xref: /openbmc/linux/include/linux/netdevice.h (revision d2ba09c1)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40 
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 #include <net/xdp.h>
48 
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_port;
60 
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct bpf_prog;
70 struct xdp_buff;
71 
72 void netdev_set_default_ethtool_ops(struct net_device *dev,
73 				    const struct ethtool_ops *ops);
74 
75 /* Backlog congestion levels */
76 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
77 #define NET_RX_DROP		1	/* packet dropped */
78 
79 /*
80  * Transmit return codes: transmit return codes originate from three different
81  * namespaces:
82  *
83  * - qdisc return codes
84  * - driver transmit return codes
85  * - errno values
86  *
87  * Drivers are allowed to return any one of those in their hard_start_xmit()
88  * function. Real network devices commonly used with qdiscs should only return
89  * the driver transmit return codes though - when qdiscs are used, the actual
90  * transmission happens asynchronously, so the value is not propagated to
91  * higher layers. Virtual network devices transmit synchronously; in this case
92  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93  * others are propagated to higher layers.
94  */
95 
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS	0x00
98 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
99 #define NET_XMIT_CN		0x02	/* congestion notification	*/
100 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
101 
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK		0xf0
110 
111 enum netdev_tx {
112 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
113 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
114 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst-case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 #  define LL_MAX_HEADER 128
146 # else
147 #  define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159 
160 /*
161  *	Old network device statistics. Fields are native words
162  *	(unsigned long) so they can be read and written atomically.
163  */
164 
165 struct net_device_stats {
166 	unsigned long	rx_packets;
167 	unsigned long	tx_packets;
168 	unsigned long	rx_bytes;
169 	unsigned long	tx_bytes;
170 	unsigned long	rx_errors;
171 	unsigned long	tx_errors;
172 	unsigned long	rx_dropped;
173 	unsigned long	tx_dropped;
174 	unsigned long	multicast;
175 	unsigned long	collisions;
176 	unsigned long	rx_length_errors;
177 	unsigned long	rx_over_errors;
178 	unsigned long	rx_crc_errors;
179 	unsigned long	rx_frame_errors;
180 	unsigned long	rx_fifo_errors;
181 	unsigned long	rx_missed_errors;
182 	unsigned long	tx_aborted_errors;
183 	unsigned long	tx_carrier_errors;
184 	unsigned long	tx_fifo_errors;
185 	unsigned long	tx_heartbeat_errors;
186 	unsigned long	tx_window_errors;
187 	unsigned long	rx_compressed;
188 	unsigned long	tx_compressed;
189 };
190 
191 
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194 
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key rps_needed;
198 extern struct static_key rfs_needed;
199 #endif
200 
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204 
205 struct netdev_hw_addr {
206 	struct list_head	list;
207 	unsigned char		addr[MAX_ADDR_LEN];
208 	unsigned char		type;
209 #define NETDEV_HW_ADDR_T_LAN		1
210 #define NETDEV_HW_ADDR_T_SAN		2
211 #define NETDEV_HW_ADDR_T_SLAVE		3
212 #define NETDEV_HW_ADDR_T_UNICAST	4
213 #define NETDEV_HW_ADDR_T_MULTICAST	5
214 	bool			global_use;
215 	int			sync_cnt;
216 	int			refcount;
217 	int			synced;
218 	struct rcu_head		rcu_head;
219 };
220 
221 struct netdev_hw_addr_list {
222 	struct list_head	list;
223 	int			count;
224 };
225 
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229 	list_for_each_entry(ha, &(l)->list, list)
230 
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235 
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240 
241 struct hh_cache {
242 	unsigned int	hh_len;
243 	seqlock_t	hh_lock;
244 
245 	/* cached hardware header; allow for machine alignment needs.        */
246 #define HH_DATA_MOD	16
247 #define HH_DATA_OFF(__len) \
248 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253 
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255  * Alternative is:
256  *   dev->hard_header_len ? (dev->hard_header_len +
257  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258  *
259  * We could use other alignment values, but we must maintain the
260  * relationship HH alignment <= LL alignment.
261  */
262 #define LL_RESERVED_SPACE(dev) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266 
267 struct header_ops {
268 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
269 			   unsigned short type, const void *daddr,
270 			   const void *saddr, unsigned int len);
271 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
272 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 	void	(*cache_update)(struct hh_cache *hh,
274 				const struct net_device *dev,
275 				const unsigned char *haddr);
276 	bool	(*validate)(const char *ll_header, unsigned int len);
277 };
278 
279 /* These flag bits are private to the generic network queueing
280  * layer; they may not be explicitly referenced by any other
281  * code.
282  */
283 
284 enum netdev_state_t {
285 	__LINK_STATE_START,
286 	__LINK_STATE_PRESENT,
287 	__LINK_STATE_NOCARRIER,
288 	__LINK_STATE_LINKWATCH_PENDING,
289 	__LINK_STATE_DORMANT,
290 };
291 
292 
293 /*
294  * This structure holds boot-time configured netdevice settings. They
295  * are then used in the device probing.
296  */
297 struct netdev_boot_setup {
298 	char name[IFNAMSIZ];
299 	struct ifmap map;
300 };
301 #define NETDEV_BOOT_SETUP_MAX 8
302 
303 int __init netdev_boot_setup(char *str);
304 
305 /*
306  * Structure for NAPI scheduling similar to tasklet but with weighting
307  */
308 struct napi_struct {
309 	/* The poll_list must only be managed by the entity which
310 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
311 	 * whoever atomically sets that bit can add this napi_struct
312 	 * to the per-CPU poll_list, and whoever clears that bit
313 	 * can remove from the list right before clearing the bit.
314 	 */
315 	struct list_head	poll_list;
316 
317 	unsigned long		state;
318 	int			weight;
319 	unsigned int		gro_count;
320 	int			(*poll)(struct napi_struct *, int);
321 #ifdef CONFIG_NETPOLL
322 	int			poll_owner;
323 #endif
324 	struct net_device	*dev;
325 	struct sk_buff		*gro_list;
326 	struct sk_buff		*skb;
327 	struct hrtimer		timer;
328 	struct list_head	dev_list;
329 	struct hlist_node	napi_hash_node;
330 	unsigned int		napi_id;
331 };
332 
333 enum {
334 	NAPI_STATE_SCHED,	/* Poll is scheduled */
335 	NAPI_STATE_MISSED,	/* reschedule a napi */
336 	NAPI_STATE_DISABLE,	/* Disable pending */
337 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
338 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
339 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
340 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
341 };
342 
343 enum {
344 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
345 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
346 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
347 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
348 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
349 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
350 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
351 };
352 
353 enum gro_result {
354 	GRO_MERGED,
355 	GRO_MERGED_FREE,
356 	GRO_HELD,
357 	GRO_NORMAL,
358 	GRO_DROP,
359 	GRO_CONSUMED,
360 };
361 typedef enum gro_result gro_result_t;
362 
363 /*
364  * enum rx_handler_result - Possible return values for rx_handlers.
365  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
366  * further.
367  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
368  * case skb->dev was changed by rx_handler.
369  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
370  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
371  *
372  * rx_handlers are functions called from inside __netif_receive_skb(), to do
373  * special processing of the skb, prior to delivery to protocol handlers.
374  *
375  * Currently, a net_device can only have a single rx_handler registered. Trying
376  * to register a second rx_handler will return -EBUSY.
377  *
378  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
379  * To unregister a rx_handler on a net_device, use
380  * netdev_rx_handler_unregister().
381  *
382  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
383  * do with the skb.
384  *
385  * If the rx_handler consumed the skb in some way, it should return
386  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
387  * the skb to be delivered in some other way.
388  *
389  * If the rx_handler changed skb->dev, to divert the skb to another
390  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
391  * new device will be called if it exists.
392  *
393  * If the rx_handler decides the skb should be ignored, it should return
394  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
395  * are registered on exact device (ptype->dev == skb->dev).
396  *
397  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
398  * delivered, it should return RX_HANDLER_PASS.
399  *
400  * A device without a registered rx_handler will behave as if rx_handler
401  * returned RX_HANDLER_PASS.
402  */
403 
404 enum rx_handler_result {
405 	RX_HANDLER_CONSUMED,
406 	RX_HANDLER_ANOTHER,
407 	RX_HANDLER_EXACT,
408 	RX_HANDLER_PASS,
409 };
410 typedef enum rx_handler_result rx_handler_result_t;
411 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
412 
413 void __napi_schedule(struct napi_struct *n);
414 void __napi_schedule_irqoff(struct napi_struct *n);
415 
416 static inline bool napi_disable_pending(struct napi_struct *n)
417 {
418 	return test_bit(NAPI_STATE_DISABLE, &n->state);
419 }
420 
421 bool napi_schedule_prep(struct napi_struct *n);
422 
423 /**
424  *	napi_schedule - schedule NAPI poll
425  *	@n: NAPI context
426  *
427  * Schedule NAPI poll routine to be called if it is not already
428  * running.
429  */
430 static inline void napi_schedule(struct napi_struct *n)
431 {
432 	if (napi_schedule_prep(n))
433 		__napi_schedule(n);
434 }
435 
436 /**
437  *	napi_schedule_irqoff - schedule NAPI poll
438  *	@n: NAPI context
439  *
440  * Variant of napi_schedule(), assuming hard irqs are masked.
441  */
442 static inline void napi_schedule_irqoff(struct napi_struct *n)
443 {
444 	if (napi_schedule_prep(n))
445 		__napi_schedule_irqoff(n);
446 }
447 
448 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
449 static inline bool napi_reschedule(struct napi_struct *napi)
450 {
451 	if (napi_schedule_prep(napi)) {
452 		__napi_schedule(napi);
453 		return true;
454 	}
455 	return false;
456 }
457 
458 bool napi_complete_done(struct napi_struct *n, int work_done);
459 /**
460  *	napi_complete - NAPI processing complete
461  *	@n: NAPI context
462  *
463  * Mark NAPI processing as complete.
464  * Consider using napi_complete_done() instead.
465  * Return false if device should avoid rearming interrupts.
466  */
467 static inline bool napi_complete(struct napi_struct *n)
468 {
469 	return napi_complete_done(n, 0);
470 }
471 
472 /**
473  *	napi_hash_del - remove a NAPI from global table
474  *	@napi: NAPI context
475  *
476  * Warning: caller must observe RCU grace period
477  * before freeing memory containing @napi, if
478  * this function returns true.
479  * Note: core networking stack automatically calls it
480  * from netif_napi_del().
481  * Drivers might want to call this helper to combine all
482  * the needed RCU grace periods into a single one.
483  */
484 bool napi_hash_del(struct napi_struct *napi);
485 
486 /**
487  *	napi_disable - prevent NAPI from scheduling
488  *	@n: NAPI context
489  *
490  * Stop NAPI from being scheduled on this context.
491  * Waits till any outstanding processing completes.
492  */
493 void napi_disable(struct napi_struct *n);
494 
495 /**
496  *	napi_enable - enable NAPI scheduling
497  *	@n: NAPI context
498  *
499  * Resume NAPI from being scheduled on this context.
500  * Must be paired with napi_disable.
501  */
502 static inline void napi_enable(struct napi_struct *n)
503 {
504 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
505 	smp_mb__before_atomic();
506 	clear_bit(NAPI_STATE_SCHED, &n->state);
507 	clear_bit(NAPI_STATE_NPSVC, &n->state);
508 }
509 
510 /**
511  *	napi_synchronize - wait until NAPI is not running
512  *	@n: NAPI context
513  *
514  * Wait until NAPI is done being scheduled on this context.
515  * Waits till any outstanding processing completes but
516  * does not disable future activations.
517  */
518 static inline void napi_synchronize(const struct napi_struct *n)
519 {
520 	if (IS_ENABLED(CONFIG_SMP))
521 		while (test_bit(NAPI_STATE_SCHED, &n->state))
522 			msleep(1);
523 	else
524 		barrier();
525 }
526 
527 enum netdev_queue_state_t {
528 	__QUEUE_STATE_DRV_XOFF,
529 	__QUEUE_STATE_STACK_XOFF,
530 	__QUEUE_STATE_FROZEN,
531 };
532 
533 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
534 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
535 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
536 
537 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
538 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
539 					QUEUE_STATE_FROZEN)
540 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
541 					QUEUE_STATE_FROZEN)
542 
543 /*
544  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
545  * netif_tx_* functions below are used to manipulate this flag.  The
546  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
547  * queue independently.  The netif_xmit_*stopped functions below are called
548  * to check if the queue has been stopped by the driver or stack (either
549  * of the XOFF bits are set in the state).  Drivers should not need to call
550  * netif_xmit*stopped functions, they should only be using netif_tx_*.
551  */
552 
553 struct netdev_queue {
554 /*
555  * read-mostly part
556  */
557 	struct net_device	*dev;
558 	struct Qdisc __rcu	*qdisc;
559 	struct Qdisc		*qdisc_sleeping;
560 #ifdef CONFIG_SYSFS
561 	struct kobject		kobj;
562 #endif
563 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
564 	int			numa_node;
565 #endif
566 	unsigned long		tx_maxrate;
567 	/*
568 	 * Number of TX timeouts for this queue
569 	 * (/sys/class/net/DEV/Q/trans_timeout)
570 	 */
571 	unsigned long		trans_timeout;
572 /*
573  * write-mostly part
574  */
575 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
576 	int			xmit_lock_owner;
577 	/*
578 	 * Time (in jiffies) of last Tx
579 	 */
580 	unsigned long		trans_start;
581 
582 	unsigned long		state;
583 
584 #ifdef CONFIG_BQL
585 	struct dql		dql;
586 #endif
587 } ____cacheline_aligned_in_smp;
588 
589 extern int sysctl_fb_tunnels_only_for_init_net;
590 
591 static inline bool net_has_fallback_tunnels(const struct net *net)
592 {
593 	return net == &init_net ||
594 	       !IS_ENABLED(CONFIG_SYSCTL) ||
595 	       !sysctl_fb_tunnels_only_for_init_net;
596 }
597 
598 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
599 {
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 	return q->numa_node;
602 #else
603 	return NUMA_NO_NODE;
604 #endif
605 }
606 
607 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
608 {
609 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
610 	q->numa_node = node;
611 #endif
612 }
613 
614 #ifdef CONFIG_RPS
615 /*
616  * This structure holds an RPS map which can be of variable length.  The
617  * map is an array of CPUs.
618  */
619 struct rps_map {
620 	unsigned int len;
621 	struct rcu_head rcu;
622 	u16 cpus[0];
623 };
624 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
625 
626 /*
627  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
628  * tail pointer for that CPU's input queue at the time of last enqueue, and
629  * a hardware filter index.
630  */
631 struct rps_dev_flow {
632 	u16 cpu;
633 	u16 filter;
634 	unsigned int last_qtail;
635 };
636 #define RPS_NO_FILTER 0xffff
637 
638 /*
639  * The rps_dev_flow_table structure contains a table of flow mappings.
640  */
641 struct rps_dev_flow_table {
642 	unsigned int mask;
643 	struct rcu_head rcu;
644 	struct rps_dev_flow flows[0];
645 };
646 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
647     ((_num) * sizeof(struct rps_dev_flow)))
648 
649 /*
650  * The rps_sock_flow_table contains mappings of flows to the last CPU
651  * on which they were processed by the application (set in recvmsg).
652  * Each entry is a 32bit value. Upper part is the high-order bits
653  * of flow hash, lower part is CPU number.
654  * rps_cpu_mask is used to partition the space, depending on number of
655  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
656  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
657  * meaning we use 32-6=26 bits for the hash.
658  */
659 struct rps_sock_flow_table {
660 	u32	mask;
661 
662 	u32	ents[0] ____cacheline_aligned_in_smp;
663 };
664 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
665 
666 #define RPS_NO_CPU 0xffff
667 
668 extern u32 rps_cpu_mask;
669 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
670 
671 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
672 					u32 hash)
673 {
674 	if (table && hash) {
675 		unsigned int index = hash & table->mask;
676 		u32 val = hash & ~rps_cpu_mask;
677 
678 		/* We only give a hint, preemption can change CPU under us */
679 		val |= raw_smp_processor_id();
680 
681 		if (table->ents[index] != val)
682 			table->ents[index] = val;
683 	}
684 }
685 
686 #ifdef CONFIG_RFS_ACCEL
687 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
688 			 u16 filter_id);
689 #endif
690 #endif /* CONFIG_RPS */
691 
692 /* This structure contains an instance of an RX queue. */
693 struct netdev_rx_queue {
694 #ifdef CONFIG_RPS
695 	struct rps_map __rcu		*rps_map;
696 	struct rps_dev_flow_table __rcu	*rps_flow_table;
697 #endif
698 	struct kobject			kobj;
699 	struct net_device		*dev;
700 	struct xdp_rxq_info		xdp_rxq;
701 } ____cacheline_aligned_in_smp;
702 
703 /*
704  * RX queue sysfs structures and functions.
705  */
706 struct rx_queue_attribute {
707 	struct attribute attr;
708 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
709 	ssize_t (*store)(struct netdev_rx_queue *queue,
710 			 const char *buf, size_t len);
711 };
712 
713 #ifdef CONFIG_XPS
714 /*
715  * This structure holds an XPS map which can be of variable length.  The
716  * map is an array of queues.
717  */
718 struct xps_map {
719 	unsigned int len;
720 	unsigned int alloc_len;
721 	struct rcu_head rcu;
722 	u16 queues[0];
723 };
724 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
725 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
726        - sizeof(struct xps_map)) / sizeof(u16))
727 
728 /*
729  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
730  */
731 struct xps_dev_maps {
732 	struct rcu_head rcu;
733 	struct xps_map __rcu *cpu_map[0];
734 };
735 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +		\
736 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
737 #endif /* CONFIG_XPS */
738 
739 #define TC_MAX_QUEUE	16
740 #define TC_BITMASK	15
741 /* HW offloaded queuing disciplines txq count and offset maps */
742 struct netdev_tc_txq {
743 	u16 count;
744 	u16 offset;
745 };
746 
747 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
748 /*
749  * This structure is to hold information about the device
750  * configured to run FCoE protocol stack.
751  */
752 struct netdev_fcoe_hbainfo {
753 	char	manufacturer[64];
754 	char	serial_number[64];
755 	char	hardware_version[64];
756 	char	driver_version[64];
757 	char	optionrom_version[64];
758 	char	firmware_version[64];
759 	char	model[256];
760 	char	model_description[256];
761 };
762 #endif
763 
764 #define MAX_PHYS_ITEM_ID_LEN 32
765 
766 /* This structure holds a unique identifier to identify some
767  * physical item (port for example) used by a netdevice.
768  */
769 struct netdev_phys_item_id {
770 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
771 	unsigned char id_len;
772 };
773 
774 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
775 					    struct netdev_phys_item_id *b)
776 {
777 	return a->id_len == b->id_len &&
778 	       memcmp(a->id, b->id, a->id_len) == 0;
779 }
780 
781 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
782 				       struct sk_buff *skb);
783 
784 enum tc_setup_type {
785 	TC_SETUP_QDISC_MQPRIO,
786 	TC_SETUP_CLSU32,
787 	TC_SETUP_CLSFLOWER,
788 	TC_SETUP_CLSMATCHALL,
789 	TC_SETUP_CLSBPF,
790 	TC_SETUP_BLOCK,
791 	TC_SETUP_QDISC_CBS,
792 	TC_SETUP_QDISC_RED,
793 	TC_SETUP_QDISC_PRIO,
794 };
795 
796 /* These structures hold the attributes of bpf state that are being passed
797  * to the netdevice through the bpf op.
798  */
799 enum bpf_netdev_command {
800 	/* Set or clear a bpf program used in the earliest stages of packet
801 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
802 	 * is responsible for calling bpf_prog_put on any old progs that are
803 	 * stored. In case of error, the callee need not release the new prog
804 	 * reference, but on success it takes ownership and must bpf_prog_put
805 	 * when it is no longer used.
806 	 */
807 	XDP_SETUP_PROG,
808 	XDP_SETUP_PROG_HW,
809 	/* Check if a bpf program is set on the device.  The callee should
810 	 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true"
811 	 * is equivalent to XDP_ATTACHED_DRV.
812 	 */
813 	XDP_QUERY_PROG,
814 	/* BPF program for offload callbacks, invoked at program load time. */
815 	BPF_OFFLOAD_VERIFIER_PREP,
816 	BPF_OFFLOAD_TRANSLATE,
817 	BPF_OFFLOAD_DESTROY,
818 	BPF_OFFLOAD_MAP_ALLOC,
819 	BPF_OFFLOAD_MAP_FREE,
820 };
821 
822 struct bpf_prog_offload_ops;
823 struct netlink_ext_ack;
824 
825 struct netdev_bpf {
826 	enum bpf_netdev_command command;
827 	union {
828 		/* XDP_SETUP_PROG */
829 		struct {
830 			u32 flags;
831 			struct bpf_prog *prog;
832 			struct netlink_ext_ack *extack;
833 		};
834 		/* XDP_QUERY_PROG */
835 		struct {
836 			u8 prog_attached;
837 			u32 prog_id;
838 			/* flags with which program was installed */
839 			u32 prog_flags;
840 		};
841 		/* BPF_OFFLOAD_VERIFIER_PREP */
842 		struct {
843 			struct bpf_prog *prog;
844 			const struct bpf_prog_offload_ops *ops; /* callee set */
845 		} verifier;
846 		/* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */
847 		struct {
848 			struct bpf_prog *prog;
849 		} offload;
850 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
851 		struct {
852 			struct bpf_offloaded_map *offmap;
853 		};
854 	};
855 };
856 
857 #ifdef CONFIG_XFRM_OFFLOAD
858 struct xfrmdev_ops {
859 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
860 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
861 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
862 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
863 				       struct xfrm_state *x);
864 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
865 };
866 #endif
867 
868 #if IS_ENABLED(CONFIG_TLS_DEVICE)
869 enum tls_offload_ctx_dir {
870 	TLS_OFFLOAD_CTX_DIR_RX,
871 	TLS_OFFLOAD_CTX_DIR_TX,
872 };
873 
874 struct tls_crypto_info;
875 struct tls_context;
876 
877 struct tlsdev_ops {
878 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
879 			   enum tls_offload_ctx_dir direction,
880 			   struct tls_crypto_info *crypto_info,
881 			   u32 start_offload_tcp_sn);
882 	void (*tls_dev_del)(struct net_device *netdev,
883 			    struct tls_context *ctx,
884 			    enum tls_offload_ctx_dir direction);
885 };
886 #endif
887 
888 struct dev_ifalias {
889 	struct rcu_head rcuhead;
890 	char ifalias[];
891 };
892 
893 /*
894  * This structure defines the management hooks for network devices.
895  * The following hooks can be defined; unless noted otherwise, they are
896  * optional and can be filled with a null pointer.
897  *
898  * int (*ndo_init)(struct net_device *dev);
899  *     This function is called once when a network device is registered.
900  *     The network device can use this for any late stage initialization
901  *     or semantic validation. It can fail with an error code which will
902  *     be propagated back to register_netdev.
903  *
904  * void (*ndo_uninit)(struct net_device *dev);
905  *     This function is called when device is unregistered or when registration
906  *     fails. It is not called if init fails.
907  *
908  * int (*ndo_open)(struct net_device *dev);
909  *     This function is called when a network device transitions to the up
910  *     state.
911  *
912  * int (*ndo_stop)(struct net_device *dev);
913  *     This function is called when a network device transitions to the down
914  *     state.
915  *
916  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
917  *                               struct net_device *dev);
918  *	Called when a packet needs to be transmitted.
919  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
920  *	the queue before that can happen; it's for obsolete devices and weird
921  *	corner cases, but the stack really does a non-trivial amount
922  *	of useless work if you return NETDEV_TX_BUSY.
923  *	Required; cannot be NULL.
924  *
925  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
926  *					   struct net_device *dev
927  *					   netdev_features_t features);
928  *	Called by core transmit path to determine if device is capable of
929  *	performing offload operations on a given packet. This is to give
930  *	the device an opportunity to implement any restrictions that cannot
931  *	be otherwise expressed by feature flags. The check is called with
932  *	the set of features that the stack has calculated and it returns
933  *	those the driver believes to be appropriate.
934  *
935  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
936  *                         void *accel_priv, select_queue_fallback_t fallback);
937  *	Called to decide which queue to use when device supports multiple
938  *	transmit queues.
939  *
940  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
941  *	This function is called to allow device receiver to make
942  *	changes to configuration when multicast or promiscuous is enabled.
943  *
944  * void (*ndo_set_rx_mode)(struct net_device *dev);
945  *	This function is called device changes address list filtering.
946  *	If driver handles unicast address filtering, it should set
947  *	IFF_UNICAST_FLT in its priv_flags.
948  *
949  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
950  *	This function  is called when the Media Access Control address
951  *	needs to be changed. If this interface is not defined, the
952  *	MAC address can not be changed.
953  *
954  * int (*ndo_validate_addr)(struct net_device *dev);
955  *	Test if Media Access Control address is valid for the device.
956  *
957  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
958  *	Called when a user requests an ioctl which can't be handled by
959  *	the generic interface code. If not defined ioctls return
960  *	not supported error code.
961  *
962  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
963  *	Used to set network devices bus interface parameters. This interface
964  *	is retained for legacy reasons; new devices should use the bus
965  *	interface (PCI) for low level management.
966  *
967  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
968  *	Called when a user wants to change the Maximum Transfer Unit
969  *	of a device.
970  *
971  * void (*ndo_tx_timeout)(struct net_device *dev);
972  *	Callback used when the transmitter has not made any progress
973  *	for dev->watchdog ticks.
974  *
975  * void (*ndo_get_stats64)(struct net_device *dev,
976  *                         struct rtnl_link_stats64 *storage);
977  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
978  *	Called when a user wants to get the network device usage
979  *	statistics. Drivers must do one of the following:
980  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
981  *	   rtnl_link_stats64 structure passed by the caller.
982  *	2. Define @ndo_get_stats to update a net_device_stats structure
983  *	   (which should normally be dev->stats) and return a pointer to
984  *	   it. The structure may be changed asynchronously only if each
985  *	   field is written atomically.
986  *	3. Update dev->stats asynchronously and atomically, and define
987  *	   neither operation.
988  *
989  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
990  *	Return true if this device supports offload stats of this attr_id.
991  *
992  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
993  *	void *attr_data)
994  *	Get statistics for offload operations by attr_id. Write it into the
995  *	attr_data pointer.
996  *
997  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
998  *	If device supports VLAN filtering this function is called when a
999  *	VLAN id is registered.
1000  *
1001  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1002  *	If device supports VLAN filtering this function is called when a
1003  *	VLAN id is unregistered.
1004  *
1005  * void (*ndo_poll_controller)(struct net_device *dev);
1006  *
1007  *	SR-IOV management functions.
1008  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1009  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1010  *			  u8 qos, __be16 proto);
1011  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1012  *			  int max_tx_rate);
1013  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1014  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1015  * int (*ndo_get_vf_config)(struct net_device *dev,
1016  *			    int vf, struct ifla_vf_info *ivf);
1017  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1018  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1019  *			  struct nlattr *port[]);
1020  *
1021  *      Enable or disable the VF ability to query its RSS Redirection Table and
1022  *      Hash Key. This is needed since on some devices VF share this information
1023  *      with PF and querying it may introduce a theoretical security risk.
1024  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1025  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1026  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1027  *		       void *type_data);
1028  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1029  *	This is always called from the stack with the rtnl lock held and netif
1030  *	tx queues stopped. This allows the netdevice to perform queue
1031  *	management safely.
1032  *
1033  *	Fiber Channel over Ethernet (FCoE) offload functions.
1034  * int (*ndo_fcoe_enable)(struct net_device *dev);
1035  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1036  *	so the underlying device can perform whatever needed configuration or
1037  *	initialization to support acceleration of FCoE traffic.
1038  *
1039  * int (*ndo_fcoe_disable)(struct net_device *dev);
1040  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1041  *	so the underlying device can perform whatever needed clean-ups to
1042  *	stop supporting acceleration of FCoE traffic.
1043  *
1044  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1045  *			     struct scatterlist *sgl, unsigned int sgc);
1046  *	Called when the FCoE Initiator wants to initialize an I/O that
1047  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1048  *	perform necessary setup and returns 1 to indicate the device is set up
1049  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1050  *
1051  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1052  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1053  *	indicated by the FC exchange id 'xid', so the underlying device can
1054  *	clean up and reuse resources for later DDP requests.
1055  *
1056  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1057  *			      struct scatterlist *sgl, unsigned int sgc);
1058  *	Called when the FCoE Target wants to initialize an I/O that
1059  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1060  *	perform necessary setup and returns 1 to indicate the device is set up
1061  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1062  *
1063  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1064  *			       struct netdev_fcoe_hbainfo *hbainfo);
1065  *	Called when the FCoE Protocol stack wants information on the underlying
1066  *	device. This information is utilized by the FCoE protocol stack to
1067  *	register attributes with Fiber Channel management service as per the
1068  *	FC-GS Fabric Device Management Information(FDMI) specification.
1069  *
1070  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1071  *	Called when the underlying device wants to override default World Wide
1072  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1073  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1074  *	protocol stack to use.
1075  *
1076  *	RFS acceleration.
1077  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1078  *			    u16 rxq_index, u32 flow_id);
1079  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1080  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1081  *	Return the filter ID on success, or a negative error code.
1082  *
1083  *	Slave management functions (for bridge, bonding, etc).
1084  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1085  *	Called to make another netdev an underling.
1086  *
1087  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1088  *	Called to release previously enslaved netdev.
1089  *
1090  *      Feature/offload setting functions.
1091  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1092  *		netdev_features_t features);
1093  *	Adjusts the requested feature flags according to device-specific
1094  *	constraints, and returns the resulting flags. Must not modify
1095  *	the device state.
1096  *
1097  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1098  *	Called to update device configuration to new features. Passed
1099  *	feature set might be less than what was returned by ndo_fix_features()).
1100  *	Must return >0 or -errno if it changed dev->features itself.
1101  *
1102  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1103  *		      struct net_device *dev,
1104  *		      const unsigned char *addr, u16 vid, u16 flags)
1105  *	Adds an FDB entry to dev for addr.
1106  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1107  *		      struct net_device *dev,
1108  *		      const unsigned char *addr, u16 vid)
1109  *	Deletes the FDB entry from dev coresponding to addr.
1110  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1111  *		       struct net_device *dev, struct net_device *filter_dev,
1112  *		       int *idx)
1113  *	Used to add FDB entries to dump requests. Implementers should add
1114  *	entries to skb and update idx with the number of entries.
1115  *
1116  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1117  *			     u16 flags)
1118  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1119  *			     struct net_device *dev, u32 filter_mask,
1120  *			     int nlflags)
1121  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1122  *			     u16 flags);
1123  *
1124  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1125  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1126  *	which do not represent real hardware may define this to allow their
1127  *	userspace components to manage their virtual carrier state. Devices
1128  *	that determine carrier state from physical hardware properties (eg
1129  *	network cables) or protocol-dependent mechanisms (eg
1130  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1131  *
1132  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1133  *			       struct netdev_phys_item_id *ppid);
1134  *	Called to get ID of physical port of this device. If driver does
1135  *	not implement this, it is assumed that the hw is not able to have
1136  *	multiple net devices on single physical port.
1137  *
1138  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1139  *			      struct udp_tunnel_info *ti);
1140  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1141  *	address family that a UDP tunnel is listnening to. It is called only
1142  *	when a new port starts listening. The operation is protected by the
1143  *	RTNL.
1144  *
1145  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1146  *			      struct udp_tunnel_info *ti);
1147  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1148  *	address family that the UDP tunnel is not listening to anymore. The
1149  *	operation is protected by the RTNL.
1150  *
1151  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1152  *				 struct net_device *dev)
1153  *	Called by upper layer devices to accelerate switching or other
1154  *	station functionality into hardware. 'pdev is the lowerdev
1155  *	to use for the offload and 'dev' is the net device that will
1156  *	back the offload. Returns a pointer to the private structure
1157  *	the upper layer will maintain.
1158  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1159  *	Called by upper layer device to delete the station created
1160  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1161  *	the station and priv is the structure returned by the add
1162  *	operation.
1163  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1164  *			     int queue_index, u32 maxrate);
1165  *	Called when a user wants to set a max-rate limitation of specific
1166  *	TX queue.
1167  * int (*ndo_get_iflink)(const struct net_device *dev);
1168  *	Called to get the iflink value of this device.
1169  * void (*ndo_change_proto_down)(struct net_device *dev,
1170  *				 bool proto_down);
1171  *	This function is used to pass protocol port error state information
1172  *	to the switch driver. The switch driver can react to the proto_down
1173  *      by doing a phys down on the associated switch port.
1174  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1175  *	This function is used to get egress tunnel information for given skb.
1176  *	This is useful for retrieving outer tunnel header parameters while
1177  *	sampling packet.
1178  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1179  *	This function is used to specify the headroom that the skb must
1180  *	consider when allocation skb during packet reception. Setting
1181  *	appropriate rx headroom value allows avoiding skb head copy on
1182  *	forward. Setting a negative value resets the rx headroom to the
1183  *	default value.
1184  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1185  *	This function is used to set or query state related to XDP on the
1186  *	netdevice and manage BPF offload. See definition of
1187  *	enum bpf_netdev_command for details.
1188  * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_frame *xdp);
1189  *	This function is used to submit a XDP packet for transmit on a
1190  *	netdevice.
1191  * void (*ndo_xdp_flush)(struct net_device *dev);
1192  *	This function is used to inform the driver to flush a particular
1193  *	xdp tx queue. Must be called on same CPU as xdp_xmit.
1194  */
1195 struct net_device_ops {
1196 	int			(*ndo_init)(struct net_device *dev);
1197 	void			(*ndo_uninit)(struct net_device *dev);
1198 	int			(*ndo_open)(struct net_device *dev);
1199 	int			(*ndo_stop)(struct net_device *dev);
1200 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1201 						  struct net_device *dev);
1202 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1203 						      struct net_device *dev,
1204 						      netdev_features_t features);
1205 	u16			(*ndo_select_queue)(struct net_device *dev,
1206 						    struct sk_buff *skb,
1207 						    void *accel_priv,
1208 						    select_queue_fallback_t fallback);
1209 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1210 						       int flags);
1211 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1212 	int			(*ndo_set_mac_address)(struct net_device *dev,
1213 						       void *addr);
1214 	int			(*ndo_validate_addr)(struct net_device *dev);
1215 	int			(*ndo_do_ioctl)(struct net_device *dev,
1216 					        struct ifreq *ifr, int cmd);
1217 	int			(*ndo_set_config)(struct net_device *dev,
1218 					          struct ifmap *map);
1219 	int			(*ndo_change_mtu)(struct net_device *dev,
1220 						  int new_mtu);
1221 	int			(*ndo_neigh_setup)(struct net_device *dev,
1222 						   struct neigh_parms *);
1223 	void			(*ndo_tx_timeout) (struct net_device *dev);
1224 
1225 	void			(*ndo_get_stats64)(struct net_device *dev,
1226 						   struct rtnl_link_stats64 *storage);
1227 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1228 	int			(*ndo_get_offload_stats)(int attr_id,
1229 							 const struct net_device *dev,
1230 							 void *attr_data);
1231 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1232 
1233 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1234 						       __be16 proto, u16 vid);
1235 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1236 						        __be16 proto, u16 vid);
1237 #ifdef CONFIG_NET_POLL_CONTROLLER
1238 	void                    (*ndo_poll_controller)(struct net_device *dev);
1239 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1240 						     struct netpoll_info *info);
1241 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1242 #endif
1243 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1244 						  int queue, u8 *mac);
1245 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1246 						   int queue, u16 vlan,
1247 						   u8 qos, __be16 proto);
1248 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1249 						   int vf, int min_tx_rate,
1250 						   int max_tx_rate);
1251 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1252 						       int vf, bool setting);
1253 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1254 						    int vf, bool setting);
1255 	int			(*ndo_get_vf_config)(struct net_device *dev,
1256 						     int vf,
1257 						     struct ifla_vf_info *ivf);
1258 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1259 							 int vf, int link_state);
1260 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1261 						    int vf,
1262 						    struct ifla_vf_stats
1263 						    *vf_stats);
1264 	int			(*ndo_set_vf_port)(struct net_device *dev,
1265 						   int vf,
1266 						   struct nlattr *port[]);
1267 	int			(*ndo_get_vf_port)(struct net_device *dev,
1268 						   int vf, struct sk_buff *skb);
1269 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1270 						   int vf, u64 guid,
1271 						   int guid_type);
1272 	int			(*ndo_set_vf_rss_query_en)(
1273 						   struct net_device *dev,
1274 						   int vf, bool setting);
1275 	int			(*ndo_setup_tc)(struct net_device *dev,
1276 						enum tc_setup_type type,
1277 						void *type_data);
1278 #if IS_ENABLED(CONFIG_FCOE)
1279 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1280 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1281 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1282 						      u16 xid,
1283 						      struct scatterlist *sgl,
1284 						      unsigned int sgc);
1285 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1286 						     u16 xid);
1287 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1288 						       u16 xid,
1289 						       struct scatterlist *sgl,
1290 						       unsigned int sgc);
1291 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1292 							struct netdev_fcoe_hbainfo *hbainfo);
1293 #endif
1294 
1295 #if IS_ENABLED(CONFIG_LIBFCOE)
1296 #define NETDEV_FCOE_WWNN 0
1297 #define NETDEV_FCOE_WWPN 1
1298 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1299 						    u64 *wwn, int type);
1300 #endif
1301 
1302 #ifdef CONFIG_RFS_ACCEL
1303 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1304 						     const struct sk_buff *skb,
1305 						     u16 rxq_index,
1306 						     u32 flow_id);
1307 #endif
1308 	int			(*ndo_add_slave)(struct net_device *dev,
1309 						 struct net_device *slave_dev,
1310 						 struct netlink_ext_ack *extack);
1311 	int			(*ndo_del_slave)(struct net_device *dev,
1312 						 struct net_device *slave_dev);
1313 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1314 						    netdev_features_t features);
1315 	int			(*ndo_set_features)(struct net_device *dev,
1316 						    netdev_features_t features);
1317 	int			(*ndo_neigh_construct)(struct net_device *dev,
1318 						       struct neighbour *n);
1319 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1320 						     struct neighbour *n);
1321 
1322 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1323 					       struct nlattr *tb[],
1324 					       struct net_device *dev,
1325 					       const unsigned char *addr,
1326 					       u16 vid,
1327 					       u16 flags);
1328 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1329 					       struct nlattr *tb[],
1330 					       struct net_device *dev,
1331 					       const unsigned char *addr,
1332 					       u16 vid);
1333 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1334 						struct netlink_callback *cb,
1335 						struct net_device *dev,
1336 						struct net_device *filter_dev,
1337 						int *idx);
1338 
1339 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1340 						      struct nlmsghdr *nlh,
1341 						      u16 flags);
1342 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1343 						      u32 pid, u32 seq,
1344 						      struct net_device *dev,
1345 						      u32 filter_mask,
1346 						      int nlflags);
1347 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1348 						      struct nlmsghdr *nlh,
1349 						      u16 flags);
1350 	int			(*ndo_change_carrier)(struct net_device *dev,
1351 						      bool new_carrier);
1352 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1353 							struct netdev_phys_item_id *ppid);
1354 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1355 							  char *name, size_t len);
1356 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1357 						      struct udp_tunnel_info *ti);
1358 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1359 						      struct udp_tunnel_info *ti);
1360 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1361 							struct net_device *dev);
1362 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1363 							void *priv);
1364 
1365 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1366 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1367 						      int queue_index,
1368 						      u32 maxrate);
1369 	int			(*ndo_get_iflink)(const struct net_device *dev);
1370 	int			(*ndo_change_proto_down)(struct net_device *dev,
1371 							 bool proto_down);
1372 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1373 						       struct sk_buff *skb);
1374 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1375 						       int needed_headroom);
1376 	int			(*ndo_bpf)(struct net_device *dev,
1377 					   struct netdev_bpf *bpf);
1378 	int			(*ndo_xdp_xmit)(struct net_device *dev,
1379 						struct xdp_frame *xdp);
1380 	void			(*ndo_xdp_flush)(struct net_device *dev);
1381 };
1382 
1383 /**
1384  * enum net_device_priv_flags - &struct net_device priv_flags
1385  *
1386  * These are the &struct net_device, they are only set internally
1387  * by drivers and used in the kernel. These flags are invisible to
1388  * userspace; this means that the order of these flags can change
1389  * during any kernel release.
1390  *
1391  * You should have a pretty good reason to be extending these flags.
1392  *
1393  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1394  * @IFF_EBRIDGE: Ethernet bridging device
1395  * @IFF_BONDING: bonding master or slave
1396  * @IFF_ISATAP: ISATAP interface (RFC4214)
1397  * @IFF_WAN_HDLC: WAN HDLC device
1398  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1399  *	release skb->dst
1400  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1401  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1402  * @IFF_MACVLAN_PORT: device used as macvlan port
1403  * @IFF_BRIDGE_PORT: device used as bridge port
1404  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1405  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1406  * @IFF_UNICAST_FLT: Supports unicast filtering
1407  * @IFF_TEAM_PORT: device used as team port
1408  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1409  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1410  *	change when it's running
1411  * @IFF_MACVLAN: Macvlan device
1412  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1413  *	underlying stacked devices
1414  * @IFF_L3MDEV_MASTER: device is an L3 master device
1415  * @IFF_NO_QUEUE: device can run without qdisc attached
1416  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1417  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1418  * @IFF_TEAM: device is a team device
1419  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1420  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1421  *	entity (i.e. the master device for bridged veth)
1422  * @IFF_MACSEC: device is a MACsec device
1423  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1424  */
1425 enum netdev_priv_flags {
1426 	IFF_802_1Q_VLAN			= 1<<0,
1427 	IFF_EBRIDGE			= 1<<1,
1428 	IFF_BONDING			= 1<<2,
1429 	IFF_ISATAP			= 1<<3,
1430 	IFF_WAN_HDLC			= 1<<4,
1431 	IFF_XMIT_DST_RELEASE		= 1<<5,
1432 	IFF_DONT_BRIDGE			= 1<<6,
1433 	IFF_DISABLE_NETPOLL		= 1<<7,
1434 	IFF_MACVLAN_PORT		= 1<<8,
1435 	IFF_BRIDGE_PORT			= 1<<9,
1436 	IFF_OVS_DATAPATH		= 1<<10,
1437 	IFF_TX_SKB_SHARING		= 1<<11,
1438 	IFF_UNICAST_FLT			= 1<<12,
1439 	IFF_TEAM_PORT			= 1<<13,
1440 	IFF_SUPP_NOFCS			= 1<<14,
1441 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1442 	IFF_MACVLAN			= 1<<16,
1443 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1444 	IFF_L3MDEV_MASTER		= 1<<18,
1445 	IFF_NO_QUEUE			= 1<<19,
1446 	IFF_OPENVSWITCH			= 1<<20,
1447 	IFF_L3MDEV_SLAVE		= 1<<21,
1448 	IFF_TEAM			= 1<<22,
1449 	IFF_RXFH_CONFIGURED		= 1<<23,
1450 	IFF_PHONY_HEADROOM		= 1<<24,
1451 	IFF_MACSEC			= 1<<25,
1452 	IFF_NO_RX_HANDLER		= 1<<26,
1453 };
1454 
1455 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1456 #define IFF_EBRIDGE			IFF_EBRIDGE
1457 #define IFF_BONDING			IFF_BONDING
1458 #define IFF_ISATAP			IFF_ISATAP
1459 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1460 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1461 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1462 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1463 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1464 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1465 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1466 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1467 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1468 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1469 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1470 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1471 #define IFF_MACVLAN			IFF_MACVLAN
1472 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1473 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1474 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1475 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1476 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1477 #define IFF_TEAM			IFF_TEAM
1478 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1479 #define IFF_MACSEC			IFF_MACSEC
1480 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1481 
1482 /**
1483  *	struct net_device - The DEVICE structure.
1484  *
1485  *	Actually, this whole structure is a big mistake.  It mixes I/O
1486  *	data with strictly "high-level" data, and it has to know about
1487  *	almost every data structure used in the INET module.
1488  *
1489  *	@name:	This is the first field of the "visible" part of this structure
1490  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1491  *		of the interface.
1492  *
1493  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1494  *	@ifalias:	SNMP alias
1495  *	@mem_end:	Shared memory end
1496  *	@mem_start:	Shared memory start
1497  *	@base_addr:	Device I/O address
1498  *	@irq:		Device IRQ number
1499  *
1500  *	@state:		Generic network queuing layer state, see netdev_state_t
1501  *	@dev_list:	The global list of network devices
1502  *	@napi_list:	List entry used for polling NAPI devices
1503  *	@unreg_list:	List entry  when we are unregistering the
1504  *			device; see the function unregister_netdev
1505  *	@close_list:	List entry used when we are closing the device
1506  *	@ptype_all:     Device-specific packet handlers for all protocols
1507  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1508  *
1509  *	@adj_list:	Directly linked devices, like slaves for bonding
1510  *	@features:	Currently active device features
1511  *	@hw_features:	User-changeable features
1512  *
1513  *	@wanted_features:	User-requested features
1514  *	@vlan_features:		Mask of features inheritable by VLAN devices
1515  *
1516  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1517  *				This field indicates what encapsulation
1518  *				offloads the hardware is capable of doing,
1519  *				and drivers will need to set them appropriately.
1520  *
1521  *	@mpls_features:	Mask of features inheritable by MPLS
1522  *
1523  *	@ifindex:	interface index
1524  *	@group:		The group the device belongs to
1525  *
1526  *	@stats:		Statistics struct, which was left as a legacy, use
1527  *			rtnl_link_stats64 instead
1528  *
1529  *	@rx_dropped:	Dropped packets by core network,
1530  *			do not use this in drivers
1531  *	@tx_dropped:	Dropped packets by core network,
1532  *			do not use this in drivers
1533  *	@rx_nohandler:	nohandler dropped packets by core network on
1534  *			inactive devices, do not use this in drivers
1535  *	@carrier_up_count:	Number of times the carrier has been up
1536  *	@carrier_down_count:	Number of times the carrier has been down
1537  *
1538  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1539  *				instead of ioctl,
1540  *				see <net/iw_handler.h> for details.
1541  *	@wireless_data:	Instance data managed by the core of wireless extensions
1542  *
1543  *	@netdev_ops:	Includes several pointers to callbacks,
1544  *			if one wants to override the ndo_*() functions
1545  *	@ethtool_ops:	Management operations
1546  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1547  *			discovery handling. Necessary for e.g. 6LoWPAN.
1548  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1549  *			of Layer 2 headers.
1550  *
1551  *	@flags:		Interface flags (a la BSD)
1552  *	@priv_flags:	Like 'flags' but invisible to userspace,
1553  *			see if.h for the definitions
1554  *	@gflags:	Global flags ( kept as legacy )
1555  *	@padded:	How much padding added by alloc_netdev()
1556  *	@operstate:	RFC2863 operstate
1557  *	@link_mode:	Mapping policy to operstate
1558  *	@if_port:	Selectable AUI, TP, ...
1559  *	@dma:		DMA channel
1560  *	@mtu:		Interface MTU value
1561  *	@min_mtu:	Interface Minimum MTU value
1562  *	@max_mtu:	Interface Maximum MTU value
1563  *	@type:		Interface hardware type
1564  *	@hard_header_len: Maximum hardware header length.
1565  *	@min_header_len:  Minimum hardware header length
1566  *
1567  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1568  *			  cases can this be guaranteed
1569  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1570  *			  cases can this be guaranteed. Some cases also use
1571  *			  LL_MAX_HEADER instead to allocate the skb
1572  *
1573  *	interface address info:
1574  *
1575  * 	@perm_addr:		Permanent hw address
1576  * 	@addr_assign_type:	Hw address assignment type
1577  * 	@addr_len:		Hardware address length
1578  *	@neigh_priv_len:	Used in neigh_alloc()
1579  * 	@dev_id:		Used to differentiate devices that share
1580  * 				the same link layer address
1581  * 	@dev_port:		Used to differentiate devices that share
1582  * 				the same function
1583  *	@addr_list_lock:	XXX: need comments on this one
1584  *	@uc_promisc:		Counter that indicates promiscuous mode
1585  *				has been enabled due to the need to listen to
1586  *				additional unicast addresses in a device that
1587  *				does not implement ndo_set_rx_mode()
1588  *	@uc:			unicast mac addresses
1589  *	@mc:			multicast mac addresses
1590  *	@dev_addrs:		list of device hw addresses
1591  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1592  *	@promiscuity:		Number of times the NIC is told to work in
1593  *				promiscuous mode; if it becomes 0 the NIC will
1594  *				exit promiscuous mode
1595  *	@allmulti:		Counter, enables or disables allmulticast mode
1596  *
1597  *	@vlan_info:	VLAN info
1598  *	@dsa_ptr:	dsa specific data
1599  *	@tipc_ptr:	TIPC specific data
1600  *	@atalk_ptr:	AppleTalk link
1601  *	@ip_ptr:	IPv4 specific data
1602  *	@dn_ptr:	DECnet specific data
1603  *	@ip6_ptr:	IPv6 specific data
1604  *	@ax25_ptr:	AX.25 specific data
1605  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1606  *
1607  *	@dev_addr:	Hw address (before bcast,
1608  *			because most packets are unicast)
1609  *
1610  *	@_rx:			Array of RX queues
1611  *	@num_rx_queues:		Number of RX queues
1612  *				allocated at register_netdev() time
1613  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1614  *
1615  *	@rx_handler:		handler for received packets
1616  *	@rx_handler_data: 	XXX: need comments on this one
1617  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1618  *				ingress processing
1619  *	@ingress_queue:		XXX: need comments on this one
1620  *	@broadcast:		hw bcast address
1621  *
1622  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1623  *			indexed by RX queue number. Assigned by driver.
1624  *			This must only be set if the ndo_rx_flow_steer
1625  *			operation is defined
1626  *	@index_hlist:		Device index hash chain
1627  *
1628  *	@_tx:			Array of TX queues
1629  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1630  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1631  *	@qdisc:			Root qdisc from userspace point of view
1632  *	@tx_queue_len:		Max frames per queue allowed
1633  *	@tx_global_lock: 	XXX: need comments on this one
1634  *
1635  *	@xps_maps:	XXX: need comments on this one
1636  *	@miniq_egress:		clsact qdisc specific data for
1637  *				egress processing
1638  *	@watchdog_timeo:	Represents the timeout that is used by
1639  *				the watchdog (see dev_watchdog())
1640  *	@watchdog_timer:	List of timers
1641  *
1642  *	@pcpu_refcnt:		Number of references to this device
1643  *	@todo_list:		Delayed register/unregister
1644  *	@link_watch_list:	XXX: need comments on this one
1645  *
1646  *	@reg_state:		Register/unregister state machine
1647  *	@dismantle:		Device is going to be freed
1648  *	@rtnl_link_state:	This enum represents the phases of creating
1649  *				a new link
1650  *
1651  *	@needs_free_netdev:	Should unregister perform free_netdev?
1652  *	@priv_destructor:	Called from unregister
1653  *	@npinfo:		XXX: need comments on this one
1654  * 	@nd_net:		Network namespace this network device is inside
1655  *
1656  * 	@ml_priv:	Mid-layer private
1657  * 	@lstats:	Loopback statistics
1658  * 	@tstats:	Tunnel statistics
1659  * 	@dstats:	Dummy statistics
1660  * 	@vstats:	Virtual ethernet statistics
1661  *
1662  *	@garp_port:	GARP
1663  *	@mrp_port:	MRP
1664  *
1665  *	@dev:		Class/net/name entry
1666  *	@sysfs_groups:	Space for optional device, statistics and wireless
1667  *			sysfs groups
1668  *
1669  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1670  *	@rtnl_link_ops:	Rtnl_link_ops
1671  *
1672  *	@gso_max_size:	Maximum size of generic segmentation offload
1673  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1674  *			NIC for GSO
1675  *
1676  *	@dcbnl_ops:	Data Center Bridging netlink ops
1677  *	@num_tc:	Number of traffic classes in the net device
1678  *	@tc_to_txq:	XXX: need comments on this one
1679  *	@prio_tc_map:	XXX: need comments on this one
1680  *
1681  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1682  *
1683  *	@priomap:	XXX: need comments on this one
1684  *	@phydev:	Physical device may attach itself
1685  *			for hardware timestamping
1686  *	@sfp_bus:	attached &struct sfp_bus structure.
1687  *
1688  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1689  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1690  *
1691  *	@proto_down:	protocol port state information can be sent to the
1692  *			switch driver and used to set the phys state of the
1693  *			switch port.
1694  *
1695  *	FIXME: cleanup struct net_device such that network protocol info
1696  *	moves out.
1697  */
1698 
1699 struct net_device {
1700 	char			name[IFNAMSIZ];
1701 	struct hlist_node	name_hlist;
1702 	struct dev_ifalias	__rcu *ifalias;
1703 	/*
1704 	 *	I/O specific fields
1705 	 *	FIXME: Merge these and struct ifmap into one
1706 	 */
1707 	unsigned long		mem_end;
1708 	unsigned long		mem_start;
1709 	unsigned long		base_addr;
1710 	int			irq;
1711 
1712 	/*
1713 	 *	Some hardware also needs these fields (state,dev_list,
1714 	 *	napi_list,unreg_list,close_list) but they are not
1715 	 *	part of the usual set specified in Space.c.
1716 	 */
1717 
1718 	unsigned long		state;
1719 
1720 	struct list_head	dev_list;
1721 	struct list_head	napi_list;
1722 	struct list_head	unreg_list;
1723 	struct list_head	close_list;
1724 	struct list_head	ptype_all;
1725 	struct list_head	ptype_specific;
1726 
1727 	struct {
1728 		struct list_head upper;
1729 		struct list_head lower;
1730 	} adj_list;
1731 
1732 	netdev_features_t	features;
1733 	netdev_features_t	hw_features;
1734 	netdev_features_t	wanted_features;
1735 	netdev_features_t	vlan_features;
1736 	netdev_features_t	hw_enc_features;
1737 	netdev_features_t	mpls_features;
1738 	netdev_features_t	gso_partial_features;
1739 
1740 	int			ifindex;
1741 	int			group;
1742 
1743 	struct net_device_stats	stats;
1744 
1745 	atomic_long_t		rx_dropped;
1746 	atomic_long_t		tx_dropped;
1747 	atomic_long_t		rx_nohandler;
1748 
1749 	/* Stats to monitor link on/off, flapping */
1750 	atomic_t		carrier_up_count;
1751 	atomic_t		carrier_down_count;
1752 
1753 #ifdef CONFIG_WIRELESS_EXT
1754 	const struct iw_handler_def *wireless_handlers;
1755 	struct iw_public_data	*wireless_data;
1756 #endif
1757 	const struct net_device_ops *netdev_ops;
1758 	const struct ethtool_ops *ethtool_ops;
1759 #ifdef CONFIG_NET_SWITCHDEV
1760 	const struct switchdev_ops *switchdev_ops;
1761 #endif
1762 #ifdef CONFIG_NET_L3_MASTER_DEV
1763 	const struct l3mdev_ops	*l3mdev_ops;
1764 #endif
1765 #if IS_ENABLED(CONFIG_IPV6)
1766 	const struct ndisc_ops *ndisc_ops;
1767 #endif
1768 
1769 #ifdef CONFIG_XFRM_OFFLOAD
1770 	const struct xfrmdev_ops *xfrmdev_ops;
1771 #endif
1772 
1773 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1774 	const struct tlsdev_ops *tlsdev_ops;
1775 #endif
1776 
1777 	const struct header_ops *header_ops;
1778 
1779 	unsigned int		flags;
1780 	unsigned int		priv_flags;
1781 
1782 	unsigned short		gflags;
1783 	unsigned short		padded;
1784 
1785 	unsigned char		operstate;
1786 	unsigned char		link_mode;
1787 
1788 	unsigned char		if_port;
1789 	unsigned char		dma;
1790 
1791 	unsigned int		mtu;
1792 	unsigned int		min_mtu;
1793 	unsigned int		max_mtu;
1794 	unsigned short		type;
1795 	unsigned short		hard_header_len;
1796 	unsigned char		min_header_len;
1797 
1798 	unsigned short		needed_headroom;
1799 	unsigned short		needed_tailroom;
1800 
1801 	/* Interface address info. */
1802 	unsigned char		perm_addr[MAX_ADDR_LEN];
1803 	unsigned char		addr_assign_type;
1804 	unsigned char		addr_len;
1805 	unsigned short		neigh_priv_len;
1806 	unsigned short          dev_id;
1807 	unsigned short          dev_port;
1808 	spinlock_t		addr_list_lock;
1809 	unsigned char		name_assign_type;
1810 	bool			uc_promisc;
1811 	struct netdev_hw_addr_list	uc;
1812 	struct netdev_hw_addr_list	mc;
1813 	struct netdev_hw_addr_list	dev_addrs;
1814 
1815 #ifdef CONFIG_SYSFS
1816 	struct kset		*queues_kset;
1817 #endif
1818 	unsigned int		promiscuity;
1819 	unsigned int		allmulti;
1820 
1821 
1822 	/* Protocol-specific pointers */
1823 
1824 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1825 	struct vlan_info __rcu	*vlan_info;
1826 #endif
1827 #if IS_ENABLED(CONFIG_NET_DSA)
1828 	struct dsa_port		*dsa_ptr;
1829 #endif
1830 #if IS_ENABLED(CONFIG_TIPC)
1831 	struct tipc_bearer __rcu *tipc_ptr;
1832 #endif
1833 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1834 	void 			*atalk_ptr;
1835 #endif
1836 	struct in_device __rcu	*ip_ptr;
1837 #if IS_ENABLED(CONFIG_DECNET)
1838 	struct dn_dev __rcu     *dn_ptr;
1839 #endif
1840 	struct inet6_dev __rcu	*ip6_ptr;
1841 #if IS_ENABLED(CONFIG_AX25)
1842 	void			*ax25_ptr;
1843 #endif
1844 	struct wireless_dev	*ieee80211_ptr;
1845 	struct wpan_dev		*ieee802154_ptr;
1846 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1847 	struct mpls_dev __rcu	*mpls_ptr;
1848 #endif
1849 
1850 /*
1851  * Cache lines mostly used on receive path (including eth_type_trans())
1852  */
1853 	/* Interface address info used in eth_type_trans() */
1854 	unsigned char		*dev_addr;
1855 
1856 	struct netdev_rx_queue	*_rx;
1857 	unsigned int		num_rx_queues;
1858 	unsigned int		real_num_rx_queues;
1859 
1860 	struct bpf_prog __rcu	*xdp_prog;
1861 	unsigned long		gro_flush_timeout;
1862 	rx_handler_func_t __rcu	*rx_handler;
1863 	void __rcu		*rx_handler_data;
1864 
1865 #ifdef CONFIG_NET_CLS_ACT
1866 	struct mini_Qdisc __rcu	*miniq_ingress;
1867 #endif
1868 	struct netdev_queue __rcu *ingress_queue;
1869 #ifdef CONFIG_NETFILTER_INGRESS
1870 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1871 #endif
1872 
1873 	unsigned char		broadcast[MAX_ADDR_LEN];
1874 #ifdef CONFIG_RFS_ACCEL
1875 	struct cpu_rmap		*rx_cpu_rmap;
1876 #endif
1877 	struct hlist_node	index_hlist;
1878 
1879 /*
1880  * Cache lines mostly used on transmit path
1881  */
1882 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1883 	unsigned int		num_tx_queues;
1884 	unsigned int		real_num_tx_queues;
1885 	struct Qdisc		*qdisc;
1886 #ifdef CONFIG_NET_SCHED
1887 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1888 #endif
1889 	unsigned int		tx_queue_len;
1890 	spinlock_t		tx_global_lock;
1891 	int			watchdog_timeo;
1892 
1893 #ifdef CONFIG_XPS
1894 	struct xps_dev_maps __rcu *xps_maps;
1895 #endif
1896 #ifdef CONFIG_NET_CLS_ACT
1897 	struct mini_Qdisc __rcu	*miniq_egress;
1898 #endif
1899 
1900 	/* These may be needed for future network-power-down code. */
1901 	struct timer_list	watchdog_timer;
1902 
1903 	int __percpu		*pcpu_refcnt;
1904 	struct list_head	todo_list;
1905 
1906 	struct list_head	link_watch_list;
1907 
1908 	enum { NETREG_UNINITIALIZED=0,
1909 	       NETREG_REGISTERED,	/* completed register_netdevice */
1910 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1911 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1912 	       NETREG_RELEASED,		/* called free_netdev */
1913 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1914 	} reg_state:8;
1915 
1916 	bool dismantle;
1917 
1918 	enum {
1919 		RTNL_LINK_INITIALIZED,
1920 		RTNL_LINK_INITIALIZING,
1921 	} rtnl_link_state:16;
1922 
1923 	bool needs_free_netdev;
1924 	void (*priv_destructor)(struct net_device *dev);
1925 
1926 #ifdef CONFIG_NETPOLL
1927 	struct netpoll_info __rcu	*npinfo;
1928 #endif
1929 
1930 	possible_net_t			nd_net;
1931 
1932 	/* mid-layer private */
1933 	union {
1934 		void					*ml_priv;
1935 		struct pcpu_lstats __percpu		*lstats;
1936 		struct pcpu_sw_netstats __percpu	*tstats;
1937 		struct pcpu_dstats __percpu		*dstats;
1938 		struct pcpu_vstats __percpu		*vstats;
1939 	};
1940 
1941 #if IS_ENABLED(CONFIG_GARP)
1942 	struct garp_port __rcu	*garp_port;
1943 #endif
1944 #if IS_ENABLED(CONFIG_MRP)
1945 	struct mrp_port __rcu	*mrp_port;
1946 #endif
1947 
1948 	struct device		dev;
1949 	const struct attribute_group *sysfs_groups[4];
1950 	const struct attribute_group *sysfs_rx_queue_group;
1951 
1952 	const struct rtnl_link_ops *rtnl_link_ops;
1953 
1954 	/* for setting kernel sock attribute on TCP connection setup */
1955 #define GSO_MAX_SIZE		65536
1956 	unsigned int		gso_max_size;
1957 #define GSO_MAX_SEGS		65535
1958 	u16			gso_max_segs;
1959 
1960 #ifdef CONFIG_DCB
1961 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1962 #endif
1963 	u8			num_tc;
1964 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
1965 	u8			prio_tc_map[TC_BITMASK + 1];
1966 
1967 #if IS_ENABLED(CONFIG_FCOE)
1968 	unsigned int		fcoe_ddp_xid;
1969 #endif
1970 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1971 	struct netprio_map __rcu *priomap;
1972 #endif
1973 	struct phy_device	*phydev;
1974 	struct sfp_bus		*sfp_bus;
1975 	struct lock_class_key	*qdisc_tx_busylock;
1976 	struct lock_class_key	*qdisc_running_key;
1977 	bool			proto_down;
1978 };
1979 #define to_net_dev(d) container_of(d, struct net_device, dev)
1980 
1981 static inline bool netif_elide_gro(const struct net_device *dev)
1982 {
1983 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
1984 		return true;
1985 	return false;
1986 }
1987 
1988 #define	NETDEV_ALIGN		32
1989 
1990 static inline
1991 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1992 {
1993 	return dev->prio_tc_map[prio & TC_BITMASK];
1994 }
1995 
1996 static inline
1997 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1998 {
1999 	if (tc >= dev->num_tc)
2000 		return -EINVAL;
2001 
2002 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2003 	return 0;
2004 }
2005 
2006 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2007 void netdev_reset_tc(struct net_device *dev);
2008 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2009 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2010 
2011 static inline
2012 int netdev_get_num_tc(struct net_device *dev)
2013 {
2014 	return dev->num_tc;
2015 }
2016 
2017 static inline
2018 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2019 					 unsigned int index)
2020 {
2021 	return &dev->_tx[index];
2022 }
2023 
2024 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2025 						    const struct sk_buff *skb)
2026 {
2027 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2028 }
2029 
2030 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2031 					    void (*f)(struct net_device *,
2032 						      struct netdev_queue *,
2033 						      void *),
2034 					    void *arg)
2035 {
2036 	unsigned int i;
2037 
2038 	for (i = 0; i < dev->num_tx_queues; i++)
2039 		f(dev, &dev->_tx[i], arg);
2040 }
2041 
2042 #define netdev_lockdep_set_classes(dev)				\
2043 {								\
2044 	static struct lock_class_key qdisc_tx_busylock_key;	\
2045 	static struct lock_class_key qdisc_running_key;		\
2046 	static struct lock_class_key qdisc_xmit_lock_key;	\
2047 	static struct lock_class_key dev_addr_list_lock_key;	\
2048 	unsigned int i;						\
2049 								\
2050 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2051 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2052 	lockdep_set_class(&(dev)->addr_list_lock,		\
2053 			  &dev_addr_list_lock_key); 		\
2054 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2055 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2056 				  &qdisc_xmit_lock_key);	\
2057 }
2058 
2059 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2060 				    struct sk_buff *skb,
2061 				    void *accel_priv);
2062 
2063 /* returns the headroom that the master device needs to take in account
2064  * when forwarding to this dev
2065  */
2066 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2067 {
2068 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2069 }
2070 
2071 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2072 {
2073 	if (dev->netdev_ops->ndo_set_rx_headroom)
2074 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2075 }
2076 
2077 /* set the device rx headroom to the dev's default */
2078 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2079 {
2080 	netdev_set_rx_headroom(dev, -1);
2081 }
2082 
2083 /*
2084  * Net namespace inlines
2085  */
2086 static inline
2087 struct net *dev_net(const struct net_device *dev)
2088 {
2089 	return read_pnet(&dev->nd_net);
2090 }
2091 
2092 static inline
2093 void dev_net_set(struct net_device *dev, struct net *net)
2094 {
2095 	write_pnet(&dev->nd_net, net);
2096 }
2097 
2098 /**
2099  *	netdev_priv - access network device private data
2100  *	@dev: network device
2101  *
2102  * Get network device private data
2103  */
2104 static inline void *netdev_priv(const struct net_device *dev)
2105 {
2106 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2107 }
2108 
2109 /* Set the sysfs physical device reference for the network logical device
2110  * if set prior to registration will cause a symlink during initialization.
2111  */
2112 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2113 
2114 /* Set the sysfs device type for the network logical device to allow
2115  * fine-grained identification of different network device types. For
2116  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2117  */
2118 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2119 
2120 /* Default NAPI poll() weight
2121  * Device drivers are strongly advised to not use bigger value
2122  */
2123 #define NAPI_POLL_WEIGHT 64
2124 
2125 /**
2126  *	netif_napi_add - initialize a NAPI context
2127  *	@dev:  network device
2128  *	@napi: NAPI context
2129  *	@poll: polling function
2130  *	@weight: default weight
2131  *
2132  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2133  * *any* of the other NAPI-related functions.
2134  */
2135 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2136 		    int (*poll)(struct napi_struct *, int), int weight);
2137 
2138 /**
2139  *	netif_tx_napi_add - initialize a NAPI context
2140  *	@dev:  network device
2141  *	@napi: NAPI context
2142  *	@poll: polling function
2143  *	@weight: default weight
2144  *
2145  * This variant of netif_napi_add() should be used from drivers using NAPI
2146  * to exclusively poll a TX queue.
2147  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2148  */
2149 static inline void netif_tx_napi_add(struct net_device *dev,
2150 				     struct napi_struct *napi,
2151 				     int (*poll)(struct napi_struct *, int),
2152 				     int weight)
2153 {
2154 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2155 	netif_napi_add(dev, napi, poll, weight);
2156 }
2157 
2158 /**
2159  *  netif_napi_del - remove a NAPI context
2160  *  @napi: NAPI context
2161  *
2162  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2163  */
2164 void netif_napi_del(struct napi_struct *napi);
2165 
2166 struct napi_gro_cb {
2167 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2168 	void	*frag0;
2169 
2170 	/* Length of frag0. */
2171 	unsigned int frag0_len;
2172 
2173 	/* This indicates where we are processing relative to skb->data. */
2174 	int	data_offset;
2175 
2176 	/* This is non-zero if the packet cannot be merged with the new skb. */
2177 	u16	flush;
2178 
2179 	/* Save the IP ID here and check when we get to the transport layer */
2180 	u16	flush_id;
2181 
2182 	/* Number of segments aggregated. */
2183 	u16	count;
2184 
2185 	/* Start offset for remote checksum offload */
2186 	u16	gro_remcsum_start;
2187 
2188 	/* jiffies when first packet was created/queued */
2189 	unsigned long age;
2190 
2191 	/* Used in ipv6_gro_receive() and foo-over-udp */
2192 	u16	proto;
2193 
2194 	/* This is non-zero if the packet may be of the same flow. */
2195 	u8	same_flow:1;
2196 
2197 	/* Used in tunnel GRO receive */
2198 	u8	encap_mark:1;
2199 
2200 	/* GRO checksum is valid */
2201 	u8	csum_valid:1;
2202 
2203 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2204 	u8	csum_cnt:3;
2205 
2206 	/* Free the skb? */
2207 	u8	free:2;
2208 #define NAPI_GRO_FREE		  1
2209 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2210 
2211 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2212 	u8	is_ipv6:1;
2213 
2214 	/* Used in GRE, set in fou/gue_gro_receive */
2215 	u8	is_fou:1;
2216 
2217 	/* Used to determine if flush_id can be ignored */
2218 	u8	is_atomic:1;
2219 
2220 	/* Number of gro_receive callbacks this packet already went through */
2221 	u8 recursion_counter:4;
2222 
2223 	/* 1 bit hole */
2224 
2225 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2226 	__wsum	csum;
2227 
2228 	/* used in skb_gro_receive() slow path */
2229 	struct sk_buff *last;
2230 };
2231 
2232 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2233 
2234 #define GRO_RECURSION_LIMIT 15
2235 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2236 {
2237 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2238 }
2239 
2240 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2241 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2242 						struct sk_buff **head,
2243 						struct sk_buff *skb)
2244 {
2245 	if (unlikely(gro_recursion_inc_test(skb))) {
2246 		NAPI_GRO_CB(skb)->flush |= 1;
2247 		return NULL;
2248 	}
2249 
2250 	return cb(head, skb);
2251 }
2252 
2253 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2254 					     struct sk_buff *);
2255 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2256 						   struct sock *sk,
2257 						   struct sk_buff **head,
2258 						   struct sk_buff *skb)
2259 {
2260 	if (unlikely(gro_recursion_inc_test(skb))) {
2261 		NAPI_GRO_CB(skb)->flush |= 1;
2262 		return NULL;
2263 	}
2264 
2265 	return cb(sk, head, skb);
2266 }
2267 
2268 struct packet_type {
2269 	__be16			type;	/* This is really htons(ether_type). */
2270 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2271 	int			(*func) (struct sk_buff *,
2272 					 struct net_device *,
2273 					 struct packet_type *,
2274 					 struct net_device *);
2275 	bool			(*id_match)(struct packet_type *ptype,
2276 					    struct sock *sk);
2277 	void			*af_packet_priv;
2278 	struct list_head	list;
2279 };
2280 
2281 struct offload_callbacks {
2282 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2283 						netdev_features_t features);
2284 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2285 						 struct sk_buff *skb);
2286 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2287 };
2288 
2289 struct packet_offload {
2290 	__be16			 type;	/* This is really htons(ether_type). */
2291 	u16			 priority;
2292 	struct offload_callbacks callbacks;
2293 	struct list_head	 list;
2294 };
2295 
2296 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2297 struct pcpu_sw_netstats {
2298 	u64     rx_packets;
2299 	u64     rx_bytes;
2300 	u64     tx_packets;
2301 	u64     tx_bytes;
2302 	struct u64_stats_sync   syncp;
2303 };
2304 
2305 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2306 ({									\
2307 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2308 	if (pcpu_stats)	{						\
2309 		int __cpu;						\
2310 		for_each_possible_cpu(__cpu) {				\
2311 			typeof(type) *stat;				\
2312 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2313 			u64_stats_init(&stat->syncp);			\
2314 		}							\
2315 	}								\
2316 	pcpu_stats;							\
2317 })
2318 
2319 #define netdev_alloc_pcpu_stats(type)					\
2320 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2321 
2322 enum netdev_lag_tx_type {
2323 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2324 	NETDEV_LAG_TX_TYPE_RANDOM,
2325 	NETDEV_LAG_TX_TYPE_BROADCAST,
2326 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2327 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2328 	NETDEV_LAG_TX_TYPE_HASH,
2329 };
2330 
2331 struct netdev_lag_upper_info {
2332 	enum netdev_lag_tx_type tx_type;
2333 };
2334 
2335 struct netdev_lag_lower_state_info {
2336 	u8 link_up : 1,
2337 	   tx_enabled : 1;
2338 };
2339 
2340 #include <linux/notifier.h>
2341 
2342 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2343  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2344  * adding new types.
2345  */
2346 enum netdev_cmd {
2347 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2348 	NETDEV_DOWN,
2349 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2350 				   detected a hardware crash and restarted
2351 				   - we can use this eg to kick tcp sessions
2352 				   once done */
2353 	NETDEV_CHANGE,		/* Notify device state change */
2354 	NETDEV_REGISTER,
2355 	NETDEV_UNREGISTER,
2356 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2357 	NETDEV_CHANGEADDR,
2358 	NETDEV_GOING_DOWN,
2359 	NETDEV_CHANGENAME,
2360 	NETDEV_FEAT_CHANGE,
2361 	NETDEV_BONDING_FAILOVER,
2362 	NETDEV_PRE_UP,
2363 	NETDEV_PRE_TYPE_CHANGE,
2364 	NETDEV_POST_TYPE_CHANGE,
2365 	NETDEV_POST_INIT,
2366 	NETDEV_RELEASE,
2367 	NETDEV_NOTIFY_PEERS,
2368 	NETDEV_JOIN,
2369 	NETDEV_CHANGEUPPER,
2370 	NETDEV_RESEND_IGMP,
2371 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2372 	NETDEV_CHANGEINFODATA,
2373 	NETDEV_BONDING_INFO,
2374 	NETDEV_PRECHANGEUPPER,
2375 	NETDEV_CHANGELOWERSTATE,
2376 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2377 	NETDEV_UDP_TUNNEL_DROP_INFO,
2378 	NETDEV_CHANGE_TX_QUEUE_LEN,
2379 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2380 	NETDEV_CVLAN_FILTER_DROP_INFO,
2381 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2382 	NETDEV_SVLAN_FILTER_DROP_INFO,
2383 };
2384 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2385 
2386 int register_netdevice_notifier(struct notifier_block *nb);
2387 int unregister_netdevice_notifier(struct notifier_block *nb);
2388 
2389 struct netdev_notifier_info {
2390 	struct net_device	*dev;
2391 	struct netlink_ext_ack	*extack;
2392 };
2393 
2394 struct netdev_notifier_change_info {
2395 	struct netdev_notifier_info info; /* must be first */
2396 	unsigned int flags_changed;
2397 };
2398 
2399 struct netdev_notifier_changeupper_info {
2400 	struct netdev_notifier_info info; /* must be first */
2401 	struct net_device *upper_dev; /* new upper dev */
2402 	bool master; /* is upper dev master */
2403 	bool linking; /* is the notification for link or unlink */
2404 	void *upper_info; /* upper dev info */
2405 };
2406 
2407 struct netdev_notifier_changelowerstate_info {
2408 	struct netdev_notifier_info info; /* must be first */
2409 	void *lower_state_info; /* is lower dev state */
2410 };
2411 
2412 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2413 					     struct net_device *dev)
2414 {
2415 	info->dev = dev;
2416 	info->extack = NULL;
2417 }
2418 
2419 static inline struct net_device *
2420 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2421 {
2422 	return info->dev;
2423 }
2424 
2425 static inline struct netlink_ext_ack *
2426 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2427 {
2428 	return info->extack;
2429 }
2430 
2431 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2432 
2433 
2434 extern rwlock_t				dev_base_lock;		/* Device list lock */
2435 
2436 #define for_each_netdev(net, d)		\
2437 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2438 #define for_each_netdev_reverse(net, d)	\
2439 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2440 #define for_each_netdev_rcu(net, d)		\
2441 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2442 #define for_each_netdev_safe(net, d, n)	\
2443 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2444 #define for_each_netdev_continue(net, d)		\
2445 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2446 #define for_each_netdev_continue_rcu(net, d)		\
2447 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2448 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2449 		for_each_netdev_rcu(&init_net, slave)	\
2450 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2451 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2452 
2453 static inline struct net_device *next_net_device(struct net_device *dev)
2454 {
2455 	struct list_head *lh;
2456 	struct net *net;
2457 
2458 	net = dev_net(dev);
2459 	lh = dev->dev_list.next;
2460 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2461 }
2462 
2463 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2464 {
2465 	struct list_head *lh;
2466 	struct net *net;
2467 
2468 	net = dev_net(dev);
2469 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2470 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2471 }
2472 
2473 static inline struct net_device *first_net_device(struct net *net)
2474 {
2475 	return list_empty(&net->dev_base_head) ? NULL :
2476 		net_device_entry(net->dev_base_head.next);
2477 }
2478 
2479 static inline struct net_device *first_net_device_rcu(struct net *net)
2480 {
2481 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2482 
2483 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2484 }
2485 
2486 int netdev_boot_setup_check(struct net_device *dev);
2487 unsigned long netdev_boot_base(const char *prefix, int unit);
2488 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2489 				       const char *hwaddr);
2490 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2491 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2492 void dev_add_pack(struct packet_type *pt);
2493 void dev_remove_pack(struct packet_type *pt);
2494 void __dev_remove_pack(struct packet_type *pt);
2495 void dev_add_offload(struct packet_offload *po);
2496 void dev_remove_offload(struct packet_offload *po);
2497 
2498 int dev_get_iflink(const struct net_device *dev);
2499 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2500 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2501 				      unsigned short mask);
2502 struct net_device *dev_get_by_name(struct net *net, const char *name);
2503 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2504 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2505 int dev_alloc_name(struct net_device *dev, const char *name);
2506 int dev_open(struct net_device *dev);
2507 void dev_close(struct net_device *dev);
2508 void dev_close_many(struct list_head *head, bool unlink);
2509 void dev_disable_lro(struct net_device *dev);
2510 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2511 int dev_queue_xmit(struct sk_buff *skb);
2512 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2513 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2514 int register_netdevice(struct net_device *dev);
2515 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2516 void unregister_netdevice_many(struct list_head *head);
2517 static inline void unregister_netdevice(struct net_device *dev)
2518 {
2519 	unregister_netdevice_queue(dev, NULL);
2520 }
2521 
2522 int netdev_refcnt_read(const struct net_device *dev);
2523 void free_netdev(struct net_device *dev);
2524 void netdev_freemem(struct net_device *dev);
2525 void synchronize_net(void);
2526 int init_dummy_netdev(struct net_device *dev);
2527 
2528 DECLARE_PER_CPU(int, xmit_recursion);
2529 #define XMIT_RECURSION_LIMIT	10
2530 
2531 static inline int dev_recursion_level(void)
2532 {
2533 	return this_cpu_read(xmit_recursion);
2534 }
2535 
2536 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2537 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2538 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2539 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2540 int netdev_get_name(struct net *net, char *name, int ifindex);
2541 int dev_restart(struct net_device *dev);
2542 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2543 
2544 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2545 {
2546 	return NAPI_GRO_CB(skb)->data_offset;
2547 }
2548 
2549 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2550 {
2551 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2552 }
2553 
2554 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2555 {
2556 	NAPI_GRO_CB(skb)->data_offset += len;
2557 }
2558 
2559 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2560 					unsigned int offset)
2561 {
2562 	return NAPI_GRO_CB(skb)->frag0 + offset;
2563 }
2564 
2565 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2566 {
2567 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2568 }
2569 
2570 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2571 {
2572 	NAPI_GRO_CB(skb)->frag0 = NULL;
2573 	NAPI_GRO_CB(skb)->frag0_len = 0;
2574 }
2575 
2576 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2577 					unsigned int offset)
2578 {
2579 	if (!pskb_may_pull(skb, hlen))
2580 		return NULL;
2581 
2582 	skb_gro_frag0_invalidate(skb);
2583 	return skb->data + offset;
2584 }
2585 
2586 static inline void *skb_gro_network_header(struct sk_buff *skb)
2587 {
2588 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2589 	       skb_network_offset(skb);
2590 }
2591 
2592 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2593 					const void *start, unsigned int len)
2594 {
2595 	if (NAPI_GRO_CB(skb)->csum_valid)
2596 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2597 						  csum_partial(start, len, 0));
2598 }
2599 
2600 /* GRO checksum functions. These are logical equivalents of the normal
2601  * checksum functions (in skbuff.h) except that they operate on the GRO
2602  * offsets and fields in sk_buff.
2603  */
2604 
2605 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2606 
2607 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2608 {
2609 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2610 }
2611 
2612 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2613 						      bool zero_okay,
2614 						      __sum16 check)
2615 {
2616 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2617 		skb_checksum_start_offset(skb) <
2618 		 skb_gro_offset(skb)) &&
2619 		!skb_at_gro_remcsum_start(skb) &&
2620 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2621 		(!zero_okay || check));
2622 }
2623 
2624 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2625 							   __wsum psum)
2626 {
2627 	if (NAPI_GRO_CB(skb)->csum_valid &&
2628 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2629 		return 0;
2630 
2631 	NAPI_GRO_CB(skb)->csum = psum;
2632 
2633 	return __skb_gro_checksum_complete(skb);
2634 }
2635 
2636 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2637 {
2638 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2639 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2640 		NAPI_GRO_CB(skb)->csum_cnt--;
2641 	} else {
2642 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2643 		 * verified a new top level checksum or an encapsulated one
2644 		 * during GRO. This saves work if we fallback to normal path.
2645 		 */
2646 		__skb_incr_checksum_unnecessary(skb);
2647 	}
2648 }
2649 
2650 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2651 				    compute_pseudo)			\
2652 ({									\
2653 	__sum16 __ret = 0;						\
2654 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2655 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2656 				compute_pseudo(skb, proto));		\
2657 	if (!__ret)							\
2658 		skb_gro_incr_csum_unnecessary(skb);			\
2659 	__ret;								\
2660 })
2661 
2662 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2663 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2664 
2665 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2666 					     compute_pseudo)		\
2667 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2668 
2669 #define skb_gro_checksum_simple_validate(skb)				\
2670 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2671 
2672 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2673 {
2674 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2675 		!NAPI_GRO_CB(skb)->csum_valid);
2676 }
2677 
2678 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2679 					      __sum16 check, __wsum pseudo)
2680 {
2681 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2682 	NAPI_GRO_CB(skb)->csum_valid = 1;
2683 }
2684 
2685 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2686 do {									\
2687 	if (__skb_gro_checksum_convert_check(skb))			\
2688 		__skb_gro_checksum_convert(skb, check,			\
2689 					   compute_pseudo(skb, proto));	\
2690 } while (0)
2691 
2692 struct gro_remcsum {
2693 	int offset;
2694 	__wsum delta;
2695 };
2696 
2697 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2698 {
2699 	grc->offset = 0;
2700 	grc->delta = 0;
2701 }
2702 
2703 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2704 					    unsigned int off, size_t hdrlen,
2705 					    int start, int offset,
2706 					    struct gro_remcsum *grc,
2707 					    bool nopartial)
2708 {
2709 	__wsum delta;
2710 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2711 
2712 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2713 
2714 	if (!nopartial) {
2715 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2716 		return ptr;
2717 	}
2718 
2719 	ptr = skb_gro_header_fast(skb, off);
2720 	if (skb_gro_header_hard(skb, off + plen)) {
2721 		ptr = skb_gro_header_slow(skb, off + plen, off);
2722 		if (!ptr)
2723 			return NULL;
2724 	}
2725 
2726 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2727 			       start, offset);
2728 
2729 	/* Adjust skb->csum since we changed the packet */
2730 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2731 
2732 	grc->offset = off + hdrlen + offset;
2733 	grc->delta = delta;
2734 
2735 	return ptr;
2736 }
2737 
2738 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2739 					   struct gro_remcsum *grc)
2740 {
2741 	void *ptr;
2742 	size_t plen = grc->offset + sizeof(u16);
2743 
2744 	if (!grc->delta)
2745 		return;
2746 
2747 	ptr = skb_gro_header_fast(skb, grc->offset);
2748 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2749 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2750 		if (!ptr)
2751 			return;
2752 	}
2753 
2754 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2755 }
2756 
2757 #ifdef CONFIG_XFRM_OFFLOAD
2758 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2759 {
2760 	if (PTR_ERR(pp) != -EINPROGRESS)
2761 		NAPI_GRO_CB(skb)->flush |= flush;
2762 }
2763 #else
2764 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2765 {
2766 	NAPI_GRO_CB(skb)->flush |= flush;
2767 }
2768 #endif
2769 
2770 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2771 				  unsigned short type,
2772 				  const void *daddr, const void *saddr,
2773 				  unsigned int len)
2774 {
2775 	if (!dev->header_ops || !dev->header_ops->create)
2776 		return 0;
2777 
2778 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2779 }
2780 
2781 static inline int dev_parse_header(const struct sk_buff *skb,
2782 				   unsigned char *haddr)
2783 {
2784 	const struct net_device *dev = skb->dev;
2785 
2786 	if (!dev->header_ops || !dev->header_ops->parse)
2787 		return 0;
2788 	return dev->header_ops->parse(skb, haddr);
2789 }
2790 
2791 /* ll_header must have at least hard_header_len allocated */
2792 static inline bool dev_validate_header(const struct net_device *dev,
2793 				       char *ll_header, int len)
2794 {
2795 	if (likely(len >= dev->hard_header_len))
2796 		return true;
2797 	if (len < dev->min_header_len)
2798 		return false;
2799 
2800 	if (capable(CAP_SYS_RAWIO)) {
2801 		memset(ll_header + len, 0, dev->hard_header_len - len);
2802 		return true;
2803 	}
2804 
2805 	if (dev->header_ops && dev->header_ops->validate)
2806 		return dev->header_ops->validate(ll_header, len);
2807 
2808 	return false;
2809 }
2810 
2811 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2812 			   int len, int size);
2813 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2814 static inline int unregister_gifconf(unsigned int family)
2815 {
2816 	return register_gifconf(family, NULL);
2817 }
2818 
2819 #ifdef CONFIG_NET_FLOW_LIMIT
2820 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2821 struct sd_flow_limit {
2822 	u64			count;
2823 	unsigned int		num_buckets;
2824 	unsigned int		history_head;
2825 	u16			history[FLOW_LIMIT_HISTORY];
2826 	u8			buckets[];
2827 };
2828 
2829 extern int netdev_flow_limit_table_len;
2830 #endif /* CONFIG_NET_FLOW_LIMIT */
2831 
2832 /*
2833  * Incoming packets are placed on per-CPU queues
2834  */
2835 struct softnet_data {
2836 	struct list_head	poll_list;
2837 	struct sk_buff_head	process_queue;
2838 
2839 	/* stats */
2840 	unsigned int		processed;
2841 	unsigned int		time_squeeze;
2842 	unsigned int		received_rps;
2843 #ifdef CONFIG_RPS
2844 	struct softnet_data	*rps_ipi_list;
2845 #endif
2846 #ifdef CONFIG_NET_FLOW_LIMIT
2847 	struct sd_flow_limit __rcu *flow_limit;
2848 #endif
2849 	struct Qdisc		*output_queue;
2850 	struct Qdisc		**output_queue_tailp;
2851 	struct sk_buff		*completion_queue;
2852 #ifdef CONFIG_XFRM_OFFLOAD
2853 	struct sk_buff_head	xfrm_backlog;
2854 #endif
2855 #ifdef CONFIG_RPS
2856 	/* input_queue_head should be written by cpu owning this struct,
2857 	 * and only read by other cpus. Worth using a cache line.
2858 	 */
2859 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2860 
2861 	/* Elements below can be accessed between CPUs for RPS/RFS */
2862 	call_single_data_t	csd ____cacheline_aligned_in_smp;
2863 	struct softnet_data	*rps_ipi_next;
2864 	unsigned int		cpu;
2865 	unsigned int		input_queue_tail;
2866 #endif
2867 	unsigned int		dropped;
2868 	struct sk_buff_head	input_pkt_queue;
2869 	struct napi_struct	backlog;
2870 
2871 };
2872 
2873 static inline void input_queue_head_incr(struct softnet_data *sd)
2874 {
2875 #ifdef CONFIG_RPS
2876 	sd->input_queue_head++;
2877 #endif
2878 }
2879 
2880 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2881 					      unsigned int *qtail)
2882 {
2883 #ifdef CONFIG_RPS
2884 	*qtail = ++sd->input_queue_tail;
2885 #endif
2886 }
2887 
2888 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2889 
2890 void __netif_schedule(struct Qdisc *q);
2891 void netif_schedule_queue(struct netdev_queue *txq);
2892 
2893 static inline void netif_tx_schedule_all(struct net_device *dev)
2894 {
2895 	unsigned int i;
2896 
2897 	for (i = 0; i < dev->num_tx_queues; i++)
2898 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2899 }
2900 
2901 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2902 {
2903 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2904 }
2905 
2906 /**
2907  *	netif_start_queue - allow transmit
2908  *	@dev: network device
2909  *
2910  *	Allow upper layers to call the device hard_start_xmit routine.
2911  */
2912 static inline void netif_start_queue(struct net_device *dev)
2913 {
2914 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2915 }
2916 
2917 static inline void netif_tx_start_all_queues(struct net_device *dev)
2918 {
2919 	unsigned int i;
2920 
2921 	for (i = 0; i < dev->num_tx_queues; i++) {
2922 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2923 		netif_tx_start_queue(txq);
2924 	}
2925 }
2926 
2927 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2928 
2929 /**
2930  *	netif_wake_queue - restart transmit
2931  *	@dev: network device
2932  *
2933  *	Allow upper layers to call the device hard_start_xmit routine.
2934  *	Used for flow control when transmit resources are available.
2935  */
2936 static inline void netif_wake_queue(struct net_device *dev)
2937 {
2938 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2939 }
2940 
2941 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2942 {
2943 	unsigned int i;
2944 
2945 	for (i = 0; i < dev->num_tx_queues; i++) {
2946 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2947 		netif_tx_wake_queue(txq);
2948 	}
2949 }
2950 
2951 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2952 {
2953 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2954 }
2955 
2956 /**
2957  *	netif_stop_queue - stop transmitted packets
2958  *	@dev: network device
2959  *
2960  *	Stop upper layers calling the device hard_start_xmit routine.
2961  *	Used for flow control when transmit resources are unavailable.
2962  */
2963 static inline void netif_stop_queue(struct net_device *dev)
2964 {
2965 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2966 }
2967 
2968 void netif_tx_stop_all_queues(struct net_device *dev);
2969 
2970 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2971 {
2972 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2973 }
2974 
2975 /**
2976  *	netif_queue_stopped - test if transmit queue is flowblocked
2977  *	@dev: network device
2978  *
2979  *	Test if transmit queue on device is currently unable to send.
2980  */
2981 static inline bool netif_queue_stopped(const struct net_device *dev)
2982 {
2983 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2984 }
2985 
2986 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2987 {
2988 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2989 }
2990 
2991 static inline bool
2992 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2993 {
2994 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2995 }
2996 
2997 static inline bool
2998 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2999 {
3000 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3001 }
3002 
3003 /**
3004  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3005  *	@dev_queue: pointer to transmit queue
3006  *
3007  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3008  * to give appropriate hint to the CPU.
3009  */
3010 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3011 {
3012 #ifdef CONFIG_BQL
3013 	prefetchw(&dev_queue->dql.num_queued);
3014 #endif
3015 }
3016 
3017 /**
3018  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3019  *	@dev_queue: pointer to transmit queue
3020  *
3021  * BQL enabled drivers might use this helper in their TX completion path,
3022  * to give appropriate hint to the CPU.
3023  */
3024 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3025 {
3026 #ifdef CONFIG_BQL
3027 	prefetchw(&dev_queue->dql.limit);
3028 #endif
3029 }
3030 
3031 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3032 					unsigned int bytes)
3033 {
3034 #ifdef CONFIG_BQL
3035 	dql_queued(&dev_queue->dql, bytes);
3036 
3037 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3038 		return;
3039 
3040 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3041 
3042 	/*
3043 	 * The XOFF flag must be set before checking the dql_avail below,
3044 	 * because in netdev_tx_completed_queue we update the dql_completed
3045 	 * before checking the XOFF flag.
3046 	 */
3047 	smp_mb();
3048 
3049 	/* check again in case another CPU has just made room avail */
3050 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3051 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3052 #endif
3053 }
3054 
3055 /**
3056  * 	netdev_sent_queue - report the number of bytes queued to hardware
3057  * 	@dev: network device
3058  * 	@bytes: number of bytes queued to the hardware device queue
3059  *
3060  * 	Report the number of bytes queued for sending/completion to the network
3061  * 	device hardware queue. @bytes should be a good approximation and should
3062  * 	exactly match netdev_completed_queue() @bytes
3063  */
3064 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3065 {
3066 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3067 }
3068 
3069 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3070 					     unsigned int pkts, unsigned int bytes)
3071 {
3072 #ifdef CONFIG_BQL
3073 	if (unlikely(!bytes))
3074 		return;
3075 
3076 	dql_completed(&dev_queue->dql, bytes);
3077 
3078 	/*
3079 	 * Without the memory barrier there is a small possiblity that
3080 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3081 	 * be stopped forever
3082 	 */
3083 	smp_mb();
3084 
3085 	if (dql_avail(&dev_queue->dql) < 0)
3086 		return;
3087 
3088 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3089 		netif_schedule_queue(dev_queue);
3090 #endif
3091 }
3092 
3093 /**
3094  * 	netdev_completed_queue - report bytes and packets completed by device
3095  * 	@dev: network device
3096  * 	@pkts: actual number of packets sent over the medium
3097  * 	@bytes: actual number of bytes sent over the medium
3098  *
3099  * 	Report the number of bytes and packets transmitted by the network device
3100  * 	hardware queue over the physical medium, @bytes must exactly match the
3101  * 	@bytes amount passed to netdev_sent_queue()
3102  */
3103 static inline void netdev_completed_queue(struct net_device *dev,
3104 					  unsigned int pkts, unsigned int bytes)
3105 {
3106 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3107 }
3108 
3109 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3110 {
3111 #ifdef CONFIG_BQL
3112 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3113 	dql_reset(&q->dql);
3114 #endif
3115 }
3116 
3117 /**
3118  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3119  * 	@dev_queue: network device
3120  *
3121  * 	Reset the bytes and packet count of a network device and clear the
3122  * 	software flow control OFF bit for this network device
3123  */
3124 static inline void netdev_reset_queue(struct net_device *dev_queue)
3125 {
3126 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3127 }
3128 
3129 /**
3130  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3131  * 	@dev: network device
3132  * 	@queue_index: given tx queue index
3133  *
3134  * 	Returns 0 if given tx queue index >= number of device tx queues,
3135  * 	otherwise returns the originally passed tx queue index.
3136  */
3137 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3138 {
3139 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3140 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3141 				     dev->name, queue_index,
3142 				     dev->real_num_tx_queues);
3143 		return 0;
3144 	}
3145 
3146 	return queue_index;
3147 }
3148 
3149 /**
3150  *	netif_running - test if up
3151  *	@dev: network device
3152  *
3153  *	Test if the device has been brought up.
3154  */
3155 static inline bool netif_running(const struct net_device *dev)
3156 {
3157 	return test_bit(__LINK_STATE_START, &dev->state);
3158 }
3159 
3160 /*
3161  * Routines to manage the subqueues on a device.  We only need start,
3162  * stop, and a check if it's stopped.  All other device management is
3163  * done at the overall netdevice level.
3164  * Also test the device if we're multiqueue.
3165  */
3166 
3167 /**
3168  *	netif_start_subqueue - allow sending packets on subqueue
3169  *	@dev: network device
3170  *	@queue_index: sub queue index
3171  *
3172  * Start individual transmit queue of a device with multiple transmit queues.
3173  */
3174 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3175 {
3176 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3177 
3178 	netif_tx_start_queue(txq);
3179 }
3180 
3181 /**
3182  *	netif_stop_subqueue - stop sending packets on subqueue
3183  *	@dev: network device
3184  *	@queue_index: sub queue index
3185  *
3186  * Stop individual transmit queue of a device with multiple transmit queues.
3187  */
3188 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3189 {
3190 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3191 	netif_tx_stop_queue(txq);
3192 }
3193 
3194 /**
3195  *	netif_subqueue_stopped - test status of subqueue
3196  *	@dev: network device
3197  *	@queue_index: sub queue index
3198  *
3199  * Check individual transmit queue of a device with multiple transmit queues.
3200  */
3201 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3202 					    u16 queue_index)
3203 {
3204 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3205 
3206 	return netif_tx_queue_stopped(txq);
3207 }
3208 
3209 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3210 					  struct sk_buff *skb)
3211 {
3212 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3213 }
3214 
3215 /**
3216  *	netif_wake_subqueue - allow sending packets on subqueue
3217  *	@dev: network device
3218  *	@queue_index: sub queue index
3219  *
3220  * Resume individual transmit queue of a device with multiple transmit queues.
3221  */
3222 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3223 {
3224 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3225 
3226 	netif_tx_wake_queue(txq);
3227 }
3228 
3229 #ifdef CONFIG_XPS
3230 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3231 			u16 index);
3232 #else
3233 static inline int netif_set_xps_queue(struct net_device *dev,
3234 				      const struct cpumask *mask,
3235 				      u16 index)
3236 {
3237 	return 0;
3238 }
3239 #endif
3240 
3241 /**
3242  *	netif_is_multiqueue - test if device has multiple transmit queues
3243  *	@dev: network device
3244  *
3245  * Check if device has multiple transmit queues
3246  */
3247 static inline bool netif_is_multiqueue(const struct net_device *dev)
3248 {
3249 	return dev->num_tx_queues > 1;
3250 }
3251 
3252 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3253 
3254 #ifdef CONFIG_SYSFS
3255 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3256 #else
3257 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3258 						unsigned int rxq)
3259 {
3260 	return 0;
3261 }
3262 #endif
3263 
3264 static inline struct netdev_rx_queue *
3265 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3266 {
3267 	return dev->_rx + rxq;
3268 }
3269 
3270 #ifdef CONFIG_SYSFS
3271 static inline unsigned int get_netdev_rx_queue_index(
3272 		struct netdev_rx_queue *queue)
3273 {
3274 	struct net_device *dev = queue->dev;
3275 	int index = queue - dev->_rx;
3276 
3277 	BUG_ON(index >= dev->num_rx_queues);
3278 	return index;
3279 }
3280 #endif
3281 
3282 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3283 int netif_get_num_default_rss_queues(void);
3284 
3285 enum skb_free_reason {
3286 	SKB_REASON_CONSUMED,
3287 	SKB_REASON_DROPPED,
3288 };
3289 
3290 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3291 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3292 
3293 /*
3294  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3295  * interrupt context or with hardware interrupts being disabled.
3296  * (in_irq() || irqs_disabled())
3297  *
3298  * We provide four helpers that can be used in following contexts :
3299  *
3300  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3301  *  replacing kfree_skb(skb)
3302  *
3303  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3304  *  Typically used in place of consume_skb(skb) in TX completion path
3305  *
3306  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3307  *  replacing kfree_skb(skb)
3308  *
3309  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3310  *  and consumed a packet. Used in place of consume_skb(skb)
3311  */
3312 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3313 {
3314 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3315 }
3316 
3317 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3318 {
3319 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3320 }
3321 
3322 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3323 {
3324 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3325 }
3326 
3327 static inline void dev_consume_skb_any(struct sk_buff *skb)
3328 {
3329 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3330 }
3331 
3332 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3333 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3334 int netif_rx(struct sk_buff *skb);
3335 int netif_rx_ni(struct sk_buff *skb);
3336 int netif_receive_skb(struct sk_buff *skb);
3337 int netif_receive_skb_core(struct sk_buff *skb);
3338 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3339 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3340 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3341 gro_result_t napi_gro_frags(struct napi_struct *napi);
3342 struct packet_offload *gro_find_receive_by_type(__be16 type);
3343 struct packet_offload *gro_find_complete_by_type(__be16 type);
3344 
3345 static inline void napi_free_frags(struct napi_struct *napi)
3346 {
3347 	kfree_skb(napi->skb);
3348 	napi->skb = NULL;
3349 }
3350 
3351 bool netdev_is_rx_handler_busy(struct net_device *dev);
3352 int netdev_rx_handler_register(struct net_device *dev,
3353 			       rx_handler_func_t *rx_handler,
3354 			       void *rx_handler_data);
3355 void netdev_rx_handler_unregister(struct net_device *dev);
3356 
3357 bool dev_valid_name(const char *name);
3358 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3359 		bool *need_copyout);
3360 int dev_ifconf(struct net *net, struct ifconf *, int);
3361 int dev_ethtool(struct net *net, struct ifreq *);
3362 unsigned int dev_get_flags(const struct net_device *);
3363 int __dev_change_flags(struct net_device *, unsigned int flags);
3364 int dev_change_flags(struct net_device *, unsigned int);
3365 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3366 			unsigned int gchanges);
3367 int dev_change_name(struct net_device *, const char *);
3368 int dev_set_alias(struct net_device *, const char *, size_t);
3369 int dev_get_alias(const struct net_device *, char *, size_t);
3370 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3371 int __dev_set_mtu(struct net_device *, int);
3372 int dev_set_mtu(struct net_device *, int);
3373 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3374 void dev_set_group(struct net_device *, int);
3375 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3376 int dev_change_carrier(struct net_device *, bool new_carrier);
3377 int dev_get_phys_port_id(struct net_device *dev,
3378 			 struct netdev_phys_item_id *ppid);
3379 int dev_get_phys_port_name(struct net_device *dev,
3380 			   char *name, size_t len);
3381 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3382 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3383 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3384 				    struct netdev_queue *txq, int *ret);
3385 
3386 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3387 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3388 		      int fd, u32 flags);
3389 void __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3390 		     struct netdev_bpf *xdp);
3391 
3392 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3393 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3394 bool is_skb_forwardable(const struct net_device *dev,
3395 			const struct sk_buff *skb);
3396 
3397 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3398 					       struct sk_buff *skb)
3399 {
3400 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3401 	    unlikely(!is_skb_forwardable(dev, skb))) {
3402 		atomic_long_inc(&dev->rx_dropped);
3403 		kfree_skb(skb);
3404 		return NET_RX_DROP;
3405 	}
3406 
3407 	skb_scrub_packet(skb, true);
3408 	skb->priority = 0;
3409 	return 0;
3410 }
3411 
3412 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3413 
3414 extern int		netdev_budget;
3415 extern unsigned int	netdev_budget_usecs;
3416 
3417 /* Called by rtnetlink.c:rtnl_unlock() */
3418 void netdev_run_todo(void);
3419 
3420 /**
3421  *	dev_put - release reference to device
3422  *	@dev: network device
3423  *
3424  * Release reference to device to allow it to be freed.
3425  */
3426 static inline void dev_put(struct net_device *dev)
3427 {
3428 	this_cpu_dec(*dev->pcpu_refcnt);
3429 }
3430 
3431 /**
3432  *	dev_hold - get reference to device
3433  *	@dev: network device
3434  *
3435  * Hold reference to device to keep it from being freed.
3436  */
3437 static inline void dev_hold(struct net_device *dev)
3438 {
3439 	this_cpu_inc(*dev->pcpu_refcnt);
3440 }
3441 
3442 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3443  * and _off may be called from IRQ context, but it is caller
3444  * who is responsible for serialization of these calls.
3445  *
3446  * The name carrier is inappropriate, these functions should really be
3447  * called netif_lowerlayer_*() because they represent the state of any
3448  * kind of lower layer not just hardware media.
3449  */
3450 
3451 void linkwatch_init_dev(struct net_device *dev);
3452 void linkwatch_fire_event(struct net_device *dev);
3453 void linkwatch_forget_dev(struct net_device *dev);
3454 
3455 /**
3456  *	netif_carrier_ok - test if carrier present
3457  *	@dev: network device
3458  *
3459  * Check if carrier is present on device
3460  */
3461 static inline bool netif_carrier_ok(const struct net_device *dev)
3462 {
3463 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3464 }
3465 
3466 unsigned long dev_trans_start(struct net_device *dev);
3467 
3468 void __netdev_watchdog_up(struct net_device *dev);
3469 
3470 void netif_carrier_on(struct net_device *dev);
3471 
3472 void netif_carrier_off(struct net_device *dev);
3473 
3474 /**
3475  *	netif_dormant_on - mark device as dormant.
3476  *	@dev: network device
3477  *
3478  * Mark device as dormant (as per RFC2863).
3479  *
3480  * The dormant state indicates that the relevant interface is not
3481  * actually in a condition to pass packets (i.e., it is not 'up') but is
3482  * in a "pending" state, waiting for some external event.  For "on-
3483  * demand" interfaces, this new state identifies the situation where the
3484  * interface is waiting for events to place it in the up state.
3485  */
3486 static inline void netif_dormant_on(struct net_device *dev)
3487 {
3488 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3489 		linkwatch_fire_event(dev);
3490 }
3491 
3492 /**
3493  *	netif_dormant_off - set device as not dormant.
3494  *	@dev: network device
3495  *
3496  * Device is not in dormant state.
3497  */
3498 static inline void netif_dormant_off(struct net_device *dev)
3499 {
3500 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3501 		linkwatch_fire_event(dev);
3502 }
3503 
3504 /**
3505  *	netif_dormant - test if device is dormant
3506  *	@dev: network device
3507  *
3508  * Check if device is dormant.
3509  */
3510 static inline bool netif_dormant(const struct net_device *dev)
3511 {
3512 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3513 }
3514 
3515 
3516 /**
3517  *	netif_oper_up - test if device is operational
3518  *	@dev: network device
3519  *
3520  * Check if carrier is operational
3521  */
3522 static inline bool netif_oper_up(const struct net_device *dev)
3523 {
3524 	return (dev->operstate == IF_OPER_UP ||
3525 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3526 }
3527 
3528 /**
3529  *	netif_device_present - is device available or removed
3530  *	@dev: network device
3531  *
3532  * Check if device has not been removed from system.
3533  */
3534 static inline bool netif_device_present(struct net_device *dev)
3535 {
3536 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3537 }
3538 
3539 void netif_device_detach(struct net_device *dev);
3540 
3541 void netif_device_attach(struct net_device *dev);
3542 
3543 /*
3544  * Network interface message level settings
3545  */
3546 
3547 enum {
3548 	NETIF_MSG_DRV		= 0x0001,
3549 	NETIF_MSG_PROBE		= 0x0002,
3550 	NETIF_MSG_LINK		= 0x0004,
3551 	NETIF_MSG_TIMER		= 0x0008,
3552 	NETIF_MSG_IFDOWN	= 0x0010,
3553 	NETIF_MSG_IFUP		= 0x0020,
3554 	NETIF_MSG_RX_ERR	= 0x0040,
3555 	NETIF_MSG_TX_ERR	= 0x0080,
3556 	NETIF_MSG_TX_QUEUED	= 0x0100,
3557 	NETIF_MSG_INTR		= 0x0200,
3558 	NETIF_MSG_TX_DONE	= 0x0400,
3559 	NETIF_MSG_RX_STATUS	= 0x0800,
3560 	NETIF_MSG_PKTDATA	= 0x1000,
3561 	NETIF_MSG_HW		= 0x2000,
3562 	NETIF_MSG_WOL		= 0x4000,
3563 };
3564 
3565 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3566 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3567 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3568 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3569 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3570 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3571 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3572 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3573 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3574 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3575 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3576 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3577 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3578 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3579 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3580 
3581 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3582 {
3583 	/* use default */
3584 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3585 		return default_msg_enable_bits;
3586 	if (debug_value == 0)	/* no output */
3587 		return 0;
3588 	/* set low N bits */
3589 	return (1 << debug_value) - 1;
3590 }
3591 
3592 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3593 {
3594 	spin_lock(&txq->_xmit_lock);
3595 	txq->xmit_lock_owner = cpu;
3596 }
3597 
3598 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3599 {
3600 	__acquire(&txq->_xmit_lock);
3601 	return true;
3602 }
3603 
3604 static inline void __netif_tx_release(struct netdev_queue *txq)
3605 {
3606 	__release(&txq->_xmit_lock);
3607 }
3608 
3609 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3610 {
3611 	spin_lock_bh(&txq->_xmit_lock);
3612 	txq->xmit_lock_owner = smp_processor_id();
3613 }
3614 
3615 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3616 {
3617 	bool ok = spin_trylock(&txq->_xmit_lock);
3618 	if (likely(ok))
3619 		txq->xmit_lock_owner = smp_processor_id();
3620 	return ok;
3621 }
3622 
3623 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3624 {
3625 	txq->xmit_lock_owner = -1;
3626 	spin_unlock(&txq->_xmit_lock);
3627 }
3628 
3629 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3630 {
3631 	txq->xmit_lock_owner = -1;
3632 	spin_unlock_bh(&txq->_xmit_lock);
3633 }
3634 
3635 static inline void txq_trans_update(struct netdev_queue *txq)
3636 {
3637 	if (txq->xmit_lock_owner != -1)
3638 		txq->trans_start = jiffies;
3639 }
3640 
3641 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3642 static inline void netif_trans_update(struct net_device *dev)
3643 {
3644 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3645 
3646 	if (txq->trans_start != jiffies)
3647 		txq->trans_start = jiffies;
3648 }
3649 
3650 /**
3651  *	netif_tx_lock - grab network device transmit lock
3652  *	@dev: network device
3653  *
3654  * Get network device transmit lock
3655  */
3656 static inline void netif_tx_lock(struct net_device *dev)
3657 {
3658 	unsigned int i;
3659 	int cpu;
3660 
3661 	spin_lock(&dev->tx_global_lock);
3662 	cpu = smp_processor_id();
3663 	for (i = 0; i < dev->num_tx_queues; i++) {
3664 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3665 
3666 		/* We are the only thread of execution doing a
3667 		 * freeze, but we have to grab the _xmit_lock in
3668 		 * order to synchronize with threads which are in
3669 		 * the ->hard_start_xmit() handler and already
3670 		 * checked the frozen bit.
3671 		 */
3672 		__netif_tx_lock(txq, cpu);
3673 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3674 		__netif_tx_unlock(txq);
3675 	}
3676 }
3677 
3678 static inline void netif_tx_lock_bh(struct net_device *dev)
3679 {
3680 	local_bh_disable();
3681 	netif_tx_lock(dev);
3682 }
3683 
3684 static inline void netif_tx_unlock(struct net_device *dev)
3685 {
3686 	unsigned int i;
3687 
3688 	for (i = 0; i < dev->num_tx_queues; i++) {
3689 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3690 
3691 		/* No need to grab the _xmit_lock here.  If the
3692 		 * queue is not stopped for another reason, we
3693 		 * force a schedule.
3694 		 */
3695 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3696 		netif_schedule_queue(txq);
3697 	}
3698 	spin_unlock(&dev->tx_global_lock);
3699 }
3700 
3701 static inline void netif_tx_unlock_bh(struct net_device *dev)
3702 {
3703 	netif_tx_unlock(dev);
3704 	local_bh_enable();
3705 }
3706 
3707 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3708 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3709 		__netif_tx_lock(txq, cpu);		\
3710 	} else {					\
3711 		__netif_tx_acquire(txq);		\
3712 	}						\
3713 }
3714 
3715 #define HARD_TX_TRYLOCK(dev, txq)			\
3716 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3717 		__netif_tx_trylock(txq) :		\
3718 		__netif_tx_acquire(txq))
3719 
3720 #define HARD_TX_UNLOCK(dev, txq) {			\
3721 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3722 		__netif_tx_unlock(txq);			\
3723 	} else {					\
3724 		__netif_tx_release(txq);		\
3725 	}						\
3726 }
3727 
3728 static inline void netif_tx_disable(struct net_device *dev)
3729 {
3730 	unsigned int i;
3731 	int cpu;
3732 
3733 	local_bh_disable();
3734 	cpu = smp_processor_id();
3735 	for (i = 0; i < dev->num_tx_queues; i++) {
3736 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3737 
3738 		__netif_tx_lock(txq, cpu);
3739 		netif_tx_stop_queue(txq);
3740 		__netif_tx_unlock(txq);
3741 	}
3742 	local_bh_enable();
3743 }
3744 
3745 static inline void netif_addr_lock(struct net_device *dev)
3746 {
3747 	spin_lock(&dev->addr_list_lock);
3748 }
3749 
3750 static inline void netif_addr_lock_nested(struct net_device *dev)
3751 {
3752 	int subclass = SINGLE_DEPTH_NESTING;
3753 
3754 	if (dev->netdev_ops->ndo_get_lock_subclass)
3755 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3756 
3757 	spin_lock_nested(&dev->addr_list_lock, subclass);
3758 }
3759 
3760 static inline void netif_addr_lock_bh(struct net_device *dev)
3761 {
3762 	spin_lock_bh(&dev->addr_list_lock);
3763 }
3764 
3765 static inline void netif_addr_unlock(struct net_device *dev)
3766 {
3767 	spin_unlock(&dev->addr_list_lock);
3768 }
3769 
3770 static inline void netif_addr_unlock_bh(struct net_device *dev)
3771 {
3772 	spin_unlock_bh(&dev->addr_list_lock);
3773 }
3774 
3775 /*
3776  * dev_addrs walker. Should be used only for read access. Call with
3777  * rcu_read_lock held.
3778  */
3779 #define for_each_dev_addr(dev, ha) \
3780 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3781 
3782 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3783 
3784 void ether_setup(struct net_device *dev);
3785 
3786 /* Support for loadable net-drivers */
3787 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3788 				    unsigned char name_assign_type,
3789 				    void (*setup)(struct net_device *),
3790 				    unsigned int txqs, unsigned int rxqs);
3791 int dev_get_valid_name(struct net *net, struct net_device *dev,
3792 		       const char *name);
3793 
3794 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3795 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3796 
3797 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3798 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3799 			 count)
3800 
3801 int register_netdev(struct net_device *dev);
3802 void unregister_netdev(struct net_device *dev);
3803 
3804 /* General hardware address lists handling functions */
3805 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3806 		   struct netdev_hw_addr_list *from_list, int addr_len);
3807 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3808 		      struct netdev_hw_addr_list *from_list, int addr_len);
3809 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3810 		       struct net_device *dev,
3811 		       int (*sync)(struct net_device *, const unsigned char *),
3812 		       int (*unsync)(struct net_device *,
3813 				     const unsigned char *));
3814 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3815 			  struct net_device *dev,
3816 			  int (*unsync)(struct net_device *,
3817 					const unsigned char *));
3818 void __hw_addr_init(struct netdev_hw_addr_list *list);
3819 
3820 /* Functions used for device addresses handling */
3821 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3822 		 unsigned char addr_type);
3823 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3824 		 unsigned char addr_type);
3825 void dev_addr_flush(struct net_device *dev);
3826 int dev_addr_init(struct net_device *dev);
3827 
3828 /* Functions used for unicast addresses handling */
3829 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3830 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3831 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3832 int dev_uc_sync(struct net_device *to, struct net_device *from);
3833 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3834 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3835 void dev_uc_flush(struct net_device *dev);
3836 void dev_uc_init(struct net_device *dev);
3837 
3838 /**
3839  *  __dev_uc_sync - Synchonize device's unicast list
3840  *  @dev:  device to sync
3841  *  @sync: function to call if address should be added
3842  *  @unsync: function to call if address should be removed
3843  *
3844  *  Add newly added addresses to the interface, and release
3845  *  addresses that have been deleted.
3846  */
3847 static inline int __dev_uc_sync(struct net_device *dev,
3848 				int (*sync)(struct net_device *,
3849 					    const unsigned char *),
3850 				int (*unsync)(struct net_device *,
3851 					      const unsigned char *))
3852 {
3853 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3854 }
3855 
3856 /**
3857  *  __dev_uc_unsync - Remove synchronized addresses from device
3858  *  @dev:  device to sync
3859  *  @unsync: function to call if address should be removed
3860  *
3861  *  Remove all addresses that were added to the device by dev_uc_sync().
3862  */
3863 static inline void __dev_uc_unsync(struct net_device *dev,
3864 				   int (*unsync)(struct net_device *,
3865 						 const unsigned char *))
3866 {
3867 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3868 }
3869 
3870 /* Functions used for multicast addresses handling */
3871 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3872 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3873 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3874 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3875 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3876 int dev_mc_sync(struct net_device *to, struct net_device *from);
3877 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3878 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3879 void dev_mc_flush(struct net_device *dev);
3880 void dev_mc_init(struct net_device *dev);
3881 
3882 /**
3883  *  __dev_mc_sync - Synchonize device's multicast list
3884  *  @dev:  device to sync
3885  *  @sync: function to call if address should be added
3886  *  @unsync: function to call if address should be removed
3887  *
3888  *  Add newly added addresses to the interface, and release
3889  *  addresses that have been deleted.
3890  */
3891 static inline int __dev_mc_sync(struct net_device *dev,
3892 				int (*sync)(struct net_device *,
3893 					    const unsigned char *),
3894 				int (*unsync)(struct net_device *,
3895 					      const unsigned char *))
3896 {
3897 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3898 }
3899 
3900 /**
3901  *  __dev_mc_unsync - Remove synchronized addresses from device
3902  *  @dev:  device to sync
3903  *  @unsync: function to call if address should be removed
3904  *
3905  *  Remove all addresses that were added to the device by dev_mc_sync().
3906  */
3907 static inline void __dev_mc_unsync(struct net_device *dev,
3908 				   int (*unsync)(struct net_device *,
3909 						 const unsigned char *))
3910 {
3911 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3912 }
3913 
3914 /* Functions used for secondary unicast and multicast support */
3915 void dev_set_rx_mode(struct net_device *dev);
3916 void __dev_set_rx_mode(struct net_device *dev);
3917 int dev_set_promiscuity(struct net_device *dev, int inc);
3918 int dev_set_allmulti(struct net_device *dev, int inc);
3919 void netdev_state_change(struct net_device *dev);
3920 void netdev_notify_peers(struct net_device *dev);
3921 void netdev_features_change(struct net_device *dev);
3922 /* Load a device via the kmod */
3923 void dev_load(struct net *net, const char *name);
3924 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3925 					struct rtnl_link_stats64 *storage);
3926 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3927 			     const struct net_device_stats *netdev_stats);
3928 
3929 extern int		netdev_max_backlog;
3930 extern int		netdev_tstamp_prequeue;
3931 extern int		weight_p;
3932 extern int		dev_weight_rx_bias;
3933 extern int		dev_weight_tx_bias;
3934 extern int		dev_rx_weight;
3935 extern int		dev_tx_weight;
3936 
3937 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3938 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3939 						     struct list_head **iter);
3940 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3941 						     struct list_head **iter);
3942 
3943 /* iterate through upper list, must be called under RCU read lock */
3944 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3945 	for (iter = &(dev)->adj_list.upper, \
3946 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3947 	     updev; \
3948 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3949 
3950 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3951 				  int (*fn)(struct net_device *upper_dev,
3952 					    void *data),
3953 				  void *data);
3954 
3955 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3956 				  struct net_device *upper_dev);
3957 
3958 bool netdev_has_any_upper_dev(struct net_device *dev);
3959 
3960 void *netdev_lower_get_next_private(struct net_device *dev,
3961 				    struct list_head **iter);
3962 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3963 					struct list_head **iter);
3964 
3965 #define netdev_for_each_lower_private(dev, priv, iter) \
3966 	for (iter = (dev)->adj_list.lower.next, \
3967 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3968 	     priv; \
3969 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3970 
3971 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3972 	for (iter = &(dev)->adj_list.lower, \
3973 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3974 	     priv; \
3975 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3976 
3977 void *netdev_lower_get_next(struct net_device *dev,
3978 				struct list_head **iter);
3979 
3980 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3981 	for (iter = (dev)->adj_list.lower.next, \
3982 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3983 	     ldev; \
3984 	     ldev = netdev_lower_get_next(dev, &(iter)))
3985 
3986 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3987 					     struct list_head **iter);
3988 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3989 						 struct list_head **iter);
3990 
3991 int netdev_walk_all_lower_dev(struct net_device *dev,
3992 			      int (*fn)(struct net_device *lower_dev,
3993 					void *data),
3994 			      void *data);
3995 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3996 				  int (*fn)(struct net_device *lower_dev,
3997 					    void *data),
3998 				  void *data);
3999 
4000 void *netdev_adjacent_get_private(struct list_head *adj_list);
4001 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4002 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4003 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4004 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4005 			  struct netlink_ext_ack *extack);
4006 int netdev_master_upper_dev_link(struct net_device *dev,
4007 				 struct net_device *upper_dev,
4008 				 void *upper_priv, void *upper_info,
4009 				 struct netlink_ext_ack *extack);
4010 void netdev_upper_dev_unlink(struct net_device *dev,
4011 			     struct net_device *upper_dev);
4012 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4013 void *netdev_lower_dev_get_private(struct net_device *dev,
4014 				   struct net_device *lower_dev);
4015 void netdev_lower_state_changed(struct net_device *lower_dev,
4016 				void *lower_state_info);
4017 
4018 /* RSS keys are 40 or 52 bytes long */
4019 #define NETDEV_RSS_KEY_LEN 52
4020 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4021 void netdev_rss_key_fill(void *buffer, size_t len);
4022 
4023 int dev_get_nest_level(struct net_device *dev);
4024 int skb_checksum_help(struct sk_buff *skb);
4025 int skb_crc32c_csum_help(struct sk_buff *skb);
4026 int skb_csum_hwoffload_help(struct sk_buff *skb,
4027 			    const netdev_features_t features);
4028 
4029 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4030 				  netdev_features_t features, bool tx_path);
4031 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4032 				    netdev_features_t features);
4033 
4034 struct netdev_bonding_info {
4035 	ifslave	slave;
4036 	ifbond	master;
4037 };
4038 
4039 struct netdev_notifier_bonding_info {
4040 	struct netdev_notifier_info info; /* must be first */
4041 	struct netdev_bonding_info  bonding_info;
4042 };
4043 
4044 void netdev_bonding_info_change(struct net_device *dev,
4045 				struct netdev_bonding_info *bonding_info);
4046 
4047 static inline
4048 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4049 {
4050 	return __skb_gso_segment(skb, features, true);
4051 }
4052 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4053 
4054 static inline bool can_checksum_protocol(netdev_features_t features,
4055 					 __be16 protocol)
4056 {
4057 	if (protocol == htons(ETH_P_FCOE))
4058 		return !!(features & NETIF_F_FCOE_CRC);
4059 
4060 	/* Assume this is an IP checksum (not SCTP CRC) */
4061 
4062 	if (features & NETIF_F_HW_CSUM) {
4063 		/* Can checksum everything */
4064 		return true;
4065 	}
4066 
4067 	switch (protocol) {
4068 	case htons(ETH_P_IP):
4069 		return !!(features & NETIF_F_IP_CSUM);
4070 	case htons(ETH_P_IPV6):
4071 		return !!(features & NETIF_F_IPV6_CSUM);
4072 	default:
4073 		return false;
4074 	}
4075 }
4076 
4077 #ifdef CONFIG_BUG
4078 void netdev_rx_csum_fault(struct net_device *dev);
4079 #else
4080 static inline void netdev_rx_csum_fault(struct net_device *dev)
4081 {
4082 }
4083 #endif
4084 /* rx skb timestamps */
4085 void net_enable_timestamp(void);
4086 void net_disable_timestamp(void);
4087 
4088 #ifdef CONFIG_PROC_FS
4089 int __init dev_proc_init(void);
4090 #else
4091 #define dev_proc_init() 0
4092 #endif
4093 
4094 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4095 					      struct sk_buff *skb, struct net_device *dev,
4096 					      bool more)
4097 {
4098 	skb->xmit_more = more ? 1 : 0;
4099 	return ops->ndo_start_xmit(skb, dev);
4100 }
4101 
4102 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4103 					    struct netdev_queue *txq, bool more)
4104 {
4105 	const struct net_device_ops *ops = dev->netdev_ops;
4106 	int rc;
4107 
4108 	rc = __netdev_start_xmit(ops, skb, dev, more);
4109 	if (rc == NETDEV_TX_OK)
4110 		txq_trans_update(txq);
4111 
4112 	return rc;
4113 }
4114 
4115 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4116 				const void *ns);
4117 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4118 				 const void *ns);
4119 
4120 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4121 {
4122 	return netdev_class_create_file_ns(class_attr, NULL);
4123 }
4124 
4125 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4126 {
4127 	netdev_class_remove_file_ns(class_attr, NULL);
4128 }
4129 
4130 extern const struct kobj_ns_type_operations net_ns_type_operations;
4131 
4132 const char *netdev_drivername(const struct net_device *dev);
4133 
4134 void linkwatch_run_queue(void);
4135 
4136 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4137 							  netdev_features_t f2)
4138 {
4139 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4140 		if (f1 & NETIF_F_HW_CSUM)
4141 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4142 		else
4143 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4144 	}
4145 
4146 	return f1 & f2;
4147 }
4148 
4149 static inline netdev_features_t netdev_get_wanted_features(
4150 	struct net_device *dev)
4151 {
4152 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4153 }
4154 netdev_features_t netdev_increment_features(netdev_features_t all,
4155 	netdev_features_t one, netdev_features_t mask);
4156 
4157 /* Allow TSO being used on stacked device :
4158  * Performing the GSO segmentation before last device
4159  * is a performance improvement.
4160  */
4161 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4162 							netdev_features_t mask)
4163 {
4164 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4165 }
4166 
4167 int __netdev_update_features(struct net_device *dev);
4168 void netdev_update_features(struct net_device *dev);
4169 void netdev_change_features(struct net_device *dev);
4170 
4171 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4172 					struct net_device *dev);
4173 
4174 netdev_features_t passthru_features_check(struct sk_buff *skb,
4175 					  struct net_device *dev,
4176 					  netdev_features_t features);
4177 netdev_features_t netif_skb_features(struct sk_buff *skb);
4178 
4179 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4180 {
4181 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4182 
4183 	/* check flags correspondence */
4184 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4185 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4186 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4187 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4188 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4189 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4190 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4191 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4192 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4193 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4194 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4195 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4196 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4197 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4198 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4199 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4200 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4201 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4202 
4203 	return (features & feature) == feature;
4204 }
4205 
4206 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4207 {
4208 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4209 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4210 }
4211 
4212 static inline bool netif_needs_gso(struct sk_buff *skb,
4213 				   netdev_features_t features)
4214 {
4215 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4216 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4217 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4218 }
4219 
4220 static inline void netif_set_gso_max_size(struct net_device *dev,
4221 					  unsigned int size)
4222 {
4223 	dev->gso_max_size = size;
4224 }
4225 
4226 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4227 					int pulled_hlen, u16 mac_offset,
4228 					int mac_len)
4229 {
4230 	skb->protocol = protocol;
4231 	skb->encapsulation = 1;
4232 	skb_push(skb, pulled_hlen);
4233 	skb_reset_transport_header(skb);
4234 	skb->mac_header = mac_offset;
4235 	skb->network_header = skb->mac_header + mac_len;
4236 	skb->mac_len = mac_len;
4237 }
4238 
4239 static inline bool netif_is_macsec(const struct net_device *dev)
4240 {
4241 	return dev->priv_flags & IFF_MACSEC;
4242 }
4243 
4244 static inline bool netif_is_macvlan(const struct net_device *dev)
4245 {
4246 	return dev->priv_flags & IFF_MACVLAN;
4247 }
4248 
4249 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4250 {
4251 	return dev->priv_flags & IFF_MACVLAN_PORT;
4252 }
4253 
4254 static inline bool netif_is_bond_master(const struct net_device *dev)
4255 {
4256 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4257 }
4258 
4259 static inline bool netif_is_bond_slave(const struct net_device *dev)
4260 {
4261 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4262 }
4263 
4264 static inline bool netif_supports_nofcs(struct net_device *dev)
4265 {
4266 	return dev->priv_flags & IFF_SUPP_NOFCS;
4267 }
4268 
4269 static inline bool netif_is_l3_master(const struct net_device *dev)
4270 {
4271 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4272 }
4273 
4274 static inline bool netif_is_l3_slave(const struct net_device *dev)
4275 {
4276 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4277 }
4278 
4279 static inline bool netif_is_bridge_master(const struct net_device *dev)
4280 {
4281 	return dev->priv_flags & IFF_EBRIDGE;
4282 }
4283 
4284 static inline bool netif_is_bridge_port(const struct net_device *dev)
4285 {
4286 	return dev->priv_flags & IFF_BRIDGE_PORT;
4287 }
4288 
4289 static inline bool netif_is_ovs_master(const struct net_device *dev)
4290 {
4291 	return dev->priv_flags & IFF_OPENVSWITCH;
4292 }
4293 
4294 static inline bool netif_is_ovs_port(const struct net_device *dev)
4295 {
4296 	return dev->priv_flags & IFF_OVS_DATAPATH;
4297 }
4298 
4299 static inline bool netif_is_team_master(const struct net_device *dev)
4300 {
4301 	return dev->priv_flags & IFF_TEAM;
4302 }
4303 
4304 static inline bool netif_is_team_port(const struct net_device *dev)
4305 {
4306 	return dev->priv_flags & IFF_TEAM_PORT;
4307 }
4308 
4309 static inline bool netif_is_lag_master(const struct net_device *dev)
4310 {
4311 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4312 }
4313 
4314 static inline bool netif_is_lag_port(const struct net_device *dev)
4315 {
4316 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4317 }
4318 
4319 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4320 {
4321 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4322 }
4323 
4324 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4325 static inline void netif_keep_dst(struct net_device *dev)
4326 {
4327 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4328 }
4329 
4330 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4331 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4332 {
4333 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4334 	return dev->priv_flags & IFF_MACSEC;
4335 }
4336 
4337 extern struct pernet_operations __net_initdata loopback_net_ops;
4338 
4339 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4340 
4341 /* netdev_printk helpers, similar to dev_printk */
4342 
4343 static inline const char *netdev_name(const struct net_device *dev)
4344 {
4345 	if (!dev->name[0] || strchr(dev->name, '%'))
4346 		return "(unnamed net_device)";
4347 	return dev->name;
4348 }
4349 
4350 static inline bool netdev_unregistering(const struct net_device *dev)
4351 {
4352 	return dev->reg_state == NETREG_UNREGISTERING;
4353 }
4354 
4355 static inline const char *netdev_reg_state(const struct net_device *dev)
4356 {
4357 	switch (dev->reg_state) {
4358 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4359 	case NETREG_REGISTERED: return "";
4360 	case NETREG_UNREGISTERING: return " (unregistering)";
4361 	case NETREG_UNREGISTERED: return " (unregistered)";
4362 	case NETREG_RELEASED: return " (released)";
4363 	case NETREG_DUMMY: return " (dummy)";
4364 	}
4365 
4366 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4367 	return " (unknown)";
4368 }
4369 
4370 __printf(3, 4)
4371 void netdev_printk(const char *level, const struct net_device *dev,
4372 		   const char *format, ...);
4373 __printf(2, 3)
4374 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4375 __printf(2, 3)
4376 void netdev_alert(const struct net_device *dev, const char *format, ...);
4377 __printf(2, 3)
4378 void netdev_crit(const struct net_device *dev, const char *format, ...);
4379 __printf(2, 3)
4380 void netdev_err(const struct net_device *dev, const char *format, ...);
4381 __printf(2, 3)
4382 void netdev_warn(const struct net_device *dev, const char *format, ...);
4383 __printf(2, 3)
4384 void netdev_notice(const struct net_device *dev, const char *format, ...);
4385 __printf(2, 3)
4386 void netdev_info(const struct net_device *dev, const char *format, ...);
4387 
4388 #define netdev_level_once(level, dev, fmt, ...)			\
4389 do {								\
4390 	static bool __print_once __read_mostly;			\
4391 								\
4392 	if (!__print_once) {					\
4393 		__print_once = true;				\
4394 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4395 	}							\
4396 } while (0)
4397 
4398 #define netdev_emerg_once(dev, fmt, ...) \
4399 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4400 #define netdev_alert_once(dev, fmt, ...) \
4401 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4402 #define netdev_crit_once(dev, fmt, ...) \
4403 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4404 #define netdev_err_once(dev, fmt, ...) \
4405 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4406 #define netdev_warn_once(dev, fmt, ...) \
4407 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4408 #define netdev_notice_once(dev, fmt, ...) \
4409 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4410 #define netdev_info_once(dev, fmt, ...) \
4411 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4412 
4413 #define MODULE_ALIAS_NETDEV(device) \
4414 	MODULE_ALIAS("netdev-" device)
4415 
4416 #if defined(CONFIG_DYNAMIC_DEBUG)
4417 #define netdev_dbg(__dev, format, args...)			\
4418 do {								\
4419 	dynamic_netdev_dbg(__dev, format, ##args);		\
4420 } while (0)
4421 #elif defined(DEBUG)
4422 #define netdev_dbg(__dev, format, args...)			\
4423 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4424 #else
4425 #define netdev_dbg(__dev, format, args...)			\
4426 ({								\
4427 	if (0)							\
4428 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4429 })
4430 #endif
4431 
4432 #if defined(VERBOSE_DEBUG)
4433 #define netdev_vdbg	netdev_dbg
4434 #else
4435 
4436 #define netdev_vdbg(dev, format, args...)			\
4437 ({								\
4438 	if (0)							\
4439 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4440 	0;							\
4441 })
4442 #endif
4443 
4444 /*
4445  * netdev_WARN() acts like dev_printk(), but with the key difference
4446  * of using a WARN/WARN_ON to get the message out, including the
4447  * file/line information and a backtrace.
4448  */
4449 #define netdev_WARN(dev, format, args...)			\
4450 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4451 	     netdev_reg_state(dev), ##args)
4452 
4453 #define netdev_WARN_ONCE(dev, format, args...)				\
4454 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4455 		  netdev_reg_state(dev), ##args)
4456 
4457 /* netif printk helpers, similar to netdev_printk */
4458 
4459 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4460 do {					  			\
4461 	if (netif_msg_##type(priv))				\
4462 		netdev_printk(level, (dev), fmt, ##args);	\
4463 } while (0)
4464 
4465 #define netif_level(level, priv, type, dev, fmt, args...)	\
4466 do {								\
4467 	if (netif_msg_##type(priv))				\
4468 		netdev_##level(dev, fmt, ##args);		\
4469 } while (0)
4470 
4471 #define netif_emerg(priv, type, dev, fmt, args...)		\
4472 	netif_level(emerg, priv, type, dev, fmt, ##args)
4473 #define netif_alert(priv, type, dev, fmt, args...)		\
4474 	netif_level(alert, priv, type, dev, fmt, ##args)
4475 #define netif_crit(priv, type, dev, fmt, args...)		\
4476 	netif_level(crit, priv, type, dev, fmt, ##args)
4477 #define netif_err(priv, type, dev, fmt, args...)		\
4478 	netif_level(err, priv, type, dev, fmt, ##args)
4479 #define netif_warn(priv, type, dev, fmt, args...)		\
4480 	netif_level(warn, priv, type, dev, fmt, ##args)
4481 #define netif_notice(priv, type, dev, fmt, args...)		\
4482 	netif_level(notice, priv, type, dev, fmt, ##args)
4483 #define netif_info(priv, type, dev, fmt, args...)		\
4484 	netif_level(info, priv, type, dev, fmt, ##args)
4485 
4486 #if defined(CONFIG_DYNAMIC_DEBUG)
4487 #define netif_dbg(priv, type, netdev, format, args...)		\
4488 do {								\
4489 	if (netif_msg_##type(priv))				\
4490 		dynamic_netdev_dbg(netdev, format, ##args);	\
4491 } while (0)
4492 #elif defined(DEBUG)
4493 #define netif_dbg(priv, type, dev, format, args...)		\
4494 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4495 #else
4496 #define netif_dbg(priv, type, dev, format, args...)			\
4497 ({									\
4498 	if (0)								\
4499 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4500 	0;								\
4501 })
4502 #endif
4503 
4504 /* if @cond then downgrade to debug, else print at @level */
4505 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4506 	do {                                                              \
4507 		if (cond)                                                 \
4508 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4509 		else                                                      \
4510 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4511 	} while (0)
4512 
4513 #if defined(VERBOSE_DEBUG)
4514 #define netif_vdbg	netif_dbg
4515 #else
4516 #define netif_vdbg(priv, type, dev, format, args...)		\
4517 ({								\
4518 	if (0)							\
4519 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4520 	0;							\
4521 })
4522 #endif
4523 
4524 /*
4525  *	The list of packet types we will receive (as opposed to discard)
4526  *	and the routines to invoke.
4527  *
4528  *	Why 16. Because with 16 the only overlap we get on a hash of the
4529  *	low nibble of the protocol value is RARP/SNAP/X.25.
4530  *
4531  *		0800	IP
4532  *		0001	802.3
4533  *		0002	AX.25
4534  *		0004	802.2
4535  *		8035	RARP
4536  *		0005	SNAP
4537  *		0805	X.25
4538  *		0806	ARP
4539  *		8137	IPX
4540  *		0009	Localtalk
4541  *		86DD	IPv6
4542  */
4543 #define PTYPE_HASH_SIZE	(16)
4544 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4545 
4546 #endif	/* _LINUX_NETDEVICE_H */
4547