1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <net/xdp.h> 44 45 #include <linux/netdev_features.h> 46 #include <linux/neighbour.h> 47 #include <uapi/linux/netdevice.h> 48 #include <uapi/linux/if_bonding.h> 49 #include <uapi/linux/pkt_cls.h> 50 #include <uapi/linux/netdev.h> 51 #include <linux/hashtable.h> 52 #include <linux/rbtree.h> 53 #include <net/net_trackers.h> 54 #include <net/net_debug.h> 55 56 struct netpoll_info; 57 struct device; 58 struct ethtool_ops; 59 struct phy_device; 60 struct dsa_port; 61 struct ip_tunnel_parm; 62 struct macsec_context; 63 struct macsec_ops; 64 struct netdev_name_node; 65 struct sd_flow_limit; 66 struct sfp_bus; 67 /* 802.11 specific */ 68 struct wireless_dev; 69 /* 802.15.4 specific */ 70 struct wpan_dev; 71 struct mpls_dev; 72 /* UDP Tunnel offloads */ 73 struct udp_tunnel_info; 74 struct udp_tunnel_nic_info; 75 struct udp_tunnel_nic; 76 struct bpf_prog; 77 struct xdp_buff; 78 struct xdp_md; 79 80 void synchronize_net(void); 81 void netdev_set_default_ethtool_ops(struct net_device *dev, 82 const struct ethtool_ops *ops); 83 void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 84 85 /* Backlog congestion levels */ 86 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 87 #define NET_RX_DROP 1 /* packet dropped */ 88 89 #define MAX_NEST_DEV 8 90 91 /* 92 * Transmit return codes: transmit return codes originate from three different 93 * namespaces: 94 * 95 * - qdisc return codes 96 * - driver transmit return codes 97 * - errno values 98 * 99 * Drivers are allowed to return any one of those in their hard_start_xmit() 100 * function. Real network devices commonly used with qdiscs should only return 101 * the driver transmit return codes though - when qdiscs are used, the actual 102 * transmission happens asynchronously, so the value is not propagated to 103 * higher layers. Virtual network devices transmit synchronously; in this case 104 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 105 * others are propagated to higher layers. 106 */ 107 108 /* qdisc ->enqueue() return codes. */ 109 #define NET_XMIT_SUCCESS 0x00 110 #define NET_XMIT_DROP 0x01 /* skb dropped */ 111 #define NET_XMIT_CN 0x02 /* congestion notification */ 112 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 113 114 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 115 * indicates that the device will soon be dropping packets, or already drops 116 * some packets of the same priority; prompting us to send less aggressively. */ 117 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 118 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 119 120 /* Driver transmit return codes */ 121 #define NETDEV_TX_MASK 0xf0 122 123 enum netdev_tx { 124 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 125 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 126 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 127 }; 128 typedef enum netdev_tx netdev_tx_t; 129 130 /* 131 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 132 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 133 */ 134 static inline bool dev_xmit_complete(int rc) 135 { 136 /* 137 * Positive cases with an skb consumed by a driver: 138 * - successful transmission (rc == NETDEV_TX_OK) 139 * - error while transmitting (rc < 0) 140 * - error while queueing to a different device (rc & NET_XMIT_MASK) 141 */ 142 if (likely(rc < NET_XMIT_MASK)) 143 return true; 144 145 return false; 146 } 147 148 /* 149 * Compute the worst-case header length according to the protocols 150 * used. 151 */ 152 153 #if defined(CONFIG_HYPERV_NET) 154 # define LL_MAX_HEADER 128 155 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 156 # if defined(CONFIG_MAC80211_MESH) 157 # define LL_MAX_HEADER 128 158 # else 159 # define LL_MAX_HEADER 96 160 # endif 161 #else 162 # define LL_MAX_HEADER 32 163 #endif 164 165 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 166 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 167 #define MAX_HEADER LL_MAX_HEADER 168 #else 169 #define MAX_HEADER (LL_MAX_HEADER + 48) 170 #endif 171 172 /* 173 * Old network device statistics. Fields are native words 174 * (unsigned long) so they can be read and written atomically. 175 */ 176 177 #define NET_DEV_STAT(FIELD) \ 178 union { \ 179 unsigned long FIELD; \ 180 atomic_long_t __##FIELD; \ 181 } 182 183 struct net_device_stats { 184 NET_DEV_STAT(rx_packets); 185 NET_DEV_STAT(tx_packets); 186 NET_DEV_STAT(rx_bytes); 187 NET_DEV_STAT(tx_bytes); 188 NET_DEV_STAT(rx_errors); 189 NET_DEV_STAT(tx_errors); 190 NET_DEV_STAT(rx_dropped); 191 NET_DEV_STAT(tx_dropped); 192 NET_DEV_STAT(multicast); 193 NET_DEV_STAT(collisions); 194 NET_DEV_STAT(rx_length_errors); 195 NET_DEV_STAT(rx_over_errors); 196 NET_DEV_STAT(rx_crc_errors); 197 NET_DEV_STAT(rx_frame_errors); 198 NET_DEV_STAT(rx_fifo_errors); 199 NET_DEV_STAT(rx_missed_errors); 200 NET_DEV_STAT(tx_aborted_errors); 201 NET_DEV_STAT(tx_carrier_errors); 202 NET_DEV_STAT(tx_fifo_errors); 203 NET_DEV_STAT(tx_heartbeat_errors); 204 NET_DEV_STAT(tx_window_errors); 205 NET_DEV_STAT(rx_compressed); 206 NET_DEV_STAT(tx_compressed); 207 }; 208 #undef NET_DEV_STAT 209 210 /* per-cpu stats, allocated on demand. 211 * Try to fit them in a single cache line, for dev_get_stats() sake. 212 */ 213 struct net_device_core_stats { 214 unsigned long rx_dropped; 215 unsigned long tx_dropped; 216 unsigned long rx_nohandler; 217 unsigned long rx_otherhost_dropped; 218 } __aligned(4 * sizeof(unsigned long)); 219 220 #include <linux/cache.h> 221 #include <linux/skbuff.h> 222 223 #ifdef CONFIG_RPS 224 #include <linux/static_key.h> 225 extern struct static_key_false rps_needed; 226 extern struct static_key_false rfs_needed; 227 #endif 228 229 struct neighbour; 230 struct neigh_parms; 231 struct sk_buff; 232 233 struct netdev_hw_addr { 234 struct list_head list; 235 struct rb_node node; 236 unsigned char addr[MAX_ADDR_LEN]; 237 unsigned char type; 238 #define NETDEV_HW_ADDR_T_LAN 1 239 #define NETDEV_HW_ADDR_T_SAN 2 240 #define NETDEV_HW_ADDR_T_UNICAST 3 241 #define NETDEV_HW_ADDR_T_MULTICAST 4 242 bool global_use; 243 int sync_cnt; 244 int refcount; 245 int synced; 246 struct rcu_head rcu_head; 247 }; 248 249 struct netdev_hw_addr_list { 250 struct list_head list; 251 int count; 252 253 /* Auxiliary tree for faster lookup on addition and deletion */ 254 struct rb_root tree; 255 }; 256 257 #define netdev_hw_addr_list_count(l) ((l)->count) 258 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 259 #define netdev_hw_addr_list_for_each(ha, l) \ 260 list_for_each_entry(ha, &(l)->list, list) 261 262 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 263 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 264 #define netdev_for_each_uc_addr(ha, dev) \ 265 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 266 #define netdev_for_each_synced_uc_addr(_ha, _dev) \ 267 netdev_for_each_uc_addr((_ha), (_dev)) \ 268 if ((_ha)->sync_cnt) 269 270 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 271 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 272 #define netdev_for_each_mc_addr(ha, dev) \ 273 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 274 #define netdev_for_each_synced_mc_addr(_ha, _dev) \ 275 netdev_for_each_mc_addr((_ha), (_dev)) \ 276 if ((_ha)->sync_cnt) 277 278 struct hh_cache { 279 unsigned int hh_len; 280 seqlock_t hh_lock; 281 282 /* cached hardware header; allow for machine alignment needs. */ 283 #define HH_DATA_MOD 16 284 #define HH_DATA_OFF(__len) \ 285 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 286 #define HH_DATA_ALIGN(__len) \ 287 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 288 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 289 }; 290 291 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 292 * Alternative is: 293 * dev->hard_header_len ? (dev->hard_header_len + 294 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 295 * 296 * We could use other alignment values, but we must maintain the 297 * relationship HH alignment <= LL alignment. 298 */ 299 #define LL_RESERVED_SPACE(dev) \ 300 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 301 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 302 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 303 304 struct header_ops { 305 int (*create) (struct sk_buff *skb, struct net_device *dev, 306 unsigned short type, const void *daddr, 307 const void *saddr, unsigned int len); 308 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 309 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 310 void (*cache_update)(struct hh_cache *hh, 311 const struct net_device *dev, 312 const unsigned char *haddr); 313 bool (*validate)(const char *ll_header, unsigned int len); 314 __be16 (*parse_protocol)(const struct sk_buff *skb); 315 }; 316 317 /* These flag bits are private to the generic network queueing 318 * layer; they may not be explicitly referenced by any other 319 * code. 320 */ 321 322 enum netdev_state_t { 323 __LINK_STATE_START, 324 __LINK_STATE_PRESENT, 325 __LINK_STATE_NOCARRIER, 326 __LINK_STATE_LINKWATCH_PENDING, 327 __LINK_STATE_DORMANT, 328 __LINK_STATE_TESTING, 329 }; 330 331 struct gro_list { 332 struct list_head list; 333 int count; 334 }; 335 336 /* 337 * size of gro hash buckets, must less than bit number of 338 * napi_struct::gro_bitmask 339 */ 340 #define GRO_HASH_BUCKETS 8 341 342 /* 343 * Structure for NAPI scheduling similar to tasklet but with weighting 344 */ 345 struct napi_struct { 346 /* The poll_list must only be managed by the entity which 347 * changes the state of the NAPI_STATE_SCHED bit. This means 348 * whoever atomically sets that bit can add this napi_struct 349 * to the per-CPU poll_list, and whoever clears that bit 350 * can remove from the list right before clearing the bit. 351 */ 352 struct list_head poll_list; 353 354 unsigned long state; 355 int weight; 356 int defer_hard_irqs_count; 357 unsigned long gro_bitmask; 358 int (*poll)(struct napi_struct *, int); 359 #ifdef CONFIG_NETPOLL 360 int poll_owner; 361 #endif 362 struct net_device *dev; 363 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 364 struct sk_buff *skb; 365 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 366 int rx_count; /* length of rx_list */ 367 struct hrtimer timer; 368 struct list_head dev_list; 369 struct hlist_node napi_hash_node; 370 unsigned int napi_id; 371 struct task_struct *thread; 372 }; 373 374 enum { 375 NAPI_STATE_SCHED, /* Poll is scheduled */ 376 NAPI_STATE_MISSED, /* reschedule a napi */ 377 NAPI_STATE_DISABLE, /* Disable pending */ 378 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 379 NAPI_STATE_LISTED, /* NAPI added to system lists */ 380 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 381 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 382 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 383 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 384 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 385 }; 386 387 enum { 388 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 389 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 390 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 391 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 392 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 393 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 394 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 395 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 396 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 397 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 398 }; 399 400 enum gro_result { 401 GRO_MERGED, 402 GRO_MERGED_FREE, 403 GRO_HELD, 404 GRO_NORMAL, 405 GRO_CONSUMED, 406 }; 407 typedef enum gro_result gro_result_t; 408 409 /* 410 * enum rx_handler_result - Possible return values for rx_handlers. 411 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 412 * further. 413 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 414 * case skb->dev was changed by rx_handler. 415 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 416 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 417 * 418 * rx_handlers are functions called from inside __netif_receive_skb(), to do 419 * special processing of the skb, prior to delivery to protocol handlers. 420 * 421 * Currently, a net_device can only have a single rx_handler registered. Trying 422 * to register a second rx_handler will return -EBUSY. 423 * 424 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 425 * To unregister a rx_handler on a net_device, use 426 * netdev_rx_handler_unregister(). 427 * 428 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 429 * do with the skb. 430 * 431 * If the rx_handler consumed the skb in some way, it should return 432 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 433 * the skb to be delivered in some other way. 434 * 435 * If the rx_handler changed skb->dev, to divert the skb to another 436 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 437 * new device will be called if it exists. 438 * 439 * If the rx_handler decides the skb should be ignored, it should return 440 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 441 * are registered on exact device (ptype->dev == skb->dev). 442 * 443 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 444 * delivered, it should return RX_HANDLER_PASS. 445 * 446 * A device without a registered rx_handler will behave as if rx_handler 447 * returned RX_HANDLER_PASS. 448 */ 449 450 enum rx_handler_result { 451 RX_HANDLER_CONSUMED, 452 RX_HANDLER_ANOTHER, 453 RX_HANDLER_EXACT, 454 RX_HANDLER_PASS, 455 }; 456 typedef enum rx_handler_result rx_handler_result_t; 457 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 458 459 void __napi_schedule(struct napi_struct *n); 460 void __napi_schedule_irqoff(struct napi_struct *n); 461 462 static inline bool napi_disable_pending(struct napi_struct *n) 463 { 464 return test_bit(NAPI_STATE_DISABLE, &n->state); 465 } 466 467 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 468 { 469 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 470 } 471 472 bool napi_schedule_prep(struct napi_struct *n); 473 474 /** 475 * napi_schedule - schedule NAPI poll 476 * @n: NAPI context 477 * 478 * Schedule NAPI poll routine to be called if it is not already 479 * running. 480 */ 481 static inline void napi_schedule(struct napi_struct *n) 482 { 483 if (napi_schedule_prep(n)) 484 __napi_schedule(n); 485 } 486 487 /** 488 * napi_schedule_irqoff - schedule NAPI poll 489 * @n: NAPI context 490 * 491 * Variant of napi_schedule(), assuming hard irqs are masked. 492 */ 493 static inline void napi_schedule_irqoff(struct napi_struct *n) 494 { 495 if (napi_schedule_prep(n)) 496 __napi_schedule_irqoff(n); 497 } 498 499 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 500 static inline bool napi_reschedule(struct napi_struct *napi) 501 { 502 if (napi_schedule_prep(napi)) { 503 __napi_schedule(napi); 504 return true; 505 } 506 return false; 507 } 508 509 bool napi_complete_done(struct napi_struct *n, int work_done); 510 /** 511 * napi_complete - NAPI processing complete 512 * @n: NAPI context 513 * 514 * Mark NAPI processing as complete. 515 * Consider using napi_complete_done() instead. 516 * Return false if device should avoid rearming interrupts. 517 */ 518 static inline bool napi_complete(struct napi_struct *n) 519 { 520 return napi_complete_done(n, 0); 521 } 522 523 int dev_set_threaded(struct net_device *dev, bool threaded); 524 525 /** 526 * napi_disable - prevent NAPI from scheduling 527 * @n: NAPI context 528 * 529 * Stop NAPI from being scheduled on this context. 530 * Waits till any outstanding processing completes. 531 */ 532 void napi_disable(struct napi_struct *n); 533 534 void napi_enable(struct napi_struct *n); 535 536 /** 537 * napi_synchronize - wait until NAPI is not running 538 * @n: NAPI context 539 * 540 * Wait until NAPI is done being scheduled on this context. 541 * Waits till any outstanding processing completes but 542 * does not disable future activations. 543 */ 544 static inline void napi_synchronize(const struct napi_struct *n) 545 { 546 if (IS_ENABLED(CONFIG_SMP)) 547 while (test_bit(NAPI_STATE_SCHED, &n->state)) 548 msleep(1); 549 else 550 barrier(); 551 } 552 553 /** 554 * napi_if_scheduled_mark_missed - if napi is running, set the 555 * NAPIF_STATE_MISSED 556 * @n: NAPI context 557 * 558 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 559 * NAPI is scheduled. 560 **/ 561 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 562 { 563 unsigned long val, new; 564 565 val = READ_ONCE(n->state); 566 do { 567 if (val & NAPIF_STATE_DISABLE) 568 return true; 569 570 if (!(val & NAPIF_STATE_SCHED)) 571 return false; 572 573 new = val | NAPIF_STATE_MISSED; 574 } while (!try_cmpxchg(&n->state, &val, new)); 575 576 return true; 577 } 578 579 enum netdev_queue_state_t { 580 __QUEUE_STATE_DRV_XOFF, 581 __QUEUE_STATE_STACK_XOFF, 582 __QUEUE_STATE_FROZEN, 583 }; 584 585 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 586 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 587 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 588 589 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 590 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 591 QUEUE_STATE_FROZEN) 592 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 593 QUEUE_STATE_FROZEN) 594 595 /* 596 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 597 * netif_tx_* functions below are used to manipulate this flag. The 598 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 599 * queue independently. The netif_xmit_*stopped functions below are called 600 * to check if the queue has been stopped by the driver or stack (either 601 * of the XOFF bits are set in the state). Drivers should not need to call 602 * netif_xmit*stopped functions, they should only be using netif_tx_*. 603 */ 604 605 struct netdev_queue { 606 /* 607 * read-mostly part 608 */ 609 struct net_device *dev; 610 netdevice_tracker dev_tracker; 611 612 struct Qdisc __rcu *qdisc; 613 struct Qdisc *qdisc_sleeping; 614 #ifdef CONFIG_SYSFS 615 struct kobject kobj; 616 #endif 617 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 618 int numa_node; 619 #endif 620 unsigned long tx_maxrate; 621 /* 622 * Number of TX timeouts for this queue 623 * (/sys/class/net/DEV/Q/trans_timeout) 624 */ 625 atomic_long_t trans_timeout; 626 627 /* Subordinate device that the queue has been assigned to */ 628 struct net_device *sb_dev; 629 #ifdef CONFIG_XDP_SOCKETS 630 struct xsk_buff_pool *pool; 631 #endif 632 /* 633 * write-mostly part 634 */ 635 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 636 int xmit_lock_owner; 637 /* 638 * Time (in jiffies) of last Tx 639 */ 640 unsigned long trans_start; 641 642 unsigned long state; 643 644 #ifdef CONFIG_BQL 645 struct dql dql; 646 #endif 647 } ____cacheline_aligned_in_smp; 648 649 extern int sysctl_fb_tunnels_only_for_init_net; 650 extern int sysctl_devconf_inherit_init_net; 651 652 /* 653 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 654 * == 1 : For initns only 655 * == 2 : For none. 656 */ 657 static inline bool net_has_fallback_tunnels(const struct net *net) 658 { 659 #if IS_ENABLED(CONFIG_SYSCTL) 660 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 661 662 return !fb_tunnels_only_for_init_net || 663 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 664 #else 665 return true; 666 #endif 667 } 668 669 static inline int net_inherit_devconf(void) 670 { 671 #if IS_ENABLED(CONFIG_SYSCTL) 672 return READ_ONCE(sysctl_devconf_inherit_init_net); 673 #else 674 return 0; 675 #endif 676 } 677 678 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 679 { 680 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 681 return q->numa_node; 682 #else 683 return NUMA_NO_NODE; 684 #endif 685 } 686 687 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 688 { 689 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 690 q->numa_node = node; 691 #endif 692 } 693 694 #ifdef CONFIG_RPS 695 /* 696 * This structure holds an RPS map which can be of variable length. The 697 * map is an array of CPUs. 698 */ 699 struct rps_map { 700 unsigned int len; 701 struct rcu_head rcu; 702 u16 cpus[]; 703 }; 704 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 705 706 /* 707 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 708 * tail pointer for that CPU's input queue at the time of last enqueue, and 709 * a hardware filter index. 710 */ 711 struct rps_dev_flow { 712 u16 cpu; 713 u16 filter; 714 unsigned int last_qtail; 715 }; 716 #define RPS_NO_FILTER 0xffff 717 718 /* 719 * The rps_dev_flow_table structure contains a table of flow mappings. 720 */ 721 struct rps_dev_flow_table { 722 unsigned int mask; 723 struct rcu_head rcu; 724 struct rps_dev_flow flows[]; 725 }; 726 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 727 ((_num) * sizeof(struct rps_dev_flow))) 728 729 /* 730 * The rps_sock_flow_table contains mappings of flows to the last CPU 731 * on which they were processed by the application (set in recvmsg). 732 * Each entry is a 32bit value. Upper part is the high-order bits 733 * of flow hash, lower part is CPU number. 734 * rps_cpu_mask is used to partition the space, depending on number of 735 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 736 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 737 * meaning we use 32-6=26 bits for the hash. 738 */ 739 struct rps_sock_flow_table { 740 u32 mask; 741 742 u32 ents[] ____cacheline_aligned_in_smp; 743 }; 744 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 745 746 #define RPS_NO_CPU 0xffff 747 748 extern u32 rps_cpu_mask; 749 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 750 751 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 752 u32 hash) 753 { 754 if (table && hash) { 755 unsigned int index = hash & table->mask; 756 u32 val = hash & ~rps_cpu_mask; 757 758 /* We only give a hint, preemption can change CPU under us */ 759 val |= raw_smp_processor_id(); 760 761 if (table->ents[index] != val) 762 table->ents[index] = val; 763 } 764 } 765 766 #ifdef CONFIG_RFS_ACCEL 767 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 768 u16 filter_id); 769 #endif 770 #endif /* CONFIG_RPS */ 771 772 /* This structure contains an instance of an RX queue. */ 773 struct netdev_rx_queue { 774 struct xdp_rxq_info xdp_rxq; 775 #ifdef CONFIG_RPS 776 struct rps_map __rcu *rps_map; 777 struct rps_dev_flow_table __rcu *rps_flow_table; 778 #endif 779 struct kobject kobj; 780 struct net_device *dev; 781 netdevice_tracker dev_tracker; 782 783 #ifdef CONFIG_XDP_SOCKETS 784 struct xsk_buff_pool *pool; 785 #endif 786 } ____cacheline_aligned_in_smp; 787 788 /* 789 * RX queue sysfs structures and functions. 790 */ 791 struct rx_queue_attribute { 792 struct attribute attr; 793 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 794 ssize_t (*store)(struct netdev_rx_queue *queue, 795 const char *buf, size_t len); 796 }; 797 798 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 799 enum xps_map_type { 800 XPS_CPUS = 0, 801 XPS_RXQS, 802 XPS_MAPS_MAX, 803 }; 804 805 #ifdef CONFIG_XPS 806 /* 807 * This structure holds an XPS map which can be of variable length. The 808 * map is an array of queues. 809 */ 810 struct xps_map { 811 unsigned int len; 812 unsigned int alloc_len; 813 struct rcu_head rcu; 814 u16 queues[]; 815 }; 816 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 817 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 818 - sizeof(struct xps_map)) / sizeof(u16)) 819 820 /* 821 * This structure holds all XPS maps for device. Maps are indexed by CPU. 822 * 823 * We keep track of the number of cpus/rxqs used when the struct is allocated, 824 * in nr_ids. This will help not accessing out-of-bound memory. 825 * 826 * We keep track of the number of traffic classes used when the struct is 827 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 828 * not crossing its upper bound, as the original dev->num_tc can be updated in 829 * the meantime. 830 */ 831 struct xps_dev_maps { 832 struct rcu_head rcu; 833 unsigned int nr_ids; 834 s16 num_tc; 835 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 836 }; 837 838 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 839 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 840 841 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 842 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 843 844 #endif /* CONFIG_XPS */ 845 846 #define TC_MAX_QUEUE 16 847 #define TC_BITMASK 15 848 /* HW offloaded queuing disciplines txq count and offset maps */ 849 struct netdev_tc_txq { 850 u16 count; 851 u16 offset; 852 }; 853 854 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 855 /* 856 * This structure is to hold information about the device 857 * configured to run FCoE protocol stack. 858 */ 859 struct netdev_fcoe_hbainfo { 860 char manufacturer[64]; 861 char serial_number[64]; 862 char hardware_version[64]; 863 char driver_version[64]; 864 char optionrom_version[64]; 865 char firmware_version[64]; 866 char model[256]; 867 char model_description[256]; 868 }; 869 #endif 870 871 #define MAX_PHYS_ITEM_ID_LEN 32 872 873 /* This structure holds a unique identifier to identify some 874 * physical item (port for example) used by a netdevice. 875 */ 876 struct netdev_phys_item_id { 877 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 878 unsigned char id_len; 879 }; 880 881 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 882 struct netdev_phys_item_id *b) 883 { 884 return a->id_len == b->id_len && 885 memcmp(a->id, b->id, a->id_len) == 0; 886 } 887 888 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 889 struct sk_buff *skb, 890 struct net_device *sb_dev); 891 892 enum net_device_path_type { 893 DEV_PATH_ETHERNET = 0, 894 DEV_PATH_VLAN, 895 DEV_PATH_BRIDGE, 896 DEV_PATH_PPPOE, 897 DEV_PATH_DSA, 898 DEV_PATH_MTK_WDMA, 899 }; 900 901 struct net_device_path { 902 enum net_device_path_type type; 903 const struct net_device *dev; 904 union { 905 struct { 906 u16 id; 907 __be16 proto; 908 u8 h_dest[ETH_ALEN]; 909 } encap; 910 struct { 911 enum { 912 DEV_PATH_BR_VLAN_KEEP, 913 DEV_PATH_BR_VLAN_TAG, 914 DEV_PATH_BR_VLAN_UNTAG, 915 DEV_PATH_BR_VLAN_UNTAG_HW, 916 } vlan_mode; 917 u16 vlan_id; 918 __be16 vlan_proto; 919 } bridge; 920 struct { 921 int port; 922 u16 proto; 923 } dsa; 924 struct { 925 u8 wdma_idx; 926 u8 queue; 927 u16 wcid; 928 u8 bss; 929 } mtk_wdma; 930 }; 931 }; 932 933 #define NET_DEVICE_PATH_STACK_MAX 5 934 #define NET_DEVICE_PATH_VLAN_MAX 2 935 936 struct net_device_path_stack { 937 int num_paths; 938 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 939 }; 940 941 struct net_device_path_ctx { 942 const struct net_device *dev; 943 u8 daddr[ETH_ALEN]; 944 945 int num_vlans; 946 struct { 947 u16 id; 948 __be16 proto; 949 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 950 }; 951 952 enum tc_setup_type { 953 TC_QUERY_CAPS, 954 TC_SETUP_QDISC_MQPRIO, 955 TC_SETUP_CLSU32, 956 TC_SETUP_CLSFLOWER, 957 TC_SETUP_CLSMATCHALL, 958 TC_SETUP_CLSBPF, 959 TC_SETUP_BLOCK, 960 TC_SETUP_QDISC_CBS, 961 TC_SETUP_QDISC_RED, 962 TC_SETUP_QDISC_PRIO, 963 TC_SETUP_QDISC_MQ, 964 TC_SETUP_QDISC_ETF, 965 TC_SETUP_ROOT_QDISC, 966 TC_SETUP_QDISC_GRED, 967 TC_SETUP_QDISC_TAPRIO, 968 TC_SETUP_FT, 969 TC_SETUP_QDISC_ETS, 970 TC_SETUP_QDISC_TBF, 971 TC_SETUP_QDISC_FIFO, 972 TC_SETUP_QDISC_HTB, 973 TC_SETUP_ACT, 974 }; 975 976 /* These structures hold the attributes of bpf state that are being passed 977 * to the netdevice through the bpf op. 978 */ 979 enum bpf_netdev_command { 980 /* Set or clear a bpf program used in the earliest stages of packet 981 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 982 * is responsible for calling bpf_prog_put on any old progs that are 983 * stored. In case of error, the callee need not release the new prog 984 * reference, but on success it takes ownership and must bpf_prog_put 985 * when it is no longer used. 986 */ 987 XDP_SETUP_PROG, 988 XDP_SETUP_PROG_HW, 989 /* BPF program for offload callbacks, invoked at program load time. */ 990 BPF_OFFLOAD_MAP_ALLOC, 991 BPF_OFFLOAD_MAP_FREE, 992 XDP_SETUP_XSK_POOL, 993 }; 994 995 struct bpf_prog_offload_ops; 996 struct netlink_ext_ack; 997 struct xdp_umem; 998 struct xdp_dev_bulk_queue; 999 struct bpf_xdp_link; 1000 1001 enum bpf_xdp_mode { 1002 XDP_MODE_SKB = 0, 1003 XDP_MODE_DRV = 1, 1004 XDP_MODE_HW = 2, 1005 __MAX_XDP_MODE 1006 }; 1007 1008 struct bpf_xdp_entity { 1009 struct bpf_prog *prog; 1010 struct bpf_xdp_link *link; 1011 }; 1012 1013 struct netdev_bpf { 1014 enum bpf_netdev_command command; 1015 union { 1016 /* XDP_SETUP_PROG */ 1017 struct { 1018 u32 flags; 1019 struct bpf_prog *prog; 1020 struct netlink_ext_ack *extack; 1021 }; 1022 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 1023 struct { 1024 struct bpf_offloaded_map *offmap; 1025 }; 1026 /* XDP_SETUP_XSK_POOL */ 1027 struct { 1028 struct xsk_buff_pool *pool; 1029 u16 queue_id; 1030 } xsk; 1031 }; 1032 }; 1033 1034 /* Flags for ndo_xsk_wakeup. */ 1035 #define XDP_WAKEUP_RX (1 << 0) 1036 #define XDP_WAKEUP_TX (1 << 1) 1037 1038 #ifdef CONFIG_XFRM_OFFLOAD 1039 struct xfrmdev_ops { 1040 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 1041 void (*xdo_dev_state_delete) (struct xfrm_state *x); 1042 void (*xdo_dev_state_free) (struct xfrm_state *x); 1043 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1044 struct xfrm_state *x); 1045 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1046 void (*xdo_dev_state_update_curlft) (struct xfrm_state *x); 1047 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 1048 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 1049 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 1050 }; 1051 #endif 1052 1053 struct dev_ifalias { 1054 struct rcu_head rcuhead; 1055 char ifalias[]; 1056 }; 1057 1058 struct devlink; 1059 struct tlsdev_ops; 1060 1061 struct netdev_net_notifier { 1062 struct list_head list; 1063 struct notifier_block *nb; 1064 }; 1065 1066 /* 1067 * This structure defines the management hooks for network devices. 1068 * The following hooks can be defined; unless noted otherwise, they are 1069 * optional and can be filled with a null pointer. 1070 * 1071 * int (*ndo_init)(struct net_device *dev); 1072 * This function is called once when a network device is registered. 1073 * The network device can use this for any late stage initialization 1074 * or semantic validation. It can fail with an error code which will 1075 * be propagated back to register_netdev. 1076 * 1077 * void (*ndo_uninit)(struct net_device *dev); 1078 * This function is called when device is unregistered or when registration 1079 * fails. It is not called if init fails. 1080 * 1081 * int (*ndo_open)(struct net_device *dev); 1082 * This function is called when a network device transitions to the up 1083 * state. 1084 * 1085 * int (*ndo_stop)(struct net_device *dev); 1086 * This function is called when a network device transitions to the down 1087 * state. 1088 * 1089 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1090 * struct net_device *dev); 1091 * Called when a packet needs to be transmitted. 1092 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1093 * the queue before that can happen; it's for obsolete devices and weird 1094 * corner cases, but the stack really does a non-trivial amount 1095 * of useless work if you return NETDEV_TX_BUSY. 1096 * Required; cannot be NULL. 1097 * 1098 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1099 * struct net_device *dev 1100 * netdev_features_t features); 1101 * Called by core transmit path to determine if device is capable of 1102 * performing offload operations on a given packet. This is to give 1103 * the device an opportunity to implement any restrictions that cannot 1104 * be otherwise expressed by feature flags. The check is called with 1105 * the set of features that the stack has calculated and it returns 1106 * those the driver believes to be appropriate. 1107 * 1108 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1109 * struct net_device *sb_dev); 1110 * Called to decide which queue to use when device supports multiple 1111 * transmit queues. 1112 * 1113 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1114 * This function is called to allow device receiver to make 1115 * changes to configuration when multicast or promiscuous is enabled. 1116 * 1117 * void (*ndo_set_rx_mode)(struct net_device *dev); 1118 * This function is called device changes address list filtering. 1119 * If driver handles unicast address filtering, it should set 1120 * IFF_UNICAST_FLT in its priv_flags. 1121 * 1122 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1123 * This function is called when the Media Access Control address 1124 * needs to be changed. If this interface is not defined, the 1125 * MAC address can not be changed. 1126 * 1127 * int (*ndo_validate_addr)(struct net_device *dev); 1128 * Test if Media Access Control address is valid for the device. 1129 * 1130 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1131 * Old-style ioctl entry point. This is used internally by the 1132 * appletalk and ieee802154 subsystems but is no longer called by 1133 * the device ioctl handler. 1134 * 1135 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1136 * Used by the bonding driver for its device specific ioctls: 1137 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1138 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1139 * 1140 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1141 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1142 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1143 * 1144 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1145 * Used to set network devices bus interface parameters. This interface 1146 * is retained for legacy reasons; new devices should use the bus 1147 * interface (PCI) for low level management. 1148 * 1149 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1150 * Called when a user wants to change the Maximum Transfer Unit 1151 * of a device. 1152 * 1153 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1154 * Callback used when the transmitter has not made any progress 1155 * for dev->watchdog ticks. 1156 * 1157 * void (*ndo_get_stats64)(struct net_device *dev, 1158 * struct rtnl_link_stats64 *storage); 1159 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1160 * Called when a user wants to get the network device usage 1161 * statistics. Drivers must do one of the following: 1162 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1163 * rtnl_link_stats64 structure passed by the caller. 1164 * 2. Define @ndo_get_stats to update a net_device_stats structure 1165 * (which should normally be dev->stats) and return a pointer to 1166 * it. The structure may be changed asynchronously only if each 1167 * field is written atomically. 1168 * 3. Update dev->stats asynchronously and atomically, and define 1169 * neither operation. 1170 * 1171 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1172 * Return true if this device supports offload stats of this attr_id. 1173 * 1174 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1175 * void *attr_data) 1176 * Get statistics for offload operations by attr_id. Write it into the 1177 * attr_data pointer. 1178 * 1179 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1180 * If device supports VLAN filtering this function is called when a 1181 * VLAN id is registered. 1182 * 1183 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1184 * If device supports VLAN filtering this function is called when a 1185 * VLAN id is unregistered. 1186 * 1187 * void (*ndo_poll_controller)(struct net_device *dev); 1188 * 1189 * SR-IOV management functions. 1190 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1191 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1192 * u8 qos, __be16 proto); 1193 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1194 * int max_tx_rate); 1195 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1196 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1197 * int (*ndo_get_vf_config)(struct net_device *dev, 1198 * int vf, struct ifla_vf_info *ivf); 1199 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1200 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1201 * struct nlattr *port[]); 1202 * 1203 * Enable or disable the VF ability to query its RSS Redirection Table and 1204 * Hash Key. This is needed since on some devices VF share this information 1205 * with PF and querying it may introduce a theoretical security risk. 1206 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1207 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1208 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1209 * void *type_data); 1210 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1211 * This is always called from the stack with the rtnl lock held and netif 1212 * tx queues stopped. This allows the netdevice to perform queue 1213 * management safely. 1214 * 1215 * Fiber Channel over Ethernet (FCoE) offload functions. 1216 * int (*ndo_fcoe_enable)(struct net_device *dev); 1217 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1218 * so the underlying device can perform whatever needed configuration or 1219 * initialization to support acceleration of FCoE traffic. 1220 * 1221 * int (*ndo_fcoe_disable)(struct net_device *dev); 1222 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1223 * so the underlying device can perform whatever needed clean-ups to 1224 * stop supporting acceleration of FCoE traffic. 1225 * 1226 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1227 * struct scatterlist *sgl, unsigned int sgc); 1228 * Called when the FCoE Initiator wants to initialize an I/O that 1229 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1230 * perform necessary setup and returns 1 to indicate the device is set up 1231 * successfully to perform DDP on this I/O, otherwise this returns 0. 1232 * 1233 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1234 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1235 * indicated by the FC exchange id 'xid', so the underlying device can 1236 * clean up and reuse resources for later DDP requests. 1237 * 1238 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1239 * struct scatterlist *sgl, unsigned int sgc); 1240 * Called when the FCoE Target wants to initialize an I/O that 1241 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1242 * perform necessary setup and returns 1 to indicate the device is set up 1243 * successfully to perform DDP on this I/O, otherwise this returns 0. 1244 * 1245 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1246 * struct netdev_fcoe_hbainfo *hbainfo); 1247 * Called when the FCoE Protocol stack wants information on the underlying 1248 * device. This information is utilized by the FCoE protocol stack to 1249 * register attributes with Fiber Channel management service as per the 1250 * FC-GS Fabric Device Management Information(FDMI) specification. 1251 * 1252 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1253 * Called when the underlying device wants to override default World Wide 1254 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1255 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1256 * protocol stack to use. 1257 * 1258 * RFS acceleration. 1259 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1260 * u16 rxq_index, u32 flow_id); 1261 * Set hardware filter for RFS. rxq_index is the target queue index; 1262 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1263 * Return the filter ID on success, or a negative error code. 1264 * 1265 * Slave management functions (for bridge, bonding, etc). 1266 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1267 * Called to make another netdev an underling. 1268 * 1269 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1270 * Called to release previously enslaved netdev. 1271 * 1272 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1273 * struct sk_buff *skb, 1274 * bool all_slaves); 1275 * Get the xmit slave of master device. If all_slaves is true, function 1276 * assume all the slaves can transmit. 1277 * 1278 * Feature/offload setting functions. 1279 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1280 * netdev_features_t features); 1281 * Adjusts the requested feature flags according to device-specific 1282 * constraints, and returns the resulting flags. Must not modify 1283 * the device state. 1284 * 1285 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1286 * Called to update device configuration to new features. Passed 1287 * feature set might be less than what was returned by ndo_fix_features()). 1288 * Must return >0 or -errno if it changed dev->features itself. 1289 * 1290 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1291 * struct net_device *dev, 1292 * const unsigned char *addr, u16 vid, u16 flags, 1293 * struct netlink_ext_ack *extack); 1294 * Adds an FDB entry to dev for addr. 1295 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1296 * struct net_device *dev, 1297 * const unsigned char *addr, u16 vid) 1298 * Deletes the FDB entry from dev coresponding to addr. 1299 * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[], 1300 * struct net_device *dev, 1301 * u16 vid, 1302 * struct netlink_ext_ack *extack); 1303 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1304 * struct net_device *dev, struct net_device *filter_dev, 1305 * int *idx) 1306 * Used to add FDB entries to dump requests. Implementers should add 1307 * entries to skb and update idx with the number of entries. 1308 * 1309 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1310 * u16 flags, struct netlink_ext_ack *extack) 1311 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1312 * struct net_device *dev, u32 filter_mask, 1313 * int nlflags) 1314 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1315 * u16 flags); 1316 * 1317 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1318 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1319 * which do not represent real hardware may define this to allow their 1320 * userspace components to manage their virtual carrier state. Devices 1321 * that determine carrier state from physical hardware properties (eg 1322 * network cables) or protocol-dependent mechanisms (eg 1323 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1324 * 1325 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1326 * struct netdev_phys_item_id *ppid); 1327 * Called to get ID of physical port of this device. If driver does 1328 * not implement this, it is assumed that the hw is not able to have 1329 * multiple net devices on single physical port. 1330 * 1331 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1332 * struct netdev_phys_item_id *ppid) 1333 * Called to get the parent ID of the physical port of this device. 1334 * 1335 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1336 * struct net_device *dev) 1337 * Called by upper layer devices to accelerate switching or other 1338 * station functionality into hardware. 'pdev is the lowerdev 1339 * to use for the offload and 'dev' is the net device that will 1340 * back the offload. Returns a pointer to the private structure 1341 * the upper layer will maintain. 1342 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1343 * Called by upper layer device to delete the station created 1344 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1345 * the station and priv is the structure returned by the add 1346 * operation. 1347 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1348 * int queue_index, u32 maxrate); 1349 * Called when a user wants to set a max-rate limitation of specific 1350 * TX queue. 1351 * int (*ndo_get_iflink)(const struct net_device *dev); 1352 * Called to get the iflink value of this device. 1353 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1354 * This function is used to get egress tunnel information for given skb. 1355 * This is useful for retrieving outer tunnel header parameters while 1356 * sampling packet. 1357 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1358 * This function is used to specify the headroom that the skb must 1359 * consider when allocation skb during packet reception. Setting 1360 * appropriate rx headroom value allows avoiding skb head copy on 1361 * forward. Setting a negative value resets the rx headroom to the 1362 * default value. 1363 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1364 * This function is used to set or query state related to XDP on the 1365 * netdevice and manage BPF offload. See definition of 1366 * enum bpf_netdev_command for details. 1367 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1368 * u32 flags); 1369 * This function is used to submit @n XDP packets for transmit on a 1370 * netdevice. Returns number of frames successfully transmitted, frames 1371 * that got dropped are freed/returned via xdp_return_frame(). 1372 * Returns negative number, means general error invoking ndo, meaning 1373 * no frames were xmit'ed and core-caller will free all frames. 1374 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1375 * struct xdp_buff *xdp); 1376 * Get the xmit slave of master device based on the xdp_buff. 1377 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1378 * This function is used to wake up the softirq, ksoftirqd or kthread 1379 * responsible for sending and/or receiving packets on a specific 1380 * queue id bound to an AF_XDP socket. The flags field specifies if 1381 * only RX, only Tx, or both should be woken up using the flags 1382 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1383 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1384 * int cmd); 1385 * Add, change, delete or get information on an IPv4 tunnel. 1386 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1387 * If a device is paired with a peer device, return the peer instance. 1388 * The caller must be under RCU read context. 1389 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1390 * Get the forwarding path to reach the real device from the HW destination address 1391 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1392 * const struct skb_shared_hwtstamps *hwtstamps, 1393 * bool cycles); 1394 * Get hardware timestamp based on normal/adjustable time or free running 1395 * cycle counter. This function is required if physical clock supports a 1396 * free running cycle counter. 1397 */ 1398 struct net_device_ops { 1399 int (*ndo_init)(struct net_device *dev); 1400 void (*ndo_uninit)(struct net_device *dev); 1401 int (*ndo_open)(struct net_device *dev); 1402 int (*ndo_stop)(struct net_device *dev); 1403 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1404 struct net_device *dev); 1405 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1406 struct net_device *dev, 1407 netdev_features_t features); 1408 u16 (*ndo_select_queue)(struct net_device *dev, 1409 struct sk_buff *skb, 1410 struct net_device *sb_dev); 1411 void (*ndo_change_rx_flags)(struct net_device *dev, 1412 int flags); 1413 void (*ndo_set_rx_mode)(struct net_device *dev); 1414 int (*ndo_set_mac_address)(struct net_device *dev, 1415 void *addr); 1416 int (*ndo_validate_addr)(struct net_device *dev); 1417 int (*ndo_do_ioctl)(struct net_device *dev, 1418 struct ifreq *ifr, int cmd); 1419 int (*ndo_eth_ioctl)(struct net_device *dev, 1420 struct ifreq *ifr, int cmd); 1421 int (*ndo_siocbond)(struct net_device *dev, 1422 struct ifreq *ifr, int cmd); 1423 int (*ndo_siocwandev)(struct net_device *dev, 1424 struct if_settings *ifs); 1425 int (*ndo_siocdevprivate)(struct net_device *dev, 1426 struct ifreq *ifr, 1427 void __user *data, int cmd); 1428 int (*ndo_set_config)(struct net_device *dev, 1429 struct ifmap *map); 1430 int (*ndo_change_mtu)(struct net_device *dev, 1431 int new_mtu); 1432 int (*ndo_neigh_setup)(struct net_device *dev, 1433 struct neigh_parms *); 1434 void (*ndo_tx_timeout) (struct net_device *dev, 1435 unsigned int txqueue); 1436 1437 void (*ndo_get_stats64)(struct net_device *dev, 1438 struct rtnl_link_stats64 *storage); 1439 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1440 int (*ndo_get_offload_stats)(int attr_id, 1441 const struct net_device *dev, 1442 void *attr_data); 1443 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1444 1445 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1446 __be16 proto, u16 vid); 1447 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1448 __be16 proto, u16 vid); 1449 #ifdef CONFIG_NET_POLL_CONTROLLER 1450 void (*ndo_poll_controller)(struct net_device *dev); 1451 int (*ndo_netpoll_setup)(struct net_device *dev, 1452 struct netpoll_info *info); 1453 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1454 #endif 1455 int (*ndo_set_vf_mac)(struct net_device *dev, 1456 int queue, u8 *mac); 1457 int (*ndo_set_vf_vlan)(struct net_device *dev, 1458 int queue, u16 vlan, 1459 u8 qos, __be16 proto); 1460 int (*ndo_set_vf_rate)(struct net_device *dev, 1461 int vf, int min_tx_rate, 1462 int max_tx_rate); 1463 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1464 int vf, bool setting); 1465 int (*ndo_set_vf_trust)(struct net_device *dev, 1466 int vf, bool setting); 1467 int (*ndo_get_vf_config)(struct net_device *dev, 1468 int vf, 1469 struct ifla_vf_info *ivf); 1470 int (*ndo_set_vf_link_state)(struct net_device *dev, 1471 int vf, int link_state); 1472 int (*ndo_get_vf_stats)(struct net_device *dev, 1473 int vf, 1474 struct ifla_vf_stats 1475 *vf_stats); 1476 int (*ndo_set_vf_port)(struct net_device *dev, 1477 int vf, 1478 struct nlattr *port[]); 1479 int (*ndo_get_vf_port)(struct net_device *dev, 1480 int vf, struct sk_buff *skb); 1481 int (*ndo_get_vf_guid)(struct net_device *dev, 1482 int vf, 1483 struct ifla_vf_guid *node_guid, 1484 struct ifla_vf_guid *port_guid); 1485 int (*ndo_set_vf_guid)(struct net_device *dev, 1486 int vf, u64 guid, 1487 int guid_type); 1488 int (*ndo_set_vf_rss_query_en)( 1489 struct net_device *dev, 1490 int vf, bool setting); 1491 int (*ndo_setup_tc)(struct net_device *dev, 1492 enum tc_setup_type type, 1493 void *type_data); 1494 #if IS_ENABLED(CONFIG_FCOE) 1495 int (*ndo_fcoe_enable)(struct net_device *dev); 1496 int (*ndo_fcoe_disable)(struct net_device *dev); 1497 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1498 u16 xid, 1499 struct scatterlist *sgl, 1500 unsigned int sgc); 1501 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1502 u16 xid); 1503 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1504 u16 xid, 1505 struct scatterlist *sgl, 1506 unsigned int sgc); 1507 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1508 struct netdev_fcoe_hbainfo *hbainfo); 1509 #endif 1510 1511 #if IS_ENABLED(CONFIG_LIBFCOE) 1512 #define NETDEV_FCOE_WWNN 0 1513 #define NETDEV_FCOE_WWPN 1 1514 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1515 u64 *wwn, int type); 1516 #endif 1517 1518 #ifdef CONFIG_RFS_ACCEL 1519 int (*ndo_rx_flow_steer)(struct net_device *dev, 1520 const struct sk_buff *skb, 1521 u16 rxq_index, 1522 u32 flow_id); 1523 #endif 1524 int (*ndo_add_slave)(struct net_device *dev, 1525 struct net_device *slave_dev, 1526 struct netlink_ext_ack *extack); 1527 int (*ndo_del_slave)(struct net_device *dev, 1528 struct net_device *slave_dev); 1529 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1530 struct sk_buff *skb, 1531 bool all_slaves); 1532 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1533 struct sock *sk); 1534 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1535 netdev_features_t features); 1536 int (*ndo_set_features)(struct net_device *dev, 1537 netdev_features_t features); 1538 int (*ndo_neigh_construct)(struct net_device *dev, 1539 struct neighbour *n); 1540 void (*ndo_neigh_destroy)(struct net_device *dev, 1541 struct neighbour *n); 1542 1543 int (*ndo_fdb_add)(struct ndmsg *ndm, 1544 struct nlattr *tb[], 1545 struct net_device *dev, 1546 const unsigned char *addr, 1547 u16 vid, 1548 u16 flags, 1549 struct netlink_ext_ack *extack); 1550 int (*ndo_fdb_del)(struct ndmsg *ndm, 1551 struct nlattr *tb[], 1552 struct net_device *dev, 1553 const unsigned char *addr, 1554 u16 vid, struct netlink_ext_ack *extack); 1555 int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, 1556 struct nlattr *tb[], 1557 struct net_device *dev, 1558 u16 vid, 1559 struct netlink_ext_ack *extack); 1560 int (*ndo_fdb_dump)(struct sk_buff *skb, 1561 struct netlink_callback *cb, 1562 struct net_device *dev, 1563 struct net_device *filter_dev, 1564 int *idx); 1565 int (*ndo_fdb_get)(struct sk_buff *skb, 1566 struct nlattr *tb[], 1567 struct net_device *dev, 1568 const unsigned char *addr, 1569 u16 vid, u32 portid, u32 seq, 1570 struct netlink_ext_ack *extack); 1571 int (*ndo_bridge_setlink)(struct net_device *dev, 1572 struct nlmsghdr *nlh, 1573 u16 flags, 1574 struct netlink_ext_ack *extack); 1575 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1576 u32 pid, u32 seq, 1577 struct net_device *dev, 1578 u32 filter_mask, 1579 int nlflags); 1580 int (*ndo_bridge_dellink)(struct net_device *dev, 1581 struct nlmsghdr *nlh, 1582 u16 flags); 1583 int (*ndo_change_carrier)(struct net_device *dev, 1584 bool new_carrier); 1585 int (*ndo_get_phys_port_id)(struct net_device *dev, 1586 struct netdev_phys_item_id *ppid); 1587 int (*ndo_get_port_parent_id)(struct net_device *dev, 1588 struct netdev_phys_item_id *ppid); 1589 int (*ndo_get_phys_port_name)(struct net_device *dev, 1590 char *name, size_t len); 1591 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1592 struct net_device *dev); 1593 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1594 void *priv); 1595 1596 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1597 int queue_index, 1598 u32 maxrate); 1599 int (*ndo_get_iflink)(const struct net_device *dev); 1600 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1601 struct sk_buff *skb); 1602 void (*ndo_set_rx_headroom)(struct net_device *dev, 1603 int needed_headroom); 1604 int (*ndo_bpf)(struct net_device *dev, 1605 struct netdev_bpf *bpf); 1606 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1607 struct xdp_frame **xdp, 1608 u32 flags); 1609 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1610 struct xdp_buff *xdp); 1611 int (*ndo_xsk_wakeup)(struct net_device *dev, 1612 u32 queue_id, u32 flags); 1613 int (*ndo_tunnel_ctl)(struct net_device *dev, 1614 struct ip_tunnel_parm *p, int cmd); 1615 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1616 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1617 struct net_device_path *path); 1618 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1619 const struct skb_shared_hwtstamps *hwtstamps, 1620 bool cycles); 1621 }; 1622 1623 struct xdp_metadata_ops { 1624 int (*xmo_rx_timestamp)(const struct xdp_md *ctx, u64 *timestamp); 1625 int (*xmo_rx_hash)(const struct xdp_md *ctx, u32 *hash); 1626 }; 1627 1628 /** 1629 * enum netdev_priv_flags - &struct net_device priv_flags 1630 * 1631 * These are the &struct net_device, they are only set internally 1632 * by drivers and used in the kernel. These flags are invisible to 1633 * userspace; this means that the order of these flags can change 1634 * during any kernel release. 1635 * 1636 * You should have a pretty good reason to be extending these flags. 1637 * 1638 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1639 * @IFF_EBRIDGE: Ethernet bridging device 1640 * @IFF_BONDING: bonding master or slave 1641 * @IFF_ISATAP: ISATAP interface (RFC4214) 1642 * @IFF_WAN_HDLC: WAN HDLC device 1643 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1644 * release skb->dst 1645 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1646 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1647 * @IFF_MACVLAN_PORT: device used as macvlan port 1648 * @IFF_BRIDGE_PORT: device used as bridge port 1649 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1650 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1651 * @IFF_UNICAST_FLT: Supports unicast filtering 1652 * @IFF_TEAM_PORT: device used as team port 1653 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1654 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1655 * change when it's running 1656 * @IFF_MACVLAN: Macvlan device 1657 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1658 * underlying stacked devices 1659 * @IFF_L3MDEV_MASTER: device is an L3 master device 1660 * @IFF_NO_QUEUE: device can run without qdisc attached 1661 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1662 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1663 * @IFF_TEAM: device is a team device 1664 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1665 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1666 * entity (i.e. the master device for bridged veth) 1667 * @IFF_MACSEC: device is a MACsec device 1668 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1669 * @IFF_FAILOVER: device is a failover master device 1670 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1671 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1672 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1673 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1674 * skb_headlen(skb) == 0 (data starts from frag0) 1675 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1676 */ 1677 enum netdev_priv_flags { 1678 IFF_802_1Q_VLAN = 1<<0, 1679 IFF_EBRIDGE = 1<<1, 1680 IFF_BONDING = 1<<2, 1681 IFF_ISATAP = 1<<3, 1682 IFF_WAN_HDLC = 1<<4, 1683 IFF_XMIT_DST_RELEASE = 1<<5, 1684 IFF_DONT_BRIDGE = 1<<6, 1685 IFF_DISABLE_NETPOLL = 1<<7, 1686 IFF_MACVLAN_PORT = 1<<8, 1687 IFF_BRIDGE_PORT = 1<<9, 1688 IFF_OVS_DATAPATH = 1<<10, 1689 IFF_TX_SKB_SHARING = 1<<11, 1690 IFF_UNICAST_FLT = 1<<12, 1691 IFF_TEAM_PORT = 1<<13, 1692 IFF_SUPP_NOFCS = 1<<14, 1693 IFF_LIVE_ADDR_CHANGE = 1<<15, 1694 IFF_MACVLAN = 1<<16, 1695 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1696 IFF_L3MDEV_MASTER = 1<<18, 1697 IFF_NO_QUEUE = 1<<19, 1698 IFF_OPENVSWITCH = 1<<20, 1699 IFF_L3MDEV_SLAVE = 1<<21, 1700 IFF_TEAM = 1<<22, 1701 IFF_RXFH_CONFIGURED = 1<<23, 1702 IFF_PHONY_HEADROOM = 1<<24, 1703 IFF_MACSEC = 1<<25, 1704 IFF_NO_RX_HANDLER = 1<<26, 1705 IFF_FAILOVER = 1<<27, 1706 IFF_FAILOVER_SLAVE = 1<<28, 1707 IFF_L3MDEV_RX_HANDLER = 1<<29, 1708 IFF_NO_ADDRCONF = BIT_ULL(30), 1709 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1710 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1711 }; 1712 1713 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1714 #define IFF_EBRIDGE IFF_EBRIDGE 1715 #define IFF_BONDING IFF_BONDING 1716 #define IFF_ISATAP IFF_ISATAP 1717 #define IFF_WAN_HDLC IFF_WAN_HDLC 1718 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1719 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1720 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1721 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1722 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1723 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1724 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1725 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1726 #define IFF_TEAM_PORT IFF_TEAM_PORT 1727 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1728 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1729 #define IFF_MACVLAN IFF_MACVLAN 1730 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1731 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1732 #define IFF_NO_QUEUE IFF_NO_QUEUE 1733 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1734 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1735 #define IFF_TEAM IFF_TEAM 1736 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1737 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1738 #define IFF_MACSEC IFF_MACSEC 1739 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1740 #define IFF_FAILOVER IFF_FAILOVER 1741 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1742 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1743 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1744 1745 /* Specifies the type of the struct net_device::ml_priv pointer */ 1746 enum netdev_ml_priv_type { 1747 ML_PRIV_NONE, 1748 ML_PRIV_CAN, 1749 }; 1750 1751 /** 1752 * struct net_device - The DEVICE structure. 1753 * 1754 * Actually, this whole structure is a big mistake. It mixes I/O 1755 * data with strictly "high-level" data, and it has to know about 1756 * almost every data structure used in the INET module. 1757 * 1758 * @name: This is the first field of the "visible" part of this structure 1759 * (i.e. as seen by users in the "Space.c" file). It is the name 1760 * of the interface. 1761 * 1762 * @name_node: Name hashlist node 1763 * @ifalias: SNMP alias 1764 * @mem_end: Shared memory end 1765 * @mem_start: Shared memory start 1766 * @base_addr: Device I/O address 1767 * @irq: Device IRQ number 1768 * 1769 * @state: Generic network queuing layer state, see netdev_state_t 1770 * @dev_list: The global list of network devices 1771 * @napi_list: List entry used for polling NAPI devices 1772 * @unreg_list: List entry when we are unregistering the 1773 * device; see the function unregister_netdev 1774 * @close_list: List entry used when we are closing the device 1775 * @ptype_all: Device-specific packet handlers for all protocols 1776 * @ptype_specific: Device-specific, protocol-specific packet handlers 1777 * 1778 * @adj_list: Directly linked devices, like slaves for bonding 1779 * @features: Currently active device features 1780 * @hw_features: User-changeable features 1781 * 1782 * @wanted_features: User-requested features 1783 * @vlan_features: Mask of features inheritable by VLAN devices 1784 * 1785 * @hw_enc_features: Mask of features inherited by encapsulating devices 1786 * This field indicates what encapsulation 1787 * offloads the hardware is capable of doing, 1788 * and drivers will need to set them appropriately. 1789 * 1790 * @mpls_features: Mask of features inheritable by MPLS 1791 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1792 * 1793 * @ifindex: interface index 1794 * @group: The group the device belongs to 1795 * 1796 * @stats: Statistics struct, which was left as a legacy, use 1797 * rtnl_link_stats64 instead 1798 * 1799 * @core_stats: core networking counters, 1800 * do not use this in drivers 1801 * @carrier_up_count: Number of times the carrier has been up 1802 * @carrier_down_count: Number of times the carrier has been down 1803 * 1804 * @wireless_handlers: List of functions to handle Wireless Extensions, 1805 * instead of ioctl, 1806 * see <net/iw_handler.h> for details. 1807 * @wireless_data: Instance data managed by the core of wireless extensions 1808 * 1809 * @netdev_ops: Includes several pointers to callbacks, 1810 * if one wants to override the ndo_*() functions 1811 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1812 * @ethtool_ops: Management operations 1813 * @l3mdev_ops: Layer 3 master device operations 1814 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1815 * discovery handling. Necessary for e.g. 6LoWPAN. 1816 * @xfrmdev_ops: Transformation offload operations 1817 * @tlsdev_ops: Transport Layer Security offload operations 1818 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1819 * of Layer 2 headers. 1820 * 1821 * @flags: Interface flags (a la BSD) 1822 * @xdp_features: XDP capability supported by the device 1823 * @priv_flags: Like 'flags' but invisible to userspace, 1824 * see if.h for the definitions 1825 * @gflags: Global flags ( kept as legacy ) 1826 * @padded: How much padding added by alloc_netdev() 1827 * @operstate: RFC2863 operstate 1828 * @link_mode: Mapping policy to operstate 1829 * @if_port: Selectable AUI, TP, ... 1830 * @dma: DMA channel 1831 * @mtu: Interface MTU value 1832 * @min_mtu: Interface Minimum MTU value 1833 * @max_mtu: Interface Maximum MTU value 1834 * @type: Interface hardware type 1835 * @hard_header_len: Maximum hardware header length. 1836 * @min_header_len: Minimum hardware header length 1837 * 1838 * @needed_headroom: Extra headroom the hardware may need, but not in all 1839 * cases can this be guaranteed 1840 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1841 * cases can this be guaranteed. Some cases also use 1842 * LL_MAX_HEADER instead to allocate the skb 1843 * 1844 * interface address info: 1845 * 1846 * @perm_addr: Permanent hw address 1847 * @addr_assign_type: Hw address assignment type 1848 * @addr_len: Hardware address length 1849 * @upper_level: Maximum depth level of upper devices. 1850 * @lower_level: Maximum depth level of lower devices. 1851 * @neigh_priv_len: Used in neigh_alloc() 1852 * @dev_id: Used to differentiate devices that share 1853 * the same link layer address 1854 * @dev_port: Used to differentiate devices that share 1855 * the same function 1856 * @addr_list_lock: XXX: need comments on this one 1857 * @name_assign_type: network interface name assignment type 1858 * @uc_promisc: Counter that indicates promiscuous mode 1859 * has been enabled due to the need to listen to 1860 * additional unicast addresses in a device that 1861 * does not implement ndo_set_rx_mode() 1862 * @uc: unicast mac addresses 1863 * @mc: multicast mac addresses 1864 * @dev_addrs: list of device hw addresses 1865 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1866 * @promiscuity: Number of times the NIC is told to work in 1867 * promiscuous mode; if it becomes 0 the NIC will 1868 * exit promiscuous mode 1869 * @allmulti: Counter, enables or disables allmulticast mode 1870 * 1871 * @vlan_info: VLAN info 1872 * @dsa_ptr: dsa specific data 1873 * @tipc_ptr: TIPC specific data 1874 * @atalk_ptr: AppleTalk link 1875 * @ip_ptr: IPv4 specific data 1876 * @ip6_ptr: IPv6 specific data 1877 * @ax25_ptr: AX.25 specific data 1878 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1879 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1880 * device struct 1881 * @mpls_ptr: mpls_dev struct pointer 1882 * @mctp_ptr: MCTP specific data 1883 * 1884 * @dev_addr: Hw address (before bcast, 1885 * because most packets are unicast) 1886 * 1887 * @_rx: Array of RX queues 1888 * @num_rx_queues: Number of RX queues 1889 * allocated at register_netdev() time 1890 * @real_num_rx_queues: Number of RX queues currently active in device 1891 * @xdp_prog: XDP sockets filter program pointer 1892 * @gro_flush_timeout: timeout for GRO layer in NAPI 1893 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1894 * allow to avoid NIC hard IRQ, on busy queues. 1895 * 1896 * @rx_handler: handler for received packets 1897 * @rx_handler_data: XXX: need comments on this one 1898 * @miniq_ingress: ingress/clsact qdisc specific data for 1899 * ingress processing 1900 * @ingress_queue: XXX: need comments on this one 1901 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1902 * @broadcast: hw bcast address 1903 * 1904 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1905 * indexed by RX queue number. Assigned by driver. 1906 * This must only be set if the ndo_rx_flow_steer 1907 * operation is defined 1908 * @index_hlist: Device index hash chain 1909 * 1910 * @_tx: Array of TX queues 1911 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1912 * @real_num_tx_queues: Number of TX queues currently active in device 1913 * @qdisc: Root qdisc from userspace point of view 1914 * @tx_queue_len: Max frames per queue allowed 1915 * @tx_global_lock: XXX: need comments on this one 1916 * @xdp_bulkq: XDP device bulk queue 1917 * @xps_maps: all CPUs/RXQs maps for XPS device 1918 * 1919 * @xps_maps: XXX: need comments on this one 1920 * @miniq_egress: clsact qdisc specific data for 1921 * egress processing 1922 * @nf_hooks_egress: netfilter hooks executed for egress packets 1923 * @qdisc_hash: qdisc hash table 1924 * @watchdog_timeo: Represents the timeout that is used by 1925 * the watchdog (see dev_watchdog()) 1926 * @watchdog_timer: List of timers 1927 * 1928 * @proto_down_reason: reason a netdev interface is held down 1929 * @pcpu_refcnt: Number of references to this device 1930 * @dev_refcnt: Number of references to this device 1931 * @refcnt_tracker: Tracker directory for tracked references to this device 1932 * @todo_list: Delayed register/unregister 1933 * @link_watch_list: XXX: need comments on this one 1934 * 1935 * @reg_state: Register/unregister state machine 1936 * @dismantle: Device is going to be freed 1937 * @rtnl_link_state: This enum represents the phases of creating 1938 * a new link 1939 * 1940 * @needs_free_netdev: Should unregister perform free_netdev? 1941 * @priv_destructor: Called from unregister 1942 * @npinfo: XXX: need comments on this one 1943 * @nd_net: Network namespace this network device is inside 1944 * 1945 * @ml_priv: Mid-layer private 1946 * @ml_priv_type: Mid-layer private type 1947 * @lstats: Loopback statistics 1948 * @tstats: Tunnel statistics 1949 * @dstats: Dummy statistics 1950 * @vstats: Virtual ethernet statistics 1951 * 1952 * @garp_port: GARP 1953 * @mrp_port: MRP 1954 * 1955 * @dm_private: Drop monitor private 1956 * 1957 * @dev: Class/net/name entry 1958 * @sysfs_groups: Space for optional device, statistics and wireless 1959 * sysfs groups 1960 * 1961 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1962 * @rtnl_link_ops: Rtnl_link_ops 1963 * 1964 * @gso_max_size: Maximum size of generic segmentation offload 1965 * @tso_max_size: Device (as in HW) limit on the max TSO request size 1966 * @gso_max_segs: Maximum number of segments that can be passed to the 1967 * NIC for GSO 1968 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 1969 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 1970 * for IPv4. 1971 * 1972 * @dcbnl_ops: Data Center Bridging netlink ops 1973 * @num_tc: Number of traffic classes in the net device 1974 * @tc_to_txq: XXX: need comments on this one 1975 * @prio_tc_map: XXX: need comments on this one 1976 * 1977 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1978 * 1979 * @priomap: XXX: need comments on this one 1980 * @phydev: Physical device may attach itself 1981 * for hardware timestamping 1982 * @sfp_bus: attached &struct sfp_bus structure. 1983 * 1984 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1985 * 1986 * @proto_down: protocol port state information can be sent to the 1987 * switch driver and used to set the phys state of the 1988 * switch port. 1989 * 1990 * @wol_enabled: Wake-on-LAN is enabled 1991 * 1992 * @threaded: napi threaded mode is enabled 1993 * 1994 * @net_notifier_list: List of per-net netdev notifier block 1995 * that follow this device when it is moved 1996 * to another network namespace. 1997 * 1998 * @macsec_ops: MACsec offloading ops 1999 * 2000 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 2001 * offload capabilities of the device 2002 * @udp_tunnel_nic: UDP tunnel offload state 2003 * @xdp_state: stores info on attached XDP BPF programs 2004 * 2005 * @nested_level: Used as a parameter of spin_lock_nested() of 2006 * dev->addr_list_lock. 2007 * @unlink_list: As netif_addr_lock() can be called recursively, 2008 * keep a list of interfaces to be deleted. 2009 * @gro_max_size: Maximum size of aggregated packet in generic 2010 * receive offload (GRO) 2011 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2012 * receive offload (GRO), for IPv4. 2013 * 2014 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2015 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2016 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2017 * @dev_registered_tracker: tracker for reference held while 2018 * registered 2019 * @offload_xstats_l3: L3 HW stats for this netdevice. 2020 * 2021 * @devlink_port: Pointer to related devlink port structure. 2022 * Assigned by a driver before netdev registration using 2023 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2024 * during the time netdevice is registered. 2025 * 2026 * FIXME: cleanup struct net_device such that network protocol info 2027 * moves out. 2028 */ 2029 2030 struct net_device { 2031 char name[IFNAMSIZ]; 2032 struct netdev_name_node *name_node; 2033 struct dev_ifalias __rcu *ifalias; 2034 /* 2035 * I/O specific fields 2036 * FIXME: Merge these and struct ifmap into one 2037 */ 2038 unsigned long mem_end; 2039 unsigned long mem_start; 2040 unsigned long base_addr; 2041 2042 /* 2043 * Some hardware also needs these fields (state,dev_list, 2044 * napi_list,unreg_list,close_list) but they are not 2045 * part of the usual set specified in Space.c. 2046 */ 2047 2048 unsigned long state; 2049 2050 struct list_head dev_list; 2051 struct list_head napi_list; 2052 struct list_head unreg_list; 2053 struct list_head close_list; 2054 struct list_head ptype_all; 2055 struct list_head ptype_specific; 2056 2057 struct { 2058 struct list_head upper; 2059 struct list_head lower; 2060 } adj_list; 2061 2062 /* Read-mostly cache-line for fast-path access */ 2063 unsigned int flags; 2064 xdp_features_t xdp_features; 2065 unsigned long long priv_flags; 2066 const struct net_device_ops *netdev_ops; 2067 const struct xdp_metadata_ops *xdp_metadata_ops; 2068 int ifindex; 2069 unsigned short gflags; 2070 unsigned short hard_header_len; 2071 2072 /* Note : dev->mtu is often read without holding a lock. 2073 * Writers usually hold RTNL. 2074 * It is recommended to use READ_ONCE() to annotate the reads, 2075 * and to use WRITE_ONCE() to annotate the writes. 2076 */ 2077 unsigned int mtu; 2078 unsigned short needed_headroom; 2079 unsigned short needed_tailroom; 2080 2081 netdev_features_t features; 2082 netdev_features_t hw_features; 2083 netdev_features_t wanted_features; 2084 netdev_features_t vlan_features; 2085 netdev_features_t hw_enc_features; 2086 netdev_features_t mpls_features; 2087 netdev_features_t gso_partial_features; 2088 2089 unsigned int min_mtu; 2090 unsigned int max_mtu; 2091 unsigned short type; 2092 unsigned char min_header_len; 2093 unsigned char name_assign_type; 2094 2095 int group; 2096 2097 struct net_device_stats stats; /* not used by modern drivers */ 2098 2099 struct net_device_core_stats __percpu *core_stats; 2100 2101 /* Stats to monitor link on/off, flapping */ 2102 atomic_t carrier_up_count; 2103 atomic_t carrier_down_count; 2104 2105 #ifdef CONFIG_WIRELESS_EXT 2106 const struct iw_handler_def *wireless_handlers; 2107 struct iw_public_data *wireless_data; 2108 #endif 2109 const struct ethtool_ops *ethtool_ops; 2110 #ifdef CONFIG_NET_L3_MASTER_DEV 2111 const struct l3mdev_ops *l3mdev_ops; 2112 #endif 2113 #if IS_ENABLED(CONFIG_IPV6) 2114 const struct ndisc_ops *ndisc_ops; 2115 #endif 2116 2117 #ifdef CONFIG_XFRM_OFFLOAD 2118 const struct xfrmdev_ops *xfrmdev_ops; 2119 #endif 2120 2121 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2122 const struct tlsdev_ops *tlsdev_ops; 2123 #endif 2124 2125 const struct header_ops *header_ops; 2126 2127 unsigned char operstate; 2128 unsigned char link_mode; 2129 2130 unsigned char if_port; 2131 unsigned char dma; 2132 2133 /* Interface address info. */ 2134 unsigned char perm_addr[MAX_ADDR_LEN]; 2135 unsigned char addr_assign_type; 2136 unsigned char addr_len; 2137 unsigned char upper_level; 2138 unsigned char lower_level; 2139 2140 unsigned short neigh_priv_len; 2141 unsigned short dev_id; 2142 unsigned short dev_port; 2143 unsigned short padded; 2144 2145 spinlock_t addr_list_lock; 2146 int irq; 2147 2148 struct netdev_hw_addr_list uc; 2149 struct netdev_hw_addr_list mc; 2150 struct netdev_hw_addr_list dev_addrs; 2151 2152 #ifdef CONFIG_SYSFS 2153 struct kset *queues_kset; 2154 #endif 2155 #ifdef CONFIG_LOCKDEP 2156 struct list_head unlink_list; 2157 #endif 2158 unsigned int promiscuity; 2159 unsigned int allmulti; 2160 bool uc_promisc; 2161 #ifdef CONFIG_LOCKDEP 2162 unsigned char nested_level; 2163 #endif 2164 2165 2166 /* Protocol-specific pointers */ 2167 2168 struct in_device __rcu *ip_ptr; 2169 struct inet6_dev __rcu *ip6_ptr; 2170 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2171 struct vlan_info __rcu *vlan_info; 2172 #endif 2173 #if IS_ENABLED(CONFIG_NET_DSA) 2174 struct dsa_port *dsa_ptr; 2175 #endif 2176 #if IS_ENABLED(CONFIG_TIPC) 2177 struct tipc_bearer __rcu *tipc_ptr; 2178 #endif 2179 #if IS_ENABLED(CONFIG_ATALK) 2180 void *atalk_ptr; 2181 #endif 2182 #if IS_ENABLED(CONFIG_AX25) 2183 void *ax25_ptr; 2184 #endif 2185 #if IS_ENABLED(CONFIG_CFG80211) 2186 struct wireless_dev *ieee80211_ptr; 2187 #endif 2188 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2189 struct wpan_dev *ieee802154_ptr; 2190 #endif 2191 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2192 struct mpls_dev __rcu *mpls_ptr; 2193 #endif 2194 #if IS_ENABLED(CONFIG_MCTP) 2195 struct mctp_dev __rcu *mctp_ptr; 2196 #endif 2197 2198 /* 2199 * Cache lines mostly used on receive path (including eth_type_trans()) 2200 */ 2201 /* Interface address info used in eth_type_trans() */ 2202 const unsigned char *dev_addr; 2203 2204 struct netdev_rx_queue *_rx; 2205 unsigned int num_rx_queues; 2206 unsigned int real_num_rx_queues; 2207 2208 struct bpf_prog __rcu *xdp_prog; 2209 unsigned long gro_flush_timeout; 2210 int napi_defer_hard_irqs; 2211 #define GRO_LEGACY_MAX_SIZE 65536u 2212 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2213 * and shinfo->gso_segs is a 16bit field. 2214 */ 2215 #define GRO_MAX_SIZE (8 * 65535u) 2216 unsigned int gro_max_size; 2217 unsigned int gro_ipv4_max_size; 2218 rx_handler_func_t __rcu *rx_handler; 2219 void __rcu *rx_handler_data; 2220 2221 #ifdef CONFIG_NET_CLS_ACT 2222 struct mini_Qdisc __rcu *miniq_ingress; 2223 #endif 2224 struct netdev_queue __rcu *ingress_queue; 2225 #ifdef CONFIG_NETFILTER_INGRESS 2226 struct nf_hook_entries __rcu *nf_hooks_ingress; 2227 #endif 2228 2229 unsigned char broadcast[MAX_ADDR_LEN]; 2230 #ifdef CONFIG_RFS_ACCEL 2231 struct cpu_rmap *rx_cpu_rmap; 2232 #endif 2233 struct hlist_node index_hlist; 2234 2235 /* 2236 * Cache lines mostly used on transmit path 2237 */ 2238 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2239 unsigned int num_tx_queues; 2240 unsigned int real_num_tx_queues; 2241 struct Qdisc __rcu *qdisc; 2242 unsigned int tx_queue_len; 2243 spinlock_t tx_global_lock; 2244 2245 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2246 2247 #ifdef CONFIG_XPS 2248 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2249 #endif 2250 #ifdef CONFIG_NET_CLS_ACT 2251 struct mini_Qdisc __rcu *miniq_egress; 2252 #endif 2253 #ifdef CONFIG_NETFILTER_EGRESS 2254 struct nf_hook_entries __rcu *nf_hooks_egress; 2255 #endif 2256 2257 #ifdef CONFIG_NET_SCHED 2258 DECLARE_HASHTABLE (qdisc_hash, 4); 2259 #endif 2260 /* These may be needed for future network-power-down code. */ 2261 struct timer_list watchdog_timer; 2262 int watchdog_timeo; 2263 2264 u32 proto_down_reason; 2265 2266 struct list_head todo_list; 2267 2268 #ifdef CONFIG_PCPU_DEV_REFCNT 2269 int __percpu *pcpu_refcnt; 2270 #else 2271 refcount_t dev_refcnt; 2272 #endif 2273 struct ref_tracker_dir refcnt_tracker; 2274 2275 struct list_head link_watch_list; 2276 2277 enum { NETREG_UNINITIALIZED=0, 2278 NETREG_REGISTERED, /* completed register_netdevice */ 2279 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2280 NETREG_UNREGISTERED, /* completed unregister todo */ 2281 NETREG_RELEASED, /* called free_netdev */ 2282 NETREG_DUMMY, /* dummy device for NAPI poll */ 2283 } reg_state:8; 2284 2285 bool dismantle; 2286 2287 enum { 2288 RTNL_LINK_INITIALIZED, 2289 RTNL_LINK_INITIALIZING, 2290 } rtnl_link_state:16; 2291 2292 bool needs_free_netdev; 2293 void (*priv_destructor)(struct net_device *dev); 2294 2295 #ifdef CONFIG_NETPOLL 2296 struct netpoll_info __rcu *npinfo; 2297 #endif 2298 2299 possible_net_t nd_net; 2300 2301 /* mid-layer private */ 2302 void *ml_priv; 2303 enum netdev_ml_priv_type ml_priv_type; 2304 2305 union { 2306 struct pcpu_lstats __percpu *lstats; 2307 struct pcpu_sw_netstats __percpu *tstats; 2308 struct pcpu_dstats __percpu *dstats; 2309 }; 2310 2311 #if IS_ENABLED(CONFIG_GARP) 2312 struct garp_port __rcu *garp_port; 2313 #endif 2314 #if IS_ENABLED(CONFIG_MRP) 2315 struct mrp_port __rcu *mrp_port; 2316 #endif 2317 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2318 struct dm_hw_stat_delta __rcu *dm_private; 2319 #endif 2320 struct device dev; 2321 const struct attribute_group *sysfs_groups[4]; 2322 const struct attribute_group *sysfs_rx_queue_group; 2323 2324 const struct rtnl_link_ops *rtnl_link_ops; 2325 2326 /* for setting kernel sock attribute on TCP connection setup */ 2327 #define GSO_MAX_SEGS 65535u 2328 #define GSO_LEGACY_MAX_SIZE 65536u 2329 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2330 * and shinfo->gso_segs is a 16bit field. 2331 */ 2332 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2333 2334 unsigned int gso_max_size; 2335 #define TSO_LEGACY_MAX_SIZE 65536 2336 #define TSO_MAX_SIZE UINT_MAX 2337 unsigned int tso_max_size; 2338 u16 gso_max_segs; 2339 #define TSO_MAX_SEGS U16_MAX 2340 u16 tso_max_segs; 2341 unsigned int gso_ipv4_max_size; 2342 2343 #ifdef CONFIG_DCB 2344 const struct dcbnl_rtnl_ops *dcbnl_ops; 2345 #endif 2346 s16 num_tc; 2347 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2348 u8 prio_tc_map[TC_BITMASK + 1]; 2349 2350 #if IS_ENABLED(CONFIG_FCOE) 2351 unsigned int fcoe_ddp_xid; 2352 #endif 2353 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2354 struct netprio_map __rcu *priomap; 2355 #endif 2356 struct phy_device *phydev; 2357 struct sfp_bus *sfp_bus; 2358 struct lock_class_key *qdisc_tx_busylock; 2359 bool proto_down; 2360 unsigned wol_enabled:1; 2361 unsigned threaded:1; 2362 2363 struct list_head net_notifier_list; 2364 2365 #if IS_ENABLED(CONFIG_MACSEC) 2366 /* MACsec management functions */ 2367 const struct macsec_ops *macsec_ops; 2368 #endif 2369 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2370 struct udp_tunnel_nic *udp_tunnel_nic; 2371 2372 /* protected by rtnl_lock */ 2373 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2374 2375 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2376 netdevice_tracker linkwatch_dev_tracker; 2377 netdevice_tracker watchdog_dev_tracker; 2378 netdevice_tracker dev_registered_tracker; 2379 struct rtnl_hw_stats64 *offload_xstats_l3; 2380 2381 struct devlink_port *devlink_port; 2382 }; 2383 #define to_net_dev(d) container_of(d, struct net_device, dev) 2384 2385 /* 2386 * Driver should use this to assign devlink port instance to a netdevice 2387 * before it registers the netdevice. Therefore devlink_port is static 2388 * during the netdev lifetime after it is registered. 2389 */ 2390 #define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2391 ({ \ 2392 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2393 ((dev)->devlink_port = (port)); \ 2394 }) 2395 2396 static inline bool netif_elide_gro(const struct net_device *dev) 2397 { 2398 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2399 return true; 2400 return false; 2401 } 2402 2403 #define NETDEV_ALIGN 32 2404 2405 static inline 2406 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2407 { 2408 return dev->prio_tc_map[prio & TC_BITMASK]; 2409 } 2410 2411 static inline 2412 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2413 { 2414 if (tc >= dev->num_tc) 2415 return -EINVAL; 2416 2417 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2418 return 0; 2419 } 2420 2421 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2422 void netdev_reset_tc(struct net_device *dev); 2423 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2424 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2425 2426 static inline 2427 int netdev_get_num_tc(struct net_device *dev) 2428 { 2429 return dev->num_tc; 2430 } 2431 2432 static inline void net_prefetch(void *p) 2433 { 2434 prefetch(p); 2435 #if L1_CACHE_BYTES < 128 2436 prefetch((u8 *)p + L1_CACHE_BYTES); 2437 #endif 2438 } 2439 2440 static inline void net_prefetchw(void *p) 2441 { 2442 prefetchw(p); 2443 #if L1_CACHE_BYTES < 128 2444 prefetchw((u8 *)p + L1_CACHE_BYTES); 2445 #endif 2446 } 2447 2448 void netdev_unbind_sb_channel(struct net_device *dev, 2449 struct net_device *sb_dev); 2450 int netdev_bind_sb_channel_queue(struct net_device *dev, 2451 struct net_device *sb_dev, 2452 u8 tc, u16 count, u16 offset); 2453 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2454 static inline int netdev_get_sb_channel(struct net_device *dev) 2455 { 2456 return max_t(int, -dev->num_tc, 0); 2457 } 2458 2459 static inline 2460 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2461 unsigned int index) 2462 { 2463 return &dev->_tx[index]; 2464 } 2465 2466 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2467 const struct sk_buff *skb) 2468 { 2469 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2470 } 2471 2472 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2473 void (*f)(struct net_device *, 2474 struct netdev_queue *, 2475 void *), 2476 void *arg) 2477 { 2478 unsigned int i; 2479 2480 for (i = 0; i < dev->num_tx_queues; i++) 2481 f(dev, &dev->_tx[i], arg); 2482 } 2483 2484 #define netdev_lockdep_set_classes(dev) \ 2485 { \ 2486 static struct lock_class_key qdisc_tx_busylock_key; \ 2487 static struct lock_class_key qdisc_xmit_lock_key; \ 2488 static struct lock_class_key dev_addr_list_lock_key; \ 2489 unsigned int i; \ 2490 \ 2491 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2492 lockdep_set_class(&(dev)->addr_list_lock, \ 2493 &dev_addr_list_lock_key); \ 2494 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2495 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2496 &qdisc_xmit_lock_key); \ 2497 } 2498 2499 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2500 struct net_device *sb_dev); 2501 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2502 struct sk_buff *skb, 2503 struct net_device *sb_dev); 2504 2505 /* returns the headroom that the master device needs to take in account 2506 * when forwarding to this dev 2507 */ 2508 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2509 { 2510 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2511 } 2512 2513 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2514 { 2515 if (dev->netdev_ops->ndo_set_rx_headroom) 2516 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2517 } 2518 2519 /* set the device rx headroom to the dev's default */ 2520 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2521 { 2522 netdev_set_rx_headroom(dev, -1); 2523 } 2524 2525 static inline void *netdev_get_ml_priv(struct net_device *dev, 2526 enum netdev_ml_priv_type type) 2527 { 2528 if (dev->ml_priv_type != type) 2529 return NULL; 2530 2531 return dev->ml_priv; 2532 } 2533 2534 static inline void netdev_set_ml_priv(struct net_device *dev, 2535 void *ml_priv, 2536 enum netdev_ml_priv_type type) 2537 { 2538 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2539 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2540 dev->ml_priv_type, type); 2541 WARN(!dev->ml_priv_type && dev->ml_priv, 2542 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2543 2544 dev->ml_priv = ml_priv; 2545 dev->ml_priv_type = type; 2546 } 2547 2548 /* 2549 * Net namespace inlines 2550 */ 2551 static inline 2552 struct net *dev_net(const struct net_device *dev) 2553 { 2554 return read_pnet(&dev->nd_net); 2555 } 2556 2557 static inline 2558 void dev_net_set(struct net_device *dev, struct net *net) 2559 { 2560 write_pnet(&dev->nd_net, net); 2561 } 2562 2563 /** 2564 * netdev_priv - access network device private data 2565 * @dev: network device 2566 * 2567 * Get network device private data 2568 */ 2569 static inline void *netdev_priv(const struct net_device *dev) 2570 { 2571 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2572 } 2573 2574 /* Set the sysfs physical device reference for the network logical device 2575 * if set prior to registration will cause a symlink during initialization. 2576 */ 2577 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2578 2579 /* Set the sysfs device type for the network logical device to allow 2580 * fine-grained identification of different network device types. For 2581 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2582 */ 2583 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2584 2585 /* Default NAPI poll() weight 2586 * Device drivers are strongly advised to not use bigger value 2587 */ 2588 #define NAPI_POLL_WEIGHT 64 2589 2590 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2591 int (*poll)(struct napi_struct *, int), int weight); 2592 2593 /** 2594 * netif_napi_add() - initialize a NAPI context 2595 * @dev: network device 2596 * @napi: NAPI context 2597 * @poll: polling function 2598 * 2599 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2600 * *any* of the other NAPI-related functions. 2601 */ 2602 static inline void 2603 netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2604 int (*poll)(struct napi_struct *, int)) 2605 { 2606 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2607 } 2608 2609 static inline void 2610 netif_napi_add_tx_weight(struct net_device *dev, 2611 struct napi_struct *napi, 2612 int (*poll)(struct napi_struct *, int), 2613 int weight) 2614 { 2615 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2616 netif_napi_add_weight(dev, napi, poll, weight); 2617 } 2618 2619 /** 2620 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2621 * @dev: network device 2622 * @napi: NAPI context 2623 * @poll: polling function 2624 * 2625 * This variant of netif_napi_add() should be used from drivers using NAPI 2626 * to exclusively poll a TX queue. 2627 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2628 */ 2629 static inline void netif_napi_add_tx(struct net_device *dev, 2630 struct napi_struct *napi, 2631 int (*poll)(struct napi_struct *, int)) 2632 { 2633 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2634 } 2635 2636 /** 2637 * __netif_napi_del - remove a NAPI context 2638 * @napi: NAPI context 2639 * 2640 * Warning: caller must observe RCU grace period before freeing memory 2641 * containing @napi. Drivers might want to call this helper to combine 2642 * all the needed RCU grace periods into a single one. 2643 */ 2644 void __netif_napi_del(struct napi_struct *napi); 2645 2646 /** 2647 * netif_napi_del - remove a NAPI context 2648 * @napi: NAPI context 2649 * 2650 * netif_napi_del() removes a NAPI context from the network device NAPI list 2651 */ 2652 static inline void netif_napi_del(struct napi_struct *napi) 2653 { 2654 __netif_napi_del(napi); 2655 synchronize_net(); 2656 } 2657 2658 struct packet_type { 2659 __be16 type; /* This is really htons(ether_type). */ 2660 bool ignore_outgoing; 2661 struct net_device *dev; /* NULL is wildcarded here */ 2662 netdevice_tracker dev_tracker; 2663 int (*func) (struct sk_buff *, 2664 struct net_device *, 2665 struct packet_type *, 2666 struct net_device *); 2667 void (*list_func) (struct list_head *, 2668 struct packet_type *, 2669 struct net_device *); 2670 bool (*id_match)(struct packet_type *ptype, 2671 struct sock *sk); 2672 struct net *af_packet_net; 2673 void *af_packet_priv; 2674 struct list_head list; 2675 }; 2676 2677 struct offload_callbacks { 2678 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2679 netdev_features_t features); 2680 struct sk_buff *(*gro_receive)(struct list_head *head, 2681 struct sk_buff *skb); 2682 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2683 }; 2684 2685 struct packet_offload { 2686 __be16 type; /* This is really htons(ether_type). */ 2687 u16 priority; 2688 struct offload_callbacks callbacks; 2689 struct list_head list; 2690 }; 2691 2692 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2693 struct pcpu_sw_netstats { 2694 u64_stats_t rx_packets; 2695 u64_stats_t rx_bytes; 2696 u64_stats_t tx_packets; 2697 u64_stats_t tx_bytes; 2698 struct u64_stats_sync syncp; 2699 } __aligned(4 * sizeof(u64)); 2700 2701 struct pcpu_lstats { 2702 u64_stats_t packets; 2703 u64_stats_t bytes; 2704 struct u64_stats_sync syncp; 2705 } __aligned(2 * sizeof(u64)); 2706 2707 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2708 2709 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2710 { 2711 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2712 2713 u64_stats_update_begin(&tstats->syncp); 2714 u64_stats_add(&tstats->rx_bytes, len); 2715 u64_stats_inc(&tstats->rx_packets); 2716 u64_stats_update_end(&tstats->syncp); 2717 } 2718 2719 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2720 unsigned int packets, 2721 unsigned int len) 2722 { 2723 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2724 2725 u64_stats_update_begin(&tstats->syncp); 2726 u64_stats_add(&tstats->tx_bytes, len); 2727 u64_stats_add(&tstats->tx_packets, packets); 2728 u64_stats_update_end(&tstats->syncp); 2729 } 2730 2731 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2732 { 2733 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2734 2735 u64_stats_update_begin(&lstats->syncp); 2736 u64_stats_add(&lstats->bytes, len); 2737 u64_stats_inc(&lstats->packets); 2738 u64_stats_update_end(&lstats->syncp); 2739 } 2740 2741 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2742 ({ \ 2743 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2744 if (pcpu_stats) { \ 2745 int __cpu; \ 2746 for_each_possible_cpu(__cpu) { \ 2747 typeof(type) *stat; \ 2748 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2749 u64_stats_init(&stat->syncp); \ 2750 } \ 2751 } \ 2752 pcpu_stats; \ 2753 }) 2754 2755 #define netdev_alloc_pcpu_stats(type) \ 2756 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2757 2758 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2759 ({ \ 2760 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2761 if (pcpu_stats) { \ 2762 int __cpu; \ 2763 for_each_possible_cpu(__cpu) { \ 2764 typeof(type) *stat; \ 2765 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2766 u64_stats_init(&stat->syncp); \ 2767 } \ 2768 } \ 2769 pcpu_stats; \ 2770 }) 2771 2772 enum netdev_lag_tx_type { 2773 NETDEV_LAG_TX_TYPE_UNKNOWN, 2774 NETDEV_LAG_TX_TYPE_RANDOM, 2775 NETDEV_LAG_TX_TYPE_BROADCAST, 2776 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2777 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2778 NETDEV_LAG_TX_TYPE_HASH, 2779 }; 2780 2781 enum netdev_lag_hash { 2782 NETDEV_LAG_HASH_NONE, 2783 NETDEV_LAG_HASH_L2, 2784 NETDEV_LAG_HASH_L34, 2785 NETDEV_LAG_HASH_L23, 2786 NETDEV_LAG_HASH_E23, 2787 NETDEV_LAG_HASH_E34, 2788 NETDEV_LAG_HASH_VLAN_SRCMAC, 2789 NETDEV_LAG_HASH_UNKNOWN, 2790 }; 2791 2792 struct netdev_lag_upper_info { 2793 enum netdev_lag_tx_type tx_type; 2794 enum netdev_lag_hash hash_type; 2795 }; 2796 2797 struct netdev_lag_lower_state_info { 2798 u8 link_up : 1, 2799 tx_enabled : 1; 2800 }; 2801 2802 #include <linux/notifier.h> 2803 2804 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2805 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2806 * adding new types. 2807 */ 2808 enum netdev_cmd { 2809 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2810 NETDEV_DOWN, 2811 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2812 detected a hardware crash and restarted 2813 - we can use this eg to kick tcp sessions 2814 once done */ 2815 NETDEV_CHANGE, /* Notify device state change */ 2816 NETDEV_REGISTER, 2817 NETDEV_UNREGISTER, 2818 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2819 NETDEV_CHANGEADDR, /* notify after the address change */ 2820 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2821 NETDEV_GOING_DOWN, 2822 NETDEV_CHANGENAME, 2823 NETDEV_FEAT_CHANGE, 2824 NETDEV_BONDING_FAILOVER, 2825 NETDEV_PRE_UP, 2826 NETDEV_PRE_TYPE_CHANGE, 2827 NETDEV_POST_TYPE_CHANGE, 2828 NETDEV_POST_INIT, 2829 NETDEV_PRE_UNINIT, 2830 NETDEV_RELEASE, 2831 NETDEV_NOTIFY_PEERS, 2832 NETDEV_JOIN, 2833 NETDEV_CHANGEUPPER, 2834 NETDEV_RESEND_IGMP, 2835 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2836 NETDEV_CHANGEINFODATA, 2837 NETDEV_BONDING_INFO, 2838 NETDEV_PRECHANGEUPPER, 2839 NETDEV_CHANGELOWERSTATE, 2840 NETDEV_UDP_TUNNEL_PUSH_INFO, 2841 NETDEV_UDP_TUNNEL_DROP_INFO, 2842 NETDEV_CHANGE_TX_QUEUE_LEN, 2843 NETDEV_CVLAN_FILTER_PUSH_INFO, 2844 NETDEV_CVLAN_FILTER_DROP_INFO, 2845 NETDEV_SVLAN_FILTER_PUSH_INFO, 2846 NETDEV_SVLAN_FILTER_DROP_INFO, 2847 NETDEV_OFFLOAD_XSTATS_ENABLE, 2848 NETDEV_OFFLOAD_XSTATS_DISABLE, 2849 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2850 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2851 NETDEV_XDP_FEAT_CHANGE, 2852 }; 2853 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2854 2855 int register_netdevice_notifier(struct notifier_block *nb); 2856 int unregister_netdevice_notifier(struct notifier_block *nb); 2857 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2858 int unregister_netdevice_notifier_net(struct net *net, 2859 struct notifier_block *nb); 2860 int register_netdevice_notifier_dev_net(struct net_device *dev, 2861 struct notifier_block *nb, 2862 struct netdev_net_notifier *nn); 2863 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2864 struct notifier_block *nb, 2865 struct netdev_net_notifier *nn); 2866 2867 struct netdev_notifier_info { 2868 struct net_device *dev; 2869 struct netlink_ext_ack *extack; 2870 }; 2871 2872 struct netdev_notifier_info_ext { 2873 struct netdev_notifier_info info; /* must be first */ 2874 union { 2875 u32 mtu; 2876 } ext; 2877 }; 2878 2879 struct netdev_notifier_change_info { 2880 struct netdev_notifier_info info; /* must be first */ 2881 unsigned int flags_changed; 2882 }; 2883 2884 struct netdev_notifier_changeupper_info { 2885 struct netdev_notifier_info info; /* must be first */ 2886 struct net_device *upper_dev; /* new upper dev */ 2887 bool master; /* is upper dev master */ 2888 bool linking; /* is the notification for link or unlink */ 2889 void *upper_info; /* upper dev info */ 2890 }; 2891 2892 struct netdev_notifier_changelowerstate_info { 2893 struct netdev_notifier_info info; /* must be first */ 2894 void *lower_state_info; /* is lower dev state */ 2895 }; 2896 2897 struct netdev_notifier_pre_changeaddr_info { 2898 struct netdev_notifier_info info; /* must be first */ 2899 const unsigned char *dev_addr; 2900 }; 2901 2902 enum netdev_offload_xstats_type { 2903 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2904 }; 2905 2906 struct netdev_notifier_offload_xstats_info { 2907 struct netdev_notifier_info info; /* must be first */ 2908 enum netdev_offload_xstats_type type; 2909 2910 union { 2911 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2912 struct netdev_notifier_offload_xstats_rd *report_delta; 2913 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2914 struct netdev_notifier_offload_xstats_ru *report_used; 2915 }; 2916 }; 2917 2918 int netdev_offload_xstats_enable(struct net_device *dev, 2919 enum netdev_offload_xstats_type type, 2920 struct netlink_ext_ack *extack); 2921 int netdev_offload_xstats_disable(struct net_device *dev, 2922 enum netdev_offload_xstats_type type); 2923 bool netdev_offload_xstats_enabled(const struct net_device *dev, 2924 enum netdev_offload_xstats_type type); 2925 int netdev_offload_xstats_get(struct net_device *dev, 2926 enum netdev_offload_xstats_type type, 2927 struct rtnl_hw_stats64 *stats, bool *used, 2928 struct netlink_ext_ack *extack); 2929 void 2930 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 2931 const struct rtnl_hw_stats64 *stats); 2932 void 2933 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 2934 void netdev_offload_xstats_push_delta(struct net_device *dev, 2935 enum netdev_offload_xstats_type type, 2936 const struct rtnl_hw_stats64 *stats); 2937 2938 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2939 struct net_device *dev) 2940 { 2941 info->dev = dev; 2942 info->extack = NULL; 2943 } 2944 2945 static inline struct net_device * 2946 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2947 { 2948 return info->dev; 2949 } 2950 2951 static inline struct netlink_ext_ack * 2952 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2953 { 2954 return info->extack; 2955 } 2956 2957 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2958 2959 2960 extern rwlock_t dev_base_lock; /* Device list lock */ 2961 2962 #define for_each_netdev(net, d) \ 2963 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2964 #define for_each_netdev_reverse(net, d) \ 2965 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2966 #define for_each_netdev_rcu(net, d) \ 2967 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2968 #define for_each_netdev_safe(net, d, n) \ 2969 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2970 #define for_each_netdev_continue(net, d) \ 2971 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2972 #define for_each_netdev_continue_reverse(net, d) \ 2973 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 2974 dev_list) 2975 #define for_each_netdev_continue_rcu(net, d) \ 2976 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2977 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2978 for_each_netdev_rcu(&init_net, slave) \ 2979 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2980 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2981 2982 static inline struct net_device *next_net_device(struct net_device *dev) 2983 { 2984 struct list_head *lh; 2985 struct net *net; 2986 2987 net = dev_net(dev); 2988 lh = dev->dev_list.next; 2989 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2990 } 2991 2992 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2993 { 2994 struct list_head *lh; 2995 struct net *net; 2996 2997 net = dev_net(dev); 2998 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2999 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3000 } 3001 3002 static inline struct net_device *first_net_device(struct net *net) 3003 { 3004 return list_empty(&net->dev_base_head) ? NULL : 3005 net_device_entry(net->dev_base_head.next); 3006 } 3007 3008 static inline struct net_device *first_net_device_rcu(struct net *net) 3009 { 3010 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3011 3012 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3013 } 3014 3015 int netdev_boot_setup_check(struct net_device *dev); 3016 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3017 const char *hwaddr); 3018 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3019 void dev_add_pack(struct packet_type *pt); 3020 void dev_remove_pack(struct packet_type *pt); 3021 void __dev_remove_pack(struct packet_type *pt); 3022 void dev_add_offload(struct packet_offload *po); 3023 void dev_remove_offload(struct packet_offload *po); 3024 3025 int dev_get_iflink(const struct net_device *dev); 3026 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3027 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3028 struct net_device_path_stack *stack); 3029 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3030 unsigned short mask); 3031 struct net_device *dev_get_by_name(struct net *net, const char *name); 3032 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3033 struct net_device *__dev_get_by_name(struct net *net, const char *name); 3034 bool netdev_name_in_use(struct net *net, const char *name); 3035 int dev_alloc_name(struct net_device *dev, const char *name); 3036 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3037 void dev_close(struct net_device *dev); 3038 void dev_close_many(struct list_head *head, bool unlink); 3039 void dev_disable_lro(struct net_device *dev); 3040 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3041 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3042 struct net_device *sb_dev); 3043 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3044 struct net_device *sb_dev); 3045 3046 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3047 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3048 3049 static inline int dev_queue_xmit(struct sk_buff *skb) 3050 { 3051 return __dev_queue_xmit(skb, NULL); 3052 } 3053 3054 static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3055 struct net_device *sb_dev) 3056 { 3057 return __dev_queue_xmit(skb, sb_dev); 3058 } 3059 3060 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3061 { 3062 int ret; 3063 3064 ret = __dev_direct_xmit(skb, queue_id); 3065 if (!dev_xmit_complete(ret)) 3066 kfree_skb(skb); 3067 return ret; 3068 } 3069 3070 int register_netdevice(struct net_device *dev); 3071 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3072 void unregister_netdevice_many(struct list_head *head); 3073 static inline void unregister_netdevice(struct net_device *dev) 3074 { 3075 unregister_netdevice_queue(dev, NULL); 3076 } 3077 3078 int netdev_refcnt_read(const struct net_device *dev); 3079 void free_netdev(struct net_device *dev); 3080 void netdev_freemem(struct net_device *dev); 3081 int init_dummy_netdev(struct net_device *dev); 3082 3083 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3084 struct sk_buff *skb, 3085 bool all_slaves); 3086 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3087 struct sock *sk); 3088 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3089 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3090 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3091 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3092 int dev_restart(struct net_device *dev); 3093 3094 3095 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3096 unsigned short type, 3097 const void *daddr, const void *saddr, 3098 unsigned int len) 3099 { 3100 if (!dev->header_ops || !dev->header_ops->create) 3101 return 0; 3102 3103 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3104 } 3105 3106 static inline int dev_parse_header(const struct sk_buff *skb, 3107 unsigned char *haddr) 3108 { 3109 const struct net_device *dev = skb->dev; 3110 3111 if (!dev->header_ops || !dev->header_ops->parse) 3112 return 0; 3113 return dev->header_ops->parse(skb, haddr); 3114 } 3115 3116 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3117 { 3118 const struct net_device *dev = skb->dev; 3119 3120 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3121 return 0; 3122 return dev->header_ops->parse_protocol(skb); 3123 } 3124 3125 /* ll_header must have at least hard_header_len allocated */ 3126 static inline bool dev_validate_header(const struct net_device *dev, 3127 char *ll_header, int len) 3128 { 3129 if (likely(len >= dev->hard_header_len)) 3130 return true; 3131 if (len < dev->min_header_len) 3132 return false; 3133 3134 if (capable(CAP_SYS_RAWIO)) { 3135 memset(ll_header + len, 0, dev->hard_header_len - len); 3136 return true; 3137 } 3138 3139 if (dev->header_ops && dev->header_ops->validate) 3140 return dev->header_ops->validate(ll_header, len); 3141 3142 return false; 3143 } 3144 3145 static inline bool dev_has_header(const struct net_device *dev) 3146 { 3147 return dev->header_ops && dev->header_ops->create; 3148 } 3149 3150 /* 3151 * Incoming packets are placed on per-CPU queues 3152 */ 3153 struct softnet_data { 3154 struct list_head poll_list; 3155 struct sk_buff_head process_queue; 3156 3157 /* stats */ 3158 unsigned int processed; 3159 unsigned int time_squeeze; 3160 #ifdef CONFIG_RPS 3161 struct softnet_data *rps_ipi_list; 3162 #endif 3163 #ifdef CONFIG_NET_FLOW_LIMIT 3164 struct sd_flow_limit __rcu *flow_limit; 3165 #endif 3166 struct Qdisc *output_queue; 3167 struct Qdisc **output_queue_tailp; 3168 struct sk_buff *completion_queue; 3169 #ifdef CONFIG_XFRM_OFFLOAD 3170 struct sk_buff_head xfrm_backlog; 3171 #endif 3172 /* written and read only by owning cpu: */ 3173 struct { 3174 u16 recursion; 3175 u8 more; 3176 #ifdef CONFIG_NET_EGRESS 3177 u8 skip_txqueue; 3178 #endif 3179 } xmit; 3180 #ifdef CONFIG_RPS 3181 /* input_queue_head should be written by cpu owning this struct, 3182 * and only read by other cpus. Worth using a cache line. 3183 */ 3184 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3185 3186 /* Elements below can be accessed between CPUs for RPS/RFS */ 3187 call_single_data_t csd ____cacheline_aligned_in_smp; 3188 struct softnet_data *rps_ipi_next; 3189 unsigned int cpu; 3190 unsigned int input_queue_tail; 3191 #endif 3192 unsigned int received_rps; 3193 unsigned int dropped; 3194 struct sk_buff_head input_pkt_queue; 3195 struct napi_struct backlog; 3196 3197 /* Another possibly contended cache line */ 3198 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3199 int defer_count; 3200 int defer_ipi_scheduled; 3201 struct sk_buff *defer_list; 3202 call_single_data_t defer_csd; 3203 }; 3204 3205 static inline void input_queue_head_incr(struct softnet_data *sd) 3206 { 3207 #ifdef CONFIG_RPS 3208 sd->input_queue_head++; 3209 #endif 3210 } 3211 3212 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3213 unsigned int *qtail) 3214 { 3215 #ifdef CONFIG_RPS 3216 *qtail = ++sd->input_queue_tail; 3217 #endif 3218 } 3219 3220 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3221 3222 static inline int dev_recursion_level(void) 3223 { 3224 return this_cpu_read(softnet_data.xmit.recursion); 3225 } 3226 3227 #define XMIT_RECURSION_LIMIT 8 3228 static inline bool dev_xmit_recursion(void) 3229 { 3230 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3231 XMIT_RECURSION_LIMIT); 3232 } 3233 3234 static inline void dev_xmit_recursion_inc(void) 3235 { 3236 __this_cpu_inc(softnet_data.xmit.recursion); 3237 } 3238 3239 static inline void dev_xmit_recursion_dec(void) 3240 { 3241 __this_cpu_dec(softnet_data.xmit.recursion); 3242 } 3243 3244 void __netif_schedule(struct Qdisc *q); 3245 void netif_schedule_queue(struct netdev_queue *txq); 3246 3247 static inline void netif_tx_schedule_all(struct net_device *dev) 3248 { 3249 unsigned int i; 3250 3251 for (i = 0; i < dev->num_tx_queues; i++) 3252 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3253 } 3254 3255 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3256 { 3257 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3258 } 3259 3260 /** 3261 * netif_start_queue - allow transmit 3262 * @dev: network device 3263 * 3264 * Allow upper layers to call the device hard_start_xmit routine. 3265 */ 3266 static inline void netif_start_queue(struct net_device *dev) 3267 { 3268 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3269 } 3270 3271 static inline void netif_tx_start_all_queues(struct net_device *dev) 3272 { 3273 unsigned int i; 3274 3275 for (i = 0; i < dev->num_tx_queues; i++) { 3276 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3277 netif_tx_start_queue(txq); 3278 } 3279 } 3280 3281 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3282 3283 /** 3284 * netif_wake_queue - restart transmit 3285 * @dev: network device 3286 * 3287 * Allow upper layers to call the device hard_start_xmit routine. 3288 * Used for flow control when transmit resources are available. 3289 */ 3290 static inline void netif_wake_queue(struct net_device *dev) 3291 { 3292 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3293 } 3294 3295 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3296 { 3297 unsigned int i; 3298 3299 for (i = 0; i < dev->num_tx_queues; i++) { 3300 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3301 netif_tx_wake_queue(txq); 3302 } 3303 } 3304 3305 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3306 { 3307 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3308 } 3309 3310 /** 3311 * netif_stop_queue - stop transmitted packets 3312 * @dev: network device 3313 * 3314 * Stop upper layers calling the device hard_start_xmit routine. 3315 * Used for flow control when transmit resources are unavailable. 3316 */ 3317 static inline void netif_stop_queue(struct net_device *dev) 3318 { 3319 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3320 } 3321 3322 void netif_tx_stop_all_queues(struct net_device *dev); 3323 3324 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3325 { 3326 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3327 } 3328 3329 /** 3330 * netif_queue_stopped - test if transmit queue is flowblocked 3331 * @dev: network device 3332 * 3333 * Test if transmit queue on device is currently unable to send. 3334 */ 3335 static inline bool netif_queue_stopped(const struct net_device *dev) 3336 { 3337 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3338 } 3339 3340 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3341 { 3342 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3343 } 3344 3345 static inline bool 3346 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3347 { 3348 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3349 } 3350 3351 static inline bool 3352 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3353 { 3354 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3355 } 3356 3357 /** 3358 * netdev_queue_set_dql_min_limit - set dql minimum limit 3359 * @dev_queue: pointer to transmit queue 3360 * @min_limit: dql minimum limit 3361 * 3362 * Forces xmit_more() to return true until the minimum threshold 3363 * defined by @min_limit is reached (or until the tx queue is 3364 * empty). Warning: to be use with care, misuse will impact the 3365 * latency. 3366 */ 3367 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3368 unsigned int min_limit) 3369 { 3370 #ifdef CONFIG_BQL 3371 dev_queue->dql.min_limit = min_limit; 3372 #endif 3373 } 3374 3375 /** 3376 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3377 * @dev_queue: pointer to transmit queue 3378 * 3379 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3380 * to give appropriate hint to the CPU. 3381 */ 3382 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3383 { 3384 #ifdef CONFIG_BQL 3385 prefetchw(&dev_queue->dql.num_queued); 3386 #endif 3387 } 3388 3389 /** 3390 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3391 * @dev_queue: pointer to transmit queue 3392 * 3393 * BQL enabled drivers might use this helper in their TX completion path, 3394 * to give appropriate hint to the CPU. 3395 */ 3396 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3397 { 3398 #ifdef CONFIG_BQL 3399 prefetchw(&dev_queue->dql.limit); 3400 #endif 3401 } 3402 3403 /** 3404 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3405 * @dev_queue: network device queue 3406 * @bytes: number of bytes queued to the device queue 3407 * 3408 * Report the number of bytes queued for sending/completion to the network 3409 * device hardware queue. @bytes should be a good approximation and should 3410 * exactly match netdev_completed_queue() @bytes. 3411 * This is typically called once per packet, from ndo_start_xmit(). 3412 */ 3413 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3414 unsigned int bytes) 3415 { 3416 #ifdef CONFIG_BQL 3417 dql_queued(&dev_queue->dql, bytes); 3418 3419 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3420 return; 3421 3422 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3423 3424 /* 3425 * The XOFF flag must be set before checking the dql_avail below, 3426 * because in netdev_tx_completed_queue we update the dql_completed 3427 * before checking the XOFF flag. 3428 */ 3429 smp_mb(); 3430 3431 /* check again in case another CPU has just made room avail */ 3432 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3433 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3434 #endif 3435 } 3436 3437 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3438 * that they should not test BQL status themselves. 3439 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3440 * skb of a batch. 3441 * Returns true if the doorbell must be used to kick the NIC. 3442 */ 3443 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3444 unsigned int bytes, 3445 bool xmit_more) 3446 { 3447 if (xmit_more) { 3448 #ifdef CONFIG_BQL 3449 dql_queued(&dev_queue->dql, bytes); 3450 #endif 3451 return netif_tx_queue_stopped(dev_queue); 3452 } 3453 netdev_tx_sent_queue(dev_queue, bytes); 3454 return true; 3455 } 3456 3457 /** 3458 * netdev_sent_queue - report the number of bytes queued to hardware 3459 * @dev: network device 3460 * @bytes: number of bytes queued to the hardware device queue 3461 * 3462 * Report the number of bytes queued for sending/completion to the network 3463 * device hardware queue#0. @bytes should be a good approximation and should 3464 * exactly match netdev_completed_queue() @bytes. 3465 * This is typically called once per packet, from ndo_start_xmit(). 3466 */ 3467 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3468 { 3469 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3470 } 3471 3472 static inline bool __netdev_sent_queue(struct net_device *dev, 3473 unsigned int bytes, 3474 bool xmit_more) 3475 { 3476 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3477 xmit_more); 3478 } 3479 3480 /** 3481 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3482 * @dev_queue: network device queue 3483 * @pkts: number of packets (currently ignored) 3484 * @bytes: number of bytes dequeued from the device queue 3485 * 3486 * Must be called at most once per TX completion round (and not per 3487 * individual packet), so that BQL can adjust its limits appropriately. 3488 */ 3489 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3490 unsigned int pkts, unsigned int bytes) 3491 { 3492 #ifdef CONFIG_BQL 3493 if (unlikely(!bytes)) 3494 return; 3495 3496 dql_completed(&dev_queue->dql, bytes); 3497 3498 /* 3499 * Without the memory barrier there is a small possiblity that 3500 * netdev_tx_sent_queue will miss the update and cause the queue to 3501 * be stopped forever 3502 */ 3503 smp_mb(); 3504 3505 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3506 return; 3507 3508 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3509 netif_schedule_queue(dev_queue); 3510 #endif 3511 } 3512 3513 /** 3514 * netdev_completed_queue - report bytes and packets completed by device 3515 * @dev: network device 3516 * @pkts: actual number of packets sent over the medium 3517 * @bytes: actual number of bytes sent over the medium 3518 * 3519 * Report the number of bytes and packets transmitted by the network device 3520 * hardware queue over the physical medium, @bytes must exactly match the 3521 * @bytes amount passed to netdev_sent_queue() 3522 */ 3523 static inline void netdev_completed_queue(struct net_device *dev, 3524 unsigned int pkts, unsigned int bytes) 3525 { 3526 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3527 } 3528 3529 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3530 { 3531 #ifdef CONFIG_BQL 3532 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3533 dql_reset(&q->dql); 3534 #endif 3535 } 3536 3537 /** 3538 * netdev_reset_queue - reset the packets and bytes count of a network device 3539 * @dev_queue: network device 3540 * 3541 * Reset the bytes and packet count of a network device and clear the 3542 * software flow control OFF bit for this network device 3543 */ 3544 static inline void netdev_reset_queue(struct net_device *dev_queue) 3545 { 3546 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3547 } 3548 3549 /** 3550 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3551 * @dev: network device 3552 * @queue_index: given tx queue index 3553 * 3554 * Returns 0 if given tx queue index >= number of device tx queues, 3555 * otherwise returns the originally passed tx queue index. 3556 */ 3557 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3558 { 3559 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3560 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3561 dev->name, queue_index, 3562 dev->real_num_tx_queues); 3563 return 0; 3564 } 3565 3566 return queue_index; 3567 } 3568 3569 /** 3570 * netif_running - test if up 3571 * @dev: network device 3572 * 3573 * Test if the device has been brought up. 3574 */ 3575 static inline bool netif_running(const struct net_device *dev) 3576 { 3577 return test_bit(__LINK_STATE_START, &dev->state); 3578 } 3579 3580 /* 3581 * Routines to manage the subqueues on a device. We only need start, 3582 * stop, and a check if it's stopped. All other device management is 3583 * done at the overall netdevice level. 3584 * Also test the device if we're multiqueue. 3585 */ 3586 3587 /** 3588 * netif_start_subqueue - allow sending packets on subqueue 3589 * @dev: network device 3590 * @queue_index: sub queue index 3591 * 3592 * Start individual transmit queue of a device with multiple transmit queues. 3593 */ 3594 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3595 { 3596 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3597 3598 netif_tx_start_queue(txq); 3599 } 3600 3601 /** 3602 * netif_stop_subqueue - stop sending packets on subqueue 3603 * @dev: network device 3604 * @queue_index: sub queue index 3605 * 3606 * Stop individual transmit queue of a device with multiple transmit queues. 3607 */ 3608 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3609 { 3610 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3611 netif_tx_stop_queue(txq); 3612 } 3613 3614 /** 3615 * __netif_subqueue_stopped - test status of subqueue 3616 * @dev: network device 3617 * @queue_index: sub queue index 3618 * 3619 * Check individual transmit queue of a device with multiple transmit queues. 3620 */ 3621 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3622 u16 queue_index) 3623 { 3624 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3625 3626 return netif_tx_queue_stopped(txq); 3627 } 3628 3629 /** 3630 * netif_subqueue_stopped - test status of subqueue 3631 * @dev: network device 3632 * @skb: sub queue buffer pointer 3633 * 3634 * Check individual transmit queue of a device with multiple transmit queues. 3635 */ 3636 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3637 struct sk_buff *skb) 3638 { 3639 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3640 } 3641 3642 /** 3643 * netif_wake_subqueue - allow sending packets on subqueue 3644 * @dev: network device 3645 * @queue_index: sub queue index 3646 * 3647 * Resume individual transmit queue of a device with multiple transmit queues. 3648 */ 3649 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3650 { 3651 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3652 3653 netif_tx_wake_queue(txq); 3654 } 3655 3656 #ifdef CONFIG_XPS 3657 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3658 u16 index); 3659 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3660 u16 index, enum xps_map_type type); 3661 3662 /** 3663 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3664 * @j: CPU/Rx queue index 3665 * @mask: bitmask of all cpus/rx queues 3666 * @nr_bits: number of bits in the bitmask 3667 * 3668 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3669 */ 3670 static inline bool netif_attr_test_mask(unsigned long j, 3671 const unsigned long *mask, 3672 unsigned int nr_bits) 3673 { 3674 cpu_max_bits_warn(j, nr_bits); 3675 return test_bit(j, mask); 3676 } 3677 3678 /** 3679 * netif_attr_test_online - Test for online CPU/Rx queue 3680 * @j: CPU/Rx queue index 3681 * @online_mask: bitmask for CPUs/Rx queues that are online 3682 * @nr_bits: number of bits in the bitmask 3683 * 3684 * Returns true if a CPU/Rx queue is online. 3685 */ 3686 static inline bool netif_attr_test_online(unsigned long j, 3687 const unsigned long *online_mask, 3688 unsigned int nr_bits) 3689 { 3690 cpu_max_bits_warn(j, nr_bits); 3691 3692 if (online_mask) 3693 return test_bit(j, online_mask); 3694 3695 return (j < nr_bits); 3696 } 3697 3698 /** 3699 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3700 * @n: CPU/Rx queue index 3701 * @srcp: the cpumask/Rx queue mask pointer 3702 * @nr_bits: number of bits in the bitmask 3703 * 3704 * Returns >= nr_bits if no further CPUs/Rx queues set. 3705 */ 3706 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3707 unsigned int nr_bits) 3708 { 3709 /* -1 is a legal arg here. */ 3710 if (n != -1) 3711 cpu_max_bits_warn(n, nr_bits); 3712 3713 if (srcp) 3714 return find_next_bit(srcp, nr_bits, n + 1); 3715 3716 return n + 1; 3717 } 3718 3719 /** 3720 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3721 * @n: CPU/Rx queue index 3722 * @src1p: the first CPUs/Rx queues mask pointer 3723 * @src2p: the second CPUs/Rx queues mask pointer 3724 * @nr_bits: number of bits in the bitmask 3725 * 3726 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3727 */ 3728 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3729 const unsigned long *src2p, 3730 unsigned int nr_bits) 3731 { 3732 /* -1 is a legal arg here. */ 3733 if (n != -1) 3734 cpu_max_bits_warn(n, nr_bits); 3735 3736 if (src1p && src2p) 3737 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3738 else if (src1p) 3739 return find_next_bit(src1p, nr_bits, n + 1); 3740 else if (src2p) 3741 return find_next_bit(src2p, nr_bits, n + 1); 3742 3743 return n + 1; 3744 } 3745 #else 3746 static inline int netif_set_xps_queue(struct net_device *dev, 3747 const struct cpumask *mask, 3748 u16 index) 3749 { 3750 return 0; 3751 } 3752 3753 static inline int __netif_set_xps_queue(struct net_device *dev, 3754 const unsigned long *mask, 3755 u16 index, enum xps_map_type type) 3756 { 3757 return 0; 3758 } 3759 #endif 3760 3761 /** 3762 * netif_is_multiqueue - test if device has multiple transmit queues 3763 * @dev: network device 3764 * 3765 * Check if device has multiple transmit queues 3766 */ 3767 static inline bool netif_is_multiqueue(const struct net_device *dev) 3768 { 3769 return dev->num_tx_queues > 1; 3770 } 3771 3772 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3773 3774 #ifdef CONFIG_SYSFS 3775 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3776 #else 3777 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3778 unsigned int rxqs) 3779 { 3780 dev->real_num_rx_queues = rxqs; 3781 return 0; 3782 } 3783 #endif 3784 int netif_set_real_num_queues(struct net_device *dev, 3785 unsigned int txq, unsigned int rxq); 3786 3787 static inline struct netdev_rx_queue * 3788 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3789 { 3790 return dev->_rx + rxq; 3791 } 3792 3793 #ifdef CONFIG_SYSFS 3794 static inline unsigned int get_netdev_rx_queue_index( 3795 struct netdev_rx_queue *queue) 3796 { 3797 struct net_device *dev = queue->dev; 3798 int index = queue - dev->_rx; 3799 3800 BUG_ON(index >= dev->num_rx_queues); 3801 return index; 3802 } 3803 #endif 3804 3805 int netif_get_num_default_rss_queues(void); 3806 3807 enum skb_free_reason { 3808 SKB_REASON_CONSUMED, 3809 SKB_REASON_DROPPED, 3810 }; 3811 3812 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3813 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3814 3815 /* 3816 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3817 * interrupt context or with hardware interrupts being disabled. 3818 * (in_hardirq() || irqs_disabled()) 3819 * 3820 * We provide four helpers that can be used in following contexts : 3821 * 3822 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3823 * replacing kfree_skb(skb) 3824 * 3825 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3826 * Typically used in place of consume_skb(skb) in TX completion path 3827 * 3828 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3829 * replacing kfree_skb(skb) 3830 * 3831 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3832 * and consumed a packet. Used in place of consume_skb(skb) 3833 */ 3834 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3835 { 3836 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3837 } 3838 3839 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3840 { 3841 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3842 } 3843 3844 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3845 { 3846 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3847 } 3848 3849 static inline void dev_consume_skb_any(struct sk_buff *skb) 3850 { 3851 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3852 } 3853 3854 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3855 struct bpf_prog *xdp_prog); 3856 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3857 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3858 int netif_rx(struct sk_buff *skb); 3859 int __netif_rx(struct sk_buff *skb); 3860 3861 int netif_receive_skb(struct sk_buff *skb); 3862 int netif_receive_skb_core(struct sk_buff *skb); 3863 void netif_receive_skb_list_internal(struct list_head *head); 3864 void netif_receive_skb_list(struct list_head *head); 3865 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3866 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3867 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3868 void napi_get_frags_check(struct napi_struct *napi); 3869 gro_result_t napi_gro_frags(struct napi_struct *napi); 3870 struct packet_offload *gro_find_receive_by_type(__be16 type); 3871 struct packet_offload *gro_find_complete_by_type(__be16 type); 3872 3873 static inline void napi_free_frags(struct napi_struct *napi) 3874 { 3875 kfree_skb(napi->skb); 3876 napi->skb = NULL; 3877 } 3878 3879 bool netdev_is_rx_handler_busy(struct net_device *dev); 3880 int netdev_rx_handler_register(struct net_device *dev, 3881 rx_handler_func_t *rx_handler, 3882 void *rx_handler_data); 3883 void netdev_rx_handler_unregister(struct net_device *dev); 3884 3885 bool dev_valid_name(const char *name); 3886 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3887 { 3888 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3889 } 3890 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3891 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3892 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3893 void __user *data, bool *need_copyout); 3894 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3895 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3896 unsigned int dev_get_flags(const struct net_device *); 3897 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3898 struct netlink_ext_ack *extack); 3899 int dev_change_flags(struct net_device *dev, unsigned int flags, 3900 struct netlink_ext_ack *extack); 3901 int dev_set_alias(struct net_device *, const char *, size_t); 3902 int dev_get_alias(const struct net_device *, char *, size_t); 3903 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3904 const char *pat, int new_ifindex); 3905 static inline 3906 int dev_change_net_namespace(struct net_device *dev, struct net *net, 3907 const char *pat) 3908 { 3909 return __dev_change_net_namespace(dev, net, pat, 0); 3910 } 3911 int __dev_set_mtu(struct net_device *, int); 3912 int dev_set_mtu(struct net_device *, int); 3913 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3914 struct netlink_ext_ack *extack); 3915 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3916 struct netlink_ext_ack *extack); 3917 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3918 struct netlink_ext_ack *extack); 3919 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3920 int dev_get_port_parent_id(struct net_device *dev, 3921 struct netdev_phys_item_id *ppid, bool recurse); 3922 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3923 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3924 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3925 struct netdev_queue *txq, int *ret); 3926 3927 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3928 u8 dev_xdp_prog_count(struct net_device *dev); 3929 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3930 3931 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3932 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3933 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3934 bool is_skb_forwardable(const struct net_device *dev, 3935 const struct sk_buff *skb); 3936 3937 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 3938 const struct sk_buff *skb, 3939 const bool check_mtu) 3940 { 3941 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 3942 unsigned int len; 3943 3944 if (!(dev->flags & IFF_UP)) 3945 return false; 3946 3947 if (!check_mtu) 3948 return true; 3949 3950 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 3951 if (skb->len <= len) 3952 return true; 3953 3954 /* if TSO is enabled, we don't care about the length as the packet 3955 * could be forwarded without being segmented before 3956 */ 3957 if (skb_is_gso(skb)) 3958 return true; 3959 3960 return false; 3961 } 3962 3963 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev); 3964 3965 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev) 3966 { 3967 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 3968 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 3969 3970 if (likely(p)) 3971 return p; 3972 3973 return netdev_core_stats_alloc(dev); 3974 } 3975 3976 #define DEV_CORE_STATS_INC(FIELD) \ 3977 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 3978 { \ 3979 struct net_device_core_stats __percpu *p; \ 3980 \ 3981 p = dev_core_stats(dev); \ 3982 if (p) \ 3983 this_cpu_inc(p->FIELD); \ 3984 } 3985 DEV_CORE_STATS_INC(rx_dropped) 3986 DEV_CORE_STATS_INC(tx_dropped) 3987 DEV_CORE_STATS_INC(rx_nohandler) 3988 DEV_CORE_STATS_INC(rx_otherhost_dropped) 3989 3990 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3991 struct sk_buff *skb, 3992 const bool check_mtu) 3993 { 3994 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3995 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 3996 dev_core_stats_rx_dropped_inc(dev); 3997 kfree_skb(skb); 3998 return NET_RX_DROP; 3999 } 4000 4001 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4002 skb->priority = 0; 4003 return 0; 4004 } 4005 4006 bool dev_nit_active(struct net_device *dev); 4007 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4008 4009 static inline void __dev_put(struct net_device *dev) 4010 { 4011 if (dev) { 4012 #ifdef CONFIG_PCPU_DEV_REFCNT 4013 this_cpu_dec(*dev->pcpu_refcnt); 4014 #else 4015 refcount_dec(&dev->dev_refcnt); 4016 #endif 4017 } 4018 } 4019 4020 static inline void __dev_hold(struct net_device *dev) 4021 { 4022 if (dev) { 4023 #ifdef CONFIG_PCPU_DEV_REFCNT 4024 this_cpu_inc(*dev->pcpu_refcnt); 4025 #else 4026 refcount_inc(&dev->dev_refcnt); 4027 #endif 4028 } 4029 } 4030 4031 static inline void __netdev_tracker_alloc(struct net_device *dev, 4032 netdevice_tracker *tracker, 4033 gfp_t gfp) 4034 { 4035 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4036 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4037 #endif 4038 } 4039 4040 /* netdev_tracker_alloc() can upgrade a prior untracked reference 4041 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4042 */ 4043 static inline void netdev_tracker_alloc(struct net_device *dev, 4044 netdevice_tracker *tracker, gfp_t gfp) 4045 { 4046 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4047 refcount_dec(&dev->refcnt_tracker.no_tracker); 4048 __netdev_tracker_alloc(dev, tracker, gfp); 4049 #endif 4050 } 4051 4052 static inline void netdev_tracker_free(struct net_device *dev, 4053 netdevice_tracker *tracker) 4054 { 4055 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4056 ref_tracker_free(&dev->refcnt_tracker, tracker); 4057 #endif 4058 } 4059 4060 static inline void netdev_hold(struct net_device *dev, 4061 netdevice_tracker *tracker, gfp_t gfp) 4062 { 4063 if (dev) { 4064 __dev_hold(dev); 4065 __netdev_tracker_alloc(dev, tracker, gfp); 4066 } 4067 } 4068 4069 static inline void netdev_put(struct net_device *dev, 4070 netdevice_tracker *tracker) 4071 { 4072 if (dev) { 4073 netdev_tracker_free(dev, tracker); 4074 __dev_put(dev); 4075 } 4076 } 4077 4078 /** 4079 * dev_hold - get reference to device 4080 * @dev: network device 4081 * 4082 * Hold reference to device to keep it from being freed. 4083 * Try using netdev_hold() instead. 4084 */ 4085 static inline void dev_hold(struct net_device *dev) 4086 { 4087 netdev_hold(dev, NULL, GFP_ATOMIC); 4088 } 4089 4090 /** 4091 * dev_put - release reference to device 4092 * @dev: network device 4093 * 4094 * Release reference to device to allow it to be freed. 4095 * Try using netdev_put() instead. 4096 */ 4097 static inline void dev_put(struct net_device *dev) 4098 { 4099 netdev_put(dev, NULL); 4100 } 4101 4102 static inline void netdev_ref_replace(struct net_device *odev, 4103 struct net_device *ndev, 4104 netdevice_tracker *tracker, 4105 gfp_t gfp) 4106 { 4107 if (odev) 4108 netdev_tracker_free(odev, tracker); 4109 4110 __dev_hold(ndev); 4111 __dev_put(odev); 4112 4113 if (ndev) 4114 __netdev_tracker_alloc(ndev, tracker, gfp); 4115 } 4116 4117 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4118 * and _off may be called from IRQ context, but it is caller 4119 * who is responsible for serialization of these calls. 4120 * 4121 * The name carrier is inappropriate, these functions should really be 4122 * called netif_lowerlayer_*() because they represent the state of any 4123 * kind of lower layer not just hardware media. 4124 */ 4125 void linkwatch_fire_event(struct net_device *dev); 4126 4127 /** 4128 * netif_carrier_ok - test if carrier present 4129 * @dev: network device 4130 * 4131 * Check if carrier is present on device 4132 */ 4133 static inline bool netif_carrier_ok(const struct net_device *dev) 4134 { 4135 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4136 } 4137 4138 unsigned long dev_trans_start(struct net_device *dev); 4139 4140 void __netdev_watchdog_up(struct net_device *dev); 4141 4142 void netif_carrier_on(struct net_device *dev); 4143 void netif_carrier_off(struct net_device *dev); 4144 void netif_carrier_event(struct net_device *dev); 4145 4146 /** 4147 * netif_dormant_on - mark device as dormant. 4148 * @dev: network device 4149 * 4150 * Mark device as dormant (as per RFC2863). 4151 * 4152 * The dormant state indicates that the relevant interface is not 4153 * actually in a condition to pass packets (i.e., it is not 'up') but is 4154 * in a "pending" state, waiting for some external event. For "on- 4155 * demand" interfaces, this new state identifies the situation where the 4156 * interface is waiting for events to place it in the up state. 4157 */ 4158 static inline void netif_dormant_on(struct net_device *dev) 4159 { 4160 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4161 linkwatch_fire_event(dev); 4162 } 4163 4164 /** 4165 * netif_dormant_off - set device as not dormant. 4166 * @dev: network device 4167 * 4168 * Device is not in dormant state. 4169 */ 4170 static inline void netif_dormant_off(struct net_device *dev) 4171 { 4172 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4173 linkwatch_fire_event(dev); 4174 } 4175 4176 /** 4177 * netif_dormant - test if device is dormant 4178 * @dev: network device 4179 * 4180 * Check if device is dormant. 4181 */ 4182 static inline bool netif_dormant(const struct net_device *dev) 4183 { 4184 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4185 } 4186 4187 4188 /** 4189 * netif_testing_on - mark device as under test. 4190 * @dev: network device 4191 * 4192 * Mark device as under test (as per RFC2863). 4193 * 4194 * The testing state indicates that some test(s) must be performed on 4195 * the interface. After completion, of the test, the interface state 4196 * will change to up, dormant, or down, as appropriate. 4197 */ 4198 static inline void netif_testing_on(struct net_device *dev) 4199 { 4200 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4201 linkwatch_fire_event(dev); 4202 } 4203 4204 /** 4205 * netif_testing_off - set device as not under test. 4206 * @dev: network device 4207 * 4208 * Device is not in testing state. 4209 */ 4210 static inline void netif_testing_off(struct net_device *dev) 4211 { 4212 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4213 linkwatch_fire_event(dev); 4214 } 4215 4216 /** 4217 * netif_testing - test if device is under test 4218 * @dev: network device 4219 * 4220 * Check if device is under test 4221 */ 4222 static inline bool netif_testing(const struct net_device *dev) 4223 { 4224 return test_bit(__LINK_STATE_TESTING, &dev->state); 4225 } 4226 4227 4228 /** 4229 * netif_oper_up - test if device is operational 4230 * @dev: network device 4231 * 4232 * Check if carrier is operational 4233 */ 4234 static inline bool netif_oper_up(const struct net_device *dev) 4235 { 4236 return (dev->operstate == IF_OPER_UP || 4237 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4238 } 4239 4240 /** 4241 * netif_device_present - is device available or removed 4242 * @dev: network device 4243 * 4244 * Check if device has not been removed from system. 4245 */ 4246 static inline bool netif_device_present(const struct net_device *dev) 4247 { 4248 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4249 } 4250 4251 void netif_device_detach(struct net_device *dev); 4252 4253 void netif_device_attach(struct net_device *dev); 4254 4255 /* 4256 * Network interface message level settings 4257 */ 4258 4259 enum { 4260 NETIF_MSG_DRV_BIT, 4261 NETIF_MSG_PROBE_BIT, 4262 NETIF_MSG_LINK_BIT, 4263 NETIF_MSG_TIMER_BIT, 4264 NETIF_MSG_IFDOWN_BIT, 4265 NETIF_MSG_IFUP_BIT, 4266 NETIF_MSG_RX_ERR_BIT, 4267 NETIF_MSG_TX_ERR_BIT, 4268 NETIF_MSG_TX_QUEUED_BIT, 4269 NETIF_MSG_INTR_BIT, 4270 NETIF_MSG_TX_DONE_BIT, 4271 NETIF_MSG_RX_STATUS_BIT, 4272 NETIF_MSG_PKTDATA_BIT, 4273 NETIF_MSG_HW_BIT, 4274 NETIF_MSG_WOL_BIT, 4275 4276 /* When you add a new bit above, update netif_msg_class_names array 4277 * in net/ethtool/common.c 4278 */ 4279 NETIF_MSG_CLASS_COUNT, 4280 }; 4281 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4282 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4283 4284 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4285 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4286 4287 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4288 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4289 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4290 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4291 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4292 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4293 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4294 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4295 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4296 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4297 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4298 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4299 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4300 #define NETIF_MSG_HW __NETIF_MSG(HW) 4301 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4302 4303 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4304 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4305 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4306 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4307 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4308 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4309 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4310 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4311 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4312 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4313 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4314 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4315 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4316 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4317 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4318 4319 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4320 { 4321 /* use default */ 4322 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4323 return default_msg_enable_bits; 4324 if (debug_value == 0) /* no output */ 4325 return 0; 4326 /* set low N bits */ 4327 return (1U << debug_value) - 1; 4328 } 4329 4330 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4331 { 4332 spin_lock(&txq->_xmit_lock); 4333 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4334 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4335 } 4336 4337 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4338 { 4339 __acquire(&txq->_xmit_lock); 4340 return true; 4341 } 4342 4343 static inline void __netif_tx_release(struct netdev_queue *txq) 4344 { 4345 __release(&txq->_xmit_lock); 4346 } 4347 4348 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4349 { 4350 spin_lock_bh(&txq->_xmit_lock); 4351 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4352 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4353 } 4354 4355 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4356 { 4357 bool ok = spin_trylock(&txq->_xmit_lock); 4358 4359 if (likely(ok)) { 4360 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4361 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4362 } 4363 return ok; 4364 } 4365 4366 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4367 { 4368 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4369 WRITE_ONCE(txq->xmit_lock_owner, -1); 4370 spin_unlock(&txq->_xmit_lock); 4371 } 4372 4373 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4374 { 4375 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4376 WRITE_ONCE(txq->xmit_lock_owner, -1); 4377 spin_unlock_bh(&txq->_xmit_lock); 4378 } 4379 4380 /* 4381 * txq->trans_start can be read locklessly from dev_watchdog() 4382 */ 4383 static inline void txq_trans_update(struct netdev_queue *txq) 4384 { 4385 if (txq->xmit_lock_owner != -1) 4386 WRITE_ONCE(txq->trans_start, jiffies); 4387 } 4388 4389 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4390 { 4391 unsigned long now = jiffies; 4392 4393 if (READ_ONCE(txq->trans_start) != now) 4394 WRITE_ONCE(txq->trans_start, now); 4395 } 4396 4397 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4398 static inline void netif_trans_update(struct net_device *dev) 4399 { 4400 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4401 4402 txq_trans_cond_update(txq); 4403 } 4404 4405 /** 4406 * netif_tx_lock - grab network device transmit lock 4407 * @dev: network device 4408 * 4409 * Get network device transmit lock 4410 */ 4411 void netif_tx_lock(struct net_device *dev); 4412 4413 static inline void netif_tx_lock_bh(struct net_device *dev) 4414 { 4415 local_bh_disable(); 4416 netif_tx_lock(dev); 4417 } 4418 4419 void netif_tx_unlock(struct net_device *dev); 4420 4421 static inline void netif_tx_unlock_bh(struct net_device *dev) 4422 { 4423 netif_tx_unlock(dev); 4424 local_bh_enable(); 4425 } 4426 4427 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4428 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4429 __netif_tx_lock(txq, cpu); \ 4430 } else { \ 4431 __netif_tx_acquire(txq); \ 4432 } \ 4433 } 4434 4435 #define HARD_TX_TRYLOCK(dev, txq) \ 4436 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4437 __netif_tx_trylock(txq) : \ 4438 __netif_tx_acquire(txq)) 4439 4440 #define HARD_TX_UNLOCK(dev, txq) { \ 4441 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4442 __netif_tx_unlock(txq); \ 4443 } else { \ 4444 __netif_tx_release(txq); \ 4445 } \ 4446 } 4447 4448 static inline void netif_tx_disable(struct net_device *dev) 4449 { 4450 unsigned int i; 4451 int cpu; 4452 4453 local_bh_disable(); 4454 cpu = smp_processor_id(); 4455 spin_lock(&dev->tx_global_lock); 4456 for (i = 0; i < dev->num_tx_queues; i++) { 4457 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4458 4459 __netif_tx_lock(txq, cpu); 4460 netif_tx_stop_queue(txq); 4461 __netif_tx_unlock(txq); 4462 } 4463 spin_unlock(&dev->tx_global_lock); 4464 local_bh_enable(); 4465 } 4466 4467 static inline void netif_addr_lock(struct net_device *dev) 4468 { 4469 unsigned char nest_level = 0; 4470 4471 #ifdef CONFIG_LOCKDEP 4472 nest_level = dev->nested_level; 4473 #endif 4474 spin_lock_nested(&dev->addr_list_lock, nest_level); 4475 } 4476 4477 static inline void netif_addr_lock_bh(struct net_device *dev) 4478 { 4479 unsigned char nest_level = 0; 4480 4481 #ifdef CONFIG_LOCKDEP 4482 nest_level = dev->nested_level; 4483 #endif 4484 local_bh_disable(); 4485 spin_lock_nested(&dev->addr_list_lock, nest_level); 4486 } 4487 4488 static inline void netif_addr_unlock(struct net_device *dev) 4489 { 4490 spin_unlock(&dev->addr_list_lock); 4491 } 4492 4493 static inline void netif_addr_unlock_bh(struct net_device *dev) 4494 { 4495 spin_unlock_bh(&dev->addr_list_lock); 4496 } 4497 4498 /* 4499 * dev_addrs walker. Should be used only for read access. Call with 4500 * rcu_read_lock held. 4501 */ 4502 #define for_each_dev_addr(dev, ha) \ 4503 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4504 4505 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4506 4507 void ether_setup(struct net_device *dev); 4508 4509 /* Support for loadable net-drivers */ 4510 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4511 unsigned char name_assign_type, 4512 void (*setup)(struct net_device *), 4513 unsigned int txqs, unsigned int rxqs); 4514 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4515 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4516 4517 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4518 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4519 count) 4520 4521 int register_netdev(struct net_device *dev); 4522 void unregister_netdev(struct net_device *dev); 4523 4524 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4525 4526 /* General hardware address lists handling functions */ 4527 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4528 struct netdev_hw_addr_list *from_list, int addr_len); 4529 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4530 struct netdev_hw_addr_list *from_list, int addr_len); 4531 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4532 struct net_device *dev, 4533 int (*sync)(struct net_device *, const unsigned char *), 4534 int (*unsync)(struct net_device *, 4535 const unsigned char *)); 4536 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4537 struct net_device *dev, 4538 int (*sync)(struct net_device *, 4539 const unsigned char *, int), 4540 int (*unsync)(struct net_device *, 4541 const unsigned char *, int)); 4542 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4543 struct net_device *dev, 4544 int (*unsync)(struct net_device *, 4545 const unsigned char *, int)); 4546 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4547 struct net_device *dev, 4548 int (*unsync)(struct net_device *, 4549 const unsigned char *)); 4550 void __hw_addr_init(struct netdev_hw_addr_list *list); 4551 4552 /* Functions used for device addresses handling */ 4553 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4554 const void *addr, size_t len); 4555 4556 static inline void 4557 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4558 { 4559 dev_addr_mod(dev, 0, addr, len); 4560 } 4561 4562 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4563 { 4564 __dev_addr_set(dev, addr, dev->addr_len); 4565 } 4566 4567 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4568 unsigned char addr_type); 4569 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4570 unsigned char addr_type); 4571 4572 /* Functions used for unicast addresses handling */ 4573 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4574 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4575 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4576 int dev_uc_sync(struct net_device *to, struct net_device *from); 4577 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4578 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4579 void dev_uc_flush(struct net_device *dev); 4580 void dev_uc_init(struct net_device *dev); 4581 4582 /** 4583 * __dev_uc_sync - Synchonize device's unicast list 4584 * @dev: device to sync 4585 * @sync: function to call if address should be added 4586 * @unsync: function to call if address should be removed 4587 * 4588 * Add newly added addresses to the interface, and release 4589 * addresses that have been deleted. 4590 */ 4591 static inline int __dev_uc_sync(struct net_device *dev, 4592 int (*sync)(struct net_device *, 4593 const unsigned char *), 4594 int (*unsync)(struct net_device *, 4595 const unsigned char *)) 4596 { 4597 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4598 } 4599 4600 /** 4601 * __dev_uc_unsync - Remove synchronized addresses from device 4602 * @dev: device to sync 4603 * @unsync: function to call if address should be removed 4604 * 4605 * Remove all addresses that were added to the device by dev_uc_sync(). 4606 */ 4607 static inline void __dev_uc_unsync(struct net_device *dev, 4608 int (*unsync)(struct net_device *, 4609 const unsigned char *)) 4610 { 4611 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4612 } 4613 4614 /* Functions used for multicast addresses handling */ 4615 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4616 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4617 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4618 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4619 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4620 int dev_mc_sync(struct net_device *to, struct net_device *from); 4621 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4622 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4623 void dev_mc_flush(struct net_device *dev); 4624 void dev_mc_init(struct net_device *dev); 4625 4626 /** 4627 * __dev_mc_sync - Synchonize device's multicast list 4628 * @dev: device to sync 4629 * @sync: function to call if address should be added 4630 * @unsync: function to call if address should be removed 4631 * 4632 * Add newly added addresses to the interface, and release 4633 * addresses that have been deleted. 4634 */ 4635 static inline int __dev_mc_sync(struct net_device *dev, 4636 int (*sync)(struct net_device *, 4637 const unsigned char *), 4638 int (*unsync)(struct net_device *, 4639 const unsigned char *)) 4640 { 4641 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4642 } 4643 4644 /** 4645 * __dev_mc_unsync - Remove synchronized addresses from device 4646 * @dev: device to sync 4647 * @unsync: function to call if address should be removed 4648 * 4649 * Remove all addresses that were added to the device by dev_mc_sync(). 4650 */ 4651 static inline void __dev_mc_unsync(struct net_device *dev, 4652 int (*unsync)(struct net_device *, 4653 const unsigned char *)) 4654 { 4655 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4656 } 4657 4658 /* Functions used for secondary unicast and multicast support */ 4659 void dev_set_rx_mode(struct net_device *dev); 4660 int dev_set_promiscuity(struct net_device *dev, int inc); 4661 int dev_set_allmulti(struct net_device *dev, int inc); 4662 void netdev_state_change(struct net_device *dev); 4663 void __netdev_notify_peers(struct net_device *dev); 4664 void netdev_notify_peers(struct net_device *dev); 4665 void netdev_features_change(struct net_device *dev); 4666 /* Load a device via the kmod */ 4667 void dev_load(struct net *net, const char *name); 4668 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4669 struct rtnl_link_stats64 *storage); 4670 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4671 const struct net_device_stats *netdev_stats); 4672 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4673 const struct pcpu_sw_netstats __percpu *netstats); 4674 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4675 4676 extern int netdev_max_backlog; 4677 extern int dev_rx_weight; 4678 extern int dev_tx_weight; 4679 extern int gro_normal_batch; 4680 4681 enum { 4682 NESTED_SYNC_IMM_BIT, 4683 NESTED_SYNC_TODO_BIT, 4684 }; 4685 4686 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4687 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4688 4689 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4690 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4691 4692 struct netdev_nested_priv { 4693 unsigned char flags; 4694 void *data; 4695 }; 4696 4697 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4698 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4699 struct list_head **iter); 4700 4701 /* iterate through upper list, must be called under RCU read lock */ 4702 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4703 for (iter = &(dev)->adj_list.upper, \ 4704 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4705 updev; \ 4706 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4707 4708 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4709 int (*fn)(struct net_device *upper_dev, 4710 struct netdev_nested_priv *priv), 4711 struct netdev_nested_priv *priv); 4712 4713 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4714 struct net_device *upper_dev); 4715 4716 bool netdev_has_any_upper_dev(struct net_device *dev); 4717 4718 void *netdev_lower_get_next_private(struct net_device *dev, 4719 struct list_head **iter); 4720 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4721 struct list_head **iter); 4722 4723 #define netdev_for_each_lower_private(dev, priv, iter) \ 4724 for (iter = (dev)->adj_list.lower.next, \ 4725 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4726 priv; \ 4727 priv = netdev_lower_get_next_private(dev, &(iter))) 4728 4729 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4730 for (iter = &(dev)->adj_list.lower, \ 4731 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4732 priv; \ 4733 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4734 4735 void *netdev_lower_get_next(struct net_device *dev, 4736 struct list_head **iter); 4737 4738 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4739 for (iter = (dev)->adj_list.lower.next, \ 4740 ldev = netdev_lower_get_next(dev, &(iter)); \ 4741 ldev; \ 4742 ldev = netdev_lower_get_next(dev, &(iter))) 4743 4744 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4745 struct list_head **iter); 4746 int netdev_walk_all_lower_dev(struct net_device *dev, 4747 int (*fn)(struct net_device *lower_dev, 4748 struct netdev_nested_priv *priv), 4749 struct netdev_nested_priv *priv); 4750 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4751 int (*fn)(struct net_device *lower_dev, 4752 struct netdev_nested_priv *priv), 4753 struct netdev_nested_priv *priv); 4754 4755 void *netdev_adjacent_get_private(struct list_head *adj_list); 4756 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4757 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4758 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4759 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4760 struct netlink_ext_ack *extack); 4761 int netdev_master_upper_dev_link(struct net_device *dev, 4762 struct net_device *upper_dev, 4763 void *upper_priv, void *upper_info, 4764 struct netlink_ext_ack *extack); 4765 void netdev_upper_dev_unlink(struct net_device *dev, 4766 struct net_device *upper_dev); 4767 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4768 struct net_device *new_dev, 4769 struct net_device *dev, 4770 struct netlink_ext_ack *extack); 4771 void netdev_adjacent_change_commit(struct net_device *old_dev, 4772 struct net_device *new_dev, 4773 struct net_device *dev); 4774 void netdev_adjacent_change_abort(struct net_device *old_dev, 4775 struct net_device *new_dev, 4776 struct net_device *dev); 4777 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4778 void *netdev_lower_dev_get_private(struct net_device *dev, 4779 struct net_device *lower_dev); 4780 void netdev_lower_state_changed(struct net_device *lower_dev, 4781 void *lower_state_info); 4782 4783 /* RSS keys are 40 or 52 bytes long */ 4784 #define NETDEV_RSS_KEY_LEN 52 4785 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4786 void netdev_rss_key_fill(void *buffer, size_t len); 4787 4788 int skb_checksum_help(struct sk_buff *skb); 4789 int skb_crc32c_csum_help(struct sk_buff *skb); 4790 int skb_csum_hwoffload_help(struct sk_buff *skb, 4791 const netdev_features_t features); 4792 4793 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4794 netdev_features_t features, bool tx_path); 4795 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb, 4796 netdev_features_t features, __be16 type); 4797 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4798 netdev_features_t features); 4799 4800 struct netdev_bonding_info { 4801 ifslave slave; 4802 ifbond master; 4803 }; 4804 4805 struct netdev_notifier_bonding_info { 4806 struct netdev_notifier_info info; /* must be first */ 4807 struct netdev_bonding_info bonding_info; 4808 }; 4809 4810 void netdev_bonding_info_change(struct net_device *dev, 4811 struct netdev_bonding_info *bonding_info); 4812 4813 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4814 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4815 #else 4816 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4817 const void *data) 4818 { 4819 } 4820 #endif 4821 4822 static inline 4823 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4824 { 4825 return __skb_gso_segment(skb, features, true); 4826 } 4827 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4828 4829 static inline bool can_checksum_protocol(netdev_features_t features, 4830 __be16 protocol) 4831 { 4832 if (protocol == htons(ETH_P_FCOE)) 4833 return !!(features & NETIF_F_FCOE_CRC); 4834 4835 /* Assume this is an IP checksum (not SCTP CRC) */ 4836 4837 if (features & NETIF_F_HW_CSUM) { 4838 /* Can checksum everything */ 4839 return true; 4840 } 4841 4842 switch (protocol) { 4843 case htons(ETH_P_IP): 4844 return !!(features & NETIF_F_IP_CSUM); 4845 case htons(ETH_P_IPV6): 4846 return !!(features & NETIF_F_IPV6_CSUM); 4847 default: 4848 return false; 4849 } 4850 } 4851 4852 #ifdef CONFIG_BUG 4853 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4854 #else 4855 static inline void netdev_rx_csum_fault(struct net_device *dev, 4856 struct sk_buff *skb) 4857 { 4858 } 4859 #endif 4860 /* rx skb timestamps */ 4861 void net_enable_timestamp(void); 4862 void net_disable_timestamp(void); 4863 4864 static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4865 const struct skb_shared_hwtstamps *hwtstamps, 4866 bool cycles) 4867 { 4868 const struct net_device_ops *ops = dev->netdev_ops; 4869 4870 if (ops->ndo_get_tstamp) 4871 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4872 4873 return hwtstamps->hwtstamp; 4874 } 4875 4876 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4877 struct sk_buff *skb, struct net_device *dev, 4878 bool more) 4879 { 4880 __this_cpu_write(softnet_data.xmit.more, more); 4881 return ops->ndo_start_xmit(skb, dev); 4882 } 4883 4884 static inline bool netdev_xmit_more(void) 4885 { 4886 return __this_cpu_read(softnet_data.xmit.more); 4887 } 4888 4889 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4890 struct netdev_queue *txq, bool more) 4891 { 4892 const struct net_device_ops *ops = dev->netdev_ops; 4893 netdev_tx_t rc; 4894 4895 rc = __netdev_start_xmit(ops, skb, dev, more); 4896 if (rc == NETDEV_TX_OK) 4897 txq_trans_update(txq); 4898 4899 return rc; 4900 } 4901 4902 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4903 const void *ns); 4904 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4905 const void *ns); 4906 4907 extern const struct kobj_ns_type_operations net_ns_type_operations; 4908 4909 const char *netdev_drivername(const struct net_device *dev); 4910 4911 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4912 netdev_features_t f2) 4913 { 4914 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4915 if (f1 & NETIF_F_HW_CSUM) 4916 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4917 else 4918 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4919 } 4920 4921 return f1 & f2; 4922 } 4923 4924 static inline netdev_features_t netdev_get_wanted_features( 4925 struct net_device *dev) 4926 { 4927 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4928 } 4929 netdev_features_t netdev_increment_features(netdev_features_t all, 4930 netdev_features_t one, netdev_features_t mask); 4931 4932 /* Allow TSO being used on stacked device : 4933 * Performing the GSO segmentation before last device 4934 * is a performance improvement. 4935 */ 4936 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4937 netdev_features_t mask) 4938 { 4939 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4940 } 4941 4942 int __netdev_update_features(struct net_device *dev); 4943 void netdev_update_features(struct net_device *dev); 4944 void netdev_change_features(struct net_device *dev); 4945 4946 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4947 struct net_device *dev); 4948 4949 netdev_features_t passthru_features_check(struct sk_buff *skb, 4950 struct net_device *dev, 4951 netdev_features_t features); 4952 netdev_features_t netif_skb_features(struct sk_buff *skb); 4953 4954 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4955 { 4956 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4957 4958 /* check flags correspondence */ 4959 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4960 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4961 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4962 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4963 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4964 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4965 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4966 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4967 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4968 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4969 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4970 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4971 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4972 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4973 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4974 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4975 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4976 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4977 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 4978 4979 return (features & feature) == feature; 4980 } 4981 4982 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4983 { 4984 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4985 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4986 } 4987 4988 static inline bool netif_needs_gso(struct sk_buff *skb, 4989 netdev_features_t features) 4990 { 4991 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4992 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4993 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4994 } 4995 4996 void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 4997 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 4998 void netif_inherit_tso_max(struct net_device *to, 4999 const struct net_device *from); 5000 5001 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 5002 int pulled_hlen, u16 mac_offset, 5003 int mac_len) 5004 { 5005 skb->protocol = protocol; 5006 skb->encapsulation = 1; 5007 skb_push(skb, pulled_hlen); 5008 skb_reset_transport_header(skb); 5009 skb->mac_header = mac_offset; 5010 skb->network_header = skb->mac_header + mac_len; 5011 skb->mac_len = mac_len; 5012 } 5013 5014 static inline bool netif_is_macsec(const struct net_device *dev) 5015 { 5016 return dev->priv_flags & IFF_MACSEC; 5017 } 5018 5019 static inline bool netif_is_macvlan(const struct net_device *dev) 5020 { 5021 return dev->priv_flags & IFF_MACVLAN; 5022 } 5023 5024 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5025 { 5026 return dev->priv_flags & IFF_MACVLAN_PORT; 5027 } 5028 5029 static inline bool netif_is_bond_master(const struct net_device *dev) 5030 { 5031 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5032 } 5033 5034 static inline bool netif_is_bond_slave(const struct net_device *dev) 5035 { 5036 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5037 } 5038 5039 static inline bool netif_supports_nofcs(struct net_device *dev) 5040 { 5041 return dev->priv_flags & IFF_SUPP_NOFCS; 5042 } 5043 5044 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5045 { 5046 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5047 } 5048 5049 static inline bool netif_is_l3_master(const struct net_device *dev) 5050 { 5051 return dev->priv_flags & IFF_L3MDEV_MASTER; 5052 } 5053 5054 static inline bool netif_is_l3_slave(const struct net_device *dev) 5055 { 5056 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5057 } 5058 5059 static inline bool netif_is_bridge_master(const struct net_device *dev) 5060 { 5061 return dev->priv_flags & IFF_EBRIDGE; 5062 } 5063 5064 static inline bool netif_is_bridge_port(const struct net_device *dev) 5065 { 5066 return dev->priv_flags & IFF_BRIDGE_PORT; 5067 } 5068 5069 static inline bool netif_is_ovs_master(const struct net_device *dev) 5070 { 5071 return dev->priv_flags & IFF_OPENVSWITCH; 5072 } 5073 5074 static inline bool netif_is_ovs_port(const struct net_device *dev) 5075 { 5076 return dev->priv_flags & IFF_OVS_DATAPATH; 5077 } 5078 5079 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5080 { 5081 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5082 } 5083 5084 static inline bool netif_is_team_master(const struct net_device *dev) 5085 { 5086 return dev->priv_flags & IFF_TEAM; 5087 } 5088 5089 static inline bool netif_is_team_port(const struct net_device *dev) 5090 { 5091 return dev->priv_flags & IFF_TEAM_PORT; 5092 } 5093 5094 static inline bool netif_is_lag_master(const struct net_device *dev) 5095 { 5096 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5097 } 5098 5099 static inline bool netif_is_lag_port(const struct net_device *dev) 5100 { 5101 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5102 } 5103 5104 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5105 { 5106 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5107 } 5108 5109 static inline bool netif_is_failover(const struct net_device *dev) 5110 { 5111 return dev->priv_flags & IFF_FAILOVER; 5112 } 5113 5114 static inline bool netif_is_failover_slave(const struct net_device *dev) 5115 { 5116 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5117 } 5118 5119 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5120 static inline void netif_keep_dst(struct net_device *dev) 5121 { 5122 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5123 } 5124 5125 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5126 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5127 { 5128 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5129 return netif_is_macsec(dev); 5130 } 5131 5132 extern struct pernet_operations __net_initdata loopback_net_ops; 5133 5134 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5135 5136 /* netdev_printk helpers, similar to dev_printk */ 5137 5138 static inline const char *netdev_name(const struct net_device *dev) 5139 { 5140 if (!dev->name[0] || strchr(dev->name, '%')) 5141 return "(unnamed net_device)"; 5142 return dev->name; 5143 } 5144 5145 static inline const char *netdev_reg_state(const struct net_device *dev) 5146 { 5147 switch (dev->reg_state) { 5148 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5149 case NETREG_REGISTERED: return ""; 5150 case NETREG_UNREGISTERING: return " (unregistering)"; 5151 case NETREG_UNREGISTERED: return " (unregistered)"; 5152 case NETREG_RELEASED: return " (released)"; 5153 case NETREG_DUMMY: return " (dummy)"; 5154 } 5155 5156 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5157 return " (unknown)"; 5158 } 5159 5160 #define MODULE_ALIAS_NETDEV(device) \ 5161 MODULE_ALIAS("netdev-" device) 5162 5163 /* 5164 * netdev_WARN() acts like dev_printk(), but with the key difference 5165 * of using a WARN/WARN_ON to get the message out, including the 5166 * file/line information and a backtrace. 5167 */ 5168 #define netdev_WARN(dev, format, args...) \ 5169 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5170 netdev_reg_state(dev), ##args) 5171 5172 #define netdev_WARN_ONCE(dev, format, args...) \ 5173 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5174 netdev_reg_state(dev), ##args) 5175 5176 /* 5177 * The list of packet types we will receive (as opposed to discard) 5178 * and the routines to invoke. 5179 * 5180 * Why 16. Because with 16 the only overlap we get on a hash of the 5181 * low nibble of the protocol value is RARP/SNAP/X.25. 5182 * 5183 * 0800 IP 5184 * 0001 802.3 5185 * 0002 AX.25 5186 * 0004 802.2 5187 * 8035 RARP 5188 * 0005 SNAP 5189 * 0805 X.25 5190 * 0806 ARP 5191 * 8137 IPX 5192 * 0009 Localtalk 5193 * 86DD IPv6 5194 */ 5195 #define PTYPE_HASH_SIZE (16) 5196 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5197 5198 extern struct list_head ptype_all __read_mostly; 5199 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5200 5201 extern struct net_device *blackhole_netdev; 5202 5203 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5204 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5205 #define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5206 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5207 5208 #endif /* _LINUX_NETDEVICE_H */ 5209