xref: /openbmc/linux/include/linux/netdevice.h (revision d003d772)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40 
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 #include <net/xdp.h>
48 
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_port;
60 
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct bpf_prog;
70 struct xdp_buff;
71 
72 void netdev_set_default_ethtool_ops(struct net_device *dev,
73 				    const struct ethtool_ops *ops);
74 
75 /* Backlog congestion levels */
76 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
77 #define NET_RX_DROP		1	/* packet dropped */
78 
79 /*
80  * Transmit return codes: transmit return codes originate from three different
81  * namespaces:
82  *
83  * - qdisc return codes
84  * - driver transmit return codes
85  * - errno values
86  *
87  * Drivers are allowed to return any one of those in their hard_start_xmit()
88  * function. Real network devices commonly used with qdiscs should only return
89  * the driver transmit return codes though - when qdiscs are used, the actual
90  * transmission happens asynchronously, so the value is not propagated to
91  * higher layers. Virtual network devices transmit synchronously; in this case
92  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93  * others are propagated to higher layers.
94  */
95 
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS	0x00
98 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
99 #define NET_XMIT_CN		0x02	/* congestion notification	*/
100 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
101 
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK		0xf0
110 
111 enum netdev_tx {
112 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
113 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
114 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst-case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 #  define LL_MAX_HEADER 128
146 # else
147 #  define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159 
160 /*
161  *	Old network device statistics. Fields are native words
162  *	(unsigned long) so they can be read and written atomically.
163  */
164 
165 struct net_device_stats {
166 	unsigned long	rx_packets;
167 	unsigned long	tx_packets;
168 	unsigned long	rx_bytes;
169 	unsigned long	tx_bytes;
170 	unsigned long	rx_errors;
171 	unsigned long	tx_errors;
172 	unsigned long	rx_dropped;
173 	unsigned long	tx_dropped;
174 	unsigned long	multicast;
175 	unsigned long	collisions;
176 	unsigned long	rx_length_errors;
177 	unsigned long	rx_over_errors;
178 	unsigned long	rx_crc_errors;
179 	unsigned long	rx_frame_errors;
180 	unsigned long	rx_fifo_errors;
181 	unsigned long	rx_missed_errors;
182 	unsigned long	tx_aborted_errors;
183 	unsigned long	tx_carrier_errors;
184 	unsigned long	tx_fifo_errors;
185 	unsigned long	tx_heartbeat_errors;
186 	unsigned long	tx_window_errors;
187 	unsigned long	rx_compressed;
188 	unsigned long	tx_compressed;
189 };
190 
191 
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194 
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key rps_needed;
198 extern struct static_key rfs_needed;
199 #endif
200 
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204 
205 struct netdev_hw_addr {
206 	struct list_head	list;
207 	unsigned char		addr[MAX_ADDR_LEN];
208 	unsigned char		type;
209 #define NETDEV_HW_ADDR_T_LAN		1
210 #define NETDEV_HW_ADDR_T_SAN		2
211 #define NETDEV_HW_ADDR_T_SLAVE		3
212 #define NETDEV_HW_ADDR_T_UNICAST	4
213 #define NETDEV_HW_ADDR_T_MULTICAST	5
214 	bool			global_use;
215 	int			sync_cnt;
216 	int			refcount;
217 	int			synced;
218 	struct rcu_head		rcu_head;
219 };
220 
221 struct netdev_hw_addr_list {
222 	struct list_head	list;
223 	int			count;
224 };
225 
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229 	list_for_each_entry(ha, &(l)->list, list)
230 
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235 
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240 
241 struct hh_cache {
242 	unsigned int	hh_len;
243 	seqlock_t	hh_lock;
244 
245 	/* cached hardware header; allow for machine alignment needs.        */
246 #define HH_DATA_MOD	16
247 #define HH_DATA_OFF(__len) \
248 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253 
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255  * Alternative is:
256  *   dev->hard_header_len ? (dev->hard_header_len +
257  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258  *
259  * We could use other alignment values, but we must maintain the
260  * relationship HH alignment <= LL alignment.
261  */
262 #define LL_RESERVED_SPACE(dev) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266 
267 struct header_ops {
268 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
269 			   unsigned short type, const void *daddr,
270 			   const void *saddr, unsigned int len);
271 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
272 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 	void	(*cache_update)(struct hh_cache *hh,
274 				const struct net_device *dev,
275 				const unsigned char *haddr);
276 	bool	(*validate)(const char *ll_header, unsigned int len);
277 	__be16	(*parse_protocol)(const struct sk_buff *skb);
278 };
279 
280 /* These flag bits are private to the generic network queueing
281  * layer; they may not be explicitly referenced by any other
282  * code.
283  */
284 
285 enum netdev_state_t {
286 	__LINK_STATE_START,
287 	__LINK_STATE_PRESENT,
288 	__LINK_STATE_NOCARRIER,
289 	__LINK_STATE_LINKWATCH_PENDING,
290 	__LINK_STATE_DORMANT,
291 };
292 
293 
294 /*
295  * This structure holds boot-time configured netdevice settings. They
296  * are then used in the device probing.
297  */
298 struct netdev_boot_setup {
299 	char name[IFNAMSIZ];
300 	struct ifmap map;
301 };
302 #define NETDEV_BOOT_SETUP_MAX 8
303 
304 int __init netdev_boot_setup(char *str);
305 
306 struct gro_list {
307 	struct list_head	list;
308 	int			count;
309 };
310 
311 /*
312  * size of gro hash buckets, must less than bit number of
313  * napi_struct::gro_bitmask
314  */
315 #define GRO_HASH_BUCKETS	8
316 
317 /*
318  * Structure for NAPI scheduling similar to tasklet but with weighting
319  */
320 struct napi_struct {
321 	/* The poll_list must only be managed by the entity which
322 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
323 	 * whoever atomically sets that bit can add this napi_struct
324 	 * to the per-CPU poll_list, and whoever clears that bit
325 	 * can remove from the list right before clearing the bit.
326 	 */
327 	struct list_head	poll_list;
328 
329 	unsigned long		state;
330 	int			weight;
331 	unsigned long		gro_bitmask;
332 	int			(*poll)(struct napi_struct *, int);
333 #ifdef CONFIG_NETPOLL
334 	int			poll_owner;
335 #endif
336 	struct net_device	*dev;
337 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
338 	struct sk_buff		*skb;
339 	struct hrtimer		timer;
340 	struct list_head	dev_list;
341 	struct hlist_node	napi_hash_node;
342 	unsigned int		napi_id;
343 };
344 
345 enum {
346 	NAPI_STATE_SCHED,	/* Poll is scheduled */
347 	NAPI_STATE_MISSED,	/* reschedule a napi */
348 	NAPI_STATE_DISABLE,	/* Disable pending */
349 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
350 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
351 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
352 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
353 };
354 
355 enum {
356 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
357 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
358 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
359 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
360 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
361 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
362 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
363 };
364 
365 enum gro_result {
366 	GRO_MERGED,
367 	GRO_MERGED_FREE,
368 	GRO_HELD,
369 	GRO_NORMAL,
370 	GRO_DROP,
371 	GRO_CONSUMED,
372 };
373 typedef enum gro_result gro_result_t;
374 
375 /*
376  * enum rx_handler_result - Possible return values for rx_handlers.
377  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
378  * further.
379  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
380  * case skb->dev was changed by rx_handler.
381  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
382  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
383  *
384  * rx_handlers are functions called from inside __netif_receive_skb(), to do
385  * special processing of the skb, prior to delivery to protocol handlers.
386  *
387  * Currently, a net_device can only have a single rx_handler registered. Trying
388  * to register a second rx_handler will return -EBUSY.
389  *
390  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
391  * To unregister a rx_handler on a net_device, use
392  * netdev_rx_handler_unregister().
393  *
394  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
395  * do with the skb.
396  *
397  * If the rx_handler consumed the skb in some way, it should return
398  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
399  * the skb to be delivered in some other way.
400  *
401  * If the rx_handler changed skb->dev, to divert the skb to another
402  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
403  * new device will be called if it exists.
404  *
405  * If the rx_handler decides the skb should be ignored, it should return
406  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
407  * are registered on exact device (ptype->dev == skb->dev).
408  *
409  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
410  * delivered, it should return RX_HANDLER_PASS.
411  *
412  * A device without a registered rx_handler will behave as if rx_handler
413  * returned RX_HANDLER_PASS.
414  */
415 
416 enum rx_handler_result {
417 	RX_HANDLER_CONSUMED,
418 	RX_HANDLER_ANOTHER,
419 	RX_HANDLER_EXACT,
420 	RX_HANDLER_PASS,
421 };
422 typedef enum rx_handler_result rx_handler_result_t;
423 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
424 
425 void __napi_schedule(struct napi_struct *n);
426 void __napi_schedule_irqoff(struct napi_struct *n);
427 
428 static inline bool napi_disable_pending(struct napi_struct *n)
429 {
430 	return test_bit(NAPI_STATE_DISABLE, &n->state);
431 }
432 
433 bool napi_schedule_prep(struct napi_struct *n);
434 
435 /**
436  *	napi_schedule - schedule NAPI poll
437  *	@n: NAPI context
438  *
439  * Schedule NAPI poll routine to be called if it is not already
440  * running.
441  */
442 static inline void napi_schedule(struct napi_struct *n)
443 {
444 	if (napi_schedule_prep(n))
445 		__napi_schedule(n);
446 }
447 
448 /**
449  *	napi_schedule_irqoff - schedule NAPI poll
450  *	@n: NAPI context
451  *
452  * Variant of napi_schedule(), assuming hard irqs are masked.
453  */
454 static inline void napi_schedule_irqoff(struct napi_struct *n)
455 {
456 	if (napi_schedule_prep(n))
457 		__napi_schedule_irqoff(n);
458 }
459 
460 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
461 static inline bool napi_reschedule(struct napi_struct *napi)
462 {
463 	if (napi_schedule_prep(napi)) {
464 		__napi_schedule(napi);
465 		return true;
466 	}
467 	return false;
468 }
469 
470 bool napi_complete_done(struct napi_struct *n, int work_done);
471 /**
472  *	napi_complete - NAPI processing complete
473  *	@n: NAPI context
474  *
475  * Mark NAPI processing as complete.
476  * Consider using napi_complete_done() instead.
477  * Return false if device should avoid rearming interrupts.
478  */
479 static inline bool napi_complete(struct napi_struct *n)
480 {
481 	return napi_complete_done(n, 0);
482 }
483 
484 /**
485  *	napi_hash_del - remove a NAPI from global table
486  *	@napi: NAPI context
487  *
488  * Warning: caller must observe RCU grace period
489  * before freeing memory containing @napi, if
490  * this function returns true.
491  * Note: core networking stack automatically calls it
492  * from netif_napi_del().
493  * Drivers might want to call this helper to combine all
494  * the needed RCU grace periods into a single one.
495  */
496 bool napi_hash_del(struct napi_struct *napi);
497 
498 /**
499  *	napi_disable - prevent NAPI from scheduling
500  *	@n: NAPI context
501  *
502  * Stop NAPI from being scheduled on this context.
503  * Waits till any outstanding processing completes.
504  */
505 void napi_disable(struct napi_struct *n);
506 
507 /**
508  *	napi_enable - enable NAPI scheduling
509  *	@n: NAPI context
510  *
511  * Resume NAPI from being scheduled on this context.
512  * Must be paired with napi_disable.
513  */
514 static inline void napi_enable(struct napi_struct *n)
515 {
516 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
517 	smp_mb__before_atomic();
518 	clear_bit(NAPI_STATE_SCHED, &n->state);
519 	clear_bit(NAPI_STATE_NPSVC, &n->state);
520 }
521 
522 /**
523  *	napi_synchronize - wait until NAPI is not running
524  *	@n: NAPI context
525  *
526  * Wait until NAPI is done being scheduled on this context.
527  * Waits till any outstanding processing completes but
528  * does not disable future activations.
529  */
530 static inline void napi_synchronize(const struct napi_struct *n)
531 {
532 	if (IS_ENABLED(CONFIG_SMP))
533 		while (test_bit(NAPI_STATE_SCHED, &n->state))
534 			msleep(1);
535 	else
536 		barrier();
537 }
538 
539 /**
540  *	napi_if_scheduled_mark_missed - if napi is running, set the
541  *	NAPIF_STATE_MISSED
542  *	@n: NAPI context
543  *
544  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
545  * NAPI is scheduled.
546  **/
547 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
548 {
549 	unsigned long val, new;
550 
551 	do {
552 		val = READ_ONCE(n->state);
553 		if (val & NAPIF_STATE_DISABLE)
554 			return true;
555 
556 		if (!(val & NAPIF_STATE_SCHED))
557 			return false;
558 
559 		new = val | NAPIF_STATE_MISSED;
560 	} while (cmpxchg(&n->state, val, new) != val);
561 
562 	return true;
563 }
564 
565 enum netdev_queue_state_t {
566 	__QUEUE_STATE_DRV_XOFF,
567 	__QUEUE_STATE_STACK_XOFF,
568 	__QUEUE_STATE_FROZEN,
569 };
570 
571 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
572 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
573 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
574 
575 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
576 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
577 					QUEUE_STATE_FROZEN)
578 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
579 					QUEUE_STATE_FROZEN)
580 
581 /*
582  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
583  * netif_tx_* functions below are used to manipulate this flag.  The
584  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
585  * queue independently.  The netif_xmit_*stopped functions below are called
586  * to check if the queue has been stopped by the driver or stack (either
587  * of the XOFF bits are set in the state).  Drivers should not need to call
588  * netif_xmit*stopped functions, they should only be using netif_tx_*.
589  */
590 
591 struct netdev_queue {
592 /*
593  * read-mostly part
594  */
595 	struct net_device	*dev;
596 	struct Qdisc __rcu	*qdisc;
597 	struct Qdisc		*qdisc_sleeping;
598 #ifdef CONFIG_SYSFS
599 	struct kobject		kobj;
600 #endif
601 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
602 	int			numa_node;
603 #endif
604 	unsigned long		tx_maxrate;
605 	/*
606 	 * Number of TX timeouts for this queue
607 	 * (/sys/class/net/DEV/Q/trans_timeout)
608 	 */
609 	unsigned long		trans_timeout;
610 
611 	/* Subordinate device that the queue has been assigned to */
612 	struct net_device	*sb_dev;
613 #ifdef CONFIG_XDP_SOCKETS
614 	struct xdp_umem         *umem;
615 #endif
616 /*
617  * write-mostly part
618  */
619 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
620 	int			xmit_lock_owner;
621 	/*
622 	 * Time (in jiffies) of last Tx
623 	 */
624 	unsigned long		trans_start;
625 
626 	unsigned long		state;
627 
628 #ifdef CONFIG_BQL
629 	struct dql		dql;
630 #endif
631 } ____cacheline_aligned_in_smp;
632 
633 extern int sysctl_fb_tunnels_only_for_init_net;
634 extern int sysctl_devconf_inherit_init_net;
635 
636 static inline bool net_has_fallback_tunnels(const struct net *net)
637 {
638 	return net == &init_net ||
639 	       !IS_ENABLED(CONFIG_SYSCTL) ||
640 	       !sysctl_fb_tunnels_only_for_init_net;
641 }
642 
643 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
644 {
645 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
646 	return q->numa_node;
647 #else
648 	return NUMA_NO_NODE;
649 #endif
650 }
651 
652 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
653 {
654 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
655 	q->numa_node = node;
656 #endif
657 }
658 
659 #ifdef CONFIG_RPS
660 /*
661  * This structure holds an RPS map which can be of variable length.  The
662  * map is an array of CPUs.
663  */
664 struct rps_map {
665 	unsigned int len;
666 	struct rcu_head rcu;
667 	u16 cpus[0];
668 };
669 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
670 
671 /*
672  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
673  * tail pointer for that CPU's input queue at the time of last enqueue, and
674  * a hardware filter index.
675  */
676 struct rps_dev_flow {
677 	u16 cpu;
678 	u16 filter;
679 	unsigned int last_qtail;
680 };
681 #define RPS_NO_FILTER 0xffff
682 
683 /*
684  * The rps_dev_flow_table structure contains a table of flow mappings.
685  */
686 struct rps_dev_flow_table {
687 	unsigned int mask;
688 	struct rcu_head rcu;
689 	struct rps_dev_flow flows[0];
690 };
691 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
692     ((_num) * sizeof(struct rps_dev_flow)))
693 
694 /*
695  * The rps_sock_flow_table contains mappings of flows to the last CPU
696  * on which they were processed by the application (set in recvmsg).
697  * Each entry is a 32bit value. Upper part is the high-order bits
698  * of flow hash, lower part is CPU number.
699  * rps_cpu_mask is used to partition the space, depending on number of
700  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
701  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
702  * meaning we use 32-6=26 bits for the hash.
703  */
704 struct rps_sock_flow_table {
705 	u32	mask;
706 
707 	u32	ents[0] ____cacheline_aligned_in_smp;
708 };
709 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
710 
711 #define RPS_NO_CPU 0xffff
712 
713 extern u32 rps_cpu_mask;
714 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
715 
716 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
717 					u32 hash)
718 {
719 	if (table && hash) {
720 		unsigned int index = hash & table->mask;
721 		u32 val = hash & ~rps_cpu_mask;
722 
723 		/* We only give a hint, preemption can change CPU under us */
724 		val |= raw_smp_processor_id();
725 
726 		if (table->ents[index] != val)
727 			table->ents[index] = val;
728 	}
729 }
730 
731 #ifdef CONFIG_RFS_ACCEL
732 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
733 			 u16 filter_id);
734 #endif
735 #endif /* CONFIG_RPS */
736 
737 /* This structure contains an instance of an RX queue. */
738 struct netdev_rx_queue {
739 #ifdef CONFIG_RPS
740 	struct rps_map __rcu		*rps_map;
741 	struct rps_dev_flow_table __rcu	*rps_flow_table;
742 #endif
743 	struct kobject			kobj;
744 	struct net_device		*dev;
745 	struct xdp_rxq_info		xdp_rxq;
746 #ifdef CONFIG_XDP_SOCKETS
747 	struct xdp_umem                 *umem;
748 #endif
749 } ____cacheline_aligned_in_smp;
750 
751 /*
752  * RX queue sysfs structures and functions.
753  */
754 struct rx_queue_attribute {
755 	struct attribute attr;
756 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
757 	ssize_t (*store)(struct netdev_rx_queue *queue,
758 			 const char *buf, size_t len);
759 };
760 
761 #ifdef CONFIG_XPS
762 /*
763  * This structure holds an XPS map which can be of variable length.  The
764  * map is an array of queues.
765  */
766 struct xps_map {
767 	unsigned int len;
768 	unsigned int alloc_len;
769 	struct rcu_head rcu;
770 	u16 queues[0];
771 };
772 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
773 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
774        - sizeof(struct xps_map)) / sizeof(u16))
775 
776 /*
777  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
778  */
779 struct xps_dev_maps {
780 	struct rcu_head rcu;
781 	struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
782 };
783 
784 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
785 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
786 
787 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
788 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
789 
790 #endif /* CONFIG_XPS */
791 
792 #define TC_MAX_QUEUE	16
793 #define TC_BITMASK	15
794 /* HW offloaded queuing disciplines txq count and offset maps */
795 struct netdev_tc_txq {
796 	u16 count;
797 	u16 offset;
798 };
799 
800 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
801 /*
802  * This structure is to hold information about the device
803  * configured to run FCoE protocol stack.
804  */
805 struct netdev_fcoe_hbainfo {
806 	char	manufacturer[64];
807 	char	serial_number[64];
808 	char	hardware_version[64];
809 	char	driver_version[64];
810 	char	optionrom_version[64];
811 	char	firmware_version[64];
812 	char	model[256];
813 	char	model_description[256];
814 };
815 #endif
816 
817 #define MAX_PHYS_ITEM_ID_LEN 32
818 
819 /* This structure holds a unique identifier to identify some
820  * physical item (port for example) used by a netdevice.
821  */
822 struct netdev_phys_item_id {
823 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
824 	unsigned char id_len;
825 };
826 
827 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
828 					    struct netdev_phys_item_id *b)
829 {
830 	return a->id_len == b->id_len &&
831 	       memcmp(a->id, b->id, a->id_len) == 0;
832 }
833 
834 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
835 				       struct sk_buff *skb,
836 				       struct net_device *sb_dev);
837 
838 enum tc_setup_type {
839 	TC_SETUP_QDISC_MQPRIO,
840 	TC_SETUP_CLSU32,
841 	TC_SETUP_CLSFLOWER,
842 	TC_SETUP_CLSMATCHALL,
843 	TC_SETUP_CLSBPF,
844 	TC_SETUP_BLOCK,
845 	TC_SETUP_QDISC_CBS,
846 	TC_SETUP_QDISC_RED,
847 	TC_SETUP_QDISC_PRIO,
848 	TC_SETUP_QDISC_MQ,
849 	TC_SETUP_QDISC_ETF,
850 	TC_SETUP_ROOT_QDISC,
851 	TC_SETUP_QDISC_GRED,
852 };
853 
854 /* These structures hold the attributes of bpf state that are being passed
855  * to the netdevice through the bpf op.
856  */
857 enum bpf_netdev_command {
858 	/* Set or clear a bpf program used in the earliest stages of packet
859 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
860 	 * is responsible for calling bpf_prog_put on any old progs that are
861 	 * stored. In case of error, the callee need not release the new prog
862 	 * reference, but on success it takes ownership and must bpf_prog_put
863 	 * when it is no longer used.
864 	 */
865 	XDP_SETUP_PROG,
866 	XDP_SETUP_PROG_HW,
867 	XDP_QUERY_PROG,
868 	XDP_QUERY_PROG_HW,
869 	/* BPF program for offload callbacks, invoked at program load time. */
870 	BPF_OFFLOAD_MAP_ALLOC,
871 	BPF_OFFLOAD_MAP_FREE,
872 	XDP_SETUP_XSK_UMEM,
873 };
874 
875 struct bpf_prog_offload_ops;
876 struct netlink_ext_ack;
877 struct xdp_umem;
878 
879 struct netdev_bpf {
880 	enum bpf_netdev_command command;
881 	union {
882 		/* XDP_SETUP_PROG */
883 		struct {
884 			u32 flags;
885 			struct bpf_prog *prog;
886 			struct netlink_ext_ack *extack;
887 		};
888 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
889 		struct {
890 			u32 prog_id;
891 			/* flags with which program was installed */
892 			u32 prog_flags;
893 		};
894 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
895 		struct {
896 			struct bpf_offloaded_map *offmap;
897 		};
898 		/* XDP_SETUP_XSK_UMEM */
899 		struct {
900 			struct xdp_umem *umem;
901 			u16 queue_id;
902 		} xsk;
903 	};
904 };
905 
906 #ifdef CONFIG_XFRM_OFFLOAD
907 struct xfrmdev_ops {
908 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
909 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
910 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
911 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
912 				       struct xfrm_state *x);
913 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
914 };
915 #endif
916 
917 #if IS_ENABLED(CONFIG_TLS_DEVICE)
918 enum tls_offload_ctx_dir {
919 	TLS_OFFLOAD_CTX_DIR_RX,
920 	TLS_OFFLOAD_CTX_DIR_TX,
921 };
922 
923 struct tls_crypto_info;
924 struct tls_context;
925 
926 struct tlsdev_ops {
927 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
928 			   enum tls_offload_ctx_dir direction,
929 			   struct tls_crypto_info *crypto_info,
930 			   u32 start_offload_tcp_sn);
931 	void (*tls_dev_del)(struct net_device *netdev,
932 			    struct tls_context *ctx,
933 			    enum tls_offload_ctx_dir direction);
934 	void (*tls_dev_resync_rx)(struct net_device *netdev,
935 				  struct sock *sk, u32 seq, u64 rcd_sn);
936 };
937 #endif
938 
939 struct dev_ifalias {
940 	struct rcu_head rcuhead;
941 	char ifalias[];
942 };
943 
944 struct devlink;
945 
946 /*
947  * This structure defines the management hooks for network devices.
948  * The following hooks can be defined; unless noted otherwise, they are
949  * optional and can be filled with a null pointer.
950  *
951  * int (*ndo_init)(struct net_device *dev);
952  *     This function is called once when a network device is registered.
953  *     The network device can use this for any late stage initialization
954  *     or semantic validation. It can fail with an error code which will
955  *     be propagated back to register_netdev.
956  *
957  * void (*ndo_uninit)(struct net_device *dev);
958  *     This function is called when device is unregistered or when registration
959  *     fails. It is not called if init fails.
960  *
961  * int (*ndo_open)(struct net_device *dev);
962  *     This function is called when a network device transitions to the up
963  *     state.
964  *
965  * int (*ndo_stop)(struct net_device *dev);
966  *     This function is called when a network device transitions to the down
967  *     state.
968  *
969  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
970  *                               struct net_device *dev);
971  *	Called when a packet needs to be transmitted.
972  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
973  *	the queue before that can happen; it's for obsolete devices and weird
974  *	corner cases, but the stack really does a non-trivial amount
975  *	of useless work if you return NETDEV_TX_BUSY.
976  *	Required; cannot be NULL.
977  *
978  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
979  *					   struct net_device *dev
980  *					   netdev_features_t features);
981  *	Called by core transmit path to determine if device is capable of
982  *	performing offload operations on a given packet. This is to give
983  *	the device an opportunity to implement any restrictions that cannot
984  *	be otherwise expressed by feature flags. The check is called with
985  *	the set of features that the stack has calculated and it returns
986  *	those the driver believes to be appropriate.
987  *
988  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
989  *                         struct net_device *sb_dev,
990  *                         select_queue_fallback_t fallback);
991  *	Called to decide which queue to use when device supports multiple
992  *	transmit queues.
993  *
994  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
995  *	This function is called to allow device receiver to make
996  *	changes to configuration when multicast or promiscuous is enabled.
997  *
998  * void (*ndo_set_rx_mode)(struct net_device *dev);
999  *	This function is called device changes address list filtering.
1000  *	If driver handles unicast address filtering, it should set
1001  *	IFF_UNICAST_FLT in its priv_flags.
1002  *
1003  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1004  *	This function  is called when the Media Access Control address
1005  *	needs to be changed. If this interface is not defined, the
1006  *	MAC address can not be changed.
1007  *
1008  * int (*ndo_validate_addr)(struct net_device *dev);
1009  *	Test if Media Access Control address is valid for the device.
1010  *
1011  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1012  *	Called when a user requests an ioctl which can't be handled by
1013  *	the generic interface code. If not defined ioctls return
1014  *	not supported error code.
1015  *
1016  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1017  *	Used to set network devices bus interface parameters. This interface
1018  *	is retained for legacy reasons; new devices should use the bus
1019  *	interface (PCI) for low level management.
1020  *
1021  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1022  *	Called when a user wants to change the Maximum Transfer Unit
1023  *	of a device.
1024  *
1025  * void (*ndo_tx_timeout)(struct net_device *dev);
1026  *	Callback used when the transmitter has not made any progress
1027  *	for dev->watchdog ticks.
1028  *
1029  * void (*ndo_get_stats64)(struct net_device *dev,
1030  *                         struct rtnl_link_stats64 *storage);
1031  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1032  *	Called when a user wants to get the network device usage
1033  *	statistics. Drivers must do one of the following:
1034  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1035  *	   rtnl_link_stats64 structure passed by the caller.
1036  *	2. Define @ndo_get_stats to update a net_device_stats structure
1037  *	   (which should normally be dev->stats) and return a pointer to
1038  *	   it. The structure may be changed asynchronously only if each
1039  *	   field is written atomically.
1040  *	3. Update dev->stats asynchronously and atomically, and define
1041  *	   neither operation.
1042  *
1043  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1044  *	Return true if this device supports offload stats of this attr_id.
1045  *
1046  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1047  *	void *attr_data)
1048  *	Get statistics for offload operations by attr_id. Write it into the
1049  *	attr_data pointer.
1050  *
1051  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1052  *	If device supports VLAN filtering this function is called when a
1053  *	VLAN id is registered.
1054  *
1055  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1056  *	If device supports VLAN filtering this function is called when a
1057  *	VLAN id is unregistered.
1058  *
1059  * void (*ndo_poll_controller)(struct net_device *dev);
1060  *
1061  *	SR-IOV management functions.
1062  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1063  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1064  *			  u8 qos, __be16 proto);
1065  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1066  *			  int max_tx_rate);
1067  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1068  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1069  * int (*ndo_get_vf_config)(struct net_device *dev,
1070  *			    int vf, struct ifla_vf_info *ivf);
1071  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1072  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1073  *			  struct nlattr *port[]);
1074  *
1075  *      Enable or disable the VF ability to query its RSS Redirection Table and
1076  *      Hash Key. This is needed since on some devices VF share this information
1077  *      with PF and querying it may introduce a theoretical security risk.
1078  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1079  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1080  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1081  *		       void *type_data);
1082  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1083  *	This is always called from the stack with the rtnl lock held and netif
1084  *	tx queues stopped. This allows the netdevice to perform queue
1085  *	management safely.
1086  *
1087  *	Fiber Channel over Ethernet (FCoE) offload functions.
1088  * int (*ndo_fcoe_enable)(struct net_device *dev);
1089  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1090  *	so the underlying device can perform whatever needed configuration or
1091  *	initialization to support acceleration of FCoE traffic.
1092  *
1093  * int (*ndo_fcoe_disable)(struct net_device *dev);
1094  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1095  *	so the underlying device can perform whatever needed clean-ups to
1096  *	stop supporting acceleration of FCoE traffic.
1097  *
1098  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1099  *			     struct scatterlist *sgl, unsigned int sgc);
1100  *	Called when the FCoE Initiator wants to initialize an I/O that
1101  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1102  *	perform necessary setup and returns 1 to indicate the device is set up
1103  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1104  *
1105  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1106  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1107  *	indicated by the FC exchange id 'xid', so the underlying device can
1108  *	clean up and reuse resources for later DDP requests.
1109  *
1110  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1111  *			      struct scatterlist *sgl, unsigned int sgc);
1112  *	Called when the FCoE Target wants to initialize an I/O that
1113  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1114  *	perform necessary setup and returns 1 to indicate the device is set up
1115  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1116  *
1117  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1118  *			       struct netdev_fcoe_hbainfo *hbainfo);
1119  *	Called when the FCoE Protocol stack wants information on the underlying
1120  *	device. This information is utilized by the FCoE protocol stack to
1121  *	register attributes with Fiber Channel management service as per the
1122  *	FC-GS Fabric Device Management Information(FDMI) specification.
1123  *
1124  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1125  *	Called when the underlying device wants to override default World Wide
1126  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1127  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1128  *	protocol stack to use.
1129  *
1130  *	RFS acceleration.
1131  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1132  *			    u16 rxq_index, u32 flow_id);
1133  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1134  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1135  *	Return the filter ID on success, or a negative error code.
1136  *
1137  *	Slave management functions (for bridge, bonding, etc).
1138  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1139  *	Called to make another netdev an underling.
1140  *
1141  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1142  *	Called to release previously enslaved netdev.
1143  *
1144  *      Feature/offload setting functions.
1145  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1146  *		netdev_features_t features);
1147  *	Adjusts the requested feature flags according to device-specific
1148  *	constraints, and returns the resulting flags. Must not modify
1149  *	the device state.
1150  *
1151  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1152  *	Called to update device configuration to new features. Passed
1153  *	feature set might be less than what was returned by ndo_fix_features()).
1154  *	Must return >0 or -errno if it changed dev->features itself.
1155  *
1156  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1157  *		      struct net_device *dev,
1158  *		      const unsigned char *addr, u16 vid, u16 flags,
1159  *		      struct netlink_ext_ack *extack);
1160  *	Adds an FDB entry to dev for addr.
1161  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1162  *		      struct net_device *dev,
1163  *		      const unsigned char *addr, u16 vid)
1164  *	Deletes the FDB entry from dev coresponding to addr.
1165  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1166  *		       struct net_device *dev, struct net_device *filter_dev,
1167  *		       int *idx)
1168  *	Used to add FDB entries to dump requests. Implementers should add
1169  *	entries to skb and update idx with the number of entries.
1170  *
1171  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1172  *			     u16 flags, struct netlink_ext_ack *extack)
1173  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1174  *			     struct net_device *dev, u32 filter_mask,
1175  *			     int nlflags)
1176  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1177  *			     u16 flags);
1178  *
1179  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1180  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1181  *	which do not represent real hardware may define this to allow their
1182  *	userspace components to manage their virtual carrier state. Devices
1183  *	that determine carrier state from physical hardware properties (eg
1184  *	network cables) or protocol-dependent mechanisms (eg
1185  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1186  *
1187  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1188  *			       struct netdev_phys_item_id *ppid);
1189  *	Called to get ID of physical port of this device. If driver does
1190  *	not implement this, it is assumed that the hw is not able to have
1191  *	multiple net devices on single physical port.
1192  *
1193  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1194  *				 struct netdev_phys_item_id *ppid)
1195  *	Called to get the parent ID of the physical port of this device.
1196  *
1197  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1198  *			      struct udp_tunnel_info *ti);
1199  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1200  *	address family that a UDP tunnel is listnening to. It is called only
1201  *	when a new port starts listening. The operation is protected by the
1202  *	RTNL.
1203  *
1204  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1205  *			      struct udp_tunnel_info *ti);
1206  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1207  *	address family that the UDP tunnel is not listening to anymore. The
1208  *	operation is protected by the RTNL.
1209  *
1210  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1211  *				 struct net_device *dev)
1212  *	Called by upper layer devices to accelerate switching or other
1213  *	station functionality into hardware. 'pdev is the lowerdev
1214  *	to use for the offload and 'dev' is the net device that will
1215  *	back the offload. Returns a pointer to the private structure
1216  *	the upper layer will maintain.
1217  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1218  *	Called by upper layer device to delete the station created
1219  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1220  *	the station and priv is the structure returned by the add
1221  *	operation.
1222  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1223  *			     int queue_index, u32 maxrate);
1224  *	Called when a user wants to set a max-rate limitation of specific
1225  *	TX queue.
1226  * int (*ndo_get_iflink)(const struct net_device *dev);
1227  *	Called to get the iflink value of this device.
1228  * void (*ndo_change_proto_down)(struct net_device *dev,
1229  *				 bool proto_down);
1230  *	This function is used to pass protocol port error state information
1231  *	to the switch driver. The switch driver can react to the proto_down
1232  *      by doing a phys down on the associated switch port.
1233  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1234  *	This function is used to get egress tunnel information for given skb.
1235  *	This is useful for retrieving outer tunnel header parameters while
1236  *	sampling packet.
1237  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1238  *	This function is used to specify the headroom that the skb must
1239  *	consider when allocation skb during packet reception. Setting
1240  *	appropriate rx headroom value allows avoiding skb head copy on
1241  *	forward. Setting a negative value resets the rx headroom to the
1242  *	default value.
1243  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1244  *	This function is used to set or query state related to XDP on the
1245  *	netdevice and manage BPF offload. See definition of
1246  *	enum bpf_netdev_command for details.
1247  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1248  *			u32 flags);
1249  *	This function is used to submit @n XDP packets for transmit on a
1250  *	netdevice. Returns number of frames successfully transmitted, frames
1251  *	that got dropped are freed/returned via xdp_return_frame().
1252  *	Returns negative number, means general error invoking ndo, meaning
1253  *	no frames were xmit'ed and core-caller will free all frames.
1254  * struct devlink *(*ndo_get_devlink)(struct net_device *dev);
1255  *	Get devlink instance associated with a given netdev.
1256  *	Called with a reference on the netdevice and devlink locks only,
1257  *	rtnl_lock is not held.
1258  */
1259 struct net_device_ops {
1260 	int			(*ndo_init)(struct net_device *dev);
1261 	void			(*ndo_uninit)(struct net_device *dev);
1262 	int			(*ndo_open)(struct net_device *dev);
1263 	int			(*ndo_stop)(struct net_device *dev);
1264 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1265 						  struct net_device *dev);
1266 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1267 						      struct net_device *dev,
1268 						      netdev_features_t features);
1269 	u16			(*ndo_select_queue)(struct net_device *dev,
1270 						    struct sk_buff *skb,
1271 						    struct net_device *sb_dev,
1272 						    select_queue_fallback_t fallback);
1273 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1274 						       int flags);
1275 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1276 	int			(*ndo_set_mac_address)(struct net_device *dev,
1277 						       void *addr);
1278 	int			(*ndo_validate_addr)(struct net_device *dev);
1279 	int			(*ndo_do_ioctl)(struct net_device *dev,
1280 					        struct ifreq *ifr, int cmd);
1281 	int			(*ndo_set_config)(struct net_device *dev,
1282 					          struct ifmap *map);
1283 	int			(*ndo_change_mtu)(struct net_device *dev,
1284 						  int new_mtu);
1285 	int			(*ndo_neigh_setup)(struct net_device *dev,
1286 						   struct neigh_parms *);
1287 	void			(*ndo_tx_timeout) (struct net_device *dev);
1288 
1289 	void			(*ndo_get_stats64)(struct net_device *dev,
1290 						   struct rtnl_link_stats64 *storage);
1291 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1292 	int			(*ndo_get_offload_stats)(int attr_id,
1293 							 const struct net_device *dev,
1294 							 void *attr_data);
1295 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1296 
1297 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1298 						       __be16 proto, u16 vid);
1299 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1300 						        __be16 proto, u16 vid);
1301 #ifdef CONFIG_NET_POLL_CONTROLLER
1302 	void                    (*ndo_poll_controller)(struct net_device *dev);
1303 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1304 						     struct netpoll_info *info);
1305 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1306 #endif
1307 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1308 						  int queue, u8 *mac);
1309 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1310 						   int queue, u16 vlan,
1311 						   u8 qos, __be16 proto);
1312 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1313 						   int vf, int min_tx_rate,
1314 						   int max_tx_rate);
1315 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1316 						       int vf, bool setting);
1317 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1318 						    int vf, bool setting);
1319 	int			(*ndo_get_vf_config)(struct net_device *dev,
1320 						     int vf,
1321 						     struct ifla_vf_info *ivf);
1322 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1323 							 int vf, int link_state);
1324 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1325 						    int vf,
1326 						    struct ifla_vf_stats
1327 						    *vf_stats);
1328 	int			(*ndo_set_vf_port)(struct net_device *dev,
1329 						   int vf,
1330 						   struct nlattr *port[]);
1331 	int			(*ndo_get_vf_port)(struct net_device *dev,
1332 						   int vf, struct sk_buff *skb);
1333 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1334 						   int vf, u64 guid,
1335 						   int guid_type);
1336 	int			(*ndo_set_vf_rss_query_en)(
1337 						   struct net_device *dev,
1338 						   int vf, bool setting);
1339 	int			(*ndo_setup_tc)(struct net_device *dev,
1340 						enum tc_setup_type type,
1341 						void *type_data);
1342 #if IS_ENABLED(CONFIG_FCOE)
1343 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1344 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1345 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1346 						      u16 xid,
1347 						      struct scatterlist *sgl,
1348 						      unsigned int sgc);
1349 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1350 						     u16 xid);
1351 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1352 						       u16 xid,
1353 						       struct scatterlist *sgl,
1354 						       unsigned int sgc);
1355 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1356 							struct netdev_fcoe_hbainfo *hbainfo);
1357 #endif
1358 
1359 #if IS_ENABLED(CONFIG_LIBFCOE)
1360 #define NETDEV_FCOE_WWNN 0
1361 #define NETDEV_FCOE_WWPN 1
1362 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1363 						    u64 *wwn, int type);
1364 #endif
1365 
1366 #ifdef CONFIG_RFS_ACCEL
1367 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1368 						     const struct sk_buff *skb,
1369 						     u16 rxq_index,
1370 						     u32 flow_id);
1371 #endif
1372 	int			(*ndo_add_slave)(struct net_device *dev,
1373 						 struct net_device *slave_dev,
1374 						 struct netlink_ext_ack *extack);
1375 	int			(*ndo_del_slave)(struct net_device *dev,
1376 						 struct net_device *slave_dev);
1377 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1378 						    netdev_features_t features);
1379 	int			(*ndo_set_features)(struct net_device *dev,
1380 						    netdev_features_t features);
1381 	int			(*ndo_neigh_construct)(struct net_device *dev,
1382 						       struct neighbour *n);
1383 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1384 						     struct neighbour *n);
1385 
1386 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1387 					       struct nlattr *tb[],
1388 					       struct net_device *dev,
1389 					       const unsigned char *addr,
1390 					       u16 vid,
1391 					       u16 flags,
1392 					       struct netlink_ext_ack *extack);
1393 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1394 					       struct nlattr *tb[],
1395 					       struct net_device *dev,
1396 					       const unsigned char *addr,
1397 					       u16 vid);
1398 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1399 						struct netlink_callback *cb,
1400 						struct net_device *dev,
1401 						struct net_device *filter_dev,
1402 						int *idx);
1403 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1404 					       struct nlattr *tb[],
1405 					       struct net_device *dev,
1406 					       const unsigned char *addr,
1407 					       u16 vid, u32 portid, u32 seq,
1408 					       struct netlink_ext_ack *extack);
1409 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1410 						      struct nlmsghdr *nlh,
1411 						      u16 flags,
1412 						      struct netlink_ext_ack *extack);
1413 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1414 						      u32 pid, u32 seq,
1415 						      struct net_device *dev,
1416 						      u32 filter_mask,
1417 						      int nlflags);
1418 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1419 						      struct nlmsghdr *nlh,
1420 						      u16 flags);
1421 	int			(*ndo_change_carrier)(struct net_device *dev,
1422 						      bool new_carrier);
1423 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1424 							struct netdev_phys_item_id *ppid);
1425 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1426 							  struct netdev_phys_item_id *ppid);
1427 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1428 							  char *name, size_t len);
1429 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1430 						      struct udp_tunnel_info *ti);
1431 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1432 						      struct udp_tunnel_info *ti);
1433 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1434 							struct net_device *dev);
1435 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1436 							void *priv);
1437 
1438 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1439 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1440 						      int queue_index,
1441 						      u32 maxrate);
1442 	int			(*ndo_get_iflink)(const struct net_device *dev);
1443 	int			(*ndo_change_proto_down)(struct net_device *dev,
1444 							 bool proto_down);
1445 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1446 						       struct sk_buff *skb);
1447 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1448 						       int needed_headroom);
1449 	int			(*ndo_bpf)(struct net_device *dev,
1450 					   struct netdev_bpf *bpf);
1451 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1452 						struct xdp_frame **xdp,
1453 						u32 flags);
1454 	int			(*ndo_xsk_async_xmit)(struct net_device *dev,
1455 						      u32 queue_id);
1456 	struct devlink *	(*ndo_get_devlink)(struct net_device *dev);
1457 };
1458 
1459 /**
1460  * enum net_device_priv_flags - &struct net_device priv_flags
1461  *
1462  * These are the &struct net_device, they are only set internally
1463  * by drivers and used in the kernel. These flags are invisible to
1464  * userspace; this means that the order of these flags can change
1465  * during any kernel release.
1466  *
1467  * You should have a pretty good reason to be extending these flags.
1468  *
1469  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1470  * @IFF_EBRIDGE: Ethernet bridging device
1471  * @IFF_BONDING: bonding master or slave
1472  * @IFF_ISATAP: ISATAP interface (RFC4214)
1473  * @IFF_WAN_HDLC: WAN HDLC device
1474  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1475  *	release skb->dst
1476  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1477  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1478  * @IFF_MACVLAN_PORT: device used as macvlan port
1479  * @IFF_BRIDGE_PORT: device used as bridge port
1480  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1481  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1482  * @IFF_UNICAST_FLT: Supports unicast filtering
1483  * @IFF_TEAM_PORT: device used as team port
1484  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1485  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1486  *	change when it's running
1487  * @IFF_MACVLAN: Macvlan device
1488  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1489  *	underlying stacked devices
1490  * @IFF_L3MDEV_MASTER: device is an L3 master device
1491  * @IFF_NO_QUEUE: device can run without qdisc attached
1492  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1493  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1494  * @IFF_TEAM: device is a team device
1495  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1496  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1497  *	entity (i.e. the master device for bridged veth)
1498  * @IFF_MACSEC: device is a MACsec device
1499  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1500  * @IFF_FAILOVER: device is a failover master device
1501  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1502  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1503  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1504  */
1505 enum netdev_priv_flags {
1506 	IFF_802_1Q_VLAN			= 1<<0,
1507 	IFF_EBRIDGE			= 1<<1,
1508 	IFF_BONDING			= 1<<2,
1509 	IFF_ISATAP			= 1<<3,
1510 	IFF_WAN_HDLC			= 1<<4,
1511 	IFF_XMIT_DST_RELEASE		= 1<<5,
1512 	IFF_DONT_BRIDGE			= 1<<6,
1513 	IFF_DISABLE_NETPOLL		= 1<<7,
1514 	IFF_MACVLAN_PORT		= 1<<8,
1515 	IFF_BRIDGE_PORT			= 1<<9,
1516 	IFF_OVS_DATAPATH		= 1<<10,
1517 	IFF_TX_SKB_SHARING		= 1<<11,
1518 	IFF_UNICAST_FLT			= 1<<12,
1519 	IFF_TEAM_PORT			= 1<<13,
1520 	IFF_SUPP_NOFCS			= 1<<14,
1521 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1522 	IFF_MACVLAN			= 1<<16,
1523 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1524 	IFF_L3MDEV_MASTER		= 1<<18,
1525 	IFF_NO_QUEUE			= 1<<19,
1526 	IFF_OPENVSWITCH			= 1<<20,
1527 	IFF_L3MDEV_SLAVE		= 1<<21,
1528 	IFF_TEAM			= 1<<22,
1529 	IFF_RXFH_CONFIGURED		= 1<<23,
1530 	IFF_PHONY_HEADROOM		= 1<<24,
1531 	IFF_MACSEC			= 1<<25,
1532 	IFF_NO_RX_HANDLER		= 1<<26,
1533 	IFF_FAILOVER			= 1<<27,
1534 	IFF_FAILOVER_SLAVE		= 1<<28,
1535 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1536 	IFF_LIVE_RENAME_OK		= 1<<30,
1537 };
1538 
1539 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1540 #define IFF_EBRIDGE			IFF_EBRIDGE
1541 #define IFF_BONDING			IFF_BONDING
1542 #define IFF_ISATAP			IFF_ISATAP
1543 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1544 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1545 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1546 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1547 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1548 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1549 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1550 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1551 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1552 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1553 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1554 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1555 #define IFF_MACVLAN			IFF_MACVLAN
1556 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1557 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1558 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1559 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1560 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1561 #define IFF_TEAM			IFF_TEAM
1562 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1563 #define IFF_MACSEC			IFF_MACSEC
1564 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1565 #define IFF_FAILOVER			IFF_FAILOVER
1566 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1567 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1568 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1569 
1570 /**
1571  *	struct net_device - The DEVICE structure.
1572  *
1573  *	Actually, this whole structure is a big mistake.  It mixes I/O
1574  *	data with strictly "high-level" data, and it has to know about
1575  *	almost every data structure used in the INET module.
1576  *
1577  *	@name:	This is the first field of the "visible" part of this structure
1578  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1579  *		of the interface.
1580  *
1581  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1582  *	@ifalias:	SNMP alias
1583  *	@mem_end:	Shared memory end
1584  *	@mem_start:	Shared memory start
1585  *	@base_addr:	Device I/O address
1586  *	@irq:		Device IRQ number
1587  *
1588  *	@state:		Generic network queuing layer state, see netdev_state_t
1589  *	@dev_list:	The global list of network devices
1590  *	@napi_list:	List entry used for polling NAPI devices
1591  *	@unreg_list:	List entry  when we are unregistering the
1592  *			device; see the function unregister_netdev
1593  *	@close_list:	List entry used when we are closing the device
1594  *	@ptype_all:     Device-specific packet handlers for all protocols
1595  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1596  *
1597  *	@adj_list:	Directly linked devices, like slaves for bonding
1598  *	@features:	Currently active device features
1599  *	@hw_features:	User-changeable features
1600  *
1601  *	@wanted_features:	User-requested features
1602  *	@vlan_features:		Mask of features inheritable by VLAN devices
1603  *
1604  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1605  *				This field indicates what encapsulation
1606  *				offloads the hardware is capable of doing,
1607  *				and drivers will need to set them appropriately.
1608  *
1609  *	@mpls_features:	Mask of features inheritable by MPLS
1610  *
1611  *	@ifindex:	interface index
1612  *	@group:		The group the device belongs to
1613  *
1614  *	@stats:		Statistics struct, which was left as a legacy, use
1615  *			rtnl_link_stats64 instead
1616  *
1617  *	@rx_dropped:	Dropped packets by core network,
1618  *			do not use this in drivers
1619  *	@tx_dropped:	Dropped packets by core network,
1620  *			do not use this in drivers
1621  *	@rx_nohandler:	nohandler dropped packets by core network on
1622  *			inactive devices, do not use this in drivers
1623  *	@carrier_up_count:	Number of times the carrier has been up
1624  *	@carrier_down_count:	Number of times the carrier has been down
1625  *
1626  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1627  *				instead of ioctl,
1628  *				see <net/iw_handler.h> for details.
1629  *	@wireless_data:	Instance data managed by the core of wireless extensions
1630  *
1631  *	@netdev_ops:	Includes several pointers to callbacks,
1632  *			if one wants to override the ndo_*() functions
1633  *	@ethtool_ops:	Management operations
1634  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1635  *			discovery handling. Necessary for e.g. 6LoWPAN.
1636  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1637  *			of Layer 2 headers.
1638  *
1639  *	@flags:		Interface flags (a la BSD)
1640  *	@priv_flags:	Like 'flags' but invisible to userspace,
1641  *			see if.h for the definitions
1642  *	@gflags:	Global flags ( kept as legacy )
1643  *	@padded:	How much padding added by alloc_netdev()
1644  *	@operstate:	RFC2863 operstate
1645  *	@link_mode:	Mapping policy to operstate
1646  *	@if_port:	Selectable AUI, TP, ...
1647  *	@dma:		DMA channel
1648  *	@mtu:		Interface MTU value
1649  *	@min_mtu:	Interface Minimum MTU value
1650  *	@max_mtu:	Interface Maximum MTU value
1651  *	@type:		Interface hardware type
1652  *	@hard_header_len: Maximum hardware header length.
1653  *	@min_header_len:  Minimum hardware header length
1654  *
1655  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1656  *			  cases can this be guaranteed
1657  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1658  *			  cases can this be guaranteed. Some cases also use
1659  *			  LL_MAX_HEADER instead to allocate the skb
1660  *
1661  *	interface address info:
1662  *
1663  * 	@perm_addr:		Permanent hw address
1664  * 	@addr_assign_type:	Hw address assignment type
1665  * 	@addr_len:		Hardware address length
1666  *	@neigh_priv_len:	Used in neigh_alloc()
1667  * 	@dev_id:		Used to differentiate devices that share
1668  * 				the same link layer address
1669  * 	@dev_port:		Used to differentiate devices that share
1670  * 				the same function
1671  *	@addr_list_lock:	XXX: need comments on this one
1672  *	@uc_promisc:		Counter that indicates promiscuous mode
1673  *				has been enabled due to the need to listen to
1674  *				additional unicast addresses in a device that
1675  *				does not implement ndo_set_rx_mode()
1676  *	@uc:			unicast mac addresses
1677  *	@mc:			multicast mac addresses
1678  *	@dev_addrs:		list of device hw addresses
1679  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1680  *	@promiscuity:		Number of times the NIC is told to work in
1681  *				promiscuous mode; if it becomes 0 the NIC will
1682  *				exit promiscuous mode
1683  *	@allmulti:		Counter, enables or disables allmulticast mode
1684  *
1685  *	@vlan_info:	VLAN info
1686  *	@dsa_ptr:	dsa specific data
1687  *	@tipc_ptr:	TIPC specific data
1688  *	@atalk_ptr:	AppleTalk link
1689  *	@ip_ptr:	IPv4 specific data
1690  *	@dn_ptr:	DECnet specific data
1691  *	@ip6_ptr:	IPv6 specific data
1692  *	@ax25_ptr:	AX.25 specific data
1693  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1694  *
1695  *	@dev_addr:	Hw address (before bcast,
1696  *			because most packets are unicast)
1697  *
1698  *	@_rx:			Array of RX queues
1699  *	@num_rx_queues:		Number of RX queues
1700  *				allocated at register_netdev() time
1701  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1702  *
1703  *	@rx_handler:		handler for received packets
1704  *	@rx_handler_data: 	XXX: need comments on this one
1705  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1706  *				ingress processing
1707  *	@ingress_queue:		XXX: need comments on this one
1708  *	@broadcast:		hw bcast address
1709  *
1710  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1711  *			indexed by RX queue number. Assigned by driver.
1712  *			This must only be set if the ndo_rx_flow_steer
1713  *			operation is defined
1714  *	@index_hlist:		Device index hash chain
1715  *
1716  *	@_tx:			Array of TX queues
1717  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1718  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1719  *	@qdisc:			Root qdisc from userspace point of view
1720  *	@tx_queue_len:		Max frames per queue allowed
1721  *	@tx_global_lock: 	XXX: need comments on this one
1722  *
1723  *	@xps_maps:	XXX: need comments on this one
1724  *	@miniq_egress:		clsact qdisc specific data for
1725  *				egress processing
1726  *	@watchdog_timeo:	Represents the timeout that is used by
1727  *				the watchdog (see dev_watchdog())
1728  *	@watchdog_timer:	List of timers
1729  *
1730  *	@pcpu_refcnt:		Number of references to this device
1731  *	@todo_list:		Delayed register/unregister
1732  *	@link_watch_list:	XXX: need comments on this one
1733  *
1734  *	@reg_state:		Register/unregister state machine
1735  *	@dismantle:		Device is going to be freed
1736  *	@rtnl_link_state:	This enum represents the phases of creating
1737  *				a new link
1738  *
1739  *	@needs_free_netdev:	Should unregister perform free_netdev?
1740  *	@priv_destructor:	Called from unregister
1741  *	@npinfo:		XXX: need comments on this one
1742  * 	@nd_net:		Network namespace this network device is inside
1743  *
1744  * 	@ml_priv:	Mid-layer private
1745  * 	@lstats:	Loopback statistics
1746  * 	@tstats:	Tunnel statistics
1747  * 	@dstats:	Dummy statistics
1748  * 	@vstats:	Virtual ethernet statistics
1749  *
1750  *	@garp_port:	GARP
1751  *	@mrp_port:	MRP
1752  *
1753  *	@dev:		Class/net/name entry
1754  *	@sysfs_groups:	Space for optional device, statistics and wireless
1755  *			sysfs groups
1756  *
1757  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1758  *	@rtnl_link_ops:	Rtnl_link_ops
1759  *
1760  *	@gso_max_size:	Maximum size of generic segmentation offload
1761  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1762  *			NIC for GSO
1763  *
1764  *	@dcbnl_ops:	Data Center Bridging netlink ops
1765  *	@num_tc:	Number of traffic classes in the net device
1766  *	@tc_to_txq:	XXX: need comments on this one
1767  *	@prio_tc_map:	XXX: need comments on this one
1768  *
1769  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1770  *
1771  *	@priomap:	XXX: need comments on this one
1772  *	@phydev:	Physical device may attach itself
1773  *			for hardware timestamping
1774  *	@sfp_bus:	attached &struct sfp_bus structure.
1775  *
1776  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1777  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1778  *
1779  *	@proto_down:	protocol port state information can be sent to the
1780  *			switch driver and used to set the phys state of the
1781  *			switch port.
1782  *
1783  *	@wol_enabled:	Wake-on-LAN is enabled
1784  *
1785  *	FIXME: cleanup struct net_device such that network protocol info
1786  *	moves out.
1787  */
1788 
1789 struct net_device {
1790 	char			name[IFNAMSIZ];
1791 	struct hlist_node	name_hlist;
1792 	struct dev_ifalias	__rcu *ifalias;
1793 	/*
1794 	 *	I/O specific fields
1795 	 *	FIXME: Merge these and struct ifmap into one
1796 	 */
1797 	unsigned long		mem_end;
1798 	unsigned long		mem_start;
1799 	unsigned long		base_addr;
1800 	int			irq;
1801 
1802 	/*
1803 	 *	Some hardware also needs these fields (state,dev_list,
1804 	 *	napi_list,unreg_list,close_list) but they are not
1805 	 *	part of the usual set specified in Space.c.
1806 	 */
1807 
1808 	unsigned long		state;
1809 
1810 	struct list_head	dev_list;
1811 	struct list_head	napi_list;
1812 	struct list_head	unreg_list;
1813 	struct list_head	close_list;
1814 	struct list_head	ptype_all;
1815 	struct list_head	ptype_specific;
1816 
1817 	struct {
1818 		struct list_head upper;
1819 		struct list_head lower;
1820 	} adj_list;
1821 
1822 	netdev_features_t	features;
1823 	netdev_features_t	hw_features;
1824 	netdev_features_t	wanted_features;
1825 	netdev_features_t	vlan_features;
1826 	netdev_features_t	hw_enc_features;
1827 	netdev_features_t	mpls_features;
1828 	netdev_features_t	gso_partial_features;
1829 
1830 	int			ifindex;
1831 	int			group;
1832 
1833 	struct net_device_stats	stats;
1834 
1835 	atomic_long_t		rx_dropped;
1836 	atomic_long_t		tx_dropped;
1837 	atomic_long_t		rx_nohandler;
1838 
1839 	/* Stats to monitor link on/off, flapping */
1840 	atomic_t		carrier_up_count;
1841 	atomic_t		carrier_down_count;
1842 
1843 #ifdef CONFIG_WIRELESS_EXT
1844 	const struct iw_handler_def *wireless_handlers;
1845 	struct iw_public_data	*wireless_data;
1846 #endif
1847 	const struct net_device_ops *netdev_ops;
1848 	const struct ethtool_ops *ethtool_ops;
1849 #ifdef CONFIG_NET_L3_MASTER_DEV
1850 	const struct l3mdev_ops	*l3mdev_ops;
1851 #endif
1852 #if IS_ENABLED(CONFIG_IPV6)
1853 	const struct ndisc_ops *ndisc_ops;
1854 #endif
1855 
1856 #ifdef CONFIG_XFRM_OFFLOAD
1857 	const struct xfrmdev_ops *xfrmdev_ops;
1858 #endif
1859 
1860 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1861 	const struct tlsdev_ops *tlsdev_ops;
1862 #endif
1863 
1864 	const struct header_ops *header_ops;
1865 
1866 	unsigned int		flags;
1867 	unsigned int		priv_flags;
1868 
1869 	unsigned short		gflags;
1870 	unsigned short		padded;
1871 
1872 	unsigned char		operstate;
1873 	unsigned char		link_mode;
1874 
1875 	unsigned char		if_port;
1876 	unsigned char		dma;
1877 
1878 	unsigned int		mtu;
1879 	unsigned int		min_mtu;
1880 	unsigned int		max_mtu;
1881 	unsigned short		type;
1882 	unsigned short		hard_header_len;
1883 	unsigned char		min_header_len;
1884 
1885 	unsigned short		needed_headroom;
1886 	unsigned short		needed_tailroom;
1887 
1888 	/* Interface address info. */
1889 	unsigned char		perm_addr[MAX_ADDR_LEN];
1890 	unsigned char		addr_assign_type;
1891 	unsigned char		addr_len;
1892 	unsigned short		neigh_priv_len;
1893 	unsigned short          dev_id;
1894 	unsigned short          dev_port;
1895 	spinlock_t		addr_list_lock;
1896 	unsigned char		name_assign_type;
1897 	bool			uc_promisc;
1898 	struct netdev_hw_addr_list	uc;
1899 	struct netdev_hw_addr_list	mc;
1900 	struct netdev_hw_addr_list	dev_addrs;
1901 
1902 #ifdef CONFIG_SYSFS
1903 	struct kset		*queues_kset;
1904 #endif
1905 	unsigned int		promiscuity;
1906 	unsigned int		allmulti;
1907 
1908 
1909 	/* Protocol-specific pointers */
1910 
1911 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1912 	struct vlan_info __rcu	*vlan_info;
1913 #endif
1914 #if IS_ENABLED(CONFIG_NET_DSA)
1915 	struct dsa_port		*dsa_ptr;
1916 #endif
1917 #if IS_ENABLED(CONFIG_TIPC)
1918 	struct tipc_bearer __rcu *tipc_ptr;
1919 #endif
1920 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1921 	void 			*atalk_ptr;
1922 #endif
1923 	struct in_device __rcu	*ip_ptr;
1924 #if IS_ENABLED(CONFIG_DECNET)
1925 	struct dn_dev __rcu     *dn_ptr;
1926 #endif
1927 	struct inet6_dev __rcu	*ip6_ptr;
1928 #if IS_ENABLED(CONFIG_AX25)
1929 	void			*ax25_ptr;
1930 #endif
1931 	struct wireless_dev	*ieee80211_ptr;
1932 	struct wpan_dev		*ieee802154_ptr;
1933 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1934 	struct mpls_dev __rcu	*mpls_ptr;
1935 #endif
1936 
1937 /*
1938  * Cache lines mostly used on receive path (including eth_type_trans())
1939  */
1940 	/* Interface address info used in eth_type_trans() */
1941 	unsigned char		*dev_addr;
1942 
1943 	struct netdev_rx_queue	*_rx;
1944 	unsigned int		num_rx_queues;
1945 	unsigned int		real_num_rx_queues;
1946 
1947 	struct bpf_prog __rcu	*xdp_prog;
1948 	unsigned long		gro_flush_timeout;
1949 	rx_handler_func_t __rcu	*rx_handler;
1950 	void __rcu		*rx_handler_data;
1951 
1952 #ifdef CONFIG_NET_CLS_ACT
1953 	struct mini_Qdisc __rcu	*miniq_ingress;
1954 #endif
1955 	struct netdev_queue __rcu *ingress_queue;
1956 #ifdef CONFIG_NETFILTER_INGRESS
1957 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1958 #endif
1959 
1960 	unsigned char		broadcast[MAX_ADDR_LEN];
1961 #ifdef CONFIG_RFS_ACCEL
1962 	struct cpu_rmap		*rx_cpu_rmap;
1963 #endif
1964 	struct hlist_node	index_hlist;
1965 
1966 /*
1967  * Cache lines mostly used on transmit path
1968  */
1969 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1970 	unsigned int		num_tx_queues;
1971 	unsigned int		real_num_tx_queues;
1972 	struct Qdisc		*qdisc;
1973 #ifdef CONFIG_NET_SCHED
1974 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1975 #endif
1976 	unsigned int		tx_queue_len;
1977 	spinlock_t		tx_global_lock;
1978 	int			watchdog_timeo;
1979 
1980 #ifdef CONFIG_XPS
1981 	struct xps_dev_maps __rcu *xps_cpus_map;
1982 	struct xps_dev_maps __rcu *xps_rxqs_map;
1983 #endif
1984 #ifdef CONFIG_NET_CLS_ACT
1985 	struct mini_Qdisc __rcu	*miniq_egress;
1986 #endif
1987 
1988 	/* These may be needed for future network-power-down code. */
1989 	struct timer_list	watchdog_timer;
1990 
1991 	int __percpu		*pcpu_refcnt;
1992 	struct list_head	todo_list;
1993 
1994 	struct list_head	link_watch_list;
1995 
1996 	enum { NETREG_UNINITIALIZED=0,
1997 	       NETREG_REGISTERED,	/* completed register_netdevice */
1998 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1999 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2000 	       NETREG_RELEASED,		/* called free_netdev */
2001 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2002 	} reg_state:8;
2003 
2004 	bool dismantle;
2005 
2006 	enum {
2007 		RTNL_LINK_INITIALIZED,
2008 		RTNL_LINK_INITIALIZING,
2009 	} rtnl_link_state:16;
2010 
2011 	bool needs_free_netdev;
2012 	void (*priv_destructor)(struct net_device *dev);
2013 
2014 #ifdef CONFIG_NETPOLL
2015 	struct netpoll_info __rcu	*npinfo;
2016 #endif
2017 
2018 	possible_net_t			nd_net;
2019 
2020 	/* mid-layer private */
2021 	union {
2022 		void					*ml_priv;
2023 		struct pcpu_lstats __percpu		*lstats;
2024 		struct pcpu_sw_netstats __percpu	*tstats;
2025 		struct pcpu_dstats __percpu		*dstats;
2026 	};
2027 
2028 #if IS_ENABLED(CONFIG_GARP)
2029 	struct garp_port __rcu	*garp_port;
2030 #endif
2031 #if IS_ENABLED(CONFIG_MRP)
2032 	struct mrp_port __rcu	*mrp_port;
2033 #endif
2034 
2035 	struct device		dev;
2036 	const struct attribute_group *sysfs_groups[4];
2037 	const struct attribute_group *sysfs_rx_queue_group;
2038 
2039 	const struct rtnl_link_ops *rtnl_link_ops;
2040 
2041 	/* for setting kernel sock attribute on TCP connection setup */
2042 #define GSO_MAX_SIZE		65536
2043 	unsigned int		gso_max_size;
2044 #define GSO_MAX_SEGS		65535
2045 	u16			gso_max_segs;
2046 
2047 #ifdef CONFIG_DCB
2048 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2049 #endif
2050 	s16			num_tc;
2051 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2052 	u8			prio_tc_map[TC_BITMASK + 1];
2053 
2054 #if IS_ENABLED(CONFIG_FCOE)
2055 	unsigned int		fcoe_ddp_xid;
2056 #endif
2057 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2058 	struct netprio_map __rcu *priomap;
2059 #endif
2060 	struct phy_device	*phydev;
2061 	struct sfp_bus		*sfp_bus;
2062 	struct lock_class_key	*qdisc_tx_busylock;
2063 	struct lock_class_key	*qdisc_running_key;
2064 	bool			proto_down;
2065 	unsigned		wol_enabled:1;
2066 };
2067 #define to_net_dev(d) container_of(d, struct net_device, dev)
2068 
2069 static inline bool netif_elide_gro(const struct net_device *dev)
2070 {
2071 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2072 		return true;
2073 	return false;
2074 }
2075 
2076 #define	NETDEV_ALIGN		32
2077 
2078 static inline
2079 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2080 {
2081 	return dev->prio_tc_map[prio & TC_BITMASK];
2082 }
2083 
2084 static inline
2085 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2086 {
2087 	if (tc >= dev->num_tc)
2088 		return -EINVAL;
2089 
2090 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2091 	return 0;
2092 }
2093 
2094 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2095 void netdev_reset_tc(struct net_device *dev);
2096 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2097 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2098 
2099 static inline
2100 int netdev_get_num_tc(struct net_device *dev)
2101 {
2102 	return dev->num_tc;
2103 }
2104 
2105 void netdev_unbind_sb_channel(struct net_device *dev,
2106 			      struct net_device *sb_dev);
2107 int netdev_bind_sb_channel_queue(struct net_device *dev,
2108 				 struct net_device *sb_dev,
2109 				 u8 tc, u16 count, u16 offset);
2110 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2111 static inline int netdev_get_sb_channel(struct net_device *dev)
2112 {
2113 	return max_t(int, -dev->num_tc, 0);
2114 }
2115 
2116 static inline
2117 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2118 					 unsigned int index)
2119 {
2120 	return &dev->_tx[index];
2121 }
2122 
2123 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2124 						    const struct sk_buff *skb)
2125 {
2126 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2127 }
2128 
2129 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2130 					    void (*f)(struct net_device *,
2131 						      struct netdev_queue *,
2132 						      void *),
2133 					    void *arg)
2134 {
2135 	unsigned int i;
2136 
2137 	for (i = 0; i < dev->num_tx_queues; i++)
2138 		f(dev, &dev->_tx[i], arg);
2139 }
2140 
2141 #define netdev_lockdep_set_classes(dev)				\
2142 {								\
2143 	static struct lock_class_key qdisc_tx_busylock_key;	\
2144 	static struct lock_class_key qdisc_running_key;		\
2145 	static struct lock_class_key qdisc_xmit_lock_key;	\
2146 	static struct lock_class_key dev_addr_list_lock_key;	\
2147 	unsigned int i;						\
2148 								\
2149 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2150 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2151 	lockdep_set_class(&(dev)->addr_list_lock,		\
2152 			  &dev_addr_list_lock_key); 		\
2153 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2154 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2155 				  &qdisc_xmit_lock_key);	\
2156 }
2157 
2158 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2159 				    struct sk_buff *skb,
2160 				    struct net_device *sb_dev);
2161 
2162 /* returns the headroom that the master device needs to take in account
2163  * when forwarding to this dev
2164  */
2165 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2166 {
2167 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2168 }
2169 
2170 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2171 {
2172 	if (dev->netdev_ops->ndo_set_rx_headroom)
2173 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2174 }
2175 
2176 /* set the device rx headroom to the dev's default */
2177 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2178 {
2179 	netdev_set_rx_headroom(dev, -1);
2180 }
2181 
2182 /*
2183  * Net namespace inlines
2184  */
2185 static inline
2186 struct net *dev_net(const struct net_device *dev)
2187 {
2188 	return read_pnet(&dev->nd_net);
2189 }
2190 
2191 static inline
2192 void dev_net_set(struct net_device *dev, struct net *net)
2193 {
2194 	write_pnet(&dev->nd_net, net);
2195 }
2196 
2197 /**
2198  *	netdev_priv - access network device private data
2199  *	@dev: network device
2200  *
2201  * Get network device private data
2202  */
2203 static inline void *netdev_priv(const struct net_device *dev)
2204 {
2205 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2206 }
2207 
2208 /* Set the sysfs physical device reference for the network logical device
2209  * if set prior to registration will cause a symlink during initialization.
2210  */
2211 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2212 
2213 /* Set the sysfs device type for the network logical device to allow
2214  * fine-grained identification of different network device types. For
2215  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2216  */
2217 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2218 
2219 /* Default NAPI poll() weight
2220  * Device drivers are strongly advised to not use bigger value
2221  */
2222 #define NAPI_POLL_WEIGHT 64
2223 
2224 /**
2225  *	netif_napi_add - initialize a NAPI context
2226  *	@dev:  network device
2227  *	@napi: NAPI context
2228  *	@poll: polling function
2229  *	@weight: default weight
2230  *
2231  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2232  * *any* of the other NAPI-related functions.
2233  */
2234 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2235 		    int (*poll)(struct napi_struct *, int), int weight);
2236 
2237 /**
2238  *	netif_tx_napi_add - initialize a NAPI context
2239  *	@dev:  network device
2240  *	@napi: NAPI context
2241  *	@poll: polling function
2242  *	@weight: default weight
2243  *
2244  * This variant of netif_napi_add() should be used from drivers using NAPI
2245  * to exclusively poll a TX queue.
2246  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2247  */
2248 static inline void netif_tx_napi_add(struct net_device *dev,
2249 				     struct napi_struct *napi,
2250 				     int (*poll)(struct napi_struct *, int),
2251 				     int weight)
2252 {
2253 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2254 	netif_napi_add(dev, napi, poll, weight);
2255 }
2256 
2257 /**
2258  *  netif_napi_del - remove a NAPI context
2259  *  @napi: NAPI context
2260  *
2261  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2262  */
2263 void netif_napi_del(struct napi_struct *napi);
2264 
2265 struct napi_gro_cb {
2266 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2267 	void	*frag0;
2268 
2269 	/* Length of frag0. */
2270 	unsigned int frag0_len;
2271 
2272 	/* This indicates where we are processing relative to skb->data. */
2273 	int	data_offset;
2274 
2275 	/* This is non-zero if the packet cannot be merged with the new skb. */
2276 	u16	flush;
2277 
2278 	/* Save the IP ID here and check when we get to the transport layer */
2279 	u16	flush_id;
2280 
2281 	/* Number of segments aggregated. */
2282 	u16	count;
2283 
2284 	/* Start offset for remote checksum offload */
2285 	u16	gro_remcsum_start;
2286 
2287 	/* jiffies when first packet was created/queued */
2288 	unsigned long age;
2289 
2290 	/* Used in ipv6_gro_receive() and foo-over-udp */
2291 	u16	proto;
2292 
2293 	/* This is non-zero if the packet may be of the same flow. */
2294 	u8	same_flow:1;
2295 
2296 	/* Used in tunnel GRO receive */
2297 	u8	encap_mark:1;
2298 
2299 	/* GRO checksum is valid */
2300 	u8	csum_valid:1;
2301 
2302 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2303 	u8	csum_cnt:3;
2304 
2305 	/* Free the skb? */
2306 	u8	free:2;
2307 #define NAPI_GRO_FREE		  1
2308 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2309 
2310 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2311 	u8	is_ipv6:1;
2312 
2313 	/* Used in GRE, set in fou/gue_gro_receive */
2314 	u8	is_fou:1;
2315 
2316 	/* Used to determine if flush_id can be ignored */
2317 	u8	is_atomic:1;
2318 
2319 	/* Number of gro_receive callbacks this packet already went through */
2320 	u8 recursion_counter:4;
2321 
2322 	/* 1 bit hole */
2323 
2324 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2325 	__wsum	csum;
2326 
2327 	/* used in skb_gro_receive() slow path */
2328 	struct sk_buff *last;
2329 };
2330 
2331 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2332 
2333 #define GRO_RECURSION_LIMIT 15
2334 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2335 {
2336 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2337 }
2338 
2339 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2340 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2341 					       struct list_head *head,
2342 					       struct sk_buff *skb)
2343 {
2344 	if (unlikely(gro_recursion_inc_test(skb))) {
2345 		NAPI_GRO_CB(skb)->flush |= 1;
2346 		return NULL;
2347 	}
2348 
2349 	return cb(head, skb);
2350 }
2351 
2352 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2353 					    struct sk_buff *);
2354 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2355 						  struct sock *sk,
2356 						  struct list_head *head,
2357 						  struct sk_buff *skb)
2358 {
2359 	if (unlikely(gro_recursion_inc_test(skb))) {
2360 		NAPI_GRO_CB(skb)->flush |= 1;
2361 		return NULL;
2362 	}
2363 
2364 	return cb(sk, head, skb);
2365 }
2366 
2367 struct packet_type {
2368 	__be16			type;	/* This is really htons(ether_type). */
2369 	bool			ignore_outgoing;
2370 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2371 	int			(*func) (struct sk_buff *,
2372 					 struct net_device *,
2373 					 struct packet_type *,
2374 					 struct net_device *);
2375 	void			(*list_func) (struct list_head *,
2376 					      struct packet_type *,
2377 					      struct net_device *);
2378 	bool			(*id_match)(struct packet_type *ptype,
2379 					    struct sock *sk);
2380 	void			*af_packet_priv;
2381 	struct list_head	list;
2382 };
2383 
2384 struct offload_callbacks {
2385 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2386 						netdev_features_t features);
2387 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2388 						struct sk_buff *skb);
2389 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2390 };
2391 
2392 struct packet_offload {
2393 	__be16			 type;	/* This is really htons(ether_type). */
2394 	u16			 priority;
2395 	struct offload_callbacks callbacks;
2396 	struct list_head	 list;
2397 };
2398 
2399 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2400 struct pcpu_sw_netstats {
2401 	u64     rx_packets;
2402 	u64     rx_bytes;
2403 	u64     tx_packets;
2404 	u64     tx_bytes;
2405 	struct u64_stats_sync   syncp;
2406 } __aligned(4 * sizeof(u64));
2407 
2408 struct pcpu_lstats {
2409 	u64 packets;
2410 	u64 bytes;
2411 	struct u64_stats_sync syncp;
2412 } __aligned(2 * sizeof(u64));
2413 
2414 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2415 ({									\
2416 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2417 	if (pcpu_stats)	{						\
2418 		int __cpu;						\
2419 		for_each_possible_cpu(__cpu) {				\
2420 			typeof(type) *stat;				\
2421 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2422 			u64_stats_init(&stat->syncp);			\
2423 		}							\
2424 	}								\
2425 	pcpu_stats;							\
2426 })
2427 
2428 #define netdev_alloc_pcpu_stats(type)					\
2429 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2430 
2431 enum netdev_lag_tx_type {
2432 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2433 	NETDEV_LAG_TX_TYPE_RANDOM,
2434 	NETDEV_LAG_TX_TYPE_BROADCAST,
2435 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2436 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2437 	NETDEV_LAG_TX_TYPE_HASH,
2438 };
2439 
2440 enum netdev_lag_hash {
2441 	NETDEV_LAG_HASH_NONE,
2442 	NETDEV_LAG_HASH_L2,
2443 	NETDEV_LAG_HASH_L34,
2444 	NETDEV_LAG_HASH_L23,
2445 	NETDEV_LAG_HASH_E23,
2446 	NETDEV_LAG_HASH_E34,
2447 	NETDEV_LAG_HASH_UNKNOWN,
2448 };
2449 
2450 struct netdev_lag_upper_info {
2451 	enum netdev_lag_tx_type tx_type;
2452 	enum netdev_lag_hash hash_type;
2453 };
2454 
2455 struct netdev_lag_lower_state_info {
2456 	u8 link_up : 1,
2457 	   tx_enabled : 1;
2458 };
2459 
2460 #include <linux/notifier.h>
2461 
2462 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2463  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2464  * adding new types.
2465  */
2466 enum netdev_cmd {
2467 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2468 	NETDEV_DOWN,
2469 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2470 				   detected a hardware crash and restarted
2471 				   - we can use this eg to kick tcp sessions
2472 				   once done */
2473 	NETDEV_CHANGE,		/* Notify device state change */
2474 	NETDEV_REGISTER,
2475 	NETDEV_UNREGISTER,
2476 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2477 	NETDEV_CHANGEADDR,	/* notify after the address change */
2478 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2479 	NETDEV_GOING_DOWN,
2480 	NETDEV_CHANGENAME,
2481 	NETDEV_FEAT_CHANGE,
2482 	NETDEV_BONDING_FAILOVER,
2483 	NETDEV_PRE_UP,
2484 	NETDEV_PRE_TYPE_CHANGE,
2485 	NETDEV_POST_TYPE_CHANGE,
2486 	NETDEV_POST_INIT,
2487 	NETDEV_RELEASE,
2488 	NETDEV_NOTIFY_PEERS,
2489 	NETDEV_JOIN,
2490 	NETDEV_CHANGEUPPER,
2491 	NETDEV_RESEND_IGMP,
2492 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2493 	NETDEV_CHANGEINFODATA,
2494 	NETDEV_BONDING_INFO,
2495 	NETDEV_PRECHANGEUPPER,
2496 	NETDEV_CHANGELOWERSTATE,
2497 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2498 	NETDEV_UDP_TUNNEL_DROP_INFO,
2499 	NETDEV_CHANGE_TX_QUEUE_LEN,
2500 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2501 	NETDEV_CVLAN_FILTER_DROP_INFO,
2502 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2503 	NETDEV_SVLAN_FILTER_DROP_INFO,
2504 };
2505 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2506 
2507 int register_netdevice_notifier(struct notifier_block *nb);
2508 int unregister_netdevice_notifier(struct notifier_block *nb);
2509 
2510 struct netdev_notifier_info {
2511 	struct net_device	*dev;
2512 	struct netlink_ext_ack	*extack;
2513 };
2514 
2515 struct netdev_notifier_info_ext {
2516 	struct netdev_notifier_info info; /* must be first */
2517 	union {
2518 		u32 mtu;
2519 	} ext;
2520 };
2521 
2522 struct netdev_notifier_change_info {
2523 	struct netdev_notifier_info info; /* must be first */
2524 	unsigned int flags_changed;
2525 };
2526 
2527 struct netdev_notifier_changeupper_info {
2528 	struct netdev_notifier_info info; /* must be first */
2529 	struct net_device *upper_dev; /* new upper dev */
2530 	bool master; /* is upper dev master */
2531 	bool linking; /* is the notification for link or unlink */
2532 	void *upper_info; /* upper dev info */
2533 };
2534 
2535 struct netdev_notifier_changelowerstate_info {
2536 	struct netdev_notifier_info info; /* must be first */
2537 	void *lower_state_info; /* is lower dev state */
2538 };
2539 
2540 struct netdev_notifier_pre_changeaddr_info {
2541 	struct netdev_notifier_info info; /* must be first */
2542 	const unsigned char *dev_addr;
2543 };
2544 
2545 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2546 					     struct net_device *dev)
2547 {
2548 	info->dev = dev;
2549 	info->extack = NULL;
2550 }
2551 
2552 static inline struct net_device *
2553 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2554 {
2555 	return info->dev;
2556 }
2557 
2558 static inline struct netlink_ext_ack *
2559 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2560 {
2561 	return info->extack;
2562 }
2563 
2564 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2565 
2566 
2567 extern rwlock_t				dev_base_lock;		/* Device list lock */
2568 
2569 #define for_each_netdev(net, d)		\
2570 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2571 #define for_each_netdev_reverse(net, d)	\
2572 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2573 #define for_each_netdev_rcu(net, d)		\
2574 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2575 #define for_each_netdev_safe(net, d, n)	\
2576 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2577 #define for_each_netdev_continue(net, d)		\
2578 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2579 #define for_each_netdev_continue_rcu(net, d)		\
2580 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2581 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2582 		for_each_netdev_rcu(&init_net, slave)	\
2583 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2584 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2585 
2586 static inline struct net_device *next_net_device(struct net_device *dev)
2587 {
2588 	struct list_head *lh;
2589 	struct net *net;
2590 
2591 	net = dev_net(dev);
2592 	lh = dev->dev_list.next;
2593 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2594 }
2595 
2596 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2597 {
2598 	struct list_head *lh;
2599 	struct net *net;
2600 
2601 	net = dev_net(dev);
2602 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2603 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2604 }
2605 
2606 static inline struct net_device *first_net_device(struct net *net)
2607 {
2608 	return list_empty(&net->dev_base_head) ? NULL :
2609 		net_device_entry(net->dev_base_head.next);
2610 }
2611 
2612 static inline struct net_device *first_net_device_rcu(struct net *net)
2613 {
2614 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2615 
2616 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2617 }
2618 
2619 int netdev_boot_setup_check(struct net_device *dev);
2620 unsigned long netdev_boot_base(const char *prefix, int unit);
2621 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2622 				       const char *hwaddr);
2623 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2624 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2625 void dev_add_pack(struct packet_type *pt);
2626 void dev_remove_pack(struct packet_type *pt);
2627 void __dev_remove_pack(struct packet_type *pt);
2628 void dev_add_offload(struct packet_offload *po);
2629 void dev_remove_offload(struct packet_offload *po);
2630 
2631 int dev_get_iflink(const struct net_device *dev);
2632 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2633 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2634 				      unsigned short mask);
2635 struct net_device *dev_get_by_name(struct net *net, const char *name);
2636 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2637 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2638 int dev_alloc_name(struct net_device *dev, const char *name);
2639 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2640 void dev_close(struct net_device *dev);
2641 void dev_close_many(struct list_head *head, bool unlink);
2642 void dev_disable_lro(struct net_device *dev);
2643 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2644 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2645 		     struct net_device *sb_dev,
2646 		     select_queue_fallback_t fallback);
2647 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2648 		       struct net_device *sb_dev,
2649 		       select_queue_fallback_t fallback);
2650 int dev_queue_xmit(struct sk_buff *skb);
2651 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2652 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2653 int register_netdevice(struct net_device *dev);
2654 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2655 void unregister_netdevice_many(struct list_head *head);
2656 static inline void unregister_netdevice(struct net_device *dev)
2657 {
2658 	unregister_netdevice_queue(dev, NULL);
2659 }
2660 
2661 int netdev_refcnt_read(const struct net_device *dev);
2662 void free_netdev(struct net_device *dev);
2663 void netdev_freemem(struct net_device *dev);
2664 void synchronize_net(void);
2665 int init_dummy_netdev(struct net_device *dev);
2666 
2667 DECLARE_PER_CPU(int, xmit_recursion);
2668 #define XMIT_RECURSION_LIMIT	10
2669 
2670 static inline int dev_recursion_level(void)
2671 {
2672 	return this_cpu_read(xmit_recursion);
2673 }
2674 
2675 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2676 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2677 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2678 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2679 int netdev_get_name(struct net *net, char *name, int ifindex);
2680 int dev_restart(struct net_device *dev);
2681 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2682 
2683 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2684 {
2685 	return NAPI_GRO_CB(skb)->data_offset;
2686 }
2687 
2688 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2689 {
2690 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2691 }
2692 
2693 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2694 {
2695 	NAPI_GRO_CB(skb)->data_offset += len;
2696 }
2697 
2698 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2699 					unsigned int offset)
2700 {
2701 	return NAPI_GRO_CB(skb)->frag0 + offset;
2702 }
2703 
2704 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2705 {
2706 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2707 }
2708 
2709 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2710 {
2711 	NAPI_GRO_CB(skb)->frag0 = NULL;
2712 	NAPI_GRO_CB(skb)->frag0_len = 0;
2713 }
2714 
2715 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2716 					unsigned int offset)
2717 {
2718 	if (!pskb_may_pull(skb, hlen))
2719 		return NULL;
2720 
2721 	skb_gro_frag0_invalidate(skb);
2722 	return skb->data + offset;
2723 }
2724 
2725 static inline void *skb_gro_network_header(struct sk_buff *skb)
2726 {
2727 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2728 	       skb_network_offset(skb);
2729 }
2730 
2731 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2732 					const void *start, unsigned int len)
2733 {
2734 	if (NAPI_GRO_CB(skb)->csum_valid)
2735 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2736 						  csum_partial(start, len, 0));
2737 }
2738 
2739 /* GRO checksum functions. These are logical equivalents of the normal
2740  * checksum functions (in skbuff.h) except that they operate on the GRO
2741  * offsets and fields in sk_buff.
2742  */
2743 
2744 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2745 
2746 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2747 {
2748 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2749 }
2750 
2751 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2752 						      bool zero_okay,
2753 						      __sum16 check)
2754 {
2755 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2756 		skb_checksum_start_offset(skb) <
2757 		 skb_gro_offset(skb)) &&
2758 		!skb_at_gro_remcsum_start(skb) &&
2759 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2760 		(!zero_okay || check));
2761 }
2762 
2763 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2764 							   __wsum psum)
2765 {
2766 	if (NAPI_GRO_CB(skb)->csum_valid &&
2767 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2768 		return 0;
2769 
2770 	NAPI_GRO_CB(skb)->csum = psum;
2771 
2772 	return __skb_gro_checksum_complete(skb);
2773 }
2774 
2775 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2776 {
2777 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2778 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2779 		NAPI_GRO_CB(skb)->csum_cnt--;
2780 	} else {
2781 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2782 		 * verified a new top level checksum or an encapsulated one
2783 		 * during GRO. This saves work if we fallback to normal path.
2784 		 */
2785 		__skb_incr_checksum_unnecessary(skb);
2786 	}
2787 }
2788 
2789 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2790 				    compute_pseudo)			\
2791 ({									\
2792 	__sum16 __ret = 0;						\
2793 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2794 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2795 				compute_pseudo(skb, proto));		\
2796 	if (!__ret)							\
2797 		skb_gro_incr_csum_unnecessary(skb);			\
2798 	__ret;								\
2799 })
2800 
2801 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2802 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2803 
2804 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2805 					     compute_pseudo)		\
2806 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2807 
2808 #define skb_gro_checksum_simple_validate(skb)				\
2809 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2810 
2811 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2812 {
2813 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2814 		!NAPI_GRO_CB(skb)->csum_valid);
2815 }
2816 
2817 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2818 					      __sum16 check, __wsum pseudo)
2819 {
2820 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2821 	NAPI_GRO_CB(skb)->csum_valid = 1;
2822 }
2823 
2824 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2825 do {									\
2826 	if (__skb_gro_checksum_convert_check(skb))			\
2827 		__skb_gro_checksum_convert(skb, check,			\
2828 					   compute_pseudo(skb, proto));	\
2829 } while (0)
2830 
2831 struct gro_remcsum {
2832 	int offset;
2833 	__wsum delta;
2834 };
2835 
2836 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2837 {
2838 	grc->offset = 0;
2839 	grc->delta = 0;
2840 }
2841 
2842 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2843 					    unsigned int off, size_t hdrlen,
2844 					    int start, int offset,
2845 					    struct gro_remcsum *grc,
2846 					    bool nopartial)
2847 {
2848 	__wsum delta;
2849 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2850 
2851 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2852 
2853 	if (!nopartial) {
2854 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2855 		return ptr;
2856 	}
2857 
2858 	ptr = skb_gro_header_fast(skb, off);
2859 	if (skb_gro_header_hard(skb, off + plen)) {
2860 		ptr = skb_gro_header_slow(skb, off + plen, off);
2861 		if (!ptr)
2862 			return NULL;
2863 	}
2864 
2865 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2866 			       start, offset);
2867 
2868 	/* Adjust skb->csum since we changed the packet */
2869 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2870 
2871 	grc->offset = off + hdrlen + offset;
2872 	grc->delta = delta;
2873 
2874 	return ptr;
2875 }
2876 
2877 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2878 					   struct gro_remcsum *grc)
2879 {
2880 	void *ptr;
2881 	size_t plen = grc->offset + sizeof(u16);
2882 
2883 	if (!grc->delta)
2884 		return;
2885 
2886 	ptr = skb_gro_header_fast(skb, grc->offset);
2887 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2888 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2889 		if (!ptr)
2890 			return;
2891 	}
2892 
2893 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2894 }
2895 
2896 #ifdef CONFIG_XFRM_OFFLOAD
2897 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2898 {
2899 	if (PTR_ERR(pp) != -EINPROGRESS)
2900 		NAPI_GRO_CB(skb)->flush |= flush;
2901 }
2902 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2903 					       struct sk_buff *pp,
2904 					       int flush,
2905 					       struct gro_remcsum *grc)
2906 {
2907 	if (PTR_ERR(pp) != -EINPROGRESS) {
2908 		NAPI_GRO_CB(skb)->flush |= flush;
2909 		skb_gro_remcsum_cleanup(skb, grc);
2910 		skb->remcsum_offload = 0;
2911 	}
2912 }
2913 #else
2914 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2915 {
2916 	NAPI_GRO_CB(skb)->flush |= flush;
2917 }
2918 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2919 					       struct sk_buff *pp,
2920 					       int flush,
2921 					       struct gro_remcsum *grc)
2922 {
2923 	NAPI_GRO_CB(skb)->flush |= flush;
2924 	skb_gro_remcsum_cleanup(skb, grc);
2925 	skb->remcsum_offload = 0;
2926 }
2927 #endif
2928 
2929 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2930 				  unsigned short type,
2931 				  const void *daddr, const void *saddr,
2932 				  unsigned int len)
2933 {
2934 	if (!dev->header_ops || !dev->header_ops->create)
2935 		return 0;
2936 
2937 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2938 }
2939 
2940 static inline int dev_parse_header(const struct sk_buff *skb,
2941 				   unsigned char *haddr)
2942 {
2943 	const struct net_device *dev = skb->dev;
2944 
2945 	if (!dev->header_ops || !dev->header_ops->parse)
2946 		return 0;
2947 	return dev->header_ops->parse(skb, haddr);
2948 }
2949 
2950 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2951 {
2952 	const struct net_device *dev = skb->dev;
2953 
2954 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
2955 		return 0;
2956 	return dev->header_ops->parse_protocol(skb);
2957 }
2958 
2959 /* ll_header must have at least hard_header_len allocated */
2960 static inline bool dev_validate_header(const struct net_device *dev,
2961 				       char *ll_header, int len)
2962 {
2963 	if (likely(len >= dev->hard_header_len))
2964 		return true;
2965 	if (len < dev->min_header_len)
2966 		return false;
2967 
2968 	if (capable(CAP_SYS_RAWIO)) {
2969 		memset(ll_header + len, 0, dev->hard_header_len - len);
2970 		return true;
2971 	}
2972 
2973 	if (dev->header_ops && dev->header_ops->validate)
2974 		return dev->header_ops->validate(ll_header, len);
2975 
2976 	return false;
2977 }
2978 
2979 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2980 			   int len, int size);
2981 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2982 static inline int unregister_gifconf(unsigned int family)
2983 {
2984 	return register_gifconf(family, NULL);
2985 }
2986 
2987 #ifdef CONFIG_NET_FLOW_LIMIT
2988 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2989 struct sd_flow_limit {
2990 	u64			count;
2991 	unsigned int		num_buckets;
2992 	unsigned int		history_head;
2993 	u16			history[FLOW_LIMIT_HISTORY];
2994 	u8			buckets[];
2995 };
2996 
2997 extern int netdev_flow_limit_table_len;
2998 #endif /* CONFIG_NET_FLOW_LIMIT */
2999 
3000 /*
3001  * Incoming packets are placed on per-CPU queues
3002  */
3003 struct softnet_data {
3004 	struct list_head	poll_list;
3005 	struct sk_buff_head	process_queue;
3006 
3007 	/* stats */
3008 	unsigned int		processed;
3009 	unsigned int		time_squeeze;
3010 	unsigned int		received_rps;
3011 #ifdef CONFIG_RPS
3012 	struct softnet_data	*rps_ipi_list;
3013 #endif
3014 #ifdef CONFIG_NET_FLOW_LIMIT
3015 	struct sd_flow_limit __rcu *flow_limit;
3016 #endif
3017 	struct Qdisc		*output_queue;
3018 	struct Qdisc		**output_queue_tailp;
3019 	struct sk_buff		*completion_queue;
3020 #ifdef CONFIG_XFRM_OFFLOAD
3021 	struct sk_buff_head	xfrm_backlog;
3022 #endif
3023 #ifdef CONFIG_RPS
3024 	/* input_queue_head should be written by cpu owning this struct,
3025 	 * and only read by other cpus. Worth using a cache line.
3026 	 */
3027 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3028 
3029 	/* Elements below can be accessed between CPUs for RPS/RFS */
3030 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3031 	struct softnet_data	*rps_ipi_next;
3032 	unsigned int		cpu;
3033 	unsigned int		input_queue_tail;
3034 #endif
3035 	unsigned int		dropped;
3036 	struct sk_buff_head	input_pkt_queue;
3037 	struct napi_struct	backlog;
3038 
3039 };
3040 
3041 static inline void input_queue_head_incr(struct softnet_data *sd)
3042 {
3043 #ifdef CONFIG_RPS
3044 	sd->input_queue_head++;
3045 #endif
3046 }
3047 
3048 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3049 					      unsigned int *qtail)
3050 {
3051 #ifdef CONFIG_RPS
3052 	*qtail = ++sd->input_queue_tail;
3053 #endif
3054 }
3055 
3056 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3057 
3058 void __netif_schedule(struct Qdisc *q);
3059 void netif_schedule_queue(struct netdev_queue *txq);
3060 
3061 static inline void netif_tx_schedule_all(struct net_device *dev)
3062 {
3063 	unsigned int i;
3064 
3065 	for (i = 0; i < dev->num_tx_queues; i++)
3066 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3067 }
3068 
3069 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3070 {
3071 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3072 }
3073 
3074 /**
3075  *	netif_start_queue - allow transmit
3076  *	@dev: network device
3077  *
3078  *	Allow upper layers to call the device hard_start_xmit routine.
3079  */
3080 static inline void netif_start_queue(struct net_device *dev)
3081 {
3082 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3083 }
3084 
3085 static inline void netif_tx_start_all_queues(struct net_device *dev)
3086 {
3087 	unsigned int i;
3088 
3089 	for (i = 0; i < dev->num_tx_queues; i++) {
3090 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3091 		netif_tx_start_queue(txq);
3092 	}
3093 }
3094 
3095 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3096 
3097 /**
3098  *	netif_wake_queue - restart transmit
3099  *	@dev: network device
3100  *
3101  *	Allow upper layers to call the device hard_start_xmit routine.
3102  *	Used for flow control when transmit resources are available.
3103  */
3104 static inline void netif_wake_queue(struct net_device *dev)
3105 {
3106 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3107 }
3108 
3109 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3110 {
3111 	unsigned int i;
3112 
3113 	for (i = 0; i < dev->num_tx_queues; i++) {
3114 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3115 		netif_tx_wake_queue(txq);
3116 	}
3117 }
3118 
3119 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3120 {
3121 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3122 }
3123 
3124 /**
3125  *	netif_stop_queue - stop transmitted packets
3126  *	@dev: network device
3127  *
3128  *	Stop upper layers calling the device hard_start_xmit routine.
3129  *	Used for flow control when transmit resources are unavailable.
3130  */
3131 static inline void netif_stop_queue(struct net_device *dev)
3132 {
3133 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3134 }
3135 
3136 void netif_tx_stop_all_queues(struct net_device *dev);
3137 
3138 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3139 {
3140 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3141 }
3142 
3143 /**
3144  *	netif_queue_stopped - test if transmit queue is flowblocked
3145  *	@dev: network device
3146  *
3147  *	Test if transmit queue on device is currently unable to send.
3148  */
3149 static inline bool netif_queue_stopped(const struct net_device *dev)
3150 {
3151 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3152 }
3153 
3154 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3155 {
3156 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3157 }
3158 
3159 static inline bool
3160 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3161 {
3162 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3163 }
3164 
3165 static inline bool
3166 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3167 {
3168 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3169 }
3170 
3171 /**
3172  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3173  *	@dev_queue: pointer to transmit queue
3174  *
3175  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3176  * to give appropriate hint to the CPU.
3177  */
3178 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3179 {
3180 #ifdef CONFIG_BQL
3181 	prefetchw(&dev_queue->dql.num_queued);
3182 #endif
3183 }
3184 
3185 /**
3186  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3187  *	@dev_queue: pointer to transmit queue
3188  *
3189  * BQL enabled drivers might use this helper in their TX completion path,
3190  * to give appropriate hint to the CPU.
3191  */
3192 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3193 {
3194 #ifdef CONFIG_BQL
3195 	prefetchw(&dev_queue->dql.limit);
3196 #endif
3197 }
3198 
3199 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3200 					unsigned int bytes)
3201 {
3202 #ifdef CONFIG_BQL
3203 	dql_queued(&dev_queue->dql, bytes);
3204 
3205 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3206 		return;
3207 
3208 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3209 
3210 	/*
3211 	 * The XOFF flag must be set before checking the dql_avail below,
3212 	 * because in netdev_tx_completed_queue we update the dql_completed
3213 	 * before checking the XOFF flag.
3214 	 */
3215 	smp_mb();
3216 
3217 	/* check again in case another CPU has just made room avail */
3218 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3219 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3220 #endif
3221 }
3222 
3223 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3224  * that they should not test BQL status themselves.
3225  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3226  * skb of a batch.
3227  * Returns true if the doorbell must be used to kick the NIC.
3228  */
3229 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3230 					  unsigned int bytes,
3231 					  bool xmit_more)
3232 {
3233 	if (xmit_more) {
3234 #ifdef CONFIG_BQL
3235 		dql_queued(&dev_queue->dql, bytes);
3236 #endif
3237 		return netif_tx_queue_stopped(dev_queue);
3238 	}
3239 	netdev_tx_sent_queue(dev_queue, bytes);
3240 	return true;
3241 }
3242 
3243 /**
3244  * 	netdev_sent_queue - report the number of bytes queued to hardware
3245  * 	@dev: network device
3246  * 	@bytes: number of bytes queued to the hardware device queue
3247  *
3248  * 	Report the number of bytes queued for sending/completion to the network
3249  * 	device hardware queue. @bytes should be a good approximation and should
3250  * 	exactly match netdev_completed_queue() @bytes
3251  */
3252 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3253 {
3254 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3255 }
3256 
3257 static inline bool __netdev_sent_queue(struct net_device *dev,
3258 				       unsigned int bytes,
3259 				       bool xmit_more)
3260 {
3261 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3262 				      xmit_more);
3263 }
3264 
3265 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3266 					     unsigned int pkts, unsigned int bytes)
3267 {
3268 #ifdef CONFIG_BQL
3269 	if (unlikely(!bytes))
3270 		return;
3271 
3272 	dql_completed(&dev_queue->dql, bytes);
3273 
3274 	/*
3275 	 * Without the memory barrier there is a small possiblity that
3276 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3277 	 * be stopped forever
3278 	 */
3279 	smp_mb();
3280 
3281 	if (dql_avail(&dev_queue->dql) < 0)
3282 		return;
3283 
3284 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3285 		netif_schedule_queue(dev_queue);
3286 #endif
3287 }
3288 
3289 /**
3290  * 	netdev_completed_queue - report bytes and packets completed by device
3291  * 	@dev: network device
3292  * 	@pkts: actual number of packets sent over the medium
3293  * 	@bytes: actual number of bytes sent over the medium
3294  *
3295  * 	Report the number of bytes and packets transmitted by the network device
3296  * 	hardware queue over the physical medium, @bytes must exactly match the
3297  * 	@bytes amount passed to netdev_sent_queue()
3298  */
3299 static inline void netdev_completed_queue(struct net_device *dev,
3300 					  unsigned int pkts, unsigned int bytes)
3301 {
3302 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3303 }
3304 
3305 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3306 {
3307 #ifdef CONFIG_BQL
3308 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3309 	dql_reset(&q->dql);
3310 #endif
3311 }
3312 
3313 /**
3314  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3315  * 	@dev_queue: network device
3316  *
3317  * 	Reset the bytes and packet count of a network device and clear the
3318  * 	software flow control OFF bit for this network device
3319  */
3320 static inline void netdev_reset_queue(struct net_device *dev_queue)
3321 {
3322 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3323 }
3324 
3325 /**
3326  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3327  * 	@dev: network device
3328  * 	@queue_index: given tx queue index
3329  *
3330  * 	Returns 0 if given tx queue index >= number of device tx queues,
3331  * 	otherwise returns the originally passed tx queue index.
3332  */
3333 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3334 {
3335 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3336 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3337 				     dev->name, queue_index,
3338 				     dev->real_num_tx_queues);
3339 		return 0;
3340 	}
3341 
3342 	return queue_index;
3343 }
3344 
3345 /**
3346  *	netif_running - test if up
3347  *	@dev: network device
3348  *
3349  *	Test if the device has been brought up.
3350  */
3351 static inline bool netif_running(const struct net_device *dev)
3352 {
3353 	return test_bit(__LINK_STATE_START, &dev->state);
3354 }
3355 
3356 /*
3357  * Routines to manage the subqueues on a device.  We only need start,
3358  * stop, and a check if it's stopped.  All other device management is
3359  * done at the overall netdevice level.
3360  * Also test the device if we're multiqueue.
3361  */
3362 
3363 /**
3364  *	netif_start_subqueue - allow sending packets on subqueue
3365  *	@dev: network device
3366  *	@queue_index: sub queue index
3367  *
3368  * Start individual transmit queue of a device with multiple transmit queues.
3369  */
3370 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3371 {
3372 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3373 
3374 	netif_tx_start_queue(txq);
3375 }
3376 
3377 /**
3378  *	netif_stop_subqueue - stop sending packets on subqueue
3379  *	@dev: network device
3380  *	@queue_index: sub queue index
3381  *
3382  * Stop individual transmit queue of a device with multiple transmit queues.
3383  */
3384 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3385 {
3386 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3387 	netif_tx_stop_queue(txq);
3388 }
3389 
3390 /**
3391  *	netif_subqueue_stopped - test status of subqueue
3392  *	@dev: network device
3393  *	@queue_index: sub queue index
3394  *
3395  * Check individual transmit queue of a device with multiple transmit queues.
3396  */
3397 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3398 					    u16 queue_index)
3399 {
3400 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3401 
3402 	return netif_tx_queue_stopped(txq);
3403 }
3404 
3405 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3406 					  struct sk_buff *skb)
3407 {
3408 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3409 }
3410 
3411 /**
3412  *	netif_wake_subqueue - allow sending packets on subqueue
3413  *	@dev: network device
3414  *	@queue_index: sub queue index
3415  *
3416  * Resume individual transmit queue of a device with multiple transmit queues.
3417  */
3418 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3419 {
3420 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3421 
3422 	netif_tx_wake_queue(txq);
3423 }
3424 
3425 #ifdef CONFIG_XPS
3426 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3427 			u16 index);
3428 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3429 			  u16 index, bool is_rxqs_map);
3430 
3431 /**
3432  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3433  *	@j: CPU/Rx queue index
3434  *	@mask: bitmask of all cpus/rx queues
3435  *	@nr_bits: number of bits in the bitmask
3436  *
3437  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3438  */
3439 static inline bool netif_attr_test_mask(unsigned long j,
3440 					const unsigned long *mask,
3441 					unsigned int nr_bits)
3442 {
3443 	cpu_max_bits_warn(j, nr_bits);
3444 	return test_bit(j, mask);
3445 }
3446 
3447 /**
3448  *	netif_attr_test_online - Test for online CPU/Rx queue
3449  *	@j: CPU/Rx queue index
3450  *	@online_mask: bitmask for CPUs/Rx queues that are online
3451  *	@nr_bits: number of bits in the bitmask
3452  *
3453  * Returns true if a CPU/Rx queue is online.
3454  */
3455 static inline bool netif_attr_test_online(unsigned long j,
3456 					  const unsigned long *online_mask,
3457 					  unsigned int nr_bits)
3458 {
3459 	cpu_max_bits_warn(j, nr_bits);
3460 
3461 	if (online_mask)
3462 		return test_bit(j, online_mask);
3463 
3464 	return (j < nr_bits);
3465 }
3466 
3467 /**
3468  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3469  *	@n: CPU/Rx queue index
3470  *	@srcp: the cpumask/Rx queue mask pointer
3471  *	@nr_bits: number of bits in the bitmask
3472  *
3473  * Returns >= nr_bits if no further CPUs/Rx queues set.
3474  */
3475 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3476 					       unsigned int nr_bits)
3477 {
3478 	/* -1 is a legal arg here. */
3479 	if (n != -1)
3480 		cpu_max_bits_warn(n, nr_bits);
3481 
3482 	if (srcp)
3483 		return find_next_bit(srcp, nr_bits, n + 1);
3484 
3485 	return n + 1;
3486 }
3487 
3488 /**
3489  *	netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3490  *	@n: CPU/Rx queue index
3491  *	@src1p: the first CPUs/Rx queues mask pointer
3492  *	@src2p: the second CPUs/Rx queues mask pointer
3493  *	@nr_bits: number of bits in the bitmask
3494  *
3495  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3496  */
3497 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3498 					  const unsigned long *src2p,
3499 					  unsigned int nr_bits)
3500 {
3501 	/* -1 is a legal arg here. */
3502 	if (n != -1)
3503 		cpu_max_bits_warn(n, nr_bits);
3504 
3505 	if (src1p && src2p)
3506 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3507 	else if (src1p)
3508 		return find_next_bit(src1p, nr_bits, n + 1);
3509 	else if (src2p)
3510 		return find_next_bit(src2p, nr_bits, n + 1);
3511 
3512 	return n + 1;
3513 }
3514 #else
3515 static inline int netif_set_xps_queue(struct net_device *dev,
3516 				      const struct cpumask *mask,
3517 				      u16 index)
3518 {
3519 	return 0;
3520 }
3521 
3522 static inline int __netif_set_xps_queue(struct net_device *dev,
3523 					const unsigned long *mask,
3524 					u16 index, bool is_rxqs_map)
3525 {
3526 	return 0;
3527 }
3528 #endif
3529 
3530 /**
3531  *	netif_is_multiqueue - test if device has multiple transmit queues
3532  *	@dev: network device
3533  *
3534  * Check if device has multiple transmit queues
3535  */
3536 static inline bool netif_is_multiqueue(const struct net_device *dev)
3537 {
3538 	return dev->num_tx_queues > 1;
3539 }
3540 
3541 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3542 
3543 #ifdef CONFIG_SYSFS
3544 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3545 #else
3546 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3547 						unsigned int rxqs)
3548 {
3549 	dev->real_num_rx_queues = rxqs;
3550 	return 0;
3551 }
3552 #endif
3553 
3554 static inline struct netdev_rx_queue *
3555 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3556 {
3557 	return dev->_rx + rxq;
3558 }
3559 
3560 #ifdef CONFIG_SYSFS
3561 static inline unsigned int get_netdev_rx_queue_index(
3562 		struct netdev_rx_queue *queue)
3563 {
3564 	struct net_device *dev = queue->dev;
3565 	int index = queue - dev->_rx;
3566 
3567 	BUG_ON(index >= dev->num_rx_queues);
3568 	return index;
3569 }
3570 #endif
3571 
3572 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3573 int netif_get_num_default_rss_queues(void);
3574 
3575 enum skb_free_reason {
3576 	SKB_REASON_CONSUMED,
3577 	SKB_REASON_DROPPED,
3578 };
3579 
3580 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3581 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3582 
3583 /*
3584  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3585  * interrupt context or with hardware interrupts being disabled.
3586  * (in_irq() || irqs_disabled())
3587  *
3588  * We provide four helpers that can be used in following contexts :
3589  *
3590  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3591  *  replacing kfree_skb(skb)
3592  *
3593  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3594  *  Typically used in place of consume_skb(skb) in TX completion path
3595  *
3596  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3597  *  replacing kfree_skb(skb)
3598  *
3599  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3600  *  and consumed a packet. Used in place of consume_skb(skb)
3601  */
3602 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3603 {
3604 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3605 }
3606 
3607 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3608 {
3609 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3610 }
3611 
3612 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3613 {
3614 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3615 }
3616 
3617 static inline void dev_consume_skb_any(struct sk_buff *skb)
3618 {
3619 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3620 }
3621 
3622 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3623 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3624 int netif_rx(struct sk_buff *skb);
3625 int netif_rx_ni(struct sk_buff *skb);
3626 int netif_receive_skb(struct sk_buff *skb);
3627 int netif_receive_skb_core(struct sk_buff *skb);
3628 void netif_receive_skb_list(struct list_head *head);
3629 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3630 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3631 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3632 gro_result_t napi_gro_frags(struct napi_struct *napi);
3633 struct packet_offload *gro_find_receive_by_type(__be16 type);
3634 struct packet_offload *gro_find_complete_by_type(__be16 type);
3635 
3636 static inline void napi_free_frags(struct napi_struct *napi)
3637 {
3638 	kfree_skb(napi->skb);
3639 	napi->skb = NULL;
3640 }
3641 
3642 bool netdev_is_rx_handler_busy(struct net_device *dev);
3643 int netdev_rx_handler_register(struct net_device *dev,
3644 			       rx_handler_func_t *rx_handler,
3645 			       void *rx_handler_data);
3646 void netdev_rx_handler_unregister(struct net_device *dev);
3647 
3648 bool dev_valid_name(const char *name);
3649 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3650 		bool *need_copyout);
3651 int dev_ifconf(struct net *net, struct ifconf *, int);
3652 int dev_ethtool(struct net *net, struct ifreq *);
3653 unsigned int dev_get_flags(const struct net_device *);
3654 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3655 		       struct netlink_ext_ack *extack);
3656 int dev_change_flags(struct net_device *dev, unsigned int flags,
3657 		     struct netlink_ext_ack *extack);
3658 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3659 			unsigned int gchanges);
3660 int dev_change_name(struct net_device *, const char *);
3661 int dev_set_alias(struct net_device *, const char *, size_t);
3662 int dev_get_alias(const struct net_device *, char *, size_t);
3663 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3664 int __dev_set_mtu(struct net_device *, int);
3665 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3666 		    struct netlink_ext_ack *extack);
3667 int dev_set_mtu(struct net_device *, int);
3668 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3669 void dev_set_group(struct net_device *, int);
3670 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3671 			      struct netlink_ext_ack *extack);
3672 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3673 			struct netlink_ext_ack *extack);
3674 int dev_change_carrier(struct net_device *, bool new_carrier);
3675 int dev_get_phys_port_id(struct net_device *dev,
3676 			 struct netdev_phys_item_id *ppid);
3677 int dev_get_phys_port_name(struct net_device *dev,
3678 			   char *name, size_t len);
3679 int dev_get_port_parent_id(struct net_device *dev,
3680 			   struct netdev_phys_item_id *ppid, bool recurse);
3681 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3682 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3683 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3684 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3685 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3686 				    struct netdev_queue *txq, int *ret);
3687 
3688 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3689 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3690 		      int fd, u32 flags);
3691 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3692 		    enum bpf_netdev_command cmd);
3693 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3694 
3695 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3696 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3697 bool is_skb_forwardable(const struct net_device *dev,
3698 			const struct sk_buff *skb);
3699 
3700 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3701 					       struct sk_buff *skb)
3702 {
3703 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3704 	    unlikely(!is_skb_forwardable(dev, skb))) {
3705 		atomic_long_inc(&dev->rx_dropped);
3706 		kfree_skb(skb);
3707 		return NET_RX_DROP;
3708 	}
3709 
3710 	skb_scrub_packet(skb, true);
3711 	skb->priority = 0;
3712 	return 0;
3713 }
3714 
3715 bool dev_nit_active(struct net_device *dev);
3716 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3717 
3718 extern int		netdev_budget;
3719 extern unsigned int	netdev_budget_usecs;
3720 
3721 /* Called by rtnetlink.c:rtnl_unlock() */
3722 void netdev_run_todo(void);
3723 
3724 /**
3725  *	dev_put - release reference to device
3726  *	@dev: network device
3727  *
3728  * Release reference to device to allow it to be freed.
3729  */
3730 static inline void dev_put(struct net_device *dev)
3731 {
3732 	this_cpu_dec(*dev->pcpu_refcnt);
3733 }
3734 
3735 /**
3736  *	dev_hold - get reference to device
3737  *	@dev: network device
3738  *
3739  * Hold reference to device to keep it from being freed.
3740  */
3741 static inline void dev_hold(struct net_device *dev)
3742 {
3743 	this_cpu_inc(*dev->pcpu_refcnt);
3744 }
3745 
3746 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3747  * and _off may be called from IRQ context, but it is caller
3748  * who is responsible for serialization of these calls.
3749  *
3750  * The name carrier is inappropriate, these functions should really be
3751  * called netif_lowerlayer_*() because they represent the state of any
3752  * kind of lower layer not just hardware media.
3753  */
3754 
3755 void linkwatch_init_dev(struct net_device *dev);
3756 void linkwatch_fire_event(struct net_device *dev);
3757 void linkwatch_forget_dev(struct net_device *dev);
3758 
3759 /**
3760  *	netif_carrier_ok - test if carrier present
3761  *	@dev: network device
3762  *
3763  * Check if carrier is present on device
3764  */
3765 static inline bool netif_carrier_ok(const struct net_device *dev)
3766 {
3767 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3768 }
3769 
3770 unsigned long dev_trans_start(struct net_device *dev);
3771 
3772 void __netdev_watchdog_up(struct net_device *dev);
3773 
3774 void netif_carrier_on(struct net_device *dev);
3775 
3776 void netif_carrier_off(struct net_device *dev);
3777 
3778 /**
3779  *	netif_dormant_on - mark device as dormant.
3780  *	@dev: network device
3781  *
3782  * Mark device as dormant (as per RFC2863).
3783  *
3784  * The dormant state indicates that the relevant interface is not
3785  * actually in a condition to pass packets (i.e., it is not 'up') but is
3786  * in a "pending" state, waiting for some external event.  For "on-
3787  * demand" interfaces, this new state identifies the situation where the
3788  * interface is waiting for events to place it in the up state.
3789  */
3790 static inline void netif_dormant_on(struct net_device *dev)
3791 {
3792 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3793 		linkwatch_fire_event(dev);
3794 }
3795 
3796 /**
3797  *	netif_dormant_off - set device as not dormant.
3798  *	@dev: network device
3799  *
3800  * Device is not in dormant state.
3801  */
3802 static inline void netif_dormant_off(struct net_device *dev)
3803 {
3804 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3805 		linkwatch_fire_event(dev);
3806 }
3807 
3808 /**
3809  *	netif_dormant - test if device is dormant
3810  *	@dev: network device
3811  *
3812  * Check if device is dormant.
3813  */
3814 static inline bool netif_dormant(const struct net_device *dev)
3815 {
3816 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3817 }
3818 
3819 
3820 /**
3821  *	netif_oper_up - test if device is operational
3822  *	@dev: network device
3823  *
3824  * Check if carrier is operational
3825  */
3826 static inline bool netif_oper_up(const struct net_device *dev)
3827 {
3828 	return (dev->operstate == IF_OPER_UP ||
3829 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3830 }
3831 
3832 /**
3833  *	netif_device_present - is device available or removed
3834  *	@dev: network device
3835  *
3836  * Check if device has not been removed from system.
3837  */
3838 static inline bool netif_device_present(struct net_device *dev)
3839 {
3840 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3841 }
3842 
3843 void netif_device_detach(struct net_device *dev);
3844 
3845 void netif_device_attach(struct net_device *dev);
3846 
3847 /*
3848  * Network interface message level settings
3849  */
3850 
3851 enum {
3852 	NETIF_MSG_DRV		= 0x0001,
3853 	NETIF_MSG_PROBE		= 0x0002,
3854 	NETIF_MSG_LINK		= 0x0004,
3855 	NETIF_MSG_TIMER		= 0x0008,
3856 	NETIF_MSG_IFDOWN	= 0x0010,
3857 	NETIF_MSG_IFUP		= 0x0020,
3858 	NETIF_MSG_RX_ERR	= 0x0040,
3859 	NETIF_MSG_TX_ERR	= 0x0080,
3860 	NETIF_MSG_TX_QUEUED	= 0x0100,
3861 	NETIF_MSG_INTR		= 0x0200,
3862 	NETIF_MSG_TX_DONE	= 0x0400,
3863 	NETIF_MSG_RX_STATUS	= 0x0800,
3864 	NETIF_MSG_PKTDATA	= 0x1000,
3865 	NETIF_MSG_HW		= 0x2000,
3866 	NETIF_MSG_WOL		= 0x4000,
3867 };
3868 
3869 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3870 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3871 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3872 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3873 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3874 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3875 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3876 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3877 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3878 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3879 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3880 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3881 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3882 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3883 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3884 
3885 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3886 {
3887 	/* use default */
3888 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3889 		return default_msg_enable_bits;
3890 	if (debug_value == 0)	/* no output */
3891 		return 0;
3892 	/* set low N bits */
3893 	return (1U << debug_value) - 1;
3894 }
3895 
3896 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3897 {
3898 	spin_lock(&txq->_xmit_lock);
3899 	txq->xmit_lock_owner = cpu;
3900 }
3901 
3902 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3903 {
3904 	__acquire(&txq->_xmit_lock);
3905 	return true;
3906 }
3907 
3908 static inline void __netif_tx_release(struct netdev_queue *txq)
3909 {
3910 	__release(&txq->_xmit_lock);
3911 }
3912 
3913 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3914 {
3915 	spin_lock_bh(&txq->_xmit_lock);
3916 	txq->xmit_lock_owner = smp_processor_id();
3917 }
3918 
3919 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3920 {
3921 	bool ok = spin_trylock(&txq->_xmit_lock);
3922 	if (likely(ok))
3923 		txq->xmit_lock_owner = smp_processor_id();
3924 	return ok;
3925 }
3926 
3927 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3928 {
3929 	txq->xmit_lock_owner = -1;
3930 	spin_unlock(&txq->_xmit_lock);
3931 }
3932 
3933 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3934 {
3935 	txq->xmit_lock_owner = -1;
3936 	spin_unlock_bh(&txq->_xmit_lock);
3937 }
3938 
3939 static inline void txq_trans_update(struct netdev_queue *txq)
3940 {
3941 	if (txq->xmit_lock_owner != -1)
3942 		txq->trans_start = jiffies;
3943 }
3944 
3945 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3946 static inline void netif_trans_update(struct net_device *dev)
3947 {
3948 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3949 
3950 	if (txq->trans_start != jiffies)
3951 		txq->trans_start = jiffies;
3952 }
3953 
3954 /**
3955  *	netif_tx_lock - grab network device transmit lock
3956  *	@dev: network device
3957  *
3958  * Get network device transmit lock
3959  */
3960 static inline void netif_tx_lock(struct net_device *dev)
3961 {
3962 	unsigned int i;
3963 	int cpu;
3964 
3965 	spin_lock(&dev->tx_global_lock);
3966 	cpu = smp_processor_id();
3967 	for (i = 0; i < dev->num_tx_queues; i++) {
3968 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3969 
3970 		/* We are the only thread of execution doing a
3971 		 * freeze, but we have to grab the _xmit_lock in
3972 		 * order to synchronize with threads which are in
3973 		 * the ->hard_start_xmit() handler and already
3974 		 * checked the frozen bit.
3975 		 */
3976 		__netif_tx_lock(txq, cpu);
3977 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3978 		__netif_tx_unlock(txq);
3979 	}
3980 }
3981 
3982 static inline void netif_tx_lock_bh(struct net_device *dev)
3983 {
3984 	local_bh_disable();
3985 	netif_tx_lock(dev);
3986 }
3987 
3988 static inline void netif_tx_unlock(struct net_device *dev)
3989 {
3990 	unsigned int i;
3991 
3992 	for (i = 0; i < dev->num_tx_queues; i++) {
3993 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3994 
3995 		/* No need to grab the _xmit_lock here.  If the
3996 		 * queue is not stopped for another reason, we
3997 		 * force a schedule.
3998 		 */
3999 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4000 		netif_schedule_queue(txq);
4001 	}
4002 	spin_unlock(&dev->tx_global_lock);
4003 }
4004 
4005 static inline void netif_tx_unlock_bh(struct net_device *dev)
4006 {
4007 	netif_tx_unlock(dev);
4008 	local_bh_enable();
4009 }
4010 
4011 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4012 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4013 		__netif_tx_lock(txq, cpu);		\
4014 	} else {					\
4015 		__netif_tx_acquire(txq);		\
4016 	}						\
4017 }
4018 
4019 #define HARD_TX_TRYLOCK(dev, txq)			\
4020 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4021 		__netif_tx_trylock(txq) :		\
4022 		__netif_tx_acquire(txq))
4023 
4024 #define HARD_TX_UNLOCK(dev, txq) {			\
4025 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4026 		__netif_tx_unlock(txq);			\
4027 	} else {					\
4028 		__netif_tx_release(txq);		\
4029 	}						\
4030 }
4031 
4032 static inline void netif_tx_disable(struct net_device *dev)
4033 {
4034 	unsigned int i;
4035 	int cpu;
4036 
4037 	local_bh_disable();
4038 	cpu = smp_processor_id();
4039 	for (i = 0; i < dev->num_tx_queues; i++) {
4040 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4041 
4042 		__netif_tx_lock(txq, cpu);
4043 		netif_tx_stop_queue(txq);
4044 		__netif_tx_unlock(txq);
4045 	}
4046 	local_bh_enable();
4047 }
4048 
4049 static inline void netif_addr_lock(struct net_device *dev)
4050 {
4051 	spin_lock(&dev->addr_list_lock);
4052 }
4053 
4054 static inline void netif_addr_lock_nested(struct net_device *dev)
4055 {
4056 	int subclass = SINGLE_DEPTH_NESTING;
4057 
4058 	if (dev->netdev_ops->ndo_get_lock_subclass)
4059 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
4060 
4061 	spin_lock_nested(&dev->addr_list_lock, subclass);
4062 }
4063 
4064 static inline void netif_addr_lock_bh(struct net_device *dev)
4065 {
4066 	spin_lock_bh(&dev->addr_list_lock);
4067 }
4068 
4069 static inline void netif_addr_unlock(struct net_device *dev)
4070 {
4071 	spin_unlock(&dev->addr_list_lock);
4072 }
4073 
4074 static inline void netif_addr_unlock_bh(struct net_device *dev)
4075 {
4076 	spin_unlock_bh(&dev->addr_list_lock);
4077 }
4078 
4079 /*
4080  * dev_addrs walker. Should be used only for read access. Call with
4081  * rcu_read_lock held.
4082  */
4083 #define for_each_dev_addr(dev, ha) \
4084 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4085 
4086 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4087 
4088 void ether_setup(struct net_device *dev);
4089 
4090 /* Support for loadable net-drivers */
4091 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4092 				    unsigned char name_assign_type,
4093 				    void (*setup)(struct net_device *),
4094 				    unsigned int txqs, unsigned int rxqs);
4095 int dev_get_valid_name(struct net *net, struct net_device *dev,
4096 		       const char *name);
4097 
4098 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4099 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4100 
4101 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4102 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4103 			 count)
4104 
4105 int register_netdev(struct net_device *dev);
4106 void unregister_netdev(struct net_device *dev);
4107 
4108 /* General hardware address lists handling functions */
4109 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4110 		   struct netdev_hw_addr_list *from_list, int addr_len);
4111 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4112 		      struct netdev_hw_addr_list *from_list, int addr_len);
4113 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4114 		       struct net_device *dev,
4115 		       int (*sync)(struct net_device *, const unsigned char *),
4116 		       int (*unsync)(struct net_device *,
4117 				     const unsigned char *));
4118 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4119 			   struct net_device *dev,
4120 			   int (*sync)(struct net_device *,
4121 				       const unsigned char *, int),
4122 			   int (*unsync)(struct net_device *,
4123 					 const unsigned char *, int));
4124 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4125 			      struct net_device *dev,
4126 			      int (*unsync)(struct net_device *,
4127 					    const unsigned char *, int));
4128 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4129 			  struct net_device *dev,
4130 			  int (*unsync)(struct net_device *,
4131 					const unsigned char *));
4132 void __hw_addr_init(struct netdev_hw_addr_list *list);
4133 
4134 /* Functions used for device addresses handling */
4135 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4136 		 unsigned char addr_type);
4137 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4138 		 unsigned char addr_type);
4139 void dev_addr_flush(struct net_device *dev);
4140 int dev_addr_init(struct net_device *dev);
4141 
4142 /* Functions used for unicast addresses handling */
4143 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4144 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4145 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4146 int dev_uc_sync(struct net_device *to, struct net_device *from);
4147 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4148 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4149 void dev_uc_flush(struct net_device *dev);
4150 void dev_uc_init(struct net_device *dev);
4151 
4152 /**
4153  *  __dev_uc_sync - Synchonize device's unicast list
4154  *  @dev:  device to sync
4155  *  @sync: function to call if address should be added
4156  *  @unsync: function to call if address should be removed
4157  *
4158  *  Add newly added addresses to the interface, and release
4159  *  addresses that have been deleted.
4160  */
4161 static inline int __dev_uc_sync(struct net_device *dev,
4162 				int (*sync)(struct net_device *,
4163 					    const unsigned char *),
4164 				int (*unsync)(struct net_device *,
4165 					      const unsigned char *))
4166 {
4167 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4168 }
4169 
4170 /**
4171  *  __dev_uc_unsync - Remove synchronized addresses from device
4172  *  @dev:  device to sync
4173  *  @unsync: function to call if address should be removed
4174  *
4175  *  Remove all addresses that were added to the device by dev_uc_sync().
4176  */
4177 static inline void __dev_uc_unsync(struct net_device *dev,
4178 				   int (*unsync)(struct net_device *,
4179 						 const unsigned char *))
4180 {
4181 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4182 }
4183 
4184 /* Functions used for multicast addresses handling */
4185 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4186 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4187 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4188 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4189 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4190 int dev_mc_sync(struct net_device *to, struct net_device *from);
4191 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4192 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4193 void dev_mc_flush(struct net_device *dev);
4194 void dev_mc_init(struct net_device *dev);
4195 
4196 /**
4197  *  __dev_mc_sync - Synchonize device's multicast list
4198  *  @dev:  device to sync
4199  *  @sync: function to call if address should be added
4200  *  @unsync: function to call if address should be removed
4201  *
4202  *  Add newly added addresses to the interface, and release
4203  *  addresses that have been deleted.
4204  */
4205 static inline int __dev_mc_sync(struct net_device *dev,
4206 				int (*sync)(struct net_device *,
4207 					    const unsigned char *),
4208 				int (*unsync)(struct net_device *,
4209 					      const unsigned char *))
4210 {
4211 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4212 }
4213 
4214 /**
4215  *  __dev_mc_unsync - Remove synchronized addresses from device
4216  *  @dev:  device to sync
4217  *  @unsync: function to call if address should be removed
4218  *
4219  *  Remove all addresses that were added to the device by dev_mc_sync().
4220  */
4221 static inline void __dev_mc_unsync(struct net_device *dev,
4222 				   int (*unsync)(struct net_device *,
4223 						 const unsigned char *))
4224 {
4225 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4226 }
4227 
4228 /* Functions used for secondary unicast and multicast support */
4229 void dev_set_rx_mode(struct net_device *dev);
4230 void __dev_set_rx_mode(struct net_device *dev);
4231 int dev_set_promiscuity(struct net_device *dev, int inc);
4232 int dev_set_allmulti(struct net_device *dev, int inc);
4233 void netdev_state_change(struct net_device *dev);
4234 void netdev_notify_peers(struct net_device *dev);
4235 void netdev_features_change(struct net_device *dev);
4236 /* Load a device via the kmod */
4237 void dev_load(struct net *net, const char *name);
4238 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4239 					struct rtnl_link_stats64 *storage);
4240 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4241 			     const struct net_device_stats *netdev_stats);
4242 
4243 extern int		netdev_max_backlog;
4244 extern int		netdev_tstamp_prequeue;
4245 extern int		weight_p;
4246 extern int		dev_weight_rx_bias;
4247 extern int		dev_weight_tx_bias;
4248 extern int		dev_rx_weight;
4249 extern int		dev_tx_weight;
4250 
4251 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4252 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4253 						     struct list_head **iter);
4254 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4255 						     struct list_head **iter);
4256 
4257 /* iterate through upper list, must be called under RCU read lock */
4258 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4259 	for (iter = &(dev)->adj_list.upper, \
4260 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4261 	     updev; \
4262 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4263 
4264 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4265 				  int (*fn)(struct net_device *upper_dev,
4266 					    void *data),
4267 				  void *data);
4268 
4269 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4270 				  struct net_device *upper_dev);
4271 
4272 bool netdev_has_any_upper_dev(struct net_device *dev);
4273 
4274 void *netdev_lower_get_next_private(struct net_device *dev,
4275 				    struct list_head **iter);
4276 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4277 					struct list_head **iter);
4278 
4279 #define netdev_for_each_lower_private(dev, priv, iter) \
4280 	for (iter = (dev)->adj_list.lower.next, \
4281 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4282 	     priv; \
4283 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4284 
4285 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4286 	for (iter = &(dev)->adj_list.lower, \
4287 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4288 	     priv; \
4289 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4290 
4291 void *netdev_lower_get_next(struct net_device *dev,
4292 				struct list_head **iter);
4293 
4294 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4295 	for (iter = (dev)->adj_list.lower.next, \
4296 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4297 	     ldev; \
4298 	     ldev = netdev_lower_get_next(dev, &(iter)))
4299 
4300 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4301 					     struct list_head **iter);
4302 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4303 						 struct list_head **iter);
4304 
4305 int netdev_walk_all_lower_dev(struct net_device *dev,
4306 			      int (*fn)(struct net_device *lower_dev,
4307 					void *data),
4308 			      void *data);
4309 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4310 				  int (*fn)(struct net_device *lower_dev,
4311 					    void *data),
4312 				  void *data);
4313 
4314 void *netdev_adjacent_get_private(struct list_head *adj_list);
4315 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4316 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4317 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4318 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4319 			  struct netlink_ext_ack *extack);
4320 int netdev_master_upper_dev_link(struct net_device *dev,
4321 				 struct net_device *upper_dev,
4322 				 void *upper_priv, void *upper_info,
4323 				 struct netlink_ext_ack *extack);
4324 void netdev_upper_dev_unlink(struct net_device *dev,
4325 			     struct net_device *upper_dev);
4326 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4327 void *netdev_lower_dev_get_private(struct net_device *dev,
4328 				   struct net_device *lower_dev);
4329 void netdev_lower_state_changed(struct net_device *lower_dev,
4330 				void *lower_state_info);
4331 
4332 /* RSS keys are 40 or 52 bytes long */
4333 #define NETDEV_RSS_KEY_LEN 52
4334 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4335 void netdev_rss_key_fill(void *buffer, size_t len);
4336 
4337 int dev_get_nest_level(struct net_device *dev);
4338 int skb_checksum_help(struct sk_buff *skb);
4339 int skb_crc32c_csum_help(struct sk_buff *skb);
4340 int skb_csum_hwoffload_help(struct sk_buff *skb,
4341 			    const netdev_features_t features);
4342 
4343 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4344 				  netdev_features_t features, bool tx_path);
4345 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4346 				    netdev_features_t features);
4347 
4348 struct netdev_bonding_info {
4349 	ifslave	slave;
4350 	ifbond	master;
4351 };
4352 
4353 struct netdev_notifier_bonding_info {
4354 	struct netdev_notifier_info info; /* must be first */
4355 	struct netdev_bonding_info  bonding_info;
4356 };
4357 
4358 void netdev_bonding_info_change(struct net_device *dev,
4359 				struct netdev_bonding_info *bonding_info);
4360 
4361 static inline
4362 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4363 {
4364 	return __skb_gso_segment(skb, features, true);
4365 }
4366 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4367 
4368 static inline bool can_checksum_protocol(netdev_features_t features,
4369 					 __be16 protocol)
4370 {
4371 	if (protocol == htons(ETH_P_FCOE))
4372 		return !!(features & NETIF_F_FCOE_CRC);
4373 
4374 	/* Assume this is an IP checksum (not SCTP CRC) */
4375 
4376 	if (features & NETIF_F_HW_CSUM) {
4377 		/* Can checksum everything */
4378 		return true;
4379 	}
4380 
4381 	switch (protocol) {
4382 	case htons(ETH_P_IP):
4383 		return !!(features & NETIF_F_IP_CSUM);
4384 	case htons(ETH_P_IPV6):
4385 		return !!(features & NETIF_F_IPV6_CSUM);
4386 	default:
4387 		return false;
4388 	}
4389 }
4390 
4391 #ifdef CONFIG_BUG
4392 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4393 #else
4394 static inline void netdev_rx_csum_fault(struct net_device *dev,
4395 					struct sk_buff *skb)
4396 {
4397 }
4398 #endif
4399 /* rx skb timestamps */
4400 void net_enable_timestamp(void);
4401 void net_disable_timestamp(void);
4402 
4403 #ifdef CONFIG_PROC_FS
4404 int __init dev_proc_init(void);
4405 #else
4406 #define dev_proc_init() 0
4407 #endif
4408 
4409 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4410 					      struct sk_buff *skb, struct net_device *dev,
4411 					      bool more)
4412 {
4413 	skb->xmit_more = more ? 1 : 0;
4414 	return ops->ndo_start_xmit(skb, dev);
4415 }
4416 
4417 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4418 					    struct netdev_queue *txq, bool more)
4419 {
4420 	const struct net_device_ops *ops = dev->netdev_ops;
4421 	netdev_tx_t rc;
4422 
4423 	rc = __netdev_start_xmit(ops, skb, dev, more);
4424 	if (rc == NETDEV_TX_OK)
4425 		txq_trans_update(txq);
4426 
4427 	return rc;
4428 }
4429 
4430 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4431 				const void *ns);
4432 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4433 				 const void *ns);
4434 
4435 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4436 {
4437 	return netdev_class_create_file_ns(class_attr, NULL);
4438 }
4439 
4440 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4441 {
4442 	netdev_class_remove_file_ns(class_attr, NULL);
4443 }
4444 
4445 extern const struct kobj_ns_type_operations net_ns_type_operations;
4446 
4447 const char *netdev_drivername(const struct net_device *dev);
4448 
4449 void linkwatch_run_queue(void);
4450 
4451 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4452 							  netdev_features_t f2)
4453 {
4454 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4455 		if (f1 & NETIF_F_HW_CSUM)
4456 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4457 		else
4458 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4459 	}
4460 
4461 	return f1 & f2;
4462 }
4463 
4464 static inline netdev_features_t netdev_get_wanted_features(
4465 	struct net_device *dev)
4466 {
4467 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4468 }
4469 netdev_features_t netdev_increment_features(netdev_features_t all,
4470 	netdev_features_t one, netdev_features_t mask);
4471 
4472 /* Allow TSO being used on stacked device :
4473  * Performing the GSO segmentation before last device
4474  * is a performance improvement.
4475  */
4476 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4477 							netdev_features_t mask)
4478 {
4479 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4480 }
4481 
4482 int __netdev_update_features(struct net_device *dev);
4483 void netdev_update_features(struct net_device *dev);
4484 void netdev_change_features(struct net_device *dev);
4485 
4486 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4487 					struct net_device *dev);
4488 
4489 netdev_features_t passthru_features_check(struct sk_buff *skb,
4490 					  struct net_device *dev,
4491 					  netdev_features_t features);
4492 netdev_features_t netif_skb_features(struct sk_buff *skb);
4493 
4494 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4495 {
4496 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4497 
4498 	/* check flags correspondence */
4499 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4500 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4501 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4502 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4503 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4504 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4505 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4506 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4507 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4508 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4509 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4510 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4511 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4512 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4513 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4514 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4515 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4516 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4517 
4518 	return (features & feature) == feature;
4519 }
4520 
4521 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4522 {
4523 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4524 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4525 }
4526 
4527 static inline bool netif_needs_gso(struct sk_buff *skb,
4528 				   netdev_features_t features)
4529 {
4530 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4531 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4532 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4533 }
4534 
4535 static inline void netif_set_gso_max_size(struct net_device *dev,
4536 					  unsigned int size)
4537 {
4538 	dev->gso_max_size = size;
4539 }
4540 
4541 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4542 					int pulled_hlen, u16 mac_offset,
4543 					int mac_len)
4544 {
4545 	skb->protocol = protocol;
4546 	skb->encapsulation = 1;
4547 	skb_push(skb, pulled_hlen);
4548 	skb_reset_transport_header(skb);
4549 	skb->mac_header = mac_offset;
4550 	skb->network_header = skb->mac_header + mac_len;
4551 	skb->mac_len = mac_len;
4552 }
4553 
4554 static inline bool netif_is_macsec(const struct net_device *dev)
4555 {
4556 	return dev->priv_flags & IFF_MACSEC;
4557 }
4558 
4559 static inline bool netif_is_macvlan(const struct net_device *dev)
4560 {
4561 	return dev->priv_flags & IFF_MACVLAN;
4562 }
4563 
4564 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4565 {
4566 	return dev->priv_flags & IFF_MACVLAN_PORT;
4567 }
4568 
4569 static inline bool netif_is_bond_master(const struct net_device *dev)
4570 {
4571 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4572 }
4573 
4574 static inline bool netif_is_bond_slave(const struct net_device *dev)
4575 {
4576 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4577 }
4578 
4579 static inline bool netif_supports_nofcs(struct net_device *dev)
4580 {
4581 	return dev->priv_flags & IFF_SUPP_NOFCS;
4582 }
4583 
4584 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4585 {
4586 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4587 }
4588 
4589 static inline bool netif_is_l3_master(const struct net_device *dev)
4590 {
4591 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4592 }
4593 
4594 static inline bool netif_is_l3_slave(const struct net_device *dev)
4595 {
4596 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4597 }
4598 
4599 static inline bool netif_is_bridge_master(const struct net_device *dev)
4600 {
4601 	return dev->priv_flags & IFF_EBRIDGE;
4602 }
4603 
4604 static inline bool netif_is_bridge_port(const struct net_device *dev)
4605 {
4606 	return dev->priv_flags & IFF_BRIDGE_PORT;
4607 }
4608 
4609 static inline bool netif_is_ovs_master(const struct net_device *dev)
4610 {
4611 	return dev->priv_flags & IFF_OPENVSWITCH;
4612 }
4613 
4614 static inline bool netif_is_ovs_port(const struct net_device *dev)
4615 {
4616 	return dev->priv_flags & IFF_OVS_DATAPATH;
4617 }
4618 
4619 static inline bool netif_is_team_master(const struct net_device *dev)
4620 {
4621 	return dev->priv_flags & IFF_TEAM;
4622 }
4623 
4624 static inline bool netif_is_team_port(const struct net_device *dev)
4625 {
4626 	return dev->priv_flags & IFF_TEAM_PORT;
4627 }
4628 
4629 static inline bool netif_is_lag_master(const struct net_device *dev)
4630 {
4631 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4632 }
4633 
4634 static inline bool netif_is_lag_port(const struct net_device *dev)
4635 {
4636 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4637 }
4638 
4639 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4640 {
4641 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4642 }
4643 
4644 static inline bool netif_is_failover(const struct net_device *dev)
4645 {
4646 	return dev->priv_flags & IFF_FAILOVER;
4647 }
4648 
4649 static inline bool netif_is_failover_slave(const struct net_device *dev)
4650 {
4651 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4652 }
4653 
4654 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4655 static inline void netif_keep_dst(struct net_device *dev)
4656 {
4657 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4658 }
4659 
4660 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4661 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4662 {
4663 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4664 	return dev->priv_flags & IFF_MACSEC;
4665 }
4666 
4667 extern struct pernet_operations __net_initdata loopback_net_ops;
4668 
4669 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4670 
4671 /* netdev_printk helpers, similar to dev_printk */
4672 
4673 static inline const char *netdev_name(const struct net_device *dev)
4674 {
4675 	if (!dev->name[0] || strchr(dev->name, '%'))
4676 		return "(unnamed net_device)";
4677 	return dev->name;
4678 }
4679 
4680 static inline bool netdev_unregistering(const struct net_device *dev)
4681 {
4682 	return dev->reg_state == NETREG_UNREGISTERING;
4683 }
4684 
4685 static inline const char *netdev_reg_state(const struct net_device *dev)
4686 {
4687 	switch (dev->reg_state) {
4688 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4689 	case NETREG_REGISTERED: return "";
4690 	case NETREG_UNREGISTERING: return " (unregistering)";
4691 	case NETREG_UNREGISTERED: return " (unregistered)";
4692 	case NETREG_RELEASED: return " (released)";
4693 	case NETREG_DUMMY: return " (dummy)";
4694 	}
4695 
4696 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4697 	return " (unknown)";
4698 }
4699 
4700 __printf(3, 4) __cold
4701 void netdev_printk(const char *level, const struct net_device *dev,
4702 		   const char *format, ...);
4703 __printf(2, 3) __cold
4704 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4705 __printf(2, 3) __cold
4706 void netdev_alert(const struct net_device *dev, const char *format, ...);
4707 __printf(2, 3) __cold
4708 void netdev_crit(const struct net_device *dev, const char *format, ...);
4709 __printf(2, 3) __cold
4710 void netdev_err(const struct net_device *dev, const char *format, ...);
4711 __printf(2, 3) __cold
4712 void netdev_warn(const struct net_device *dev, const char *format, ...);
4713 __printf(2, 3) __cold
4714 void netdev_notice(const struct net_device *dev, const char *format, ...);
4715 __printf(2, 3) __cold
4716 void netdev_info(const struct net_device *dev, const char *format, ...);
4717 
4718 #define netdev_level_once(level, dev, fmt, ...)			\
4719 do {								\
4720 	static bool __print_once __read_mostly;			\
4721 								\
4722 	if (!__print_once) {					\
4723 		__print_once = true;				\
4724 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4725 	}							\
4726 } while (0)
4727 
4728 #define netdev_emerg_once(dev, fmt, ...) \
4729 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4730 #define netdev_alert_once(dev, fmt, ...) \
4731 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4732 #define netdev_crit_once(dev, fmt, ...) \
4733 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4734 #define netdev_err_once(dev, fmt, ...) \
4735 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4736 #define netdev_warn_once(dev, fmt, ...) \
4737 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4738 #define netdev_notice_once(dev, fmt, ...) \
4739 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4740 #define netdev_info_once(dev, fmt, ...) \
4741 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4742 
4743 #define MODULE_ALIAS_NETDEV(device) \
4744 	MODULE_ALIAS("netdev-" device)
4745 
4746 #if defined(CONFIG_DYNAMIC_DEBUG)
4747 #define netdev_dbg(__dev, format, args...)			\
4748 do {								\
4749 	dynamic_netdev_dbg(__dev, format, ##args);		\
4750 } while (0)
4751 #elif defined(DEBUG)
4752 #define netdev_dbg(__dev, format, args...)			\
4753 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4754 #else
4755 #define netdev_dbg(__dev, format, args...)			\
4756 ({								\
4757 	if (0)							\
4758 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4759 })
4760 #endif
4761 
4762 #if defined(VERBOSE_DEBUG)
4763 #define netdev_vdbg	netdev_dbg
4764 #else
4765 
4766 #define netdev_vdbg(dev, format, args...)			\
4767 ({								\
4768 	if (0)							\
4769 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4770 	0;							\
4771 })
4772 #endif
4773 
4774 /*
4775  * netdev_WARN() acts like dev_printk(), but with the key difference
4776  * of using a WARN/WARN_ON to get the message out, including the
4777  * file/line information and a backtrace.
4778  */
4779 #define netdev_WARN(dev, format, args...)			\
4780 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4781 	     netdev_reg_state(dev), ##args)
4782 
4783 #define netdev_WARN_ONCE(dev, format, args...)				\
4784 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4785 		  netdev_reg_state(dev), ##args)
4786 
4787 /* netif printk helpers, similar to netdev_printk */
4788 
4789 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4790 do {					  			\
4791 	if (netif_msg_##type(priv))				\
4792 		netdev_printk(level, (dev), fmt, ##args);	\
4793 } while (0)
4794 
4795 #define netif_level(level, priv, type, dev, fmt, args...)	\
4796 do {								\
4797 	if (netif_msg_##type(priv))				\
4798 		netdev_##level(dev, fmt, ##args);		\
4799 } while (0)
4800 
4801 #define netif_emerg(priv, type, dev, fmt, args...)		\
4802 	netif_level(emerg, priv, type, dev, fmt, ##args)
4803 #define netif_alert(priv, type, dev, fmt, args...)		\
4804 	netif_level(alert, priv, type, dev, fmt, ##args)
4805 #define netif_crit(priv, type, dev, fmt, args...)		\
4806 	netif_level(crit, priv, type, dev, fmt, ##args)
4807 #define netif_err(priv, type, dev, fmt, args...)		\
4808 	netif_level(err, priv, type, dev, fmt, ##args)
4809 #define netif_warn(priv, type, dev, fmt, args...)		\
4810 	netif_level(warn, priv, type, dev, fmt, ##args)
4811 #define netif_notice(priv, type, dev, fmt, args...)		\
4812 	netif_level(notice, priv, type, dev, fmt, ##args)
4813 #define netif_info(priv, type, dev, fmt, args...)		\
4814 	netif_level(info, priv, type, dev, fmt, ##args)
4815 
4816 #if defined(CONFIG_DYNAMIC_DEBUG)
4817 #define netif_dbg(priv, type, netdev, format, args...)		\
4818 do {								\
4819 	if (netif_msg_##type(priv))				\
4820 		dynamic_netdev_dbg(netdev, format, ##args);	\
4821 } while (0)
4822 #elif defined(DEBUG)
4823 #define netif_dbg(priv, type, dev, format, args...)		\
4824 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4825 #else
4826 #define netif_dbg(priv, type, dev, format, args...)			\
4827 ({									\
4828 	if (0)								\
4829 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4830 	0;								\
4831 })
4832 #endif
4833 
4834 /* if @cond then downgrade to debug, else print at @level */
4835 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4836 	do {                                                              \
4837 		if (cond)                                                 \
4838 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4839 		else                                                      \
4840 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4841 	} while (0)
4842 
4843 #if defined(VERBOSE_DEBUG)
4844 #define netif_vdbg	netif_dbg
4845 #else
4846 #define netif_vdbg(priv, type, dev, format, args...)		\
4847 ({								\
4848 	if (0)							\
4849 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4850 	0;							\
4851 })
4852 #endif
4853 
4854 /*
4855  *	The list of packet types we will receive (as opposed to discard)
4856  *	and the routines to invoke.
4857  *
4858  *	Why 16. Because with 16 the only overlap we get on a hash of the
4859  *	low nibble of the protocol value is RARP/SNAP/X.25.
4860  *
4861  *		0800	IP
4862  *		0001	802.3
4863  *		0002	AX.25
4864  *		0004	802.2
4865  *		8035	RARP
4866  *		0005	SNAP
4867  *		0805	X.25
4868  *		0806	ARP
4869  *		8137	IPX
4870  *		0009	Localtalk
4871  *		86DD	IPv6
4872  */
4873 #define PTYPE_HASH_SIZE	(16)
4874 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4875 
4876 #endif	/* _LINUX_NETDEVICE_H */
4877