1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/if.h> 29 #include <linux/if_ether.h> 30 #include <linux/if_packet.h> 31 #include <linux/if_link.h> 32 33 #ifdef __KERNEL__ 34 #include <linux/pm_qos.h> 35 #include <linux/timer.h> 36 #include <linux/bug.h> 37 #include <linux/delay.h> 38 #include <linux/atomic.h> 39 #include <asm/cache.h> 40 #include <asm/byteorder.h> 41 42 #include <linux/percpu.h> 43 #include <linux/rculist.h> 44 #include <linux/dmaengine.h> 45 #include <linux/workqueue.h> 46 #include <linux/dynamic_queue_limits.h> 47 48 #include <linux/ethtool.h> 49 #include <net/net_namespace.h> 50 #include <net/dsa.h> 51 #ifdef CONFIG_DCB 52 #include <net/dcbnl.h> 53 #endif 54 #include <net/netprio_cgroup.h> 55 56 #include <linux/netdev_features.h> 57 58 struct netpoll_info; 59 struct device; 60 struct phy_device; 61 /* 802.11 specific */ 62 struct wireless_dev; 63 /* source back-compat hooks */ 64 #define SET_ETHTOOL_OPS(netdev,ops) \ 65 ( (netdev)->ethtool_ops = (ops) ) 66 67 /* hardware address assignment types */ 68 #define NET_ADDR_PERM 0 /* address is permanent (default) */ 69 #define NET_ADDR_RANDOM 1 /* address is generated randomly */ 70 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 71 72 /* Backlog congestion levels */ 73 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 74 #define NET_RX_DROP 1 /* packet dropped */ 75 76 /* 77 * Transmit return codes: transmit return codes originate from three different 78 * namespaces: 79 * 80 * - qdisc return codes 81 * - driver transmit return codes 82 * - errno values 83 * 84 * Drivers are allowed to return any one of those in their hard_start_xmit() 85 * function. Real network devices commonly used with qdiscs should only return 86 * the driver transmit return codes though - when qdiscs are used, the actual 87 * transmission happens asynchronously, so the value is not propagated to 88 * higher layers. Virtual network devices transmit synchronously, in this case 89 * the driver transmit return codes are consumed by dev_queue_xmit(), all 90 * others are propagated to higher layers. 91 */ 92 93 /* qdisc ->enqueue() return codes. */ 94 #define NET_XMIT_SUCCESS 0x00 95 #define NET_XMIT_DROP 0x01 /* skb dropped */ 96 #define NET_XMIT_CN 0x02 /* congestion notification */ 97 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 98 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 99 100 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 101 * indicates that the device will soon be dropping packets, or already drops 102 * some packets of the same priority; prompting us to send less aggressively. */ 103 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 104 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 105 106 /* Driver transmit return codes */ 107 #define NETDEV_TX_MASK 0xf0 108 109 enum netdev_tx { 110 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 111 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 112 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 113 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 114 }; 115 typedef enum netdev_tx netdev_tx_t; 116 117 /* 118 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 119 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 120 */ 121 static inline bool dev_xmit_complete(int rc) 122 { 123 /* 124 * Positive cases with an skb consumed by a driver: 125 * - successful transmission (rc == NETDEV_TX_OK) 126 * - error while transmitting (rc < 0) 127 * - error while queueing to a different device (rc & NET_XMIT_MASK) 128 */ 129 if (likely(rc < NET_XMIT_MASK)) 130 return true; 131 132 return false; 133 } 134 135 #endif 136 137 #define MAX_ADDR_LEN 32 /* Largest hardware address length */ 138 139 /* Initial net device group. All devices belong to group 0 by default. */ 140 #define INIT_NETDEV_GROUP 0 141 142 #ifdef __KERNEL__ 143 /* 144 * Compute the worst case header length according to the protocols 145 * used. 146 */ 147 148 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 149 # if defined(CONFIG_MAC80211_MESH) 150 # define LL_MAX_HEADER 128 151 # else 152 # define LL_MAX_HEADER 96 153 # endif 154 #elif IS_ENABLED(CONFIG_TR) 155 # define LL_MAX_HEADER 48 156 #else 157 # define LL_MAX_HEADER 32 158 #endif 159 160 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 161 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 162 #define MAX_HEADER LL_MAX_HEADER 163 #else 164 #define MAX_HEADER (LL_MAX_HEADER + 48) 165 #endif 166 167 /* 168 * Old network device statistics. Fields are native words 169 * (unsigned long) so they can be read and written atomically. 170 */ 171 172 struct net_device_stats { 173 unsigned long rx_packets; 174 unsigned long tx_packets; 175 unsigned long rx_bytes; 176 unsigned long tx_bytes; 177 unsigned long rx_errors; 178 unsigned long tx_errors; 179 unsigned long rx_dropped; 180 unsigned long tx_dropped; 181 unsigned long multicast; 182 unsigned long collisions; 183 unsigned long rx_length_errors; 184 unsigned long rx_over_errors; 185 unsigned long rx_crc_errors; 186 unsigned long rx_frame_errors; 187 unsigned long rx_fifo_errors; 188 unsigned long rx_missed_errors; 189 unsigned long tx_aborted_errors; 190 unsigned long tx_carrier_errors; 191 unsigned long tx_fifo_errors; 192 unsigned long tx_heartbeat_errors; 193 unsigned long tx_window_errors; 194 unsigned long rx_compressed; 195 unsigned long tx_compressed; 196 }; 197 198 #endif /* __KERNEL__ */ 199 200 201 /* Media selection options. */ 202 enum { 203 IF_PORT_UNKNOWN = 0, 204 IF_PORT_10BASE2, 205 IF_PORT_10BASET, 206 IF_PORT_AUI, 207 IF_PORT_100BASET, 208 IF_PORT_100BASETX, 209 IF_PORT_100BASEFX 210 }; 211 212 #ifdef __KERNEL__ 213 214 #include <linux/cache.h> 215 #include <linux/skbuff.h> 216 217 #ifdef CONFIG_RPS 218 #include <linux/static_key.h> 219 extern struct static_key rps_needed; 220 #endif 221 222 struct neighbour; 223 struct neigh_parms; 224 struct sk_buff; 225 226 struct netdev_hw_addr { 227 struct list_head list; 228 unsigned char addr[MAX_ADDR_LEN]; 229 unsigned char type; 230 #define NETDEV_HW_ADDR_T_LAN 1 231 #define NETDEV_HW_ADDR_T_SAN 2 232 #define NETDEV_HW_ADDR_T_SLAVE 3 233 #define NETDEV_HW_ADDR_T_UNICAST 4 234 #define NETDEV_HW_ADDR_T_MULTICAST 5 235 bool synced; 236 bool global_use; 237 int refcount; 238 struct rcu_head rcu_head; 239 }; 240 241 struct netdev_hw_addr_list { 242 struct list_head list; 243 int count; 244 }; 245 246 #define netdev_hw_addr_list_count(l) ((l)->count) 247 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 248 #define netdev_hw_addr_list_for_each(ha, l) \ 249 list_for_each_entry(ha, &(l)->list, list) 250 251 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 252 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 253 #define netdev_for_each_uc_addr(ha, dev) \ 254 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 255 256 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 257 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 258 #define netdev_for_each_mc_addr(ha, dev) \ 259 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 260 261 struct hh_cache { 262 u16 hh_len; 263 u16 __pad; 264 seqlock_t hh_lock; 265 266 /* cached hardware header; allow for machine alignment needs. */ 267 #define HH_DATA_MOD 16 268 #define HH_DATA_OFF(__len) \ 269 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 270 #define HH_DATA_ALIGN(__len) \ 271 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 272 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 273 }; 274 275 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 276 * Alternative is: 277 * dev->hard_header_len ? (dev->hard_header_len + 278 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 279 * 280 * We could use other alignment values, but we must maintain the 281 * relationship HH alignment <= LL alignment. 282 */ 283 #define LL_RESERVED_SPACE(dev) \ 284 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 285 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 286 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 287 288 struct header_ops { 289 int (*create) (struct sk_buff *skb, struct net_device *dev, 290 unsigned short type, const void *daddr, 291 const void *saddr, unsigned len); 292 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 293 int (*rebuild)(struct sk_buff *skb); 294 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 295 void (*cache_update)(struct hh_cache *hh, 296 const struct net_device *dev, 297 const unsigned char *haddr); 298 }; 299 300 /* These flag bits are private to the generic network queueing 301 * layer, they may not be explicitly referenced by any other 302 * code. 303 */ 304 305 enum netdev_state_t { 306 __LINK_STATE_START, 307 __LINK_STATE_PRESENT, 308 __LINK_STATE_NOCARRIER, 309 __LINK_STATE_LINKWATCH_PENDING, 310 __LINK_STATE_DORMANT, 311 }; 312 313 314 /* 315 * This structure holds at boot time configured netdevice settings. They 316 * are then used in the device probing. 317 */ 318 struct netdev_boot_setup { 319 char name[IFNAMSIZ]; 320 struct ifmap map; 321 }; 322 #define NETDEV_BOOT_SETUP_MAX 8 323 324 extern int __init netdev_boot_setup(char *str); 325 326 /* 327 * Structure for NAPI scheduling similar to tasklet but with weighting 328 */ 329 struct napi_struct { 330 /* The poll_list must only be managed by the entity which 331 * changes the state of the NAPI_STATE_SCHED bit. This means 332 * whoever atomically sets that bit can add this napi_struct 333 * to the per-cpu poll_list, and whoever clears that bit 334 * can remove from the list right before clearing the bit. 335 */ 336 struct list_head poll_list; 337 338 unsigned long state; 339 int weight; 340 int (*poll)(struct napi_struct *, int); 341 #ifdef CONFIG_NETPOLL 342 spinlock_t poll_lock; 343 int poll_owner; 344 #endif 345 346 unsigned int gro_count; 347 348 struct net_device *dev; 349 struct list_head dev_list; 350 struct sk_buff *gro_list; 351 struct sk_buff *skb; 352 }; 353 354 enum { 355 NAPI_STATE_SCHED, /* Poll is scheduled */ 356 NAPI_STATE_DISABLE, /* Disable pending */ 357 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 358 }; 359 360 enum gro_result { 361 GRO_MERGED, 362 GRO_MERGED_FREE, 363 GRO_HELD, 364 GRO_NORMAL, 365 GRO_DROP, 366 }; 367 typedef enum gro_result gro_result_t; 368 369 /* 370 * enum rx_handler_result - Possible return values for rx_handlers. 371 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 372 * further. 373 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 374 * case skb->dev was changed by rx_handler. 375 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 376 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 377 * 378 * rx_handlers are functions called from inside __netif_receive_skb(), to do 379 * special processing of the skb, prior to delivery to protocol handlers. 380 * 381 * Currently, a net_device can only have a single rx_handler registered. Trying 382 * to register a second rx_handler will return -EBUSY. 383 * 384 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 385 * To unregister a rx_handler on a net_device, use 386 * netdev_rx_handler_unregister(). 387 * 388 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 389 * do with the skb. 390 * 391 * If the rx_handler consumed to skb in some way, it should return 392 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 393 * the skb to be delivered in some other ways. 394 * 395 * If the rx_handler changed skb->dev, to divert the skb to another 396 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 397 * new device will be called if it exists. 398 * 399 * If the rx_handler consider the skb should be ignored, it should return 400 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 401 * are registred on exact device (ptype->dev == skb->dev). 402 * 403 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 404 * delivered, it should return RX_HANDLER_PASS. 405 * 406 * A device without a registered rx_handler will behave as if rx_handler 407 * returned RX_HANDLER_PASS. 408 */ 409 410 enum rx_handler_result { 411 RX_HANDLER_CONSUMED, 412 RX_HANDLER_ANOTHER, 413 RX_HANDLER_EXACT, 414 RX_HANDLER_PASS, 415 }; 416 typedef enum rx_handler_result rx_handler_result_t; 417 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 418 419 extern void __napi_schedule(struct napi_struct *n); 420 421 static inline bool napi_disable_pending(struct napi_struct *n) 422 { 423 return test_bit(NAPI_STATE_DISABLE, &n->state); 424 } 425 426 /** 427 * napi_schedule_prep - check if napi can be scheduled 428 * @n: napi context 429 * 430 * Test if NAPI routine is already running, and if not mark 431 * it as running. This is used as a condition variable 432 * insure only one NAPI poll instance runs. We also make 433 * sure there is no pending NAPI disable. 434 */ 435 static inline bool napi_schedule_prep(struct napi_struct *n) 436 { 437 return !napi_disable_pending(n) && 438 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 439 } 440 441 /** 442 * napi_schedule - schedule NAPI poll 443 * @n: napi context 444 * 445 * Schedule NAPI poll routine to be called if it is not already 446 * running. 447 */ 448 static inline void napi_schedule(struct napi_struct *n) 449 { 450 if (napi_schedule_prep(n)) 451 __napi_schedule(n); 452 } 453 454 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 455 static inline bool napi_reschedule(struct napi_struct *napi) 456 { 457 if (napi_schedule_prep(napi)) { 458 __napi_schedule(napi); 459 return true; 460 } 461 return false; 462 } 463 464 /** 465 * napi_complete - NAPI processing complete 466 * @n: napi context 467 * 468 * Mark NAPI processing as complete. 469 */ 470 extern void __napi_complete(struct napi_struct *n); 471 extern void napi_complete(struct napi_struct *n); 472 473 /** 474 * napi_disable - prevent NAPI from scheduling 475 * @n: napi context 476 * 477 * Stop NAPI from being scheduled on this context. 478 * Waits till any outstanding processing completes. 479 */ 480 static inline void napi_disable(struct napi_struct *n) 481 { 482 set_bit(NAPI_STATE_DISABLE, &n->state); 483 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 484 msleep(1); 485 clear_bit(NAPI_STATE_DISABLE, &n->state); 486 } 487 488 /** 489 * napi_enable - enable NAPI scheduling 490 * @n: napi context 491 * 492 * Resume NAPI from being scheduled on this context. 493 * Must be paired with napi_disable. 494 */ 495 static inline void napi_enable(struct napi_struct *n) 496 { 497 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 498 smp_mb__before_clear_bit(); 499 clear_bit(NAPI_STATE_SCHED, &n->state); 500 } 501 502 #ifdef CONFIG_SMP 503 /** 504 * napi_synchronize - wait until NAPI is not running 505 * @n: napi context 506 * 507 * Wait until NAPI is done being scheduled on this context. 508 * Waits till any outstanding processing completes but 509 * does not disable future activations. 510 */ 511 static inline void napi_synchronize(const struct napi_struct *n) 512 { 513 while (test_bit(NAPI_STATE_SCHED, &n->state)) 514 msleep(1); 515 } 516 #else 517 # define napi_synchronize(n) barrier() 518 #endif 519 520 enum netdev_queue_state_t { 521 __QUEUE_STATE_DRV_XOFF, 522 __QUEUE_STATE_STACK_XOFF, 523 __QUEUE_STATE_FROZEN, 524 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \ 525 (1 << __QUEUE_STATE_STACK_XOFF)) 526 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 527 (1 << __QUEUE_STATE_FROZEN)) 528 }; 529 /* 530 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 531 * netif_tx_* functions below are used to manipulate this flag. The 532 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 533 * queue independently. The netif_xmit_*stopped functions below are called 534 * to check if the queue has been stopped by the driver or stack (either 535 * of the XOFF bits are set in the state). Drivers should not need to call 536 * netif_xmit*stopped functions, they should only be using netif_tx_*. 537 */ 538 539 struct netdev_queue { 540 /* 541 * read mostly part 542 */ 543 struct net_device *dev; 544 struct Qdisc *qdisc; 545 struct Qdisc *qdisc_sleeping; 546 #ifdef CONFIG_SYSFS 547 struct kobject kobj; 548 #endif 549 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 550 int numa_node; 551 #endif 552 /* 553 * write mostly part 554 */ 555 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 556 int xmit_lock_owner; 557 /* 558 * please use this field instead of dev->trans_start 559 */ 560 unsigned long trans_start; 561 562 /* 563 * Number of TX timeouts for this queue 564 * (/sys/class/net/DEV/Q/trans_timeout) 565 */ 566 unsigned long trans_timeout; 567 568 unsigned long state; 569 570 #ifdef CONFIG_BQL 571 struct dql dql; 572 #endif 573 } ____cacheline_aligned_in_smp; 574 575 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 576 { 577 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 578 return q->numa_node; 579 #else 580 return NUMA_NO_NODE; 581 #endif 582 } 583 584 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 585 { 586 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 587 q->numa_node = node; 588 #endif 589 } 590 591 #ifdef CONFIG_RPS 592 /* 593 * This structure holds an RPS map which can be of variable length. The 594 * map is an array of CPUs. 595 */ 596 struct rps_map { 597 unsigned int len; 598 struct rcu_head rcu; 599 u16 cpus[0]; 600 }; 601 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 602 603 /* 604 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 605 * tail pointer for that CPU's input queue at the time of last enqueue, and 606 * a hardware filter index. 607 */ 608 struct rps_dev_flow { 609 u16 cpu; 610 u16 filter; 611 unsigned int last_qtail; 612 }; 613 #define RPS_NO_FILTER 0xffff 614 615 /* 616 * The rps_dev_flow_table structure contains a table of flow mappings. 617 */ 618 struct rps_dev_flow_table { 619 unsigned int mask; 620 struct rcu_head rcu; 621 struct work_struct free_work; 622 struct rps_dev_flow flows[0]; 623 }; 624 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 625 ((_num) * sizeof(struct rps_dev_flow))) 626 627 /* 628 * The rps_sock_flow_table contains mappings of flows to the last CPU 629 * on which they were processed by the application (set in recvmsg). 630 */ 631 struct rps_sock_flow_table { 632 unsigned int mask; 633 u16 ents[0]; 634 }; 635 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 636 ((_num) * sizeof(u16))) 637 638 #define RPS_NO_CPU 0xffff 639 640 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 641 u32 hash) 642 { 643 if (table && hash) { 644 unsigned int cpu, index = hash & table->mask; 645 646 /* We only give a hint, preemption can change cpu under us */ 647 cpu = raw_smp_processor_id(); 648 649 if (table->ents[index] != cpu) 650 table->ents[index] = cpu; 651 } 652 } 653 654 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 655 u32 hash) 656 { 657 if (table && hash) 658 table->ents[hash & table->mask] = RPS_NO_CPU; 659 } 660 661 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 662 663 #ifdef CONFIG_RFS_ACCEL 664 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 665 u32 flow_id, u16 filter_id); 666 #endif 667 668 /* This structure contains an instance of an RX queue. */ 669 struct netdev_rx_queue { 670 struct rps_map __rcu *rps_map; 671 struct rps_dev_flow_table __rcu *rps_flow_table; 672 struct kobject kobj; 673 struct net_device *dev; 674 } ____cacheline_aligned_in_smp; 675 #endif /* CONFIG_RPS */ 676 677 #ifdef CONFIG_XPS 678 /* 679 * This structure holds an XPS map which can be of variable length. The 680 * map is an array of queues. 681 */ 682 struct xps_map { 683 unsigned int len; 684 unsigned int alloc_len; 685 struct rcu_head rcu; 686 u16 queues[0]; 687 }; 688 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 689 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 690 / sizeof(u16)) 691 692 /* 693 * This structure holds all XPS maps for device. Maps are indexed by CPU. 694 */ 695 struct xps_dev_maps { 696 struct rcu_head rcu; 697 struct xps_map __rcu *cpu_map[0]; 698 }; 699 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 700 (nr_cpu_ids * sizeof(struct xps_map *))) 701 #endif /* CONFIG_XPS */ 702 703 #define TC_MAX_QUEUE 16 704 #define TC_BITMASK 15 705 /* HW offloaded queuing disciplines txq count and offset maps */ 706 struct netdev_tc_txq { 707 u16 count; 708 u16 offset; 709 }; 710 711 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 712 /* 713 * This structure is to hold information about the device 714 * configured to run FCoE protocol stack. 715 */ 716 struct netdev_fcoe_hbainfo { 717 char manufacturer[64]; 718 char serial_number[64]; 719 char hardware_version[64]; 720 char driver_version[64]; 721 char optionrom_version[64]; 722 char firmware_version[64]; 723 char model[256]; 724 char model_description[256]; 725 }; 726 #endif 727 728 /* 729 * This structure defines the management hooks for network devices. 730 * The following hooks can be defined; unless noted otherwise, they are 731 * optional and can be filled with a null pointer. 732 * 733 * int (*ndo_init)(struct net_device *dev); 734 * This function is called once when network device is registered. 735 * The network device can use this to any late stage initializaton 736 * or semantic validattion. It can fail with an error code which will 737 * be propogated back to register_netdev 738 * 739 * void (*ndo_uninit)(struct net_device *dev); 740 * This function is called when device is unregistered or when registration 741 * fails. It is not called if init fails. 742 * 743 * int (*ndo_open)(struct net_device *dev); 744 * This function is called when network device transistions to the up 745 * state. 746 * 747 * int (*ndo_stop)(struct net_device *dev); 748 * This function is called when network device transistions to the down 749 * state. 750 * 751 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 752 * struct net_device *dev); 753 * Called when a packet needs to be transmitted. 754 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 755 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 756 * Required can not be NULL. 757 * 758 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); 759 * Called to decide which queue to when device supports multiple 760 * transmit queues. 761 * 762 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 763 * This function is called to allow device receiver to make 764 * changes to configuration when multicast or promiscious is enabled. 765 * 766 * void (*ndo_set_rx_mode)(struct net_device *dev); 767 * This function is called device changes address list filtering. 768 * If driver handles unicast address filtering, it should set 769 * IFF_UNICAST_FLT to its priv_flags. 770 * 771 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 772 * This function is called when the Media Access Control address 773 * needs to be changed. If this interface is not defined, the 774 * mac address can not be changed. 775 * 776 * int (*ndo_validate_addr)(struct net_device *dev); 777 * Test if Media Access Control address is valid for the device. 778 * 779 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 780 * Called when a user request an ioctl which can't be handled by 781 * the generic interface code. If not defined ioctl's return 782 * not supported error code. 783 * 784 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 785 * Used to set network devices bus interface parameters. This interface 786 * is retained for legacy reason, new devices should use the bus 787 * interface (PCI) for low level management. 788 * 789 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 790 * Called when a user wants to change the Maximum Transfer Unit 791 * of a device. If not defined, any request to change MTU will 792 * will return an error. 793 * 794 * void (*ndo_tx_timeout)(struct net_device *dev); 795 * Callback uses when the transmitter has not made any progress 796 * for dev->watchdog ticks. 797 * 798 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 799 * struct rtnl_link_stats64 *storage); 800 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 801 * Called when a user wants to get the network device usage 802 * statistics. Drivers must do one of the following: 803 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 804 * rtnl_link_stats64 structure passed by the caller. 805 * 2. Define @ndo_get_stats to update a net_device_stats structure 806 * (which should normally be dev->stats) and return a pointer to 807 * it. The structure may be changed asynchronously only if each 808 * field is written atomically. 809 * 3. Update dev->stats asynchronously and atomically, and define 810 * neither operation. 811 * 812 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); 813 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 814 * this function is called when a VLAN id is registered. 815 * 816 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 817 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 818 * this function is called when a VLAN id is unregistered. 819 * 820 * void (*ndo_poll_controller)(struct net_device *dev); 821 * 822 * SR-IOV management functions. 823 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 824 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 825 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 826 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 827 * int (*ndo_get_vf_config)(struct net_device *dev, 828 * int vf, struct ifla_vf_info *ivf); 829 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 830 * struct nlattr *port[]); 831 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 832 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 833 * Called to setup 'tc' number of traffic classes in the net device. This 834 * is always called from the stack with the rtnl lock held and netif tx 835 * queues stopped. This allows the netdevice to perform queue management 836 * safely. 837 * 838 * Fiber Channel over Ethernet (FCoE) offload functions. 839 * int (*ndo_fcoe_enable)(struct net_device *dev); 840 * Called when the FCoE protocol stack wants to start using LLD for FCoE 841 * so the underlying device can perform whatever needed configuration or 842 * initialization to support acceleration of FCoE traffic. 843 * 844 * int (*ndo_fcoe_disable)(struct net_device *dev); 845 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 846 * so the underlying device can perform whatever needed clean-ups to 847 * stop supporting acceleration of FCoE traffic. 848 * 849 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 850 * struct scatterlist *sgl, unsigned int sgc); 851 * Called when the FCoE Initiator wants to initialize an I/O that 852 * is a possible candidate for Direct Data Placement (DDP). The LLD can 853 * perform necessary setup and returns 1 to indicate the device is set up 854 * successfully to perform DDP on this I/O, otherwise this returns 0. 855 * 856 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 857 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 858 * indicated by the FC exchange id 'xid', so the underlying device can 859 * clean up and reuse resources for later DDP requests. 860 * 861 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 862 * struct scatterlist *sgl, unsigned int sgc); 863 * Called when the FCoE Target wants to initialize an I/O that 864 * is a possible candidate for Direct Data Placement (DDP). The LLD can 865 * perform necessary setup and returns 1 to indicate the device is set up 866 * successfully to perform DDP on this I/O, otherwise this returns 0. 867 * 868 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 869 * struct netdev_fcoe_hbainfo *hbainfo); 870 * Called when the FCoE Protocol stack wants information on the underlying 871 * device. This information is utilized by the FCoE protocol stack to 872 * register attributes with Fiber Channel management service as per the 873 * FC-GS Fabric Device Management Information(FDMI) specification. 874 * 875 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 876 * Called when the underlying device wants to override default World Wide 877 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 878 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 879 * protocol stack to use. 880 * 881 * RFS acceleration. 882 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 883 * u16 rxq_index, u32 flow_id); 884 * Set hardware filter for RFS. rxq_index is the target queue index; 885 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 886 * Return the filter ID on success, or a negative error code. 887 * 888 * Slave management functions (for bridge, bonding, etc). User should 889 * call netdev_set_master() to set dev->master properly. 890 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 891 * Called to make another netdev an underling. 892 * 893 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 894 * Called to release previously enslaved netdev. 895 * 896 * Feature/offload setting functions. 897 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 898 * netdev_features_t features); 899 * Adjusts the requested feature flags according to device-specific 900 * constraints, and returns the resulting flags. Must not modify 901 * the device state. 902 * 903 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 904 * Called to update device configuration to new features. Passed 905 * feature set might be less than what was returned by ndo_fix_features()). 906 * Must return >0 or -errno if it changed dev->features itself. 907 * 908 */ 909 struct net_device_ops { 910 int (*ndo_init)(struct net_device *dev); 911 void (*ndo_uninit)(struct net_device *dev); 912 int (*ndo_open)(struct net_device *dev); 913 int (*ndo_stop)(struct net_device *dev); 914 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 915 struct net_device *dev); 916 u16 (*ndo_select_queue)(struct net_device *dev, 917 struct sk_buff *skb); 918 void (*ndo_change_rx_flags)(struct net_device *dev, 919 int flags); 920 void (*ndo_set_rx_mode)(struct net_device *dev); 921 int (*ndo_set_mac_address)(struct net_device *dev, 922 void *addr); 923 int (*ndo_validate_addr)(struct net_device *dev); 924 int (*ndo_do_ioctl)(struct net_device *dev, 925 struct ifreq *ifr, int cmd); 926 int (*ndo_set_config)(struct net_device *dev, 927 struct ifmap *map); 928 int (*ndo_change_mtu)(struct net_device *dev, 929 int new_mtu); 930 int (*ndo_neigh_setup)(struct net_device *dev, 931 struct neigh_parms *); 932 void (*ndo_tx_timeout) (struct net_device *dev); 933 934 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 935 struct rtnl_link_stats64 *storage); 936 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 937 938 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 939 unsigned short vid); 940 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 941 unsigned short vid); 942 #ifdef CONFIG_NET_POLL_CONTROLLER 943 void (*ndo_poll_controller)(struct net_device *dev); 944 int (*ndo_netpoll_setup)(struct net_device *dev, 945 struct netpoll_info *info); 946 void (*ndo_netpoll_cleanup)(struct net_device *dev); 947 #endif 948 int (*ndo_set_vf_mac)(struct net_device *dev, 949 int queue, u8 *mac); 950 int (*ndo_set_vf_vlan)(struct net_device *dev, 951 int queue, u16 vlan, u8 qos); 952 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 953 int vf, int rate); 954 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 955 int vf, bool setting); 956 int (*ndo_get_vf_config)(struct net_device *dev, 957 int vf, 958 struct ifla_vf_info *ivf); 959 int (*ndo_set_vf_port)(struct net_device *dev, 960 int vf, 961 struct nlattr *port[]); 962 int (*ndo_get_vf_port)(struct net_device *dev, 963 int vf, struct sk_buff *skb); 964 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 965 #if IS_ENABLED(CONFIG_FCOE) 966 int (*ndo_fcoe_enable)(struct net_device *dev); 967 int (*ndo_fcoe_disable)(struct net_device *dev); 968 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 969 u16 xid, 970 struct scatterlist *sgl, 971 unsigned int sgc); 972 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 973 u16 xid); 974 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 975 u16 xid, 976 struct scatterlist *sgl, 977 unsigned int sgc); 978 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 979 struct netdev_fcoe_hbainfo *hbainfo); 980 #endif 981 982 #if IS_ENABLED(CONFIG_LIBFCOE) 983 #define NETDEV_FCOE_WWNN 0 984 #define NETDEV_FCOE_WWPN 1 985 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 986 u64 *wwn, int type); 987 #endif 988 989 #ifdef CONFIG_RFS_ACCEL 990 int (*ndo_rx_flow_steer)(struct net_device *dev, 991 const struct sk_buff *skb, 992 u16 rxq_index, 993 u32 flow_id); 994 #endif 995 int (*ndo_add_slave)(struct net_device *dev, 996 struct net_device *slave_dev); 997 int (*ndo_del_slave)(struct net_device *dev, 998 struct net_device *slave_dev); 999 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1000 netdev_features_t features); 1001 int (*ndo_set_features)(struct net_device *dev, 1002 netdev_features_t features); 1003 int (*ndo_neigh_construct)(struct neighbour *n); 1004 void (*ndo_neigh_destroy)(struct neighbour *n); 1005 }; 1006 1007 /* 1008 * The DEVICE structure. 1009 * Actually, this whole structure is a big mistake. It mixes I/O 1010 * data with strictly "high-level" data, and it has to know about 1011 * almost every data structure used in the INET module. 1012 * 1013 * FIXME: cleanup struct net_device such that network protocol info 1014 * moves out. 1015 */ 1016 1017 struct net_device { 1018 1019 /* 1020 * This is the first field of the "visible" part of this structure 1021 * (i.e. as seen by users in the "Space.c" file). It is the name 1022 * of the interface. 1023 */ 1024 char name[IFNAMSIZ]; 1025 1026 struct pm_qos_request pm_qos_req; 1027 1028 /* device name hash chain */ 1029 struct hlist_node name_hlist; 1030 /* snmp alias */ 1031 char *ifalias; 1032 1033 /* 1034 * I/O specific fields 1035 * FIXME: Merge these and struct ifmap into one 1036 */ 1037 unsigned long mem_end; /* shared mem end */ 1038 unsigned long mem_start; /* shared mem start */ 1039 unsigned long base_addr; /* device I/O address */ 1040 unsigned int irq; /* device IRQ number */ 1041 1042 /* 1043 * Some hardware also needs these fields, but they are not 1044 * part of the usual set specified in Space.c. 1045 */ 1046 1047 unsigned long state; 1048 1049 struct list_head dev_list; 1050 struct list_head napi_list; 1051 struct list_head unreg_list; 1052 1053 /* currently active device features */ 1054 netdev_features_t features; 1055 /* user-changeable features */ 1056 netdev_features_t hw_features; 1057 /* user-requested features */ 1058 netdev_features_t wanted_features; 1059 /* mask of features inheritable by VLAN devices */ 1060 netdev_features_t vlan_features; 1061 1062 /* Interface index. Unique device identifier */ 1063 int ifindex; 1064 int iflink; 1065 1066 struct net_device_stats stats; 1067 atomic_long_t rx_dropped; /* dropped packets by core network 1068 * Do not use this in drivers. 1069 */ 1070 1071 #ifdef CONFIG_WIRELESS_EXT 1072 /* List of functions to handle Wireless Extensions (instead of ioctl). 1073 * See <net/iw_handler.h> for details. Jean II */ 1074 const struct iw_handler_def * wireless_handlers; 1075 /* Instance data managed by the core of Wireless Extensions. */ 1076 struct iw_public_data * wireless_data; 1077 #endif 1078 /* Management operations */ 1079 const struct net_device_ops *netdev_ops; 1080 const struct ethtool_ops *ethtool_ops; 1081 1082 /* Hardware header description */ 1083 const struct header_ops *header_ops; 1084 1085 unsigned int flags; /* interface flags (a la BSD) */ 1086 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. 1087 * See if.h for definitions. */ 1088 unsigned short gflags; 1089 unsigned short padded; /* How much padding added by alloc_netdev() */ 1090 1091 unsigned char operstate; /* RFC2863 operstate */ 1092 unsigned char link_mode; /* mapping policy to operstate */ 1093 1094 unsigned char if_port; /* Selectable AUI, TP,..*/ 1095 unsigned char dma; /* DMA channel */ 1096 1097 unsigned int mtu; /* interface MTU value */ 1098 unsigned short type; /* interface hardware type */ 1099 unsigned short hard_header_len; /* hardware hdr length */ 1100 1101 /* extra head- and tailroom the hardware may need, but not in all cases 1102 * can this be guaranteed, especially tailroom. Some cases also use 1103 * LL_MAX_HEADER instead to allocate the skb. 1104 */ 1105 unsigned short needed_headroom; 1106 unsigned short needed_tailroom; 1107 1108 /* Interface address info. */ 1109 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 1110 unsigned char addr_assign_type; /* hw address assignment type */ 1111 unsigned char addr_len; /* hardware address length */ 1112 unsigned char neigh_priv_len; 1113 unsigned short dev_id; /* for shared network cards */ 1114 1115 spinlock_t addr_list_lock; 1116 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 1117 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 1118 bool uc_promisc; 1119 unsigned int promiscuity; 1120 unsigned int allmulti; 1121 1122 1123 /* Protocol specific pointers */ 1124 1125 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1126 struct vlan_info __rcu *vlan_info; /* VLAN info */ 1127 #endif 1128 #if IS_ENABLED(CONFIG_NET_DSA) 1129 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */ 1130 #endif 1131 void *atalk_ptr; /* AppleTalk link */ 1132 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1133 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1134 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1135 void *ec_ptr; /* Econet specific data */ 1136 void *ax25_ptr; /* AX.25 specific data */ 1137 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1138 assign before registering */ 1139 1140 /* 1141 * Cache lines mostly used on receive path (including eth_type_trans()) 1142 */ 1143 unsigned long last_rx; /* Time of last Rx 1144 * This should not be set in 1145 * drivers, unless really needed, 1146 * because network stack (bonding) 1147 * use it if/when necessary, to 1148 * avoid dirtying this cache line. 1149 */ 1150 1151 struct net_device *master; /* Pointer to master device of a group, 1152 * which this device is member of. 1153 */ 1154 1155 /* Interface address info used in eth_type_trans() */ 1156 unsigned char *dev_addr; /* hw address, (before bcast 1157 because most packets are 1158 unicast) */ 1159 1160 struct netdev_hw_addr_list dev_addrs; /* list of device 1161 hw addresses */ 1162 1163 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1164 1165 #ifdef CONFIG_SYSFS 1166 struct kset *queues_kset; 1167 #endif 1168 1169 #ifdef CONFIG_RPS 1170 struct netdev_rx_queue *_rx; 1171 1172 /* Number of RX queues allocated at register_netdev() time */ 1173 unsigned int num_rx_queues; 1174 1175 /* Number of RX queues currently active in device */ 1176 unsigned int real_num_rx_queues; 1177 1178 #ifdef CONFIG_RFS_ACCEL 1179 /* CPU reverse-mapping for RX completion interrupts, indexed 1180 * by RX queue number. Assigned by driver. This must only be 1181 * set if the ndo_rx_flow_steer operation is defined. */ 1182 struct cpu_rmap *rx_cpu_rmap; 1183 #endif 1184 #endif 1185 1186 rx_handler_func_t __rcu *rx_handler; 1187 void __rcu *rx_handler_data; 1188 1189 struct netdev_queue __rcu *ingress_queue; 1190 1191 /* 1192 * Cache lines mostly used on transmit path 1193 */ 1194 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1195 1196 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1197 unsigned int num_tx_queues; 1198 1199 /* Number of TX queues currently active in device */ 1200 unsigned int real_num_tx_queues; 1201 1202 /* root qdisc from userspace point of view */ 1203 struct Qdisc *qdisc; 1204 1205 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1206 spinlock_t tx_global_lock; 1207 1208 #ifdef CONFIG_XPS 1209 struct xps_dev_maps __rcu *xps_maps; 1210 #endif 1211 1212 /* These may be needed for future network-power-down code. */ 1213 1214 /* 1215 * trans_start here is expensive for high speed devices on SMP, 1216 * please use netdev_queue->trans_start instead. 1217 */ 1218 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1219 1220 int watchdog_timeo; /* used by dev_watchdog() */ 1221 struct timer_list watchdog_timer; 1222 1223 /* Number of references to this device */ 1224 int __percpu *pcpu_refcnt; 1225 1226 /* delayed register/unregister */ 1227 struct list_head todo_list; 1228 /* device index hash chain */ 1229 struct hlist_node index_hlist; 1230 1231 struct list_head link_watch_list; 1232 1233 /* register/unregister state machine */ 1234 enum { NETREG_UNINITIALIZED=0, 1235 NETREG_REGISTERED, /* completed register_netdevice */ 1236 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1237 NETREG_UNREGISTERED, /* completed unregister todo */ 1238 NETREG_RELEASED, /* called free_netdev */ 1239 NETREG_DUMMY, /* dummy device for NAPI poll */ 1240 } reg_state:8; 1241 1242 bool dismantle; /* device is going do be freed */ 1243 1244 enum { 1245 RTNL_LINK_INITIALIZED, 1246 RTNL_LINK_INITIALIZING, 1247 } rtnl_link_state:16; 1248 1249 /* Called from unregister, can be used to call free_netdev */ 1250 void (*destructor)(struct net_device *dev); 1251 1252 #ifdef CONFIG_NETPOLL 1253 struct netpoll_info *npinfo; 1254 #endif 1255 1256 #ifdef CONFIG_NET_NS 1257 /* Network namespace this network device is inside */ 1258 struct net *nd_net; 1259 #endif 1260 1261 /* mid-layer private */ 1262 union { 1263 void *ml_priv; 1264 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1265 struct pcpu_tstats __percpu *tstats; /* tunnel stats */ 1266 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1267 }; 1268 /* GARP */ 1269 struct garp_port __rcu *garp_port; 1270 1271 /* class/net/name entry */ 1272 struct device dev; 1273 /* space for optional device, statistics, and wireless sysfs groups */ 1274 const struct attribute_group *sysfs_groups[4]; 1275 1276 /* rtnetlink link ops */ 1277 const struct rtnl_link_ops *rtnl_link_ops; 1278 1279 /* for setting kernel sock attribute on TCP connection setup */ 1280 #define GSO_MAX_SIZE 65536 1281 unsigned int gso_max_size; 1282 1283 #ifdef CONFIG_DCB 1284 /* Data Center Bridging netlink ops */ 1285 const struct dcbnl_rtnl_ops *dcbnl_ops; 1286 #endif 1287 u8 num_tc; 1288 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1289 u8 prio_tc_map[TC_BITMASK + 1]; 1290 1291 #if IS_ENABLED(CONFIG_FCOE) 1292 /* max exchange id for FCoE LRO by ddp */ 1293 unsigned int fcoe_ddp_xid; 1294 #endif 1295 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 1296 struct netprio_map __rcu *priomap; 1297 #endif 1298 /* phy device may attach itself for hardware timestamping */ 1299 struct phy_device *phydev; 1300 1301 /* group the device belongs to */ 1302 int group; 1303 }; 1304 #define to_net_dev(d) container_of(d, struct net_device, dev) 1305 1306 #define NETDEV_ALIGN 32 1307 1308 static inline 1309 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1310 { 1311 return dev->prio_tc_map[prio & TC_BITMASK]; 1312 } 1313 1314 static inline 1315 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1316 { 1317 if (tc >= dev->num_tc) 1318 return -EINVAL; 1319 1320 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1321 return 0; 1322 } 1323 1324 static inline 1325 void netdev_reset_tc(struct net_device *dev) 1326 { 1327 dev->num_tc = 0; 1328 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1329 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1330 } 1331 1332 static inline 1333 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1334 { 1335 if (tc >= dev->num_tc) 1336 return -EINVAL; 1337 1338 dev->tc_to_txq[tc].count = count; 1339 dev->tc_to_txq[tc].offset = offset; 1340 return 0; 1341 } 1342 1343 static inline 1344 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1345 { 1346 if (num_tc > TC_MAX_QUEUE) 1347 return -EINVAL; 1348 1349 dev->num_tc = num_tc; 1350 return 0; 1351 } 1352 1353 static inline 1354 int netdev_get_num_tc(struct net_device *dev) 1355 { 1356 return dev->num_tc; 1357 } 1358 1359 static inline 1360 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1361 unsigned int index) 1362 { 1363 return &dev->_tx[index]; 1364 } 1365 1366 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1367 void (*f)(struct net_device *, 1368 struct netdev_queue *, 1369 void *), 1370 void *arg) 1371 { 1372 unsigned int i; 1373 1374 for (i = 0; i < dev->num_tx_queues; i++) 1375 f(dev, &dev->_tx[i], arg); 1376 } 1377 1378 /* 1379 * Net namespace inlines 1380 */ 1381 static inline 1382 struct net *dev_net(const struct net_device *dev) 1383 { 1384 return read_pnet(&dev->nd_net); 1385 } 1386 1387 static inline 1388 void dev_net_set(struct net_device *dev, struct net *net) 1389 { 1390 #ifdef CONFIG_NET_NS 1391 release_net(dev->nd_net); 1392 dev->nd_net = hold_net(net); 1393 #endif 1394 } 1395 1396 static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1397 { 1398 #ifdef CONFIG_NET_DSA_TAG_DSA 1399 if (dev->dsa_ptr != NULL) 1400 return dsa_uses_dsa_tags(dev->dsa_ptr); 1401 #endif 1402 1403 return 0; 1404 } 1405 1406 static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1407 { 1408 #ifdef CONFIG_NET_DSA_TAG_TRAILER 1409 if (dev->dsa_ptr != NULL) 1410 return dsa_uses_trailer_tags(dev->dsa_ptr); 1411 #endif 1412 1413 return 0; 1414 } 1415 1416 /** 1417 * netdev_priv - access network device private data 1418 * @dev: network device 1419 * 1420 * Get network device private data 1421 */ 1422 static inline void *netdev_priv(const struct net_device *dev) 1423 { 1424 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1425 } 1426 1427 /* Set the sysfs physical device reference for the network logical device 1428 * if set prior to registration will cause a symlink during initialization. 1429 */ 1430 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1431 1432 /* Set the sysfs device type for the network logical device to allow 1433 * fin grained indentification of different network device types. For 1434 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1435 */ 1436 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1437 1438 /** 1439 * netif_napi_add - initialize a napi context 1440 * @dev: network device 1441 * @napi: napi context 1442 * @poll: polling function 1443 * @weight: default weight 1444 * 1445 * netif_napi_add() must be used to initialize a napi context prior to calling 1446 * *any* of the other napi related functions. 1447 */ 1448 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1449 int (*poll)(struct napi_struct *, int), int weight); 1450 1451 /** 1452 * netif_napi_del - remove a napi context 1453 * @napi: napi context 1454 * 1455 * netif_napi_del() removes a napi context from the network device napi list 1456 */ 1457 void netif_napi_del(struct napi_struct *napi); 1458 1459 struct napi_gro_cb { 1460 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1461 void *frag0; 1462 1463 /* Length of frag0. */ 1464 unsigned int frag0_len; 1465 1466 /* This indicates where we are processing relative to skb->data. */ 1467 int data_offset; 1468 1469 /* This is non-zero if the packet may be of the same flow. */ 1470 int same_flow; 1471 1472 /* This is non-zero if the packet cannot be merged with the new skb. */ 1473 int flush; 1474 1475 /* Number of segments aggregated. */ 1476 int count; 1477 1478 /* Free the skb? */ 1479 int free; 1480 }; 1481 1482 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1483 1484 struct packet_type { 1485 __be16 type; /* This is really htons(ether_type). */ 1486 struct net_device *dev; /* NULL is wildcarded here */ 1487 int (*func) (struct sk_buff *, 1488 struct net_device *, 1489 struct packet_type *, 1490 struct net_device *); 1491 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1492 netdev_features_t features); 1493 int (*gso_send_check)(struct sk_buff *skb); 1494 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1495 struct sk_buff *skb); 1496 int (*gro_complete)(struct sk_buff *skb); 1497 void *af_packet_priv; 1498 struct list_head list; 1499 }; 1500 1501 #include <linux/notifier.h> 1502 1503 /* netdevice notifier chain. Please remember to update the rtnetlink 1504 * notification exclusion list in rtnetlink_event() when adding new 1505 * types. 1506 */ 1507 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 1508 #define NETDEV_DOWN 0x0002 1509 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 1510 detected a hardware crash and restarted 1511 - we can use this eg to kick tcp sessions 1512 once done */ 1513 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 1514 #define NETDEV_REGISTER 0x0005 1515 #define NETDEV_UNREGISTER 0x0006 1516 #define NETDEV_CHANGEMTU 0x0007 1517 #define NETDEV_CHANGEADDR 0x0008 1518 #define NETDEV_GOING_DOWN 0x0009 1519 #define NETDEV_CHANGENAME 0x000A 1520 #define NETDEV_FEAT_CHANGE 0x000B 1521 #define NETDEV_BONDING_FAILOVER 0x000C 1522 #define NETDEV_PRE_UP 0x000D 1523 #define NETDEV_PRE_TYPE_CHANGE 0x000E 1524 #define NETDEV_POST_TYPE_CHANGE 0x000F 1525 #define NETDEV_POST_INIT 0x0010 1526 #define NETDEV_UNREGISTER_BATCH 0x0011 1527 #define NETDEV_RELEASE 0x0012 1528 #define NETDEV_NOTIFY_PEERS 0x0013 1529 #define NETDEV_JOIN 0x0014 1530 1531 extern int register_netdevice_notifier(struct notifier_block *nb); 1532 extern int unregister_netdevice_notifier(struct notifier_block *nb); 1533 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1534 1535 1536 extern rwlock_t dev_base_lock; /* Device list lock */ 1537 1538 1539 #define for_each_netdev(net, d) \ 1540 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1541 #define for_each_netdev_reverse(net, d) \ 1542 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1543 #define for_each_netdev_rcu(net, d) \ 1544 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1545 #define for_each_netdev_safe(net, d, n) \ 1546 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1547 #define for_each_netdev_continue(net, d) \ 1548 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1549 #define for_each_netdev_continue_rcu(net, d) \ 1550 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1551 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1552 1553 static inline struct net_device *next_net_device(struct net_device *dev) 1554 { 1555 struct list_head *lh; 1556 struct net *net; 1557 1558 net = dev_net(dev); 1559 lh = dev->dev_list.next; 1560 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1561 } 1562 1563 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1564 { 1565 struct list_head *lh; 1566 struct net *net; 1567 1568 net = dev_net(dev); 1569 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 1570 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1571 } 1572 1573 static inline struct net_device *first_net_device(struct net *net) 1574 { 1575 return list_empty(&net->dev_base_head) ? NULL : 1576 net_device_entry(net->dev_base_head.next); 1577 } 1578 1579 static inline struct net_device *first_net_device_rcu(struct net *net) 1580 { 1581 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 1582 1583 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1584 } 1585 1586 extern int netdev_boot_setup_check(struct net_device *dev); 1587 extern unsigned long netdev_boot_base(const char *prefix, int unit); 1588 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1589 const char *hwaddr); 1590 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1591 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1592 extern void dev_add_pack(struct packet_type *pt); 1593 extern void dev_remove_pack(struct packet_type *pt); 1594 extern void __dev_remove_pack(struct packet_type *pt); 1595 1596 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1597 unsigned short mask); 1598 extern struct net_device *dev_get_by_name(struct net *net, const char *name); 1599 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1600 extern struct net_device *__dev_get_by_name(struct net *net, const char *name); 1601 extern int dev_alloc_name(struct net_device *dev, const char *name); 1602 extern int dev_open(struct net_device *dev); 1603 extern int dev_close(struct net_device *dev); 1604 extern void dev_disable_lro(struct net_device *dev); 1605 extern int dev_queue_xmit(struct sk_buff *skb); 1606 extern int register_netdevice(struct net_device *dev); 1607 extern void unregister_netdevice_queue(struct net_device *dev, 1608 struct list_head *head); 1609 extern void unregister_netdevice_many(struct list_head *head); 1610 static inline void unregister_netdevice(struct net_device *dev) 1611 { 1612 unregister_netdevice_queue(dev, NULL); 1613 } 1614 1615 extern int netdev_refcnt_read(const struct net_device *dev); 1616 extern void free_netdev(struct net_device *dev); 1617 extern void synchronize_net(void); 1618 extern int init_dummy_netdev(struct net_device *dev); 1619 extern void netdev_resync_ops(struct net_device *dev); 1620 1621 extern struct net_device *dev_get_by_index(struct net *net, int ifindex); 1622 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1623 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1624 extern int dev_restart(struct net_device *dev); 1625 #ifdef CONFIG_NETPOLL_TRAP 1626 extern int netpoll_trap(void); 1627 #endif 1628 extern int skb_gro_receive(struct sk_buff **head, 1629 struct sk_buff *skb); 1630 extern void skb_gro_reset_offset(struct sk_buff *skb); 1631 1632 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1633 { 1634 return NAPI_GRO_CB(skb)->data_offset; 1635 } 1636 1637 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1638 { 1639 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1640 } 1641 1642 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1643 { 1644 NAPI_GRO_CB(skb)->data_offset += len; 1645 } 1646 1647 static inline void *skb_gro_header_fast(struct sk_buff *skb, 1648 unsigned int offset) 1649 { 1650 return NAPI_GRO_CB(skb)->frag0 + offset; 1651 } 1652 1653 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1654 { 1655 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1656 } 1657 1658 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1659 unsigned int offset) 1660 { 1661 if (!pskb_may_pull(skb, hlen)) 1662 return NULL; 1663 1664 NAPI_GRO_CB(skb)->frag0 = NULL; 1665 NAPI_GRO_CB(skb)->frag0_len = 0; 1666 return skb->data + offset; 1667 } 1668 1669 static inline void *skb_gro_mac_header(struct sk_buff *skb) 1670 { 1671 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1672 } 1673 1674 static inline void *skb_gro_network_header(struct sk_buff *skb) 1675 { 1676 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1677 skb_network_offset(skb); 1678 } 1679 1680 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1681 unsigned short type, 1682 const void *daddr, const void *saddr, 1683 unsigned len) 1684 { 1685 if (!dev->header_ops || !dev->header_ops->create) 1686 return 0; 1687 1688 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1689 } 1690 1691 static inline int dev_parse_header(const struct sk_buff *skb, 1692 unsigned char *haddr) 1693 { 1694 const struct net_device *dev = skb->dev; 1695 1696 if (!dev->header_ops || !dev->header_ops->parse) 1697 return 0; 1698 return dev->header_ops->parse(skb, haddr); 1699 } 1700 1701 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1702 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); 1703 static inline int unregister_gifconf(unsigned int family) 1704 { 1705 return register_gifconf(family, NULL); 1706 } 1707 1708 /* 1709 * Incoming packets are placed on per-cpu queues 1710 */ 1711 struct softnet_data { 1712 struct Qdisc *output_queue; 1713 struct Qdisc **output_queue_tailp; 1714 struct list_head poll_list; 1715 struct sk_buff *completion_queue; 1716 struct sk_buff_head process_queue; 1717 1718 /* stats */ 1719 unsigned int processed; 1720 unsigned int time_squeeze; 1721 unsigned int cpu_collision; 1722 unsigned int received_rps; 1723 1724 #ifdef CONFIG_RPS 1725 struct softnet_data *rps_ipi_list; 1726 1727 /* Elements below can be accessed between CPUs for RPS */ 1728 struct call_single_data csd ____cacheline_aligned_in_smp; 1729 struct softnet_data *rps_ipi_next; 1730 unsigned int cpu; 1731 unsigned int input_queue_head; 1732 unsigned int input_queue_tail; 1733 #endif 1734 unsigned dropped; 1735 struct sk_buff_head input_pkt_queue; 1736 struct napi_struct backlog; 1737 }; 1738 1739 static inline void input_queue_head_incr(struct softnet_data *sd) 1740 { 1741 #ifdef CONFIG_RPS 1742 sd->input_queue_head++; 1743 #endif 1744 } 1745 1746 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 1747 unsigned int *qtail) 1748 { 1749 #ifdef CONFIG_RPS 1750 *qtail = ++sd->input_queue_tail; 1751 #endif 1752 } 1753 1754 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 1755 1756 extern void __netif_schedule(struct Qdisc *q); 1757 1758 static inline void netif_schedule_queue(struct netdev_queue *txq) 1759 { 1760 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) 1761 __netif_schedule(txq->qdisc); 1762 } 1763 1764 static inline void netif_tx_schedule_all(struct net_device *dev) 1765 { 1766 unsigned int i; 1767 1768 for (i = 0; i < dev->num_tx_queues; i++) 1769 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 1770 } 1771 1772 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 1773 { 1774 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1775 } 1776 1777 /** 1778 * netif_start_queue - allow transmit 1779 * @dev: network device 1780 * 1781 * Allow upper layers to call the device hard_start_xmit routine. 1782 */ 1783 static inline void netif_start_queue(struct net_device *dev) 1784 { 1785 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 1786 } 1787 1788 static inline void netif_tx_start_all_queues(struct net_device *dev) 1789 { 1790 unsigned int i; 1791 1792 for (i = 0; i < dev->num_tx_queues; i++) { 1793 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1794 netif_tx_start_queue(txq); 1795 } 1796 } 1797 1798 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 1799 { 1800 #ifdef CONFIG_NETPOLL_TRAP 1801 if (netpoll_trap()) { 1802 netif_tx_start_queue(dev_queue); 1803 return; 1804 } 1805 #endif 1806 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) 1807 __netif_schedule(dev_queue->qdisc); 1808 } 1809 1810 /** 1811 * netif_wake_queue - restart transmit 1812 * @dev: network device 1813 * 1814 * Allow upper layers to call the device hard_start_xmit routine. 1815 * Used for flow control when transmit resources are available. 1816 */ 1817 static inline void netif_wake_queue(struct net_device *dev) 1818 { 1819 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 1820 } 1821 1822 static inline void netif_tx_wake_all_queues(struct net_device *dev) 1823 { 1824 unsigned int i; 1825 1826 for (i = 0; i < dev->num_tx_queues; i++) { 1827 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1828 netif_tx_wake_queue(txq); 1829 } 1830 } 1831 1832 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 1833 { 1834 if (WARN_ON(!dev_queue)) { 1835 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 1836 return; 1837 } 1838 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1839 } 1840 1841 /** 1842 * netif_stop_queue - stop transmitted packets 1843 * @dev: network device 1844 * 1845 * Stop upper layers calling the device hard_start_xmit routine. 1846 * Used for flow control when transmit resources are unavailable. 1847 */ 1848 static inline void netif_stop_queue(struct net_device *dev) 1849 { 1850 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 1851 } 1852 1853 static inline void netif_tx_stop_all_queues(struct net_device *dev) 1854 { 1855 unsigned int i; 1856 1857 for (i = 0; i < dev->num_tx_queues; i++) { 1858 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1859 netif_tx_stop_queue(txq); 1860 } 1861 } 1862 1863 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 1864 { 1865 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1866 } 1867 1868 /** 1869 * netif_queue_stopped - test if transmit queue is flowblocked 1870 * @dev: network device 1871 * 1872 * Test if transmit queue on device is currently unable to send. 1873 */ 1874 static inline bool netif_queue_stopped(const struct net_device *dev) 1875 { 1876 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 1877 } 1878 1879 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 1880 { 1881 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 1882 } 1883 1884 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 1885 { 1886 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 1887 } 1888 1889 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 1890 unsigned int bytes) 1891 { 1892 #ifdef CONFIG_BQL 1893 dql_queued(&dev_queue->dql, bytes); 1894 1895 if (likely(dql_avail(&dev_queue->dql) >= 0)) 1896 return; 1897 1898 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1899 1900 /* 1901 * The XOFF flag must be set before checking the dql_avail below, 1902 * because in netdev_tx_completed_queue we update the dql_completed 1903 * before checking the XOFF flag. 1904 */ 1905 smp_mb(); 1906 1907 /* check again in case another CPU has just made room avail */ 1908 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 1909 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1910 #endif 1911 } 1912 1913 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 1914 { 1915 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 1916 } 1917 1918 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 1919 unsigned pkts, unsigned bytes) 1920 { 1921 #ifdef CONFIG_BQL 1922 if (unlikely(!bytes)) 1923 return; 1924 1925 dql_completed(&dev_queue->dql, bytes); 1926 1927 /* 1928 * Without the memory barrier there is a small possiblity that 1929 * netdev_tx_sent_queue will miss the update and cause the queue to 1930 * be stopped forever 1931 */ 1932 smp_mb(); 1933 1934 if (dql_avail(&dev_queue->dql) < 0) 1935 return; 1936 1937 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 1938 netif_schedule_queue(dev_queue); 1939 #endif 1940 } 1941 1942 static inline void netdev_completed_queue(struct net_device *dev, 1943 unsigned pkts, unsigned bytes) 1944 { 1945 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 1946 } 1947 1948 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 1949 { 1950 #ifdef CONFIG_BQL 1951 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 1952 dql_reset(&q->dql); 1953 #endif 1954 } 1955 1956 static inline void netdev_reset_queue(struct net_device *dev_queue) 1957 { 1958 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 1959 } 1960 1961 /** 1962 * netif_running - test if up 1963 * @dev: network device 1964 * 1965 * Test if the device has been brought up. 1966 */ 1967 static inline bool netif_running(const struct net_device *dev) 1968 { 1969 return test_bit(__LINK_STATE_START, &dev->state); 1970 } 1971 1972 /* 1973 * Routines to manage the subqueues on a device. We only need start 1974 * stop, and a check if it's stopped. All other device management is 1975 * done at the overall netdevice level. 1976 * Also test the device if we're multiqueue. 1977 */ 1978 1979 /** 1980 * netif_start_subqueue - allow sending packets on subqueue 1981 * @dev: network device 1982 * @queue_index: sub queue index 1983 * 1984 * Start individual transmit queue of a device with multiple transmit queues. 1985 */ 1986 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 1987 { 1988 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1989 1990 netif_tx_start_queue(txq); 1991 } 1992 1993 /** 1994 * netif_stop_subqueue - stop sending packets on subqueue 1995 * @dev: network device 1996 * @queue_index: sub queue index 1997 * 1998 * Stop individual transmit queue of a device with multiple transmit queues. 1999 */ 2000 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 2001 { 2002 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2003 #ifdef CONFIG_NETPOLL_TRAP 2004 if (netpoll_trap()) 2005 return; 2006 #endif 2007 netif_tx_stop_queue(txq); 2008 } 2009 2010 /** 2011 * netif_subqueue_stopped - test status of subqueue 2012 * @dev: network device 2013 * @queue_index: sub queue index 2014 * 2015 * Check individual transmit queue of a device with multiple transmit queues. 2016 */ 2017 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 2018 u16 queue_index) 2019 { 2020 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2021 2022 return netif_tx_queue_stopped(txq); 2023 } 2024 2025 static inline bool netif_subqueue_stopped(const struct net_device *dev, 2026 struct sk_buff *skb) 2027 { 2028 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2029 } 2030 2031 /** 2032 * netif_wake_subqueue - allow sending packets on subqueue 2033 * @dev: network device 2034 * @queue_index: sub queue index 2035 * 2036 * Resume individual transmit queue of a device with multiple transmit queues. 2037 */ 2038 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2039 { 2040 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2041 #ifdef CONFIG_NETPOLL_TRAP 2042 if (netpoll_trap()) 2043 return; 2044 #endif 2045 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) 2046 __netif_schedule(txq->qdisc); 2047 } 2048 2049 /* 2050 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2051 * as a distribution range limit for the returned value. 2052 */ 2053 static inline u16 skb_tx_hash(const struct net_device *dev, 2054 const struct sk_buff *skb) 2055 { 2056 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2057 } 2058 2059 /** 2060 * netif_is_multiqueue - test if device has multiple transmit queues 2061 * @dev: network device 2062 * 2063 * Check if device has multiple transmit queues 2064 */ 2065 static inline bool netif_is_multiqueue(const struct net_device *dev) 2066 { 2067 return dev->num_tx_queues > 1; 2068 } 2069 2070 extern int netif_set_real_num_tx_queues(struct net_device *dev, 2071 unsigned int txq); 2072 2073 #ifdef CONFIG_RPS 2074 extern int netif_set_real_num_rx_queues(struct net_device *dev, 2075 unsigned int rxq); 2076 #else 2077 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2078 unsigned int rxq) 2079 { 2080 return 0; 2081 } 2082 #endif 2083 2084 static inline int netif_copy_real_num_queues(struct net_device *to_dev, 2085 const struct net_device *from_dev) 2086 { 2087 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues); 2088 #ifdef CONFIG_RPS 2089 return netif_set_real_num_rx_queues(to_dev, 2090 from_dev->real_num_rx_queues); 2091 #else 2092 return 0; 2093 #endif 2094 } 2095 2096 /* Use this variant when it is known for sure that it 2097 * is executing from hardware interrupt context or with hardware interrupts 2098 * disabled. 2099 */ 2100 extern void dev_kfree_skb_irq(struct sk_buff *skb); 2101 2102 /* Use this variant in places where it could be invoked 2103 * from either hardware interrupt or other context, with hardware interrupts 2104 * either disabled or enabled. 2105 */ 2106 extern void dev_kfree_skb_any(struct sk_buff *skb); 2107 2108 extern int netif_rx(struct sk_buff *skb); 2109 extern int netif_rx_ni(struct sk_buff *skb); 2110 extern int netif_receive_skb(struct sk_buff *skb); 2111 extern gro_result_t dev_gro_receive(struct napi_struct *napi, 2112 struct sk_buff *skb); 2113 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb); 2114 extern gro_result_t napi_gro_receive(struct napi_struct *napi, 2115 struct sk_buff *skb); 2116 extern void napi_gro_flush(struct napi_struct *napi); 2117 extern struct sk_buff * napi_get_frags(struct napi_struct *napi); 2118 extern gro_result_t napi_frags_finish(struct napi_struct *napi, 2119 struct sk_buff *skb, 2120 gro_result_t ret); 2121 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi); 2122 extern gro_result_t napi_gro_frags(struct napi_struct *napi); 2123 2124 static inline void napi_free_frags(struct napi_struct *napi) 2125 { 2126 kfree_skb(napi->skb); 2127 napi->skb = NULL; 2128 } 2129 2130 extern int netdev_rx_handler_register(struct net_device *dev, 2131 rx_handler_func_t *rx_handler, 2132 void *rx_handler_data); 2133 extern void netdev_rx_handler_unregister(struct net_device *dev); 2134 2135 extern bool dev_valid_name(const char *name); 2136 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2137 extern int dev_ethtool(struct net *net, struct ifreq *); 2138 extern unsigned dev_get_flags(const struct net_device *); 2139 extern int __dev_change_flags(struct net_device *, unsigned int flags); 2140 extern int dev_change_flags(struct net_device *, unsigned); 2141 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags); 2142 extern int dev_change_name(struct net_device *, const char *); 2143 extern int dev_set_alias(struct net_device *, const char *, size_t); 2144 extern int dev_change_net_namespace(struct net_device *, 2145 struct net *, const char *); 2146 extern int dev_set_mtu(struct net_device *, int); 2147 extern void dev_set_group(struct net_device *, int); 2148 extern int dev_set_mac_address(struct net_device *, 2149 struct sockaddr *); 2150 extern int dev_hard_start_xmit(struct sk_buff *skb, 2151 struct net_device *dev, 2152 struct netdev_queue *txq); 2153 extern int dev_forward_skb(struct net_device *dev, 2154 struct sk_buff *skb); 2155 2156 extern int netdev_budget; 2157 2158 /* Called by rtnetlink.c:rtnl_unlock() */ 2159 extern void netdev_run_todo(void); 2160 2161 /** 2162 * dev_put - release reference to device 2163 * @dev: network device 2164 * 2165 * Release reference to device to allow it to be freed. 2166 */ 2167 static inline void dev_put(struct net_device *dev) 2168 { 2169 this_cpu_dec(*dev->pcpu_refcnt); 2170 } 2171 2172 /** 2173 * dev_hold - get reference to device 2174 * @dev: network device 2175 * 2176 * Hold reference to device to keep it from being freed. 2177 */ 2178 static inline void dev_hold(struct net_device *dev) 2179 { 2180 this_cpu_inc(*dev->pcpu_refcnt); 2181 } 2182 2183 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 2184 * and _off may be called from IRQ context, but it is caller 2185 * who is responsible for serialization of these calls. 2186 * 2187 * The name carrier is inappropriate, these functions should really be 2188 * called netif_lowerlayer_*() because they represent the state of any 2189 * kind of lower layer not just hardware media. 2190 */ 2191 2192 extern void linkwatch_fire_event(struct net_device *dev); 2193 extern void linkwatch_forget_dev(struct net_device *dev); 2194 2195 /** 2196 * netif_carrier_ok - test if carrier present 2197 * @dev: network device 2198 * 2199 * Check if carrier is present on device 2200 */ 2201 static inline bool netif_carrier_ok(const struct net_device *dev) 2202 { 2203 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2204 } 2205 2206 extern unsigned long dev_trans_start(struct net_device *dev); 2207 2208 extern void __netdev_watchdog_up(struct net_device *dev); 2209 2210 extern void netif_carrier_on(struct net_device *dev); 2211 2212 extern void netif_carrier_off(struct net_device *dev); 2213 2214 extern void netif_notify_peers(struct net_device *dev); 2215 2216 /** 2217 * netif_dormant_on - mark device as dormant. 2218 * @dev: network device 2219 * 2220 * Mark device as dormant (as per RFC2863). 2221 * 2222 * The dormant state indicates that the relevant interface is not 2223 * actually in a condition to pass packets (i.e., it is not 'up') but is 2224 * in a "pending" state, waiting for some external event. For "on- 2225 * demand" interfaces, this new state identifies the situation where the 2226 * interface is waiting for events to place it in the up state. 2227 * 2228 */ 2229 static inline void netif_dormant_on(struct net_device *dev) 2230 { 2231 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2232 linkwatch_fire_event(dev); 2233 } 2234 2235 /** 2236 * netif_dormant_off - set device as not dormant. 2237 * @dev: network device 2238 * 2239 * Device is not in dormant state. 2240 */ 2241 static inline void netif_dormant_off(struct net_device *dev) 2242 { 2243 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2244 linkwatch_fire_event(dev); 2245 } 2246 2247 /** 2248 * netif_dormant - test if carrier present 2249 * @dev: network device 2250 * 2251 * Check if carrier is present on device 2252 */ 2253 static inline bool netif_dormant(const struct net_device *dev) 2254 { 2255 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2256 } 2257 2258 2259 /** 2260 * netif_oper_up - test if device is operational 2261 * @dev: network device 2262 * 2263 * Check if carrier is operational 2264 */ 2265 static inline bool netif_oper_up(const struct net_device *dev) 2266 { 2267 return (dev->operstate == IF_OPER_UP || 2268 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2269 } 2270 2271 /** 2272 * netif_device_present - is device available or removed 2273 * @dev: network device 2274 * 2275 * Check if device has not been removed from system. 2276 */ 2277 static inline bool netif_device_present(struct net_device *dev) 2278 { 2279 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2280 } 2281 2282 extern void netif_device_detach(struct net_device *dev); 2283 2284 extern void netif_device_attach(struct net_device *dev); 2285 2286 /* 2287 * Network interface message level settings 2288 */ 2289 2290 enum { 2291 NETIF_MSG_DRV = 0x0001, 2292 NETIF_MSG_PROBE = 0x0002, 2293 NETIF_MSG_LINK = 0x0004, 2294 NETIF_MSG_TIMER = 0x0008, 2295 NETIF_MSG_IFDOWN = 0x0010, 2296 NETIF_MSG_IFUP = 0x0020, 2297 NETIF_MSG_RX_ERR = 0x0040, 2298 NETIF_MSG_TX_ERR = 0x0080, 2299 NETIF_MSG_TX_QUEUED = 0x0100, 2300 NETIF_MSG_INTR = 0x0200, 2301 NETIF_MSG_TX_DONE = 0x0400, 2302 NETIF_MSG_RX_STATUS = 0x0800, 2303 NETIF_MSG_PKTDATA = 0x1000, 2304 NETIF_MSG_HW = 0x2000, 2305 NETIF_MSG_WOL = 0x4000, 2306 }; 2307 2308 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2309 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2310 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2311 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2312 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2313 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2314 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2315 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2316 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2317 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2318 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2319 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2320 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2321 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2322 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2323 2324 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2325 { 2326 /* use default */ 2327 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2328 return default_msg_enable_bits; 2329 if (debug_value == 0) /* no output */ 2330 return 0; 2331 /* set low N bits */ 2332 return (1 << debug_value) - 1; 2333 } 2334 2335 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2336 { 2337 spin_lock(&txq->_xmit_lock); 2338 txq->xmit_lock_owner = cpu; 2339 } 2340 2341 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2342 { 2343 spin_lock_bh(&txq->_xmit_lock); 2344 txq->xmit_lock_owner = smp_processor_id(); 2345 } 2346 2347 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 2348 { 2349 bool ok = spin_trylock(&txq->_xmit_lock); 2350 if (likely(ok)) 2351 txq->xmit_lock_owner = smp_processor_id(); 2352 return ok; 2353 } 2354 2355 static inline void __netif_tx_unlock(struct netdev_queue *txq) 2356 { 2357 txq->xmit_lock_owner = -1; 2358 spin_unlock(&txq->_xmit_lock); 2359 } 2360 2361 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2362 { 2363 txq->xmit_lock_owner = -1; 2364 spin_unlock_bh(&txq->_xmit_lock); 2365 } 2366 2367 static inline void txq_trans_update(struct netdev_queue *txq) 2368 { 2369 if (txq->xmit_lock_owner != -1) 2370 txq->trans_start = jiffies; 2371 } 2372 2373 /** 2374 * netif_tx_lock - grab network device transmit lock 2375 * @dev: network device 2376 * 2377 * Get network device transmit lock 2378 */ 2379 static inline void netif_tx_lock(struct net_device *dev) 2380 { 2381 unsigned int i; 2382 int cpu; 2383 2384 spin_lock(&dev->tx_global_lock); 2385 cpu = smp_processor_id(); 2386 for (i = 0; i < dev->num_tx_queues; i++) { 2387 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2388 2389 /* We are the only thread of execution doing a 2390 * freeze, but we have to grab the _xmit_lock in 2391 * order to synchronize with threads which are in 2392 * the ->hard_start_xmit() handler and already 2393 * checked the frozen bit. 2394 */ 2395 __netif_tx_lock(txq, cpu); 2396 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2397 __netif_tx_unlock(txq); 2398 } 2399 } 2400 2401 static inline void netif_tx_lock_bh(struct net_device *dev) 2402 { 2403 local_bh_disable(); 2404 netif_tx_lock(dev); 2405 } 2406 2407 static inline void netif_tx_unlock(struct net_device *dev) 2408 { 2409 unsigned int i; 2410 2411 for (i = 0; i < dev->num_tx_queues; i++) { 2412 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2413 2414 /* No need to grab the _xmit_lock here. If the 2415 * queue is not stopped for another reason, we 2416 * force a schedule. 2417 */ 2418 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2419 netif_schedule_queue(txq); 2420 } 2421 spin_unlock(&dev->tx_global_lock); 2422 } 2423 2424 static inline void netif_tx_unlock_bh(struct net_device *dev) 2425 { 2426 netif_tx_unlock(dev); 2427 local_bh_enable(); 2428 } 2429 2430 #define HARD_TX_LOCK(dev, txq, cpu) { \ 2431 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2432 __netif_tx_lock(txq, cpu); \ 2433 } \ 2434 } 2435 2436 #define HARD_TX_UNLOCK(dev, txq) { \ 2437 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2438 __netif_tx_unlock(txq); \ 2439 } \ 2440 } 2441 2442 static inline void netif_tx_disable(struct net_device *dev) 2443 { 2444 unsigned int i; 2445 int cpu; 2446 2447 local_bh_disable(); 2448 cpu = smp_processor_id(); 2449 for (i = 0; i < dev->num_tx_queues; i++) { 2450 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2451 2452 __netif_tx_lock(txq, cpu); 2453 netif_tx_stop_queue(txq); 2454 __netif_tx_unlock(txq); 2455 } 2456 local_bh_enable(); 2457 } 2458 2459 static inline void netif_addr_lock(struct net_device *dev) 2460 { 2461 spin_lock(&dev->addr_list_lock); 2462 } 2463 2464 static inline void netif_addr_lock_nested(struct net_device *dev) 2465 { 2466 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING); 2467 } 2468 2469 static inline void netif_addr_lock_bh(struct net_device *dev) 2470 { 2471 spin_lock_bh(&dev->addr_list_lock); 2472 } 2473 2474 static inline void netif_addr_unlock(struct net_device *dev) 2475 { 2476 spin_unlock(&dev->addr_list_lock); 2477 } 2478 2479 static inline void netif_addr_unlock_bh(struct net_device *dev) 2480 { 2481 spin_unlock_bh(&dev->addr_list_lock); 2482 } 2483 2484 /* 2485 * dev_addrs walker. Should be used only for read access. Call with 2486 * rcu_read_lock held. 2487 */ 2488 #define for_each_dev_addr(dev, ha) \ 2489 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2490 2491 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2492 2493 extern void ether_setup(struct net_device *dev); 2494 2495 /* Support for loadable net-drivers */ 2496 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 2497 void (*setup)(struct net_device *), 2498 unsigned int txqs, unsigned int rxqs); 2499 #define alloc_netdev(sizeof_priv, name, setup) \ 2500 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) 2501 2502 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \ 2503 alloc_netdev_mqs(sizeof_priv, name, setup, count, count) 2504 2505 extern int register_netdev(struct net_device *dev); 2506 extern void unregister_netdev(struct net_device *dev); 2507 2508 /* General hardware address lists handling functions */ 2509 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 2510 struct netdev_hw_addr_list *from_list, 2511 int addr_len, unsigned char addr_type); 2512 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 2513 struct netdev_hw_addr_list *from_list, 2514 int addr_len, unsigned char addr_type); 2515 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2516 struct netdev_hw_addr_list *from_list, 2517 int addr_len); 2518 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2519 struct netdev_hw_addr_list *from_list, 2520 int addr_len); 2521 extern void __hw_addr_flush(struct netdev_hw_addr_list *list); 2522 extern void __hw_addr_init(struct netdev_hw_addr_list *list); 2523 2524 /* Functions used for device addresses handling */ 2525 extern int dev_addr_add(struct net_device *dev, unsigned char *addr, 2526 unsigned char addr_type); 2527 extern int dev_addr_del(struct net_device *dev, unsigned char *addr, 2528 unsigned char addr_type); 2529 extern int dev_addr_add_multiple(struct net_device *to_dev, 2530 struct net_device *from_dev, 2531 unsigned char addr_type); 2532 extern int dev_addr_del_multiple(struct net_device *to_dev, 2533 struct net_device *from_dev, 2534 unsigned char addr_type); 2535 extern void dev_addr_flush(struct net_device *dev); 2536 extern int dev_addr_init(struct net_device *dev); 2537 2538 /* Functions used for unicast addresses handling */ 2539 extern int dev_uc_add(struct net_device *dev, unsigned char *addr); 2540 extern int dev_uc_del(struct net_device *dev, unsigned char *addr); 2541 extern int dev_uc_sync(struct net_device *to, struct net_device *from); 2542 extern void dev_uc_unsync(struct net_device *to, struct net_device *from); 2543 extern void dev_uc_flush(struct net_device *dev); 2544 extern void dev_uc_init(struct net_device *dev); 2545 2546 /* Functions used for multicast addresses handling */ 2547 extern int dev_mc_add(struct net_device *dev, unsigned char *addr); 2548 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr); 2549 extern int dev_mc_del(struct net_device *dev, unsigned char *addr); 2550 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr); 2551 extern int dev_mc_sync(struct net_device *to, struct net_device *from); 2552 extern void dev_mc_unsync(struct net_device *to, struct net_device *from); 2553 extern void dev_mc_flush(struct net_device *dev); 2554 extern void dev_mc_init(struct net_device *dev); 2555 2556 /* Functions used for secondary unicast and multicast support */ 2557 extern void dev_set_rx_mode(struct net_device *dev); 2558 extern void __dev_set_rx_mode(struct net_device *dev); 2559 extern int dev_set_promiscuity(struct net_device *dev, int inc); 2560 extern int dev_set_allmulti(struct net_device *dev, int inc); 2561 extern void netdev_state_change(struct net_device *dev); 2562 extern int netdev_bonding_change(struct net_device *dev, 2563 unsigned long event); 2564 extern void netdev_features_change(struct net_device *dev); 2565 /* Load a device via the kmod */ 2566 extern void dev_load(struct net *net, const char *name); 2567 extern void dev_mcast_init(void); 2568 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2569 struct rtnl_link_stats64 *storage); 2570 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 2571 const struct net_device_stats *netdev_stats); 2572 2573 extern int netdev_max_backlog; 2574 extern int netdev_tstamp_prequeue; 2575 extern int weight_p; 2576 extern int bpf_jit_enable; 2577 extern int netdev_set_master(struct net_device *dev, struct net_device *master); 2578 extern int netdev_set_bond_master(struct net_device *dev, 2579 struct net_device *master); 2580 extern int skb_checksum_help(struct sk_buff *skb); 2581 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, 2582 netdev_features_t features); 2583 #ifdef CONFIG_BUG 2584 extern void netdev_rx_csum_fault(struct net_device *dev); 2585 #else 2586 static inline void netdev_rx_csum_fault(struct net_device *dev) 2587 { 2588 } 2589 #endif 2590 /* rx skb timestamps */ 2591 extern void net_enable_timestamp(void); 2592 extern void net_disable_timestamp(void); 2593 2594 #ifdef CONFIG_PROC_FS 2595 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos); 2596 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2597 extern void dev_seq_stop(struct seq_file *seq, void *v); 2598 #endif 2599 2600 extern int netdev_class_create_file(struct class_attribute *class_attr); 2601 extern void netdev_class_remove_file(struct class_attribute *class_attr); 2602 2603 extern struct kobj_ns_type_operations net_ns_type_operations; 2604 2605 extern const char *netdev_drivername(const struct net_device *dev); 2606 2607 extern void linkwatch_run_queue(void); 2608 2609 static inline netdev_features_t netdev_get_wanted_features( 2610 struct net_device *dev) 2611 { 2612 return (dev->features & ~dev->hw_features) | dev->wanted_features; 2613 } 2614 netdev_features_t netdev_increment_features(netdev_features_t all, 2615 netdev_features_t one, netdev_features_t mask); 2616 int __netdev_update_features(struct net_device *dev); 2617 void netdev_update_features(struct net_device *dev); 2618 void netdev_change_features(struct net_device *dev); 2619 2620 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 2621 struct net_device *dev); 2622 2623 netdev_features_t netif_skb_features(struct sk_buff *skb); 2624 2625 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 2626 { 2627 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 2628 2629 /* check flags correspondence */ 2630 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 2631 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 2632 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 2633 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 2634 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 2635 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 2636 2637 return (features & feature) == feature; 2638 } 2639 2640 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 2641 { 2642 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 2643 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 2644 } 2645 2646 static inline bool netif_needs_gso(struct sk_buff *skb, 2647 netdev_features_t features) 2648 { 2649 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 2650 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 2651 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 2652 } 2653 2654 static inline void netif_set_gso_max_size(struct net_device *dev, 2655 unsigned int size) 2656 { 2657 dev->gso_max_size = size; 2658 } 2659 2660 static inline bool netif_is_bond_slave(struct net_device *dev) 2661 { 2662 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 2663 } 2664 2665 static inline bool netif_supports_nofcs(struct net_device *dev) 2666 { 2667 return dev->priv_flags & IFF_SUPP_NOFCS; 2668 } 2669 2670 extern struct pernet_operations __net_initdata loopback_net_ops; 2671 2672 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 2673 2674 /* netdev_printk helpers, similar to dev_printk */ 2675 2676 static inline const char *netdev_name(const struct net_device *dev) 2677 { 2678 if (dev->reg_state != NETREG_REGISTERED) 2679 return "(unregistered net_device)"; 2680 return dev->name; 2681 } 2682 2683 extern int __netdev_printk(const char *level, const struct net_device *dev, 2684 struct va_format *vaf); 2685 2686 extern __printf(3, 4) 2687 int netdev_printk(const char *level, const struct net_device *dev, 2688 const char *format, ...); 2689 extern __printf(2, 3) 2690 int netdev_emerg(const struct net_device *dev, const char *format, ...); 2691 extern __printf(2, 3) 2692 int netdev_alert(const struct net_device *dev, const char *format, ...); 2693 extern __printf(2, 3) 2694 int netdev_crit(const struct net_device *dev, const char *format, ...); 2695 extern __printf(2, 3) 2696 int netdev_err(const struct net_device *dev, const char *format, ...); 2697 extern __printf(2, 3) 2698 int netdev_warn(const struct net_device *dev, const char *format, ...); 2699 extern __printf(2, 3) 2700 int netdev_notice(const struct net_device *dev, const char *format, ...); 2701 extern __printf(2, 3) 2702 int netdev_info(const struct net_device *dev, const char *format, ...); 2703 2704 #define MODULE_ALIAS_NETDEV(device) \ 2705 MODULE_ALIAS("netdev-" device) 2706 2707 #if defined(CONFIG_DYNAMIC_DEBUG) 2708 #define netdev_dbg(__dev, format, args...) \ 2709 do { \ 2710 dynamic_netdev_dbg(__dev, format, ##args); \ 2711 } while (0) 2712 #elif defined(DEBUG) 2713 #define netdev_dbg(__dev, format, args...) \ 2714 netdev_printk(KERN_DEBUG, __dev, format, ##args) 2715 #else 2716 #define netdev_dbg(__dev, format, args...) \ 2717 ({ \ 2718 if (0) \ 2719 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 2720 0; \ 2721 }) 2722 #endif 2723 2724 #if defined(VERBOSE_DEBUG) 2725 #define netdev_vdbg netdev_dbg 2726 #else 2727 2728 #define netdev_vdbg(dev, format, args...) \ 2729 ({ \ 2730 if (0) \ 2731 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 2732 0; \ 2733 }) 2734 #endif 2735 2736 /* 2737 * netdev_WARN() acts like dev_printk(), but with the key difference 2738 * of using a WARN/WARN_ON to get the message out, including the 2739 * file/line information and a backtrace. 2740 */ 2741 #define netdev_WARN(dev, format, args...) \ 2742 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args); 2743 2744 /* netif printk helpers, similar to netdev_printk */ 2745 2746 #define netif_printk(priv, type, level, dev, fmt, args...) \ 2747 do { \ 2748 if (netif_msg_##type(priv)) \ 2749 netdev_printk(level, (dev), fmt, ##args); \ 2750 } while (0) 2751 2752 #define netif_level(level, priv, type, dev, fmt, args...) \ 2753 do { \ 2754 if (netif_msg_##type(priv)) \ 2755 netdev_##level(dev, fmt, ##args); \ 2756 } while (0) 2757 2758 #define netif_emerg(priv, type, dev, fmt, args...) \ 2759 netif_level(emerg, priv, type, dev, fmt, ##args) 2760 #define netif_alert(priv, type, dev, fmt, args...) \ 2761 netif_level(alert, priv, type, dev, fmt, ##args) 2762 #define netif_crit(priv, type, dev, fmt, args...) \ 2763 netif_level(crit, priv, type, dev, fmt, ##args) 2764 #define netif_err(priv, type, dev, fmt, args...) \ 2765 netif_level(err, priv, type, dev, fmt, ##args) 2766 #define netif_warn(priv, type, dev, fmt, args...) \ 2767 netif_level(warn, priv, type, dev, fmt, ##args) 2768 #define netif_notice(priv, type, dev, fmt, args...) \ 2769 netif_level(notice, priv, type, dev, fmt, ##args) 2770 #define netif_info(priv, type, dev, fmt, args...) \ 2771 netif_level(info, priv, type, dev, fmt, ##args) 2772 2773 #if defined(DEBUG) 2774 #define netif_dbg(priv, type, dev, format, args...) \ 2775 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 2776 #elif defined(CONFIG_DYNAMIC_DEBUG) 2777 #define netif_dbg(priv, type, netdev, format, args...) \ 2778 do { \ 2779 if (netif_msg_##type(priv)) \ 2780 dynamic_netdev_dbg(netdev, format, ##args); \ 2781 } while (0) 2782 #else 2783 #define netif_dbg(priv, type, dev, format, args...) \ 2784 ({ \ 2785 if (0) \ 2786 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2787 0; \ 2788 }) 2789 #endif 2790 2791 #if defined(VERBOSE_DEBUG) 2792 #define netif_vdbg netif_dbg 2793 #else 2794 #define netif_vdbg(priv, type, dev, format, args...) \ 2795 ({ \ 2796 if (0) \ 2797 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2798 0; \ 2799 }) 2800 #endif 2801 2802 #endif /* __KERNEL__ */ 2803 2804 #endif /* _LINUX_NETDEVICE_H */ 2805