1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/workqueue.h> 39 #include <linux/dynamic_queue_limits.h> 40 41 #include <linux/ethtool.h> 42 #include <net/net_namespace.h> 43 #ifdef CONFIG_DCB 44 #include <net/dcbnl.h> 45 #endif 46 #include <net/netprio_cgroup.h> 47 #include <net/xdp.h> 48 49 #include <linux/netdev_features.h> 50 #include <linux/neighbour.h> 51 #include <uapi/linux/netdevice.h> 52 #include <uapi/linux/if_bonding.h> 53 #include <uapi/linux/pkt_cls.h> 54 #include <linux/hashtable.h> 55 56 struct netpoll_info; 57 struct device; 58 struct phy_device; 59 struct dsa_port; 60 61 struct sfp_bus; 62 /* 802.11 specific */ 63 struct wireless_dev; 64 /* 802.15.4 specific */ 65 struct wpan_dev; 66 struct mpls_dev; 67 /* UDP Tunnel offloads */ 68 struct udp_tunnel_info; 69 struct bpf_prog; 70 struct xdp_buff; 71 72 void netdev_set_default_ethtool_ops(struct net_device *dev, 73 const struct ethtool_ops *ops); 74 75 /* Backlog congestion levels */ 76 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 77 #define NET_RX_DROP 1 /* packet dropped */ 78 79 /* 80 * Transmit return codes: transmit return codes originate from three different 81 * namespaces: 82 * 83 * - qdisc return codes 84 * - driver transmit return codes 85 * - errno values 86 * 87 * Drivers are allowed to return any one of those in their hard_start_xmit() 88 * function. Real network devices commonly used with qdiscs should only return 89 * the driver transmit return codes though - when qdiscs are used, the actual 90 * transmission happens asynchronously, so the value is not propagated to 91 * higher layers. Virtual network devices transmit synchronously; in this case 92 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 93 * others are propagated to higher layers. 94 */ 95 96 /* qdisc ->enqueue() return codes. */ 97 #define NET_XMIT_SUCCESS 0x00 98 #define NET_XMIT_DROP 0x01 /* skb dropped */ 99 #define NET_XMIT_CN 0x02 /* congestion notification */ 100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 101 102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 103 * indicates that the device will soon be dropping packets, or already drops 104 * some packets of the same priority; prompting us to send less aggressively. */ 105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 107 108 /* Driver transmit return codes */ 109 #define NETDEV_TX_MASK 0xf0 110 111 enum netdev_tx { 112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 113 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 115 }; 116 typedef enum netdev_tx netdev_tx_t; 117 118 /* 119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 121 */ 122 static inline bool dev_xmit_complete(int rc) 123 { 124 /* 125 * Positive cases with an skb consumed by a driver: 126 * - successful transmission (rc == NETDEV_TX_OK) 127 * - error while transmitting (rc < 0) 128 * - error while queueing to a different device (rc & NET_XMIT_MASK) 129 */ 130 if (likely(rc < NET_XMIT_MASK)) 131 return true; 132 133 return false; 134 } 135 136 /* 137 * Compute the worst-case header length according to the protocols 138 * used. 139 */ 140 141 #if defined(CONFIG_HYPERV_NET) 142 # define LL_MAX_HEADER 128 143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 144 # if defined(CONFIG_MAC80211_MESH) 145 # define LL_MAX_HEADER 128 146 # else 147 # define LL_MAX_HEADER 96 148 # endif 149 #else 150 # define LL_MAX_HEADER 32 151 #endif 152 153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 154 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 155 #define MAX_HEADER LL_MAX_HEADER 156 #else 157 #define MAX_HEADER (LL_MAX_HEADER + 48) 158 #endif 159 160 /* 161 * Old network device statistics. Fields are native words 162 * (unsigned long) so they can be read and written atomically. 163 */ 164 165 struct net_device_stats { 166 unsigned long rx_packets; 167 unsigned long tx_packets; 168 unsigned long rx_bytes; 169 unsigned long tx_bytes; 170 unsigned long rx_errors; 171 unsigned long tx_errors; 172 unsigned long rx_dropped; 173 unsigned long tx_dropped; 174 unsigned long multicast; 175 unsigned long collisions; 176 unsigned long rx_length_errors; 177 unsigned long rx_over_errors; 178 unsigned long rx_crc_errors; 179 unsigned long rx_frame_errors; 180 unsigned long rx_fifo_errors; 181 unsigned long rx_missed_errors; 182 unsigned long tx_aborted_errors; 183 unsigned long tx_carrier_errors; 184 unsigned long tx_fifo_errors; 185 unsigned long tx_heartbeat_errors; 186 unsigned long tx_window_errors; 187 unsigned long rx_compressed; 188 unsigned long tx_compressed; 189 }; 190 191 192 #include <linux/cache.h> 193 #include <linux/skbuff.h> 194 195 #ifdef CONFIG_RPS 196 #include <linux/static_key.h> 197 extern struct static_key rps_needed; 198 extern struct static_key rfs_needed; 199 #endif 200 201 struct neighbour; 202 struct neigh_parms; 203 struct sk_buff; 204 205 struct netdev_hw_addr { 206 struct list_head list; 207 unsigned char addr[MAX_ADDR_LEN]; 208 unsigned char type; 209 #define NETDEV_HW_ADDR_T_LAN 1 210 #define NETDEV_HW_ADDR_T_SAN 2 211 #define NETDEV_HW_ADDR_T_SLAVE 3 212 #define NETDEV_HW_ADDR_T_UNICAST 4 213 #define NETDEV_HW_ADDR_T_MULTICAST 5 214 bool global_use; 215 int sync_cnt; 216 int refcount; 217 int synced; 218 struct rcu_head rcu_head; 219 }; 220 221 struct netdev_hw_addr_list { 222 struct list_head list; 223 int count; 224 }; 225 226 #define netdev_hw_addr_list_count(l) ((l)->count) 227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 228 #define netdev_hw_addr_list_for_each(ha, l) \ 229 list_for_each_entry(ha, &(l)->list, list) 230 231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 233 #define netdev_for_each_uc_addr(ha, dev) \ 234 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 235 236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 238 #define netdev_for_each_mc_addr(ha, dev) \ 239 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 240 241 struct hh_cache { 242 unsigned int hh_len; 243 seqlock_t hh_lock; 244 245 /* cached hardware header; allow for machine alignment needs. */ 246 #define HH_DATA_MOD 16 247 #define HH_DATA_OFF(__len) \ 248 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 249 #define HH_DATA_ALIGN(__len) \ 250 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 251 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 252 }; 253 254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 255 * Alternative is: 256 * dev->hard_header_len ? (dev->hard_header_len + 257 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 258 * 259 * We could use other alignment values, but we must maintain the 260 * relationship HH alignment <= LL alignment. 261 */ 262 #define LL_RESERVED_SPACE(dev) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 265 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 266 267 struct header_ops { 268 int (*create) (struct sk_buff *skb, struct net_device *dev, 269 unsigned short type, const void *daddr, 270 const void *saddr, unsigned int len); 271 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 272 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 273 void (*cache_update)(struct hh_cache *hh, 274 const struct net_device *dev, 275 const unsigned char *haddr); 276 bool (*validate)(const char *ll_header, unsigned int len); 277 __be16 (*parse_protocol)(const struct sk_buff *skb); 278 }; 279 280 /* These flag bits are private to the generic network queueing 281 * layer; they may not be explicitly referenced by any other 282 * code. 283 */ 284 285 enum netdev_state_t { 286 __LINK_STATE_START, 287 __LINK_STATE_PRESENT, 288 __LINK_STATE_NOCARRIER, 289 __LINK_STATE_LINKWATCH_PENDING, 290 __LINK_STATE_DORMANT, 291 }; 292 293 294 /* 295 * This structure holds boot-time configured netdevice settings. They 296 * are then used in the device probing. 297 */ 298 struct netdev_boot_setup { 299 char name[IFNAMSIZ]; 300 struct ifmap map; 301 }; 302 #define NETDEV_BOOT_SETUP_MAX 8 303 304 int __init netdev_boot_setup(char *str); 305 306 struct gro_list { 307 struct list_head list; 308 int count; 309 }; 310 311 /* 312 * size of gro hash buckets, must less than bit number of 313 * napi_struct::gro_bitmask 314 */ 315 #define GRO_HASH_BUCKETS 8 316 317 /* 318 * Structure for NAPI scheduling similar to tasklet but with weighting 319 */ 320 struct napi_struct { 321 /* The poll_list must only be managed by the entity which 322 * changes the state of the NAPI_STATE_SCHED bit. This means 323 * whoever atomically sets that bit can add this napi_struct 324 * to the per-CPU poll_list, and whoever clears that bit 325 * can remove from the list right before clearing the bit. 326 */ 327 struct list_head poll_list; 328 329 unsigned long state; 330 int weight; 331 unsigned long gro_bitmask; 332 int (*poll)(struct napi_struct *, int); 333 #ifdef CONFIG_NETPOLL 334 int poll_owner; 335 #endif 336 struct net_device *dev; 337 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 338 struct sk_buff *skb; 339 struct hrtimer timer; 340 struct list_head dev_list; 341 struct hlist_node napi_hash_node; 342 unsigned int napi_id; 343 }; 344 345 enum { 346 NAPI_STATE_SCHED, /* Poll is scheduled */ 347 NAPI_STATE_MISSED, /* reschedule a napi */ 348 NAPI_STATE_DISABLE, /* Disable pending */ 349 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 350 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 351 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 352 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 353 }; 354 355 enum { 356 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 357 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 358 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 359 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 360 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 361 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 362 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 363 }; 364 365 enum gro_result { 366 GRO_MERGED, 367 GRO_MERGED_FREE, 368 GRO_HELD, 369 GRO_NORMAL, 370 GRO_DROP, 371 GRO_CONSUMED, 372 }; 373 typedef enum gro_result gro_result_t; 374 375 /* 376 * enum rx_handler_result - Possible return values for rx_handlers. 377 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 378 * further. 379 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 380 * case skb->dev was changed by rx_handler. 381 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 382 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 383 * 384 * rx_handlers are functions called from inside __netif_receive_skb(), to do 385 * special processing of the skb, prior to delivery to protocol handlers. 386 * 387 * Currently, a net_device can only have a single rx_handler registered. Trying 388 * to register a second rx_handler will return -EBUSY. 389 * 390 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 391 * To unregister a rx_handler on a net_device, use 392 * netdev_rx_handler_unregister(). 393 * 394 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 395 * do with the skb. 396 * 397 * If the rx_handler consumed the skb in some way, it should return 398 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 399 * the skb to be delivered in some other way. 400 * 401 * If the rx_handler changed skb->dev, to divert the skb to another 402 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 403 * new device will be called if it exists. 404 * 405 * If the rx_handler decides the skb should be ignored, it should return 406 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 407 * are registered on exact device (ptype->dev == skb->dev). 408 * 409 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 410 * delivered, it should return RX_HANDLER_PASS. 411 * 412 * A device without a registered rx_handler will behave as if rx_handler 413 * returned RX_HANDLER_PASS. 414 */ 415 416 enum rx_handler_result { 417 RX_HANDLER_CONSUMED, 418 RX_HANDLER_ANOTHER, 419 RX_HANDLER_EXACT, 420 RX_HANDLER_PASS, 421 }; 422 typedef enum rx_handler_result rx_handler_result_t; 423 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 424 425 void __napi_schedule(struct napi_struct *n); 426 void __napi_schedule_irqoff(struct napi_struct *n); 427 428 static inline bool napi_disable_pending(struct napi_struct *n) 429 { 430 return test_bit(NAPI_STATE_DISABLE, &n->state); 431 } 432 433 bool napi_schedule_prep(struct napi_struct *n); 434 435 /** 436 * napi_schedule - schedule NAPI poll 437 * @n: NAPI context 438 * 439 * Schedule NAPI poll routine to be called if it is not already 440 * running. 441 */ 442 static inline void napi_schedule(struct napi_struct *n) 443 { 444 if (napi_schedule_prep(n)) 445 __napi_schedule(n); 446 } 447 448 /** 449 * napi_schedule_irqoff - schedule NAPI poll 450 * @n: NAPI context 451 * 452 * Variant of napi_schedule(), assuming hard irqs are masked. 453 */ 454 static inline void napi_schedule_irqoff(struct napi_struct *n) 455 { 456 if (napi_schedule_prep(n)) 457 __napi_schedule_irqoff(n); 458 } 459 460 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 461 static inline bool napi_reschedule(struct napi_struct *napi) 462 { 463 if (napi_schedule_prep(napi)) { 464 __napi_schedule(napi); 465 return true; 466 } 467 return false; 468 } 469 470 bool napi_complete_done(struct napi_struct *n, int work_done); 471 /** 472 * napi_complete - NAPI processing complete 473 * @n: NAPI context 474 * 475 * Mark NAPI processing as complete. 476 * Consider using napi_complete_done() instead. 477 * Return false if device should avoid rearming interrupts. 478 */ 479 static inline bool napi_complete(struct napi_struct *n) 480 { 481 return napi_complete_done(n, 0); 482 } 483 484 /** 485 * napi_hash_del - remove a NAPI from global table 486 * @napi: NAPI context 487 * 488 * Warning: caller must observe RCU grace period 489 * before freeing memory containing @napi, if 490 * this function returns true. 491 * Note: core networking stack automatically calls it 492 * from netif_napi_del(). 493 * Drivers might want to call this helper to combine all 494 * the needed RCU grace periods into a single one. 495 */ 496 bool napi_hash_del(struct napi_struct *napi); 497 498 /** 499 * napi_disable - prevent NAPI from scheduling 500 * @n: NAPI context 501 * 502 * Stop NAPI from being scheduled on this context. 503 * Waits till any outstanding processing completes. 504 */ 505 void napi_disable(struct napi_struct *n); 506 507 /** 508 * napi_enable - enable NAPI scheduling 509 * @n: NAPI context 510 * 511 * Resume NAPI from being scheduled on this context. 512 * Must be paired with napi_disable. 513 */ 514 static inline void napi_enable(struct napi_struct *n) 515 { 516 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 517 smp_mb__before_atomic(); 518 clear_bit(NAPI_STATE_SCHED, &n->state); 519 clear_bit(NAPI_STATE_NPSVC, &n->state); 520 } 521 522 /** 523 * napi_synchronize - wait until NAPI is not running 524 * @n: NAPI context 525 * 526 * Wait until NAPI is done being scheduled on this context. 527 * Waits till any outstanding processing completes but 528 * does not disable future activations. 529 */ 530 static inline void napi_synchronize(const struct napi_struct *n) 531 { 532 if (IS_ENABLED(CONFIG_SMP)) 533 while (test_bit(NAPI_STATE_SCHED, &n->state)) 534 msleep(1); 535 else 536 barrier(); 537 } 538 539 /** 540 * napi_if_scheduled_mark_missed - if napi is running, set the 541 * NAPIF_STATE_MISSED 542 * @n: NAPI context 543 * 544 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 545 * NAPI is scheduled. 546 **/ 547 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 548 { 549 unsigned long val, new; 550 551 do { 552 val = READ_ONCE(n->state); 553 if (val & NAPIF_STATE_DISABLE) 554 return true; 555 556 if (!(val & NAPIF_STATE_SCHED)) 557 return false; 558 559 new = val | NAPIF_STATE_MISSED; 560 } while (cmpxchg(&n->state, val, new) != val); 561 562 return true; 563 } 564 565 enum netdev_queue_state_t { 566 __QUEUE_STATE_DRV_XOFF, 567 __QUEUE_STATE_STACK_XOFF, 568 __QUEUE_STATE_FROZEN, 569 }; 570 571 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 572 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 573 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 574 575 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 576 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 577 QUEUE_STATE_FROZEN) 578 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 579 QUEUE_STATE_FROZEN) 580 581 /* 582 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 583 * netif_tx_* functions below are used to manipulate this flag. The 584 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 585 * queue independently. The netif_xmit_*stopped functions below are called 586 * to check if the queue has been stopped by the driver or stack (either 587 * of the XOFF bits are set in the state). Drivers should not need to call 588 * netif_xmit*stopped functions, they should only be using netif_tx_*. 589 */ 590 591 struct netdev_queue { 592 /* 593 * read-mostly part 594 */ 595 struct net_device *dev; 596 struct Qdisc __rcu *qdisc; 597 struct Qdisc *qdisc_sleeping; 598 #ifdef CONFIG_SYSFS 599 struct kobject kobj; 600 #endif 601 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 602 int numa_node; 603 #endif 604 unsigned long tx_maxrate; 605 /* 606 * Number of TX timeouts for this queue 607 * (/sys/class/net/DEV/Q/trans_timeout) 608 */ 609 unsigned long trans_timeout; 610 611 /* Subordinate device that the queue has been assigned to */ 612 struct net_device *sb_dev; 613 #ifdef CONFIG_XDP_SOCKETS 614 struct xdp_umem *umem; 615 #endif 616 /* 617 * write-mostly part 618 */ 619 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 620 int xmit_lock_owner; 621 /* 622 * Time (in jiffies) of last Tx 623 */ 624 unsigned long trans_start; 625 626 unsigned long state; 627 628 #ifdef CONFIG_BQL 629 struct dql dql; 630 #endif 631 } ____cacheline_aligned_in_smp; 632 633 extern int sysctl_fb_tunnels_only_for_init_net; 634 extern int sysctl_devconf_inherit_init_net; 635 636 static inline bool net_has_fallback_tunnels(const struct net *net) 637 { 638 return net == &init_net || 639 !IS_ENABLED(CONFIG_SYSCTL) || 640 !sysctl_fb_tunnels_only_for_init_net; 641 } 642 643 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 644 { 645 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 646 return q->numa_node; 647 #else 648 return NUMA_NO_NODE; 649 #endif 650 } 651 652 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 653 { 654 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 655 q->numa_node = node; 656 #endif 657 } 658 659 #ifdef CONFIG_RPS 660 /* 661 * This structure holds an RPS map which can be of variable length. The 662 * map is an array of CPUs. 663 */ 664 struct rps_map { 665 unsigned int len; 666 struct rcu_head rcu; 667 u16 cpus[0]; 668 }; 669 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 670 671 /* 672 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 673 * tail pointer for that CPU's input queue at the time of last enqueue, and 674 * a hardware filter index. 675 */ 676 struct rps_dev_flow { 677 u16 cpu; 678 u16 filter; 679 unsigned int last_qtail; 680 }; 681 #define RPS_NO_FILTER 0xffff 682 683 /* 684 * The rps_dev_flow_table structure contains a table of flow mappings. 685 */ 686 struct rps_dev_flow_table { 687 unsigned int mask; 688 struct rcu_head rcu; 689 struct rps_dev_flow flows[0]; 690 }; 691 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 692 ((_num) * sizeof(struct rps_dev_flow))) 693 694 /* 695 * The rps_sock_flow_table contains mappings of flows to the last CPU 696 * on which they were processed by the application (set in recvmsg). 697 * Each entry is a 32bit value. Upper part is the high-order bits 698 * of flow hash, lower part is CPU number. 699 * rps_cpu_mask is used to partition the space, depending on number of 700 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 701 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 702 * meaning we use 32-6=26 bits for the hash. 703 */ 704 struct rps_sock_flow_table { 705 u32 mask; 706 707 u32 ents[0] ____cacheline_aligned_in_smp; 708 }; 709 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 710 711 #define RPS_NO_CPU 0xffff 712 713 extern u32 rps_cpu_mask; 714 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 715 716 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 717 u32 hash) 718 { 719 if (table && hash) { 720 unsigned int index = hash & table->mask; 721 u32 val = hash & ~rps_cpu_mask; 722 723 /* We only give a hint, preemption can change CPU under us */ 724 val |= raw_smp_processor_id(); 725 726 if (table->ents[index] != val) 727 table->ents[index] = val; 728 } 729 } 730 731 #ifdef CONFIG_RFS_ACCEL 732 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 733 u16 filter_id); 734 #endif 735 #endif /* CONFIG_RPS */ 736 737 /* This structure contains an instance of an RX queue. */ 738 struct netdev_rx_queue { 739 #ifdef CONFIG_RPS 740 struct rps_map __rcu *rps_map; 741 struct rps_dev_flow_table __rcu *rps_flow_table; 742 #endif 743 struct kobject kobj; 744 struct net_device *dev; 745 struct xdp_rxq_info xdp_rxq; 746 #ifdef CONFIG_XDP_SOCKETS 747 struct xdp_umem *umem; 748 #endif 749 } ____cacheline_aligned_in_smp; 750 751 /* 752 * RX queue sysfs structures and functions. 753 */ 754 struct rx_queue_attribute { 755 struct attribute attr; 756 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 757 ssize_t (*store)(struct netdev_rx_queue *queue, 758 const char *buf, size_t len); 759 }; 760 761 #ifdef CONFIG_XPS 762 /* 763 * This structure holds an XPS map which can be of variable length. The 764 * map is an array of queues. 765 */ 766 struct xps_map { 767 unsigned int len; 768 unsigned int alloc_len; 769 struct rcu_head rcu; 770 u16 queues[0]; 771 }; 772 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 773 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 774 - sizeof(struct xps_map)) / sizeof(u16)) 775 776 /* 777 * This structure holds all XPS maps for device. Maps are indexed by CPU. 778 */ 779 struct xps_dev_maps { 780 struct rcu_head rcu; 781 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */ 782 }; 783 784 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 785 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 786 787 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 788 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 789 790 #endif /* CONFIG_XPS */ 791 792 #define TC_MAX_QUEUE 16 793 #define TC_BITMASK 15 794 /* HW offloaded queuing disciplines txq count and offset maps */ 795 struct netdev_tc_txq { 796 u16 count; 797 u16 offset; 798 }; 799 800 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 801 /* 802 * This structure is to hold information about the device 803 * configured to run FCoE protocol stack. 804 */ 805 struct netdev_fcoe_hbainfo { 806 char manufacturer[64]; 807 char serial_number[64]; 808 char hardware_version[64]; 809 char driver_version[64]; 810 char optionrom_version[64]; 811 char firmware_version[64]; 812 char model[256]; 813 char model_description[256]; 814 }; 815 #endif 816 817 #define MAX_PHYS_ITEM_ID_LEN 32 818 819 /* This structure holds a unique identifier to identify some 820 * physical item (port for example) used by a netdevice. 821 */ 822 struct netdev_phys_item_id { 823 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 824 unsigned char id_len; 825 }; 826 827 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 828 struct netdev_phys_item_id *b) 829 { 830 return a->id_len == b->id_len && 831 memcmp(a->id, b->id, a->id_len) == 0; 832 } 833 834 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 835 struct sk_buff *skb, 836 struct net_device *sb_dev); 837 838 enum tc_setup_type { 839 TC_SETUP_QDISC_MQPRIO, 840 TC_SETUP_CLSU32, 841 TC_SETUP_CLSFLOWER, 842 TC_SETUP_CLSMATCHALL, 843 TC_SETUP_CLSBPF, 844 TC_SETUP_BLOCK, 845 TC_SETUP_QDISC_CBS, 846 TC_SETUP_QDISC_RED, 847 TC_SETUP_QDISC_PRIO, 848 TC_SETUP_QDISC_MQ, 849 TC_SETUP_QDISC_ETF, 850 TC_SETUP_ROOT_QDISC, 851 TC_SETUP_QDISC_GRED, 852 }; 853 854 /* These structures hold the attributes of bpf state that are being passed 855 * to the netdevice through the bpf op. 856 */ 857 enum bpf_netdev_command { 858 /* Set or clear a bpf program used in the earliest stages of packet 859 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 860 * is responsible for calling bpf_prog_put on any old progs that are 861 * stored. In case of error, the callee need not release the new prog 862 * reference, but on success it takes ownership and must bpf_prog_put 863 * when it is no longer used. 864 */ 865 XDP_SETUP_PROG, 866 XDP_SETUP_PROG_HW, 867 XDP_QUERY_PROG, 868 XDP_QUERY_PROG_HW, 869 /* BPF program for offload callbacks, invoked at program load time. */ 870 BPF_OFFLOAD_MAP_ALLOC, 871 BPF_OFFLOAD_MAP_FREE, 872 XDP_SETUP_XSK_UMEM, 873 }; 874 875 struct bpf_prog_offload_ops; 876 struct netlink_ext_ack; 877 struct xdp_umem; 878 879 struct netdev_bpf { 880 enum bpf_netdev_command command; 881 union { 882 /* XDP_SETUP_PROG */ 883 struct { 884 u32 flags; 885 struct bpf_prog *prog; 886 struct netlink_ext_ack *extack; 887 }; 888 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */ 889 struct { 890 u32 prog_id; 891 /* flags with which program was installed */ 892 u32 prog_flags; 893 }; 894 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 895 struct { 896 struct bpf_offloaded_map *offmap; 897 }; 898 /* XDP_SETUP_XSK_UMEM */ 899 struct { 900 struct xdp_umem *umem; 901 u16 queue_id; 902 } xsk; 903 }; 904 }; 905 906 #ifdef CONFIG_XFRM_OFFLOAD 907 struct xfrmdev_ops { 908 int (*xdo_dev_state_add) (struct xfrm_state *x); 909 void (*xdo_dev_state_delete) (struct xfrm_state *x); 910 void (*xdo_dev_state_free) (struct xfrm_state *x); 911 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 912 struct xfrm_state *x); 913 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 914 }; 915 #endif 916 917 #if IS_ENABLED(CONFIG_TLS_DEVICE) 918 enum tls_offload_ctx_dir { 919 TLS_OFFLOAD_CTX_DIR_RX, 920 TLS_OFFLOAD_CTX_DIR_TX, 921 }; 922 923 struct tls_crypto_info; 924 struct tls_context; 925 926 struct tlsdev_ops { 927 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 928 enum tls_offload_ctx_dir direction, 929 struct tls_crypto_info *crypto_info, 930 u32 start_offload_tcp_sn); 931 void (*tls_dev_del)(struct net_device *netdev, 932 struct tls_context *ctx, 933 enum tls_offload_ctx_dir direction); 934 void (*tls_dev_resync_rx)(struct net_device *netdev, 935 struct sock *sk, u32 seq, u64 rcd_sn); 936 }; 937 #endif 938 939 struct dev_ifalias { 940 struct rcu_head rcuhead; 941 char ifalias[]; 942 }; 943 944 struct devlink; 945 946 /* 947 * This structure defines the management hooks for network devices. 948 * The following hooks can be defined; unless noted otherwise, they are 949 * optional and can be filled with a null pointer. 950 * 951 * int (*ndo_init)(struct net_device *dev); 952 * This function is called once when a network device is registered. 953 * The network device can use this for any late stage initialization 954 * or semantic validation. It can fail with an error code which will 955 * be propagated back to register_netdev. 956 * 957 * void (*ndo_uninit)(struct net_device *dev); 958 * This function is called when device is unregistered or when registration 959 * fails. It is not called if init fails. 960 * 961 * int (*ndo_open)(struct net_device *dev); 962 * This function is called when a network device transitions to the up 963 * state. 964 * 965 * int (*ndo_stop)(struct net_device *dev); 966 * This function is called when a network device transitions to the down 967 * state. 968 * 969 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 970 * struct net_device *dev); 971 * Called when a packet needs to be transmitted. 972 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 973 * the queue before that can happen; it's for obsolete devices and weird 974 * corner cases, but the stack really does a non-trivial amount 975 * of useless work if you return NETDEV_TX_BUSY. 976 * Required; cannot be NULL. 977 * 978 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 979 * struct net_device *dev 980 * netdev_features_t features); 981 * Called by core transmit path to determine if device is capable of 982 * performing offload operations on a given packet. This is to give 983 * the device an opportunity to implement any restrictions that cannot 984 * be otherwise expressed by feature flags. The check is called with 985 * the set of features that the stack has calculated and it returns 986 * those the driver believes to be appropriate. 987 * 988 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 989 * struct net_device *sb_dev, 990 * select_queue_fallback_t fallback); 991 * Called to decide which queue to use when device supports multiple 992 * transmit queues. 993 * 994 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 995 * This function is called to allow device receiver to make 996 * changes to configuration when multicast or promiscuous is enabled. 997 * 998 * void (*ndo_set_rx_mode)(struct net_device *dev); 999 * This function is called device changes address list filtering. 1000 * If driver handles unicast address filtering, it should set 1001 * IFF_UNICAST_FLT in its priv_flags. 1002 * 1003 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1004 * This function is called when the Media Access Control address 1005 * needs to be changed. If this interface is not defined, the 1006 * MAC address can not be changed. 1007 * 1008 * int (*ndo_validate_addr)(struct net_device *dev); 1009 * Test if Media Access Control address is valid for the device. 1010 * 1011 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1012 * Called when a user requests an ioctl which can't be handled by 1013 * the generic interface code. If not defined ioctls return 1014 * not supported error code. 1015 * 1016 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1017 * Used to set network devices bus interface parameters. This interface 1018 * is retained for legacy reasons; new devices should use the bus 1019 * interface (PCI) for low level management. 1020 * 1021 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1022 * Called when a user wants to change the Maximum Transfer Unit 1023 * of a device. 1024 * 1025 * void (*ndo_tx_timeout)(struct net_device *dev); 1026 * Callback used when the transmitter has not made any progress 1027 * for dev->watchdog ticks. 1028 * 1029 * void (*ndo_get_stats64)(struct net_device *dev, 1030 * struct rtnl_link_stats64 *storage); 1031 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1032 * Called when a user wants to get the network device usage 1033 * statistics. Drivers must do one of the following: 1034 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1035 * rtnl_link_stats64 structure passed by the caller. 1036 * 2. Define @ndo_get_stats to update a net_device_stats structure 1037 * (which should normally be dev->stats) and return a pointer to 1038 * it. The structure may be changed asynchronously only if each 1039 * field is written atomically. 1040 * 3. Update dev->stats asynchronously and atomically, and define 1041 * neither operation. 1042 * 1043 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1044 * Return true if this device supports offload stats of this attr_id. 1045 * 1046 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1047 * void *attr_data) 1048 * Get statistics for offload operations by attr_id. Write it into the 1049 * attr_data pointer. 1050 * 1051 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1052 * If device supports VLAN filtering this function is called when a 1053 * VLAN id is registered. 1054 * 1055 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1056 * If device supports VLAN filtering this function is called when a 1057 * VLAN id is unregistered. 1058 * 1059 * void (*ndo_poll_controller)(struct net_device *dev); 1060 * 1061 * SR-IOV management functions. 1062 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1063 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1064 * u8 qos, __be16 proto); 1065 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1066 * int max_tx_rate); 1067 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1068 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1069 * int (*ndo_get_vf_config)(struct net_device *dev, 1070 * int vf, struct ifla_vf_info *ivf); 1071 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1072 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1073 * struct nlattr *port[]); 1074 * 1075 * Enable or disable the VF ability to query its RSS Redirection Table and 1076 * Hash Key. This is needed since on some devices VF share this information 1077 * with PF and querying it may introduce a theoretical security risk. 1078 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1079 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1080 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1081 * void *type_data); 1082 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1083 * This is always called from the stack with the rtnl lock held and netif 1084 * tx queues stopped. This allows the netdevice to perform queue 1085 * management safely. 1086 * 1087 * Fiber Channel over Ethernet (FCoE) offload functions. 1088 * int (*ndo_fcoe_enable)(struct net_device *dev); 1089 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1090 * so the underlying device can perform whatever needed configuration or 1091 * initialization to support acceleration of FCoE traffic. 1092 * 1093 * int (*ndo_fcoe_disable)(struct net_device *dev); 1094 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1095 * so the underlying device can perform whatever needed clean-ups to 1096 * stop supporting acceleration of FCoE traffic. 1097 * 1098 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1099 * struct scatterlist *sgl, unsigned int sgc); 1100 * Called when the FCoE Initiator wants to initialize an I/O that 1101 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1102 * perform necessary setup and returns 1 to indicate the device is set up 1103 * successfully to perform DDP on this I/O, otherwise this returns 0. 1104 * 1105 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1106 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1107 * indicated by the FC exchange id 'xid', so the underlying device can 1108 * clean up and reuse resources for later DDP requests. 1109 * 1110 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1111 * struct scatterlist *sgl, unsigned int sgc); 1112 * Called when the FCoE Target wants to initialize an I/O that 1113 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1114 * perform necessary setup and returns 1 to indicate the device is set up 1115 * successfully to perform DDP on this I/O, otherwise this returns 0. 1116 * 1117 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1118 * struct netdev_fcoe_hbainfo *hbainfo); 1119 * Called when the FCoE Protocol stack wants information on the underlying 1120 * device. This information is utilized by the FCoE protocol stack to 1121 * register attributes with Fiber Channel management service as per the 1122 * FC-GS Fabric Device Management Information(FDMI) specification. 1123 * 1124 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1125 * Called when the underlying device wants to override default World Wide 1126 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1127 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1128 * protocol stack to use. 1129 * 1130 * RFS acceleration. 1131 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1132 * u16 rxq_index, u32 flow_id); 1133 * Set hardware filter for RFS. rxq_index is the target queue index; 1134 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1135 * Return the filter ID on success, or a negative error code. 1136 * 1137 * Slave management functions (for bridge, bonding, etc). 1138 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1139 * Called to make another netdev an underling. 1140 * 1141 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1142 * Called to release previously enslaved netdev. 1143 * 1144 * Feature/offload setting functions. 1145 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1146 * netdev_features_t features); 1147 * Adjusts the requested feature flags according to device-specific 1148 * constraints, and returns the resulting flags. Must not modify 1149 * the device state. 1150 * 1151 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1152 * Called to update device configuration to new features. Passed 1153 * feature set might be less than what was returned by ndo_fix_features()). 1154 * Must return >0 or -errno if it changed dev->features itself. 1155 * 1156 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1157 * struct net_device *dev, 1158 * const unsigned char *addr, u16 vid, u16 flags, 1159 * struct netlink_ext_ack *extack); 1160 * Adds an FDB entry to dev for addr. 1161 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1162 * struct net_device *dev, 1163 * const unsigned char *addr, u16 vid) 1164 * Deletes the FDB entry from dev coresponding to addr. 1165 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1166 * struct net_device *dev, struct net_device *filter_dev, 1167 * int *idx) 1168 * Used to add FDB entries to dump requests. Implementers should add 1169 * entries to skb and update idx with the number of entries. 1170 * 1171 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1172 * u16 flags, struct netlink_ext_ack *extack) 1173 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1174 * struct net_device *dev, u32 filter_mask, 1175 * int nlflags) 1176 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1177 * u16 flags); 1178 * 1179 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1180 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1181 * which do not represent real hardware may define this to allow their 1182 * userspace components to manage their virtual carrier state. Devices 1183 * that determine carrier state from physical hardware properties (eg 1184 * network cables) or protocol-dependent mechanisms (eg 1185 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1186 * 1187 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1188 * struct netdev_phys_item_id *ppid); 1189 * Called to get ID of physical port of this device. If driver does 1190 * not implement this, it is assumed that the hw is not able to have 1191 * multiple net devices on single physical port. 1192 * 1193 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1194 * struct netdev_phys_item_id *ppid) 1195 * Called to get the parent ID of the physical port of this device. 1196 * 1197 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1198 * struct udp_tunnel_info *ti); 1199 * Called by UDP tunnel to notify a driver about the UDP port and socket 1200 * address family that a UDP tunnel is listnening to. It is called only 1201 * when a new port starts listening. The operation is protected by the 1202 * RTNL. 1203 * 1204 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1205 * struct udp_tunnel_info *ti); 1206 * Called by UDP tunnel to notify the driver about a UDP port and socket 1207 * address family that the UDP tunnel is not listening to anymore. The 1208 * operation is protected by the RTNL. 1209 * 1210 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1211 * struct net_device *dev) 1212 * Called by upper layer devices to accelerate switching or other 1213 * station functionality into hardware. 'pdev is the lowerdev 1214 * to use for the offload and 'dev' is the net device that will 1215 * back the offload. Returns a pointer to the private structure 1216 * the upper layer will maintain. 1217 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1218 * Called by upper layer device to delete the station created 1219 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1220 * the station and priv is the structure returned by the add 1221 * operation. 1222 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1223 * int queue_index, u32 maxrate); 1224 * Called when a user wants to set a max-rate limitation of specific 1225 * TX queue. 1226 * int (*ndo_get_iflink)(const struct net_device *dev); 1227 * Called to get the iflink value of this device. 1228 * void (*ndo_change_proto_down)(struct net_device *dev, 1229 * bool proto_down); 1230 * This function is used to pass protocol port error state information 1231 * to the switch driver. The switch driver can react to the proto_down 1232 * by doing a phys down on the associated switch port. 1233 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1234 * This function is used to get egress tunnel information for given skb. 1235 * This is useful for retrieving outer tunnel header parameters while 1236 * sampling packet. 1237 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1238 * This function is used to specify the headroom that the skb must 1239 * consider when allocation skb during packet reception. Setting 1240 * appropriate rx headroom value allows avoiding skb head copy on 1241 * forward. Setting a negative value resets the rx headroom to the 1242 * default value. 1243 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1244 * This function is used to set or query state related to XDP on the 1245 * netdevice and manage BPF offload. See definition of 1246 * enum bpf_netdev_command for details. 1247 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1248 * u32 flags); 1249 * This function is used to submit @n XDP packets for transmit on a 1250 * netdevice. Returns number of frames successfully transmitted, frames 1251 * that got dropped are freed/returned via xdp_return_frame(). 1252 * Returns negative number, means general error invoking ndo, meaning 1253 * no frames were xmit'ed and core-caller will free all frames. 1254 * struct devlink *(*ndo_get_devlink)(struct net_device *dev); 1255 * Get devlink instance associated with a given netdev. 1256 * Called with a reference on the netdevice and devlink locks only, 1257 * rtnl_lock is not held. 1258 */ 1259 struct net_device_ops { 1260 int (*ndo_init)(struct net_device *dev); 1261 void (*ndo_uninit)(struct net_device *dev); 1262 int (*ndo_open)(struct net_device *dev); 1263 int (*ndo_stop)(struct net_device *dev); 1264 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1265 struct net_device *dev); 1266 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1267 struct net_device *dev, 1268 netdev_features_t features); 1269 u16 (*ndo_select_queue)(struct net_device *dev, 1270 struct sk_buff *skb, 1271 struct net_device *sb_dev, 1272 select_queue_fallback_t fallback); 1273 void (*ndo_change_rx_flags)(struct net_device *dev, 1274 int flags); 1275 void (*ndo_set_rx_mode)(struct net_device *dev); 1276 int (*ndo_set_mac_address)(struct net_device *dev, 1277 void *addr); 1278 int (*ndo_validate_addr)(struct net_device *dev); 1279 int (*ndo_do_ioctl)(struct net_device *dev, 1280 struct ifreq *ifr, int cmd); 1281 int (*ndo_set_config)(struct net_device *dev, 1282 struct ifmap *map); 1283 int (*ndo_change_mtu)(struct net_device *dev, 1284 int new_mtu); 1285 int (*ndo_neigh_setup)(struct net_device *dev, 1286 struct neigh_parms *); 1287 void (*ndo_tx_timeout) (struct net_device *dev); 1288 1289 void (*ndo_get_stats64)(struct net_device *dev, 1290 struct rtnl_link_stats64 *storage); 1291 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1292 int (*ndo_get_offload_stats)(int attr_id, 1293 const struct net_device *dev, 1294 void *attr_data); 1295 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1296 1297 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1298 __be16 proto, u16 vid); 1299 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1300 __be16 proto, u16 vid); 1301 #ifdef CONFIG_NET_POLL_CONTROLLER 1302 void (*ndo_poll_controller)(struct net_device *dev); 1303 int (*ndo_netpoll_setup)(struct net_device *dev, 1304 struct netpoll_info *info); 1305 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1306 #endif 1307 int (*ndo_set_vf_mac)(struct net_device *dev, 1308 int queue, u8 *mac); 1309 int (*ndo_set_vf_vlan)(struct net_device *dev, 1310 int queue, u16 vlan, 1311 u8 qos, __be16 proto); 1312 int (*ndo_set_vf_rate)(struct net_device *dev, 1313 int vf, int min_tx_rate, 1314 int max_tx_rate); 1315 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1316 int vf, bool setting); 1317 int (*ndo_set_vf_trust)(struct net_device *dev, 1318 int vf, bool setting); 1319 int (*ndo_get_vf_config)(struct net_device *dev, 1320 int vf, 1321 struct ifla_vf_info *ivf); 1322 int (*ndo_set_vf_link_state)(struct net_device *dev, 1323 int vf, int link_state); 1324 int (*ndo_get_vf_stats)(struct net_device *dev, 1325 int vf, 1326 struct ifla_vf_stats 1327 *vf_stats); 1328 int (*ndo_set_vf_port)(struct net_device *dev, 1329 int vf, 1330 struct nlattr *port[]); 1331 int (*ndo_get_vf_port)(struct net_device *dev, 1332 int vf, struct sk_buff *skb); 1333 int (*ndo_set_vf_guid)(struct net_device *dev, 1334 int vf, u64 guid, 1335 int guid_type); 1336 int (*ndo_set_vf_rss_query_en)( 1337 struct net_device *dev, 1338 int vf, bool setting); 1339 int (*ndo_setup_tc)(struct net_device *dev, 1340 enum tc_setup_type type, 1341 void *type_data); 1342 #if IS_ENABLED(CONFIG_FCOE) 1343 int (*ndo_fcoe_enable)(struct net_device *dev); 1344 int (*ndo_fcoe_disable)(struct net_device *dev); 1345 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1346 u16 xid, 1347 struct scatterlist *sgl, 1348 unsigned int sgc); 1349 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1350 u16 xid); 1351 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1352 u16 xid, 1353 struct scatterlist *sgl, 1354 unsigned int sgc); 1355 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1356 struct netdev_fcoe_hbainfo *hbainfo); 1357 #endif 1358 1359 #if IS_ENABLED(CONFIG_LIBFCOE) 1360 #define NETDEV_FCOE_WWNN 0 1361 #define NETDEV_FCOE_WWPN 1 1362 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1363 u64 *wwn, int type); 1364 #endif 1365 1366 #ifdef CONFIG_RFS_ACCEL 1367 int (*ndo_rx_flow_steer)(struct net_device *dev, 1368 const struct sk_buff *skb, 1369 u16 rxq_index, 1370 u32 flow_id); 1371 #endif 1372 int (*ndo_add_slave)(struct net_device *dev, 1373 struct net_device *slave_dev, 1374 struct netlink_ext_ack *extack); 1375 int (*ndo_del_slave)(struct net_device *dev, 1376 struct net_device *slave_dev); 1377 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1378 netdev_features_t features); 1379 int (*ndo_set_features)(struct net_device *dev, 1380 netdev_features_t features); 1381 int (*ndo_neigh_construct)(struct net_device *dev, 1382 struct neighbour *n); 1383 void (*ndo_neigh_destroy)(struct net_device *dev, 1384 struct neighbour *n); 1385 1386 int (*ndo_fdb_add)(struct ndmsg *ndm, 1387 struct nlattr *tb[], 1388 struct net_device *dev, 1389 const unsigned char *addr, 1390 u16 vid, 1391 u16 flags, 1392 struct netlink_ext_ack *extack); 1393 int (*ndo_fdb_del)(struct ndmsg *ndm, 1394 struct nlattr *tb[], 1395 struct net_device *dev, 1396 const unsigned char *addr, 1397 u16 vid); 1398 int (*ndo_fdb_dump)(struct sk_buff *skb, 1399 struct netlink_callback *cb, 1400 struct net_device *dev, 1401 struct net_device *filter_dev, 1402 int *idx); 1403 int (*ndo_fdb_get)(struct sk_buff *skb, 1404 struct nlattr *tb[], 1405 struct net_device *dev, 1406 const unsigned char *addr, 1407 u16 vid, u32 portid, u32 seq, 1408 struct netlink_ext_ack *extack); 1409 int (*ndo_bridge_setlink)(struct net_device *dev, 1410 struct nlmsghdr *nlh, 1411 u16 flags, 1412 struct netlink_ext_ack *extack); 1413 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1414 u32 pid, u32 seq, 1415 struct net_device *dev, 1416 u32 filter_mask, 1417 int nlflags); 1418 int (*ndo_bridge_dellink)(struct net_device *dev, 1419 struct nlmsghdr *nlh, 1420 u16 flags); 1421 int (*ndo_change_carrier)(struct net_device *dev, 1422 bool new_carrier); 1423 int (*ndo_get_phys_port_id)(struct net_device *dev, 1424 struct netdev_phys_item_id *ppid); 1425 int (*ndo_get_port_parent_id)(struct net_device *dev, 1426 struct netdev_phys_item_id *ppid); 1427 int (*ndo_get_phys_port_name)(struct net_device *dev, 1428 char *name, size_t len); 1429 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1430 struct udp_tunnel_info *ti); 1431 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1432 struct udp_tunnel_info *ti); 1433 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1434 struct net_device *dev); 1435 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1436 void *priv); 1437 1438 int (*ndo_get_lock_subclass)(struct net_device *dev); 1439 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1440 int queue_index, 1441 u32 maxrate); 1442 int (*ndo_get_iflink)(const struct net_device *dev); 1443 int (*ndo_change_proto_down)(struct net_device *dev, 1444 bool proto_down); 1445 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1446 struct sk_buff *skb); 1447 void (*ndo_set_rx_headroom)(struct net_device *dev, 1448 int needed_headroom); 1449 int (*ndo_bpf)(struct net_device *dev, 1450 struct netdev_bpf *bpf); 1451 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1452 struct xdp_frame **xdp, 1453 u32 flags); 1454 int (*ndo_xsk_async_xmit)(struct net_device *dev, 1455 u32 queue_id); 1456 struct devlink * (*ndo_get_devlink)(struct net_device *dev); 1457 }; 1458 1459 /** 1460 * enum net_device_priv_flags - &struct net_device priv_flags 1461 * 1462 * These are the &struct net_device, they are only set internally 1463 * by drivers and used in the kernel. These flags are invisible to 1464 * userspace; this means that the order of these flags can change 1465 * during any kernel release. 1466 * 1467 * You should have a pretty good reason to be extending these flags. 1468 * 1469 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1470 * @IFF_EBRIDGE: Ethernet bridging device 1471 * @IFF_BONDING: bonding master or slave 1472 * @IFF_ISATAP: ISATAP interface (RFC4214) 1473 * @IFF_WAN_HDLC: WAN HDLC device 1474 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1475 * release skb->dst 1476 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1477 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1478 * @IFF_MACVLAN_PORT: device used as macvlan port 1479 * @IFF_BRIDGE_PORT: device used as bridge port 1480 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1481 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1482 * @IFF_UNICAST_FLT: Supports unicast filtering 1483 * @IFF_TEAM_PORT: device used as team port 1484 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1485 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1486 * change when it's running 1487 * @IFF_MACVLAN: Macvlan device 1488 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1489 * underlying stacked devices 1490 * @IFF_L3MDEV_MASTER: device is an L3 master device 1491 * @IFF_NO_QUEUE: device can run without qdisc attached 1492 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1493 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1494 * @IFF_TEAM: device is a team device 1495 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1496 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1497 * entity (i.e. the master device for bridged veth) 1498 * @IFF_MACSEC: device is a MACsec device 1499 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1500 * @IFF_FAILOVER: device is a failover master device 1501 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1502 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1503 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1504 */ 1505 enum netdev_priv_flags { 1506 IFF_802_1Q_VLAN = 1<<0, 1507 IFF_EBRIDGE = 1<<1, 1508 IFF_BONDING = 1<<2, 1509 IFF_ISATAP = 1<<3, 1510 IFF_WAN_HDLC = 1<<4, 1511 IFF_XMIT_DST_RELEASE = 1<<5, 1512 IFF_DONT_BRIDGE = 1<<6, 1513 IFF_DISABLE_NETPOLL = 1<<7, 1514 IFF_MACVLAN_PORT = 1<<8, 1515 IFF_BRIDGE_PORT = 1<<9, 1516 IFF_OVS_DATAPATH = 1<<10, 1517 IFF_TX_SKB_SHARING = 1<<11, 1518 IFF_UNICAST_FLT = 1<<12, 1519 IFF_TEAM_PORT = 1<<13, 1520 IFF_SUPP_NOFCS = 1<<14, 1521 IFF_LIVE_ADDR_CHANGE = 1<<15, 1522 IFF_MACVLAN = 1<<16, 1523 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1524 IFF_L3MDEV_MASTER = 1<<18, 1525 IFF_NO_QUEUE = 1<<19, 1526 IFF_OPENVSWITCH = 1<<20, 1527 IFF_L3MDEV_SLAVE = 1<<21, 1528 IFF_TEAM = 1<<22, 1529 IFF_RXFH_CONFIGURED = 1<<23, 1530 IFF_PHONY_HEADROOM = 1<<24, 1531 IFF_MACSEC = 1<<25, 1532 IFF_NO_RX_HANDLER = 1<<26, 1533 IFF_FAILOVER = 1<<27, 1534 IFF_FAILOVER_SLAVE = 1<<28, 1535 IFF_L3MDEV_RX_HANDLER = 1<<29, 1536 IFF_LIVE_RENAME_OK = 1<<30, 1537 }; 1538 1539 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1540 #define IFF_EBRIDGE IFF_EBRIDGE 1541 #define IFF_BONDING IFF_BONDING 1542 #define IFF_ISATAP IFF_ISATAP 1543 #define IFF_WAN_HDLC IFF_WAN_HDLC 1544 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1545 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1546 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1547 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1548 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1549 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1550 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1551 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1552 #define IFF_TEAM_PORT IFF_TEAM_PORT 1553 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1554 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1555 #define IFF_MACVLAN IFF_MACVLAN 1556 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1557 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1558 #define IFF_NO_QUEUE IFF_NO_QUEUE 1559 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1560 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1561 #define IFF_TEAM IFF_TEAM 1562 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1563 #define IFF_MACSEC IFF_MACSEC 1564 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1565 #define IFF_FAILOVER IFF_FAILOVER 1566 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1567 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1568 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1569 1570 /** 1571 * struct net_device - The DEVICE structure. 1572 * 1573 * Actually, this whole structure is a big mistake. It mixes I/O 1574 * data with strictly "high-level" data, and it has to know about 1575 * almost every data structure used in the INET module. 1576 * 1577 * @name: This is the first field of the "visible" part of this structure 1578 * (i.e. as seen by users in the "Space.c" file). It is the name 1579 * of the interface. 1580 * 1581 * @name_hlist: Device name hash chain, please keep it close to name[] 1582 * @ifalias: SNMP alias 1583 * @mem_end: Shared memory end 1584 * @mem_start: Shared memory start 1585 * @base_addr: Device I/O address 1586 * @irq: Device IRQ number 1587 * 1588 * @state: Generic network queuing layer state, see netdev_state_t 1589 * @dev_list: The global list of network devices 1590 * @napi_list: List entry used for polling NAPI devices 1591 * @unreg_list: List entry when we are unregistering the 1592 * device; see the function unregister_netdev 1593 * @close_list: List entry used when we are closing the device 1594 * @ptype_all: Device-specific packet handlers for all protocols 1595 * @ptype_specific: Device-specific, protocol-specific packet handlers 1596 * 1597 * @adj_list: Directly linked devices, like slaves for bonding 1598 * @features: Currently active device features 1599 * @hw_features: User-changeable features 1600 * 1601 * @wanted_features: User-requested features 1602 * @vlan_features: Mask of features inheritable by VLAN devices 1603 * 1604 * @hw_enc_features: Mask of features inherited by encapsulating devices 1605 * This field indicates what encapsulation 1606 * offloads the hardware is capable of doing, 1607 * and drivers will need to set them appropriately. 1608 * 1609 * @mpls_features: Mask of features inheritable by MPLS 1610 * 1611 * @ifindex: interface index 1612 * @group: The group the device belongs to 1613 * 1614 * @stats: Statistics struct, which was left as a legacy, use 1615 * rtnl_link_stats64 instead 1616 * 1617 * @rx_dropped: Dropped packets by core network, 1618 * do not use this in drivers 1619 * @tx_dropped: Dropped packets by core network, 1620 * do not use this in drivers 1621 * @rx_nohandler: nohandler dropped packets by core network on 1622 * inactive devices, do not use this in drivers 1623 * @carrier_up_count: Number of times the carrier has been up 1624 * @carrier_down_count: Number of times the carrier has been down 1625 * 1626 * @wireless_handlers: List of functions to handle Wireless Extensions, 1627 * instead of ioctl, 1628 * see <net/iw_handler.h> for details. 1629 * @wireless_data: Instance data managed by the core of wireless extensions 1630 * 1631 * @netdev_ops: Includes several pointers to callbacks, 1632 * if one wants to override the ndo_*() functions 1633 * @ethtool_ops: Management operations 1634 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1635 * discovery handling. Necessary for e.g. 6LoWPAN. 1636 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1637 * of Layer 2 headers. 1638 * 1639 * @flags: Interface flags (a la BSD) 1640 * @priv_flags: Like 'flags' but invisible to userspace, 1641 * see if.h for the definitions 1642 * @gflags: Global flags ( kept as legacy ) 1643 * @padded: How much padding added by alloc_netdev() 1644 * @operstate: RFC2863 operstate 1645 * @link_mode: Mapping policy to operstate 1646 * @if_port: Selectable AUI, TP, ... 1647 * @dma: DMA channel 1648 * @mtu: Interface MTU value 1649 * @min_mtu: Interface Minimum MTU value 1650 * @max_mtu: Interface Maximum MTU value 1651 * @type: Interface hardware type 1652 * @hard_header_len: Maximum hardware header length. 1653 * @min_header_len: Minimum hardware header length 1654 * 1655 * @needed_headroom: Extra headroom the hardware may need, but not in all 1656 * cases can this be guaranteed 1657 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1658 * cases can this be guaranteed. Some cases also use 1659 * LL_MAX_HEADER instead to allocate the skb 1660 * 1661 * interface address info: 1662 * 1663 * @perm_addr: Permanent hw address 1664 * @addr_assign_type: Hw address assignment type 1665 * @addr_len: Hardware address length 1666 * @neigh_priv_len: Used in neigh_alloc() 1667 * @dev_id: Used to differentiate devices that share 1668 * the same link layer address 1669 * @dev_port: Used to differentiate devices that share 1670 * the same function 1671 * @addr_list_lock: XXX: need comments on this one 1672 * @uc_promisc: Counter that indicates promiscuous mode 1673 * has been enabled due to the need to listen to 1674 * additional unicast addresses in a device that 1675 * does not implement ndo_set_rx_mode() 1676 * @uc: unicast mac addresses 1677 * @mc: multicast mac addresses 1678 * @dev_addrs: list of device hw addresses 1679 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1680 * @promiscuity: Number of times the NIC is told to work in 1681 * promiscuous mode; if it becomes 0 the NIC will 1682 * exit promiscuous mode 1683 * @allmulti: Counter, enables or disables allmulticast mode 1684 * 1685 * @vlan_info: VLAN info 1686 * @dsa_ptr: dsa specific data 1687 * @tipc_ptr: TIPC specific data 1688 * @atalk_ptr: AppleTalk link 1689 * @ip_ptr: IPv4 specific data 1690 * @dn_ptr: DECnet specific data 1691 * @ip6_ptr: IPv6 specific data 1692 * @ax25_ptr: AX.25 specific data 1693 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1694 * 1695 * @dev_addr: Hw address (before bcast, 1696 * because most packets are unicast) 1697 * 1698 * @_rx: Array of RX queues 1699 * @num_rx_queues: Number of RX queues 1700 * allocated at register_netdev() time 1701 * @real_num_rx_queues: Number of RX queues currently active in device 1702 * 1703 * @rx_handler: handler for received packets 1704 * @rx_handler_data: XXX: need comments on this one 1705 * @miniq_ingress: ingress/clsact qdisc specific data for 1706 * ingress processing 1707 * @ingress_queue: XXX: need comments on this one 1708 * @broadcast: hw bcast address 1709 * 1710 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1711 * indexed by RX queue number. Assigned by driver. 1712 * This must only be set if the ndo_rx_flow_steer 1713 * operation is defined 1714 * @index_hlist: Device index hash chain 1715 * 1716 * @_tx: Array of TX queues 1717 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1718 * @real_num_tx_queues: Number of TX queues currently active in device 1719 * @qdisc: Root qdisc from userspace point of view 1720 * @tx_queue_len: Max frames per queue allowed 1721 * @tx_global_lock: XXX: need comments on this one 1722 * 1723 * @xps_maps: XXX: need comments on this one 1724 * @miniq_egress: clsact qdisc specific data for 1725 * egress processing 1726 * @watchdog_timeo: Represents the timeout that is used by 1727 * the watchdog (see dev_watchdog()) 1728 * @watchdog_timer: List of timers 1729 * 1730 * @pcpu_refcnt: Number of references to this device 1731 * @todo_list: Delayed register/unregister 1732 * @link_watch_list: XXX: need comments on this one 1733 * 1734 * @reg_state: Register/unregister state machine 1735 * @dismantle: Device is going to be freed 1736 * @rtnl_link_state: This enum represents the phases of creating 1737 * a new link 1738 * 1739 * @needs_free_netdev: Should unregister perform free_netdev? 1740 * @priv_destructor: Called from unregister 1741 * @npinfo: XXX: need comments on this one 1742 * @nd_net: Network namespace this network device is inside 1743 * 1744 * @ml_priv: Mid-layer private 1745 * @lstats: Loopback statistics 1746 * @tstats: Tunnel statistics 1747 * @dstats: Dummy statistics 1748 * @vstats: Virtual ethernet statistics 1749 * 1750 * @garp_port: GARP 1751 * @mrp_port: MRP 1752 * 1753 * @dev: Class/net/name entry 1754 * @sysfs_groups: Space for optional device, statistics and wireless 1755 * sysfs groups 1756 * 1757 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1758 * @rtnl_link_ops: Rtnl_link_ops 1759 * 1760 * @gso_max_size: Maximum size of generic segmentation offload 1761 * @gso_max_segs: Maximum number of segments that can be passed to the 1762 * NIC for GSO 1763 * 1764 * @dcbnl_ops: Data Center Bridging netlink ops 1765 * @num_tc: Number of traffic classes in the net device 1766 * @tc_to_txq: XXX: need comments on this one 1767 * @prio_tc_map: XXX: need comments on this one 1768 * 1769 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1770 * 1771 * @priomap: XXX: need comments on this one 1772 * @phydev: Physical device may attach itself 1773 * for hardware timestamping 1774 * @sfp_bus: attached &struct sfp_bus structure. 1775 * 1776 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1777 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1778 * 1779 * @proto_down: protocol port state information can be sent to the 1780 * switch driver and used to set the phys state of the 1781 * switch port. 1782 * 1783 * @wol_enabled: Wake-on-LAN is enabled 1784 * 1785 * FIXME: cleanup struct net_device such that network protocol info 1786 * moves out. 1787 */ 1788 1789 struct net_device { 1790 char name[IFNAMSIZ]; 1791 struct hlist_node name_hlist; 1792 struct dev_ifalias __rcu *ifalias; 1793 /* 1794 * I/O specific fields 1795 * FIXME: Merge these and struct ifmap into one 1796 */ 1797 unsigned long mem_end; 1798 unsigned long mem_start; 1799 unsigned long base_addr; 1800 int irq; 1801 1802 /* 1803 * Some hardware also needs these fields (state,dev_list, 1804 * napi_list,unreg_list,close_list) but they are not 1805 * part of the usual set specified in Space.c. 1806 */ 1807 1808 unsigned long state; 1809 1810 struct list_head dev_list; 1811 struct list_head napi_list; 1812 struct list_head unreg_list; 1813 struct list_head close_list; 1814 struct list_head ptype_all; 1815 struct list_head ptype_specific; 1816 1817 struct { 1818 struct list_head upper; 1819 struct list_head lower; 1820 } adj_list; 1821 1822 netdev_features_t features; 1823 netdev_features_t hw_features; 1824 netdev_features_t wanted_features; 1825 netdev_features_t vlan_features; 1826 netdev_features_t hw_enc_features; 1827 netdev_features_t mpls_features; 1828 netdev_features_t gso_partial_features; 1829 1830 int ifindex; 1831 int group; 1832 1833 struct net_device_stats stats; 1834 1835 atomic_long_t rx_dropped; 1836 atomic_long_t tx_dropped; 1837 atomic_long_t rx_nohandler; 1838 1839 /* Stats to monitor link on/off, flapping */ 1840 atomic_t carrier_up_count; 1841 atomic_t carrier_down_count; 1842 1843 #ifdef CONFIG_WIRELESS_EXT 1844 const struct iw_handler_def *wireless_handlers; 1845 struct iw_public_data *wireless_data; 1846 #endif 1847 const struct net_device_ops *netdev_ops; 1848 const struct ethtool_ops *ethtool_ops; 1849 #ifdef CONFIG_NET_L3_MASTER_DEV 1850 const struct l3mdev_ops *l3mdev_ops; 1851 #endif 1852 #if IS_ENABLED(CONFIG_IPV6) 1853 const struct ndisc_ops *ndisc_ops; 1854 #endif 1855 1856 #ifdef CONFIG_XFRM_OFFLOAD 1857 const struct xfrmdev_ops *xfrmdev_ops; 1858 #endif 1859 1860 #if IS_ENABLED(CONFIG_TLS_DEVICE) 1861 const struct tlsdev_ops *tlsdev_ops; 1862 #endif 1863 1864 const struct header_ops *header_ops; 1865 1866 unsigned int flags; 1867 unsigned int priv_flags; 1868 1869 unsigned short gflags; 1870 unsigned short padded; 1871 1872 unsigned char operstate; 1873 unsigned char link_mode; 1874 1875 unsigned char if_port; 1876 unsigned char dma; 1877 1878 unsigned int mtu; 1879 unsigned int min_mtu; 1880 unsigned int max_mtu; 1881 unsigned short type; 1882 unsigned short hard_header_len; 1883 unsigned char min_header_len; 1884 1885 unsigned short needed_headroom; 1886 unsigned short needed_tailroom; 1887 1888 /* Interface address info. */ 1889 unsigned char perm_addr[MAX_ADDR_LEN]; 1890 unsigned char addr_assign_type; 1891 unsigned char addr_len; 1892 unsigned short neigh_priv_len; 1893 unsigned short dev_id; 1894 unsigned short dev_port; 1895 spinlock_t addr_list_lock; 1896 unsigned char name_assign_type; 1897 bool uc_promisc; 1898 struct netdev_hw_addr_list uc; 1899 struct netdev_hw_addr_list mc; 1900 struct netdev_hw_addr_list dev_addrs; 1901 1902 #ifdef CONFIG_SYSFS 1903 struct kset *queues_kset; 1904 #endif 1905 unsigned int promiscuity; 1906 unsigned int allmulti; 1907 1908 1909 /* Protocol-specific pointers */ 1910 1911 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1912 struct vlan_info __rcu *vlan_info; 1913 #endif 1914 #if IS_ENABLED(CONFIG_NET_DSA) 1915 struct dsa_port *dsa_ptr; 1916 #endif 1917 #if IS_ENABLED(CONFIG_TIPC) 1918 struct tipc_bearer __rcu *tipc_ptr; 1919 #endif 1920 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1921 void *atalk_ptr; 1922 #endif 1923 struct in_device __rcu *ip_ptr; 1924 #if IS_ENABLED(CONFIG_DECNET) 1925 struct dn_dev __rcu *dn_ptr; 1926 #endif 1927 struct inet6_dev __rcu *ip6_ptr; 1928 #if IS_ENABLED(CONFIG_AX25) 1929 void *ax25_ptr; 1930 #endif 1931 struct wireless_dev *ieee80211_ptr; 1932 struct wpan_dev *ieee802154_ptr; 1933 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1934 struct mpls_dev __rcu *mpls_ptr; 1935 #endif 1936 1937 /* 1938 * Cache lines mostly used on receive path (including eth_type_trans()) 1939 */ 1940 /* Interface address info used in eth_type_trans() */ 1941 unsigned char *dev_addr; 1942 1943 struct netdev_rx_queue *_rx; 1944 unsigned int num_rx_queues; 1945 unsigned int real_num_rx_queues; 1946 1947 struct bpf_prog __rcu *xdp_prog; 1948 unsigned long gro_flush_timeout; 1949 rx_handler_func_t __rcu *rx_handler; 1950 void __rcu *rx_handler_data; 1951 1952 #ifdef CONFIG_NET_CLS_ACT 1953 struct mini_Qdisc __rcu *miniq_ingress; 1954 #endif 1955 struct netdev_queue __rcu *ingress_queue; 1956 #ifdef CONFIG_NETFILTER_INGRESS 1957 struct nf_hook_entries __rcu *nf_hooks_ingress; 1958 #endif 1959 1960 unsigned char broadcast[MAX_ADDR_LEN]; 1961 #ifdef CONFIG_RFS_ACCEL 1962 struct cpu_rmap *rx_cpu_rmap; 1963 #endif 1964 struct hlist_node index_hlist; 1965 1966 /* 1967 * Cache lines mostly used on transmit path 1968 */ 1969 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1970 unsigned int num_tx_queues; 1971 unsigned int real_num_tx_queues; 1972 struct Qdisc *qdisc; 1973 #ifdef CONFIG_NET_SCHED 1974 DECLARE_HASHTABLE (qdisc_hash, 4); 1975 #endif 1976 unsigned int tx_queue_len; 1977 spinlock_t tx_global_lock; 1978 int watchdog_timeo; 1979 1980 #ifdef CONFIG_XPS 1981 struct xps_dev_maps __rcu *xps_cpus_map; 1982 struct xps_dev_maps __rcu *xps_rxqs_map; 1983 #endif 1984 #ifdef CONFIG_NET_CLS_ACT 1985 struct mini_Qdisc __rcu *miniq_egress; 1986 #endif 1987 1988 /* These may be needed for future network-power-down code. */ 1989 struct timer_list watchdog_timer; 1990 1991 int __percpu *pcpu_refcnt; 1992 struct list_head todo_list; 1993 1994 struct list_head link_watch_list; 1995 1996 enum { NETREG_UNINITIALIZED=0, 1997 NETREG_REGISTERED, /* completed register_netdevice */ 1998 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1999 NETREG_UNREGISTERED, /* completed unregister todo */ 2000 NETREG_RELEASED, /* called free_netdev */ 2001 NETREG_DUMMY, /* dummy device for NAPI poll */ 2002 } reg_state:8; 2003 2004 bool dismantle; 2005 2006 enum { 2007 RTNL_LINK_INITIALIZED, 2008 RTNL_LINK_INITIALIZING, 2009 } rtnl_link_state:16; 2010 2011 bool needs_free_netdev; 2012 void (*priv_destructor)(struct net_device *dev); 2013 2014 #ifdef CONFIG_NETPOLL 2015 struct netpoll_info __rcu *npinfo; 2016 #endif 2017 2018 possible_net_t nd_net; 2019 2020 /* mid-layer private */ 2021 union { 2022 void *ml_priv; 2023 struct pcpu_lstats __percpu *lstats; 2024 struct pcpu_sw_netstats __percpu *tstats; 2025 struct pcpu_dstats __percpu *dstats; 2026 }; 2027 2028 #if IS_ENABLED(CONFIG_GARP) 2029 struct garp_port __rcu *garp_port; 2030 #endif 2031 #if IS_ENABLED(CONFIG_MRP) 2032 struct mrp_port __rcu *mrp_port; 2033 #endif 2034 2035 struct device dev; 2036 const struct attribute_group *sysfs_groups[4]; 2037 const struct attribute_group *sysfs_rx_queue_group; 2038 2039 const struct rtnl_link_ops *rtnl_link_ops; 2040 2041 /* for setting kernel sock attribute on TCP connection setup */ 2042 #define GSO_MAX_SIZE 65536 2043 unsigned int gso_max_size; 2044 #define GSO_MAX_SEGS 65535 2045 u16 gso_max_segs; 2046 2047 #ifdef CONFIG_DCB 2048 const struct dcbnl_rtnl_ops *dcbnl_ops; 2049 #endif 2050 s16 num_tc; 2051 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2052 u8 prio_tc_map[TC_BITMASK + 1]; 2053 2054 #if IS_ENABLED(CONFIG_FCOE) 2055 unsigned int fcoe_ddp_xid; 2056 #endif 2057 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2058 struct netprio_map __rcu *priomap; 2059 #endif 2060 struct phy_device *phydev; 2061 struct sfp_bus *sfp_bus; 2062 struct lock_class_key *qdisc_tx_busylock; 2063 struct lock_class_key *qdisc_running_key; 2064 bool proto_down; 2065 unsigned wol_enabled:1; 2066 }; 2067 #define to_net_dev(d) container_of(d, struct net_device, dev) 2068 2069 static inline bool netif_elide_gro(const struct net_device *dev) 2070 { 2071 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2072 return true; 2073 return false; 2074 } 2075 2076 #define NETDEV_ALIGN 32 2077 2078 static inline 2079 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2080 { 2081 return dev->prio_tc_map[prio & TC_BITMASK]; 2082 } 2083 2084 static inline 2085 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2086 { 2087 if (tc >= dev->num_tc) 2088 return -EINVAL; 2089 2090 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2091 return 0; 2092 } 2093 2094 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2095 void netdev_reset_tc(struct net_device *dev); 2096 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2097 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2098 2099 static inline 2100 int netdev_get_num_tc(struct net_device *dev) 2101 { 2102 return dev->num_tc; 2103 } 2104 2105 void netdev_unbind_sb_channel(struct net_device *dev, 2106 struct net_device *sb_dev); 2107 int netdev_bind_sb_channel_queue(struct net_device *dev, 2108 struct net_device *sb_dev, 2109 u8 tc, u16 count, u16 offset); 2110 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2111 static inline int netdev_get_sb_channel(struct net_device *dev) 2112 { 2113 return max_t(int, -dev->num_tc, 0); 2114 } 2115 2116 static inline 2117 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2118 unsigned int index) 2119 { 2120 return &dev->_tx[index]; 2121 } 2122 2123 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2124 const struct sk_buff *skb) 2125 { 2126 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2127 } 2128 2129 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2130 void (*f)(struct net_device *, 2131 struct netdev_queue *, 2132 void *), 2133 void *arg) 2134 { 2135 unsigned int i; 2136 2137 for (i = 0; i < dev->num_tx_queues; i++) 2138 f(dev, &dev->_tx[i], arg); 2139 } 2140 2141 #define netdev_lockdep_set_classes(dev) \ 2142 { \ 2143 static struct lock_class_key qdisc_tx_busylock_key; \ 2144 static struct lock_class_key qdisc_running_key; \ 2145 static struct lock_class_key qdisc_xmit_lock_key; \ 2146 static struct lock_class_key dev_addr_list_lock_key; \ 2147 unsigned int i; \ 2148 \ 2149 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2150 (dev)->qdisc_running_key = &qdisc_running_key; \ 2151 lockdep_set_class(&(dev)->addr_list_lock, \ 2152 &dev_addr_list_lock_key); \ 2153 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2154 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2155 &qdisc_xmit_lock_key); \ 2156 } 2157 2158 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 2159 struct sk_buff *skb, 2160 struct net_device *sb_dev); 2161 2162 /* returns the headroom that the master device needs to take in account 2163 * when forwarding to this dev 2164 */ 2165 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2166 { 2167 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2168 } 2169 2170 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2171 { 2172 if (dev->netdev_ops->ndo_set_rx_headroom) 2173 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2174 } 2175 2176 /* set the device rx headroom to the dev's default */ 2177 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2178 { 2179 netdev_set_rx_headroom(dev, -1); 2180 } 2181 2182 /* 2183 * Net namespace inlines 2184 */ 2185 static inline 2186 struct net *dev_net(const struct net_device *dev) 2187 { 2188 return read_pnet(&dev->nd_net); 2189 } 2190 2191 static inline 2192 void dev_net_set(struct net_device *dev, struct net *net) 2193 { 2194 write_pnet(&dev->nd_net, net); 2195 } 2196 2197 /** 2198 * netdev_priv - access network device private data 2199 * @dev: network device 2200 * 2201 * Get network device private data 2202 */ 2203 static inline void *netdev_priv(const struct net_device *dev) 2204 { 2205 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2206 } 2207 2208 /* Set the sysfs physical device reference for the network logical device 2209 * if set prior to registration will cause a symlink during initialization. 2210 */ 2211 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2212 2213 /* Set the sysfs device type for the network logical device to allow 2214 * fine-grained identification of different network device types. For 2215 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2216 */ 2217 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2218 2219 /* Default NAPI poll() weight 2220 * Device drivers are strongly advised to not use bigger value 2221 */ 2222 #define NAPI_POLL_WEIGHT 64 2223 2224 /** 2225 * netif_napi_add - initialize a NAPI context 2226 * @dev: network device 2227 * @napi: NAPI context 2228 * @poll: polling function 2229 * @weight: default weight 2230 * 2231 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2232 * *any* of the other NAPI-related functions. 2233 */ 2234 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2235 int (*poll)(struct napi_struct *, int), int weight); 2236 2237 /** 2238 * netif_tx_napi_add - initialize a NAPI context 2239 * @dev: network device 2240 * @napi: NAPI context 2241 * @poll: polling function 2242 * @weight: default weight 2243 * 2244 * This variant of netif_napi_add() should be used from drivers using NAPI 2245 * to exclusively poll a TX queue. 2246 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2247 */ 2248 static inline void netif_tx_napi_add(struct net_device *dev, 2249 struct napi_struct *napi, 2250 int (*poll)(struct napi_struct *, int), 2251 int weight) 2252 { 2253 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2254 netif_napi_add(dev, napi, poll, weight); 2255 } 2256 2257 /** 2258 * netif_napi_del - remove a NAPI context 2259 * @napi: NAPI context 2260 * 2261 * netif_napi_del() removes a NAPI context from the network device NAPI list 2262 */ 2263 void netif_napi_del(struct napi_struct *napi); 2264 2265 struct napi_gro_cb { 2266 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2267 void *frag0; 2268 2269 /* Length of frag0. */ 2270 unsigned int frag0_len; 2271 2272 /* This indicates where we are processing relative to skb->data. */ 2273 int data_offset; 2274 2275 /* This is non-zero if the packet cannot be merged with the new skb. */ 2276 u16 flush; 2277 2278 /* Save the IP ID here and check when we get to the transport layer */ 2279 u16 flush_id; 2280 2281 /* Number of segments aggregated. */ 2282 u16 count; 2283 2284 /* Start offset for remote checksum offload */ 2285 u16 gro_remcsum_start; 2286 2287 /* jiffies when first packet was created/queued */ 2288 unsigned long age; 2289 2290 /* Used in ipv6_gro_receive() and foo-over-udp */ 2291 u16 proto; 2292 2293 /* This is non-zero if the packet may be of the same flow. */ 2294 u8 same_flow:1; 2295 2296 /* Used in tunnel GRO receive */ 2297 u8 encap_mark:1; 2298 2299 /* GRO checksum is valid */ 2300 u8 csum_valid:1; 2301 2302 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2303 u8 csum_cnt:3; 2304 2305 /* Free the skb? */ 2306 u8 free:2; 2307 #define NAPI_GRO_FREE 1 2308 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2309 2310 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2311 u8 is_ipv6:1; 2312 2313 /* Used in GRE, set in fou/gue_gro_receive */ 2314 u8 is_fou:1; 2315 2316 /* Used to determine if flush_id can be ignored */ 2317 u8 is_atomic:1; 2318 2319 /* Number of gro_receive callbacks this packet already went through */ 2320 u8 recursion_counter:4; 2321 2322 /* 1 bit hole */ 2323 2324 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2325 __wsum csum; 2326 2327 /* used in skb_gro_receive() slow path */ 2328 struct sk_buff *last; 2329 }; 2330 2331 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2332 2333 #define GRO_RECURSION_LIMIT 15 2334 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2335 { 2336 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2337 } 2338 2339 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2340 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2341 struct list_head *head, 2342 struct sk_buff *skb) 2343 { 2344 if (unlikely(gro_recursion_inc_test(skb))) { 2345 NAPI_GRO_CB(skb)->flush |= 1; 2346 return NULL; 2347 } 2348 2349 return cb(head, skb); 2350 } 2351 2352 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2353 struct sk_buff *); 2354 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2355 struct sock *sk, 2356 struct list_head *head, 2357 struct sk_buff *skb) 2358 { 2359 if (unlikely(gro_recursion_inc_test(skb))) { 2360 NAPI_GRO_CB(skb)->flush |= 1; 2361 return NULL; 2362 } 2363 2364 return cb(sk, head, skb); 2365 } 2366 2367 struct packet_type { 2368 __be16 type; /* This is really htons(ether_type). */ 2369 bool ignore_outgoing; 2370 struct net_device *dev; /* NULL is wildcarded here */ 2371 int (*func) (struct sk_buff *, 2372 struct net_device *, 2373 struct packet_type *, 2374 struct net_device *); 2375 void (*list_func) (struct list_head *, 2376 struct packet_type *, 2377 struct net_device *); 2378 bool (*id_match)(struct packet_type *ptype, 2379 struct sock *sk); 2380 void *af_packet_priv; 2381 struct list_head list; 2382 }; 2383 2384 struct offload_callbacks { 2385 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2386 netdev_features_t features); 2387 struct sk_buff *(*gro_receive)(struct list_head *head, 2388 struct sk_buff *skb); 2389 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2390 }; 2391 2392 struct packet_offload { 2393 __be16 type; /* This is really htons(ether_type). */ 2394 u16 priority; 2395 struct offload_callbacks callbacks; 2396 struct list_head list; 2397 }; 2398 2399 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2400 struct pcpu_sw_netstats { 2401 u64 rx_packets; 2402 u64 rx_bytes; 2403 u64 tx_packets; 2404 u64 tx_bytes; 2405 struct u64_stats_sync syncp; 2406 } __aligned(4 * sizeof(u64)); 2407 2408 struct pcpu_lstats { 2409 u64 packets; 2410 u64 bytes; 2411 struct u64_stats_sync syncp; 2412 } __aligned(2 * sizeof(u64)); 2413 2414 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2415 ({ \ 2416 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2417 if (pcpu_stats) { \ 2418 int __cpu; \ 2419 for_each_possible_cpu(__cpu) { \ 2420 typeof(type) *stat; \ 2421 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2422 u64_stats_init(&stat->syncp); \ 2423 } \ 2424 } \ 2425 pcpu_stats; \ 2426 }) 2427 2428 #define netdev_alloc_pcpu_stats(type) \ 2429 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2430 2431 enum netdev_lag_tx_type { 2432 NETDEV_LAG_TX_TYPE_UNKNOWN, 2433 NETDEV_LAG_TX_TYPE_RANDOM, 2434 NETDEV_LAG_TX_TYPE_BROADCAST, 2435 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2436 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2437 NETDEV_LAG_TX_TYPE_HASH, 2438 }; 2439 2440 enum netdev_lag_hash { 2441 NETDEV_LAG_HASH_NONE, 2442 NETDEV_LAG_HASH_L2, 2443 NETDEV_LAG_HASH_L34, 2444 NETDEV_LAG_HASH_L23, 2445 NETDEV_LAG_HASH_E23, 2446 NETDEV_LAG_HASH_E34, 2447 NETDEV_LAG_HASH_UNKNOWN, 2448 }; 2449 2450 struct netdev_lag_upper_info { 2451 enum netdev_lag_tx_type tx_type; 2452 enum netdev_lag_hash hash_type; 2453 }; 2454 2455 struct netdev_lag_lower_state_info { 2456 u8 link_up : 1, 2457 tx_enabled : 1; 2458 }; 2459 2460 #include <linux/notifier.h> 2461 2462 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2463 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2464 * adding new types. 2465 */ 2466 enum netdev_cmd { 2467 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2468 NETDEV_DOWN, 2469 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2470 detected a hardware crash and restarted 2471 - we can use this eg to kick tcp sessions 2472 once done */ 2473 NETDEV_CHANGE, /* Notify device state change */ 2474 NETDEV_REGISTER, 2475 NETDEV_UNREGISTER, 2476 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2477 NETDEV_CHANGEADDR, /* notify after the address change */ 2478 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2479 NETDEV_GOING_DOWN, 2480 NETDEV_CHANGENAME, 2481 NETDEV_FEAT_CHANGE, 2482 NETDEV_BONDING_FAILOVER, 2483 NETDEV_PRE_UP, 2484 NETDEV_PRE_TYPE_CHANGE, 2485 NETDEV_POST_TYPE_CHANGE, 2486 NETDEV_POST_INIT, 2487 NETDEV_RELEASE, 2488 NETDEV_NOTIFY_PEERS, 2489 NETDEV_JOIN, 2490 NETDEV_CHANGEUPPER, 2491 NETDEV_RESEND_IGMP, 2492 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2493 NETDEV_CHANGEINFODATA, 2494 NETDEV_BONDING_INFO, 2495 NETDEV_PRECHANGEUPPER, 2496 NETDEV_CHANGELOWERSTATE, 2497 NETDEV_UDP_TUNNEL_PUSH_INFO, 2498 NETDEV_UDP_TUNNEL_DROP_INFO, 2499 NETDEV_CHANGE_TX_QUEUE_LEN, 2500 NETDEV_CVLAN_FILTER_PUSH_INFO, 2501 NETDEV_CVLAN_FILTER_DROP_INFO, 2502 NETDEV_SVLAN_FILTER_PUSH_INFO, 2503 NETDEV_SVLAN_FILTER_DROP_INFO, 2504 }; 2505 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2506 2507 int register_netdevice_notifier(struct notifier_block *nb); 2508 int unregister_netdevice_notifier(struct notifier_block *nb); 2509 2510 struct netdev_notifier_info { 2511 struct net_device *dev; 2512 struct netlink_ext_ack *extack; 2513 }; 2514 2515 struct netdev_notifier_info_ext { 2516 struct netdev_notifier_info info; /* must be first */ 2517 union { 2518 u32 mtu; 2519 } ext; 2520 }; 2521 2522 struct netdev_notifier_change_info { 2523 struct netdev_notifier_info info; /* must be first */ 2524 unsigned int flags_changed; 2525 }; 2526 2527 struct netdev_notifier_changeupper_info { 2528 struct netdev_notifier_info info; /* must be first */ 2529 struct net_device *upper_dev; /* new upper dev */ 2530 bool master; /* is upper dev master */ 2531 bool linking; /* is the notification for link or unlink */ 2532 void *upper_info; /* upper dev info */ 2533 }; 2534 2535 struct netdev_notifier_changelowerstate_info { 2536 struct netdev_notifier_info info; /* must be first */ 2537 void *lower_state_info; /* is lower dev state */ 2538 }; 2539 2540 struct netdev_notifier_pre_changeaddr_info { 2541 struct netdev_notifier_info info; /* must be first */ 2542 const unsigned char *dev_addr; 2543 }; 2544 2545 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2546 struct net_device *dev) 2547 { 2548 info->dev = dev; 2549 info->extack = NULL; 2550 } 2551 2552 static inline struct net_device * 2553 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2554 { 2555 return info->dev; 2556 } 2557 2558 static inline struct netlink_ext_ack * 2559 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2560 { 2561 return info->extack; 2562 } 2563 2564 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2565 2566 2567 extern rwlock_t dev_base_lock; /* Device list lock */ 2568 2569 #define for_each_netdev(net, d) \ 2570 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2571 #define for_each_netdev_reverse(net, d) \ 2572 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2573 #define for_each_netdev_rcu(net, d) \ 2574 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2575 #define for_each_netdev_safe(net, d, n) \ 2576 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2577 #define for_each_netdev_continue(net, d) \ 2578 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2579 #define for_each_netdev_continue_rcu(net, d) \ 2580 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2581 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2582 for_each_netdev_rcu(&init_net, slave) \ 2583 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2584 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2585 2586 static inline struct net_device *next_net_device(struct net_device *dev) 2587 { 2588 struct list_head *lh; 2589 struct net *net; 2590 2591 net = dev_net(dev); 2592 lh = dev->dev_list.next; 2593 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2594 } 2595 2596 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2597 { 2598 struct list_head *lh; 2599 struct net *net; 2600 2601 net = dev_net(dev); 2602 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2603 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2604 } 2605 2606 static inline struct net_device *first_net_device(struct net *net) 2607 { 2608 return list_empty(&net->dev_base_head) ? NULL : 2609 net_device_entry(net->dev_base_head.next); 2610 } 2611 2612 static inline struct net_device *first_net_device_rcu(struct net *net) 2613 { 2614 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2615 2616 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2617 } 2618 2619 int netdev_boot_setup_check(struct net_device *dev); 2620 unsigned long netdev_boot_base(const char *prefix, int unit); 2621 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2622 const char *hwaddr); 2623 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2624 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2625 void dev_add_pack(struct packet_type *pt); 2626 void dev_remove_pack(struct packet_type *pt); 2627 void __dev_remove_pack(struct packet_type *pt); 2628 void dev_add_offload(struct packet_offload *po); 2629 void dev_remove_offload(struct packet_offload *po); 2630 2631 int dev_get_iflink(const struct net_device *dev); 2632 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2633 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2634 unsigned short mask); 2635 struct net_device *dev_get_by_name(struct net *net, const char *name); 2636 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2637 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2638 int dev_alloc_name(struct net_device *dev, const char *name); 2639 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2640 void dev_close(struct net_device *dev); 2641 void dev_close_many(struct list_head *head, bool unlink); 2642 void dev_disable_lro(struct net_device *dev); 2643 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2644 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2645 struct net_device *sb_dev, 2646 select_queue_fallback_t fallback); 2647 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2648 struct net_device *sb_dev, 2649 select_queue_fallback_t fallback); 2650 int dev_queue_xmit(struct sk_buff *skb); 2651 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2652 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2653 int register_netdevice(struct net_device *dev); 2654 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2655 void unregister_netdevice_many(struct list_head *head); 2656 static inline void unregister_netdevice(struct net_device *dev) 2657 { 2658 unregister_netdevice_queue(dev, NULL); 2659 } 2660 2661 int netdev_refcnt_read(const struct net_device *dev); 2662 void free_netdev(struct net_device *dev); 2663 void netdev_freemem(struct net_device *dev); 2664 void synchronize_net(void); 2665 int init_dummy_netdev(struct net_device *dev); 2666 2667 DECLARE_PER_CPU(int, xmit_recursion); 2668 #define XMIT_RECURSION_LIMIT 10 2669 2670 static inline int dev_recursion_level(void) 2671 { 2672 return this_cpu_read(xmit_recursion); 2673 } 2674 2675 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2676 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2677 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2678 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2679 int netdev_get_name(struct net *net, char *name, int ifindex); 2680 int dev_restart(struct net_device *dev); 2681 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2682 2683 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2684 { 2685 return NAPI_GRO_CB(skb)->data_offset; 2686 } 2687 2688 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2689 { 2690 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2691 } 2692 2693 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2694 { 2695 NAPI_GRO_CB(skb)->data_offset += len; 2696 } 2697 2698 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2699 unsigned int offset) 2700 { 2701 return NAPI_GRO_CB(skb)->frag0 + offset; 2702 } 2703 2704 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2705 { 2706 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2707 } 2708 2709 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2710 { 2711 NAPI_GRO_CB(skb)->frag0 = NULL; 2712 NAPI_GRO_CB(skb)->frag0_len = 0; 2713 } 2714 2715 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2716 unsigned int offset) 2717 { 2718 if (!pskb_may_pull(skb, hlen)) 2719 return NULL; 2720 2721 skb_gro_frag0_invalidate(skb); 2722 return skb->data + offset; 2723 } 2724 2725 static inline void *skb_gro_network_header(struct sk_buff *skb) 2726 { 2727 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2728 skb_network_offset(skb); 2729 } 2730 2731 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2732 const void *start, unsigned int len) 2733 { 2734 if (NAPI_GRO_CB(skb)->csum_valid) 2735 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2736 csum_partial(start, len, 0)); 2737 } 2738 2739 /* GRO checksum functions. These are logical equivalents of the normal 2740 * checksum functions (in skbuff.h) except that they operate on the GRO 2741 * offsets and fields in sk_buff. 2742 */ 2743 2744 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2745 2746 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2747 { 2748 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2749 } 2750 2751 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2752 bool zero_okay, 2753 __sum16 check) 2754 { 2755 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2756 skb_checksum_start_offset(skb) < 2757 skb_gro_offset(skb)) && 2758 !skb_at_gro_remcsum_start(skb) && 2759 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2760 (!zero_okay || check)); 2761 } 2762 2763 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2764 __wsum psum) 2765 { 2766 if (NAPI_GRO_CB(skb)->csum_valid && 2767 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2768 return 0; 2769 2770 NAPI_GRO_CB(skb)->csum = psum; 2771 2772 return __skb_gro_checksum_complete(skb); 2773 } 2774 2775 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2776 { 2777 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2778 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2779 NAPI_GRO_CB(skb)->csum_cnt--; 2780 } else { 2781 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2782 * verified a new top level checksum or an encapsulated one 2783 * during GRO. This saves work if we fallback to normal path. 2784 */ 2785 __skb_incr_checksum_unnecessary(skb); 2786 } 2787 } 2788 2789 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2790 compute_pseudo) \ 2791 ({ \ 2792 __sum16 __ret = 0; \ 2793 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2794 __ret = __skb_gro_checksum_validate_complete(skb, \ 2795 compute_pseudo(skb, proto)); \ 2796 if (!__ret) \ 2797 skb_gro_incr_csum_unnecessary(skb); \ 2798 __ret; \ 2799 }) 2800 2801 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2802 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2803 2804 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2805 compute_pseudo) \ 2806 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2807 2808 #define skb_gro_checksum_simple_validate(skb) \ 2809 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2810 2811 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2812 { 2813 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2814 !NAPI_GRO_CB(skb)->csum_valid); 2815 } 2816 2817 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2818 __sum16 check, __wsum pseudo) 2819 { 2820 NAPI_GRO_CB(skb)->csum = ~pseudo; 2821 NAPI_GRO_CB(skb)->csum_valid = 1; 2822 } 2823 2824 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2825 do { \ 2826 if (__skb_gro_checksum_convert_check(skb)) \ 2827 __skb_gro_checksum_convert(skb, check, \ 2828 compute_pseudo(skb, proto)); \ 2829 } while (0) 2830 2831 struct gro_remcsum { 2832 int offset; 2833 __wsum delta; 2834 }; 2835 2836 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2837 { 2838 grc->offset = 0; 2839 grc->delta = 0; 2840 } 2841 2842 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2843 unsigned int off, size_t hdrlen, 2844 int start, int offset, 2845 struct gro_remcsum *grc, 2846 bool nopartial) 2847 { 2848 __wsum delta; 2849 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2850 2851 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2852 2853 if (!nopartial) { 2854 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2855 return ptr; 2856 } 2857 2858 ptr = skb_gro_header_fast(skb, off); 2859 if (skb_gro_header_hard(skb, off + plen)) { 2860 ptr = skb_gro_header_slow(skb, off + plen, off); 2861 if (!ptr) 2862 return NULL; 2863 } 2864 2865 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2866 start, offset); 2867 2868 /* Adjust skb->csum since we changed the packet */ 2869 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2870 2871 grc->offset = off + hdrlen + offset; 2872 grc->delta = delta; 2873 2874 return ptr; 2875 } 2876 2877 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2878 struct gro_remcsum *grc) 2879 { 2880 void *ptr; 2881 size_t plen = grc->offset + sizeof(u16); 2882 2883 if (!grc->delta) 2884 return; 2885 2886 ptr = skb_gro_header_fast(skb, grc->offset); 2887 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2888 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2889 if (!ptr) 2890 return; 2891 } 2892 2893 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2894 } 2895 2896 #ifdef CONFIG_XFRM_OFFLOAD 2897 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2898 { 2899 if (PTR_ERR(pp) != -EINPROGRESS) 2900 NAPI_GRO_CB(skb)->flush |= flush; 2901 } 2902 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2903 struct sk_buff *pp, 2904 int flush, 2905 struct gro_remcsum *grc) 2906 { 2907 if (PTR_ERR(pp) != -EINPROGRESS) { 2908 NAPI_GRO_CB(skb)->flush |= flush; 2909 skb_gro_remcsum_cleanup(skb, grc); 2910 skb->remcsum_offload = 0; 2911 } 2912 } 2913 #else 2914 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2915 { 2916 NAPI_GRO_CB(skb)->flush |= flush; 2917 } 2918 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2919 struct sk_buff *pp, 2920 int flush, 2921 struct gro_remcsum *grc) 2922 { 2923 NAPI_GRO_CB(skb)->flush |= flush; 2924 skb_gro_remcsum_cleanup(skb, grc); 2925 skb->remcsum_offload = 0; 2926 } 2927 #endif 2928 2929 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2930 unsigned short type, 2931 const void *daddr, const void *saddr, 2932 unsigned int len) 2933 { 2934 if (!dev->header_ops || !dev->header_ops->create) 2935 return 0; 2936 2937 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2938 } 2939 2940 static inline int dev_parse_header(const struct sk_buff *skb, 2941 unsigned char *haddr) 2942 { 2943 const struct net_device *dev = skb->dev; 2944 2945 if (!dev->header_ops || !dev->header_ops->parse) 2946 return 0; 2947 return dev->header_ops->parse(skb, haddr); 2948 } 2949 2950 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 2951 { 2952 const struct net_device *dev = skb->dev; 2953 2954 if (!dev->header_ops || !dev->header_ops->parse_protocol) 2955 return 0; 2956 return dev->header_ops->parse_protocol(skb); 2957 } 2958 2959 /* ll_header must have at least hard_header_len allocated */ 2960 static inline bool dev_validate_header(const struct net_device *dev, 2961 char *ll_header, int len) 2962 { 2963 if (likely(len >= dev->hard_header_len)) 2964 return true; 2965 if (len < dev->min_header_len) 2966 return false; 2967 2968 if (capable(CAP_SYS_RAWIO)) { 2969 memset(ll_header + len, 0, dev->hard_header_len - len); 2970 return true; 2971 } 2972 2973 if (dev->header_ops && dev->header_ops->validate) 2974 return dev->header_ops->validate(ll_header, len); 2975 2976 return false; 2977 } 2978 2979 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 2980 int len, int size); 2981 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2982 static inline int unregister_gifconf(unsigned int family) 2983 { 2984 return register_gifconf(family, NULL); 2985 } 2986 2987 #ifdef CONFIG_NET_FLOW_LIMIT 2988 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2989 struct sd_flow_limit { 2990 u64 count; 2991 unsigned int num_buckets; 2992 unsigned int history_head; 2993 u16 history[FLOW_LIMIT_HISTORY]; 2994 u8 buckets[]; 2995 }; 2996 2997 extern int netdev_flow_limit_table_len; 2998 #endif /* CONFIG_NET_FLOW_LIMIT */ 2999 3000 /* 3001 * Incoming packets are placed on per-CPU queues 3002 */ 3003 struct softnet_data { 3004 struct list_head poll_list; 3005 struct sk_buff_head process_queue; 3006 3007 /* stats */ 3008 unsigned int processed; 3009 unsigned int time_squeeze; 3010 unsigned int received_rps; 3011 #ifdef CONFIG_RPS 3012 struct softnet_data *rps_ipi_list; 3013 #endif 3014 #ifdef CONFIG_NET_FLOW_LIMIT 3015 struct sd_flow_limit __rcu *flow_limit; 3016 #endif 3017 struct Qdisc *output_queue; 3018 struct Qdisc **output_queue_tailp; 3019 struct sk_buff *completion_queue; 3020 #ifdef CONFIG_XFRM_OFFLOAD 3021 struct sk_buff_head xfrm_backlog; 3022 #endif 3023 #ifdef CONFIG_RPS 3024 /* input_queue_head should be written by cpu owning this struct, 3025 * and only read by other cpus. Worth using a cache line. 3026 */ 3027 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3028 3029 /* Elements below can be accessed between CPUs for RPS/RFS */ 3030 call_single_data_t csd ____cacheline_aligned_in_smp; 3031 struct softnet_data *rps_ipi_next; 3032 unsigned int cpu; 3033 unsigned int input_queue_tail; 3034 #endif 3035 unsigned int dropped; 3036 struct sk_buff_head input_pkt_queue; 3037 struct napi_struct backlog; 3038 3039 }; 3040 3041 static inline void input_queue_head_incr(struct softnet_data *sd) 3042 { 3043 #ifdef CONFIG_RPS 3044 sd->input_queue_head++; 3045 #endif 3046 } 3047 3048 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3049 unsigned int *qtail) 3050 { 3051 #ifdef CONFIG_RPS 3052 *qtail = ++sd->input_queue_tail; 3053 #endif 3054 } 3055 3056 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3057 3058 void __netif_schedule(struct Qdisc *q); 3059 void netif_schedule_queue(struct netdev_queue *txq); 3060 3061 static inline void netif_tx_schedule_all(struct net_device *dev) 3062 { 3063 unsigned int i; 3064 3065 for (i = 0; i < dev->num_tx_queues; i++) 3066 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3067 } 3068 3069 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3070 { 3071 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3072 } 3073 3074 /** 3075 * netif_start_queue - allow transmit 3076 * @dev: network device 3077 * 3078 * Allow upper layers to call the device hard_start_xmit routine. 3079 */ 3080 static inline void netif_start_queue(struct net_device *dev) 3081 { 3082 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3083 } 3084 3085 static inline void netif_tx_start_all_queues(struct net_device *dev) 3086 { 3087 unsigned int i; 3088 3089 for (i = 0; i < dev->num_tx_queues; i++) { 3090 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3091 netif_tx_start_queue(txq); 3092 } 3093 } 3094 3095 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3096 3097 /** 3098 * netif_wake_queue - restart transmit 3099 * @dev: network device 3100 * 3101 * Allow upper layers to call the device hard_start_xmit routine. 3102 * Used for flow control when transmit resources are available. 3103 */ 3104 static inline void netif_wake_queue(struct net_device *dev) 3105 { 3106 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3107 } 3108 3109 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3110 { 3111 unsigned int i; 3112 3113 for (i = 0; i < dev->num_tx_queues; i++) { 3114 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3115 netif_tx_wake_queue(txq); 3116 } 3117 } 3118 3119 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3120 { 3121 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3122 } 3123 3124 /** 3125 * netif_stop_queue - stop transmitted packets 3126 * @dev: network device 3127 * 3128 * Stop upper layers calling the device hard_start_xmit routine. 3129 * Used for flow control when transmit resources are unavailable. 3130 */ 3131 static inline void netif_stop_queue(struct net_device *dev) 3132 { 3133 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3134 } 3135 3136 void netif_tx_stop_all_queues(struct net_device *dev); 3137 3138 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3139 { 3140 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3141 } 3142 3143 /** 3144 * netif_queue_stopped - test if transmit queue is flowblocked 3145 * @dev: network device 3146 * 3147 * Test if transmit queue on device is currently unable to send. 3148 */ 3149 static inline bool netif_queue_stopped(const struct net_device *dev) 3150 { 3151 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3152 } 3153 3154 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3155 { 3156 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3157 } 3158 3159 static inline bool 3160 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3161 { 3162 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3163 } 3164 3165 static inline bool 3166 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3167 { 3168 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3169 } 3170 3171 /** 3172 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3173 * @dev_queue: pointer to transmit queue 3174 * 3175 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3176 * to give appropriate hint to the CPU. 3177 */ 3178 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3179 { 3180 #ifdef CONFIG_BQL 3181 prefetchw(&dev_queue->dql.num_queued); 3182 #endif 3183 } 3184 3185 /** 3186 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3187 * @dev_queue: pointer to transmit queue 3188 * 3189 * BQL enabled drivers might use this helper in their TX completion path, 3190 * to give appropriate hint to the CPU. 3191 */ 3192 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3193 { 3194 #ifdef CONFIG_BQL 3195 prefetchw(&dev_queue->dql.limit); 3196 #endif 3197 } 3198 3199 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3200 unsigned int bytes) 3201 { 3202 #ifdef CONFIG_BQL 3203 dql_queued(&dev_queue->dql, bytes); 3204 3205 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3206 return; 3207 3208 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3209 3210 /* 3211 * The XOFF flag must be set before checking the dql_avail below, 3212 * because in netdev_tx_completed_queue we update the dql_completed 3213 * before checking the XOFF flag. 3214 */ 3215 smp_mb(); 3216 3217 /* check again in case another CPU has just made room avail */ 3218 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3219 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3220 #endif 3221 } 3222 3223 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3224 * that they should not test BQL status themselves. 3225 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3226 * skb of a batch. 3227 * Returns true if the doorbell must be used to kick the NIC. 3228 */ 3229 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3230 unsigned int bytes, 3231 bool xmit_more) 3232 { 3233 if (xmit_more) { 3234 #ifdef CONFIG_BQL 3235 dql_queued(&dev_queue->dql, bytes); 3236 #endif 3237 return netif_tx_queue_stopped(dev_queue); 3238 } 3239 netdev_tx_sent_queue(dev_queue, bytes); 3240 return true; 3241 } 3242 3243 /** 3244 * netdev_sent_queue - report the number of bytes queued to hardware 3245 * @dev: network device 3246 * @bytes: number of bytes queued to the hardware device queue 3247 * 3248 * Report the number of bytes queued for sending/completion to the network 3249 * device hardware queue. @bytes should be a good approximation and should 3250 * exactly match netdev_completed_queue() @bytes 3251 */ 3252 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3253 { 3254 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3255 } 3256 3257 static inline bool __netdev_sent_queue(struct net_device *dev, 3258 unsigned int bytes, 3259 bool xmit_more) 3260 { 3261 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3262 xmit_more); 3263 } 3264 3265 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3266 unsigned int pkts, unsigned int bytes) 3267 { 3268 #ifdef CONFIG_BQL 3269 if (unlikely(!bytes)) 3270 return; 3271 3272 dql_completed(&dev_queue->dql, bytes); 3273 3274 /* 3275 * Without the memory barrier there is a small possiblity that 3276 * netdev_tx_sent_queue will miss the update and cause the queue to 3277 * be stopped forever 3278 */ 3279 smp_mb(); 3280 3281 if (dql_avail(&dev_queue->dql) < 0) 3282 return; 3283 3284 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3285 netif_schedule_queue(dev_queue); 3286 #endif 3287 } 3288 3289 /** 3290 * netdev_completed_queue - report bytes and packets completed by device 3291 * @dev: network device 3292 * @pkts: actual number of packets sent over the medium 3293 * @bytes: actual number of bytes sent over the medium 3294 * 3295 * Report the number of bytes and packets transmitted by the network device 3296 * hardware queue over the physical medium, @bytes must exactly match the 3297 * @bytes amount passed to netdev_sent_queue() 3298 */ 3299 static inline void netdev_completed_queue(struct net_device *dev, 3300 unsigned int pkts, unsigned int bytes) 3301 { 3302 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3303 } 3304 3305 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3306 { 3307 #ifdef CONFIG_BQL 3308 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3309 dql_reset(&q->dql); 3310 #endif 3311 } 3312 3313 /** 3314 * netdev_reset_queue - reset the packets and bytes count of a network device 3315 * @dev_queue: network device 3316 * 3317 * Reset the bytes and packet count of a network device and clear the 3318 * software flow control OFF bit for this network device 3319 */ 3320 static inline void netdev_reset_queue(struct net_device *dev_queue) 3321 { 3322 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3323 } 3324 3325 /** 3326 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3327 * @dev: network device 3328 * @queue_index: given tx queue index 3329 * 3330 * Returns 0 if given tx queue index >= number of device tx queues, 3331 * otherwise returns the originally passed tx queue index. 3332 */ 3333 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3334 { 3335 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3336 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3337 dev->name, queue_index, 3338 dev->real_num_tx_queues); 3339 return 0; 3340 } 3341 3342 return queue_index; 3343 } 3344 3345 /** 3346 * netif_running - test if up 3347 * @dev: network device 3348 * 3349 * Test if the device has been brought up. 3350 */ 3351 static inline bool netif_running(const struct net_device *dev) 3352 { 3353 return test_bit(__LINK_STATE_START, &dev->state); 3354 } 3355 3356 /* 3357 * Routines to manage the subqueues on a device. We only need start, 3358 * stop, and a check if it's stopped. All other device management is 3359 * done at the overall netdevice level. 3360 * Also test the device if we're multiqueue. 3361 */ 3362 3363 /** 3364 * netif_start_subqueue - allow sending packets on subqueue 3365 * @dev: network device 3366 * @queue_index: sub queue index 3367 * 3368 * Start individual transmit queue of a device with multiple transmit queues. 3369 */ 3370 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3371 { 3372 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3373 3374 netif_tx_start_queue(txq); 3375 } 3376 3377 /** 3378 * netif_stop_subqueue - stop sending packets on subqueue 3379 * @dev: network device 3380 * @queue_index: sub queue index 3381 * 3382 * Stop individual transmit queue of a device with multiple transmit queues. 3383 */ 3384 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3385 { 3386 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3387 netif_tx_stop_queue(txq); 3388 } 3389 3390 /** 3391 * netif_subqueue_stopped - test status of subqueue 3392 * @dev: network device 3393 * @queue_index: sub queue index 3394 * 3395 * Check individual transmit queue of a device with multiple transmit queues. 3396 */ 3397 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3398 u16 queue_index) 3399 { 3400 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3401 3402 return netif_tx_queue_stopped(txq); 3403 } 3404 3405 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3406 struct sk_buff *skb) 3407 { 3408 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3409 } 3410 3411 /** 3412 * netif_wake_subqueue - allow sending packets on subqueue 3413 * @dev: network device 3414 * @queue_index: sub queue index 3415 * 3416 * Resume individual transmit queue of a device with multiple transmit queues. 3417 */ 3418 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3419 { 3420 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3421 3422 netif_tx_wake_queue(txq); 3423 } 3424 3425 #ifdef CONFIG_XPS 3426 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3427 u16 index); 3428 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3429 u16 index, bool is_rxqs_map); 3430 3431 /** 3432 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3433 * @j: CPU/Rx queue index 3434 * @mask: bitmask of all cpus/rx queues 3435 * @nr_bits: number of bits in the bitmask 3436 * 3437 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3438 */ 3439 static inline bool netif_attr_test_mask(unsigned long j, 3440 const unsigned long *mask, 3441 unsigned int nr_bits) 3442 { 3443 cpu_max_bits_warn(j, nr_bits); 3444 return test_bit(j, mask); 3445 } 3446 3447 /** 3448 * netif_attr_test_online - Test for online CPU/Rx queue 3449 * @j: CPU/Rx queue index 3450 * @online_mask: bitmask for CPUs/Rx queues that are online 3451 * @nr_bits: number of bits in the bitmask 3452 * 3453 * Returns true if a CPU/Rx queue is online. 3454 */ 3455 static inline bool netif_attr_test_online(unsigned long j, 3456 const unsigned long *online_mask, 3457 unsigned int nr_bits) 3458 { 3459 cpu_max_bits_warn(j, nr_bits); 3460 3461 if (online_mask) 3462 return test_bit(j, online_mask); 3463 3464 return (j < nr_bits); 3465 } 3466 3467 /** 3468 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3469 * @n: CPU/Rx queue index 3470 * @srcp: the cpumask/Rx queue mask pointer 3471 * @nr_bits: number of bits in the bitmask 3472 * 3473 * Returns >= nr_bits if no further CPUs/Rx queues set. 3474 */ 3475 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3476 unsigned int nr_bits) 3477 { 3478 /* -1 is a legal arg here. */ 3479 if (n != -1) 3480 cpu_max_bits_warn(n, nr_bits); 3481 3482 if (srcp) 3483 return find_next_bit(srcp, nr_bits, n + 1); 3484 3485 return n + 1; 3486 } 3487 3488 /** 3489 * netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p 3490 * @n: CPU/Rx queue index 3491 * @src1p: the first CPUs/Rx queues mask pointer 3492 * @src2p: the second CPUs/Rx queues mask pointer 3493 * @nr_bits: number of bits in the bitmask 3494 * 3495 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3496 */ 3497 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3498 const unsigned long *src2p, 3499 unsigned int nr_bits) 3500 { 3501 /* -1 is a legal arg here. */ 3502 if (n != -1) 3503 cpu_max_bits_warn(n, nr_bits); 3504 3505 if (src1p && src2p) 3506 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3507 else if (src1p) 3508 return find_next_bit(src1p, nr_bits, n + 1); 3509 else if (src2p) 3510 return find_next_bit(src2p, nr_bits, n + 1); 3511 3512 return n + 1; 3513 } 3514 #else 3515 static inline int netif_set_xps_queue(struct net_device *dev, 3516 const struct cpumask *mask, 3517 u16 index) 3518 { 3519 return 0; 3520 } 3521 3522 static inline int __netif_set_xps_queue(struct net_device *dev, 3523 const unsigned long *mask, 3524 u16 index, bool is_rxqs_map) 3525 { 3526 return 0; 3527 } 3528 #endif 3529 3530 /** 3531 * netif_is_multiqueue - test if device has multiple transmit queues 3532 * @dev: network device 3533 * 3534 * Check if device has multiple transmit queues 3535 */ 3536 static inline bool netif_is_multiqueue(const struct net_device *dev) 3537 { 3538 return dev->num_tx_queues > 1; 3539 } 3540 3541 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3542 3543 #ifdef CONFIG_SYSFS 3544 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3545 #else 3546 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3547 unsigned int rxqs) 3548 { 3549 dev->real_num_rx_queues = rxqs; 3550 return 0; 3551 } 3552 #endif 3553 3554 static inline struct netdev_rx_queue * 3555 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3556 { 3557 return dev->_rx + rxq; 3558 } 3559 3560 #ifdef CONFIG_SYSFS 3561 static inline unsigned int get_netdev_rx_queue_index( 3562 struct netdev_rx_queue *queue) 3563 { 3564 struct net_device *dev = queue->dev; 3565 int index = queue - dev->_rx; 3566 3567 BUG_ON(index >= dev->num_rx_queues); 3568 return index; 3569 } 3570 #endif 3571 3572 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3573 int netif_get_num_default_rss_queues(void); 3574 3575 enum skb_free_reason { 3576 SKB_REASON_CONSUMED, 3577 SKB_REASON_DROPPED, 3578 }; 3579 3580 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3581 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3582 3583 /* 3584 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3585 * interrupt context or with hardware interrupts being disabled. 3586 * (in_irq() || irqs_disabled()) 3587 * 3588 * We provide four helpers that can be used in following contexts : 3589 * 3590 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3591 * replacing kfree_skb(skb) 3592 * 3593 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3594 * Typically used in place of consume_skb(skb) in TX completion path 3595 * 3596 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3597 * replacing kfree_skb(skb) 3598 * 3599 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3600 * and consumed a packet. Used in place of consume_skb(skb) 3601 */ 3602 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3603 { 3604 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3605 } 3606 3607 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3608 { 3609 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3610 } 3611 3612 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3613 { 3614 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3615 } 3616 3617 static inline void dev_consume_skb_any(struct sk_buff *skb) 3618 { 3619 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3620 } 3621 3622 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3623 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3624 int netif_rx(struct sk_buff *skb); 3625 int netif_rx_ni(struct sk_buff *skb); 3626 int netif_receive_skb(struct sk_buff *skb); 3627 int netif_receive_skb_core(struct sk_buff *skb); 3628 void netif_receive_skb_list(struct list_head *head); 3629 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3630 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3631 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3632 gro_result_t napi_gro_frags(struct napi_struct *napi); 3633 struct packet_offload *gro_find_receive_by_type(__be16 type); 3634 struct packet_offload *gro_find_complete_by_type(__be16 type); 3635 3636 static inline void napi_free_frags(struct napi_struct *napi) 3637 { 3638 kfree_skb(napi->skb); 3639 napi->skb = NULL; 3640 } 3641 3642 bool netdev_is_rx_handler_busy(struct net_device *dev); 3643 int netdev_rx_handler_register(struct net_device *dev, 3644 rx_handler_func_t *rx_handler, 3645 void *rx_handler_data); 3646 void netdev_rx_handler_unregister(struct net_device *dev); 3647 3648 bool dev_valid_name(const char *name); 3649 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3650 bool *need_copyout); 3651 int dev_ifconf(struct net *net, struct ifconf *, int); 3652 int dev_ethtool(struct net *net, struct ifreq *); 3653 unsigned int dev_get_flags(const struct net_device *); 3654 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3655 struct netlink_ext_ack *extack); 3656 int dev_change_flags(struct net_device *dev, unsigned int flags, 3657 struct netlink_ext_ack *extack); 3658 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3659 unsigned int gchanges); 3660 int dev_change_name(struct net_device *, const char *); 3661 int dev_set_alias(struct net_device *, const char *, size_t); 3662 int dev_get_alias(const struct net_device *, char *, size_t); 3663 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3664 int __dev_set_mtu(struct net_device *, int); 3665 int dev_set_mtu_ext(struct net_device *dev, int mtu, 3666 struct netlink_ext_ack *extack); 3667 int dev_set_mtu(struct net_device *, int); 3668 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3669 void dev_set_group(struct net_device *, int); 3670 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3671 struct netlink_ext_ack *extack); 3672 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3673 struct netlink_ext_ack *extack); 3674 int dev_change_carrier(struct net_device *, bool new_carrier); 3675 int dev_get_phys_port_id(struct net_device *dev, 3676 struct netdev_phys_item_id *ppid); 3677 int dev_get_phys_port_name(struct net_device *dev, 3678 char *name, size_t len); 3679 int dev_get_port_parent_id(struct net_device *dev, 3680 struct netdev_phys_item_id *ppid, bool recurse); 3681 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3682 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3683 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down); 3684 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3685 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3686 struct netdev_queue *txq, int *ret); 3687 3688 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3689 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3690 int fd, u32 flags); 3691 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3692 enum bpf_netdev_command cmd); 3693 int xdp_umem_query(struct net_device *dev, u16 queue_id); 3694 3695 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3696 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3697 bool is_skb_forwardable(const struct net_device *dev, 3698 const struct sk_buff *skb); 3699 3700 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3701 struct sk_buff *skb) 3702 { 3703 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3704 unlikely(!is_skb_forwardable(dev, skb))) { 3705 atomic_long_inc(&dev->rx_dropped); 3706 kfree_skb(skb); 3707 return NET_RX_DROP; 3708 } 3709 3710 skb_scrub_packet(skb, true); 3711 skb->priority = 0; 3712 return 0; 3713 } 3714 3715 bool dev_nit_active(struct net_device *dev); 3716 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3717 3718 extern int netdev_budget; 3719 extern unsigned int netdev_budget_usecs; 3720 3721 /* Called by rtnetlink.c:rtnl_unlock() */ 3722 void netdev_run_todo(void); 3723 3724 /** 3725 * dev_put - release reference to device 3726 * @dev: network device 3727 * 3728 * Release reference to device to allow it to be freed. 3729 */ 3730 static inline void dev_put(struct net_device *dev) 3731 { 3732 this_cpu_dec(*dev->pcpu_refcnt); 3733 } 3734 3735 /** 3736 * dev_hold - get reference to device 3737 * @dev: network device 3738 * 3739 * Hold reference to device to keep it from being freed. 3740 */ 3741 static inline void dev_hold(struct net_device *dev) 3742 { 3743 this_cpu_inc(*dev->pcpu_refcnt); 3744 } 3745 3746 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3747 * and _off may be called from IRQ context, but it is caller 3748 * who is responsible for serialization of these calls. 3749 * 3750 * The name carrier is inappropriate, these functions should really be 3751 * called netif_lowerlayer_*() because they represent the state of any 3752 * kind of lower layer not just hardware media. 3753 */ 3754 3755 void linkwatch_init_dev(struct net_device *dev); 3756 void linkwatch_fire_event(struct net_device *dev); 3757 void linkwatch_forget_dev(struct net_device *dev); 3758 3759 /** 3760 * netif_carrier_ok - test if carrier present 3761 * @dev: network device 3762 * 3763 * Check if carrier is present on device 3764 */ 3765 static inline bool netif_carrier_ok(const struct net_device *dev) 3766 { 3767 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3768 } 3769 3770 unsigned long dev_trans_start(struct net_device *dev); 3771 3772 void __netdev_watchdog_up(struct net_device *dev); 3773 3774 void netif_carrier_on(struct net_device *dev); 3775 3776 void netif_carrier_off(struct net_device *dev); 3777 3778 /** 3779 * netif_dormant_on - mark device as dormant. 3780 * @dev: network device 3781 * 3782 * Mark device as dormant (as per RFC2863). 3783 * 3784 * The dormant state indicates that the relevant interface is not 3785 * actually in a condition to pass packets (i.e., it is not 'up') but is 3786 * in a "pending" state, waiting for some external event. For "on- 3787 * demand" interfaces, this new state identifies the situation where the 3788 * interface is waiting for events to place it in the up state. 3789 */ 3790 static inline void netif_dormant_on(struct net_device *dev) 3791 { 3792 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3793 linkwatch_fire_event(dev); 3794 } 3795 3796 /** 3797 * netif_dormant_off - set device as not dormant. 3798 * @dev: network device 3799 * 3800 * Device is not in dormant state. 3801 */ 3802 static inline void netif_dormant_off(struct net_device *dev) 3803 { 3804 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3805 linkwatch_fire_event(dev); 3806 } 3807 3808 /** 3809 * netif_dormant - test if device is dormant 3810 * @dev: network device 3811 * 3812 * Check if device is dormant. 3813 */ 3814 static inline bool netif_dormant(const struct net_device *dev) 3815 { 3816 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3817 } 3818 3819 3820 /** 3821 * netif_oper_up - test if device is operational 3822 * @dev: network device 3823 * 3824 * Check if carrier is operational 3825 */ 3826 static inline bool netif_oper_up(const struct net_device *dev) 3827 { 3828 return (dev->operstate == IF_OPER_UP || 3829 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3830 } 3831 3832 /** 3833 * netif_device_present - is device available or removed 3834 * @dev: network device 3835 * 3836 * Check if device has not been removed from system. 3837 */ 3838 static inline bool netif_device_present(struct net_device *dev) 3839 { 3840 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3841 } 3842 3843 void netif_device_detach(struct net_device *dev); 3844 3845 void netif_device_attach(struct net_device *dev); 3846 3847 /* 3848 * Network interface message level settings 3849 */ 3850 3851 enum { 3852 NETIF_MSG_DRV = 0x0001, 3853 NETIF_MSG_PROBE = 0x0002, 3854 NETIF_MSG_LINK = 0x0004, 3855 NETIF_MSG_TIMER = 0x0008, 3856 NETIF_MSG_IFDOWN = 0x0010, 3857 NETIF_MSG_IFUP = 0x0020, 3858 NETIF_MSG_RX_ERR = 0x0040, 3859 NETIF_MSG_TX_ERR = 0x0080, 3860 NETIF_MSG_TX_QUEUED = 0x0100, 3861 NETIF_MSG_INTR = 0x0200, 3862 NETIF_MSG_TX_DONE = 0x0400, 3863 NETIF_MSG_RX_STATUS = 0x0800, 3864 NETIF_MSG_PKTDATA = 0x1000, 3865 NETIF_MSG_HW = 0x2000, 3866 NETIF_MSG_WOL = 0x4000, 3867 }; 3868 3869 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3870 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3871 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3872 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3873 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3874 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3875 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3876 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3877 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3878 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3879 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3880 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3881 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3882 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3883 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3884 3885 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3886 { 3887 /* use default */ 3888 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3889 return default_msg_enable_bits; 3890 if (debug_value == 0) /* no output */ 3891 return 0; 3892 /* set low N bits */ 3893 return (1U << debug_value) - 1; 3894 } 3895 3896 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3897 { 3898 spin_lock(&txq->_xmit_lock); 3899 txq->xmit_lock_owner = cpu; 3900 } 3901 3902 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3903 { 3904 __acquire(&txq->_xmit_lock); 3905 return true; 3906 } 3907 3908 static inline void __netif_tx_release(struct netdev_queue *txq) 3909 { 3910 __release(&txq->_xmit_lock); 3911 } 3912 3913 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3914 { 3915 spin_lock_bh(&txq->_xmit_lock); 3916 txq->xmit_lock_owner = smp_processor_id(); 3917 } 3918 3919 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3920 { 3921 bool ok = spin_trylock(&txq->_xmit_lock); 3922 if (likely(ok)) 3923 txq->xmit_lock_owner = smp_processor_id(); 3924 return ok; 3925 } 3926 3927 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3928 { 3929 txq->xmit_lock_owner = -1; 3930 spin_unlock(&txq->_xmit_lock); 3931 } 3932 3933 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3934 { 3935 txq->xmit_lock_owner = -1; 3936 spin_unlock_bh(&txq->_xmit_lock); 3937 } 3938 3939 static inline void txq_trans_update(struct netdev_queue *txq) 3940 { 3941 if (txq->xmit_lock_owner != -1) 3942 txq->trans_start = jiffies; 3943 } 3944 3945 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3946 static inline void netif_trans_update(struct net_device *dev) 3947 { 3948 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3949 3950 if (txq->trans_start != jiffies) 3951 txq->trans_start = jiffies; 3952 } 3953 3954 /** 3955 * netif_tx_lock - grab network device transmit lock 3956 * @dev: network device 3957 * 3958 * Get network device transmit lock 3959 */ 3960 static inline void netif_tx_lock(struct net_device *dev) 3961 { 3962 unsigned int i; 3963 int cpu; 3964 3965 spin_lock(&dev->tx_global_lock); 3966 cpu = smp_processor_id(); 3967 for (i = 0; i < dev->num_tx_queues; i++) { 3968 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3969 3970 /* We are the only thread of execution doing a 3971 * freeze, but we have to grab the _xmit_lock in 3972 * order to synchronize with threads which are in 3973 * the ->hard_start_xmit() handler and already 3974 * checked the frozen bit. 3975 */ 3976 __netif_tx_lock(txq, cpu); 3977 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3978 __netif_tx_unlock(txq); 3979 } 3980 } 3981 3982 static inline void netif_tx_lock_bh(struct net_device *dev) 3983 { 3984 local_bh_disable(); 3985 netif_tx_lock(dev); 3986 } 3987 3988 static inline void netif_tx_unlock(struct net_device *dev) 3989 { 3990 unsigned int i; 3991 3992 for (i = 0; i < dev->num_tx_queues; i++) { 3993 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3994 3995 /* No need to grab the _xmit_lock here. If the 3996 * queue is not stopped for another reason, we 3997 * force a schedule. 3998 */ 3999 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 4000 netif_schedule_queue(txq); 4001 } 4002 spin_unlock(&dev->tx_global_lock); 4003 } 4004 4005 static inline void netif_tx_unlock_bh(struct net_device *dev) 4006 { 4007 netif_tx_unlock(dev); 4008 local_bh_enable(); 4009 } 4010 4011 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4012 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4013 __netif_tx_lock(txq, cpu); \ 4014 } else { \ 4015 __netif_tx_acquire(txq); \ 4016 } \ 4017 } 4018 4019 #define HARD_TX_TRYLOCK(dev, txq) \ 4020 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4021 __netif_tx_trylock(txq) : \ 4022 __netif_tx_acquire(txq)) 4023 4024 #define HARD_TX_UNLOCK(dev, txq) { \ 4025 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4026 __netif_tx_unlock(txq); \ 4027 } else { \ 4028 __netif_tx_release(txq); \ 4029 } \ 4030 } 4031 4032 static inline void netif_tx_disable(struct net_device *dev) 4033 { 4034 unsigned int i; 4035 int cpu; 4036 4037 local_bh_disable(); 4038 cpu = smp_processor_id(); 4039 for (i = 0; i < dev->num_tx_queues; i++) { 4040 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4041 4042 __netif_tx_lock(txq, cpu); 4043 netif_tx_stop_queue(txq); 4044 __netif_tx_unlock(txq); 4045 } 4046 local_bh_enable(); 4047 } 4048 4049 static inline void netif_addr_lock(struct net_device *dev) 4050 { 4051 spin_lock(&dev->addr_list_lock); 4052 } 4053 4054 static inline void netif_addr_lock_nested(struct net_device *dev) 4055 { 4056 int subclass = SINGLE_DEPTH_NESTING; 4057 4058 if (dev->netdev_ops->ndo_get_lock_subclass) 4059 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 4060 4061 spin_lock_nested(&dev->addr_list_lock, subclass); 4062 } 4063 4064 static inline void netif_addr_lock_bh(struct net_device *dev) 4065 { 4066 spin_lock_bh(&dev->addr_list_lock); 4067 } 4068 4069 static inline void netif_addr_unlock(struct net_device *dev) 4070 { 4071 spin_unlock(&dev->addr_list_lock); 4072 } 4073 4074 static inline void netif_addr_unlock_bh(struct net_device *dev) 4075 { 4076 spin_unlock_bh(&dev->addr_list_lock); 4077 } 4078 4079 /* 4080 * dev_addrs walker. Should be used only for read access. Call with 4081 * rcu_read_lock held. 4082 */ 4083 #define for_each_dev_addr(dev, ha) \ 4084 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4085 4086 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4087 4088 void ether_setup(struct net_device *dev); 4089 4090 /* Support for loadable net-drivers */ 4091 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4092 unsigned char name_assign_type, 4093 void (*setup)(struct net_device *), 4094 unsigned int txqs, unsigned int rxqs); 4095 int dev_get_valid_name(struct net *net, struct net_device *dev, 4096 const char *name); 4097 4098 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4099 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4100 4101 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4102 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4103 count) 4104 4105 int register_netdev(struct net_device *dev); 4106 void unregister_netdev(struct net_device *dev); 4107 4108 /* General hardware address lists handling functions */ 4109 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4110 struct netdev_hw_addr_list *from_list, int addr_len); 4111 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4112 struct netdev_hw_addr_list *from_list, int addr_len); 4113 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4114 struct net_device *dev, 4115 int (*sync)(struct net_device *, const unsigned char *), 4116 int (*unsync)(struct net_device *, 4117 const unsigned char *)); 4118 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4119 struct net_device *dev, 4120 int (*sync)(struct net_device *, 4121 const unsigned char *, int), 4122 int (*unsync)(struct net_device *, 4123 const unsigned char *, int)); 4124 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4125 struct net_device *dev, 4126 int (*unsync)(struct net_device *, 4127 const unsigned char *, int)); 4128 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4129 struct net_device *dev, 4130 int (*unsync)(struct net_device *, 4131 const unsigned char *)); 4132 void __hw_addr_init(struct netdev_hw_addr_list *list); 4133 4134 /* Functions used for device addresses handling */ 4135 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4136 unsigned char addr_type); 4137 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4138 unsigned char addr_type); 4139 void dev_addr_flush(struct net_device *dev); 4140 int dev_addr_init(struct net_device *dev); 4141 4142 /* Functions used for unicast addresses handling */ 4143 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4144 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4145 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4146 int dev_uc_sync(struct net_device *to, struct net_device *from); 4147 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4148 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4149 void dev_uc_flush(struct net_device *dev); 4150 void dev_uc_init(struct net_device *dev); 4151 4152 /** 4153 * __dev_uc_sync - Synchonize device's unicast list 4154 * @dev: device to sync 4155 * @sync: function to call if address should be added 4156 * @unsync: function to call if address should be removed 4157 * 4158 * Add newly added addresses to the interface, and release 4159 * addresses that have been deleted. 4160 */ 4161 static inline int __dev_uc_sync(struct net_device *dev, 4162 int (*sync)(struct net_device *, 4163 const unsigned char *), 4164 int (*unsync)(struct net_device *, 4165 const unsigned char *)) 4166 { 4167 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4168 } 4169 4170 /** 4171 * __dev_uc_unsync - Remove synchronized addresses from device 4172 * @dev: device to sync 4173 * @unsync: function to call if address should be removed 4174 * 4175 * Remove all addresses that were added to the device by dev_uc_sync(). 4176 */ 4177 static inline void __dev_uc_unsync(struct net_device *dev, 4178 int (*unsync)(struct net_device *, 4179 const unsigned char *)) 4180 { 4181 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4182 } 4183 4184 /* Functions used for multicast addresses handling */ 4185 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4186 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4187 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4188 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4189 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4190 int dev_mc_sync(struct net_device *to, struct net_device *from); 4191 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4192 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4193 void dev_mc_flush(struct net_device *dev); 4194 void dev_mc_init(struct net_device *dev); 4195 4196 /** 4197 * __dev_mc_sync - Synchonize device's multicast list 4198 * @dev: device to sync 4199 * @sync: function to call if address should be added 4200 * @unsync: function to call if address should be removed 4201 * 4202 * Add newly added addresses to the interface, and release 4203 * addresses that have been deleted. 4204 */ 4205 static inline int __dev_mc_sync(struct net_device *dev, 4206 int (*sync)(struct net_device *, 4207 const unsigned char *), 4208 int (*unsync)(struct net_device *, 4209 const unsigned char *)) 4210 { 4211 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4212 } 4213 4214 /** 4215 * __dev_mc_unsync - Remove synchronized addresses from device 4216 * @dev: device to sync 4217 * @unsync: function to call if address should be removed 4218 * 4219 * Remove all addresses that were added to the device by dev_mc_sync(). 4220 */ 4221 static inline void __dev_mc_unsync(struct net_device *dev, 4222 int (*unsync)(struct net_device *, 4223 const unsigned char *)) 4224 { 4225 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4226 } 4227 4228 /* Functions used for secondary unicast and multicast support */ 4229 void dev_set_rx_mode(struct net_device *dev); 4230 void __dev_set_rx_mode(struct net_device *dev); 4231 int dev_set_promiscuity(struct net_device *dev, int inc); 4232 int dev_set_allmulti(struct net_device *dev, int inc); 4233 void netdev_state_change(struct net_device *dev); 4234 void netdev_notify_peers(struct net_device *dev); 4235 void netdev_features_change(struct net_device *dev); 4236 /* Load a device via the kmod */ 4237 void dev_load(struct net *net, const char *name); 4238 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4239 struct rtnl_link_stats64 *storage); 4240 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4241 const struct net_device_stats *netdev_stats); 4242 4243 extern int netdev_max_backlog; 4244 extern int netdev_tstamp_prequeue; 4245 extern int weight_p; 4246 extern int dev_weight_rx_bias; 4247 extern int dev_weight_tx_bias; 4248 extern int dev_rx_weight; 4249 extern int dev_tx_weight; 4250 4251 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4252 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4253 struct list_head **iter); 4254 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4255 struct list_head **iter); 4256 4257 /* iterate through upper list, must be called under RCU read lock */ 4258 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4259 for (iter = &(dev)->adj_list.upper, \ 4260 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4261 updev; \ 4262 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4263 4264 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4265 int (*fn)(struct net_device *upper_dev, 4266 void *data), 4267 void *data); 4268 4269 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4270 struct net_device *upper_dev); 4271 4272 bool netdev_has_any_upper_dev(struct net_device *dev); 4273 4274 void *netdev_lower_get_next_private(struct net_device *dev, 4275 struct list_head **iter); 4276 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4277 struct list_head **iter); 4278 4279 #define netdev_for_each_lower_private(dev, priv, iter) \ 4280 for (iter = (dev)->adj_list.lower.next, \ 4281 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4282 priv; \ 4283 priv = netdev_lower_get_next_private(dev, &(iter))) 4284 4285 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4286 for (iter = &(dev)->adj_list.lower, \ 4287 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4288 priv; \ 4289 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4290 4291 void *netdev_lower_get_next(struct net_device *dev, 4292 struct list_head **iter); 4293 4294 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4295 for (iter = (dev)->adj_list.lower.next, \ 4296 ldev = netdev_lower_get_next(dev, &(iter)); \ 4297 ldev; \ 4298 ldev = netdev_lower_get_next(dev, &(iter))) 4299 4300 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 4301 struct list_head **iter); 4302 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 4303 struct list_head **iter); 4304 4305 int netdev_walk_all_lower_dev(struct net_device *dev, 4306 int (*fn)(struct net_device *lower_dev, 4307 void *data), 4308 void *data); 4309 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4310 int (*fn)(struct net_device *lower_dev, 4311 void *data), 4312 void *data); 4313 4314 void *netdev_adjacent_get_private(struct list_head *adj_list); 4315 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4316 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4317 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4318 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4319 struct netlink_ext_ack *extack); 4320 int netdev_master_upper_dev_link(struct net_device *dev, 4321 struct net_device *upper_dev, 4322 void *upper_priv, void *upper_info, 4323 struct netlink_ext_ack *extack); 4324 void netdev_upper_dev_unlink(struct net_device *dev, 4325 struct net_device *upper_dev); 4326 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4327 void *netdev_lower_dev_get_private(struct net_device *dev, 4328 struct net_device *lower_dev); 4329 void netdev_lower_state_changed(struct net_device *lower_dev, 4330 void *lower_state_info); 4331 4332 /* RSS keys are 40 or 52 bytes long */ 4333 #define NETDEV_RSS_KEY_LEN 52 4334 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4335 void netdev_rss_key_fill(void *buffer, size_t len); 4336 4337 int dev_get_nest_level(struct net_device *dev); 4338 int skb_checksum_help(struct sk_buff *skb); 4339 int skb_crc32c_csum_help(struct sk_buff *skb); 4340 int skb_csum_hwoffload_help(struct sk_buff *skb, 4341 const netdev_features_t features); 4342 4343 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4344 netdev_features_t features, bool tx_path); 4345 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4346 netdev_features_t features); 4347 4348 struct netdev_bonding_info { 4349 ifslave slave; 4350 ifbond master; 4351 }; 4352 4353 struct netdev_notifier_bonding_info { 4354 struct netdev_notifier_info info; /* must be first */ 4355 struct netdev_bonding_info bonding_info; 4356 }; 4357 4358 void netdev_bonding_info_change(struct net_device *dev, 4359 struct netdev_bonding_info *bonding_info); 4360 4361 static inline 4362 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4363 { 4364 return __skb_gso_segment(skb, features, true); 4365 } 4366 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4367 4368 static inline bool can_checksum_protocol(netdev_features_t features, 4369 __be16 protocol) 4370 { 4371 if (protocol == htons(ETH_P_FCOE)) 4372 return !!(features & NETIF_F_FCOE_CRC); 4373 4374 /* Assume this is an IP checksum (not SCTP CRC) */ 4375 4376 if (features & NETIF_F_HW_CSUM) { 4377 /* Can checksum everything */ 4378 return true; 4379 } 4380 4381 switch (protocol) { 4382 case htons(ETH_P_IP): 4383 return !!(features & NETIF_F_IP_CSUM); 4384 case htons(ETH_P_IPV6): 4385 return !!(features & NETIF_F_IPV6_CSUM); 4386 default: 4387 return false; 4388 } 4389 } 4390 4391 #ifdef CONFIG_BUG 4392 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4393 #else 4394 static inline void netdev_rx_csum_fault(struct net_device *dev, 4395 struct sk_buff *skb) 4396 { 4397 } 4398 #endif 4399 /* rx skb timestamps */ 4400 void net_enable_timestamp(void); 4401 void net_disable_timestamp(void); 4402 4403 #ifdef CONFIG_PROC_FS 4404 int __init dev_proc_init(void); 4405 #else 4406 #define dev_proc_init() 0 4407 #endif 4408 4409 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4410 struct sk_buff *skb, struct net_device *dev, 4411 bool more) 4412 { 4413 skb->xmit_more = more ? 1 : 0; 4414 return ops->ndo_start_xmit(skb, dev); 4415 } 4416 4417 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4418 struct netdev_queue *txq, bool more) 4419 { 4420 const struct net_device_ops *ops = dev->netdev_ops; 4421 netdev_tx_t rc; 4422 4423 rc = __netdev_start_xmit(ops, skb, dev, more); 4424 if (rc == NETDEV_TX_OK) 4425 txq_trans_update(txq); 4426 4427 return rc; 4428 } 4429 4430 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4431 const void *ns); 4432 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4433 const void *ns); 4434 4435 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4436 { 4437 return netdev_class_create_file_ns(class_attr, NULL); 4438 } 4439 4440 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4441 { 4442 netdev_class_remove_file_ns(class_attr, NULL); 4443 } 4444 4445 extern const struct kobj_ns_type_operations net_ns_type_operations; 4446 4447 const char *netdev_drivername(const struct net_device *dev); 4448 4449 void linkwatch_run_queue(void); 4450 4451 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4452 netdev_features_t f2) 4453 { 4454 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4455 if (f1 & NETIF_F_HW_CSUM) 4456 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4457 else 4458 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4459 } 4460 4461 return f1 & f2; 4462 } 4463 4464 static inline netdev_features_t netdev_get_wanted_features( 4465 struct net_device *dev) 4466 { 4467 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4468 } 4469 netdev_features_t netdev_increment_features(netdev_features_t all, 4470 netdev_features_t one, netdev_features_t mask); 4471 4472 /* Allow TSO being used on stacked device : 4473 * Performing the GSO segmentation before last device 4474 * is a performance improvement. 4475 */ 4476 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4477 netdev_features_t mask) 4478 { 4479 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4480 } 4481 4482 int __netdev_update_features(struct net_device *dev); 4483 void netdev_update_features(struct net_device *dev); 4484 void netdev_change_features(struct net_device *dev); 4485 4486 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4487 struct net_device *dev); 4488 4489 netdev_features_t passthru_features_check(struct sk_buff *skb, 4490 struct net_device *dev, 4491 netdev_features_t features); 4492 netdev_features_t netif_skb_features(struct sk_buff *skb); 4493 4494 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4495 { 4496 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4497 4498 /* check flags correspondence */ 4499 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4500 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4501 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4502 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4503 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4504 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4505 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4506 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4507 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4508 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4509 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4510 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4511 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4512 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4513 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4514 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4515 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4516 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4517 4518 return (features & feature) == feature; 4519 } 4520 4521 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4522 { 4523 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4524 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4525 } 4526 4527 static inline bool netif_needs_gso(struct sk_buff *skb, 4528 netdev_features_t features) 4529 { 4530 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4531 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4532 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4533 } 4534 4535 static inline void netif_set_gso_max_size(struct net_device *dev, 4536 unsigned int size) 4537 { 4538 dev->gso_max_size = size; 4539 } 4540 4541 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4542 int pulled_hlen, u16 mac_offset, 4543 int mac_len) 4544 { 4545 skb->protocol = protocol; 4546 skb->encapsulation = 1; 4547 skb_push(skb, pulled_hlen); 4548 skb_reset_transport_header(skb); 4549 skb->mac_header = mac_offset; 4550 skb->network_header = skb->mac_header + mac_len; 4551 skb->mac_len = mac_len; 4552 } 4553 4554 static inline bool netif_is_macsec(const struct net_device *dev) 4555 { 4556 return dev->priv_flags & IFF_MACSEC; 4557 } 4558 4559 static inline bool netif_is_macvlan(const struct net_device *dev) 4560 { 4561 return dev->priv_flags & IFF_MACVLAN; 4562 } 4563 4564 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4565 { 4566 return dev->priv_flags & IFF_MACVLAN_PORT; 4567 } 4568 4569 static inline bool netif_is_bond_master(const struct net_device *dev) 4570 { 4571 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4572 } 4573 4574 static inline bool netif_is_bond_slave(const struct net_device *dev) 4575 { 4576 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4577 } 4578 4579 static inline bool netif_supports_nofcs(struct net_device *dev) 4580 { 4581 return dev->priv_flags & IFF_SUPP_NOFCS; 4582 } 4583 4584 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 4585 { 4586 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 4587 } 4588 4589 static inline bool netif_is_l3_master(const struct net_device *dev) 4590 { 4591 return dev->priv_flags & IFF_L3MDEV_MASTER; 4592 } 4593 4594 static inline bool netif_is_l3_slave(const struct net_device *dev) 4595 { 4596 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4597 } 4598 4599 static inline bool netif_is_bridge_master(const struct net_device *dev) 4600 { 4601 return dev->priv_flags & IFF_EBRIDGE; 4602 } 4603 4604 static inline bool netif_is_bridge_port(const struct net_device *dev) 4605 { 4606 return dev->priv_flags & IFF_BRIDGE_PORT; 4607 } 4608 4609 static inline bool netif_is_ovs_master(const struct net_device *dev) 4610 { 4611 return dev->priv_flags & IFF_OPENVSWITCH; 4612 } 4613 4614 static inline bool netif_is_ovs_port(const struct net_device *dev) 4615 { 4616 return dev->priv_flags & IFF_OVS_DATAPATH; 4617 } 4618 4619 static inline bool netif_is_team_master(const struct net_device *dev) 4620 { 4621 return dev->priv_flags & IFF_TEAM; 4622 } 4623 4624 static inline bool netif_is_team_port(const struct net_device *dev) 4625 { 4626 return dev->priv_flags & IFF_TEAM_PORT; 4627 } 4628 4629 static inline bool netif_is_lag_master(const struct net_device *dev) 4630 { 4631 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4632 } 4633 4634 static inline bool netif_is_lag_port(const struct net_device *dev) 4635 { 4636 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4637 } 4638 4639 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4640 { 4641 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4642 } 4643 4644 static inline bool netif_is_failover(const struct net_device *dev) 4645 { 4646 return dev->priv_flags & IFF_FAILOVER; 4647 } 4648 4649 static inline bool netif_is_failover_slave(const struct net_device *dev) 4650 { 4651 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4652 } 4653 4654 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4655 static inline void netif_keep_dst(struct net_device *dev) 4656 { 4657 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4658 } 4659 4660 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4661 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4662 { 4663 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4664 return dev->priv_flags & IFF_MACSEC; 4665 } 4666 4667 extern struct pernet_operations __net_initdata loopback_net_ops; 4668 4669 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4670 4671 /* netdev_printk helpers, similar to dev_printk */ 4672 4673 static inline const char *netdev_name(const struct net_device *dev) 4674 { 4675 if (!dev->name[0] || strchr(dev->name, '%')) 4676 return "(unnamed net_device)"; 4677 return dev->name; 4678 } 4679 4680 static inline bool netdev_unregistering(const struct net_device *dev) 4681 { 4682 return dev->reg_state == NETREG_UNREGISTERING; 4683 } 4684 4685 static inline const char *netdev_reg_state(const struct net_device *dev) 4686 { 4687 switch (dev->reg_state) { 4688 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4689 case NETREG_REGISTERED: return ""; 4690 case NETREG_UNREGISTERING: return " (unregistering)"; 4691 case NETREG_UNREGISTERED: return " (unregistered)"; 4692 case NETREG_RELEASED: return " (released)"; 4693 case NETREG_DUMMY: return " (dummy)"; 4694 } 4695 4696 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4697 return " (unknown)"; 4698 } 4699 4700 __printf(3, 4) __cold 4701 void netdev_printk(const char *level, const struct net_device *dev, 4702 const char *format, ...); 4703 __printf(2, 3) __cold 4704 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4705 __printf(2, 3) __cold 4706 void netdev_alert(const struct net_device *dev, const char *format, ...); 4707 __printf(2, 3) __cold 4708 void netdev_crit(const struct net_device *dev, const char *format, ...); 4709 __printf(2, 3) __cold 4710 void netdev_err(const struct net_device *dev, const char *format, ...); 4711 __printf(2, 3) __cold 4712 void netdev_warn(const struct net_device *dev, const char *format, ...); 4713 __printf(2, 3) __cold 4714 void netdev_notice(const struct net_device *dev, const char *format, ...); 4715 __printf(2, 3) __cold 4716 void netdev_info(const struct net_device *dev, const char *format, ...); 4717 4718 #define netdev_level_once(level, dev, fmt, ...) \ 4719 do { \ 4720 static bool __print_once __read_mostly; \ 4721 \ 4722 if (!__print_once) { \ 4723 __print_once = true; \ 4724 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4725 } \ 4726 } while (0) 4727 4728 #define netdev_emerg_once(dev, fmt, ...) \ 4729 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4730 #define netdev_alert_once(dev, fmt, ...) \ 4731 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4732 #define netdev_crit_once(dev, fmt, ...) \ 4733 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4734 #define netdev_err_once(dev, fmt, ...) \ 4735 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4736 #define netdev_warn_once(dev, fmt, ...) \ 4737 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4738 #define netdev_notice_once(dev, fmt, ...) \ 4739 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4740 #define netdev_info_once(dev, fmt, ...) \ 4741 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4742 4743 #define MODULE_ALIAS_NETDEV(device) \ 4744 MODULE_ALIAS("netdev-" device) 4745 4746 #if defined(CONFIG_DYNAMIC_DEBUG) 4747 #define netdev_dbg(__dev, format, args...) \ 4748 do { \ 4749 dynamic_netdev_dbg(__dev, format, ##args); \ 4750 } while (0) 4751 #elif defined(DEBUG) 4752 #define netdev_dbg(__dev, format, args...) \ 4753 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4754 #else 4755 #define netdev_dbg(__dev, format, args...) \ 4756 ({ \ 4757 if (0) \ 4758 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4759 }) 4760 #endif 4761 4762 #if defined(VERBOSE_DEBUG) 4763 #define netdev_vdbg netdev_dbg 4764 #else 4765 4766 #define netdev_vdbg(dev, format, args...) \ 4767 ({ \ 4768 if (0) \ 4769 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4770 0; \ 4771 }) 4772 #endif 4773 4774 /* 4775 * netdev_WARN() acts like dev_printk(), but with the key difference 4776 * of using a WARN/WARN_ON to get the message out, including the 4777 * file/line information and a backtrace. 4778 */ 4779 #define netdev_WARN(dev, format, args...) \ 4780 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4781 netdev_reg_state(dev), ##args) 4782 4783 #define netdev_WARN_ONCE(dev, format, args...) \ 4784 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4785 netdev_reg_state(dev), ##args) 4786 4787 /* netif printk helpers, similar to netdev_printk */ 4788 4789 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4790 do { \ 4791 if (netif_msg_##type(priv)) \ 4792 netdev_printk(level, (dev), fmt, ##args); \ 4793 } while (0) 4794 4795 #define netif_level(level, priv, type, dev, fmt, args...) \ 4796 do { \ 4797 if (netif_msg_##type(priv)) \ 4798 netdev_##level(dev, fmt, ##args); \ 4799 } while (0) 4800 4801 #define netif_emerg(priv, type, dev, fmt, args...) \ 4802 netif_level(emerg, priv, type, dev, fmt, ##args) 4803 #define netif_alert(priv, type, dev, fmt, args...) \ 4804 netif_level(alert, priv, type, dev, fmt, ##args) 4805 #define netif_crit(priv, type, dev, fmt, args...) \ 4806 netif_level(crit, priv, type, dev, fmt, ##args) 4807 #define netif_err(priv, type, dev, fmt, args...) \ 4808 netif_level(err, priv, type, dev, fmt, ##args) 4809 #define netif_warn(priv, type, dev, fmt, args...) \ 4810 netif_level(warn, priv, type, dev, fmt, ##args) 4811 #define netif_notice(priv, type, dev, fmt, args...) \ 4812 netif_level(notice, priv, type, dev, fmt, ##args) 4813 #define netif_info(priv, type, dev, fmt, args...) \ 4814 netif_level(info, priv, type, dev, fmt, ##args) 4815 4816 #if defined(CONFIG_DYNAMIC_DEBUG) 4817 #define netif_dbg(priv, type, netdev, format, args...) \ 4818 do { \ 4819 if (netif_msg_##type(priv)) \ 4820 dynamic_netdev_dbg(netdev, format, ##args); \ 4821 } while (0) 4822 #elif defined(DEBUG) 4823 #define netif_dbg(priv, type, dev, format, args...) \ 4824 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4825 #else 4826 #define netif_dbg(priv, type, dev, format, args...) \ 4827 ({ \ 4828 if (0) \ 4829 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4830 0; \ 4831 }) 4832 #endif 4833 4834 /* if @cond then downgrade to debug, else print at @level */ 4835 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4836 do { \ 4837 if (cond) \ 4838 netif_dbg(priv, type, netdev, fmt, ##args); \ 4839 else \ 4840 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4841 } while (0) 4842 4843 #if defined(VERBOSE_DEBUG) 4844 #define netif_vdbg netif_dbg 4845 #else 4846 #define netif_vdbg(priv, type, dev, format, args...) \ 4847 ({ \ 4848 if (0) \ 4849 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4850 0; \ 4851 }) 4852 #endif 4853 4854 /* 4855 * The list of packet types we will receive (as opposed to discard) 4856 * and the routines to invoke. 4857 * 4858 * Why 16. Because with 16 the only overlap we get on a hash of the 4859 * low nibble of the protocol value is RARP/SNAP/X.25. 4860 * 4861 * 0800 IP 4862 * 0001 802.3 4863 * 0002 AX.25 4864 * 0004 802.2 4865 * 8035 RARP 4866 * 0005 SNAP 4867 * 0805 X.25 4868 * 0806 ARP 4869 * 8137 IPX 4870 * 0009 Localtalk 4871 * 86DD IPv6 4872 */ 4873 #define PTYPE_HASH_SIZE (16) 4874 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4875 4876 #endif /* _LINUX_NETDEVICE_H */ 4877