper bound, as the original dev->num_tc can be updated in
829  * the meantime.
830  */
831 struct xps_dev_maps {
832 	struct rcu_head rcu;
833 	unsigned int nr_ids;
834 	s16 num_tc;
835 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
836 };
837 
838 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
839 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
840 
841 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
842 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
843 
844 #endif /* CONFIG_XPS */
845 
846 #define TC_MAX_QUEUE	16
847 #define TC_BITMASK	15
848 /* HW offloaded queuing disciplines txq count and offset maps */
849 struct netdev_tc_txq {
850 	u16 count;
851 	u16 offset;
852 };
853 
854 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
855 /*
856  * This structure is to hold information about the device
857  * configured to run FCoE protocol stack.
858  */
859 struct netdev_fcoe_hbainfo {
860 	char	manufacturer[64];
861 	char	serial_number[64];
862 	char	hardware_version[64];
863 	char	driver_version[64];
864 	char	optionrom_version[64];
865 	char	firmware_version[64];
866 	char	model[256];
867 	char	model_description[256];
868 };
869 #endif
870 
871 #define MAX_PHYS_ITEM_ID_LEN 32
872 
873 /* This structure holds a unique identifier to identify some
874  * physical item (port for example) used by a netdevice.
875  */
876 struct netdev_phys_item_id {
877 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
878 	unsigned char id_len;
879 };
880 
881 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
882 					    struct netdev_phys_item_id *b)
883 {
884 	return a->id_len == b->id_len &&
885 	       memcmp(a->id, b->id, a->id_len) == 0;
886 }
887 
888 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
889 				       struct sk_buff *skb,
890 				       struct net_device *sb_dev);
891 
892 enum net_device_path_type {
893 	DEV_PATH_ETHERNET = 0,
894 	DEV_PATH_VLAN,
895 	DEV_PATH_BRIDGE,
896 	DEV_PATH_PPPOE,
897 	DEV_PATH_DSA,
898 	DEV_PATH_MTK_WDMA,
899 };
900 
901 struct net_device_path {
902 	enum net_device_path_type	type;
903 	const struct net_device		*dev;
904 	union {
905 		struct {
906 			u16		id;
907 			__be16		proto;
908 			u8		h_dest[ETH_ALEN];
909 		} encap;
910 		struct {
911 			enum {
912 				DEV_PATH_BR_VLAN_KEEP,
913 				DEV_PATH_BR_VLAN_TAG,
914 				DEV_PATH_BR_VLAN_UNTAG,
915 				DEV_PATH_BR_VLAN_UNTAG_HW,
916 			}		vlan_mode;
917 			u16		vlan_id;
918 			__be16		vlan_proto;
919 		} bridge;
920 		struct {
921 			int port;
922 			u16 proto;
923 		} dsa;
924 		struct {
925 			u8 wdma_idx;
926 			u8 queue;
927 			u16 wcid;
928 			u8 bss;
929 		} mtk_wdma;
930 	};
931 };
932 
933 #define NET_DEVICE_PATH_STACK_MAX	5
934 #define NET_DEVICE_PATH_VLAN_MAX	2
935 
936 struct net_device_path_stack {
937 	int			num_paths;
938 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
939 };
940 
941 struct net_device_path_ctx {
942 	const struct net_device *dev;
943 	u8			daddr[ETH_ALEN];
944 
945 	int			num_vlans;
946 	struct {
947 		u16		id;
948 		__be16		proto;
949 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
950 };
951 
952 enum tc_setup_type {
953 	TC_QUERY_CAPS,
954 	TC_SETUP_QDISC_MQPRIO,
955 	TC_SETUP_CLSU32,
956 	TC_SETUP_CLSFLOWER,
957 	TC_SETUP_CLSMATCHALL,
958 	TC_SETUP_CLSBPF,
959 	TC_SETUP_BLOCK,
960 	TC_SETUP_QDISC_CBS,
961 	TC_SETUP_QDISC_RED,
962 	TC_SETUP_QDISC_PRIO,
963 	TC_SETUP_QDISC_MQ,
964 	TC_SETUP_QDISC_ETF,
965 	TC_SETUP_ROOT_QDISC,
966 	TC_SETUP_QDISC_GRED,
967 	TC_SETUP_QDISC_TAPRIO,
968 	TC_SETUP_FT,
969 	TC_SETUP_QDISC_ETS,
970 	TC_SETUP_QDISC_TBF,
971 	TC_SETUP_QDISC_FIFO,
972 	TC_SETUP_QDISC_HTB,
973 	TC_SETUP_ACT,
974 };
975 
976 /* These structures hold the attributes of bpf state that are being passed
977  * to the netdevice through the bpf op.
978  */
979 enum bpf_netdev_command {
980 	/* Set or clear a bpf program used in the earliest stages of packet
981 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
982 	 * is responsible for calling bpf_prog_put on any old progs that are
983 	 * stored. In case of error, the callee need not release the new prog
984 	 * reference, but on success it takes ownership and must bpf_prog_put
985 	 * when it is no longer used.
986 	 */
987 	XDP_SETUP_PROG,
988 	XDP_SETUP_PROG_HW,
989 	/* BPF program for offload callbacks, invoked at program load time. */
990 	BPF_OFFLOAD_MAP_ALLOC,
991 	BPF_OFFLOAD_MAP_FREE,
992 	XDP_SETUP_XSK_POOL,
993 };
994 
995 struct bpf_prog_offload_ops;
996 struct netlink_ext_ack;
997 struct xdp_umem;
998 struct xdp_dev_bulk_queue;
999 struct bpf_xdp_link;
1000 
1001 enum bpf_xdp_mode {
1002 	XDP_MODE_SKB = 0,
1003 	XDP_MODE_DRV = 1,
1004 	XDP_MODE_HW = 2,
1005 	__MAX_XDP_MODE
1006 };
1007 
1008 struct bpf_xdp_entity {
1009 	struct bpf_prog *prog;
1010 	struct bpf_xdp_link *link;
1011 };
1012 
1013 struct netdev_bpf {
1014 	enum bpf_netdev_command command;
1015 	union {
1016 		/* XDP_SETUP_PROG */
1017 		struct {
1018 			u32 flags;
1019 			struct bpf_prog *prog;
1020 			struct netlink_ext_ack *extack;
1021 		};
1022 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1023 		struct {
1024 			struct bpf_offloaded_map *offmap;
1025 		};
1026 		/* XDP_SETUP_XSK_POOL */
1027 		struct {
1028 			struct xsk_buff_pool *pool;
1029 			u16 queue_id;
1030 		} xsk;
1031 	};
1032 };
1033 
1034 /* Flags for ndo_xsk_wakeup. */
1035 #define XDP_WAKEUP_RX (1 << 0)
1036 #define XDP_WAKEUP_TX (1 << 1)
1037 
1038 #ifdef CONFIG_XFRM_OFFLOAD
1039 struct xfrmdev_ops {
1040 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
1041 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1042 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1043 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1044 				       struct xfrm_state *x);
1045 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1046 	void	(*xdo_dev_state_update_curlft) (struct xfrm_state *x);
1047 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1048 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1049 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1050 };
1051 #endif
1052 
1053 struct dev_ifalias {
1054 	struct rcu_head rcuhead;
1055 	char ifalias[];
1056 };
1057 
1058 struct devlink;
1059 struct tlsdev_ops;
1060 
1061 struct netdev_net_notifier {
1062 	struct list_head list;
1063 	struct notifier_block *nb;
1064 };
1065 
1066 /*
1067  * This structure defines the management hooks for network devices.
1068  * The following hooks can be defined; unless noted otherwise, they are
1069  * optional and can be filled with a null pointer.
1070  *
1071  * int (*ndo_init)(struct net_device *dev);
1072  *     This function is called once when a network device is registered.
1073  *     The network device can use this for any late stage initialization
1074  *     or semantic validation. It can fail with an error code which will
1075  *     be propagated back to register_netdev.
1076  *
1077  * void (*ndo_uninit)(struct net_device *dev);
1078  *     This function is called when device is unregistered or when registration
1079  *     fails. It is not called if init fails.
1080  *
1081  * int (*ndo_open)(struct net_device *dev);
1082  *     This function is called when a network device transitions to the up
1083  *     state.
1084  *
1085  * int (*ndo_stop)(struct net_device *dev);
1086  *     This function is called when a network device transitions to the down
1087  *     state.
1088  *
1089  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1090  *                               struct net_device *dev);
1091  *	Called when a packet needs to be transmitted.
1092  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1093  *	the queue before that can happen; it's for obsolete devices and weird
1094  *	corner cases, but the stack really does a non-trivial amount
1095  *	of useless work if you return NETDEV_TX_BUSY.
1096  *	Required; cannot be NULL.
1097  *
1098  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1099  *					   struct net_device *dev
1100  *					   netdev_features_t features);
1101  *	Called by core transmit path to determine if device is capable of
1102  *	performing offload operations on a given packet. This is to give
1103  *	the device an opportunity to implement any restrictions that cannot
1104  *	be otherwise expressed by feature flags. The check is called with
1105  *	the set of features that the stack has calculated and it returns
1106  *	those the driver believes to be appropriate.
1107  *
1108  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1109  *                         struct net_device *sb_dev);
1110  *	Called to decide which queue to use when device supports multiple
1111  *	transmit queues.
1112  *
1113  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1114  *	This function is called to allow device receiver to make
1115  *	changes to configuration when multicast or promiscuous is enabled.
1116  *
1117  * void (*ndo_set_rx_mode)(struct net_device *dev);
1118  *	This function is called device changes address list filtering.
1119  *	If driver handles unicast address filtering, it should set
1120  *	IFF_UNICAST_FLT in its priv_flags.
1121  *
1122  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1123  *	This function  is called when the Media Access Control address
1124  *	needs to be changed. If this interface is not defined, the
1125  *	MAC address can not be changed.
1126  *
1127  * int (*ndo_validate_addr)(struct net_device *dev);
1128  *	Test if Media Access Control address is valid for the device.
1129  *
1130  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1131  *	Old-style ioctl entry point. This is used internally by the
1132  *	appletalk and ieee802154 subsystems but is no longer called by
1133  *	the device ioctl handler.
1134  *
1135  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1136  *	Used by the bonding driver for its device specific ioctls:
1137  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1138  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1139  *
1140  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1141  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1142  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1143  *
1144  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1145  *	Used to set network devices bus interface parameters. This interface
1146  *	is retained for legacy reasons; new devices should use the bus
1147  *	interface (PCI) for low level management.
1148  *
1149  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1150  *	Called when a user wants to change the Maximum Transfer Unit
1151  *	of a device.
1152  *
1153  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1154  *	Callback used when the transmitter has not made any progress
1155  *	for dev->watchdog ticks.
1156  *
1157  * void (*ndo_get_stats64)(struct net_device *dev,
1158  *                         struct rtnl_link_stats64 *storage);
1159  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1160  *	Called when a user wants to get the network device usage
1161  *	statistics. Drivers must do one of the following:
1162  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1163  *	   rtnl_link_stats64 structure passed by the caller.
1164  *	2. Define @ndo_get_stats to update a net_device_stats structure
1165  *	   (which should normally be dev->stats) and return a pointer to
1166  *	   it. The structure may be changed asynchronously only if each
1167  *	   field is written atomically.
1168  *	3. Update dev->stats asynchronously and atomically, and define
1169  *	   neither operation.
1170  *
1171  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1172  *	Return true if this device supports offload stats of this attr_id.
1173  *
1174  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1175  *	void *attr_data)
1176  *	Get statistics for offload operations by attr_id. Write it into the
1177  *	attr_data pointer.
1178  *
1179  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1180  *	If device supports VLAN filtering this function is called when a
1181  *	VLAN id is registered.
1182  *
1183  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1184  *	If device supports VLAN filtering this function is called when a
1185  *	VLAN id is unregistered.
1186  *
1187  * void (*ndo_poll_controller)(struct net_device *dev);
1188  *
1189  *	SR-IOV management functions.
1190  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1191  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1192  *			  u8 qos, __be16 proto);
1193  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1194  *			  int max_tx_rate);
1195  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1196  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1197  * int (*ndo_get_vf_config)(struct net_device *dev,
1198  *			    int vf, struct ifla_vf_info *ivf);
1199  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1200  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1201  *			  struct nlattr *port[]);
1202  *
1203  *      Enable or disable the VF ability to query its RSS Redirection Table and
1204  *      Hash Key. This is needed since on some devices VF share this information
1205  *      with PF and querying it may introduce a theoretical security risk.
1206  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1207  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1208  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1209  *		       void *type_data);
1210  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1211  *	This is always called from the stack with the rtnl lock held and netif
1212  *	tx queues stopped. This allows the netdevice to perform queue
1213  *	management safely.
1214  *
1215  *	Fiber Channel over Ethernet (FCoE) offload functions.
1216  * int (*ndo_fcoe_enable)(struct net_device *dev);
1217  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1218  *	so the underlying device can perform whatever needed configuration or
1219  *	initialization to support acceleration of FCoE traffic.
1220  *
1221  * int (*ndo_fcoe_disable)(struct net_device *dev);
1222  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1223  *	so the underlying device can perform whatever needed clean-ups to
1224  *	stop supporting acceleration of FCoE traffic.
1225  *
1226  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1227  *			     struct scatterlist *sgl, unsigned int sgc);
1228  *	Called when the FCoE Initiator wants to initialize an I/O that
1229  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1230  *	perform necessary setup and returns 1 to indicate the device is set up
1231  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1232  *
1233  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1234  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1235  *	indicated by the FC exchange id 'xid', so the underlying device can
1236  *	clean up and reuse resources for later DDP requests.
1237  *
1238  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1239  *			      struct scatterlist *sgl, unsigned int sgc);
1240  *	Called when the FCoE Target wants to initialize an I/O that
1241  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1242  *	perform necessary setup and returns 1 to indicate the device is set up
1243  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1244  *
1245  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1246  *			       struct netdev_fcoe_hbainfo *hbainfo);
1247  *	Called when the FCoE Protocol stack wants information on the underlying
1248  *	device. This information is utilized by the FCoE protocol stack to
1249  *	register attributes with Fiber Channel management service as per the
1250  *	FC-GS Fabric Device Management Information(FDMI) specification.
1251  *
1252  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1253  *	Called when the underlying device wants to override default World Wide
1254  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1255  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1256  *	protocol stack to use.
1257  *
1258  *	RFS acceleration.
1259  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1260  *			    u16 rxq_index, u32 flow_id);
1261  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1262  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1263  *	Return the filter ID on success, or a negative error code.
1264  *
1265  *	Slave management functions (for bridge, bonding, etc).
1266  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1267  *	Called to make another netdev an underling.
1268  *
1269  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1270  *	Called to release previously enslaved netdev.
1271  *
1272  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1273  *					    struct sk_buff *skb,
1274  *					    bool all_slaves);
1275  *	Get the xmit slave of master device. If all_slaves is true, function
1276  *	assume all the slaves can transmit.
1277  *
1278  *      Feature/offload setting functions.
1279  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1280  *		netdev_features_t features);
1281  *	Adjusts the requested feature flags according to device-specific
1282  *	constraints, and returns the resulting flags. Must not modify
1283  *	the device state.
1284  *
1285  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1286  *	Called to update device configuration to new features. Passed
1287  *	feature set might be less than what was returned by ndo_fix_features()).
1288  *	Must return >0 or -errno if it changed dev->features itself.
1289  *
1290  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1291  *		      struct net_device *dev,
1292  *		      const unsigned char *addr, u16 vid, u16 flags,
1293  *		      struct netlink_ext_ack *extack);
1294  *	Adds an FDB entry to dev for addr.
1295  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1296  *		      struct net_device *dev,
1297  *		      const unsigned char *addr, u16 vid)
1298  *	Deletes the FDB entry from dev coresponding to addr.
1299  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1300  *			   struct net_device *dev,
1301  *			   u16 vid,
1302  *			   struct netlink_ext_ack *extack);
1303  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1304  *		       struct net_device *dev, struct net_device *filter_dev,
1305  *		       int *idx)
1306  *	Used to add FDB entries to dump requests. Implementers should add
1307  *	entries to skb and update idx with the number of entries.
1308  *
1309  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1310  *			     u16 flags, struct netlink_ext_ack *extack)
1311  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1312  *			     struct net_device *dev, u32 filter_mask,
1313  *			     int nlflags)
1314  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1315  *			     u16 flags);
1316  *
1317  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1318  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1319  *	which do not represent real hardware may define this to allow their
1320  *	userspace components to manage their virtual carrier state. Devices
1321  *	that determine carrier state from physical hardware properties (eg
1322  *	network cables) or protocol-dependent mechanisms (eg
1323  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1324  *
1325  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1326  *			       struct netdev_phys_item_id *ppid);
1327  *	Called to get ID of physical port of this device. If driver does
1328  *	not implement this, it is assumed that the hw is not able to have
1329  *	multiple net devices on single physical port.
1330  *
1331  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1332  *				 struct netdev_phys_item_id *ppid)
1333  *	Called to get the parent ID of the physical port of this device.
1334  *
1335  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1336  *				 struct net_device *dev)
1337  *	Called by upper layer devices to accelerate switching or other
1338  *	station functionality into hardware. 'pdev is the lowerdev
1339  *	to use for the offload and 'dev' is the net device that will
1340  *	back the offload. Returns a pointer to the private structure
1341  *	the upper layer will maintain.
1342  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1343  *	Called by upper layer device to delete the station created
1344  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1345  *	the station and priv is the structure returned by the add
1346  *	operation.
1347  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1348  *			     int queue_index, u32 maxrate);
1349  *	Called when a user wants to set a max-rate limitation of specific
1350  *	TX queue.
1351  * int (*ndo_get_iflink)(const struct net_device *dev);
1352  *	Called to get the iflink value of this device.
1353  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1354  *	This function is used to get egress tunnel information for given skb.
1355  *	This is useful for retrieving outer tunnel header parameters while
1356  *	sampling packet.
1357  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1358  *	This function is used to specify the headroom that the skb must
1359  *	consider when allocation skb during packet reception. Setting
1360  *	appropriate rx headroom value allows avoiding skb head copy on
1361  *	forward. Setting a negative value resets the rx headroom to the
1362  *	default value.
1363  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1364  *	This function is used to set or query state related to XDP on the
1365  *	netdevice and manage BPF offload. See definition of
1366  *	enum bpf_netdev_command for details.
1367  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1368  *			u32 flags);
1369  *	This function is used to submit @n XDP packets for transmit on a
1370  *	netdevice. Returns number of frames successfully transmitted, frames
1371  *	that got dropped are freed/returned via xdp_return_frame().
1372  *	Returns negative number, means general error invoking ndo, meaning
1373  *	no frames were xmit'ed and core-caller will free all frames.
1374  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1375  *					        struct xdp_buff *xdp);
1376  *      Get the xmit slave of master device based on the xdp_buff.
1377  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1378  *      This function is used to wake up the softirq, ksoftirqd or kthread
1379  *	responsible for sending and/or receiving packets on a specific
1380  *	queue id bound to an AF_XDP socket. The flags field specifies if
1381  *	only RX, only Tx, or both should be woken up using the flags
1382  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1383  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1384  *			 int cmd);
1385  *	Add, change, delete or get information on an IPv4 tunnel.
1386  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1387  *	If a device is paired with a peer device, return the peer instance.
1388  *	The caller must be under RCU read context.
1389  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1390  *     Get the forwarding path to reach the real device from the HW destination address
1391  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1392  *			     const struct skb_shared_hwtstamps *hwtstamps,
1393  *			     bool cycles);
1394  *	Get hardware timestamp based on normal/adjustable time or free running
1395  *	cycle counter. This function is required if physical clock supports a
1396  *	free running cycle counter.
1397  */
1398 struct net_device_ops {
1399 	int			(*ndo_init)(struct net_device *dev);
1400 	void			(*ndo_uninit)(struct net_device *dev);
1401 	int			(*ndo_open)(struct net_device *dev);
1402 	int			(*ndo_stop)(struct net_device *dev);
1403 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1404 						  struct net_device *dev);
1405 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1406 						      struct net_device *dev,
1407 						      netdev_features_t features);
1408 	u16			(*ndo_select_queue)(struct net_device *dev,
1409 						    struct sk_buff *skb,
1410 						    struct net_device *sb_dev);
1411 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1412 						       int flags);
1413 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1414 	int			(*ndo_set_mac_address)(struct net_device *dev,
1415 						       void *addr);
1416 	int			(*ndo_validate_addr)(struct net_device *dev);
1417 	int			(*ndo_do_ioctl)(struct net_device *dev,
1418 					        struct ifreq *ifr, int cmd);
1419 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1420 						 struct ifreq *ifr, int cmd);
1421 	int			(*ndo_siocbond)(struct net_device *dev,
1422 						struct ifreq *ifr, int cmd);
1423 	int			(*ndo_siocwandev)(struct net_device *dev,
1424 						  struct if_settings *ifs);
1425 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1426 						      struct ifreq *ifr,
1427 						      void __user *data, int cmd);
1428 	int			(*ndo_set_config)(struct net_device *dev,
1429 					          struct ifmap *map);
1430 	int			(*ndo_change_mtu)(struct net_device *dev,
1431 						  int new_mtu);
1432 	int			(*ndo_neigh_setup)(struct net_device *dev,
1433 						   struct neigh_parms *);
1434 	void			(*ndo_tx_timeout) (struct net_device *dev,
1435 						   unsigned int txqueue);
1436 
1437 	void			(*ndo_get_stats64)(struct net_device *dev,
1438 						   struct rtnl_link_stats64 *storage);
1439 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1440 	int			(*ndo_get_offload_stats)(int attr_id,
1441 							 const struct net_device *dev,
1442 							 void *attr_data);
1443 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1444 
1445 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1446 						       __be16 proto, u16 vid);
1447 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1448 						        __be16 proto, u16 vid);
1449 #ifdef CONFIG_NET_POLL_CONTROLLER
1450 	void                    (*ndo_poll_controller)(struct net_device *dev);
1451 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1452 						     struct netpoll_info *info);
1453 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1454 #endif
1455 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1456 						  int queue, u8 *mac);
1457 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1458 						   int queue, u16 vlan,
1459 						   u8 qos, __be16 proto);
1460 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1461 						   int vf, int min_tx_rate,
1462 						   int max_tx_rate);
1463 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1464 						       int vf, bool setting);
1465 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1466 						    int vf, bool setting);
1467 	int			(*ndo_get_vf_config)(struct net_device *dev,
1468 						     int vf,
1469 						     struct ifla_vf_info *ivf);
1470 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1471 							 int vf, int link_state);
1472 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1473 						    int vf,
1474 						    struct ifla_vf_stats
1475 						    *vf_stats);
1476 	int			(*ndo_set_vf_port)(struct net_device *dev,
1477 						   int vf,
1478 						   struct nlattr *port[]);
1479 	int			(*ndo_get_vf_port)(struct net_device *dev,
1480 						   int vf, struct sk_buff *skb);
1481 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1482 						   int vf,
1483 						   struct ifla_vf_guid *node_guid,
1484 						   struct ifla_vf_guid *port_guid);
1485 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1486 						   int vf, u64 guid,
1487 						   int guid_type);
1488 	int			(*ndo_set_vf_rss_query_en)(
1489 						   struct net_device *dev,
1490 						   int vf, bool setting);
1491 	int			(*ndo_setup_tc)(struct net_device *dev,
1492 						enum tc_setup_type type,
1493 						void *type_data);
1494 #if IS_ENABLED(CONFIG_FCOE)
1495 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1496 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1497 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1498 						      u16 xid,
1499 						      struct scatterlist *sgl,
1500 						      unsigned int sgc);
1501 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1502 						     u16 xid);
1503 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1504 						       u16 xid,
1505 						       struct scatterlist *sgl,
1506 						       unsigned int sgc);
1507 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1508 							struct netdev_fcoe_hbainfo *hbainfo);
1509 #endif
1510 
1511 #if IS_ENABLED(CONFIG_LIBFCOE)
1512 #define NETDEV_FCOE_WWNN 0
1513 #define NETDEV_FCOE_WWPN 1
1514 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1515 						    u64 *wwn, int type);
1516 #endif
1517 
1518 #ifdef CONFIG_RFS_ACCEL
1519 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1520 						     const struct sk_buff *skb,
1521 						     u16 rxq_index,
1522 						     u32 flow_id);
1523 #endif
1524 	int			(*ndo_add_slave)(struct net_device *dev,
1525 						 struct net_device *slave_dev,
1526 						 struct netlink_ext_ack *extack);
1527 	int			(*ndo_del_slave)(struct net_device *dev,
1528 						 struct net_device *slave_dev);
1529 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1530 						      struct sk_buff *skb,
1531 						      bool all_slaves);
1532 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1533 							struct sock *sk);
1534 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1535 						    netdev_features_t features);
1536 	int			(*ndo_set_features)(struct net_device *dev,
1537 						    netdev_features_t features);
1538 	int			(*ndo_neigh_construct)(struct net_device *dev,
1539 						       struct neighbour *n);
1540 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1541 						     struct neighbour *n);
1542 
1543 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1544 					       struct nlattr *tb[],
1545 					       struct net_device *dev,
1546 					       const unsigned char *addr,
1547 					       u16 vid,
1548 					       u16 flags,
1549 					       struct netlink_ext_ack *extack);
1550 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1551 					       struct nlattr *tb[],
1552 					       struct net_device *dev,
1553 					       const unsigned char *addr,
1554 					       u16 vid, struct netlink_ext_ack *extack);
1555 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1556 						    struct nlattr *tb[],
1557 						    struct net_device *dev,
1558 						    u16 vid,
1559 						    struct netlink_ext_ack *extack);
1560 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1561 						struct netlink_callback *cb,
1562 						struct net_device *dev,
1563 						struct net_device *filter_dev,
1564 						int *idx);
1565 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1566 					       struct nlattr *tb[],
1567 					       struct net_device *dev,
1568 					       const unsigned char *addr,
1569 					       u16 vid, u32 portid, u32 seq,
1570 					       struct netlink_ext_ack *extack);
1571 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1572 						      struct nlmsghdr *nlh,
1573 						      u16 flags,
1574 						      struct netlink_ext_ack *extack);
1575 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1576 						      u32 pid, u32 seq,
1577 						      struct net_device *dev,
1578 						      u32 filter_mask,
1579 						      int nlflags);
1580 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1581 						      struct nlmsghdr *nlh,
1582 						      u16 flags);
1583 	int			(*ndo_change_carrier)(struct net_device *dev,
1584 						      bool new_carrier);
1585 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1586 							struct netdev_phys_item_id *ppid);
1587 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1588 							  struct netdev_phys_item_id *ppid);
1589 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1590 							  char *name, size_t len);
1591 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1592 							struct net_device *dev);
1593 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1594 							void *priv);
1595 
1596 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1597 						      int queue_index,
1598 						      u32 maxrate);
1599 	int			(*ndo_get_iflink)(const struct net_device *dev);
1600 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1601 						       struct sk_buff *skb);
1602 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1603 						       int needed_headroom);
1604 	int			(*ndo_bpf)(struct net_device *dev,
1605 					   struct netdev_bpf *bpf);
1606 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1607 						struct xdp_frame **xdp,
1608 						u32 flags);
1609 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1610 							  struct xdp_buff *xdp);
1611 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1612 						  u32 queue_id, u32 flags);
1613 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1614 						  struct ip_tunnel_parm *p, int cmd);
1615 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1616 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1617                                                          struct net_device_path *path);
1618 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1619 						  const struct skb_shared_hwtstamps *hwtstamps,
1620 						  bool cycles);
1621 };
1622 
1623 struct xdp_metadata_ops {
1624 	int	(*xmo_rx_timestamp)(const struct xdp_md *ctx, u64 *timestamp);
1625 	int	(*xmo_rx_hash)(const struct xdp_md *ctx, u32 *hash);
1626 };
1627 
1628 /**
1629  * enum netdev_priv_flags - &struct net_device priv_flags
1630  *
1631  * These are the &struct net_device, they are only set internally
1632  * by drivers and used in the kernel. These flags are invisible to
1633  * userspace; this means that the order of these flags can change
1634  * during any kernel release.
1635  *
1636  * You should have a pretty good reason to be extending these flags.
1637  *
1638  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1639  * @IFF_EBRIDGE: Ethernet bridging device
1640  * @IFF_BONDING: bonding master or slave
1641  * @IFF_ISATAP: ISATAP interface (RFC4214)
1642  * @IFF_WAN_HDLC: WAN HDLC device
1643  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1644  *	release skb->dst
1645  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1646  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1647  * @IFF_MACVLAN_PORT: device used as macvlan port
1648  * @IFF_BRIDGE_PORT: device used as bridge port
1649  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1650  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1651  * @IFF_UNICAST_FLT: Supports unicast filtering
1652  * @IFF_TEAM_PORT: device used as team port
1653  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1654  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1655  *	change when it's running
1656  * @IFF_MACVLAN: Macvlan device
1657  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1658  *	underlying stacked devices
1659  * @IFF_L3MDEV_MASTER: device is an L3 master device
1660  * @IFF_NO_QUEUE: device can run without qdisc attached
1661  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1662  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1663  * @IFF_TEAM: device is a team device
1664  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1665  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1666  *	entity (i.e. the master device for bridged veth)
1667  * @IFF_MACSEC: device is a MACsec device
1668  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1669  * @IFF_FAILOVER: device is a failover master device
1670  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1671  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1672  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1673  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1674  *	skb_headlen(skb) == 0 (data starts from frag0)
1675  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1676  */
1677 enum netdev_priv_flags {
1678 	IFF_802_1Q_VLAN			= 1<<0,
1679 	IFF_EBRIDGE			= 1<<1,
1680 	IFF_BONDING			= 1<<2,
1681 	IFF_ISATAP			= 1<<3,
1682 	IFF_WAN_HDLC			= 1<<4,
1683 	IFF_XMIT_DST_RELEASE		= 1<<5,
1684 	IFF_DONT_BRIDGE			= 1<<6,
1685 	IFF_DISABLE_NETPOLL		= 1<<7,
1686 	IFF_MACVLAN_PORT		= 1<<8,
1687 	IFF_BRIDGE_PORT			= 1<<9,
1688 	IFF_OVS_DATAPATH		= 1<<10,
1689 	IFF_TX_SKB_SHARING		= 1<<11,
1690 	IFF_UNICAST_FLT			= 1<<12,
1691 	IFF_TEAM_PORT			= 1<<13,
1692 	IFF_SUPP_NOFCS			= 1<<14,
1693 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1694 	IFF_MACVLAN			= 1<<16,
1695 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1696 	IFF_L3MDEV_MASTER		= 1<<18,
1697 	IFF_NO_QUEUE			= 1<<19,
1698 	IFF_OPENVSWITCH			= 1<<20,
1699 	IFF_L3MDEV_SLAVE		= 1<<21,
1700 	IFF_TEAM			= 1<<22,
1701 	IFF_RXFH_CONFIGURED		= 1<<23,
1702 	IFF_PHONY_HEADROOM		= 1<<24,
1703 	IFF_MACSEC			= 1<<25,
1704 	IFF_NO_RX_HANDLER		= 1<<26,
1705 	IFF_FAILOVER			= 1<<27,
1706 	IFF_FAILOVER_SLAVE		= 1<<28,
1707 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1708 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1709 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1710 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1711 };
1712 
1713 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1714 #define IFF_EBRIDGE			IFF_EBRIDGE
1715 #define IFF_BONDING			IFF_BONDING
1716 #define IFF_ISATAP			IFF_ISATAP
1717 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1718 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1719 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1720 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1721 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1722 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1723 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1724 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1725 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1726 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1727 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1728 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1729 #define IFF_MACVLAN			IFF_MACVLAN
1730 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1731 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1732 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1733 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1734 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1735 #define IFF_TEAM			IFF_TEAM
1736 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1737 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1738 #define IFF_MACSEC			IFF_MACSEC
1739 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1740 #define IFF_FAILOVER			IFF_FAILOVER
1741 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1742 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1743 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1744 
1745 /* Specifies the type of the struct net_device::ml_priv pointer */
1746 enum netdev_ml_priv_type {
1747 	ML_PRIV_NONE,
1748 	ML_PRIV_CAN,
1749 };
1750 
1751 /**
1752  *	struct net_device - The DEVICE structure.
1753  *
1754  *	Actually, this whole structure is a big mistake.  It mixes I/O
1755  *	data with strictly "high-level" data, and it has to know about
1756  *	almost every data structure used in the INET module.
1757  *
1758  *	@name:	This is the first field of the "visible" part of this structure
1759  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1760  *		of the interface.
1761  *
1762  *	@name_node:	Name hashlist node
1763  *	@ifalias:	SNMP alias
1764  *	@mem_end:	Shared memory end
1765  *	@mem_start:	Shared memory start
1766  *	@base_addr:	Device I/O address
1767  *	@irq:		Device IRQ number
1768  *
1769  *	@state:		Generic network queuing layer state, see netdev_state_t
1770  *	@dev_list:	The global list of network devices
1771  *	@napi_list:	List entry used for polling NAPI devices
1772  *	@unreg_list:	List entry  when we are unregistering the
1773  *			device; see the function unregister_netdev
1774  *	@close_list:	List entry used when we are closing the device
1775  *	@ptype_all:     Device-specific packet handlers for all protocols
1776  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1777  *
1778  *	@adj_list:	Directly linked devices, like slaves for bonding
1779  *	@features:	Currently active device features
1780  *	@hw_features:	User-changeable features
1781  *
1782  *	@wanted_features:	User-requested features
1783  *	@vlan_features:		Mask of features inheritable by VLAN devices
1784  *
1785  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1786  *				This field indicates what encapsulation
1787  *				offloads the hardware is capable of doing,
1788  *				and drivers will need to set them appropriately.
1789  *
1790  *	@mpls_features:	Mask of features inheritable by MPLS
1791  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1792  *
1793  *	@ifindex:	interface index
1794  *	@group:		The group the device belongs to
1795  *
1796  *	@stats:		Statistics struct, which was left as a legacy, use
1797  *			rtnl_link_stats64 instead
1798  *
1799  *	@core_stats:	core networking counters,
1800  *			do not use this in drivers
1801  *	@carrier_up_count:	Number of times the carrier has been up
1802  *	@carrier_down_count:	Number of times the carrier has been down
1803  *
1804  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1805  *				instead of ioctl,
1806  *				see <net/iw_handler.h> for details.
1807  *	@wireless_data:	Instance data managed by the core of wireless extensions
1808  *
1809  *	@netdev_ops:	Includes several pointers to callbacks,
1810  *			if one wants to override the ndo_*() functions
1811  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1812  *	@ethtool_ops:	Management operations
1813  *	@l3mdev_ops:	Layer 3 master device operations
1814  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1815  *			discovery handling. Necessary for e.g. 6LoWPAN.
1816  *	@xfrmdev_ops:	Transformation offload operations
1817  *	@tlsdev_ops:	Transport Layer Security offload operations
1818  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1819  *			of Layer 2 headers.
1820  *
1821  *	@flags:		Interface flags (a la BSD)
1822  *	@xdp_features:	XDP capability supported by the device
1823  *	@priv_flags:	Like 'flags' but invisible to userspace,
1824  *			see if.h for the definitions
1825  *	@gflags:	Global flags ( kept as legacy )
1826  *	@padded:	How much padding added by alloc_netdev()
1827  *	@operstate:	RFC2863 operstate
1828  *	@link_mode:	Mapping policy to operstate
1829  *	@if_port:	Selectable AUI, TP, ...
1830  *	@dma:		DMA channel
1831  *	@mtu:		Interface MTU value
1832  *	@min_mtu:	Interface Minimum MTU value
1833  *	@max_mtu:	Interface Maximum MTU value
1834  *	@type:		Interface hardware type
1835  *	@hard_header_len: Maximum hardware header length.
1836  *	@min_header_len:  Minimum hardware header length
1837  *
1838  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1839  *			  cases can this be guaranteed
1840  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1841  *			  cases can this be guaranteed. Some cases also use
1842  *			  LL_MAX_HEADER instead to allocate the skb
1843  *
1844  *	interface address info:
1845  *
1846  * 	@perm_addr:		Permanent hw address
1847  * 	@addr_assign_type:	Hw address assignment type
1848  * 	@addr_len:		Hardware address length
1849  *	@upper_level:		Maximum depth level of upper devices.
1850  *	@lower_level:		Maximum depth level of lower devices.
1851  *	@neigh_priv_len:	Used in neigh_alloc()
1852  * 	@dev_id:		Used to differentiate devices that share
1853  * 				the same link layer address
1854  * 	@dev_port:		Used to differentiate devices that share
1855  * 				the same function
1856  *	@addr_list_lock:	XXX: need comments on this one
1857  *	@name_assign_type:	network interface name assignment type
1858  *	@uc_promisc:		Counter that indicates promiscuous mode
1859  *				has been enabled due to the need to listen to
1860  *				additional unicast addresses in a device that
1861  *				does not implement ndo_set_rx_mode()
1862  *	@uc:			unicast mac addresses
1863  *	@mc:			multicast mac addresses
1864  *	@dev_addrs:		list of device hw addresses
1865  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1866  *	@promiscuity:		Number of times the NIC is told to work in
1867  *				promiscuous mode; if it becomes 0 the NIC will
1868  *				exit promiscuous mode
1869  *	@allmulti:		Counter, enables or disables allmulticast mode
1870  *
1871  *	@vlan_info:	VLAN info
1872  *	@dsa_ptr:	dsa specific data
1873  *	@tipc_ptr:	TIPC specific data
1874  *	@atalk_ptr:	AppleTalk link
1875  *	@ip_ptr:	IPv4 specific data
1876  *	@ip6_ptr:	IPv6 specific data
1877  *	@ax25_ptr:	AX.25 specific data
1878  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1879  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1880  *			 device struct
1881  *	@mpls_ptr:	mpls_dev struct pointer
1882  *	@mctp_ptr:	MCTP specific data
1883  *
1884  *	@dev_addr:	Hw address (before bcast,
1885  *			because most packets are unicast)
1886  *
1887  *	@_rx:			Array of RX queues
1888  *	@num_rx_queues:		Number of RX queues
1889  *				allocated at register_netdev() time
1890  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1891  *	@xdp_prog:		XDP sockets filter program pointer
1892  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1893  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1894  *				allow to avoid NIC hard IRQ, on busy queues.
1895  *
1896  *	@rx_handler:		handler for received packets
1897  *	@rx_handler_data: 	XXX: need comments on this one
1898  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1899  *				ingress processing
1900  *	@ingress_queue:		XXX: need comments on this one
1901  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1902  *	@broadcast:		hw bcast address
1903  *
1904  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1905  *			indexed by RX queue number. Assigned by driver.
1906  *			This must only be set if the ndo_rx_flow_steer
1907  *			operation is defined
1908  *	@index_hlist:		Device index hash chain
1909  *
1910  *	@_tx:			Array of TX queues
1911  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1912  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1913  *	@qdisc:			Root qdisc from userspace point of view
1914  *	@tx_queue_len:		Max frames per queue allowed
1915  *	@tx_global_lock: 	XXX: need comments on this one
1916  *	@xdp_bulkq:		XDP device bulk queue
1917  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1918  *
1919  *	@xps_maps:	XXX: need comments on this one
1920  *	@miniq_egress:		clsact qdisc specific data for
1921  *				egress processing
1922  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1923  *	@qdisc_hash:		qdisc hash table
1924  *	@watchdog_timeo:	Represents the timeout that is used by
1925  *				the watchdog (see dev_watchdog())
1926  *	@watchdog_timer:	List of timers
1927  *
1928  *	@proto_down_reason:	reason a netdev interface is held down
1929  *	@pcpu_refcnt:		Number of references to this device
1930  *	@dev_refcnt:		Number of references to this device
1931  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1932  *	@todo_list:		Delayed register/unregister
1933  *	@link_watch_list:	XXX: need comments on this one
1934  *
1935  *	@reg_state:		Register/unregister state machine
1936  *	@dismantle:		Device is going to be freed
1937  *	@rtnl_link_state:	This enum represents the phases of creating
1938  *				a new link
1939  *
1940  *	@needs_free_netdev:	Should unregister perform free_netdev?
1941  *	@priv_destructor:	Called from unregister
1942  *	@npinfo:		XXX: need comments on this one
1943  * 	@nd_net:		Network namespace this network device is inside
1944  *
1945  * 	@ml_priv:	Mid-layer private
1946  *	@ml_priv_type:  Mid-layer private type
1947  * 	@lstats:	Loopback statistics
1948  * 	@tstats:	Tunnel statistics
1949  * 	@dstats:	Dummy statistics
1950  * 	@vstats:	Virtual ethernet statistics
1951  *
1952  *	@garp_port:	GARP
1953  *	@mrp_port:	MRP
1954  *
1955  *	@dm_private:	Drop monitor private
1956  *
1957  *	@dev:		Class/net/name entry
1958  *	@sysfs_groups:	Space for optional device, statistics and wireless
1959  *			sysfs groups
1960  *
1961  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1962  *	@rtnl_link_ops:	Rtnl_link_ops
1963  *
1964  *	@gso_max_size:	Maximum size of generic segmentation offload
1965  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1966  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1967  *			NIC for GSO
1968  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1969  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
1970  * 				for IPv4.
1971  *
1972  *	@dcbnl_ops:	Data Center Bridging netlink ops
1973  *	@num_tc:	Number of traffic classes in the net device
1974  *	@tc_to_txq:	XXX: need comments on this one
1975  *	@prio_tc_map:	XXX: need comments on this one
1976  *
1977  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1978  *
1979  *	@priomap:	XXX: need comments on this one
1980  *	@phydev:	Physical device may attach itself
1981  *			for hardware timestamping
1982  *	@sfp_bus:	attached &struct sfp_bus structure.
1983  *
1984  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1985  *
1986  *	@proto_down:	protocol port state information can be sent to the
1987  *			switch driver and used to set the phys state of the
1988  *			switch port.
1989  *
1990  *	@wol_enabled:	Wake-on-LAN is enabled
1991  *
1992  *	@threaded:	napi threaded mode is enabled
1993  *
1994  *	@net_notifier_list:	List of per-net netdev notifier block
1995  *				that follow this device when it is moved
1996  *				to another network namespace.
1997  *
1998  *	@macsec_ops:    MACsec offloading ops
1999  *
2000  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2001  *				offload capabilities of the device
2002  *	@udp_tunnel_nic:	UDP tunnel offload state
2003  *	@xdp_state:		stores info on attached XDP BPF programs
2004  *
2005  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2006  *			dev->addr_list_lock.
2007  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2008  *			keep a list of interfaces to be deleted.
2009  *	@gro_max_size:	Maximum size of aggregated packet in generic
2010  *			receive offload (GRO)
2011  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2012  * 				receive offload (GRO), for IPv4.
2013  *
2014  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2015  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2016  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2017  *	@dev_registered_tracker:	tracker for reference held while
2018  *					registered
2019  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2020  *
2021  *	@devlink_port:	Pointer to related devlink port structure.
2022  *			Assigned by a driver before netdev registration using
2023  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2024  *			during the time netdevice is registered.
2025  *
2026  *	FIXME: cleanup struct net_device such that network protocol info
2027  *	moves out.
2028  */
2029 
2030 struct net_device {
2031 	char			name[IFNAMSIZ];
2032 	struct netdev_name_node	*name_node;
2033 	struct dev_ifalias	__rcu *ifalias;
2034 	/*
2035 	 *	I/O specific fields
2036 	 *	FIXME: Merge these and struct ifmap into one
2037 	 */
2038 	unsigned long		mem_end;
2039 	unsigned long		mem_start;
2040 	unsigned long		base_addr;
2041 
2042 	/*
2043 	 *	Some hardware also needs these fields (state,dev_list,
2044 	 *	napi_list,unreg_list,close_list) but they are not
2045 	 *	part of the usual set specified in Space.c.
2046 	 */
2047 
2048 	unsigned long		state;
2049 
2050 	struct list_head	dev_list;
2051 	struct list_head	napi_list;
2052 	struct list_head	unreg_list;
2053 	struct list_head	close_list;
2054 	struct list_head	ptype_all;
2055 	struct list_head	ptype_specific;
2056 
2057 	struct {
2058 		struct list_head upper;
2059 		struct list_head lower;
2060 	} adj_list;
2061 
2062 	/* Read-mostly cache-line for fast-path access */
2063 	unsigned int		flags;
2064 	xdp_features_t		xdp_features;
2065 	unsigned long long	priv_flags;
2066 	const struct net_device_ops *netdev_ops;
2067 	const struct xdp_metadata_ops *xdp_metadata_ops;
2068 	int			ifindex;
2069 	unsigned short		gflags;
2070 	unsigned short		hard_header_len;
2071 
2072 	/* Note : dev->mtu is often read without holding a lock.
2073 	 * Writers usually hold RTNL.
2074 	 * It is recommended to use READ_ONCE() to annotate the reads,
2075 	 * and to use WRITE_ONCE() to annotate the writes.
2076 	 */
2077 	unsigned int		mtu;
2078 	unsigned short		needed_headroom;
2079 	unsigned short		needed_tailroom;
2080 
2081 	netdev_features_t	features;
2082 	netdev_features_t	hw_features;
2083 	netdev_features_t	wanted_features;
2084 	netdev_features_t	vlan_features;
2085 	netdev_features_t	hw_enc_features;
2086 	netdev_features_t	mpls_features;
2087 	netdev_features_t	gso_partial_features;
2088 
2089 	unsigned int		min_mtu;
2090 	unsigned int		max_mtu;
2091 	unsigned short		type;
2092 	unsigned char		min_header_len;
2093 	unsigned char		name_assign_type;
2094 
2095 	int			group;
2096 
2097 	struct net_device_stats	stats; /* not used by modern drivers */
2098 
2099 	struct net_device_core_stats __percpu *core_stats;
2100 
2101 	/* Stats to monitor link on/off, flapping */
2102 	atomic_t		carrier_up_count;
2103 	atomic_t		carrier_down_count;
2104 
2105 #ifdef CONFIG_WIRELESS_EXT
2106 	const struct iw_handler_def *wireless_handlers;
2107 	struct iw_public_data	*wireless_data;
2108 #endif
2109 	const struct ethtool_ops *ethtool_ops;
2110 #ifdef CONFIG_NET_L3_MASTER_DEV
2111 	const struct l3mdev_ops	*l3mdev_ops;
2112 #endif
2113 #if IS_ENABLED(CONFIG_IPV6)
2114 	const struct ndisc_ops *ndisc_ops;
2115 #endif
2116 
2117 #ifdef CONFIG_XFRM_OFFLOAD
2118 	const struct xfrmdev_ops *xfrmdev_ops;
2119 #endif
2120 
2121 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2122 	const struct tlsdev_ops *tlsdev_ops;
2123 #endif
2124 
2125 	const struct header_ops *header_ops;
2126 
2127 	unsigned char		operstate;
2128 	unsigned char		link_mode;
2129 
2130 	unsigned char		if_port;
2131 	unsigned char		dma;
2132 
2133 	/* Interface address info. */
2134 	unsigned char		perm_addr[MAX_ADDR_LEN];
2135 	unsigned char		addr_assign_type;
2136 	unsigned char		addr_len;
2137 	unsigned char		upper_level;
2138 	unsigned char		lower_level;
2139 
2140 	unsigned short		neigh_priv_len;
2141 	unsigned short          dev_id;
2142 	unsigned short          dev_port;
2143 	unsigned short		padded;
2144 
2145 	spinlock_t		addr_list_lock;
2146 	int			irq;
2147 
2148 	struct netdev_hw_addr_list	uc;
2149 	struct netdev_hw_addr_list	mc;
2150 	struct netdev_hw_addr_list	dev_addrs;
2151 
2152 #ifdef CONFIG_SYSFS
2153 	struct kset		*queues_kset;
2154 #endif
2155 #ifdef CONFIG_LOCKDEP
2156 	struct list_head	unlink_list;
2157 #endif
2158 	unsigned int		promiscuity;
2159 	unsigned int		allmulti;
2160 	bool			uc_promisc;
2161 #ifdef CONFIG_LOCKDEP
2162 	unsigned char		nested_level;
2163 #endif
2164 
2165 
2166 	/* Protocol-specific pointers */
2167 
2168 	struct in_device __rcu	*ip_ptr;
2169 	struct inet6_dev __rcu	*ip6_ptr;
2170 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2171 	struct vlan_info __rcu	*vlan_info;
2172 #endif
2173 #if IS_ENABLED(CONFIG_NET_DSA)
2174 	struct dsa_port		*dsa_ptr;
2175 #endif
2176 #if IS_ENABLED(CONFIG_TIPC)
2177 	struct tipc_bearer __rcu *tipc_ptr;
2178 #endif
2179 #if IS_ENABLED(CONFIG_ATALK)
2180 	void 			*atalk_ptr;
2181 #endif
2182 #if IS_ENABLED(CONFIG_AX25)
2183 	void			*ax25_ptr;
2184 #endif
2185 #if IS_ENABLED(CONFIG_CFG80211)
2186 	struct wireless_dev	*ieee80211_ptr;
2187 #endif
2188 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2189 	struct wpan_dev		*ieee802154_ptr;
2190 #endif
2191 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2192 	struct mpls_dev __rcu	*mpls_ptr;
2193 #endif
2194 #if IS_ENABLED(CONFIG_MCTP)
2195 	struct mctp_dev __rcu	*mctp_ptr;
2196 #endif
2197 
2198 /*
2199  * Cache lines mostly used on receive path (including eth_type_trans())
2200  */
2201 	/* Interface address info used in eth_type_trans() */
2202 	const unsigned char	*dev_addr;
2203 
2204 	struct netdev_rx_queue	*_rx;
2205 	unsigned int		num_rx_queues;
2206 	unsigned int		real_num_rx_queues;
2207 
2208 	struct bpf_prog __rcu	*xdp_prog;
2209 	unsigned long		gro_flush_timeout;
2210 	int			napi_defer_hard_irqs;
2211 #define GRO_LEGACY_MAX_SIZE	65536u
2212 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2213  * and shinfo->gso_segs is a 16bit field.
2214  */
2215 #define GRO_MAX_SIZE		(8 * 65535u)
2216 	unsigned int		gro_max_size;
2217 	unsigned int		gro_ipv4_max_size;
2218 	rx_handler_func_t __rcu	*rx_handler;
2219 	void __rcu		*rx_handler_data;
2220 
2221 #ifdef CONFIG_NET_CLS_ACT
2222 	struct mini_Qdisc __rcu	*miniq_ingress;
2223 #endif
2224 	struct netdev_queue __rcu *ingress_queue;
2225 #ifdef CONFIG_NETFILTER_INGRESS
2226 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2227 #endif
2228 
2229 	unsigned char		broadcast[MAX_ADDR_LEN];
2230 #ifdef CONFIG_RFS_ACCEL
2231 	struct cpu_rmap		*rx_cpu_rmap;
2232 #endif
2233 	struct hlist_node	index_hlist;
2234 
2235 /*
2236  * Cache lines mostly used on transmit path
2237  */
2238 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2239 	unsigned int		num_tx_queues;
2240 	unsigned int		real_num_tx_queues;
2241 	struct Qdisc __rcu	*qdisc;
2242 	unsigned int		tx_queue_len;
2243 	spinlock_t		tx_global_lock;
2244 
2245 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2246 
2247 #ifdef CONFIG_XPS
2248 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2249 #endif
2250 #ifdef CONFIG_NET_CLS_ACT
2251 	struct mini_Qdisc __rcu	*miniq_egress;
2252 #endif
2253 #ifdef CONFIG_NETFILTER_EGRESS
2254 	struct nf_hook_entries __rcu *nf_hooks_egress;
2255 #endif
2256 
2257 #ifdef CONFIG_NET_SCHED
2258 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2259 #endif
2260 	/* These may be needed for future network-power-down code. */
2261 	struct timer_list	watchdog_timer;
2262 	int			watchdog_timeo;
2263 
2264 	u32                     proto_down_reason;
2265 
2266 	struct list_head	todo_list;
2267 
2268 #ifdef CONFIG_PCPU_DEV_REFCNT
2269 	int __percpu		*pcpu_refcnt;
2270 #else
2271 	refcount_t		dev_refcnt;
2272 #endif
2273 	struct ref_tracker_dir	refcnt_tracker;
2274 
2275 	struct list_head	link_watch_list;
2276 
2277 	enum { NETREG_UNINITIALIZED=0,
2278 	       NETREG_REGISTERED,	/* completed register_netdevice */
2279 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2280 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2281 	       NETREG_RELEASED,		/* called free_netdev */
2282 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2283 	} reg_state:8;
2284 
2285 	bool dismantle;
2286 
2287 	enum {
2288 		RTNL_LINK_INITIALIZED,
2289 		RTNL_LINK_INITIALIZING,
2290 	} rtnl_link_state:16;
2291 
2292 	bool needs_free_netdev;
2293 	void (*priv_destructor)(struct net_device *dev);
2294 
2295 #ifdef CONFIG_NETPOLL
2296 	struct netpoll_info __rcu	*npinfo;
2297 #endif
2298 
2299 	possible_net_t			nd_net;
2300 
2301 	/* mid-layer private */
2302 	void				*ml_priv;
2303 	enum netdev_ml_priv_type	ml_priv_type;
2304 
2305 	union {
2306 		struct pcpu_lstats __percpu		*lstats;
2307 		struct pcpu_sw_netstats __percpu	*tstats;
2308 		struct pcpu_dstats __percpu		*dstats;
2309 	};
2310 
2311 #if IS_ENABLED(CONFIG_GARP)
2312 	struct garp_port __rcu	*garp_port;
2313 #endif
2314 #if IS_ENABLED(CONFIG_MRP)
2315 	struct mrp_port __rcu	*mrp_port;
2316 #endif
2317 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2318 	struct dm_hw_stat_delta __rcu *dm_private;
2319 #endif
2320 	struct device		dev;
2321 	const struct attribute_group *sysfs_groups[4];
2322 	const struct attribute_group *sysfs_rx_queue_group;
2323 
2324 	const struct rtnl_link_ops *rtnl_link_ops;
2325 
2326 	/* for setting kernel sock attribute on TCP connection setup */
2327 #define GSO_MAX_SEGS		65535u
2328 #define GSO_LEGACY_MAX_SIZE	65536u
2329 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2330  * and shinfo->gso_segs is a 16bit field.
2331  */
2332 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2333 
2334 	unsigned int		gso_max_size;
2335 #define TSO_LEGACY_MAX_SIZE	65536
2336 #define TSO_MAX_SIZE		UINT_MAX
2337 	unsigned int		tso_max_size;
2338 	u16			gso_max_segs;
2339 #define TSO_MAX_SEGS		U16_MAX
2340 	u16			tso_max_segs;
2341 	unsigned int		gso_ipv4_max_size;
2342 
2343 #ifdef CONFIG_DCB
2344 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2345 #endif
2346 	s16			num_tc;
2347 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2348 	u8			prio_tc_map[TC_BITMASK + 1];
2349 
2350 #if IS_ENABLED(CONFIG_FCOE)
2351 	unsigned int		fcoe_ddp_xid;
2352 #endif
2353 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2354 	struct netprio_map __rcu *priomap;
2355 #endif
2356 	struct phy_device	*phydev;
2357 	struct sfp_bus		*sfp_bus;
2358 	struct lock_class_key	*qdisc_tx_busylock;
2359 	bool			proto_down;
2360 	unsigned		wol_enabled:1;
2361 	unsigned		threaded:1;
2362 
2363 	struct list_head	net_notifier_list;
2364 
2365 #if IS_ENABLED(CONFIG_MACSEC)
2366 	/* MACsec management functions */
2367 	const struct macsec_ops *macsec_ops;
2368 #endif
2369 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2370 	struct udp_tunnel_nic	*udp_tunnel_nic;
2371 
2372 	/* protected by rtnl_lock */
2373 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2374 
2375 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2376 	netdevice_tracker	linkwatch_dev_tracker;
2377 	netdevice_tracker	watchdog_dev_tracker;
2378 	netdevice_tracker	dev_registered_tracker;
2379 	struct rtnl_hw_stats64	*offload_xstats_l3;
2380 
2381 	struct devlink_port	*devlink_port;
2382 };
2383 #define to_net_dev(d) container_of(d, struct net_device, dev)
2384 
2385 /*
2386  * Driver should use this to assign devlink port instance to a netdevice
2387  * before it registers the netdevice. Therefore devlink_port is static
2388  * during the netdev lifetime after it is registered.
2389  */
2390 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2391 ({								\
2392 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2393 	((dev)->devlink_port = (port));				\
2394 })
2395 
2396 static inline bool netif_elide_gro(const struct net_device *dev)
2397 {
2398 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2399 		return true;
2400 	return false;
2401 }
2402 
2403 #define	NETDEV_ALIGN		32
2404 
2405 static inline
2406 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2407 {
2408 	return dev->prio_tc_map[prio & TC_BITMASK];
2409 }
2410 
2411 static inline
2412 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2413 {
2414 	if (tc >= dev->num_tc)
2415 		return -EINVAL;
2416 
2417 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2418 	return 0;
2419 }
2420 
2421 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2422 void netdev_reset_tc(struct net_device *dev);
2423 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2424 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2425 
2426 static inline
2427 int netdev_get_num_tc(struct net_device *dev)
2428 {
2429 	return dev->num_tc;
2430 }
2431 
2432 static inline void net_prefetch(void *p)
2433 {
2434 	prefetch(p);
2435 #if L1_CACHE_BYTES < 128
2436 	prefetch((u8 *)p + L1_CACHE_BYTES);
2437 #endif
2438 }
2439 
2440 static inline void net_prefetchw(void *p)
2441 {
2442 	prefetchw(p);
2443 #if L1_CACHE_BYTES < 128
2444 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2445 #endif
2446 }
2447 
2448 void netdev_unbind_sb_channel(struct net_device *dev,
2449 			      struct net_device *sb_dev);
2450 int netdev_bind_sb_channel_queue(struct net_device *dev,
2451 				 struct net_device *sb_dev,
2452 				 u8 tc, u16 count, u16 offset);
2453 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2454 static inline int netdev_get_sb_channel(struct net_device *dev)
2455 {
2456 	return max_t(int, -dev->num_tc, 0);
2457 }
2458 
2459 static inline
2460 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2461 					 unsigned int index)
2462 {
2463 	return &dev->_tx[index];
2464 }
2465 
2466 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2467 						    const struct sk_buff *skb)
2468 {
2469 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2470 }
2471 
2472 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2473 					    void (*f)(struct net_device *,
2474 						      struct netdev_queue *,
2475 						      void *),
2476 					    void *arg)
2477 {
2478 	unsigned int i;
2479 
2480 	for (i = 0; i < dev->num_tx_queues; i++)
2481 		f(dev, &dev->_tx[i], arg);
2482 }
2483 
2484 #define netdev_lockdep_set_classes(dev)				\
2485 {								\
2486 	static struct lock_class_key qdisc_tx_busylock_key;	\
2487 	static struct lock_class_key qdisc_xmit_lock_key;	\
2488 	static struct lock_class_key dev_addr_list_lock_key;	\
2489 	unsigned int i;						\
2490 								\
2491 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2492 	lockdep_set_class(&(dev)->addr_list_lock,		\
2493 			  &dev_addr_list_lock_key);		\
2494 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2495 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2496 				  &qdisc_xmit_lock_key);	\
2497 }
2498 
2499 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2500 		     struct net_device *sb_dev);
2501 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2502 					 struct sk_buff *skb,
2503 					 struct net_device *sb_dev);
2504 
2505 /* returns the headroom that the master device needs to take in account
2506  * when forwarding to this dev
2507  */
2508 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2509 {
2510 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2511 }
2512 
2513 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2514 {
2515 	if (dev->netdev_ops->ndo_set_rx_headroom)
2516 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2517 }
2518 
2519 /* set the device rx headroom to the dev's default */
2520 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2521 {
2522 	netdev_set_rx_headroom(dev, -1);
2523 }
2524 
2525 static inline void *netdev_get_ml_priv(struct net_device *dev,
2526 				       enum netdev_ml_priv_type type)
2527 {
2528 	if (dev->ml_priv_type != type)
2529 		return NULL;
2530 
2531 	return dev->ml_priv;
2532 }
2533 
2534 static inline void netdev_set_ml_priv(struct net_device *dev,
2535 				      void *ml_priv,
2536 				      enum netdev_ml_priv_type type)
2537 {
2538 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2539 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2540 	     dev->ml_priv_type, type);
2541 	WARN(!dev->ml_priv_type && dev->ml_priv,
2542 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2543 
2544 	dev->ml_priv = ml_priv;
2545 	dev->ml_priv_type = type;
2546 }
2547 
2548 /*
2549  * Net namespace inlines
2550  */
2551 static inline
2552 struct net *dev_net(const struct net_device *dev)
2553 {
2554 	return read_pnet(&dev->nd_net);
2555 }
2556 
2557 static inline
2558 void dev_net_set(struct net_device *dev, struct net *net)
2559 {
2560 	write_pnet(&dev->nd_net, net);
2561 }
2562 
2563 /**
2564  *	netdev_priv - access network device private data
2565  *	@dev: network device
2566  *
2567  * Get network device private data
2568  */
2569 static inline void *netdev_priv(const struct net_device *dev)
2570 {
2571 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2572 }
2573 
2574 /* Set the sysfs physical device reference for the network logical device
2575  * if set prior to registration will cause a symlink during initialization.
2576  */
2577 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2578 
2579 /* Set the sysfs device type for the network logical device to allow
2580  * fine-grained identification of different network device types. For
2581  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2582  */
2583 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2584 
2585 /* Default NAPI poll() weight
2586  * Device drivers are strongly advised to not use bigger value
2587  */
2588 #define NAPI_POLL_WEIGHT 64
2589 
2590 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2591 			   int (*poll)(struct napi_struct *, int), int weight);
2592 
2593 /**
2594  * netif_napi_add() - initialize a NAPI context
2595  * @dev:  network device
2596  * @napi: NAPI context
2597  * @poll: polling function
2598  *
2599  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2600  * *any* of the other NAPI-related functions.
2601  */
2602 static inline void
2603 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2604 	       int (*poll)(struct napi_struct *, int))
2605 {
2606 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2607 }
2608 
2609 static inline void
2610 netif_napi_add_tx_weight(struct net_device *dev,
2611 			 struct napi_struct *napi,
2612 			 int (*poll)(struct napi_struct *, int),
2613 			 int weight)
2614 {
2615 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2616 	netif_napi_add_weight(dev, napi, poll, weight);
2617 }
2618 
2619 /**
2620  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2621  * @dev:  network device
2622  * @napi: NAPI context
2623  * @poll: polling function
2624  *
2625  * This variant of netif_napi_add() should be used from drivers using NAPI
2626  * to exclusively poll a TX queue.
2627  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2628  */
2629 static inline void netif_napi_add_tx(struct net_device *dev,
2630 				     struct napi_struct *napi,
2631 				     int (*poll)(struct napi_struct *, int))
2632 {
2633 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2634 }
2635 
2636 /**
2637  *  __netif_napi_del - remove a NAPI context
2638  *  @napi: NAPI context
2639  *
2640  * Warning: caller must observe RCU grace period before freeing memory
2641  * containing @napi. Drivers might want to call this helper to combine
2642  * all the needed RCU grace periods into a single one.
2643  */
2644 void __netif_napi_del(struct napi_struct *napi);
2645 
2646 /**
2647  *  netif_napi_del - remove a NAPI context
2648  *  @napi: NAPI context
2649  *
2650  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2651  */
2652 static inline void netif_napi_del(struct napi_struct *napi)
2653 {
2654 	__netif_napi_del(napi);
2655 	synchronize_net();
2656 }
2657 
2658 struct packet_type {
2659 	__be16			type;	/* This is really htons(ether_type). */
2660 	bool			ignore_outgoing;
2661 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2662 	netdevice_tracker	dev_tracker;
2663 	int			(*func) (struct sk_buff *,
2664 					 struct net_device *,
2665 					 struct packet_type *,
2666 					 struct net_device *);
2667 	void			(*list_func) (struct list_head *,
2668 					      struct packet_type *,
2669 					      struct net_device *);
2670 	bool			(*id_match)(struct packet_type *ptype,
2671 					    struct sock *sk);
2672 	struct net		*af_packet_net;
2673 	void			*af_packet_priv;
2674 	struct list_head	list;
2675 };
2676 
2677 struct offload_callbacks {
2678 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2679 						netdev_features_t features);
2680 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2681 						struct sk_buff *skb);
2682 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2683 };
2684 
2685 struct packet_offload {
2686 	__be16			 type;	/* This is really htons(ether_type). */
2687 	u16			 priority;
2688 	struct offload_callbacks callbacks;
2689 	struct list_head	 list;
2690 };
2691 
2692 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2693 struct pcpu_sw_netstats {
2694 	u64_stats_t		rx_packets;
2695 	u64_stats_t		rx_bytes;
2696 	u64_stats_t		tx_packets;
2697 	u64_stats_t		tx_bytes;
2698 	struct u64_stats_sync   syncp;
2699 } __aligned(4 * sizeof(u64));
2700 
2701 struct pcpu_lstats {
2702 	u64_stats_t packets;
2703 	u64_stats_t bytes;
2704 	struct u64_stats_sync syncp;
2705 } __aligned(2 * sizeof(u64));
2706 
2707 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2708 
2709 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2710 {
2711 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2712 
2713 	u64_stats_update_begin(&tstats->syncp);
2714 	u64_stats_add(&tstats->rx_bytes, len);
2715 	u64_stats_inc(&tstats->rx_packets);
2716 	u64_stats_update_end(&tstats->syncp);
2717 }
2718 
2719 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2720 					  unsigned int packets,
2721 					  unsigned int len)
2722 {
2723 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2724 
2725 	u64_stats_update_begin(&tstats->syncp);
2726 	u64_stats_add(&tstats->tx_bytes, len);
2727 	u64_stats_add(&tstats->tx_packets, packets);
2728 	u64_stats_update_end(&tstats->syncp);
2729 }
2730 
2731 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2732 {
2733 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2734 
2735 	u64_stats_update_begin(&lstats->syncp);
2736 	u64_stats_add(&lstats->bytes, len);
2737 	u64_stats_inc(&lstats->packets);
2738 	u64_stats_update_end(&lstats->syncp);
2739 }
2740 
2741 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2742 ({									\
2743 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2744 	if (pcpu_stats)	{						\
2745 		int __cpu;						\
2746 		for_each_possible_cpu(__cpu) {				\
2747 			typeof(type) *stat;				\
2748 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2749 			u64_stats_init(&stat->syncp);			\
2750 		}							\
2751 	}								\
2752 	pcpu_stats;							\
2753 })
2754 
2755 #define netdev_alloc_pcpu_stats(type)					\
2756 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2757 
2758 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2759 ({									\
2760 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2761 	if (pcpu_stats) {						\
2762 		int __cpu;						\
2763 		for_each_possible_cpu(__cpu) {				\
2764 			typeof(type) *stat;				\
2765 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2766 			u64_stats_init(&stat->syncp);			\
2767 		}							\
2768 	}								\
2769 	pcpu_stats;							\
2770 })
2771 
2772 enum netdev_lag_tx_type {
2773 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2774 	NETDEV_LAG_TX_TYPE_RANDOM,
2775 	NETDEV_LAG_TX_TYPE_BROADCAST,
2776 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2777 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2778 	NETDEV_LAG_TX_TYPE_HASH,
2779 };
2780 
2781 enum netdev_lag_hash {
2782 	NETDEV_LAG_HASH_NONE,
2783 	NETDEV_LAG_HASH_L2,
2784 	NETDEV_LAG_HASH_L34,
2785 	NETDEV_LAG_HASH_L23,
2786 	NETDEV_LAG_HASH_E23,
2787 	NETDEV_LAG_HASH_E34,
2788 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2789 	NETDEV_LAG_HASH_UNKNOWN,
2790 };
2791 
2792 struct netdev_lag_upper_info {
2793 	enum netdev_lag_tx_type tx_type;
2794 	enum netdev_lag_hash hash_type;
2795 };
2796 
2797 struct netdev_lag_lower_state_info {
2798 	u8 link_up : 1,
2799 	   tx_enabled : 1;
2800 };
2801 
2802 #include <linux/notifier.h>
2803 
2804 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2805  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2806  * adding new types.
2807  */
2808 enum netdev_cmd {
2809 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2810 	NETDEV_DOWN,
2811 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2812 				   detected a hardware crash and restarted
2813 				   - we can use this eg to kick tcp sessions
2814 				   once done */
2815 	NETDEV_CHANGE,		/* Notify device state change */
2816 	NETDEV_REGISTER,
2817 	NETDEV_UNREGISTER,
2818 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2819 	NETDEV_CHANGEADDR,	/* notify after the address change */
2820 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2821 	NETDEV_GOING_DOWN,
2822 	NETDEV_CHANGENAME,
2823 	NETDEV_FEAT_CHANGE,
2824 	NETDEV_BONDING_FAILOVER,
2825 	NETDEV_PRE_UP,
2826 	NETDEV_PRE_TYPE_CHANGE,
2827 	NETDEV_POST_TYPE_CHANGE,
2828 	NETDEV_POST_INIT,
2829 	NETDEV_PRE_UNINIT,
2830 	NETDEV_RELEASE,
2831 	NETDEV_NOTIFY_PEERS,
2832 	NETDEV_JOIN,
2833 	NETDEV_CHANGEUPPER,
2834 	NETDEV_RESEND_IGMP,
2835 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2836 	NETDEV_CHANGEINFODATA,
2837 	NETDEV_BONDING_INFO,
2838 	NETDEV_PRECHANGEUPPER,
2839 	NETDEV_CHANGELOWERSTATE,
2840 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2841 	NETDEV_UDP_TUNNEL_DROP_INFO,
2842 	NETDEV_CHANGE_TX_QUEUE_LEN,
2843 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2844 	NETDEV_CVLAN_FILTER_DROP_INFO,
2845 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2846 	NETDEV_SVLAN_FILTER_DROP_INFO,
2847 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2848 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2849 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2850 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2851 	NETDEV_XDP_FEAT_CHANGE,
2852 };
2853 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2854 
2855 int register_netdevice_notifier(struct notifier_block *nb);
2856 int unregister_netdevice_notifier(struct notifier_block *nb);
2857 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2858 int unregister_netdevice_notifier_net(struct net *net,
2859 				      struct notifier_block *nb);
2860 int register_netdevice_notifier_dev_net(struct net_device *dev,
2861 					struct notifier_block *nb,
2862 					struct netdev_net_notifier *nn);
2863 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2864 					  struct notifier_block *nb,
2865 					  struct netdev_net_notifier *nn);
2866 
2867 struct netdev_notifier_info {
2868 	struct net_device	*dev;
2869 	struct netlink_ext_ack	*extack;
2870 };
2871 
2872 struct netdev_notifier_info_ext {
2873 	struct netdev_notifier_info info; /* must be first */
2874 	union {
2875 		u32 mtu;
2876 	} ext;
2877 };
2878 
2879 struct netdev_notifier_change_info {
2880 	struct netdev_notifier_info info; /* must be first */
2881 	unsigned int flags_changed;
2882 };
2883 
2884 struct netdev_notifier_changeupper_info {
2885 	struct netdev_notifier_info info; /* must be first */
2886 	struct net_device *upper_dev; /* new upper dev */
2887 	bool master; /* is upper dev master */
2888 	bool linking; /* is the notification for link or unlink */
2889 	void *upper_info; /* upper dev info */
2890 };
2891 
2892 struct netdev_notifier_changelowerstate_info {
2893 	struct netdev_notifier_info info; /* must be first */
2894 	void *lower_state_info; /* is lower dev state */
2895 };
2896 
2897 struct netdev_notifier_pre_changeaddr_info {
2898 	struct netdev_notifier_info info; /* must be first */
2899 	const unsigned char *dev_addr;
2900 };
2901 
2902 enum netdev_offload_xstats_type {
2903 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2904 };
2905 
2906 struct netdev_notifier_offload_xstats_info {
2907 	struct netdev_notifier_info info; /* must be first */
2908 	enum netdev_offload_xstats_type type;
2909 
2910 	union {
2911 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2912 		struct netdev_notifier_offload_xstats_rd *report_delta;
2913 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2914 		struct netdev_notifier_offload_xstats_ru *report_used;
2915 	};
2916 };
2917 
2918 int netdev_offload_xstats_enable(struct net_device *dev,
2919 				 enum netdev_offload_xstats_type type,
2920 				 struct netlink_ext_ack *extack);
2921 int netdev_offload_xstats_disable(struct net_device *dev,
2922 				  enum netdev_offload_xstats_type type);
2923 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2924 				   enum netdev_offload_xstats_type type);
2925 int netdev_offload_xstats_get(struct net_device *dev,
2926 			      enum netdev_offload_xstats_type type,
2927 			      struct rtnl_hw_stats64 *stats, bool *used,
2928 			      struct netlink_ext_ack *extack);
2929 void
2930 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2931 				   const struct rtnl_hw_stats64 *stats);
2932 void
2933 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2934 void netdev_offload_xstats_push_delta(struct net_device *dev,
2935 				      enum netdev_offload_xstats_type type,
2936 				      const struct rtnl_hw_stats64 *stats);
2937 
2938 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2939 					     struct net_device *dev)
2940 {
2941 	info->dev = dev;
2942 	info->extack = NULL;
2943 }
2944 
2945 static inline struct net_device *
2946 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2947 {
2948 	return info->dev;
2949 }
2950 
2951 static inline struct netlink_ext_ack *
2952 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2953 {
2954 	return info->extack;
2955 }
2956 
2957 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2958 
2959 
2960 extern rwlock_t				dev_base_lock;		/* Device list lock */
2961 
2962 #define for_each_netdev(net, d)		\
2963 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2964 #define for_each_netdev_reverse(net, d)	\
2965 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2966 #define for_each_netdev_rcu(net, d)		\
2967 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2968 #define for_each_netdev_safe(net, d, n)	\
2969 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2970 #define for_each_netdev_continue(net, d)		\
2971 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2972 #define for_each_netdev_continue_reverse(net, d)		\
2973 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2974 						     dev_list)
2975 #define for_each_netdev_continue_rcu(net, d)		\
2976 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2977 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2978 		for_each_netdev_rcu(&init_net, slave)	\
2979 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2980 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2981 
2982 static inline struct net_device *next_net_device(struct net_device *dev)
2983 {
2984 	struct list_head *lh;
2985 	struct net *net;
2986 
2987 	net = dev_net(dev);
2988 	lh = dev->dev_list.next;
2989 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2990 }
2991 
2992 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2993 {
2994 	struct list_head *lh;
2995 	struct net *net;
2996 
2997 	net = dev_net(dev);
2998 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2999 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3000 }
3001 
3002 static inline struct net_device *first_net_device(struct net *net)
3003 {
3004 	return list_empty(&net->dev_base_head) ? NULL :
3005 		net_device_entry(net->dev_base_head.next);
3006 }
3007 
3008 static inline struct net_device *first_net_device_rcu(struct net *net)
3009 {
3010 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3011 
3012 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3013 }
3014 
3015 int netdev_boot_setup_check(struct net_device *dev);
3016 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3017 				       const char *hwaddr);
3018 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3019 void dev_add_pack(struct packet_type *pt);
3020 void dev_remove_pack(struct packet_type *pt);
3021 void __dev_remove_pack(struct packet_type *pt);
3022 void dev_add_offload(struct packet_offload *po);
3023 void dev_remove_offload(struct packet_offload *po);
3024 
3025 int dev_get_iflink(const struct net_device *dev);
3026 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3027 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3028 			  struct net_device_path_stack *stack);
3029 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3030 				      unsigned short mask);
3031 struct net_device *dev_get_by_name(struct net *net, const char *name);
3032 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3033 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3034 bool netdev_name_in_use(struct net *net, const char *name);
3035 int dev_alloc_name(struct net_device *dev, const char *name);
3036 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3037 void dev_close(struct net_device *dev);
3038 void dev_close_many(struct list_head *head, bool unlink);
3039 void dev_disable_lro(struct net_device *dev);
3040 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3041 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3042 		     struct net_device *sb_dev);
3043 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3044 		       struct net_device *sb_dev);
3045 
3046 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3047 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3048 
3049 static inline int dev_queue_xmit(struct sk_buff *skb)
3050 {
3051 	return __dev_queue_xmit(skb, NULL);
3052 }
3053 
3054 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3055 				       struct net_device *sb_dev)
3056 {
3057 	return __dev_queue_xmit(skb, sb_dev);
3058 }
3059 
3060 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3061 {
3062 	int ret;
3063 
3064 	ret = __dev_direct_xmit(skb, queue_id);
3065 	if (!dev_xmit_complete(ret))
3066 		kfree_skb(skb);
3067 	return ret;
3068 }
3069 
3070 int register_netdevice(struct net_device *dev);
3071 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3072 void unregister_netdevice_many(struct list_head *head);
3073 static inline void unregister_netdevice(struct net_device *dev)
3074 {
3075 	unregister_netdevice_queue(dev, NULL);
3076 }
3077 
3078 int netdev_refcnt_read(const struct net_device *dev);
3079 void free_netdev(struct net_device *dev);
3080 void netdev_freemem(struct net_device *dev);
3081 int init_dummy_netdev(struct net_device *dev);
3082 
3083 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3084 					 struct sk_buff *skb,
3085 					 bool all_slaves);
3086 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3087 					    struct sock *sk);
3088 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3089 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3090 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3091 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3092 int dev_restart(struct net_device *dev);
3093 
3094 
3095 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3096 				  unsigned short type,
3097 				  const void *daddr, const void *saddr,
3098 				  unsigned int len)
3099 {
3100 	if (!dev->header_ops || !dev->header_ops->create)
3101 		return 0;
3102 
3103 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3104 }
3105 
3106 static inline int dev_parse_header(const struct sk_buff *skb,
3107 				   unsigned char *haddr)
3108 {
3109 	const struct net_device *dev = skb->dev;
3110 
3111 	if (!dev->header_ops || !dev->header_ops->parse)
3112 		return 0;
3113 	return dev->header_ops->parse(skb, haddr);
3114 }
3115 
3116 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3117 {
3118 	const struct net_device *dev = skb->dev;
3119 
3120 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3121 		return 0;
3122 	return dev->header_ops->parse_protocol(skb);
3123 }
3124 
3125 /* ll_header must have at least hard_header_len allocated */
3126 static inline bool dev_validate_header(const struct net_device *dev,
3127 				       char *ll_header, int len)
3128 {
3129 	if (likely(len >= dev->hard_header_len))
3130 		return true;
3131 	if (len < dev->min_header_len)
3132 		return false;
3133 
3134 	if (capable(CAP_SYS_RAWIO)) {
3135 		memset(ll_header + len, 0, dev->hard_header_len - len);
3136 		return true;
3137 	}
3138 
3139 	if (dev->header_ops && dev->header_ops->validate)
3140 		return dev->header_ops->validate(ll_header, len);
3141 
3142 	return false;
3143 }
3144 
3145 static inline bool dev_has_header(const struct net_device *dev)
3146 {
3147 	return dev->header_ops && dev->header_ops->create;
3148 }
3149 
3150 /*
3151  * Incoming packets are placed on per-CPU queues
3152  */
3153 struct softnet_data {
3154 	struct list_head	poll_list;
3155 	struct sk_buff_head	process_queue;
3156 
3157 	/* stats */
3158 	unsigned int		processed;
3159 	unsigned int		time_squeeze;
3160 #ifdef CONFIG_RPS
3161 	struct softnet_data	*rps_ipi_list;
3162 #endif
3163 #ifdef CONFIG_NET_FLOW_LIMIT
3164 	struct sd_flow_limit __rcu *flow_limit;
3165 #endif
3166 	struct Qdisc		*output_queue;
3167 	struct Qdisc		**output_queue_tailp;
3168 	struct sk_buff		*completion_queue;
3169 #ifdef CONFIG_XFRM_OFFLOAD
3170 	struct sk_buff_head	xfrm_backlog;
3171 #endif
3172 	/* written and read only by owning cpu: */
3173 	struct {
3174 		u16 recursion;
3175 		u8  more;
3176 #ifdef CONFIG_NET_EGRESS
3177 		u8  skip_txqueue;
3178 #endif
3179 	} xmit;
3180 #ifdef CONFIG_RPS
3181 	/* input_queue_head should be written by cpu owning this struct,
3182 	 * and only read by other cpus. Worth using a cache line.
3183 	 */
3184 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3185 
3186 	/* Elements below can be accessed between CPUs for RPS/RFS */
3187 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3188 	struct softnet_data	*rps_ipi_next;
3189 	unsigned int		cpu;
3190 	unsigned int		input_queue_tail;
3191 #endif
3192 	unsigned int		received_rps;
3193 	unsigned int		dropped;
3194 	struct sk_buff_head	input_pkt_queue;
3195 	struct napi_struct	backlog;
3196 
3197 	/* Another possibly contended cache line */
3198 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3199 	int			defer_count;
3200 	int			defer_ipi_scheduled;
3201 	struct sk_buff		*defer_list;
3202 	call_single_data_t	defer_csd;
3203 };
3204 
3205 static inline void input_queue_head_incr(struct softnet_data *sd)
3206 {
3207 #ifdef CONFIG_RPS
3208 	sd->input_queue_head++;
3209 #endif
3210 }
3211 
3212 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3213 					      unsigned int *qtail)
3214 {
3215 #ifdef CONFIG_RPS
3216 	*qtail = ++sd->input_queue_tail;
3217 #endif
3218 }
3219 
3220 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3221 
3222 static inline int dev_recursion_level(void)
3223 {
3224 	return this_cpu_read(softnet_data.xmit.recursion);
3225 }
3226 
3227 #define XMIT_RECURSION_LIMIT	8
3228 static inline bool dev_xmit_recursion(void)
3229 {
3230 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3231 			XMIT_RECURSION_LIMIT);
3232 }
3233 
3234 static inline void dev_xmit_recursion_inc(void)
3235 {
3236 	__this_cpu_inc(softnet_data.xmit.recursion);
3237 }
3238 
3239 static inline void dev_xmit_recursion_dec(void)
3240 {
3241 	__this_cpu_dec(softnet_data.xmit.recursion);
3242 }
3243 
3244 void __netif_schedule(struct Qdisc *q);
3245 void netif_schedule_queue(struct netdev_queue *txq);
3246 
3247 static inline void netif_tx_schedule_all(struct net_device *dev)
3248 {
3249 	unsigned int i;
3250 
3251 	for (i = 0; i < dev->num_tx_queues; i++)
3252 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3253 }
3254 
3255 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3256 {
3257 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3258 }
3259 
3260 /**
3261  *	netif_start_queue - allow transmit
3262  *	@dev: network device
3263  *
3264  *	Allow upper layers to call the device hard_start_xmit routine.
3265  */
3266 static inline void netif_start_queue(struct net_device *dev)
3267 {
3268 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3269 }
3270 
3271 static inline void netif_tx_start_all_queues(struct net_device *dev)
3272 {
3273 	unsigned int i;
3274 
3275 	for (i = 0; i < dev->num_tx_queues; i++) {
3276 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3277 		netif_tx_start_queue(txq);
3278 	}
3279 }
3280 
3281 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3282 
3283 /**
3284  *	netif_wake_queue - restart transmit
3285  *	@dev: network device
3286  *
3287  *	Allow upper layers to call the device hard_start_xmit routine.
3288  *	Used for flow control when transmit resources are available.
3289  */
3290 static inline void netif_wake_queue(struct net_device *dev)
3291 {
3292 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3293 }
3294 
3295 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3296 {
3297 	unsigned int i;
3298 
3299 	for (i = 0; i < dev->num_tx_queues; i++) {
3300 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3301 		netif_tx_wake_queue(txq);
3302 	}
3303 }
3304 
3305 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3306 {
3307 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3308 }
3309 
3310 /**
3311  *	netif_stop_queue - stop transmitted packets
3312  *	@dev: network device
3313  *
3314  *	Stop upper layers calling the device hard_start_xmit routine.
3315  *	Used for flow control when transmit resources are unavailable.
3316  */
3317 static inline void netif_stop_queue(struct net_device *dev)
3318 {
3319 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3320 }
3321 
3322 void netif_tx_stop_all_queues(struct net_device *dev);
3323 
3324 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3325 {
3326 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3327 }
3328 
3329 /**
3330  *	netif_queue_stopped - test if transmit queue is flowblocked
3331  *	@dev: network device
3332  *
3333  *	Test if transmit queue on device is currently unable to send.
3334  */
3335 static inline bool netif_queue_stopped(const struct net_device *dev)
3336 {
3337 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3338 }
3339 
3340 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3341 {
3342 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3343 }
3344 
3345 static inline bool
3346 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3347 {
3348 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3349 }
3350 
3351 static inline bool
3352 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3353 {
3354 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3355 }
3356 
3357 /**
3358  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3359  *	@dev_queue: pointer to transmit queue
3360  *	@min_limit: dql minimum limit
3361  *
3362  * Forces xmit_more() to return true until the minimum threshold
3363  * defined by @min_limit is reached (or until the tx queue is
3364  * empty). Warning: to be use with care, misuse will impact the
3365  * latency.
3366  */
3367 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3368 						  unsigned int min_limit)
3369 {
3370 #ifdef CONFIG_BQL
3371 	dev_queue->dql.min_limit = min_limit;
3372 #endif
3373 }
3374 
3375 /**
3376  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3377  *	@dev_queue: pointer to transmit queue
3378  *
3379  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3380  * to give appropriate hint to the CPU.
3381  */
3382 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3383 {
3384 #ifdef CONFIG_BQL
3385 	prefetchw(&dev_queue->dql.num_queued);
3386 #endif
3387 }
3388 
3389 /**
3390  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3391  *	@dev_queue: pointer to transmit queue
3392  *
3393  * BQL enabled drivers might use this helper in their TX completion path,
3394  * to give appropriate hint to the CPU.
3395  */
3396 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3397 {
3398 #ifdef CONFIG_BQL
3399 	prefetchw(&dev_queue->dql.limit);
3400 #endif
3401 }
3402 
3403 /**
3404  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3405  *	@dev_queue: network device queue
3406  *	@bytes: number of bytes queued to the device queue
3407  *
3408  *	Report the number of bytes queued for sending/completion to the network
3409  *	device hardware queue. @bytes should be a good approximation and should
3410  *	exactly match netdev_completed_queue() @bytes.
3411  *	This is typically called once per packet, from ndo_start_xmit().
3412  */
3413 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3414 					unsigned int bytes)
3415 {
3416 #ifdef CONFIG_BQL
3417 	dql_queued(&dev_queue->dql, bytes);
3418 
3419 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3420 		return;
3421 
3422 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3423 
3424 	/*
3425 	 * The XOFF flag must be set before checking the dql_avail below,
3426 	 * because in netdev_tx_completed_queue we update the dql_completed
3427 	 * before checking the XOFF flag.
3428 	 */
3429 	smp_mb();
3430 
3431 	/* check again in case another CPU has just made room avail */
3432 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3433 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3434 #endif
3435 }
3436 
3437 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3438  * that they should not test BQL status themselves.
3439  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3440  * skb of a batch.
3441  * Returns true if the doorbell must be used to kick the NIC.
3442  */
3443 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3444 					  unsigned int bytes,
3445 					  bool xmit_more)
3446 {
3447 	if (xmit_more) {
3448 #ifdef CONFIG_BQL
3449 		dql_queued(&dev_queue->dql, bytes);
3450 #endif
3451 		return netif_tx_queue_stopped(dev_queue);
3452 	}
3453 	netdev_tx_sent_queue(dev_queue, bytes);
3454 	return true;
3455 }
3456 
3457 /**
3458  *	netdev_sent_queue - report the number of bytes queued to hardware
3459  *	@dev: network device
3460  *	@bytes: number of bytes queued to the hardware device queue
3461  *
3462  *	Report the number of bytes queued for sending/completion to the network
3463  *	device hardware queue#0. @bytes should be a good approximation and should
3464  *	exactly match netdev_completed_queue() @bytes.
3465  *	This is typically called once per packet, from ndo_start_xmit().
3466  */
3467 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3468 {
3469 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3470 }
3471 
3472 static inline bool __netdev_sent_queue(struct net_device *dev,
3473 				       unsigned int bytes,
3474 				       bool xmit_more)
3475 {
3476 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3477 				      xmit_more);
3478 }
3479 
3480 /**
3481  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3482  *	@dev_queue: network device queue
3483  *	@pkts: number of packets (currently ignored)
3484  *	@bytes: number of bytes dequeued from the device queue
3485  *
3486  *	Must be called at most once per TX completion round (and not per
3487  *	individual packet), so that BQL can adjust its limits appropriately.
3488  */
3489 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3490 					     unsigned int pkts, unsigned int bytes)
3491 {
3492 #ifdef CONFIG_BQL
3493 	if (unlikely(!bytes))
3494 		return;
3495 
3496 	dql_completed(&dev_queue->dql, bytes);
3497 
3498 	/*
3499 	 * Without the memory barrier there is a small possiblity that
3500 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3501 	 * be stopped forever
3502 	 */
3503 	smp_mb();
3504 
3505 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3506 		return;
3507 
3508 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3509 		netif_schedule_queue(dev_queue);
3510 #endif
3511 }
3512 
3513 /**
3514  * 	netdev_completed_queue - report bytes and packets completed by device
3515  * 	@dev: network device
3516  * 	@pkts: actual number of packets sent over the medium
3517  * 	@bytes: actual number of bytes sent over the medium
3518  *
3519  * 	Report the number of bytes and packets transmitted by the network device
3520  * 	hardware queue over the physical medium, @bytes must exactly match the
3521  * 	@bytes amount passed to netdev_sent_queue()
3522  */
3523 static inline void netdev_completed_queue(struct net_device *dev,
3524 					  unsigned int pkts, unsigned int bytes)
3525 {
3526 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3527 }
3528 
3529 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3530 {
3531 #ifdef CONFIG_BQL
3532 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3533 	dql_reset(&q->dql);
3534 #endif
3535 }
3536 
3537 /**
3538  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3539  * 	@dev_queue: network device
3540  *
3541  * 	Reset the bytes and packet count of a network device and clear the
3542  * 	software flow control OFF bit for this network device
3543  */
3544 static inline void netdev_reset_queue(struct net_device *dev_queue)
3545 {
3546 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3547 }
3548 
3549 /**
3550  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3551  * 	@dev: network device
3552  * 	@queue_index: given tx queue index
3553  *
3554  * 	Returns 0 if given tx queue index >= number of device tx queues,
3555  * 	otherwise returns the originally passed tx queue index.
3556  */
3557 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3558 {
3559 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3560 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3561 				     dev->name, queue_index,
3562 				     dev->real_num_tx_queues);
3563 		return 0;
3564 	}
3565 
3566 	return queue_index;
3567 }
3568 
3569 /**
3570  *	netif_running - test if up
3571  *	@dev: network device
3572  *
3573  *	Test if the device has been brought up.
3574  */
3575 static inline bool netif_running(const struct net_device *dev)
3576 {
3577 	return test_bit(__LINK_STATE_START, &dev->state);
3578 }
3579 
3580 /*
3581  * Routines to manage the subqueues on a device.  We only need start,
3582  * stop, and a check if it's stopped.  All other device management is
3583  * done at the overall netdevice level.
3584  * Also test the device if we're multiqueue.
3585  */
3586 
3587 /**
3588  *	netif_start_subqueue - allow sending packets on subqueue
3589  *	@dev: network device
3590  *	@queue_index: sub queue index
3591  *
3592  * Start individual transmit queue of a device with multiple transmit queues.
3593  */
3594 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3595 {
3596 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3597 
3598 	netif_tx_start_queue(txq);
3599 }
3600 
3601 /**
3602  *	netif_stop_subqueue - stop sending packets on subqueue
3603  *	@dev: network device
3604  *	@queue_index: sub queue index
3605  *
3606  * Stop individual transmit queue of a device with multiple transmit queues.
3607  */
3608 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3609 {
3610 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3611 	netif_tx_stop_queue(txq);
3612 }
3613 
3614 /**
3615  *	__netif_subqueue_stopped - test status of subqueue
3616  *	@dev: network device
3617  *	@queue_index: sub queue index
3618  *
3619  * Check individual transmit queue of a device with multiple transmit queues.
3620  */
3621 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3622 					    u16 queue_index)
3623 {
3624 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3625 
3626 	return netif_tx_queue_stopped(txq);
3627 }
3628 
3629 /**
3630  *	netif_subqueue_stopped - test status of subqueue
3631  *	@dev: network device
3632  *	@skb: sub queue buffer pointer
3633  *
3634  * Check individual transmit queue of a device with multiple transmit queues.
3635  */
3636 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3637 					  struct sk_buff *skb)
3638 {
3639 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3640 }
3641 
3642 /**
3643  *	netif_wake_subqueue - allow sending packets on subqueue
3644  *	@dev: network device
3645  *	@queue_index: sub queue index
3646  *
3647  * Resume individual transmit queue of a device with multiple transmit queues.
3648  */
3649 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3650 {
3651 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3652 
3653 	netif_tx_wake_queue(txq);
3654 }
3655 
3656 #ifdef CONFIG_XPS
3657 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3658 			u16 index);
3659 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3660 			  u16 index, enum xps_map_type type);
3661 
3662 /**
3663  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3664  *	@j: CPU/Rx queue index
3665  *	@mask: bitmask of all cpus/rx queues
3666  *	@nr_bits: number of bits in the bitmask
3667  *
3668  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3669  */
3670 static inline bool netif_attr_test_mask(unsigned long j,
3671 					const unsigned long *mask,
3672 					unsigned int nr_bits)
3673 {
3674 	cpu_max_bits_warn(j, nr_bits);
3675 	return test_bit(j, mask);
3676 }
3677 
3678 /**
3679  *	netif_attr_test_online - Test for online CPU/Rx queue
3680  *	@j: CPU/Rx queue index
3681  *	@online_mask: bitmask for CPUs/Rx queues that are online
3682  *	@nr_bits: number of bits in the bitmask
3683  *
3684  * Returns true if a CPU/Rx queue is online.
3685  */
3686 static inline bool netif_attr_test_online(unsigned long j,
3687 					  const unsigned long *online_mask,
3688 					  unsigned int nr_bits)
3689 {
3690 	cpu_max_bits_warn(j, nr_bits);
3691 
3692 	if (online_mask)
3693 		return test_bit(j, online_mask);
3694 
3695 	return (j < nr_bits);
3696 }
3697 
3698 /**
3699  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3700  *	@n: CPU/Rx queue index
3701  *	@srcp: the cpumask/Rx queue mask pointer
3702  *	@nr_bits: number of bits in the bitmask
3703  *
3704  * Returns >= nr_bits if no further CPUs/Rx queues set.
3705  */
3706 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3707 					       unsigned int nr_bits)
3708 {
3709 	/* -1 is a legal arg here. */
3710 	if (n != -1)
3711 		cpu_max_bits_warn(n, nr_bits);
3712 
3713 	if (srcp)
3714 		return find_next_bit(srcp, nr_bits, n + 1);
3715 
3716 	return n + 1;
3717 }
3718 
3719 /**
3720  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3721  *	@n: CPU/Rx queue index
3722  *	@src1p: the first CPUs/Rx queues mask pointer
3723  *	@src2p: the second CPUs/Rx queues mask pointer
3724  *	@nr_bits: number of bits in the bitmask
3725  *
3726  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3727  */
3728 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3729 					  const unsigned long *src2p,
3730 					  unsigned int nr_bits)
3731 {
3732 	/* -1 is a legal arg here. */
3733 	if (n != -1)
3734 		cpu_max_bits_warn(n, nr_bits);
3735 
3736 	if (src1p && src2p)
3737 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3738 	else if (src1p)
3739 		return find_next_bit(src1p, nr_bits, n + 1);
3740 	else if (src2p)
3741 		return find_next_bit(src2p, nr_bits, n + 1);
3742 
3743 	return n + 1;
3744 }
3745 #else
3746 static inline int netif_set_xps_queue(struct net_device *dev,
3747 				      const struct cpumask *mask,
3748 				      u16 index)
3749 {
3750 	return 0;
3751 }
3752 
3753 static inline int __netif_set_xps_queue(struct net_device *dev,
3754 					const unsigned long *mask,
3755 					u16 index, enum xps_map_type type)
3756 {
3757 	return 0;
3758 }
3759 #endif
3760 
3761 /**
3762  *	netif_is_multiqueue - test if device has multiple transmit queues
3763  *	@dev: network device
3764  *
3765  * Check if device has multiple transmit queues
3766  */
3767 static inline bool netif_is_multiqueue(const struct net_device *dev)
3768 {
3769 	return dev->num_tx_queues > 1;
3770 }
3771 
3772 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3773 
3774 #ifdef CONFIG_SYSFS
3775 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3776 #else
3777 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3778 						unsigned int rxqs)
3779 {
3780 	dev->real_num_rx_queues = rxqs;
3781 	return 0;
3782 }
3783 #endif
3784 int netif_set_real_num_queues(struct net_device *dev,
3785 			      unsigned int txq, unsigned int rxq);
3786 
3787 static inline struct netdev_rx_queue *
3788 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3789 {
3790 	return dev->_rx + rxq;
3791 }
3792 
3793 #ifdef CONFIG_SYSFS
3794 static inline unsigned int get_netdev_rx_queue_index(
3795 		struct netdev_rx_queue *queue)
3796 {
3797 	struct net_device *dev = queue->dev;
3798 	int index = queue - dev->_rx;
3799 
3800 	BUG_ON(index >= dev->num_rx_queues);
3801 	return index;
3802 }
3803 #endif
3804 
3805 int netif_get_num_default_rss_queues(void);
3806 
3807 enum skb_free_reason {
3808 	SKB_REASON_CONSUMED,
3809 	SKB_REASON_DROPPED,
3810 };
3811 
3812 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3813 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3814 
3815 /*
3816  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3817  * interrupt context or with hardware interrupts being disabled.
3818  * (in_hardirq() || irqs_disabled())
3819  *
3820  * We provide four helpers that can be used in following contexts :
3821  *
3822  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3823  *  replacing kfree_skb(skb)
3824  *
3825  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3826  *  Typically used in place of consume_skb(skb) in TX completion path
3827  *
3828  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3829  *  replacing kfree_skb(skb)
3830  *
3831  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3832  *  and consumed a packet. Used in place of consume_skb(skb)
3833  */
3834 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3835 {
3836 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3837 }
3838 
3839 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3840 {
3841 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3842 }
3843 
3844 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3845 {
3846 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3847 }
3848 
3849 static inline void dev_consume_skb_any(struct sk_buff *skb)
3850 {
3851 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3852 }
3853 
3854 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3855 			     struct bpf_prog *xdp_prog);
3856 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3857 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3858 int netif_rx(struct sk_buff *skb);
3859 int __netif_rx(struct sk_buff *skb);
3860 
3861 int netif_receive_skb(struct sk_buff *skb);
3862 int netif_receive_skb_core(struct sk_buff *skb);
3863 void netif_receive_skb_list_internal(struct list_head *head);
3864 void netif_receive_skb_list(struct list_head *head);
3865 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3866 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3867 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3868 void napi_get_frags_check(struct napi_struct *napi);
3869 gro_result_t napi_gro_frags(struct napi_struct *napi);
3870 struct packet_offload *gro_find_receive_by_type(__be16 type);
3871 struct packet_offload *gro_find_complete_by_type(__be16 type);
3872 
3873 static inline void napi_free_frags(struct napi_struct *napi)
3874 {
3875 	kfree_skb(napi->skb);
3876 	napi->skb = NULL;
3877 }
3878 
3879 bool netdev_is_rx_handler_busy(struct net_device *dev);
3880 int netdev_rx_handler_register(struct net_device *dev,
3881 			       rx_handler_func_t *rx_handler,
3882 			       void *rx_handler_data);
3883 void netdev_rx_handler_unregister(struct net_device *dev);
3884 
3885 bool dev_valid_name(const char *name);
3886 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3887 {
3888 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3889 }
3890 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3891 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3892 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3893 		void __user *data, bool *need_copyout);
3894 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3895 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3896 unsigned int dev_get_flags(const struct net_device *);
3897 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3898 		       struct netlink_ext_ack *extack);
3899 int dev_change_flags(struct net_device *dev, unsigned int flags,
3900 		     struct netlink_ext_ack *extack);
3901 int dev_set_alias(struct net_device *, const char *, size_t);
3902 int dev_get_alias(const struct net_device *, char *, size_t);
3903 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3904 			       const char *pat, int new_ifindex);
3905 static inline
3906 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3907 			     const char *pat)
3908 {
3909 	return __dev_change_net_namespace(dev, net, pat, 0);
3910 }
3911 int __dev_set_mtu(struct net_device *, int);
3912 int dev_set_mtu(struct net_device *, int);
3913 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3914 			      struct netlink_ext_ack *extack);
3915 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3916 			struct netlink_ext_ack *extack);
3917 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3918 			     struct netlink_ext_ack *extack);
3919 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3920 int dev_get_port_parent_id(struct net_device *dev,
3921 			   struct netdev_phys_item_id *ppid, bool recurse);
3922 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3923 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3924 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3925 				    struct netdev_queue *txq, int *ret);
3926 
3927 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3928 u8 dev_xdp_prog_count(struct net_device *dev);
3929 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3930 
3931 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3932 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3933 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3934 bool is_skb_forwardable(const struct net_device *dev,
3935 			const struct sk_buff *skb);
3936 
3937 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3938 						 const struct sk_buff *skb,
3939 						 const bool check_mtu)
3940 {
3941 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3942 	unsigned int len;
3943 
3944 	if (!(dev->flags & IFF_UP))
3945 		return false;
3946 
3947 	if (!check_mtu)
3948 		return true;
3949 
3950 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3951 	if (skb->len <= len)
3952 		return true;
3953 
3954 	/* if TSO is enabled, we don't care about the length as the packet
3955 	 * could be forwarded without being segmented before
3956 	 */
3957 	if (skb_is_gso(skb))
3958 		return true;
3959 
3960 	return false;
3961 }
3962 
3963 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3964 
3965 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3966 {
3967 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3968 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3969 
3970 	if (likely(p))
3971 		return p;
3972 
3973 	return netdev_core_stats_alloc(dev);
3974 }
3975 
3976 #define DEV_CORE_STATS_INC(FIELD)						\
3977 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
3978 {										\
3979 	struct net_device_core_stats __percpu *p;				\
3980 										\
3981 	p = dev_core_stats(dev);						\
3982 	if (p)									\
3983 		this_cpu_inc(p->FIELD);						\
3984 }
3985 DEV_CORE_STATS_INC(rx_dropped)
3986 DEV_CORE_STATS_INC(tx_dropped)
3987 DEV_CORE_STATS_INC(rx_nohandler)
3988 DEV_CORE_STATS_INC(rx_otherhost_dropped)
3989 
3990 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3991 					       struct sk_buff *skb,
3992 					       const bool check_mtu)
3993 {
3994 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3995 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3996 		dev_core_stats_rx_dropped_inc(dev);
3997 		kfree_skb(skb);
3998 		return NET_RX_DROP;
3999 	}
4000 
4001 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4002 	skb->priority = 0;
4003 	return 0;
4004 }
4005 
4006 bool dev_nit_active(struct net_device *dev);
4007 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4008 
4009 static inline void __dev_put(struct net_device *dev)
4010 {
4011 	if (dev) {
4012 #ifdef CONFIG_PCPU_DEV_REFCNT
4013 		this_cpu_dec(*dev->pcpu_refcnt);
4014 #else
4015 		refcount_dec(&dev->dev_refcnt);
4016 #endif
4017 	}
4018 }
4019 
4020 static inline void __dev_hold(struct net_device *dev)
4021 {
4022 	if (dev) {
4023 #ifdef CONFIG_PCPU_DEV_REFCNT
4024 		this_cpu_inc(*dev->pcpu_refcnt);
4025 #else
4026 		refcount_inc(&dev->dev_refcnt);
4027 #endif
4028 	}
4029 }
4030 
4031 static inline void __netdev_tracker_alloc(struct net_device *dev,
4032 					  netdevice_tracker *tracker,
4033 					  gfp_t gfp)
4034 {
4035 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4036 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4037 #endif
4038 }
4039 
4040 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4041  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4042  */
4043 static inline void netdev_tracker_alloc(struct net_device *dev,
4044 					netdevice_tracker *tracker, gfp_t gfp)
4045 {
4046 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4047 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4048 	__netdev_tracker_alloc(dev, tracker, gfp);
4049 #endif
4050 }
4051 
4052 static inline void netdev_tracker_free(struct net_device *dev,
4053 				       netdevice_tracker *tracker)
4054 {
4055 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4056 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4057 #endif
4058 }
4059 
4060 static inline void netdev_hold(struct net_device *dev,
4061 			       netdevice_tracker *tracker, gfp_t gfp)
4062 {
4063 	if (dev) {
4064 		__dev_hold(dev);
4065 		__netdev_tracker_alloc(dev, tracker, gfp);
4066 	}
4067 }
4068 
4069 static inline void netdev_put(struct net_device *dev,
4070 			      netdevice_tracker *tracker)
4071 {
4072 	if (dev) {
4073 		netdev_tracker_free(dev, tracker);
4074 		__dev_put(dev);
4075 	}
4076 }
4077 
4078 /**
4079  *	dev_hold - get reference to device
4080  *	@dev: network device
4081  *
4082  * Hold reference to device to keep it from being freed.
4083  * Try using netdev_hold() instead.
4084  */
4085 static inline void dev_hold(struct net_device *dev)
4086 {
4087 	netdev_hold(dev, NULL, GFP_ATOMIC);
4088 }
4089 
4090 /**
4091  *	dev_put - release reference to device
4092  *	@dev: network device
4093  *
4094  * Release reference to device to allow it to be freed.
4095  * Try using netdev_put() instead.
4096  */
4097 static inline void dev_put(struct net_device *dev)
4098 {
4099 	netdev_put(dev, NULL);
4100 }
4101 
4102 static inline void netdev_ref_replace(struct net_device *odev,
4103 				      struct net_device *ndev,
4104 				      netdevice_tracker *tracker,
4105 				      gfp_t gfp)
4106 {
4107 	if (odev)
4108 		netdev_tracker_free(odev, tracker);
4109 
4110 	__dev_hold(ndev);
4111 	__dev_put(odev);
4112 
4113 	if (ndev)
4114 		__netdev_tracker_alloc(ndev, tracker, gfp);
4115 }
4116 
4117 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4118  * and _off may be called from IRQ context, but it is caller
4119  * who is responsible for serialization of these calls.
4120  *
4121  * The name carrier is inappropriate, these functions should really be
4122  * called netif_lowerlayer_*() because they represent the state of any
4123  * kind of lower layer not just hardware media.
4124  */
4125 void linkwatch_fire_event(struct net_device *dev);
4126 
4127 /**
4128  *	netif_carrier_ok - test if carrier present
4129  *	@dev: network device
4130  *
4131  * Check if carrier is present on device
4132  */
4133 static inline bool netif_carrier_ok(const struct net_device *dev)
4134 {
4135 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4136 }
4137 
4138 unsigned long dev_trans_start(struct net_device *dev);
4139 
4140 void __netdev_watchdog_up(struct net_device *dev);
4141 
4142 void netif_carrier_on(struct net_device *dev);
4143 void netif_carrier_off(struct net_device *dev);
4144 void netif_carrier_event(struct net_device *dev);
4145 
4146 /**
4147  *	netif_dormant_on - mark device as dormant.
4148  *	@dev: network device
4149  *
4150  * Mark device as dormant (as per RFC2863).
4151  *
4152  * The dormant state indicates that the relevant interface is not
4153  * actually in a condition to pass packets (i.e., it is not 'up') but is
4154  * in a "pending" state, waiting for some external event.  For "on-
4155  * demand" interfaces, this new state identifies the situation where the
4156  * interface is waiting for events to place it in the up state.
4157  */
4158 static inline void netif_dormant_on(struct net_device *dev)
4159 {
4160 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4161 		linkwatch_fire_event(dev);
4162 }
4163 
4164 /**
4165  *	netif_dormant_off - set device as not dormant.
4166  *	@dev: network device
4167  *
4168  * Device is not in dormant state.
4169  */
4170 static inline void netif_dormant_off(struct net_device *dev)
4171 {
4172 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4173 		linkwatch_fire_event(dev);
4174 }
4175 
4176 /**
4177  *	netif_dormant - test if device is dormant
4178  *	@dev: network device
4179  *
4180  * Check if device is dormant.
4181  */
4182 static inline bool netif_dormant(const struct net_device *dev)
4183 {
4184 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4185 }
4186 
4187 
4188 /**
4189  *	netif_testing_on - mark device as under test.
4190  *	@dev: network device
4191  *
4192  * Mark device as under test (as per RFC2863).
4193  *
4194  * The testing state indicates that some test(s) must be performed on
4195  * the interface. After completion, of the test, the interface state
4196  * will change to up, dormant, or down, as appropriate.
4197  */
4198 static inline void netif_testing_on(struct net_device *dev)
4199 {
4200 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4201 		linkwatch_fire_event(dev);
4202 }
4203 
4204 /**
4205  *	netif_testing_off - set device as not under test.
4206  *	@dev: network device
4207  *
4208  * Device is not in testing state.
4209  */
4210 static inline void netif_testing_off(struct net_device *dev)
4211 {
4212 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4213 		linkwatch_fire_event(dev);
4214 }
4215 
4216 /**
4217  *	netif_testing - test if device is under test
4218  *	@dev: network device
4219  *
4220  * Check if device is under test
4221  */
4222 static inline bool netif_testing(const struct net_device *dev)
4223 {
4224 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4225 }
4226 
4227 
4228 /**
4229  *	netif_oper_up - test if device is operational
4230  *	@dev: network device
4231  *
4232  * Check if carrier is operational
4233  */
4234 static inline bool netif_oper_up(const struct net_device *dev)
4235 {
4236 	return (dev->operstate == IF_OPER_UP ||
4237 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4238 }
4239 
4240 /**
4241  *	netif_device_present - is device available or removed
4242  *	@dev: network device
4243  *
4244  * Check if device has not been removed from system.
4245  */
4246 static inline bool netif_device_present(const struct net_device *dev)
4247 {
4248 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4249 }
4250 
4251 void netif_device_detach(struct net_device *dev);
4252 
4253 void netif_device_attach(struct net_device *dev);
4254 
4255 /*
4256  * Network interface message level settings
4257  */
4258 
4259 enum {
4260 	NETIF_MSG_DRV_BIT,
4261 	NETIF_MSG_PROBE_BIT,
4262 	NETIF_MSG_LINK_BIT,
4263 	NETIF_MSG_TIMER_BIT,
4264 	NETIF_MSG_IFDOWN_BIT,
4265 	NETIF_MSG_IFUP_BIT,
4266 	NETIF_MSG_RX_ERR_BIT,
4267 	NETIF_MSG_TX_ERR_BIT,
4268 	NETIF_MSG_TX_QUEUED_BIT,
4269 	NETIF_MSG_INTR_BIT,
4270 	NETIF_MSG_TX_DONE_BIT,
4271 	NETIF_MSG_RX_STATUS_BIT,
4272 	NETIF_MSG_PKTDATA_BIT,
4273 	NETIF_MSG_HW_BIT,
4274 	NETIF_MSG_WOL_BIT,
4275 
4276 	/* When you add a new bit above, update netif_msg_class_names array
4277 	 * in net/ethtool/common.c
4278 	 */
4279 	NETIF_MSG_CLASS_COUNT,
4280 };
4281 /* Both ethtool_ops interface and internal driver implementation use u32 */
4282 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4283 
4284 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4285 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4286 
4287 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4288 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4289 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4290 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4291 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4292 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4293 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4294 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4295 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4296 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4297 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4298 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4299 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4300 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4301 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4302 
4303 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4304 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4305 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4306 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4307 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4308 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4309 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4310 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4311 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4312 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4313 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4314 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4315 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4316 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4317 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4318 
4319 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4320 {
4321 	/* use default */
4322 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4323 		return default_msg_enable_bits;
4324 	if (debug_value == 0)	/* no output */
4325 		return 0;
4326 	/* set low N bits */
4327 	return (1U << debug_value) - 1;
4328 }
4329 
4330 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4331 {
4332 	spin_lock(&txq->_xmit_lock);
4333 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4334 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4335 }
4336 
4337 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4338 {
4339 	__acquire(&txq->_xmit_lock);
4340 	return true;
4341 }
4342 
4343 static inline void __netif_tx_release(struct netdev_queue *txq)
4344 {
4345 	__release(&txq->_xmit_lock);
4346 }
4347 
4348 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4349 {
4350 	spin_lock_bh(&txq->_xmit_lock);
4351 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4352 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4353 }
4354 
4355 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4356 {
4357 	bool ok = spin_trylock(&txq->_xmit_lock);
4358 
4359 	if (likely(ok)) {
4360 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4361 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4362 	}
4363 	return ok;
4364 }
4365 
4366 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4367 {
4368 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4369 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4370 	spin_unlock(&txq->_xmit_lock);
4371 }
4372 
4373 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4374 {
4375 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4376 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4377 	spin_unlock_bh(&txq->_xmit_lock);
4378 }
4379 
4380 /*
4381  * txq->trans_start can be read locklessly from dev_watchdog()
4382  */
4383 static inline void txq_trans_update(struct netdev_queue *txq)
4384 {
4385 	if (txq->xmit_lock_owner != -1)
4386 		WRITE_ONCE(txq->trans_start, jiffies);
4387 }
4388 
4389 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4390 {
4391 	unsigned long now = jiffies;
4392 
4393 	if (READ_ONCE(txq->trans_start) != now)
4394 		WRITE_ONCE(txq->trans_start, now);
4395 }
4396 
4397 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4398 static inline void netif_trans_update(struct net_device *dev)
4399 {
4400 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4401 
4402 	txq_trans_cond_update(txq);
4403 }
4404 
4405 /**
4406  *	netif_tx_lock - grab network device transmit lock
4407  *	@dev: network device
4408  *
4409  * Get network device transmit lock
4410  */
4411 void netif_tx_lock(struct net_device *dev);
4412 
4413 static inline void netif_tx_lock_bh(struct net_device *dev)
4414 {
4415 	local_bh_disable();
4416 	netif_tx_lock(dev);
4417 }
4418 
4419 void netif_tx_unlock(struct net_device *dev);
4420 
4421 static inline void netif_tx_unlock_bh(struct net_device *dev)
4422 {
4423 	netif_tx_unlock(dev);
4424 	local_bh_enable();
4425 }
4426 
4427 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4428 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4429 		__netif_tx_lock(txq, cpu);		\
4430 	} else {					\
4431 		__netif_tx_acquire(txq);		\
4432 	}						\
4433 }
4434 
4435 #define HARD_TX_TRYLOCK(dev, txq)			\
4436 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4437 		__netif_tx_trylock(txq) :		\
4438 		__netif_tx_acquire(txq))
4439 
4440 #define HARD_TX_UNLOCK(dev, txq) {			\
4441 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4442 		__netif_tx_unlock(txq);			\
4443 	} else {					\
4444 		__netif_tx_release(txq);		\
4445 	}						\
4446 }
4447 
4448 static inline void netif_tx_disable(struct net_device *dev)
4449 {
4450 	unsigned int i;
4451 	int cpu;
4452 
4453 	local_bh_disable();
4454 	cpu = smp_processor_id();
4455 	spin_lock(&dev->tx_global_lock);
4456 	for (i = 0; i < dev->num_tx_queues; i++) {
4457 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4458 
4459 		__netif_tx_lock(txq, cpu);
4460 		netif_tx_stop_queue(txq);
4461 		__netif_tx_unlock(txq);
4462 	}
4463 	spin_unlock(&dev->tx_global_lock);
4464 	local_bh_enable();
4465 }
4466 
4467 static inline void netif_addr_lock(struct net_device *dev)
4468 {
4469 	unsigned char nest_level = 0;
4470 
4471 #ifdef CONFIG_LOCKDEP
4472 	nest_level = dev->nested_level;
4473 #endif
4474 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4475 }
4476 
4477 static inline void netif_addr_lock_bh(struct net_device *dev)
4478 {
4479 	unsigned char nest_level = 0;
4480 
4481 #ifdef CONFIG_LOCKDEP
4482 	nest_level = dev->nested_level;
4483 #endif
4484 	local_bh_disable();
4485 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4486 }
4487 
4488 static inline void netif_addr_unlock(struct net_device *dev)
4489 {
4490 	spin_unlock(&dev->addr_list_lock);
4491 }
4492 
4493 static inline void netif_addr_unlock_bh(struct net_device *dev)
4494 {
4495 	spin_unlock_bh(&dev->addr_list_lock);
4496 }
4497 
4498 /*
4499  * dev_addrs walker. Should be used only for read access. Call with
4500  * rcu_read_lock held.
4501  */
4502 #define for_each_dev_addr(dev, ha) \
4503 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4504 
4505 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4506 
4507 void ether_setup(struct net_device *dev);
4508 
4509 /* Support for loadable net-drivers */
4510 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4511 				    unsigned char name_assign_type,
4512 				    void (*setup)(struct net_device *),
4513 				    unsigned int txqs, unsigned int rxqs);
4514 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4515 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4516 
4517 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4518 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4519 			 count)
4520 
4521 int register_netdev(struct net_device *dev);
4522 void unregister_netdev(struct net_device *dev);
4523 
4524 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4525 
4526 /* General hardware address lists handling functions */
4527 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4528 		   struct netdev_hw_addr_list *from_list, int addr_len);
4529 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4530 		      struct netdev_hw_addr_list *from_list, int addr_len);
4531 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4532 		       struct net_device *dev,
4533 		       int (*sync)(struct net_device *, const unsigned char *),
4534 		       int (*unsync)(struct net_device *,
4535 				     const unsigned char *));
4536 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4537 			   struct net_device *dev,
4538 			   int (*sync)(struct net_device *,
4539 				       const unsigned char *, int),
4540 			   int (*unsync)(struct net_device *,
4541 					 const unsigned char *, int));
4542 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4543 			      struct net_device *dev,
4544 			      int (*unsync)(struct net_device *,
4545 					    const unsigned char *, int));
4546 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4547 			  struct net_device *dev,
4548 			  int (*unsync)(struct net_device *,
4549 					const unsigned char *));
4550 void __hw_addr_init(struct netdev_hw_addr_list *list);
4551 
4552 /* Functions used for device addresses handling */
4553 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4554 		  const void *addr, size_t len);
4555 
4556 static inline void
4557 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4558 {
4559 	dev_addr_mod(dev, 0, addr, len);
4560 }
4561 
4562 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4563 {
4564 	__dev_addr_set(dev, addr, dev->addr_len);
4565 }
4566 
4567 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4568 		 unsigned char addr_type);
4569 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4570 		 unsigned char addr_type);
4571 
4572 /* Functions used for unicast addresses handling */
4573 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4574 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4575 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4576 int dev_uc_sync(struct net_device *to, struct net_device *from);
4577 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4578 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4579 void dev_uc_flush(struct net_device *dev);
4580 void dev_uc_init(struct net_device *dev);
4581 
4582 /**
4583  *  __dev_uc_sync - Synchonize device's unicast list
4584  *  @dev:  device to sync
4585  *  @sync: function to call if address should be added
4586  *  @unsync: function to call if address should be removed
4587  *
4588  *  Add newly added addresses to the interface, and release
4589  *  addresses that have been deleted.
4590  */
4591 static inline int __dev_uc_sync(struct net_device *dev,
4592 				int (*sync)(struct net_device *,
4593 					    const unsigned char *),
4594 				int (*unsync)(struct net_device *,
4595 					      const unsigned char *))
4596 {
4597 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4598 }
4599 
4600 /**
4601  *  __dev_uc_unsync - Remove synchronized addresses from device
4602  *  @dev:  device to sync
4603  *  @unsync: function to call if address should be removed
4604  *
4605  *  Remove all addresses that were added to the device by dev_uc_sync().
4606  */
4607 static inline void __dev_uc_unsync(struct net_device *dev,
4608 				   int (*unsync)(struct net_device *,
4609 						 const unsigned char *))
4610 {
4611 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4612 }
4613 
4614 /* Functions used for multicast addresses handling */
4615 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4616 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4617 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4618 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4619 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4620 int dev_mc_sync(struct net_device *to, struct net_device *from);
4621 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4622 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4623 void dev_mc_flush(struct net_device *dev);
4624 void dev_mc_init(struct net_device *dev);
4625 
4626 /**
4627  *  __dev_mc_sync - Synchonize device's multicast list
4628  *  @dev:  device to sync
4629  *  @sync: function to call if address should be added
4630  *  @unsync: function to call if address should be removed
4631  *
4632  *  Add newly added addresses to the interface, and release
4633  *  addresses that have been deleted.
4634  */
4635 static inline int __dev_mc_sync(struct net_device *dev,
4636 				int (*sync)(struct net_device *,
4637 					    const unsigned char *),
4638 				int (*unsync)(struct net_device *,
4639 					      const unsigned char *))
4640 {
4641 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4642 }
4643 
4644 /**
4645  *  __dev_mc_unsync - Remove synchronized addresses from device
4646  *  @dev:  device to sync
4647  *  @unsync: function to call if address should be removed
4648  *
4649  *  Remove all addresses that were added to the device by dev_mc_sync().
4650  */
4651 static inline void __dev_mc_unsync(struct net_device *dev,
4652 				   int (*unsync)(struct net_device *,
4653 						 const unsigned char *))
4654 {
4655 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4656 }
4657 
4658 /* Functions used for secondary unicast and multicast support */
4659 void dev_set_rx_mode(struct net_device *dev);
4660 int dev_set_promiscuity(struct net_device *dev, int inc);
4661 int dev_set_allmulti(struct net_device *dev, int inc);
4662 void netdev_state_change(struct net_device *dev);
4663 void __netdev_notify_peers(struct net_device *dev);
4664 void netdev_notify_peers(struct net_device *dev);
4665 void netdev_features_change(struct net_device *dev);
4666 /* Load a device via the kmod */
4667 void dev_load(struct net *net, const char *name);
4668 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4669 					struct rtnl_link_stats64 *storage);
4670 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4671 			     const struct net_device_stats *netdev_stats);
4672 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4673 			   const struct pcpu_sw_netstats __percpu *netstats);
4674 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4675 
4676 extern int		netdev_max_backlog;
4677 extern int		dev_rx_weight;
4678 extern int		dev_tx_weight;
4679 extern int		gro_normal_batch;
4680 
4681 enum {
4682 	NESTED_SYNC_IMM_BIT,
4683 	NESTED_SYNC_TODO_BIT,
4684 };
4685 
4686 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4687 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4688 
4689 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4690 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4691 
4692 struct netdev_nested_priv {
4693 	unsigned char flags;
4694 	void *data;
4695 };
4696 
4697 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4698 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4699 						     struct list_head **iter);
4700 
4701 /* iterate through upper list, must be called under RCU read lock */
4702 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4703 	for (iter = &(dev)->adj_list.upper, \
4704 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4705 	     updev; \
4706 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4707 
4708 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4709 				  int (*fn)(struct net_device *upper_dev,
4710 					    struct netdev_nested_priv *priv),
4711 				  struct netdev_nested_priv *priv);
4712 
4713 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4714 				  struct net_device *upper_dev);
4715 
4716 bool netdev_has_any_upper_dev(struct net_device *dev);
4717 
4718 void *netdev_lower_get_next_private(struct net_device *dev,
4719 				    struct list_head **iter);
4720 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4721 					struct list_head **iter);
4722 
4723 #define netdev_for_each_lower_private(dev, priv, iter) \
4724 	for (iter = (dev)->adj_list.lower.next, \
4725 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4726 	     priv; \
4727 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4728 
4729 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4730 	for (iter = &(dev)->adj_list.lower, \
4731 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4732 	     priv; \
4733 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4734 
4735 void *netdev_lower_get_next(struct net_device *dev,
4736 				struct list_head **iter);
4737 
4738 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4739 	for (iter = (dev)->adj_list.lower.next, \
4740 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4741 	     ldev; \
4742 	     ldev = netdev_lower_get_next(dev, &(iter)))
4743 
4744 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4745 					     struct list_head **iter);
4746 int netdev_walk_all_lower_dev(struct net_device *dev,
4747 			      int (*fn)(struct net_device *lower_dev,
4748 					struct netdev_nested_priv *priv),
4749 			      struct netdev_nested_priv *priv);
4750 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4751 				  int (*fn)(struct net_device *lower_dev,
4752 					    struct netdev_nested_priv *priv),
4753 				  struct netdev_nested_priv *priv);
4754 
4755 void *netdev_adjacent_get_private(struct list_head *adj_list);
4756 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4757 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4758 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4759 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4760 			  struct netlink_ext_ack *extack);
4761 int netdev_master_upper_dev_link(struct net_device *dev,
4762 				 struct net_device *upper_dev,
4763 				 void *upper_priv, void *upper_info,
4764 				 struct netlink_ext_ack *extack);
4765 void netdev_upper_dev_unlink(struct net_device *dev,
4766 			     struct net_device *upper_dev);
4767 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4768 				   struct net_device *new_dev,
4769 				   struct net_device *dev,
4770 				   struct netlink_ext_ack *extack);
4771 void netdev_adjacent_change_commit(struct net_device *old_dev,
4772 				   struct net_device *new_dev,
4773 				   struct net_device *dev);
4774 void netdev_adjacent_change_abort(struct net_device *old_dev,
4775 				  struct net_device *new_dev,
4776 				  struct net_device *dev);
4777 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4778 void *netdev_lower_dev_get_private(struct net_device *dev,
4779 				   struct net_device *lower_dev);
4780 void netdev_lower_state_changed(struct net_device *lower_dev,
4781 				void *lower_state_info);
4782 
4783 /* RSS keys are 40 or 52 bytes long */
4784 #define NETDEV_RSS_KEY_LEN 52
4785 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4786 void netdev_rss_key_fill(void *buffer, size_t len);
4787 
4788 int skb_checksum_help(struct sk_buff *skb);
4789 int skb_crc32c_csum_help(struct sk_buff *skb);
4790 int skb_csum_hwoffload_help(struct sk_buff *skb,
4791 			    const netdev_features_t features);
4792 
4793 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4794 				  netdev_features_t features, bool tx_path);
4795 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4796 				    netdev_features_t features, __be16 type);
4797 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4798 				    netdev_features_t features);
4799 
4800 struct netdev_bonding_info {
4801 	ifslave	slave;
4802 	ifbond	master;
4803 };
4804 
4805 struct netdev_notifier_bonding_info {
4806 	struct netdev_notifier_info info; /* must be first */
4807 	struct netdev_bonding_info  bonding_info;
4808 };
4809 
4810 void netdev_bonding_info_change(struct net_device *dev,
4811 				struct netdev_bonding_info *bonding_info);
4812 
4813 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4814 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4815 #else
4816 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4817 				  const void *data)
4818 {
4819 }
4820 #endif
4821 
4822 static inline
4823 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4824 {
4825 	return __skb_gso_segment(skb, features, true);
4826 }
4827 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4828 
4829 static inline bool can_checksum_protocol(netdev_features_t features,
4830 					 __be16 protocol)
4831 {
4832 	if (protocol == htons(ETH_P_FCOE))
4833 		return !!(features & NETIF_F_FCOE_CRC);
4834 
4835 	/* Assume this is an IP checksum (not SCTP CRC) */
4836 
4837 	if (features & NETIF_F_HW_CSUM) {
4838 		/* Can checksum everything */
4839 		return true;
4840 	}
4841 
4842 	switch (protocol) {
4843 	case htons(ETH_P_IP):
4844 		return !!(features & NETIF_F_IP_CSUM);
4845 	case htons(ETH_P_IPV6):
4846 		return !!(features & NETIF_F_IPV6_CSUM);
4847 	default:
4848 		return false;
4849 	}
4850 }
4851 
4852 #ifdef CONFIG_BUG
4853 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4854 #else
4855 static inline void netdev_rx_csum_fault(struct net_device *dev,
4856 					struct sk_buff *skb)
4857 {
4858 }
4859 #endif
4860 /* rx skb timestamps */
4861 void net_enable_timestamp(void);
4862 void net_disable_timestamp(void);
4863 
4864 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4865 					const struct skb_shared_hwtstamps *hwtstamps,
4866 					bool cycles)
4867 {
4868 	const struct net_device_ops *ops = dev->netdev_ops;
4869 
4870 	if (ops->ndo_get_tstamp)
4871 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4872 
4873 	return hwtstamps->hwtstamp;
4874 }
4875 
4876 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4877 					      struct sk_buff *skb, struct net_device *dev,
4878 					      bool more)
4879 {
4880 	__this_cpu_write(softnet_data.xmit.more, more);
4881 	return ops->ndo_start_xmit(skb, dev);
4882 }
4883 
4884 static inline bool netdev_xmit_more(void)
4885 {
4886 	return __this_cpu_read(softnet_data.xmit.more);
4887 }
4888 
4889 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4890 					    struct netdev_queue *txq, bool more)
4891 {
4892 	const struct net_device_ops *ops = dev->netdev_ops;
4893 	netdev_tx_t rc;
4894 
4895 	rc = __netdev_start_xmit(ops, skb, dev, more);
4896 	if (rc == NETDEV_TX_OK)
4897 		txq_trans_update(txq);
4898 
4899 	return rc;
4900 }
4901 
4902 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4903 				const void *ns);
4904 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4905 				 const void *ns);
4906 
4907 extern const struct kobj_ns_type_operations net_ns_type_operations;
4908 
4909 const char *netdev_drivername(const struct net_device *dev);
4910 
4911 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4912 							  netdev_features_t f2)
4913 {
4914 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4915 		if (f1 & NETIF_F_HW_CSUM)
4916 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4917 		else
4918 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4919 	}
4920 
4921 	return f1 & f2;
4922 }
4923 
4924 static inline netdev_features_t netdev_get_wanted_features(
4925 	struct net_device *dev)
4926 {
4927 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4928 }
4929 netdev_features_t netdev_increment_features(netdev_features_t all,
4930 	netdev_features_t one, netdev_features_t mask);
4931 
4932 /* Allow TSO being used on stacked device :
4933  * Performing the GSO segmentation before last device
4934  * is a performance improvement.
4935  */
4936 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4937 							netdev_features_t mask)
4938 {
4939 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4940 }
4941 
4942 int __netdev_update_features(struct net_device *dev);
4943 void netdev_update_features(struct net_device *dev);
4944 void netdev_change_features(struct net_device *dev);
4945 
4946 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4947 					struct net_device *dev);
4948 
4949 netdev_features_t passthru_features_check(struct sk_buff *skb,
4950 					  struct net_device *dev,
4951 					  netdev_features_t features);
4952 netdev_features_t netif_skb_features(struct sk_buff *skb);
4953 
4954 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4955 {
4956 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4957 
4958 	/* check flags correspondence */
4959 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4960 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4961 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4962 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4963 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4964 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4965 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4966 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4967 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4968 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4969 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4970 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4971 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4972 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4973 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4974 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4975 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4976 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4977 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4978 
4979 	return (features & feature) == feature;
4980 }
4981 
4982 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4983 {
4984 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4985 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4986 }
4987 
4988 static inline bool netif_needs_gso(struct sk_buff *skb,
4989 				   netdev_features_t features)
4990 {
4991 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4992 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4993 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4994 }
4995 
4996 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
4997 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
4998 void netif_inherit_tso_max(struct net_device *to,
4999 			   const struct net_device *from);
5000 
5001 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
5002 					int pulled_hlen, u16 mac_offset,
5003 					int mac_len)
5004 {
5005 	skb->protocol = protocol;
5006 	skb->encapsulation = 1;
5007 	skb_push(skb, pulled_hlen);
5008 	skb_reset_transport_header(skb);
5009 	skb->mac_header = mac_offset;
5010 	skb->network_header = skb->mac_header + mac_len;
5011 	skb->mac_len = mac_len;
5012 }
5013 
5014 static inline bool netif_is_macsec(const struct net_device *dev)
5015 {
5016 	return dev->priv_flags & IFF_MACSEC;
5017 }
5018 
5019 static inline bool netif_is_macvlan(const struct net_device *dev)
5020 {
5021 	return dev->priv_flags & IFF_MACVLAN;
5022 }
5023 
5024 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5025 {
5026 	return dev->priv_flags & IFF_MACVLAN_PORT;
5027 }
5028 
5029 static inline bool netif_is_bond_master(const struct net_device *dev)
5030 {
5031 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5032 }
5033 
5034 static inline bool netif_is_bond_slave(const struct net_device *dev)
5035 {
5036 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5037 }
5038 
5039 static inline bool netif_supports_nofcs(struct net_device *dev)
5040 {
5041 	return dev->priv_flags & IFF_SUPP_NOFCS;
5042 }
5043 
5044 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5045 {
5046 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5047 }
5048 
5049 static inline bool netif_is_l3_master(const struct net_device *dev)
5050 {
5051 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5052 }
5053 
5054 static inline bool netif_is_l3_slave(const struct net_device *dev)
5055 {
5056 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5057 }
5058 
5059 static inline bool netif_is_bridge_master(const struct net_device *dev)
5060 {
5061 	return dev->priv_flags & IFF_EBRIDGE;
5062 }
5063 
5064 static inline bool netif_is_bridge_port(const struct net_device *dev)
5065 {
5066 	return dev->priv_flags & IFF_BRIDGE_PORT;
5067 }
5068 
5069 static inline bool netif_is_ovs_master(const struct net_device *dev)
5070 {
5071 	return dev->priv_flags & IFF_OPENVSWITCH;
5072 }
5073 
5074 static inline bool netif_is_ovs_port(const struct net_device *dev)
5075 {
5076 	return dev->priv_flags & IFF_OVS_DATAPATH;
5077 }
5078 
5079 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5080 {
5081 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5082 }
5083 
5084 static inline bool netif_is_team_master(const struct net_device *dev)
5085 {
5086 	return dev->priv_flags & IFF_TEAM;
5087 }
5088 
5089 static inline bool netif_is_team_port(const struct net_device *dev)
5090 {
5091 	return dev->priv_flags & IFF_TEAM_PORT;
5092 }
5093 
5094 static inline bool netif_is_lag_master(const struct net_device *dev)
5095 {
5096 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5097 }
5098 
5099 static inline bool netif_is_lag_port(const struct net_device *dev)
5100 {
5101 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5102 }
5103 
5104 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5105 {
5106 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5107 }
5108 
5109 static inline bool netif_is_failover(const struct net_device *dev)
5110 {
5111 	return dev->priv_flags & IFF_FAILOVER;
5112 }
5113 
5114 static inline bool netif_is_failover_slave(const struct net_device *dev)
5115 {
5116 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5117 }
5118 
5119 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5120 static inline void netif_keep_dst(struct net_device *dev)
5121 {
5122 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5123 }
5124 
5125 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5126 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5127 {
5128 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5129 	return netif_is_macsec(dev);
5130 }
5131 
5132 extern struct pernet_operations __net_initdata loopback_net_ops;
5133 
5134 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5135 
5136 /* netdev_printk helpers, similar to dev_printk */
5137 
5138 static inline const char *netdev_name(const struct net_device *dev)
5139 {
5140 	if (!dev->name[0] || strchr(dev->name, '%'))
5141 		return "(unnamed net_device)";
5142 	return dev->name;
5143 }
5144 
5145 static inline const char *netdev_reg_state(const struct net_device *dev)
5146 {
5147 	switch (dev->reg_state) {
5148 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5149 	case NETREG_REGISTERED: return "";
5150 	case NETREG_UNREGISTERING: return " (unregistering)";
5151 	case NETREG_UNREGISTERED: return " (unregistered)";
5152 	case NETREG_RELEASED: return " (released)";
5153 	case NETREG_DUMMY: return " (dummy)";
5154 	}
5155 
5156 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5157 	return " (unknown)";
5158 }
5159 
5160 #define MODULE_ALIAS_NETDEV(device) \
5161 	MODULE_ALIAS("netdev-" device)
5162 
5163 /*
5164  * netdev_WARN() acts like dev_printk(), but with the key difference
5165  * of using a WARN/WARN_ON to get the message out, including the
5166  * file/line information and a backtrace.
5167  */
5168 #define netdev_WARN(dev, format, args...)			\
5169 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5170 	     netdev_reg_state(dev), ##args)
5171 
5172 #define netdev_WARN_ONCE(dev, format, args...)				\
5173 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5174 		  netdev_reg_state(dev), ##args)
5175 
5176 /*
5177  *	The list of packet types we will receive (as opposed to discard)
5178  *	and the routines to invoke.
5179  *
5180  *	Why 16. Because with 16 the only overlap we get on a hash of the
5181  *	low nibble of the protocol value is RARP/SNAP/X.25.
5182  *
5183  *		0800	IP
5184  *		0001	802.3
5185  *		0002	AX.25
5186  *		0004	802.2
5187  *		8035	RARP
5188  *		0005	SNAP
5189  *		0805	X.25
5190  *		0806	ARP
5191  *		8137	IPX
5192  *		0009	Localtalk
5193  *		86DD	IPv6
5194  */
5195 #define PTYPE_HASH_SIZE	(16)
5196 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5197 
5198 extern struct list_head ptype_all __read_mostly;
5199 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5200 
5201 extern struct net_device *blackhole_netdev;
5202 
5203 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5204 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5205 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5206 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5207 
5208 #endif	/* _LINUX_NETDEVICE_H */
5209