xref: /openbmc/linux/include/linux/netdevice.h (revision d2999e1b)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 
54 struct netpoll_info;
55 struct device;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 
60 void netdev_set_default_ethtool_ops(struct net_device *dev,
61 				    const struct ethtool_ops *ops);
62 
63 /* Backlog congestion levels */
64 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
65 #define NET_RX_DROP		1	/* packet dropped */
66 
67 /*
68  * Transmit return codes: transmit return codes originate from three different
69  * namespaces:
70  *
71  * - qdisc return codes
72  * - driver transmit return codes
73  * - errno values
74  *
75  * Drivers are allowed to return any one of those in their hard_start_xmit()
76  * function. Real network devices commonly used with qdiscs should only return
77  * the driver transmit return codes though - when qdiscs are used, the actual
78  * transmission happens asynchronously, so the value is not propagated to
79  * higher layers. Virtual network devices transmit synchronously, in this case
80  * the driver transmit return codes are consumed by dev_queue_xmit(), all
81  * others are propagated to higher layers.
82  */
83 
84 /* qdisc ->enqueue() return codes. */
85 #define NET_XMIT_SUCCESS	0x00
86 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
87 #define NET_XMIT_CN		0x02	/* congestion notification	*/
88 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
89 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
90 
91 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
92  * indicates that the device will soon be dropping packets, or already drops
93  * some packets of the same priority; prompting us to send less aggressively. */
94 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
95 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
96 
97 /* Driver transmit return codes */
98 #define NETDEV_TX_MASK		0xf0
99 
100 enum netdev_tx {
101 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
102 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
103 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
104 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
105 };
106 typedef enum netdev_tx netdev_tx_t;
107 
108 /*
109  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
110  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
111  */
112 static inline bool dev_xmit_complete(int rc)
113 {
114 	/*
115 	 * Positive cases with an skb consumed by a driver:
116 	 * - successful transmission (rc == NETDEV_TX_OK)
117 	 * - error while transmitting (rc < 0)
118 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
119 	 */
120 	if (likely(rc < NET_XMIT_MASK))
121 		return true;
122 
123 	return false;
124 }
125 
126 /*
127  *	Compute the worst case header length according to the protocols
128  *	used.
129  */
130 
131 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
132 # if defined(CONFIG_MAC80211_MESH)
133 #  define LL_MAX_HEADER 128
134 # else
135 #  define LL_MAX_HEADER 96
136 # endif
137 #else
138 # define LL_MAX_HEADER 32
139 #endif
140 
141 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
142     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
143 #define MAX_HEADER LL_MAX_HEADER
144 #else
145 #define MAX_HEADER (LL_MAX_HEADER + 48)
146 #endif
147 
148 /*
149  *	Old network device statistics. Fields are native words
150  *	(unsigned long) so they can be read and written atomically.
151  */
152 
153 struct net_device_stats {
154 	unsigned long	rx_packets;
155 	unsigned long	tx_packets;
156 	unsigned long	rx_bytes;
157 	unsigned long	tx_bytes;
158 	unsigned long	rx_errors;
159 	unsigned long	tx_errors;
160 	unsigned long	rx_dropped;
161 	unsigned long	tx_dropped;
162 	unsigned long	multicast;
163 	unsigned long	collisions;
164 	unsigned long	rx_length_errors;
165 	unsigned long	rx_over_errors;
166 	unsigned long	rx_crc_errors;
167 	unsigned long	rx_frame_errors;
168 	unsigned long	rx_fifo_errors;
169 	unsigned long	rx_missed_errors;
170 	unsigned long	tx_aborted_errors;
171 	unsigned long	tx_carrier_errors;
172 	unsigned long	tx_fifo_errors;
173 	unsigned long	tx_heartbeat_errors;
174 	unsigned long	tx_window_errors;
175 	unsigned long	rx_compressed;
176 	unsigned long	tx_compressed;
177 };
178 
179 
180 #include <linux/cache.h>
181 #include <linux/skbuff.h>
182 
183 #ifdef CONFIG_RPS
184 #include <linux/static_key.h>
185 extern struct static_key rps_needed;
186 #endif
187 
188 struct neighbour;
189 struct neigh_parms;
190 struct sk_buff;
191 
192 struct netdev_hw_addr {
193 	struct list_head	list;
194 	unsigned char		addr[MAX_ADDR_LEN];
195 	unsigned char		type;
196 #define NETDEV_HW_ADDR_T_LAN		1
197 #define NETDEV_HW_ADDR_T_SAN		2
198 #define NETDEV_HW_ADDR_T_SLAVE		3
199 #define NETDEV_HW_ADDR_T_UNICAST	4
200 #define NETDEV_HW_ADDR_T_MULTICAST	5
201 	bool			global_use;
202 	int			sync_cnt;
203 	int			refcount;
204 	int			synced;
205 	struct rcu_head		rcu_head;
206 };
207 
208 struct netdev_hw_addr_list {
209 	struct list_head	list;
210 	int			count;
211 };
212 
213 #define netdev_hw_addr_list_count(l) ((l)->count)
214 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
215 #define netdev_hw_addr_list_for_each(ha, l) \
216 	list_for_each_entry(ha, &(l)->list, list)
217 
218 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
219 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
220 #define netdev_for_each_uc_addr(ha, dev) \
221 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
222 
223 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
224 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
225 #define netdev_for_each_mc_addr(ha, dev) \
226 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
227 
228 struct hh_cache {
229 	u16		hh_len;
230 	u16		__pad;
231 	seqlock_t	hh_lock;
232 
233 	/* cached hardware header; allow for machine alignment needs.        */
234 #define HH_DATA_MOD	16
235 #define HH_DATA_OFF(__len) \
236 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
237 #define HH_DATA_ALIGN(__len) \
238 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
239 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
240 };
241 
242 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
243  * Alternative is:
244  *   dev->hard_header_len ? (dev->hard_header_len +
245  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
246  *
247  * We could use other alignment values, but we must maintain the
248  * relationship HH alignment <= LL alignment.
249  */
250 #define LL_RESERVED_SPACE(dev) \
251 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
252 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
253 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
254 
255 struct header_ops {
256 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
257 			   unsigned short type, const void *daddr,
258 			   const void *saddr, unsigned int len);
259 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
260 	int	(*rebuild)(struct sk_buff *skb);
261 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
262 	void	(*cache_update)(struct hh_cache *hh,
263 				const struct net_device *dev,
264 				const unsigned char *haddr);
265 };
266 
267 /* These flag bits are private to the generic network queueing
268  * layer, they may not be explicitly referenced by any other
269  * code.
270  */
271 
272 enum netdev_state_t {
273 	__LINK_STATE_START,
274 	__LINK_STATE_PRESENT,
275 	__LINK_STATE_NOCARRIER,
276 	__LINK_STATE_LINKWATCH_PENDING,
277 	__LINK_STATE_DORMANT,
278 };
279 
280 
281 /*
282  * This structure holds at boot time configured netdevice settings. They
283  * are then used in the device probing.
284  */
285 struct netdev_boot_setup {
286 	char name[IFNAMSIZ];
287 	struct ifmap map;
288 };
289 #define NETDEV_BOOT_SETUP_MAX 8
290 
291 int __init netdev_boot_setup(char *str);
292 
293 /*
294  * Structure for NAPI scheduling similar to tasklet but with weighting
295  */
296 struct napi_struct {
297 	/* The poll_list must only be managed by the entity which
298 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
299 	 * whoever atomically sets that bit can add this napi_struct
300 	 * to the per-cpu poll_list, and whoever clears that bit
301 	 * can remove from the list right before clearing the bit.
302 	 */
303 	struct list_head	poll_list;
304 
305 	unsigned long		state;
306 	int			weight;
307 	unsigned int		gro_count;
308 	int			(*poll)(struct napi_struct *, int);
309 #ifdef CONFIG_NETPOLL
310 	spinlock_t		poll_lock;
311 	int			poll_owner;
312 #endif
313 	struct net_device	*dev;
314 	struct sk_buff		*gro_list;
315 	struct sk_buff		*skb;
316 	struct list_head	dev_list;
317 	struct hlist_node	napi_hash_node;
318 	unsigned int		napi_id;
319 };
320 
321 enum {
322 	NAPI_STATE_SCHED,	/* Poll is scheduled */
323 	NAPI_STATE_DISABLE,	/* Disable pending */
324 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
325 	NAPI_STATE_HASHED,	/* In NAPI hash */
326 };
327 
328 enum gro_result {
329 	GRO_MERGED,
330 	GRO_MERGED_FREE,
331 	GRO_HELD,
332 	GRO_NORMAL,
333 	GRO_DROP,
334 };
335 typedef enum gro_result gro_result_t;
336 
337 /*
338  * enum rx_handler_result - Possible return values for rx_handlers.
339  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
340  * further.
341  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
342  * case skb->dev was changed by rx_handler.
343  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
344  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
345  *
346  * rx_handlers are functions called from inside __netif_receive_skb(), to do
347  * special processing of the skb, prior to delivery to protocol handlers.
348  *
349  * Currently, a net_device can only have a single rx_handler registered. Trying
350  * to register a second rx_handler will return -EBUSY.
351  *
352  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
353  * To unregister a rx_handler on a net_device, use
354  * netdev_rx_handler_unregister().
355  *
356  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
357  * do with the skb.
358  *
359  * If the rx_handler consumed to skb in some way, it should return
360  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
361  * the skb to be delivered in some other ways.
362  *
363  * If the rx_handler changed skb->dev, to divert the skb to another
364  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
365  * new device will be called if it exists.
366  *
367  * If the rx_handler consider the skb should be ignored, it should return
368  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
369  * are registered on exact device (ptype->dev == skb->dev).
370  *
371  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
372  * delivered, it should return RX_HANDLER_PASS.
373  *
374  * A device without a registered rx_handler will behave as if rx_handler
375  * returned RX_HANDLER_PASS.
376  */
377 
378 enum rx_handler_result {
379 	RX_HANDLER_CONSUMED,
380 	RX_HANDLER_ANOTHER,
381 	RX_HANDLER_EXACT,
382 	RX_HANDLER_PASS,
383 };
384 typedef enum rx_handler_result rx_handler_result_t;
385 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
386 
387 void __napi_schedule(struct napi_struct *n);
388 
389 static inline bool napi_disable_pending(struct napi_struct *n)
390 {
391 	return test_bit(NAPI_STATE_DISABLE, &n->state);
392 }
393 
394 /**
395  *	napi_schedule_prep - check if napi can be scheduled
396  *	@n: napi context
397  *
398  * Test if NAPI routine is already running, and if not mark
399  * it as running.  This is used as a condition variable
400  * insure only one NAPI poll instance runs.  We also make
401  * sure there is no pending NAPI disable.
402  */
403 static inline bool napi_schedule_prep(struct napi_struct *n)
404 {
405 	return !napi_disable_pending(n) &&
406 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
407 }
408 
409 /**
410  *	napi_schedule - schedule NAPI poll
411  *	@n: napi context
412  *
413  * Schedule NAPI poll routine to be called if it is not already
414  * running.
415  */
416 static inline void napi_schedule(struct napi_struct *n)
417 {
418 	if (napi_schedule_prep(n))
419 		__napi_schedule(n);
420 }
421 
422 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
423 static inline bool napi_reschedule(struct napi_struct *napi)
424 {
425 	if (napi_schedule_prep(napi)) {
426 		__napi_schedule(napi);
427 		return true;
428 	}
429 	return false;
430 }
431 
432 /**
433  *	napi_complete - NAPI processing complete
434  *	@n: napi context
435  *
436  * Mark NAPI processing as complete.
437  */
438 void __napi_complete(struct napi_struct *n);
439 void napi_complete(struct napi_struct *n);
440 
441 /**
442  *	napi_by_id - lookup a NAPI by napi_id
443  *	@napi_id: hashed napi_id
444  *
445  * lookup @napi_id in napi_hash table
446  * must be called under rcu_read_lock()
447  */
448 struct napi_struct *napi_by_id(unsigned int napi_id);
449 
450 /**
451  *	napi_hash_add - add a NAPI to global hashtable
452  *	@napi: napi context
453  *
454  * generate a new napi_id and store a @napi under it in napi_hash
455  */
456 void napi_hash_add(struct napi_struct *napi);
457 
458 /**
459  *	napi_hash_del - remove a NAPI from global table
460  *	@napi: napi context
461  *
462  * Warning: caller must observe rcu grace period
463  * before freeing memory containing @napi
464  */
465 void napi_hash_del(struct napi_struct *napi);
466 
467 /**
468  *	napi_disable - prevent NAPI from scheduling
469  *	@n: napi context
470  *
471  * Stop NAPI from being scheduled on this context.
472  * Waits till any outstanding processing completes.
473  */
474 static inline void napi_disable(struct napi_struct *n)
475 {
476 	might_sleep();
477 	set_bit(NAPI_STATE_DISABLE, &n->state);
478 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
479 		msleep(1);
480 	clear_bit(NAPI_STATE_DISABLE, &n->state);
481 }
482 
483 /**
484  *	napi_enable - enable NAPI scheduling
485  *	@n: napi context
486  *
487  * Resume NAPI from being scheduled on this context.
488  * Must be paired with napi_disable.
489  */
490 static inline void napi_enable(struct napi_struct *n)
491 {
492 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
493 	smp_mb__before_atomic();
494 	clear_bit(NAPI_STATE_SCHED, &n->state);
495 }
496 
497 #ifdef CONFIG_SMP
498 /**
499  *	napi_synchronize - wait until NAPI is not running
500  *	@n: napi context
501  *
502  * Wait until NAPI is done being scheduled on this context.
503  * Waits till any outstanding processing completes but
504  * does not disable future activations.
505  */
506 static inline void napi_synchronize(const struct napi_struct *n)
507 {
508 	while (test_bit(NAPI_STATE_SCHED, &n->state))
509 		msleep(1);
510 }
511 #else
512 # define napi_synchronize(n)	barrier()
513 #endif
514 
515 enum netdev_queue_state_t {
516 	__QUEUE_STATE_DRV_XOFF,
517 	__QUEUE_STATE_STACK_XOFF,
518 	__QUEUE_STATE_FROZEN,
519 };
520 
521 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
522 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
523 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
524 
525 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
526 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
527 					QUEUE_STATE_FROZEN)
528 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
529 					QUEUE_STATE_FROZEN)
530 
531 /*
532  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
533  * netif_tx_* functions below are used to manipulate this flag.  The
534  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
535  * queue independently.  The netif_xmit_*stopped functions below are called
536  * to check if the queue has been stopped by the driver or stack (either
537  * of the XOFF bits are set in the state).  Drivers should not need to call
538  * netif_xmit*stopped functions, they should only be using netif_tx_*.
539  */
540 
541 struct netdev_queue {
542 /*
543  * read mostly part
544  */
545 	struct net_device	*dev;
546 	struct Qdisc		*qdisc;
547 	struct Qdisc		*qdisc_sleeping;
548 #ifdef CONFIG_SYSFS
549 	struct kobject		kobj;
550 #endif
551 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
552 	int			numa_node;
553 #endif
554 /*
555  * write mostly part
556  */
557 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
558 	int			xmit_lock_owner;
559 	/*
560 	 * please use this field instead of dev->trans_start
561 	 */
562 	unsigned long		trans_start;
563 
564 	/*
565 	 * Number of TX timeouts for this queue
566 	 * (/sys/class/net/DEV/Q/trans_timeout)
567 	 */
568 	unsigned long		trans_timeout;
569 
570 	unsigned long		state;
571 
572 #ifdef CONFIG_BQL
573 	struct dql		dql;
574 #endif
575 } ____cacheline_aligned_in_smp;
576 
577 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
578 {
579 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
580 	return q->numa_node;
581 #else
582 	return NUMA_NO_NODE;
583 #endif
584 }
585 
586 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
587 {
588 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
589 	q->numa_node = node;
590 #endif
591 }
592 
593 #ifdef CONFIG_RPS
594 /*
595  * This structure holds an RPS map which can be of variable length.  The
596  * map is an array of CPUs.
597  */
598 struct rps_map {
599 	unsigned int len;
600 	struct rcu_head rcu;
601 	u16 cpus[0];
602 };
603 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
604 
605 /*
606  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
607  * tail pointer for that CPU's input queue at the time of last enqueue, and
608  * a hardware filter index.
609  */
610 struct rps_dev_flow {
611 	u16 cpu;
612 	u16 filter;
613 	unsigned int last_qtail;
614 };
615 #define RPS_NO_FILTER 0xffff
616 
617 /*
618  * The rps_dev_flow_table structure contains a table of flow mappings.
619  */
620 struct rps_dev_flow_table {
621 	unsigned int mask;
622 	struct rcu_head rcu;
623 	struct rps_dev_flow flows[0];
624 };
625 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
626     ((_num) * sizeof(struct rps_dev_flow)))
627 
628 /*
629  * The rps_sock_flow_table contains mappings of flows to the last CPU
630  * on which they were processed by the application (set in recvmsg).
631  */
632 struct rps_sock_flow_table {
633 	unsigned int mask;
634 	u16 ents[0];
635 };
636 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
637     ((_num) * sizeof(u16)))
638 
639 #define RPS_NO_CPU 0xffff
640 
641 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
642 					u32 hash)
643 {
644 	if (table && hash) {
645 		unsigned int cpu, index = hash & table->mask;
646 
647 		/* We only give a hint, preemption can change cpu under us */
648 		cpu = raw_smp_processor_id();
649 
650 		if (table->ents[index] != cpu)
651 			table->ents[index] = cpu;
652 	}
653 }
654 
655 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
656 				       u32 hash)
657 {
658 	if (table && hash)
659 		table->ents[hash & table->mask] = RPS_NO_CPU;
660 }
661 
662 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
663 
664 #ifdef CONFIG_RFS_ACCEL
665 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
666 			 u16 filter_id);
667 #endif
668 #endif /* CONFIG_RPS */
669 
670 /* This structure contains an instance of an RX queue. */
671 struct netdev_rx_queue {
672 #ifdef CONFIG_RPS
673 	struct rps_map __rcu		*rps_map;
674 	struct rps_dev_flow_table __rcu	*rps_flow_table;
675 #endif
676 	struct kobject			kobj;
677 	struct net_device		*dev;
678 } ____cacheline_aligned_in_smp;
679 
680 /*
681  * RX queue sysfs structures and functions.
682  */
683 struct rx_queue_attribute {
684 	struct attribute attr;
685 	ssize_t (*show)(struct netdev_rx_queue *queue,
686 	    struct rx_queue_attribute *attr, char *buf);
687 	ssize_t (*store)(struct netdev_rx_queue *queue,
688 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
689 };
690 
691 #ifdef CONFIG_XPS
692 /*
693  * This structure holds an XPS map which can be of variable length.  The
694  * map is an array of queues.
695  */
696 struct xps_map {
697 	unsigned int len;
698 	unsigned int alloc_len;
699 	struct rcu_head rcu;
700 	u16 queues[0];
701 };
702 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
703 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
704     / sizeof(u16))
705 
706 /*
707  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
708  */
709 struct xps_dev_maps {
710 	struct rcu_head rcu;
711 	struct xps_map __rcu *cpu_map[0];
712 };
713 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
714     (nr_cpu_ids * sizeof(struct xps_map *)))
715 #endif /* CONFIG_XPS */
716 
717 #define TC_MAX_QUEUE	16
718 #define TC_BITMASK	15
719 /* HW offloaded queuing disciplines txq count and offset maps */
720 struct netdev_tc_txq {
721 	u16 count;
722 	u16 offset;
723 };
724 
725 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
726 /*
727  * This structure is to hold information about the device
728  * configured to run FCoE protocol stack.
729  */
730 struct netdev_fcoe_hbainfo {
731 	char	manufacturer[64];
732 	char	serial_number[64];
733 	char	hardware_version[64];
734 	char	driver_version[64];
735 	char	optionrom_version[64];
736 	char	firmware_version[64];
737 	char	model[256];
738 	char	model_description[256];
739 };
740 #endif
741 
742 #define MAX_PHYS_PORT_ID_LEN 32
743 
744 /* This structure holds a unique identifier to identify the
745  * physical port used by a netdevice.
746  */
747 struct netdev_phys_port_id {
748 	unsigned char id[MAX_PHYS_PORT_ID_LEN];
749 	unsigned char id_len;
750 };
751 
752 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
753 				       struct sk_buff *skb);
754 
755 /*
756  * This structure defines the management hooks for network devices.
757  * The following hooks can be defined; unless noted otherwise, they are
758  * optional and can be filled with a null pointer.
759  *
760  * int (*ndo_init)(struct net_device *dev);
761  *     This function is called once when network device is registered.
762  *     The network device can use this to any late stage initializaton
763  *     or semantic validattion. It can fail with an error code which will
764  *     be propogated back to register_netdev
765  *
766  * void (*ndo_uninit)(struct net_device *dev);
767  *     This function is called when device is unregistered or when registration
768  *     fails. It is not called if init fails.
769  *
770  * int (*ndo_open)(struct net_device *dev);
771  *     This function is called when network device transistions to the up
772  *     state.
773  *
774  * int (*ndo_stop)(struct net_device *dev);
775  *     This function is called when network device transistions to the down
776  *     state.
777  *
778  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
779  *                               struct net_device *dev);
780  *	Called when a packet needs to be transmitted.
781  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
782  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
783  *	Required can not be NULL.
784  *
785  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
786  *                         void *accel_priv, select_queue_fallback_t fallback);
787  *	Called to decide which queue to when device supports multiple
788  *	transmit queues.
789  *
790  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
791  *	This function is called to allow device receiver to make
792  *	changes to configuration when multicast or promiscious is enabled.
793  *
794  * void (*ndo_set_rx_mode)(struct net_device *dev);
795  *	This function is called device changes address list filtering.
796  *	If driver handles unicast address filtering, it should set
797  *	IFF_UNICAST_FLT to its priv_flags.
798  *
799  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
800  *	This function  is called when the Media Access Control address
801  *	needs to be changed. If this interface is not defined, the
802  *	mac address can not be changed.
803  *
804  * int (*ndo_validate_addr)(struct net_device *dev);
805  *	Test if Media Access Control address is valid for the device.
806  *
807  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
808  *	Called when a user request an ioctl which can't be handled by
809  *	the generic interface code. If not defined ioctl's return
810  *	not supported error code.
811  *
812  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
813  *	Used to set network devices bus interface parameters. This interface
814  *	is retained for legacy reason, new devices should use the bus
815  *	interface (PCI) for low level management.
816  *
817  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
818  *	Called when a user wants to change the Maximum Transfer Unit
819  *	of a device. If not defined, any request to change MTU will
820  *	will return an error.
821  *
822  * void (*ndo_tx_timeout)(struct net_device *dev);
823  *	Callback uses when the transmitter has not made any progress
824  *	for dev->watchdog ticks.
825  *
826  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
827  *                      struct rtnl_link_stats64 *storage);
828  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
829  *	Called when a user wants to get the network device usage
830  *	statistics. Drivers must do one of the following:
831  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
832  *	   rtnl_link_stats64 structure passed by the caller.
833  *	2. Define @ndo_get_stats to update a net_device_stats structure
834  *	   (which should normally be dev->stats) and return a pointer to
835  *	   it. The structure may be changed asynchronously only if each
836  *	   field is written atomically.
837  *	3. Update dev->stats asynchronously and atomically, and define
838  *	   neither operation.
839  *
840  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
841  *	If device support VLAN filtering this function is called when a
842  *	VLAN id is registered.
843  *
844  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
845  *	If device support VLAN filtering this function is called when a
846  *	VLAN id is unregistered.
847  *
848  * void (*ndo_poll_controller)(struct net_device *dev);
849  *
850  *	SR-IOV management functions.
851  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
852  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
853  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
854  *			  int max_tx_rate);
855  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
856  * int (*ndo_get_vf_config)(struct net_device *dev,
857  *			    int vf, struct ifla_vf_info *ivf);
858  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
859  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
860  *			  struct nlattr *port[]);
861  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
862  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
863  * 	Called to setup 'tc' number of traffic classes in the net device. This
864  * 	is always called from the stack with the rtnl lock held and netif tx
865  * 	queues stopped. This allows the netdevice to perform queue management
866  * 	safely.
867  *
868  *	Fiber Channel over Ethernet (FCoE) offload functions.
869  * int (*ndo_fcoe_enable)(struct net_device *dev);
870  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
871  *	so the underlying device can perform whatever needed configuration or
872  *	initialization to support acceleration of FCoE traffic.
873  *
874  * int (*ndo_fcoe_disable)(struct net_device *dev);
875  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
876  *	so the underlying device can perform whatever needed clean-ups to
877  *	stop supporting acceleration of FCoE traffic.
878  *
879  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
880  *			     struct scatterlist *sgl, unsigned int sgc);
881  *	Called when the FCoE Initiator wants to initialize an I/O that
882  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
883  *	perform necessary setup and returns 1 to indicate the device is set up
884  *	successfully to perform DDP on this I/O, otherwise this returns 0.
885  *
886  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
887  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
888  *	indicated by the FC exchange id 'xid', so the underlying device can
889  *	clean up and reuse resources for later DDP requests.
890  *
891  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
892  *			      struct scatterlist *sgl, unsigned int sgc);
893  *	Called when the FCoE Target wants to initialize an I/O that
894  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
895  *	perform necessary setup and returns 1 to indicate the device is set up
896  *	successfully to perform DDP on this I/O, otherwise this returns 0.
897  *
898  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
899  *			       struct netdev_fcoe_hbainfo *hbainfo);
900  *	Called when the FCoE Protocol stack wants information on the underlying
901  *	device. This information is utilized by the FCoE protocol stack to
902  *	register attributes with Fiber Channel management service as per the
903  *	FC-GS Fabric Device Management Information(FDMI) specification.
904  *
905  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
906  *	Called when the underlying device wants to override default World Wide
907  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
908  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
909  *	protocol stack to use.
910  *
911  *	RFS acceleration.
912  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
913  *			    u16 rxq_index, u32 flow_id);
914  *	Set hardware filter for RFS.  rxq_index is the target queue index;
915  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
916  *	Return the filter ID on success, or a negative error code.
917  *
918  *	Slave management functions (for bridge, bonding, etc).
919  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
920  *	Called to make another netdev an underling.
921  *
922  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
923  *	Called to release previously enslaved netdev.
924  *
925  *      Feature/offload setting functions.
926  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
927  *		netdev_features_t features);
928  *	Adjusts the requested feature flags according to device-specific
929  *	constraints, and returns the resulting flags. Must not modify
930  *	the device state.
931  *
932  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
933  *	Called to update device configuration to new features. Passed
934  *	feature set might be less than what was returned by ndo_fix_features()).
935  *	Must return >0 or -errno if it changed dev->features itself.
936  *
937  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
938  *		      struct net_device *dev,
939  *		      const unsigned char *addr, u16 flags)
940  *	Adds an FDB entry to dev for addr.
941  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
942  *		      struct net_device *dev,
943  *		      const unsigned char *addr)
944  *	Deletes the FDB entry from dev coresponding to addr.
945  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
946  *		       struct net_device *dev, int idx)
947  *	Used to add FDB entries to dump requests. Implementers should add
948  *	entries to skb and update idx with the number of entries.
949  *
950  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
951  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
952  *			     struct net_device *dev, u32 filter_mask)
953  *
954  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
955  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
956  *	which do not represent real hardware may define this to allow their
957  *	userspace components to manage their virtual carrier state. Devices
958  *	that determine carrier state from physical hardware properties (eg
959  *	network cables) or protocol-dependent mechanisms (eg
960  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
961  *
962  * int (*ndo_get_phys_port_id)(struct net_device *dev,
963  *			       struct netdev_phys_port_id *ppid);
964  *	Called to get ID of physical port of this device. If driver does
965  *	not implement this, it is assumed that the hw is not able to have
966  *	multiple net devices on single physical port.
967  *
968  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
969  *			      sa_family_t sa_family, __be16 port);
970  *	Called by vxlan to notiy a driver about the UDP port and socket
971  *	address family that vxlan is listnening to. It is called only when
972  *	a new port starts listening. The operation is protected by the
973  *	vxlan_net->sock_lock.
974  *
975  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
976  *			      sa_family_t sa_family, __be16 port);
977  *	Called by vxlan to notify the driver about a UDP port and socket
978  *	address family that vxlan is not listening to anymore. The operation
979  *	is protected by the vxlan_net->sock_lock.
980  *
981  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
982  *				 struct net_device *dev)
983  *	Called by upper layer devices to accelerate switching or other
984  *	station functionality into hardware. 'pdev is the lowerdev
985  *	to use for the offload and 'dev' is the net device that will
986  *	back the offload. Returns a pointer to the private structure
987  *	the upper layer will maintain.
988  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
989  *	Called by upper layer device to delete the station created
990  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
991  *	the station and priv is the structure returned by the add
992  *	operation.
993  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
994  *				      struct net_device *dev,
995  *				      void *priv);
996  *	Callback to use for xmit over the accelerated station. This
997  *	is used in place of ndo_start_xmit on accelerated net
998  *	devices.
999  */
1000 struct net_device_ops {
1001 	int			(*ndo_init)(struct net_device *dev);
1002 	void			(*ndo_uninit)(struct net_device *dev);
1003 	int			(*ndo_open)(struct net_device *dev);
1004 	int			(*ndo_stop)(struct net_device *dev);
1005 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1006 						   struct net_device *dev);
1007 	u16			(*ndo_select_queue)(struct net_device *dev,
1008 						    struct sk_buff *skb,
1009 						    void *accel_priv,
1010 						    select_queue_fallback_t fallback);
1011 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1012 						       int flags);
1013 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1014 	int			(*ndo_set_mac_address)(struct net_device *dev,
1015 						       void *addr);
1016 	int			(*ndo_validate_addr)(struct net_device *dev);
1017 	int			(*ndo_do_ioctl)(struct net_device *dev,
1018 					        struct ifreq *ifr, int cmd);
1019 	int			(*ndo_set_config)(struct net_device *dev,
1020 					          struct ifmap *map);
1021 	int			(*ndo_change_mtu)(struct net_device *dev,
1022 						  int new_mtu);
1023 	int			(*ndo_neigh_setup)(struct net_device *dev,
1024 						   struct neigh_parms *);
1025 	void			(*ndo_tx_timeout) (struct net_device *dev);
1026 
1027 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1028 						     struct rtnl_link_stats64 *storage);
1029 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1030 
1031 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1032 						       __be16 proto, u16 vid);
1033 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1034 						        __be16 proto, u16 vid);
1035 #ifdef CONFIG_NET_POLL_CONTROLLER
1036 	void                    (*ndo_poll_controller)(struct net_device *dev);
1037 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1038 						     struct netpoll_info *info);
1039 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1040 #endif
1041 #ifdef CONFIG_NET_RX_BUSY_POLL
1042 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1043 #endif
1044 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1045 						  int queue, u8 *mac);
1046 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1047 						   int queue, u16 vlan, u8 qos);
1048 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1049 						   int vf, int min_tx_rate,
1050 						   int max_tx_rate);
1051 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1052 						       int vf, bool setting);
1053 	int			(*ndo_get_vf_config)(struct net_device *dev,
1054 						     int vf,
1055 						     struct ifla_vf_info *ivf);
1056 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1057 							 int vf, int link_state);
1058 	int			(*ndo_set_vf_port)(struct net_device *dev,
1059 						   int vf,
1060 						   struct nlattr *port[]);
1061 	int			(*ndo_get_vf_port)(struct net_device *dev,
1062 						   int vf, struct sk_buff *skb);
1063 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1064 #if IS_ENABLED(CONFIG_FCOE)
1065 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1066 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1067 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1068 						      u16 xid,
1069 						      struct scatterlist *sgl,
1070 						      unsigned int sgc);
1071 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1072 						     u16 xid);
1073 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1074 						       u16 xid,
1075 						       struct scatterlist *sgl,
1076 						       unsigned int sgc);
1077 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1078 							struct netdev_fcoe_hbainfo *hbainfo);
1079 #endif
1080 
1081 #if IS_ENABLED(CONFIG_LIBFCOE)
1082 #define NETDEV_FCOE_WWNN 0
1083 #define NETDEV_FCOE_WWPN 1
1084 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1085 						    u64 *wwn, int type);
1086 #endif
1087 
1088 #ifdef CONFIG_RFS_ACCEL
1089 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1090 						     const struct sk_buff *skb,
1091 						     u16 rxq_index,
1092 						     u32 flow_id);
1093 #endif
1094 	int			(*ndo_add_slave)(struct net_device *dev,
1095 						 struct net_device *slave_dev);
1096 	int			(*ndo_del_slave)(struct net_device *dev,
1097 						 struct net_device *slave_dev);
1098 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1099 						    netdev_features_t features);
1100 	int			(*ndo_set_features)(struct net_device *dev,
1101 						    netdev_features_t features);
1102 	int			(*ndo_neigh_construct)(struct neighbour *n);
1103 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1104 
1105 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1106 					       struct nlattr *tb[],
1107 					       struct net_device *dev,
1108 					       const unsigned char *addr,
1109 					       u16 flags);
1110 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1111 					       struct nlattr *tb[],
1112 					       struct net_device *dev,
1113 					       const unsigned char *addr);
1114 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1115 						struct netlink_callback *cb,
1116 						struct net_device *dev,
1117 						int idx);
1118 
1119 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1120 						      struct nlmsghdr *nlh);
1121 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1122 						      u32 pid, u32 seq,
1123 						      struct net_device *dev,
1124 						      u32 filter_mask);
1125 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1126 						      struct nlmsghdr *nlh);
1127 	int			(*ndo_change_carrier)(struct net_device *dev,
1128 						      bool new_carrier);
1129 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1130 							struct netdev_phys_port_id *ppid);
1131 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1132 						      sa_family_t sa_family,
1133 						      __be16 port);
1134 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1135 						      sa_family_t sa_family,
1136 						      __be16 port);
1137 
1138 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1139 							struct net_device *dev);
1140 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1141 							void *priv);
1142 
1143 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1144 							struct net_device *dev,
1145 							void *priv);
1146 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1147 };
1148 
1149 /**
1150  * enum net_device_priv_flags - &struct net_device priv_flags
1151  *
1152  * These are the &struct net_device, they are only set internally
1153  * by drivers and used in the kernel. These flags are invisible to
1154  * userspace, this means that the order of these flags can change
1155  * during any kernel release.
1156  *
1157  * You should have a pretty good reason to be extending these flags.
1158  *
1159  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1160  * @IFF_EBRIDGE: Ethernet bridging device
1161  * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1162  * @IFF_MASTER_8023AD: bonding master, 802.3ad
1163  * @IFF_MASTER_ALB: bonding master, balance-alb
1164  * @IFF_BONDING: bonding master or slave
1165  * @IFF_SLAVE_NEEDARP: need ARPs for validation
1166  * @IFF_ISATAP: ISATAP interface (RFC4214)
1167  * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1168  * @IFF_WAN_HDLC: WAN HDLC device
1169  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1170  *	release skb->dst
1171  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1172  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1173  * @IFF_MACVLAN_PORT: device used as macvlan port
1174  * @IFF_BRIDGE_PORT: device used as bridge port
1175  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1176  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1177  * @IFF_UNICAST_FLT: Supports unicast filtering
1178  * @IFF_TEAM_PORT: device used as team port
1179  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1180  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1181  *	change when it's running
1182  * @IFF_MACVLAN: Macvlan device
1183  */
1184 enum netdev_priv_flags {
1185 	IFF_802_1Q_VLAN			= 1<<0,
1186 	IFF_EBRIDGE			= 1<<1,
1187 	IFF_SLAVE_INACTIVE		= 1<<2,
1188 	IFF_MASTER_8023AD		= 1<<3,
1189 	IFF_MASTER_ALB			= 1<<4,
1190 	IFF_BONDING			= 1<<5,
1191 	IFF_SLAVE_NEEDARP		= 1<<6,
1192 	IFF_ISATAP			= 1<<7,
1193 	IFF_MASTER_ARPMON		= 1<<8,
1194 	IFF_WAN_HDLC			= 1<<9,
1195 	IFF_XMIT_DST_RELEASE		= 1<<10,
1196 	IFF_DONT_BRIDGE			= 1<<11,
1197 	IFF_DISABLE_NETPOLL		= 1<<12,
1198 	IFF_MACVLAN_PORT		= 1<<13,
1199 	IFF_BRIDGE_PORT			= 1<<14,
1200 	IFF_OVS_DATAPATH		= 1<<15,
1201 	IFF_TX_SKB_SHARING		= 1<<16,
1202 	IFF_UNICAST_FLT			= 1<<17,
1203 	IFF_TEAM_PORT			= 1<<18,
1204 	IFF_SUPP_NOFCS			= 1<<19,
1205 	IFF_LIVE_ADDR_CHANGE		= 1<<20,
1206 	IFF_MACVLAN			= 1<<21,
1207 };
1208 
1209 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1210 #define IFF_EBRIDGE			IFF_EBRIDGE
1211 #define IFF_SLAVE_INACTIVE		IFF_SLAVE_INACTIVE
1212 #define IFF_MASTER_8023AD		IFF_MASTER_8023AD
1213 #define IFF_MASTER_ALB			IFF_MASTER_ALB
1214 #define IFF_BONDING			IFF_BONDING
1215 #define IFF_SLAVE_NEEDARP		IFF_SLAVE_NEEDARP
1216 #define IFF_ISATAP			IFF_ISATAP
1217 #define IFF_MASTER_ARPMON		IFF_MASTER_ARPMON
1218 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1219 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1220 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1221 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1222 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1223 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1224 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1225 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1226 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1227 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1228 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1229 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1230 #define IFF_MACVLAN			IFF_MACVLAN
1231 
1232 /*
1233  *	The DEVICE structure.
1234  *	Actually, this whole structure is a big mistake.  It mixes I/O
1235  *	data with strictly "high-level" data, and it has to know about
1236  *	almost every data structure used in the INET module.
1237  *
1238  *	FIXME: cleanup struct net_device such that network protocol info
1239  *	moves out.
1240  */
1241 
1242 struct net_device {
1243 
1244 	/*
1245 	 * This is the first field of the "visible" part of this structure
1246 	 * (i.e. as seen by users in the "Space.c" file).  It is the name
1247 	 * of the interface.
1248 	 */
1249 	char			name[IFNAMSIZ];
1250 
1251 	/* device name hash chain, please keep it close to name[] */
1252 	struct hlist_node	name_hlist;
1253 
1254 	/* snmp alias */
1255 	char 			*ifalias;
1256 
1257 	/*
1258 	 *	I/O specific fields
1259 	 *	FIXME: Merge these and struct ifmap into one
1260 	 */
1261 	unsigned long		mem_end;	/* shared mem end	*/
1262 	unsigned long		mem_start;	/* shared mem start	*/
1263 	unsigned long		base_addr;	/* device I/O address	*/
1264 	int			irq;		/* device IRQ number	*/
1265 
1266 	/*
1267 	 *	Some hardware also needs these fields, but they are not
1268 	 *	part of the usual set specified in Space.c.
1269 	 */
1270 
1271 	unsigned long		state;
1272 
1273 	struct list_head	dev_list;
1274 	struct list_head	napi_list;
1275 	struct list_head	unreg_list;
1276 	struct list_head	close_list;
1277 
1278 	/* directly linked devices, like slaves for bonding */
1279 	struct {
1280 		struct list_head upper;
1281 		struct list_head lower;
1282 	} adj_list;
1283 
1284 	/* all linked devices, *including* neighbours */
1285 	struct {
1286 		struct list_head upper;
1287 		struct list_head lower;
1288 	} all_adj_list;
1289 
1290 
1291 	/* currently active device features */
1292 	netdev_features_t	features;
1293 	/* user-changeable features */
1294 	netdev_features_t	hw_features;
1295 	/* user-requested features */
1296 	netdev_features_t	wanted_features;
1297 	/* mask of features inheritable by VLAN devices */
1298 	netdev_features_t	vlan_features;
1299 	/* mask of features inherited by encapsulating devices
1300 	 * This field indicates what encapsulation offloads
1301 	 * the hardware is capable of doing, and drivers will
1302 	 * need to set them appropriately.
1303 	 */
1304 	netdev_features_t	hw_enc_features;
1305 	/* mask of fetures inheritable by MPLS */
1306 	netdev_features_t	mpls_features;
1307 
1308 	/* Interface index. Unique device identifier	*/
1309 	int			ifindex;
1310 	int			iflink;
1311 
1312 	struct net_device_stats	stats;
1313 
1314 	/* dropped packets by core network, Do not use this in drivers */
1315 	atomic_long_t		rx_dropped;
1316 	atomic_long_t		tx_dropped;
1317 
1318 	/* Stats to monitor carrier on<->off transitions */
1319 	atomic_t		carrier_changes;
1320 
1321 #ifdef CONFIG_WIRELESS_EXT
1322 	/* List of functions to handle Wireless Extensions (instead of ioctl).
1323 	 * See <net/iw_handler.h> for details. Jean II */
1324 	const struct iw_handler_def *	wireless_handlers;
1325 	/* Instance data managed by the core of Wireless Extensions. */
1326 	struct iw_public_data *	wireless_data;
1327 #endif
1328 	/* Management operations */
1329 	const struct net_device_ops *netdev_ops;
1330 	const struct ethtool_ops *ethtool_ops;
1331 	const struct forwarding_accel_ops *fwd_ops;
1332 
1333 	/* Hardware header description */
1334 	const struct header_ops *header_ops;
1335 
1336 	unsigned int		flags;	/* interface flags (a la BSD)	*/
1337 	unsigned int		priv_flags; /* Like 'flags' but invisible to userspace.
1338 					     * See if.h for definitions. */
1339 	unsigned short		gflags;
1340 	unsigned short		padded;	/* How much padding added by alloc_netdev() */
1341 
1342 	unsigned char		operstate; /* RFC2863 operstate */
1343 	unsigned char		link_mode; /* mapping policy to operstate */
1344 
1345 	unsigned char		if_port;	/* Selectable AUI, TP,..*/
1346 	unsigned char		dma;		/* DMA channel		*/
1347 
1348 	unsigned int		mtu;	/* interface MTU value		*/
1349 	unsigned short		type;	/* interface hardware type	*/
1350 	unsigned short		hard_header_len;	/* hardware hdr length	*/
1351 
1352 	/* extra head- and tailroom the hardware may need, but not in all cases
1353 	 * can this be guaranteed, especially tailroom. Some cases also use
1354 	 * LL_MAX_HEADER instead to allocate the skb.
1355 	 */
1356 	unsigned short		needed_headroom;
1357 	unsigned short		needed_tailroom;
1358 
1359 	/* Interface address info. */
1360 	unsigned char		perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1361 	unsigned char		addr_assign_type; /* hw address assignment type */
1362 	unsigned char		addr_len;	/* hardware address length	*/
1363 	unsigned short		neigh_priv_len;
1364 	unsigned short          dev_id;		/* Used to differentiate devices
1365 						 * that share the same link
1366 						 * layer address
1367 						 */
1368 	unsigned short          dev_port;	/* Used to differentiate
1369 						 * devices that share the same
1370 						 * function
1371 						 */
1372 	spinlock_t		addr_list_lock;
1373 	struct netdev_hw_addr_list	uc;	/* Unicast mac addresses */
1374 	struct netdev_hw_addr_list	mc;	/* Multicast mac addresses */
1375 	struct netdev_hw_addr_list	dev_addrs; /* list of device
1376 						    * hw addresses
1377 						    */
1378 #ifdef CONFIG_SYSFS
1379 	struct kset		*queues_kset;
1380 #endif
1381 
1382 	bool			uc_promisc;
1383 	unsigned int		promiscuity;
1384 	unsigned int		allmulti;
1385 
1386 
1387 	/* Protocol specific pointers */
1388 
1389 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1390 	struct vlan_info __rcu	*vlan_info;	/* VLAN info */
1391 #endif
1392 #if IS_ENABLED(CONFIG_NET_DSA)
1393 	struct dsa_switch_tree	*dsa_ptr;	/* dsa specific data */
1394 #endif
1395 #if IS_ENABLED(CONFIG_TIPC)
1396 	struct tipc_bearer __rcu *tipc_ptr;	/* TIPC specific data */
1397 #endif
1398 	void 			*atalk_ptr;	/* AppleTalk link 	*/
1399 	struct in_device __rcu	*ip_ptr;	/* IPv4 specific data	*/
1400 	struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1401 	struct inet6_dev __rcu	*ip6_ptr;       /* IPv6 specific data */
1402 	void			*ax25_ptr;	/* AX.25 specific data */
1403 	struct wireless_dev	*ieee80211_ptr;	/* IEEE 802.11 specific data,
1404 						   assign before registering */
1405 
1406 /*
1407  * Cache lines mostly used on receive path (including eth_type_trans())
1408  */
1409 	unsigned long		last_rx;	/* Time of last Rx */
1410 
1411 	/* Interface address info used in eth_type_trans() */
1412 	unsigned char		*dev_addr;	/* hw address, (before bcast
1413 						   because most packets are
1414 						   unicast) */
1415 
1416 
1417 #ifdef CONFIG_SYSFS
1418 	struct netdev_rx_queue	*_rx;
1419 
1420 	/* Number of RX queues allocated at register_netdev() time */
1421 	unsigned int		num_rx_queues;
1422 
1423 	/* Number of RX queues currently active in device */
1424 	unsigned int		real_num_rx_queues;
1425 
1426 #endif
1427 
1428 	rx_handler_func_t __rcu	*rx_handler;
1429 	void __rcu		*rx_handler_data;
1430 
1431 	struct netdev_queue __rcu *ingress_queue;
1432 	unsigned char		broadcast[MAX_ADDR_LEN];	/* hw bcast add	*/
1433 
1434 
1435 /*
1436  * Cache lines mostly used on transmit path
1437  */
1438 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1439 
1440 	/* Number of TX queues allocated at alloc_netdev_mq() time  */
1441 	unsigned int		num_tx_queues;
1442 
1443 	/* Number of TX queues currently active in device  */
1444 	unsigned int		real_num_tx_queues;
1445 
1446 	/* root qdisc from userspace point of view */
1447 	struct Qdisc		*qdisc;
1448 
1449 	unsigned long		tx_queue_len;	/* Max frames per queue allowed */
1450 	spinlock_t		tx_global_lock;
1451 
1452 #ifdef CONFIG_XPS
1453 	struct xps_dev_maps __rcu *xps_maps;
1454 #endif
1455 #ifdef CONFIG_RFS_ACCEL
1456 	/* CPU reverse-mapping for RX completion interrupts, indexed
1457 	 * by RX queue number.  Assigned by driver.  This must only be
1458 	 * set if the ndo_rx_flow_steer operation is defined. */
1459 	struct cpu_rmap		*rx_cpu_rmap;
1460 #endif
1461 
1462 	/* These may be needed for future network-power-down code. */
1463 
1464 	/*
1465 	 * trans_start here is expensive for high speed devices on SMP,
1466 	 * please use netdev_queue->trans_start instead.
1467 	 */
1468 	unsigned long		trans_start;	/* Time (in jiffies) of last Tx	*/
1469 
1470 	int			watchdog_timeo; /* used by dev_watchdog() */
1471 	struct timer_list	watchdog_timer;
1472 
1473 	/* Number of references to this device */
1474 	int __percpu		*pcpu_refcnt;
1475 
1476 	/* delayed register/unregister */
1477 	struct list_head	todo_list;
1478 	/* device index hash chain */
1479 	struct hlist_node	index_hlist;
1480 
1481 	struct list_head	link_watch_list;
1482 
1483 	/* register/unregister state machine */
1484 	enum { NETREG_UNINITIALIZED=0,
1485 	       NETREG_REGISTERED,	/* completed register_netdevice */
1486 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1487 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1488 	       NETREG_RELEASED,		/* called free_netdev */
1489 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1490 	} reg_state:8;
1491 
1492 	bool dismantle; /* device is going do be freed */
1493 
1494 	enum {
1495 		RTNL_LINK_INITIALIZED,
1496 		RTNL_LINK_INITIALIZING,
1497 	} rtnl_link_state:16;
1498 
1499 	/* Called from unregister, can be used to call free_netdev */
1500 	void (*destructor)(struct net_device *dev);
1501 
1502 #ifdef CONFIG_NETPOLL
1503 	struct netpoll_info __rcu	*npinfo;
1504 #endif
1505 
1506 #ifdef CONFIG_NET_NS
1507 	/* Network namespace this network device is inside */
1508 	struct net		*nd_net;
1509 #endif
1510 
1511 	/* mid-layer private */
1512 	union {
1513 		void				*ml_priv;
1514 		struct pcpu_lstats __percpu	*lstats; /* loopback stats */
1515 		struct pcpu_sw_netstats __percpu	*tstats;
1516 		struct pcpu_dstats __percpu	*dstats; /* dummy stats */
1517 		struct pcpu_vstats __percpu	*vstats; /* veth stats */
1518 	};
1519 	/* GARP */
1520 	struct garp_port __rcu	*garp_port;
1521 	/* MRP */
1522 	struct mrp_port __rcu	*mrp_port;
1523 
1524 	/* class/net/name entry */
1525 	struct device		dev;
1526 	/* space for optional device, statistics, and wireless sysfs groups */
1527 	const struct attribute_group *sysfs_groups[4];
1528 	/* space for optional per-rx queue attributes */
1529 	const struct attribute_group *sysfs_rx_queue_group;
1530 
1531 	/* rtnetlink link ops */
1532 	const struct rtnl_link_ops *rtnl_link_ops;
1533 
1534 	/* for setting kernel sock attribute on TCP connection setup */
1535 #define GSO_MAX_SIZE		65536
1536 	unsigned int		gso_max_size;
1537 #define GSO_MAX_SEGS		65535
1538 	u16			gso_max_segs;
1539 
1540 #ifdef CONFIG_DCB
1541 	/* Data Center Bridging netlink ops */
1542 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1543 #endif
1544 	u8 num_tc;
1545 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1546 	u8 prio_tc_map[TC_BITMASK + 1];
1547 
1548 #if IS_ENABLED(CONFIG_FCOE)
1549 	/* max exchange id for FCoE LRO by ddp */
1550 	unsigned int		fcoe_ddp_xid;
1551 #endif
1552 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1553 	struct netprio_map __rcu *priomap;
1554 #endif
1555 	/* phy device may attach itself for hardware timestamping */
1556 	struct phy_device *phydev;
1557 
1558 	struct lock_class_key *qdisc_tx_busylock;
1559 
1560 	/* group the device belongs to */
1561 	int group;
1562 
1563 	struct pm_qos_request	pm_qos_req;
1564 };
1565 #define to_net_dev(d) container_of(d, struct net_device, dev)
1566 
1567 #define	NETDEV_ALIGN		32
1568 
1569 static inline
1570 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1571 {
1572 	return dev->prio_tc_map[prio & TC_BITMASK];
1573 }
1574 
1575 static inline
1576 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1577 {
1578 	if (tc >= dev->num_tc)
1579 		return -EINVAL;
1580 
1581 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1582 	return 0;
1583 }
1584 
1585 static inline
1586 void netdev_reset_tc(struct net_device *dev)
1587 {
1588 	dev->num_tc = 0;
1589 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1590 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1591 }
1592 
1593 static inline
1594 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1595 {
1596 	if (tc >= dev->num_tc)
1597 		return -EINVAL;
1598 
1599 	dev->tc_to_txq[tc].count = count;
1600 	dev->tc_to_txq[tc].offset = offset;
1601 	return 0;
1602 }
1603 
1604 static inline
1605 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1606 {
1607 	if (num_tc > TC_MAX_QUEUE)
1608 		return -EINVAL;
1609 
1610 	dev->num_tc = num_tc;
1611 	return 0;
1612 }
1613 
1614 static inline
1615 int netdev_get_num_tc(struct net_device *dev)
1616 {
1617 	return dev->num_tc;
1618 }
1619 
1620 static inline
1621 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1622 					 unsigned int index)
1623 {
1624 	return &dev->_tx[index];
1625 }
1626 
1627 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1628 					    void (*f)(struct net_device *,
1629 						      struct netdev_queue *,
1630 						      void *),
1631 					    void *arg)
1632 {
1633 	unsigned int i;
1634 
1635 	for (i = 0; i < dev->num_tx_queues; i++)
1636 		f(dev, &dev->_tx[i], arg);
1637 }
1638 
1639 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1640 				    struct sk_buff *skb,
1641 				    void *accel_priv);
1642 
1643 /*
1644  * Net namespace inlines
1645  */
1646 static inline
1647 struct net *dev_net(const struct net_device *dev)
1648 {
1649 	return read_pnet(&dev->nd_net);
1650 }
1651 
1652 static inline
1653 void dev_net_set(struct net_device *dev, struct net *net)
1654 {
1655 #ifdef CONFIG_NET_NS
1656 	release_net(dev->nd_net);
1657 	dev->nd_net = hold_net(net);
1658 #endif
1659 }
1660 
1661 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1662 {
1663 #ifdef CONFIG_NET_DSA_TAG_DSA
1664 	if (dev->dsa_ptr != NULL)
1665 		return dsa_uses_dsa_tags(dev->dsa_ptr);
1666 #endif
1667 
1668 	return 0;
1669 }
1670 
1671 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1672 {
1673 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1674 	if (dev->dsa_ptr != NULL)
1675 		return dsa_uses_trailer_tags(dev->dsa_ptr);
1676 #endif
1677 
1678 	return 0;
1679 }
1680 
1681 /**
1682  *	netdev_priv - access network device private data
1683  *	@dev: network device
1684  *
1685  * Get network device private data
1686  */
1687 static inline void *netdev_priv(const struct net_device *dev)
1688 {
1689 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1690 }
1691 
1692 /* Set the sysfs physical device reference for the network logical device
1693  * if set prior to registration will cause a symlink during initialization.
1694  */
1695 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1696 
1697 /* Set the sysfs device type for the network logical device to allow
1698  * fine-grained identification of different network device types. For
1699  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1700  */
1701 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1702 
1703 /* Default NAPI poll() weight
1704  * Device drivers are strongly advised to not use bigger value
1705  */
1706 #define NAPI_POLL_WEIGHT 64
1707 
1708 /**
1709  *	netif_napi_add - initialize a napi context
1710  *	@dev:  network device
1711  *	@napi: napi context
1712  *	@poll: polling function
1713  *	@weight: default weight
1714  *
1715  * netif_napi_add() must be used to initialize a napi context prior to calling
1716  * *any* of the other napi related functions.
1717  */
1718 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1719 		    int (*poll)(struct napi_struct *, int), int weight);
1720 
1721 /**
1722  *  netif_napi_del - remove a napi context
1723  *  @napi: napi context
1724  *
1725  *  netif_napi_del() removes a napi context from the network device napi list
1726  */
1727 void netif_napi_del(struct napi_struct *napi);
1728 
1729 struct napi_gro_cb {
1730 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1731 	void *frag0;
1732 
1733 	/* Length of frag0. */
1734 	unsigned int frag0_len;
1735 
1736 	/* This indicates where we are processing relative to skb->data. */
1737 	int data_offset;
1738 
1739 	/* This is non-zero if the packet cannot be merged with the new skb. */
1740 	u16	flush;
1741 
1742 	/* Save the IP ID here and check when we get to the transport layer */
1743 	u16	flush_id;
1744 
1745 	/* Number of segments aggregated. */
1746 	u16	count;
1747 
1748 	/* This is non-zero if the packet may be of the same flow. */
1749 	u8	same_flow;
1750 
1751 	/* Free the skb? */
1752 	u8	free;
1753 #define NAPI_GRO_FREE		  1
1754 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1755 
1756 	/* jiffies when first packet was created/queued */
1757 	unsigned long age;
1758 
1759 	/* Used in ipv6_gro_receive() */
1760 	u16	proto;
1761 
1762 	/* Used in udp_gro_receive */
1763 	u16	udp_mark;
1764 
1765 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
1766 	__wsum	csum;
1767 
1768 	/* used in skb_gro_receive() slow path */
1769 	struct sk_buff *last;
1770 };
1771 
1772 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1773 
1774 struct packet_type {
1775 	__be16			type;	/* This is really htons(ether_type). */
1776 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1777 	int			(*func) (struct sk_buff *,
1778 					 struct net_device *,
1779 					 struct packet_type *,
1780 					 struct net_device *);
1781 	bool			(*id_match)(struct packet_type *ptype,
1782 					    struct sock *sk);
1783 	void			*af_packet_priv;
1784 	struct list_head	list;
1785 };
1786 
1787 struct offload_callbacks {
1788 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1789 						netdev_features_t features);
1790 	int			(*gso_send_check)(struct sk_buff *skb);
1791 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1792 					       struct sk_buff *skb);
1793 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
1794 };
1795 
1796 struct packet_offload {
1797 	__be16			 type;	/* This is really htons(ether_type). */
1798 	struct offload_callbacks callbacks;
1799 	struct list_head	 list;
1800 };
1801 
1802 struct udp_offload {
1803 	__be16			 port;
1804 	struct offload_callbacks callbacks;
1805 };
1806 
1807 /* often modified stats are per cpu, other are shared (netdev->stats) */
1808 struct pcpu_sw_netstats {
1809 	u64     rx_packets;
1810 	u64     rx_bytes;
1811 	u64     tx_packets;
1812 	u64     tx_bytes;
1813 	struct u64_stats_sync   syncp;
1814 };
1815 
1816 #define netdev_alloc_pcpu_stats(type)				\
1817 ({								\
1818 	typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
1819 	if (pcpu_stats)	{					\
1820 		int i;						\
1821 		for_each_possible_cpu(i) {			\
1822 			typeof(type) *stat;			\
1823 			stat = per_cpu_ptr(pcpu_stats, i);	\
1824 			u64_stats_init(&stat->syncp);		\
1825 		}						\
1826 	}							\
1827 	pcpu_stats;						\
1828 })
1829 
1830 #include <linux/notifier.h>
1831 
1832 /* netdevice notifier chain. Please remember to update the rtnetlink
1833  * notification exclusion list in rtnetlink_event() when adding new
1834  * types.
1835  */
1836 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
1837 #define NETDEV_DOWN	0x0002
1838 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
1839 				   detected a hardware crash and restarted
1840 				   - we can use this eg to kick tcp sessions
1841 				   once done */
1842 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
1843 #define NETDEV_REGISTER 0x0005
1844 #define NETDEV_UNREGISTER	0x0006
1845 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
1846 #define NETDEV_CHANGEADDR	0x0008
1847 #define NETDEV_GOING_DOWN	0x0009
1848 #define NETDEV_CHANGENAME	0x000A
1849 #define NETDEV_FEAT_CHANGE	0x000B
1850 #define NETDEV_BONDING_FAILOVER 0x000C
1851 #define NETDEV_PRE_UP		0x000D
1852 #define NETDEV_PRE_TYPE_CHANGE	0x000E
1853 #define NETDEV_POST_TYPE_CHANGE	0x000F
1854 #define NETDEV_POST_INIT	0x0010
1855 #define NETDEV_UNREGISTER_FINAL 0x0011
1856 #define NETDEV_RELEASE		0x0012
1857 #define NETDEV_NOTIFY_PEERS	0x0013
1858 #define NETDEV_JOIN		0x0014
1859 #define NETDEV_CHANGEUPPER	0x0015
1860 #define NETDEV_RESEND_IGMP	0x0016
1861 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
1862 
1863 int register_netdevice_notifier(struct notifier_block *nb);
1864 int unregister_netdevice_notifier(struct notifier_block *nb);
1865 
1866 struct netdev_notifier_info {
1867 	struct net_device *dev;
1868 };
1869 
1870 struct netdev_notifier_change_info {
1871 	struct netdev_notifier_info info; /* must be first */
1872 	unsigned int flags_changed;
1873 };
1874 
1875 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
1876 					     struct net_device *dev)
1877 {
1878 	info->dev = dev;
1879 }
1880 
1881 static inline struct net_device *
1882 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
1883 {
1884 	return info->dev;
1885 }
1886 
1887 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1888 
1889 
1890 extern rwlock_t				dev_base_lock;		/* Device list lock */
1891 
1892 #define for_each_netdev(net, d)		\
1893 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1894 #define for_each_netdev_reverse(net, d)	\
1895 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1896 #define for_each_netdev_rcu(net, d)		\
1897 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1898 #define for_each_netdev_safe(net, d, n)	\
1899 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1900 #define for_each_netdev_continue(net, d)		\
1901 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1902 #define for_each_netdev_continue_rcu(net, d)		\
1903 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1904 #define for_each_netdev_in_bond_rcu(bond, slave)	\
1905 		for_each_netdev_rcu(&init_net, slave)	\
1906 			if (netdev_master_upper_dev_get_rcu(slave) == bond)
1907 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
1908 
1909 static inline struct net_device *next_net_device(struct net_device *dev)
1910 {
1911 	struct list_head *lh;
1912 	struct net *net;
1913 
1914 	net = dev_net(dev);
1915 	lh = dev->dev_list.next;
1916 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1917 }
1918 
1919 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1920 {
1921 	struct list_head *lh;
1922 	struct net *net;
1923 
1924 	net = dev_net(dev);
1925 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1926 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1927 }
1928 
1929 static inline struct net_device *first_net_device(struct net *net)
1930 {
1931 	return list_empty(&net->dev_base_head) ? NULL :
1932 		net_device_entry(net->dev_base_head.next);
1933 }
1934 
1935 static inline struct net_device *first_net_device_rcu(struct net *net)
1936 {
1937 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1938 
1939 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1940 }
1941 
1942 int netdev_boot_setup_check(struct net_device *dev);
1943 unsigned long netdev_boot_base(const char *prefix, int unit);
1944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1945 				       const char *hwaddr);
1946 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1947 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1948 void dev_add_pack(struct packet_type *pt);
1949 void dev_remove_pack(struct packet_type *pt);
1950 void __dev_remove_pack(struct packet_type *pt);
1951 void dev_add_offload(struct packet_offload *po);
1952 void dev_remove_offload(struct packet_offload *po);
1953 
1954 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1955 					unsigned short mask);
1956 struct net_device *dev_get_by_name(struct net *net, const char *name);
1957 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1958 struct net_device *__dev_get_by_name(struct net *net, const char *name);
1959 int dev_alloc_name(struct net_device *dev, const char *name);
1960 int dev_open(struct net_device *dev);
1961 int dev_close(struct net_device *dev);
1962 void dev_disable_lro(struct net_device *dev);
1963 int dev_loopback_xmit(struct sk_buff *newskb);
1964 int dev_queue_xmit(struct sk_buff *skb);
1965 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
1966 int register_netdevice(struct net_device *dev);
1967 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
1968 void unregister_netdevice_many(struct list_head *head);
1969 static inline void unregister_netdevice(struct net_device *dev)
1970 {
1971 	unregister_netdevice_queue(dev, NULL);
1972 }
1973 
1974 int netdev_refcnt_read(const struct net_device *dev);
1975 void free_netdev(struct net_device *dev);
1976 void netdev_freemem(struct net_device *dev);
1977 void synchronize_net(void);
1978 int init_dummy_netdev(struct net_device *dev);
1979 
1980 struct net_device *dev_get_by_index(struct net *net, int ifindex);
1981 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1982 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1983 int netdev_get_name(struct net *net, char *name, int ifindex);
1984 int dev_restart(struct net_device *dev);
1985 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1986 
1987 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1988 {
1989 	return NAPI_GRO_CB(skb)->data_offset;
1990 }
1991 
1992 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1993 {
1994 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
1995 }
1996 
1997 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1998 {
1999 	NAPI_GRO_CB(skb)->data_offset += len;
2000 }
2001 
2002 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2003 					unsigned int offset)
2004 {
2005 	return NAPI_GRO_CB(skb)->frag0 + offset;
2006 }
2007 
2008 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2009 {
2010 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2011 }
2012 
2013 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2014 					unsigned int offset)
2015 {
2016 	if (!pskb_may_pull(skb, hlen))
2017 		return NULL;
2018 
2019 	NAPI_GRO_CB(skb)->frag0 = NULL;
2020 	NAPI_GRO_CB(skb)->frag0_len = 0;
2021 	return skb->data + offset;
2022 }
2023 
2024 static inline void *skb_gro_network_header(struct sk_buff *skb)
2025 {
2026 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2027 	       skb_network_offset(skb);
2028 }
2029 
2030 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2031 					const void *start, unsigned int len)
2032 {
2033 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2034 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2035 						  csum_partial(start, len, 0));
2036 }
2037 
2038 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2039 				  unsigned short type,
2040 				  const void *daddr, const void *saddr,
2041 				  unsigned int len)
2042 {
2043 	if (!dev->header_ops || !dev->header_ops->create)
2044 		return 0;
2045 
2046 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2047 }
2048 
2049 static inline int dev_parse_header(const struct sk_buff *skb,
2050 				   unsigned char *haddr)
2051 {
2052 	const struct net_device *dev = skb->dev;
2053 
2054 	if (!dev->header_ops || !dev->header_ops->parse)
2055 		return 0;
2056 	return dev->header_ops->parse(skb, haddr);
2057 }
2058 
2059 static inline int dev_rebuild_header(struct sk_buff *skb)
2060 {
2061 	const struct net_device *dev = skb->dev;
2062 
2063 	if (!dev->header_ops || !dev->header_ops->rebuild)
2064 		return 0;
2065 	return dev->header_ops->rebuild(skb);
2066 }
2067 
2068 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2069 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2070 static inline int unregister_gifconf(unsigned int family)
2071 {
2072 	return register_gifconf(family, NULL);
2073 }
2074 
2075 #ifdef CONFIG_NET_FLOW_LIMIT
2076 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2077 struct sd_flow_limit {
2078 	u64			count;
2079 	unsigned int		num_buckets;
2080 	unsigned int		history_head;
2081 	u16			history[FLOW_LIMIT_HISTORY];
2082 	u8			buckets[];
2083 };
2084 
2085 extern int netdev_flow_limit_table_len;
2086 #endif /* CONFIG_NET_FLOW_LIMIT */
2087 
2088 /*
2089  * Incoming packets are placed on per-cpu queues
2090  */
2091 struct softnet_data {
2092 	struct Qdisc		*output_queue;
2093 	struct Qdisc		**output_queue_tailp;
2094 	struct list_head	poll_list;
2095 	struct sk_buff		*completion_queue;
2096 	struct sk_buff_head	process_queue;
2097 
2098 	/* stats */
2099 	unsigned int		processed;
2100 	unsigned int		time_squeeze;
2101 	unsigned int		cpu_collision;
2102 	unsigned int		received_rps;
2103 
2104 #ifdef CONFIG_RPS
2105 	struct softnet_data	*rps_ipi_list;
2106 
2107 	/* Elements below can be accessed between CPUs for RPS */
2108 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2109 	struct softnet_data	*rps_ipi_next;
2110 	unsigned int		cpu;
2111 	unsigned int		input_queue_head;
2112 	unsigned int		input_queue_tail;
2113 #endif
2114 	unsigned int		dropped;
2115 	struct sk_buff_head	input_pkt_queue;
2116 	struct napi_struct	backlog;
2117 
2118 #ifdef CONFIG_NET_FLOW_LIMIT
2119 	struct sd_flow_limit __rcu *flow_limit;
2120 #endif
2121 };
2122 
2123 static inline void input_queue_head_incr(struct softnet_data *sd)
2124 {
2125 #ifdef CONFIG_RPS
2126 	sd->input_queue_head++;
2127 #endif
2128 }
2129 
2130 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2131 					      unsigned int *qtail)
2132 {
2133 #ifdef CONFIG_RPS
2134 	*qtail = ++sd->input_queue_tail;
2135 #endif
2136 }
2137 
2138 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2139 
2140 void __netif_schedule(struct Qdisc *q);
2141 
2142 static inline void netif_schedule_queue(struct netdev_queue *txq)
2143 {
2144 	if (!(txq->state & QUEUE_STATE_ANY_XOFF))
2145 		__netif_schedule(txq->qdisc);
2146 }
2147 
2148 static inline void netif_tx_schedule_all(struct net_device *dev)
2149 {
2150 	unsigned int i;
2151 
2152 	for (i = 0; i < dev->num_tx_queues; i++)
2153 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2154 }
2155 
2156 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2157 {
2158 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2159 }
2160 
2161 /**
2162  *	netif_start_queue - allow transmit
2163  *	@dev: network device
2164  *
2165  *	Allow upper layers to call the device hard_start_xmit routine.
2166  */
2167 static inline void netif_start_queue(struct net_device *dev)
2168 {
2169 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2170 }
2171 
2172 static inline void netif_tx_start_all_queues(struct net_device *dev)
2173 {
2174 	unsigned int i;
2175 
2176 	for (i = 0; i < dev->num_tx_queues; i++) {
2177 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2178 		netif_tx_start_queue(txq);
2179 	}
2180 }
2181 
2182 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2183 {
2184 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
2185 		__netif_schedule(dev_queue->qdisc);
2186 }
2187 
2188 /**
2189  *	netif_wake_queue - restart transmit
2190  *	@dev: network device
2191  *
2192  *	Allow upper layers to call the device hard_start_xmit routine.
2193  *	Used for flow control when transmit resources are available.
2194  */
2195 static inline void netif_wake_queue(struct net_device *dev)
2196 {
2197 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2198 }
2199 
2200 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2201 {
2202 	unsigned int i;
2203 
2204 	for (i = 0; i < dev->num_tx_queues; i++) {
2205 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2206 		netif_tx_wake_queue(txq);
2207 	}
2208 }
2209 
2210 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2211 {
2212 	if (WARN_ON(!dev_queue)) {
2213 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2214 		return;
2215 	}
2216 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2217 }
2218 
2219 /**
2220  *	netif_stop_queue - stop transmitted packets
2221  *	@dev: network device
2222  *
2223  *	Stop upper layers calling the device hard_start_xmit routine.
2224  *	Used for flow control when transmit resources are unavailable.
2225  */
2226 static inline void netif_stop_queue(struct net_device *dev)
2227 {
2228 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2229 }
2230 
2231 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2232 {
2233 	unsigned int i;
2234 
2235 	for (i = 0; i < dev->num_tx_queues; i++) {
2236 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2237 		netif_tx_stop_queue(txq);
2238 	}
2239 }
2240 
2241 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2242 {
2243 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2244 }
2245 
2246 /**
2247  *	netif_queue_stopped - test if transmit queue is flowblocked
2248  *	@dev: network device
2249  *
2250  *	Test if transmit queue on device is currently unable to send.
2251  */
2252 static inline bool netif_queue_stopped(const struct net_device *dev)
2253 {
2254 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2255 }
2256 
2257 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2258 {
2259 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2260 }
2261 
2262 static inline bool
2263 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2264 {
2265 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2266 }
2267 
2268 static inline bool
2269 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2270 {
2271 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2272 }
2273 
2274 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2275 					unsigned int bytes)
2276 {
2277 #ifdef CONFIG_BQL
2278 	dql_queued(&dev_queue->dql, bytes);
2279 
2280 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2281 		return;
2282 
2283 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2284 
2285 	/*
2286 	 * The XOFF flag must be set before checking the dql_avail below,
2287 	 * because in netdev_tx_completed_queue we update the dql_completed
2288 	 * before checking the XOFF flag.
2289 	 */
2290 	smp_mb();
2291 
2292 	/* check again in case another CPU has just made room avail */
2293 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2294 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2295 #endif
2296 }
2297 
2298 /**
2299  * 	netdev_sent_queue - report the number of bytes queued to hardware
2300  * 	@dev: network device
2301  * 	@bytes: number of bytes queued to the hardware device queue
2302  *
2303  * 	Report the number of bytes queued for sending/completion to the network
2304  * 	device hardware queue. @bytes should be a good approximation and should
2305  * 	exactly match netdev_completed_queue() @bytes
2306  */
2307 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2308 {
2309 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2310 }
2311 
2312 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2313 					     unsigned int pkts, unsigned int bytes)
2314 {
2315 #ifdef CONFIG_BQL
2316 	if (unlikely(!bytes))
2317 		return;
2318 
2319 	dql_completed(&dev_queue->dql, bytes);
2320 
2321 	/*
2322 	 * Without the memory barrier there is a small possiblity that
2323 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2324 	 * be stopped forever
2325 	 */
2326 	smp_mb();
2327 
2328 	if (dql_avail(&dev_queue->dql) < 0)
2329 		return;
2330 
2331 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2332 		netif_schedule_queue(dev_queue);
2333 #endif
2334 }
2335 
2336 /**
2337  * 	netdev_completed_queue - report bytes and packets completed by device
2338  * 	@dev: network device
2339  * 	@pkts: actual number of packets sent over the medium
2340  * 	@bytes: actual number of bytes sent over the medium
2341  *
2342  * 	Report the number of bytes and packets transmitted by the network device
2343  * 	hardware queue over the physical medium, @bytes must exactly match the
2344  * 	@bytes amount passed to netdev_sent_queue()
2345  */
2346 static inline void netdev_completed_queue(struct net_device *dev,
2347 					  unsigned int pkts, unsigned int bytes)
2348 {
2349 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2350 }
2351 
2352 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2353 {
2354 #ifdef CONFIG_BQL
2355 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2356 	dql_reset(&q->dql);
2357 #endif
2358 }
2359 
2360 /**
2361  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2362  * 	@dev_queue: network device
2363  *
2364  * 	Reset the bytes and packet count of a network device and clear the
2365  * 	software flow control OFF bit for this network device
2366  */
2367 static inline void netdev_reset_queue(struct net_device *dev_queue)
2368 {
2369 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2370 }
2371 
2372 /**
2373  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2374  * 	@dev: network device
2375  * 	@queue_index: given tx queue index
2376  *
2377  * 	Returns 0 if given tx queue index >= number of device tx queues,
2378  * 	otherwise returns the originally passed tx queue index.
2379  */
2380 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2381 {
2382 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2383 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2384 				     dev->name, queue_index,
2385 				     dev->real_num_tx_queues);
2386 		return 0;
2387 	}
2388 
2389 	return queue_index;
2390 }
2391 
2392 /**
2393  *	netif_running - test if up
2394  *	@dev: network device
2395  *
2396  *	Test if the device has been brought up.
2397  */
2398 static inline bool netif_running(const struct net_device *dev)
2399 {
2400 	return test_bit(__LINK_STATE_START, &dev->state);
2401 }
2402 
2403 /*
2404  * Routines to manage the subqueues on a device.  We only need start
2405  * stop, and a check if it's stopped.  All other device management is
2406  * done at the overall netdevice level.
2407  * Also test the device if we're multiqueue.
2408  */
2409 
2410 /**
2411  *	netif_start_subqueue - allow sending packets on subqueue
2412  *	@dev: network device
2413  *	@queue_index: sub queue index
2414  *
2415  * Start individual transmit queue of a device with multiple transmit queues.
2416  */
2417 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2418 {
2419 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2420 
2421 	netif_tx_start_queue(txq);
2422 }
2423 
2424 /**
2425  *	netif_stop_subqueue - stop sending packets on subqueue
2426  *	@dev: network device
2427  *	@queue_index: sub queue index
2428  *
2429  * Stop individual transmit queue of a device with multiple transmit queues.
2430  */
2431 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2432 {
2433 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2434 	netif_tx_stop_queue(txq);
2435 }
2436 
2437 /**
2438  *	netif_subqueue_stopped - test status of subqueue
2439  *	@dev: network device
2440  *	@queue_index: sub queue index
2441  *
2442  * Check individual transmit queue of a device with multiple transmit queues.
2443  */
2444 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2445 					    u16 queue_index)
2446 {
2447 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2448 
2449 	return netif_tx_queue_stopped(txq);
2450 }
2451 
2452 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2453 					  struct sk_buff *skb)
2454 {
2455 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2456 }
2457 
2458 /**
2459  *	netif_wake_subqueue - allow sending packets on subqueue
2460  *	@dev: network device
2461  *	@queue_index: sub queue index
2462  *
2463  * Resume individual transmit queue of a device with multiple transmit queues.
2464  */
2465 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2466 {
2467 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2468 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2469 		__netif_schedule(txq->qdisc);
2470 }
2471 
2472 #ifdef CONFIG_XPS
2473 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2474 			u16 index);
2475 #else
2476 static inline int netif_set_xps_queue(struct net_device *dev,
2477 				      const struct cpumask *mask,
2478 				      u16 index)
2479 {
2480 	return 0;
2481 }
2482 #endif
2483 
2484 /*
2485  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2486  * as a distribution range limit for the returned value.
2487  */
2488 static inline u16 skb_tx_hash(const struct net_device *dev,
2489 			      const struct sk_buff *skb)
2490 {
2491 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2492 }
2493 
2494 /**
2495  *	netif_is_multiqueue - test if device has multiple transmit queues
2496  *	@dev: network device
2497  *
2498  * Check if device has multiple transmit queues
2499  */
2500 static inline bool netif_is_multiqueue(const struct net_device *dev)
2501 {
2502 	return dev->num_tx_queues > 1;
2503 }
2504 
2505 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2506 
2507 #ifdef CONFIG_SYSFS
2508 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2509 #else
2510 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2511 						unsigned int rxq)
2512 {
2513 	return 0;
2514 }
2515 #endif
2516 
2517 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2518 					     const struct net_device *from_dev)
2519 {
2520 	int err;
2521 
2522 	err = netif_set_real_num_tx_queues(to_dev,
2523 					   from_dev->real_num_tx_queues);
2524 	if (err)
2525 		return err;
2526 #ifdef CONFIG_SYSFS
2527 	return netif_set_real_num_rx_queues(to_dev,
2528 					    from_dev->real_num_rx_queues);
2529 #else
2530 	return 0;
2531 #endif
2532 }
2533 
2534 #ifdef CONFIG_SYSFS
2535 static inline unsigned int get_netdev_rx_queue_index(
2536 		struct netdev_rx_queue *queue)
2537 {
2538 	struct net_device *dev = queue->dev;
2539 	int index = queue - dev->_rx;
2540 
2541 	BUG_ON(index >= dev->num_rx_queues);
2542 	return index;
2543 }
2544 #endif
2545 
2546 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2547 int netif_get_num_default_rss_queues(void);
2548 
2549 enum skb_free_reason {
2550 	SKB_REASON_CONSUMED,
2551 	SKB_REASON_DROPPED,
2552 };
2553 
2554 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2555 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2556 
2557 /*
2558  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2559  * interrupt context or with hardware interrupts being disabled.
2560  * (in_irq() || irqs_disabled())
2561  *
2562  * We provide four helpers that can be used in following contexts :
2563  *
2564  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2565  *  replacing kfree_skb(skb)
2566  *
2567  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2568  *  Typically used in place of consume_skb(skb) in TX completion path
2569  *
2570  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2571  *  replacing kfree_skb(skb)
2572  *
2573  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2574  *  and consumed a packet. Used in place of consume_skb(skb)
2575  */
2576 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2577 {
2578 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2579 }
2580 
2581 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2582 {
2583 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2584 }
2585 
2586 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2587 {
2588 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2589 }
2590 
2591 static inline void dev_consume_skb_any(struct sk_buff *skb)
2592 {
2593 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2594 }
2595 
2596 int netif_rx(struct sk_buff *skb);
2597 int netif_rx_ni(struct sk_buff *skb);
2598 int netif_receive_skb(struct sk_buff *skb);
2599 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2600 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2601 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2602 gro_result_t napi_gro_frags(struct napi_struct *napi);
2603 struct packet_offload *gro_find_receive_by_type(__be16 type);
2604 struct packet_offload *gro_find_complete_by_type(__be16 type);
2605 
2606 static inline void napi_free_frags(struct napi_struct *napi)
2607 {
2608 	kfree_skb(napi->skb);
2609 	napi->skb = NULL;
2610 }
2611 
2612 int netdev_rx_handler_register(struct net_device *dev,
2613 			       rx_handler_func_t *rx_handler,
2614 			       void *rx_handler_data);
2615 void netdev_rx_handler_unregister(struct net_device *dev);
2616 
2617 bool dev_valid_name(const char *name);
2618 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2619 int dev_ethtool(struct net *net, struct ifreq *);
2620 unsigned int dev_get_flags(const struct net_device *);
2621 int __dev_change_flags(struct net_device *, unsigned int flags);
2622 int dev_change_flags(struct net_device *, unsigned int);
2623 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2624 			unsigned int gchanges);
2625 int dev_change_name(struct net_device *, const char *);
2626 int dev_set_alias(struct net_device *, const char *, size_t);
2627 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2628 int dev_set_mtu(struct net_device *, int);
2629 void dev_set_group(struct net_device *, int);
2630 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2631 int dev_change_carrier(struct net_device *, bool new_carrier);
2632 int dev_get_phys_port_id(struct net_device *dev,
2633 			 struct netdev_phys_port_id *ppid);
2634 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2635 			struct netdev_queue *txq);
2636 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2637 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2638 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2639 
2640 extern int		netdev_budget;
2641 
2642 /* Called by rtnetlink.c:rtnl_unlock() */
2643 void netdev_run_todo(void);
2644 
2645 /**
2646  *	dev_put - release reference to device
2647  *	@dev: network device
2648  *
2649  * Release reference to device to allow it to be freed.
2650  */
2651 static inline void dev_put(struct net_device *dev)
2652 {
2653 	this_cpu_dec(*dev->pcpu_refcnt);
2654 }
2655 
2656 /**
2657  *	dev_hold - get reference to device
2658  *	@dev: network device
2659  *
2660  * Hold reference to device to keep it from being freed.
2661  */
2662 static inline void dev_hold(struct net_device *dev)
2663 {
2664 	this_cpu_inc(*dev->pcpu_refcnt);
2665 }
2666 
2667 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2668  * and _off may be called from IRQ context, but it is caller
2669  * who is responsible for serialization of these calls.
2670  *
2671  * The name carrier is inappropriate, these functions should really be
2672  * called netif_lowerlayer_*() because they represent the state of any
2673  * kind of lower layer not just hardware media.
2674  */
2675 
2676 void linkwatch_init_dev(struct net_device *dev);
2677 void linkwatch_fire_event(struct net_device *dev);
2678 void linkwatch_forget_dev(struct net_device *dev);
2679 
2680 /**
2681  *	netif_carrier_ok - test if carrier present
2682  *	@dev: network device
2683  *
2684  * Check if carrier is present on device
2685  */
2686 static inline bool netif_carrier_ok(const struct net_device *dev)
2687 {
2688 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2689 }
2690 
2691 unsigned long dev_trans_start(struct net_device *dev);
2692 
2693 void __netdev_watchdog_up(struct net_device *dev);
2694 
2695 void netif_carrier_on(struct net_device *dev);
2696 
2697 void netif_carrier_off(struct net_device *dev);
2698 
2699 /**
2700  *	netif_dormant_on - mark device as dormant.
2701  *	@dev: network device
2702  *
2703  * Mark device as dormant (as per RFC2863).
2704  *
2705  * The dormant state indicates that the relevant interface is not
2706  * actually in a condition to pass packets (i.e., it is not 'up') but is
2707  * in a "pending" state, waiting for some external event.  For "on-
2708  * demand" interfaces, this new state identifies the situation where the
2709  * interface is waiting for events to place it in the up state.
2710  *
2711  */
2712 static inline void netif_dormant_on(struct net_device *dev)
2713 {
2714 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2715 		linkwatch_fire_event(dev);
2716 }
2717 
2718 /**
2719  *	netif_dormant_off - set device as not dormant.
2720  *	@dev: network device
2721  *
2722  * Device is not in dormant state.
2723  */
2724 static inline void netif_dormant_off(struct net_device *dev)
2725 {
2726 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2727 		linkwatch_fire_event(dev);
2728 }
2729 
2730 /**
2731  *	netif_dormant - test if carrier present
2732  *	@dev: network device
2733  *
2734  * Check if carrier is present on device
2735  */
2736 static inline bool netif_dormant(const struct net_device *dev)
2737 {
2738 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2739 }
2740 
2741 
2742 /**
2743  *	netif_oper_up - test if device is operational
2744  *	@dev: network device
2745  *
2746  * Check if carrier is operational
2747  */
2748 static inline bool netif_oper_up(const struct net_device *dev)
2749 {
2750 	return (dev->operstate == IF_OPER_UP ||
2751 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2752 }
2753 
2754 /**
2755  *	netif_device_present - is device available or removed
2756  *	@dev: network device
2757  *
2758  * Check if device has not been removed from system.
2759  */
2760 static inline bool netif_device_present(struct net_device *dev)
2761 {
2762 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
2763 }
2764 
2765 void netif_device_detach(struct net_device *dev);
2766 
2767 void netif_device_attach(struct net_device *dev);
2768 
2769 /*
2770  * Network interface message level settings
2771  */
2772 
2773 enum {
2774 	NETIF_MSG_DRV		= 0x0001,
2775 	NETIF_MSG_PROBE		= 0x0002,
2776 	NETIF_MSG_LINK		= 0x0004,
2777 	NETIF_MSG_TIMER		= 0x0008,
2778 	NETIF_MSG_IFDOWN	= 0x0010,
2779 	NETIF_MSG_IFUP		= 0x0020,
2780 	NETIF_MSG_RX_ERR	= 0x0040,
2781 	NETIF_MSG_TX_ERR	= 0x0080,
2782 	NETIF_MSG_TX_QUEUED	= 0x0100,
2783 	NETIF_MSG_INTR		= 0x0200,
2784 	NETIF_MSG_TX_DONE	= 0x0400,
2785 	NETIF_MSG_RX_STATUS	= 0x0800,
2786 	NETIF_MSG_PKTDATA	= 0x1000,
2787 	NETIF_MSG_HW		= 0x2000,
2788 	NETIF_MSG_WOL		= 0x4000,
2789 };
2790 
2791 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
2792 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
2793 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
2794 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
2795 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
2796 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
2797 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
2798 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
2799 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2800 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
2801 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
2802 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
2803 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
2804 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
2805 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
2806 
2807 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2808 {
2809 	/* use default */
2810 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2811 		return default_msg_enable_bits;
2812 	if (debug_value == 0)	/* no output */
2813 		return 0;
2814 	/* set low N bits */
2815 	return (1 << debug_value) - 1;
2816 }
2817 
2818 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2819 {
2820 	spin_lock(&txq->_xmit_lock);
2821 	txq->xmit_lock_owner = cpu;
2822 }
2823 
2824 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2825 {
2826 	spin_lock_bh(&txq->_xmit_lock);
2827 	txq->xmit_lock_owner = smp_processor_id();
2828 }
2829 
2830 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2831 {
2832 	bool ok = spin_trylock(&txq->_xmit_lock);
2833 	if (likely(ok))
2834 		txq->xmit_lock_owner = smp_processor_id();
2835 	return ok;
2836 }
2837 
2838 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2839 {
2840 	txq->xmit_lock_owner = -1;
2841 	spin_unlock(&txq->_xmit_lock);
2842 }
2843 
2844 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2845 {
2846 	txq->xmit_lock_owner = -1;
2847 	spin_unlock_bh(&txq->_xmit_lock);
2848 }
2849 
2850 static inline void txq_trans_update(struct netdev_queue *txq)
2851 {
2852 	if (txq->xmit_lock_owner != -1)
2853 		txq->trans_start = jiffies;
2854 }
2855 
2856 /**
2857  *	netif_tx_lock - grab network device transmit lock
2858  *	@dev: network device
2859  *
2860  * Get network device transmit lock
2861  */
2862 static inline void netif_tx_lock(struct net_device *dev)
2863 {
2864 	unsigned int i;
2865 	int cpu;
2866 
2867 	spin_lock(&dev->tx_global_lock);
2868 	cpu = smp_processor_id();
2869 	for (i = 0; i < dev->num_tx_queues; i++) {
2870 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2871 
2872 		/* We are the only thread of execution doing a
2873 		 * freeze, but we have to grab the _xmit_lock in
2874 		 * order to synchronize with threads which are in
2875 		 * the ->hard_start_xmit() handler and already
2876 		 * checked the frozen bit.
2877 		 */
2878 		__netif_tx_lock(txq, cpu);
2879 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2880 		__netif_tx_unlock(txq);
2881 	}
2882 }
2883 
2884 static inline void netif_tx_lock_bh(struct net_device *dev)
2885 {
2886 	local_bh_disable();
2887 	netif_tx_lock(dev);
2888 }
2889 
2890 static inline void netif_tx_unlock(struct net_device *dev)
2891 {
2892 	unsigned int i;
2893 
2894 	for (i = 0; i < dev->num_tx_queues; i++) {
2895 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2896 
2897 		/* No need to grab the _xmit_lock here.  If the
2898 		 * queue is not stopped for another reason, we
2899 		 * force a schedule.
2900 		 */
2901 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2902 		netif_schedule_queue(txq);
2903 	}
2904 	spin_unlock(&dev->tx_global_lock);
2905 }
2906 
2907 static inline void netif_tx_unlock_bh(struct net_device *dev)
2908 {
2909 	netif_tx_unlock(dev);
2910 	local_bh_enable();
2911 }
2912 
2913 #define HARD_TX_LOCK(dev, txq, cpu) {			\
2914 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2915 		__netif_tx_lock(txq, cpu);		\
2916 	}						\
2917 }
2918 
2919 #define HARD_TX_TRYLOCK(dev, txq)			\
2920 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
2921 		__netif_tx_trylock(txq) :		\
2922 		true )
2923 
2924 #define HARD_TX_UNLOCK(dev, txq) {			\
2925 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2926 		__netif_tx_unlock(txq);			\
2927 	}						\
2928 }
2929 
2930 static inline void netif_tx_disable(struct net_device *dev)
2931 {
2932 	unsigned int i;
2933 	int cpu;
2934 
2935 	local_bh_disable();
2936 	cpu = smp_processor_id();
2937 	for (i = 0; i < dev->num_tx_queues; i++) {
2938 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2939 
2940 		__netif_tx_lock(txq, cpu);
2941 		netif_tx_stop_queue(txq);
2942 		__netif_tx_unlock(txq);
2943 	}
2944 	local_bh_enable();
2945 }
2946 
2947 static inline void netif_addr_lock(struct net_device *dev)
2948 {
2949 	spin_lock(&dev->addr_list_lock);
2950 }
2951 
2952 static inline void netif_addr_lock_nested(struct net_device *dev)
2953 {
2954 	int subclass = SINGLE_DEPTH_NESTING;
2955 
2956 	if (dev->netdev_ops->ndo_get_lock_subclass)
2957 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
2958 
2959 	spin_lock_nested(&dev->addr_list_lock, subclass);
2960 }
2961 
2962 static inline void netif_addr_lock_bh(struct net_device *dev)
2963 {
2964 	spin_lock_bh(&dev->addr_list_lock);
2965 }
2966 
2967 static inline void netif_addr_unlock(struct net_device *dev)
2968 {
2969 	spin_unlock(&dev->addr_list_lock);
2970 }
2971 
2972 static inline void netif_addr_unlock_bh(struct net_device *dev)
2973 {
2974 	spin_unlock_bh(&dev->addr_list_lock);
2975 }
2976 
2977 /*
2978  * dev_addrs walker. Should be used only for read access. Call with
2979  * rcu_read_lock held.
2980  */
2981 #define for_each_dev_addr(dev, ha) \
2982 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2983 
2984 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2985 
2986 void ether_setup(struct net_device *dev);
2987 
2988 /* Support for loadable net-drivers */
2989 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2990 				    void (*setup)(struct net_device *),
2991 				    unsigned int txqs, unsigned int rxqs);
2992 #define alloc_netdev(sizeof_priv, name, setup) \
2993 	alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2994 
2995 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2996 	alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2997 
2998 int register_netdev(struct net_device *dev);
2999 void unregister_netdev(struct net_device *dev);
3000 
3001 /* General hardware address lists handling functions */
3002 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3003 		   struct netdev_hw_addr_list *from_list, int addr_len);
3004 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3005 		      struct netdev_hw_addr_list *from_list, int addr_len);
3006 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3007 		       struct net_device *dev,
3008 		       int (*sync)(struct net_device *, const unsigned char *),
3009 		       int (*unsync)(struct net_device *,
3010 				     const unsigned char *));
3011 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3012 			  struct net_device *dev,
3013 			  int (*unsync)(struct net_device *,
3014 					const unsigned char *));
3015 void __hw_addr_init(struct netdev_hw_addr_list *list);
3016 
3017 /* Functions used for device addresses handling */
3018 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3019 		 unsigned char addr_type);
3020 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3021 		 unsigned char addr_type);
3022 void dev_addr_flush(struct net_device *dev);
3023 int dev_addr_init(struct net_device *dev);
3024 
3025 /* Functions used for unicast addresses handling */
3026 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3027 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3028 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3029 int dev_uc_sync(struct net_device *to, struct net_device *from);
3030 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3031 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3032 void dev_uc_flush(struct net_device *dev);
3033 void dev_uc_init(struct net_device *dev);
3034 
3035 /**
3036  *  __dev_uc_sync - Synchonize device's unicast list
3037  *  @dev:  device to sync
3038  *  @sync: function to call if address should be added
3039  *  @unsync: function to call if address should be removed
3040  *
3041  *  Add newly added addresses to the interface, and release
3042  *  addresses that have been deleted.
3043  **/
3044 static inline int __dev_uc_sync(struct net_device *dev,
3045 				int (*sync)(struct net_device *,
3046 					    const unsigned char *),
3047 				int (*unsync)(struct net_device *,
3048 					      const unsigned char *))
3049 {
3050 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3051 }
3052 
3053 /**
3054  *  __dev_uc_unsync - Remove synchonized addresses from device
3055  *  @dev:  device to sync
3056  *  @unsync: function to call if address should be removed
3057  *
3058  *  Remove all addresses that were added to the device by dev_uc_sync().
3059  **/
3060 static inline void __dev_uc_unsync(struct net_device *dev,
3061 				   int (*unsync)(struct net_device *,
3062 						 const unsigned char *))
3063 {
3064 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3065 }
3066 
3067 /* Functions used for multicast addresses handling */
3068 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3069 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3070 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3071 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3072 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3073 int dev_mc_sync(struct net_device *to, struct net_device *from);
3074 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3075 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3076 void dev_mc_flush(struct net_device *dev);
3077 void dev_mc_init(struct net_device *dev);
3078 
3079 /**
3080  *  __dev_mc_sync - Synchonize device's multicast list
3081  *  @dev:  device to sync
3082  *  @sync: function to call if address should be added
3083  *  @unsync: function to call if address should be removed
3084  *
3085  *  Add newly added addresses to the interface, and release
3086  *  addresses that have been deleted.
3087  **/
3088 static inline int __dev_mc_sync(struct net_device *dev,
3089 				int (*sync)(struct net_device *,
3090 					    const unsigned char *),
3091 				int (*unsync)(struct net_device *,
3092 					      const unsigned char *))
3093 {
3094 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3095 }
3096 
3097 /**
3098  *  __dev_mc_unsync - Remove synchonized addresses from device
3099  *  @dev:  device to sync
3100  *  @unsync: function to call if address should be removed
3101  *
3102  *  Remove all addresses that were added to the device by dev_mc_sync().
3103  **/
3104 static inline void __dev_mc_unsync(struct net_device *dev,
3105 				   int (*unsync)(struct net_device *,
3106 						 const unsigned char *))
3107 {
3108 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3109 }
3110 
3111 /* Functions used for secondary unicast and multicast support */
3112 void dev_set_rx_mode(struct net_device *dev);
3113 void __dev_set_rx_mode(struct net_device *dev);
3114 int dev_set_promiscuity(struct net_device *dev, int inc);
3115 int dev_set_allmulti(struct net_device *dev, int inc);
3116 void netdev_state_change(struct net_device *dev);
3117 void netdev_notify_peers(struct net_device *dev);
3118 void netdev_features_change(struct net_device *dev);
3119 /* Load a device via the kmod */
3120 void dev_load(struct net *net, const char *name);
3121 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3122 					struct rtnl_link_stats64 *storage);
3123 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3124 			     const struct net_device_stats *netdev_stats);
3125 
3126 extern int		netdev_max_backlog;
3127 extern int		netdev_tstamp_prequeue;
3128 extern int		weight_p;
3129 extern int		bpf_jit_enable;
3130 
3131 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3132 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3133 						     struct list_head **iter);
3134 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3135 						     struct list_head **iter);
3136 
3137 /* iterate through upper list, must be called under RCU read lock */
3138 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3139 	for (iter = &(dev)->adj_list.upper, \
3140 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3141 	     updev; \
3142 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3143 
3144 /* iterate through upper list, must be called under RCU read lock */
3145 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3146 	for (iter = &(dev)->all_adj_list.upper, \
3147 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3148 	     updev; \
3149 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3150 
3151 void *netdev_lower_get_next_private(struct net_device *dev,
3152 				    struct list_head **iter);
3153 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3154 					struct list_head **iter);
3155 
3156 #define netdev_for_each_lower_private(dev, priv, iter) \
3157 	for (iter = (dev)->adj_list.lower.next, \
3158 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3159 	     priv; \
3160 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3161 
3162 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3163 	for (iter = &(dev)->adj_list.lower, \
3164 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3165 	     priv; \
3166 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3167 
3168 void *netdev_lower_get_next(struct net_device *dev,
3169 				struct list_head **iter);
3170 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3171 	for (iter = &(dev)->adj_list.lower, \
3172 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3173 	     ldev; \
3174 	     ldev = netdev_lower_get_next(dev, &(iter)))
3175 
3176 void *netdev_adjacent_get_private(struct list_head *adj_list);
3177 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3178 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3179 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3180 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3181 int netdev_master_upper_dev_link(struct net_device *dev,
3182 				 struct net_device *upper_dev);
3183 int netdev_master_upper_dev_link_private(struct net_device *dev,
3184 					 struct net_device *upper_dev,
3185 					 void *private);
3186 void netdev_upper_dev_unlink(struct net_device *dev,
3187 			     struct net_device *upper_dev);
3188 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3189 void *netdev_lower_dev_get_private(struct net_device *dev,
3190 				   struct net_device *lower_dev);
3191 int dev_get_nest_level(struct net_device *dev,
3192 		       bool (*type_check)(struct net_device *dev));
3193 int skb_checksum_help(struct sk_buff *skb);
3194 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3195 				  netdev_features_t features, bool tx_path);
3196 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3197 				    netdev_features_t features);
3198 
3199 static inline
3200 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3201 {
3202 	return __skb_gso_segment(skb, features, true);
3203 }
3204 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3205 
3206 static inline bool can_checksum_protocol(netdev_features_t features,
3207 					 __be16 protocol)
3208 {
3209 	return ((features & NETIF_F_GEN_CSUM) ||
3210 		((features & NETIF_F_V4_CSUM) &&
3211 		 protocol == htons(ETH_P_IP)) ||
3212 		((features & NETIF_F_V6_CSUM) &&
3213 		 protocol == htons(ETH_P_IPV6)) ||
3214 		((features & NETIF_F_FCOE_CRC) &&
3215 		 protocol == htons(ETH_P_FCOE)));
3216 }
3217 
3218 #ifdef CONFIG_BUG
3219 void netdev_rx_csum_fault(struct net_device *dev);
3220 #else
3221 static inline void netdev_rx_csum_fault(struct net_device *dev)
3222 {
3223 }
3224 #endif
3225 /* rx skb timestamps */
3226 void net_enable_timestamp(void);
3227 void net_disable_timestamp(void);
3228 
3229 #ifdef CONFIG_PROC_FS
3230 int __init dev_proc_init(void);
3231 #else
3232 #define dev_proc_init() 0
3233 #endif
3234 
3235 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3236 				const void *ns);
3237 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3238 				 const void *ns);
3239 
3240 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3241 {
3242 	return netdev_class_create_file_ns(class_attr, NULL);
3243 }
3244 
3245 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3246 {
3247 	netdev_class_remove_file_ns(class_attr, NULL);
3248 }
3249 
3250 extern struct kobj_ns_type_operations net_ns_type_operations;
3251 
3252 const char *netdev_drivername(const struct net_device *dev);
3253 
3254 void linkwatch_run_queue(void);
3255 
3256 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3257 							  netdev_features_t f2)
3258 {
3259 	if (f1 & NETIF_F_GEN_CSUM)
3260 		f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3261 	if (f2 & NETIF_F_GEN_CSUM)
3262 		f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3263 	f1 &= f2;
3264 	if (f1 & NETIF_F_GEN_CSUM)
3265 		f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3266 
3267 	return f1;
3268 }
3269 
3270 static inline netdev_features_t netdev_get_wanted_features(
3271 	struct net_device *dev)
3272 {
3273 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3274 }
3275 netdev_features_t netdev_increment_features(netdev_features_t all,
3276 	netdev_features_t one, netdev_features_t mask);
3277 
3278 /* Allow TSO being used on stacked device :
3279  * Performing the GSO segmentation before last device
3280  * is a performance improvement.
3281  */
3282 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3283 							netdev_features_t mask)
3284 {
3285 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3286 }
3287 
3288 int __netdev_update_features(struct net_device *dev);
3289 void netdev_update_features(struct net_device *dev);
3290 void netdev_change_features(struct net_device *dev);
3291 
3292 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3293 					struct net_device *dev);
3294 
3295 netdev_features_t netif_skb_features(struct sk_buff *skb);
3296 
3297 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3298 {
3299 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3300 
3301 	/* check flags correspondence */
3302 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3303 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3304 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3305 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3306 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3307 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3308 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3309 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3310 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3311 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3312 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3313 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3314 	BUILD_BUG_ON(SKB_GSO_MPLS    != (NETIF_F_GSO_MPLS >> NETIF_F_GSO_SHIFT));
3315 
3316 	return (features & feature) == feature;
3317 }
3318 
3319 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3320 {
3321 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3322 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3323 }
3324 
3325 static inline bool netif_needs_gso(struct sk_buff *skb,
3326 				   netdev_features_t features)
3327 {
3328 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3329 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3330 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3331 }
3332 
3333 static inline void netif_set_gso_max_size(struct net_device *dev,
3334 					  unsigned int size)
3335 {
3336 	dev->gso_max_size = size;
3337 }
3338 
3339 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3340 					int pulled_hlen, u16 mac_offset,
3341 					int mac_len)
3342 {
3343 	skb->protocol = protocol;
3344 	skb->encapsulation = 1;
3345 	skb_push(skb, pulled_hlen);
3346 	skb_reset_transport_header(skb);
3347 	skb->mac_header = mac_offset;
3348 	skb->network_header = skb->mac_header + mac_len;
3349 	skb->mac_len = mac_len;
3350 }
3351 
3352 static inline bool netif_is_macvlan(struct net_device *dev)
3353 {
3354 	return dev->priv_flags & IFF_MACVLAN;
3355 }
3356 
3357 static inline bool netif_is_bond_master(struct net_device *dev)
3358 {
3359 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3360 }
3361 
3362 static inline bool netif_is_bond_slave(struct net_device *dev)
3363 {
3364 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3365 }
3366 
3367 static inline bool netif_supports_nofcs(struct net_device *dev)
3368 {
3369 	return dev->priv_flags & IFF_SUPP_NOFCS;
3370 }
3371 
3372 extern struct pernet_operations __net_initdata loopback_net_ops;
3373 
3374 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3375 
3376 /* netdev_printk helpers, similar to dev_printk */
3377 
3378 static inline const char *netdev_name(const struct net_device *dev)
3379 {
3380 	if (dev->reg_state != NETREG_REGISTERED)
3381 		return "(unregistered net_device)";
3382 	return dev->name;
3383 }
3384 
3385 __printf(3, 4)
3386 int netdev_printk(const char *level, const struct net_device *dev,
3387 		  const char *format, ...);
3388 __printf(2, 3)
3389 int netdev_emerg(const struct net_device *dev, const char *format, ...);
3390 __printf(2, 3)
3391 int netdev_alert(const struct net_device *dev, const char *format, ...);
3392 __printf(2, 3)
3393 int netdev_crit(const struct net_device *dev, const char *format, ...);
3394 __printf(2, 3)
3395 int netdev_err(const struct net_device *dev, const char *format, ...);
3396 __printf(2, 3)
3397 int netdev_warn(const struct net_device *dev, const char *format, ...);
3398 __printf(2, 3)
3399 int netdev_notice(const struct net_device *dev, const char *format, ...);
3400 __printf(2, 3)
3401 int netdev_info(const struct net_device *dev, const char *format, ...);
3402 
3403 #define MODULE_ALIAS_NETDEV(device) \
3404 	MODULE_ALIAS("netdev-" device)
3405 
3406 #if defined(CONFIG_DYNAMIC_DEBUG)
3407 #define netdev_dbg(__dev, format, args...)			\
3408 do {								\
3409 	dynamic_netdev_dbg(__dev, format, ##args);		\
3410 } while (0)
3411 #elif defined(DEBUG)
3412 #define netdev_dbg(__dev, format, args...)			\
3413 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3414 #else
3415 #define netdev_dbg(__dev, format, args...)			\
3416 ({								\
3417 	if (0)							\
3418 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3419 	0;							\
3420 })
3421 #endif
3422 
3423 #if defined(VERBOSE_DEBUG)
3424 #define netdev_vdbg	netdev_dbg
3425 #else
3426 
3427 #define netdev_vdbg(dev, format, args...)			\
3428 ({								\
3429 	if (0)							\
3430 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3431 	0;							\
3432 })
3433 #endif
3434 
3435 /*
3436  * netdev_WARN() acts like dev_printk(), but with the key difference
3437  * of using a WARN/WARN_ON to get the message out, including the
3438  * file/line information and a backtrace.
3439  */
3440 #define netdev_WARN(dev, format, args...)			\
3441 	WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args)
3442 
3443 /* netif printk helpers, similar to netdev_printk */
3444 
3445 #define netif_printk(priv, type, level, dev, fmt, args...)	\
3446 do {					  			\
3447 	if (netif_msg_##type(priv))				\
3448 		netdev_printk(level, (dev), fmt, ##args);	\
3449 } while (0)
3450 
3451 #define netif_level(level, priv, type, dev, fmt, args...)	\
3452 do {								\
3453 	if (netif_msg_##type(priv))				\
3454 		netdev_##level(dev, fmt, ##args);		\
3455 } while (0)
3456 
3457 #define netif_emerg(priv, type, dev, fmt, args...)		\
3458 	netif_level(emerg, priv, type, dev, fmt, ##args)
3459 #define netif_alert(priv, type, dev, fmt, args...)		\
3460 	netif_level(alert, priv, type, dev, fmt, ##args)
3461 #define netif_crit(priv, type, dev, fmt, args...)		\
3462 	netif_level(crit, priv, type, dev, fmt, ##args)
3463 #define netif_err(priv, type, dev, fmt, args...)		\
3464 	netif_level(err, priv, type, dev, fmt, ##args)
3465 #define netif_warn(priv, type, dev, fmt, args...)		\
3466 	netif_level(warn, priv, type, dev, fmt, ##args)
3467 #define netif_notice(priv, type, dev, fmt, args...)		\
3468 	netif_level(notice, priv, type, dev, fmt, ##args)
3469 #define netif_info(priv, type, dev, fmt, args...)		\
3470 	netif_level(info, priv, type, dev, fmt, ##args)
3471 
3472 #if defined(CONFIG_DYNAMIC_DEBUG)
3473 #define netif_dbg(priv, type, netdev, format, args...)		\
3474 do {								\
3475 	if (netif_msg_##type(priv))				\
3476 		dynamic_netdev_dbg(netdev, format, ##args);	\
3477 } while (0)
3478 #elif defined(DEBUG)
3479 #define netif_dbg(priv, type, dev, format, args...)		\
3480 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3481 #else
3482 #define netif_dbg(priv, type, dev, format, args...)			\
3483 ({									\
3484 	if (0)								\
3485 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3486 	0;								\
3487 })
3488 #endif
3489 
3490 #if defined(VERBOSE_DEBUG)
3491 #define netif_vdbg	netif_dbg
3492 #else
3493 #define netif_vdbg(priv, type, dev, format, args...)		\
3494 ({								\
3495 	if (0)							\
3496 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3497 	0;							\
3498 })
3499 #endif
3500 
3501 /*
3502  *	The list of packet types we will receive (as opposed to discard)
3503  *	and the routines to invoke.
3504  *
3505  *	Why 16. Because with 16 the only overlap we get on a hash of the
3506  *	low nibble of the protocol value is RARP/SNAP/X.25.
3507  *
3508  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3509  *             sure which should go first, but I bet it won't make much
3510  *             difference if we are running VLANs.  The good news is that
3511  *             this protocol won't be in the list unless compiled in, so
3512  *             the average user (w/out VLANs) will not be adversely affected.
3513  *             --BLG
3514  *
3515  *		0800	IP
3516  *		8100    802.1Q VLAN
3517  *		0001	802.3
3518  *		0002	AX.25
3519  *		0004	802.2
3520  *		8035	RARP
3521  *		0005	SNAP
3522  *		0805	X.25
3523  *		0806	ARP
3524  *		8137	IPX
3525  *		0009	Localtalk
3526  *		86DD	IPv6
3527  */
3528 #define PTYPE_HASH_SIZE	(16)
3529 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
3530 
3531 #endif	/* _LINUX_NETDEVICE_H */
3532