xref: /openbmc/linux/include/linux/netdevice.h (revision ce0eff0d)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 
57 struct sfp_bus;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 /* UDP Tunnel offloads */
64 struct udp_tunnel_info;
65 struct bpf_prog;
66 struct xdp_buff;
67 
68 void netdev_set_default_ethtool_ops(struct net_device *dev,
69 				    const struct ethtool_ops *ops);
70 
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
73 #define NET_RX_DROP		1	/* packet dropped */
74 
75 /*
76  * Transmit return codes: transmit return codes originate from three different
77  * namespaces:
78  *
79  * - qdisc return codes
80  * - driver transmit return codes
81  * - errno values
82  *
83  * Drivers are allowed to return any one of those in their hard_start_xmit()
84  * function. Real network devices commonly used with qdiscs should only return
85  * the driver transmit return codes though - when qdiscs are used, the actual
86  * transmission happens asynchronously, so the value is not propagated to
87  * higher layers. Virtual network devices transmit synchronously; in this case
88  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
89  * others are propagated to higher layers.
90  */
91 
92 /* qdisc ->enqueue() return codes. */
93 #define NET_XMIT_SUCCESS	0x00
94 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
95 #define NET_XMIT_CN		0x02	/* congestion notification	*/
96 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
97 
98 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
99  * indicates that the device will soon be dropping packets, or already drops
100  * some packets of the same priority; prompting us to send less aggressively. */
101 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
102 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
103 
104 /* Driver transmit return codes */
105 #define NETDEV_TX_MASK		0xf0
106 
107 enum netdev_tx {
108 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
109 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
110 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
111 };
112 typedef enum netdev_tx netdev_tx_t;
113 
114 /*
115  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
116  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
117  */
118 static inline bool dev_xmit_complete(int rc)
119 {
120 	/*
121 	 * Positive cases with an skb consumed by a driver:
122 	 * - successful transmission (rc == NETDEV_TX_OK)
123 	 * - error while transmitting (rc < 0)
124 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
125 	 */
126 	if (likely(rc < NET_XMIT_MASK))
127 		return true;
128 
129 	return false;
130 }
131 
132 /*
133  *	Compute the worst-case header length according to the protocols
134  *	used.
135  */
136 
137 #if defined(CONFIG_HYPERV_NET)
138 # define LL_MAX_HEADER 128
139 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
140 # if defined(CONFIG_MAC80211_MESH)
141 #  define LL_MAX_HEADER 128
142 # else
143 #  define LL_MAX_HEADER 96
144 # endif
145 #else
146 # define LL_MAX_HEADER 32
147 #endif
148 
149 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
150     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
151 #define MAX_HEADER LL_MAX_HEADER
152 #else
153 #define MAX_HEADER (LL_MAX_HEADER + 48)
154 #endif
155 
156 /*
157  *	Old network device statistics. Fields are native words
158  *	(unsigned long) so they can be read and written atomically.
159  */
160 
161 struct net_device_stats {
162 	unsigned long	rx_packets;
163 	unsigned long	tx_packets;
164 	unsigned long	rx_bytes;
165 	unsigned long	tx_bytes;
166 	unsigned long	rx_errors;
167 	unsigned long	tx_errors;
168 	unsigned long	rx_dropped;
169 	unsigned long	tx_dropped;
170 	unsigned long	multicast;
171 	unsigned long	collisions;
172 	unsigned long	rx_length_errors;
173 	unsigned long	rx_over_errors;
174 	unsigned long	rx_crc_errors;
175 	unsigned long	rx_frame_errors;
176 	unsigned long	rx_fifo_errors;
177 	unsigned long	rx_missed_errors;
178 	unsigned long	tx_aborted_errors;
179 	unsigned long	tx_carrier_errors;
180 	unsigned long	tx_fifo_errors;
181 	unsigned long	tx_heartbeat_errors;
182 	unsigned long	tx_window_errors;
183 	unsigned long	rx_compressed;
184 	unsigned long	tx_compressed;
185 };
186 
187 
188 #include <linux/cache.h>
189 #include <linux/skbuff.h>
190 
191 #ifdef CONFIG_RPS
192 #include <linux/static_key.h>
193 extern struct static_key_false rps_needed;
194 extern struct static_key_false rfs_needed;
195 #endif
196 
197 struct neighbour;
198 struct neigh_parms;
199 struct sk_buff;
200 
201 struct netdev_hw_addr {
202 	struct list_head	list;
203 	unsigned char		addr[MAX_ADDR_LEN];
204 	unsigned char		type;
205 #define NETDEV_HW_ADDR_T_LAN		1
206 #define NETDEV_HW_ADDR_T_SAN		2
207 #define NETDEV_HW_ADDR_T_SLAVE		3
208 #define NETDEV_HW_ADDR_T_UNICAST	4
209 #define NETDEV_HW_ADDR_T_MULTICAST	5
210 	bool			global_use;
211 	int			sync_cnt;
212 	int			refcount;
213 	int			synced;
214 	struct rcu_head		rcu_head;
215 };
216 
217 struct netdev_hw_addr_list {
218 	struct list_head	list;
219 	int			count;
220 };
221 
222 #define netdev_hw_addr_list_count(l) ((l)->count)
223 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
224 #define netdev_hw_addr_list_for_each(ha, l) \
225 	list_for_each_entry(ha, &(l)->list, list)
226 
227 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
228 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
229 #define netdev_for_each_uc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
231 
232 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
233 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
234 #define netdev_for_each_mc_addr(ha, dev) \
235 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
236 
237 struct hh_cache {
238 	unsigned int	hh_len;
239 	seqlock_t	hh_lock;
240 
241 	/* cached hardware header; allow for machine alignment needs.        */
242 #define HH_DATA_MOD	16
243 #define HH_DATA_OFF(__len) \
244 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
245 #define HH_DATA_ALIGN(__len) \
246 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
247 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
248 };
249 
250 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
251  * Alternative is:
252  *   dev->hard_header_len ? (dev->hard_header_len +
253  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
254  *
255  * We could use other alignment values, but we must maintain the
256  * relationship HH alignment <= LL alignment.
257  */
258 #define LL_RESERVED_SPACE(dev) \
259 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 
263 struct header_ops {
264 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
265 			   unsigned short type, const void *daddr,
266 			   const void *saddr, unsigned int len);
267 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
268 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
269 	void	(*cache_update)(struct hh_cache *hh,
270 				const struct net_device *dev,
271 				const unsigned char *haddr);
272 	bool	(*validate)(const char *ll_header, unsigned int len);
273 	__be16	(*parse_protocol)(const struct sk_buff *skb);
274 };
275 
276 /* These flag bits are private to the generic network queueing
277  * layer; they may not be explicitly referenced by any other
278  * code.
279  */
280 
281 enum netdev_state_t {
282 	__LINK_STATE_START,
283 	__LINK_STATE_PRESENT,
284 	__LINK_STATE_NOCARRIER,
285 	__LINK_STATE_LINKWATCH_PENDING,
286 	__LINK_STATE_DORMANT,
287 };
288 
289 
290 /*
291  * This structure holds boot-time configured netdevice settings. They
292  * are then used in the device probing.
293  */
294 struct netdev_boot_setup {
295 	char name[IFNAMSIZ];
296 	struct ifmap map;
297 };
298 #define NETDEV_BOOT_SETUP_MAX 8
299 
300 int __init netdev_boot_setup(char *str);
301 
302 struct gro_list {
303 	struct list_head	list;
304 	int			count;
305 };
306 
307 /*
308  * size of gro hash buckets, must less than bit number of
309  * napi_struct::gro_bitmask
310  */
311 #define GRO_HASH_BUCKETS	8
312 
313 /*
314  * Structure for NAPI scheduling similar to tasklet but with weighting
315  */
316 struct napi_struct {
317 	/* The poll_list must only be managed by the entity which
318 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
319 	 * whoever atomically sets that bit can add this napi_struct
320 	 * to the per-CPU poll_list, and whoever clears that bit
321 	 * can remove from the list right before clearing the bit.
322 	 */
323 	struct list_head	poll_list;
324 
325 	unsigned long		state;
326 	int			weight;
327 	unsigned long		gro_bitmask;
328 	int			(*poll)(struct napi_struct *, int);
329 #ifdef CONFIG_NETPOLL
330 	int			poll_owner;
331 #endif
332 	struct net_device	*dev;
333 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
334 	struct sk_buff		*skb;
335 	struct hrtimer		timer;
336 	struct list_head	dev_list;
337 	struct hlist_node	napi_hash_node;
338 	unsigned int		napi_id;
339 };
340 
341 enum {
342 	NAPI_STATE_SCHED,	/* Poll is scheduled */
343 	NAPI_STATE_MISSED,	/* reschedule a napi */
344 	NAPI_STATE_DISABLE,	/* Disable pending */
345 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
346 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
347 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
348 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
349 };
350 
351 enum {
352 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
353 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
354 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
355 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
356 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
357 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
358 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
359 };
360 
361 enum gro_result {
362 	GRO_MERGED,
363 	GRO_MERGED_FREE,
364 	GRO_HELD,
365 	GRO_NORMAL,
366 	GRO_DROP,
367 	GRO_CONSUMED,
368 };
369 typedef enum gro_result gro_result_t;
370 
371 /*
372  * enum rx_handler_result - Possible return values for rx_handlers.
373  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
374  * further.
375  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
376  * case skb->dev was changed by rx_handler.
377  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
378  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
379  *
380  * rx_handlers are functions called from inside __netif_receive_skb(), to do
381  * special processing of the skb, prior to delivery to protocol handlers.
382  *
383  * Currently, a net_device can only have a single rx_handler registered. Trying
384  * to register a second rx_handler will return -EBUSY.
385  *
386  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
387  * To unregister a rx_handler on a net_device, use
388  * netdev_rx_handler_unregister().
389  *
390  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
391  * do with the skb.
392  *
393  * If the rx_handler consumed the skb in some way, it should return
394  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
395  * the skb to be delivered in some other way.
396  *
397  * If the rx_handler changed skb->dev, to divert the skb to another
398  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
399  * new device will be called if it exists.
400  *
401  * If the rx_handler decides the skb should be ignored, it should return
402  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
403  * are registered on exact device (ptype->dev == skb->dev).
404  *
405  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
406  * delivered, it should return RX_HANDLER_PASS.
407  *
408  * A device without a registered rx_handler will behave as if rx_handler
409  * returned RX_HANDLER_PASS.
410  */
411 
412 enum rx_handler_result {
413 	RX_HANDLER_CONSUMED,
414 	RX_HANDLER_ANOTHER,
415 	RX_HANDLER_EXACT,
416 	RX_HANDLER_PASS,
417 };
418 typedef enum rx_handler_result rx_handler_result_t;
419 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
420 
421 void __napi_schedule(struct napi_struct *n);
422 void __napi_schedule_irqoff(struct napi_struct *n);
423 
424 static inline bool napi_disable_pending(struct napi_struct *n)
425 {
426 	return test_bit(NAPI_STATE_DISABLE, &n->state);
427 }
428 
429 bool napi_schedule_prep(struct napi_struct *n);
430 
431 /**
432  *	napi_schedule - schedule NAPI poll
433  *	@n: NAPI context
434  *
435  * Schedule NAPI poll routine to be called if it is not already
436  * running.
437  */
438 static inline void napi_schedule(struct napi_struct *n)
439 {
440 	if (napi_schedule_prep(n))
441 		__napi_schedule(n);
442 }
443 
444 /**
445  *	napi_schedule_irqoff - schedule NAPI poll
446  *	@n: NAPI context
447  *
448  * Variant of napi_schedule(), assuming hard irqs are masked.
449  */
450 static inline void napi_schedule_irqoff(struct napi_struct *n)
451 {
452 	if (napi_schedule_prep(n))
453 		__napi_schedule_irqoff(n);
454 }
455 
456 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
457 static inline bool napi_reschedule(struct napi_struct *napi)
458 {
459 	if (napi_schedule_prep(napi)) {
460 		__napi_schedule(napi);
461 		return true;
462 	}
463 	return false;
464 }
465 
466 bool napi_complete_done(struct napi_struct *n, int work_done);
467 /**
468  *	napi_complete - NAPI processing complete
469  *	@n: NAPI context
470  *
471  * Mark NAPI processing as complete.
472  * Consider using napi_complete_done() instead.
473  * Return false if device should avoid rearming interrupts.
474  */
475 static inline bool napi_complete(struct napi_struct *n)
476 {
477 	return napi_complete_done(n, 0);
478 }
479 
480 /**
481  *	napi_hash_del - remove a NAPI from global table
482  *	@napi: NAPI context
483  *
484  * Warning: caller must observe RCU grace period
485  * before freeing memory containing @napi, if
486  * this function returns true.
487  * Note: core networking stack automatically calls it
488  * from netif_napi_del().
489  * Drivers might want to call this helper to combine all
490  * the needed RCU grace periods into a single one.
491  */
492 bool napi_hash_del(struct napi_struct *napi);
493 
494 /**
495  *	napi_disable - prevent NAPI from scheduling
496  *	@n: NAPI context
497  *
498  * Stop NAPI from being scheduled on this context.
499  * Waits till any outstanding processing completes.
500  */
501 void napi_disable(struct napi_struct *n);
502 
503 /**
504  *	napi_enable - enable NAPI scheduling
505  *	@n: NAPI context
506  *
507  * Resume NAPI from being scheduled on this context.
508  * Must be paired with napi_disable.
509  */
510 static inline void napi_enable(struct napi_struct *n)
511 {
512 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
513 	smp_mb__before_atomic();
514 	clear_bit(NAPI_STATE_SCHED, &n->state);
515 	clear_bit(NAPI_STATE_NPSVC, &n->state);
516 }
517 
518 /**
519  *	napi_synchronize - wait until NAPI is not running
520  *	@n: NAPI context
521  *
522  * Wait until NAPI is done being scheduled on this context.
523  * Waits till any outstanding processing completes but
524  * does not disable future activations.
525  */
526 static inline void napi_synchronize(const struct napi_struct *n)
527 {
528 	if (IS_ENABLED(CONFIG_SMP))
529 		while (test_bit(NAPI_STATE_SCHED, &n->state))
530 			msleep(1);
531 	else
532 		barrier();
533 }
534 
535 /**
536  *	napi_if_scheduled_mark_missed - if napi is running, set the
537  *	NAPIF_STATE_MISSED
538  *	@n: NAPI context
539  *
540  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
541  * NAPI is scheduled.
542  **/
543 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
544 {
545 	unsigned long val, new;
546 
547 	do {
548 		val = READ_ONCE(n->state);
549 		if (val & NAPIF_STATE_DISABLE)
550 			return true;
551 
552 		if (!(val & NAPIF_STATE_SCHED))
553 			return false;
554 
555 		new = val | NAPIF_STATE_MISSED;
556 	} while (cmpxchg(&n->state, val, new) != val);
557 
558 	return true;
559 }
560 
561 enum netdev_queue_state_t {
562 	__QUEUE_STATE_DRV_XOFF,
563 	__QUEUE_STATE_STACK_XOFF,
564 	__QUEUE_STATE_FROZEN,
565 };
566 
567 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
568 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
569 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
570 
571 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
572 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
573 					QUEUE_STATE_FROZEN)
574 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
575 					QUEUE_STATE_FROZEN)
576 
577 /*
578  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
579  * netif_tx_* functions below are used to manipulate this flag.  The
580  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
581  * queue independently.  The netif_xmit_*stopped functions below are called
582  * to check if the queue has been stopped by the driver or stack (either
583  * of the XOFF bits are set in the state).  Drivers should not need to call
584  * netif_xmit*stopped functions, they should only be using netif_tx_*.
585  */
586 
587 struct netdev_queue {
588 /*
589  * read-mostly part
590  */
591 	struct net_device	*dev;
592 	struct Qdisc __rcu	*qdisc;
593 	struct Qdisc		*qdisc_sleeping;
594 #ifdef CONFIG_SYSFS
595 	struct kobject		kobj;
596 #endif
597 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
598 	int			numa_node;
599 #endif
600 	unsigned long		tx_maxrate;
601 	/*
602 	 * Number of TX timeouts for this queue
603 	 * (/sys/class/net/DEV/Q/trans_timeout)
604 	 */
605 	unsigned long		trans_timeout;
606 
607 	/* Subordinate device that the queue has been assigned to */
608 	struct net_device	*sb_dev;
609 #ifdef CONFIG_XDP_SOCKETS
610 	struct xdp_umem         *umem;
611 #endif
612 /*
613  * write-mostly part
614  */
615 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
616 	int			xmit_lock_owner;
617 	/*
618 	 * Time (in jiffies) of last Tx
619 	 */
620 	unsigned long		trans_start;
621 
622 	unsigned long		state;
623 
624 #ifdef CONFIG_BQL
625 	struct dql		dql;
626 #endif
627 } ____cacheline_aligned_in_smp;
628 
629 extern int sysctl_fb_tunnels_only_for_init_net;
630 extern int sysctl_devconf_inherit_init_net;
631 
632 static inline bool net_has_fallback_tunnels(const struct net *net)
633 {
634 	return net == &init_net ||
635 	       !IS_ENABLED(CONFIG_SYSCTL) ||
636 	       !sysctl_fb_tunnels_only_for_init_net;
637 }
638 
639 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
640 {
641 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
642 	return q->numa_node;
643 #else
644 	return NUMA_NO_NODE;
645 #endif
646 }
647 
648 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
649 {
650 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
651 	q->numa_node = node;
652 #endif
653 }
654 
655 #ifdef CONFIG_RPS
656 /*
657  * This structure holds an RPS map which can be of variable length.  The
658  * map is an array of CPUs.
659  */
660 struct rps_map {
661 	unsigned int len;
662 	struct rcu_head rcu;
663 	u16 cpus[0];
664 };
665 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
666 
667 /*
668  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
669  * tail pointer for that CPU's input queue at the time of last enqueue, and
670  * a hardware filter index.
671  */
672 struct rps_dev_flow {
673 	u16 cpu;
674 	u16 filter;
675 	unsigned int last_qtail;
676 };
677 #define RPS_NO_FILTER 0xffff
678 
679 /*
680  * The rps_dev_flow_table structure contains a table of flow mappings.
681  */
682 struct rps_dev_flow_table {
683 	unsigned int mask;
684 	struct rcu_head rcu;
685 	struct rps_dev_flow flows[0];
686 };
687 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
688     ((_num) * sizeof(struct rps_dev_flow)))
689 
690 /*
691  * The rps_sock_flow_table contains mappings of flows to the last CPU
692  * on which they were processed by the application (set in recvmsg).
693  * Each entry is a 32bit value. Upper part is the high-order bits
694  * of flow hash, lower part is CPU number.
695  * rps_cpu_mask is used to partition the space, depending on number of
696  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
697  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
698  * meaning we use 32-6=26 bits for the hash.
699  */
700 struct rps_sock_flow_table {
701 	u32	mask;
702 
703 	u32	ents[0] ____cacheline_aligned_in_smp;
704 };
705 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
706 
707 #define RPS_NO_CPU 0xffff
708 
709 extern u32 rps_cpu_mask;
710 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
711 
712 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
713 					u32 hash)
714 {
715 	if (table && hash) {
716 		unsigned int index = hash & table->mask;
717 		u32 val = hash & ~rps_cpu_mask;
718 
719 		/* We only give a hint, preemption can change CPU under us */
720 		val |= raw_smp_processor_id();
721 
722 		if (table->ents[index] != val)
723 			table->ents[index] = val;
724 	}
725 }
726 
727 #ifdef CONFIG_RFS_ACCEL
728 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
729 			 u16 filter_id);
730 #endif
731 #endif /* CONFIG_RPS */
732 
733 /* This structure contains an instance of an RX queue. */
734 struct netdev_rx_queue {
735 #ifdef CONFIG_RPS
736 	struct rps_map __rcu		*rps_map;
737 	struct rps_dev_flow_table __rcu	*rps_flow_table;
738 #endif
739 	struct kobject			kobj;
740 	struct net_device		*dev;
741 	struct xdp_rxq_info		xdp_rxq;
742 #ifdef CONFIG_XDP_SOCKETS
743 	struct xdp_umem                 *umem;
744 #endif
745 } ____cacheline_aligned_in_smp;
746 
747 /*
748  * RX queue sysfs structures and functions.
749  */
750 struct rx_queue_attribute {
751 	struct attribute attr;
752 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
753 	ssize_t (*store)(struct netdev_rx_queue *queue,
754 			 const char *buf, size_t len);
755 };
756 
757 #ifdef CONFIG_XPS
758 /*
759  * This structure holds an XPS map which can be of variable length.  The
760  * map is an array of queues.
761  */
762 struct xps_map {
763 	unsigned int len;
764 	unsigned int alloc_len;
765 	struct rcu_head rcu;
766 	u16 queues[0];
767 };
768 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
769 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
770        - sizeof(struct xps_map)) / sizeof(u16))
771 
772 /*
773  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
774  */
775 struct xps_dev_maps {
776 	struct rcu_head rcu;
777 	struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
778 };
779 
780 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
781 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
782 
783 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
784 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
785 
786 #endif /* CONFIG_XPS */
787 
788 #define TC_MAX_QUEUE	16
789 #define TC_BITMASK	15
790 /* HW offloaded queuing disciplines txq count and offset maps */
791 struct netdev_tc_txq {
792 	u16 count;
793 	u16 offset;
794 };
795 
796 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
797 /*
798  * This structure is to hold information about the device
799  * configured to run FCoE protocol stack.
800  */
801 struct netdev_fcoe_hbainfo {
802 	char	manufacturer[64];
803 	char	serial_number[64];
804 	char	hardware_version[64];
805 	char	driver_version[64];
806 	char	optionrom_version[64];
807 	char	firmware_version[64];
808 	char	model[256];
809 	char	model_description[256];
810 };
811 #endif
812 
813 #define MAX_PHYS_ITEM_ID_LEN 32
814 
815 /* This structure holds a unique identifier to identify some
816  * physical item (port for example) used by a netdevice.
817  */
818 struct netdev_phys_item_id {
819 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
820 	unsigned char id_len;
821 };
822 
823 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
824 					    struct netdev_phys_item_id *b)
825 {
826 	return a->id_len == b->id_len &&
827 	       memcmp(a->id, b->id, a->id_len) == 0;
828 }
829 
830 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
831 				       struct sk_buff *skb,
832 				       struct net_device *sb_dev);
833 
834 enum tc_setup_type {
835 	TC_SETUP_QDISC_MQPRIO,
836 	TC_SETUP_CLSU32,
837 	TC_SETUP_CLSFLOWER,
838 	TC_SETUP_CLSMATCHALL,
839 	TC_SETUP_CLSBPF,
840 	TC_SETUP_BLOCK,
841 	TC_SETUP_QDISC_CBS,
842 	TC_SETUP_QDISC_RED,
843 	TC_SETUP_QDISC_PRIO,
844 	TC_SETUP_QDISC_MQ,
845 	TC_SETUP_QDISC_ETF,
846 	TC_SETUP_ROOT_QDISC,
847 	TC_SETUP_QDISC_GRED,
848 };
849 
850 /* These structures hold the attributes of bpf state that are being passed
851  * to the netdevice through the bpf op.
852  */
853 enum bpf_netdev_command {
854 	/* Set or clear a bpf program used in the earliest stages of packet
855 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
856 	 * is responsible for calling bpf_prog_put on any old progs that are
857 	 * stored. In case of error, the callee need not release the new prog
858 	 * reference, but on success it takes ownership and must bpf_prog_put
859 	 * when it is no longer used.
860 	 */
861 	XDP_SETUP_PROG,
862 	XDP_SETUP_PROG_HW,
863 	XDP_QUERY_PROG,
864 	XDP_QUERY_PROG_HW,
865 	/* BPF program for offload callbacks, invoked at program load time. */
866 	BPF_OFFLOAD_MAP_ALLOC,
867 	BPF_OFFLOAD_MAP_FREE,
868 	XDP_SETUP_XSK_UMEM,
869 };
870 
871 struct bpf_prog_offload_ops;
872 struct netlink_ext_ack;
873 struct xdp_umem;
874 
875 struct netdev_bpf {
876 	enum bpf_netdev_command command;
877 	union {
878 		/* XDP_SETUP_PROG */
879 		struct {
880 			u32 flags;
881 			struct bpf_prog *prog;
882 			struct netlink_ext_ack *extack;
883 		};
884 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
885 		struct {
886 			u32 prog_id;
887 			/* flags with which program was installed */
888 			u32 prog_flags;
889 		};
890 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
891 		struct {
892 			struct bpf_offloaded_map *offmap;
893 		};
894 		/* XDP_SETUP_XSK_UMEM */
895 		struct {
896 			struct xdp_umem *umem;
897 			u16 queue_id;
898 		} xsk;
899 	};
900 };
901 
902 #ifdef CONFIG_XFRM_OFFLOAD
903 struct xfrmdev_ops {
904 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
905 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
906 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
907 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
908 				       struct xfrm_state *x);
909 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
910 };
911 #endif
912 
913 struct dev_ifalias {
914 	struct rcu_head rcuhead;
915 	char ifalias[];
916 };
917 
918 struct devlink;
919 struct tlsdev_ops;
920 
921 /*
922  * This structure defines the management hooks for network devices.
923  * The following hooks can be defined; unless noted otherwise, they are
924  * optional and can be filled with a null pointer.
925  *
926  * int (*ndo_init)(struct net_device *dev);
927  *     This function is called once when a network device is registered.
928  *     The network device can use this for any late stage initialization
929  *     or semantic validation. It can fail with an error code which will
930  *     be propagated back to register_netdev.
931  *
932  * void (*ndo_uninit)(struct net_device *dev);
933  *     This function is called when device is unregistered or when registration
934  *     fails. It is not called if init fails.
935  *
936  * int (*ndo_open)(struct net_device *dev);
937  *     This function is called when a network device transitions to the up
938  *     state.
939  *
940  * int (*ndo_stop)(struct net_device *dev);
941  *     This function is called when a network device transitions to the down
942  *     state.
943  *
944  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
945  *                               struct net_device *dev);
946  *	Called when a packet needs to be transmitted.
947  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
948  *	the queue before that can happen; it's for obsolete devices and weird
949  *	corner cases, but the stack really does a non-trivial amount
950  *	of useless work if you return NETDEV_TX_BUSY.
951  *	Required; cannot be NULL.
952  *
953  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
954  *					   struct net_device *dev
955  *					   netdev_features_t features);
956  *	Called by core transmit path to determine if device is capable of
957  *	performing offload operations on a given packet. This is to give
958  *	the device an opportunity to implement any restrictions that cannot
959  *	be otherwise expressed by feature flags. The check is called with
960  *	the set of features that the stack has calculated and it returns
961  *	those the driver believes to be appropriate.
962  *
963  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
964  *                         struct net_device *sb_dev);
965  *	Called to decide which queue to use when device supports multiple
966  *	transmit queues.
967  *
968  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
969  *	This function is called to allow device receiver to make
970  *	changes to configuration when multicast or promiscuous is enabled.
971  *
972  * void (*ndo_set_rx_mode)(struct net_device *dev);
973  *	This function is called device changes address list filtering.
974  *	If driver handles unicast address filtering, it should set
975  *	IFF_UNICAST_FLT in its priv_flags.
976  *
977  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
978  *	This function  is called when the Media Access Control address
979  *	needs to be changed. If this interface is not defined, the
980  *	MAC address can not be changed.
981  *
982  * int (*ndo_validate_addr)(struct net_device *dev);
983  *	Test if Media Access Control address is valid for the device.
984  *
985  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
986  *	Called when a user requests an ioctl which can't be handled by
987  *	the generic interface code. If not defined ioctls return
988  *	not supported error code.
989  *
990  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
991  *	Used to set network devices bus interface parameters. This interface
992  *	is retained for legacy reasons; new devices should use the bus
993  *	interface (PCI) for low level management.
994  *
995  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
996  *	Called when a user wants to change the Maximum Transfer Unit
997  *	of a device.
998  *
999  * void (*ndo_tx_timeout)(struct net_device *dev);
1000  *	Callback used when the transmitter has not made any progress
1001  *	for dev->watchdog ticks.
1002  *
1003  * void (*ndo_get_stats64)(struct net_device *dev,
1004  *                         struct rtnl_link_stats64 *storage);
1005  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1006  *	Called when a user wants to get the network device usage
1007  *	statistics. Drivers must do one of the following:
1008  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1009  *	   rtnl_link_stats64 structure passed by the caller.
1010  *	2. Define @ndo_get_stats to update a net_device_stats structure
1011  *	   (which should normally be dev->stats) and return a pointer to
1012  *	   it. The structure may be changed asynchronously only if each
1013  *	   field is written atomically.
1014  *	3. Update dev->stats asynchronously and atomically, and define
1015  *	   neither operation.
1016  *
1017  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1018  *	Return true if this device supports offload stats of this attr_id.
1019  *
1020  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1021  *	void *attr_data)
1022  *	Get statistics for offload operations by attr_id. Write it into the
1023  *	attr_data pointer.
1024  *
1025  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1026  *	If device supports VLAN filtering this function is called when a
1027  *	VLAN id is registered.
1028  *
1029  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1030  *	If device supports VLAN filtering this function is called when a
1031  *	VLAN id is unregistered.
1032  *
1033  * void (*ndo_poll_controller)(struct net_device *dev);
1034  *
1035  *	SR-IOV management functions.
1036  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1037  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1038  *			  u8 qos, __be16 proto);
1039  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1040  *			  int max_tx_rate);
1041  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1042  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1043  * int (*ndo_get_vf_config)(struct net_device *dev,
1044  *			    int vf, struct ifla_vf_info *ivf);
1045  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1046  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1047  *			  struct nlattr *port[]);
1048  *
1049  *      Enable or disable the VF ability to query its RSS Redirection Table and
1050  *      Hash Key. This is needed since on some devices VF share this information
1051  *      with PF and querying it may introduce a theoretical security risk.
1052  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1053  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1054  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1055  *		       void *type_data);
1056  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1057  *	This is always called from the stack with the rtnl lock held and netif
1058  *	tx queues stopped. This allows the netdevice to perform queue
1059  *	management safely.
1060  *
1061  *	Fiber Channel over Ethernet (FCoE) offload functions.
1062  * int (*ndo_fcoe_enable)(struct net_device *dev);
1063  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1064  *	so the underlying device can perform whatever needed configuration or
1065  *	initialization to support acceleration of FCoE traffic.
1066  *
1067  * int (*ndo_fcoe_disable)(struct net_device *dev);
1068  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1069  *	so the underlying device can perform whatever needed clean-ups to
1070  *	stop supporting acceleration of FCoE traffic.
1071  *
1072  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1073  *			     struct scatterlist *sgl, unsigned int sgc);
1074  *	Called when the FCoE Initiator wants to initialize an I/O that
1075  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1076  *	perform necessary setup and returns 1 to indicate the device is set up
1077  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1078  *
1079  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1080  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1081  *	indicated by the FC exchange id 'xid', so the underlying device can
1082  *	clean up and reuse resources for later DDP requests.
1083  *
1084  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1085  *			      struct scatterlist *sgl, unsigned int sgc);
1086  *	Called when the FCoE Target wants to initialize an I/O that
1087  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1088  *	perform necessary setup and returns 1 to indicate the device is set up
1089  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1090  *
1091  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1092  *			       struct netdev_fcoe_hbainfo *hbainfo);
1093  *	Called when the FCoE Protocol stack wants information on the underlying
1094  *	device. This information is utilized by the FCoE protocol stack to
1095  *	register attributes with Fiber Channel management service as per the
1096  *	FC-GS Fabric Device Management Information(FDMI) specification.
1097  *
1098  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1099  *	Called when the underlying device wants to override default World Wide
1100  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1101  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1102  *	protocol stack to use.
1103  *
1104  *	RFS acceleration.
1105  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1106  *			    u16 rxq_index, u32 flow_id);
1107  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1108  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1109  *	Return the filter ID on success, or a negative error code.
1110  *
1111  *	Slave management functions (for bridge, bonding, etc).
1112  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1113  *	Called to make another netdev an underling.
1114  *
1115  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1116  *	Called to release previously enslaved netdev.
1117  *
1118  *      Feature/offload setting functions.
1119  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1120  *		netdev_features_t features);
1121  *	Adjusts the requested feature flags according to device-specific
1122  *	constraints, and returns the resulting flags. Must not modify
1123  *	the device state.
1124  *
1125  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1126  *	Called to update device configuration to new features. Passed
1127  *	feature set might be less than what was returned by ndo_fix_features()).
1128  *	Must return >0 or -errno if it changed dev->features itself.
1129  *
1130  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1131  *		      struct net_device *dev,
1132  *		      const unsigned char *addr, u16 vid, u16 flags,
1133  *		      struct netlink_ext_ack *extack);
1134  *	Adds an FDB entry to dev for addr.
1135  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1136  *		      struct net_device *dev,
1137  *		      const unsigned char *addr, u16 vid)
1138  *	Deletes the FDB entry from dev coresponding to addr.
1139  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1140  *		       struct net_device *dev, struct net_device *filter_dev,
1141  *		       int *idx)
1142  *	Used to add FDB entries to dump requests. Implementers should add
1143  *	entries to skb and update idx with the number of entries.
1144  *
1145  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1146  *			     u16 flags, struct netlink_ext_ack *extack)
1147  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1148  *			     struct net_device *dev, u32 filter_mask,
1149  *			     int nlflags)
1150  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1151  *			     u16 flags);
1152  *
1153  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1154  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1155  *	which do not represent real hardware may define this to allow their
1156  *	userspace components to manage their virtual carrier state. Devices
1157  *	that determine carrier state from physical hardware properties (eg
1158  *	network cables) or protocol-dependent mechanisms (eg
1159  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1160  *
1161  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1162  *			       struct netdev_phys_item_id *ppid);
1163  *	Called to get ID of physical port of this device. If driver does
1164  *	not implement this, it is assumed that the hw is not able to have
1165  *	multiple net devices on single physical port.
1166  *
1167  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1168  *				 struct netdev_phys_item_id *ppid)
1169  *	Called to get the parent ID of the physical port of this device.
1170  *
1171  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1172  *			      struct udp_tunnel_info *ti);
1173  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1174  *	address family that a UDP tunnel is listnening to. It is called only
1175  *	when a new port starts listening. The operation is protected by the
1176  *	RTNL.
1177  *
1178  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1179  *			      struct udp_tunnel_info *ti);
1180  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1181  *	address family that the UDP tunnel is not listening to anymore. The
1182  *	operation is protected by the RTNL.
1183  *
1184  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1185  *				 struct net_device *dev)
1186  *	Called by upper layer devices to accelerate switching or other
1187  *	station functionality into hardware. 'pdev is the lowerdev
1188  *	to use for the offload and 'dev' is the net device that will
1189  *	back the offload. Returns a pointer to the private structure
1190  *	the upper layer will maintain.
1191  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1192  *	Called by upper layer device to delete the station created
1193  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1194  *	the station and priv is the structure returned by the add
1195  *	operation.
1196  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1197  *			     int queue_index, u32 maxrate);
1198  *	Called when a user wants to set a max-rate limitation of specific
1199  *	TX queue.
1200  * int (*ndo_get_iflink)(const struct net_device *dev);
1201  *	Called to get the iflink value of this device.
1202  * void (*ndo_change_proto_down)(struct net_device *dev,
1203  *				 bool proto_down);
1204  *	This function is used to pass protocol port error state information
1205  *	to the switch driver. The switch driver can react to the proto_down
1206  *      by doing a phys down on the associated switch port.
1207  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1208  *	This function is used to get egress tunnel information for given skb.
1209  *	This is useful for retrieving outer tunnel header parameters while
1210  *	sampling packet.
1211  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1212  *	This function is used to specify the headroom that the skb must
1213  *	consider when allocation skb during packet reception. Setting
1214  *	appropriate rx headroom value allows avoiding skb head copy on
1215  *	forward. Setting a negative value resets the rx headroom to the
1216  *	default value.
1217  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1218  *	This function is used to set or query state related to XDP on the
1219  *	netdevice and manage BPF offload. See definition of
1220  *	enum bpf_netdev_command for details.
1221  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1222  *			u32 flags);
1223  *	This function is used to submit @n XDP packets for transmit on a
1224  *	netdevice. Returns number of frames successfully transmitted, frames
1225  *	that got dropped are freed/returned via xdp_return_frame().
1226  *	Returns negative number, means general error invoking ndo, meaning
1227  *	no frames were xmit'ed and core-caller will free all frames.
1228  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1229  *	Get devlink port instance associated with a given netdev.
1230  *	Called with a reference on the netdevice and devlink locks only,
1231  *	rtnl_lock is not held.
1232  */
1233 struct net_device_ops {
1234 	int			(*ndo_init)(struct net_device *dev);
1235 	void			(*ndo_uninit)(struct net_device *dev);
1236 	int			(*ndo_open)(struct net_device *dev);
1237 	int			(*ndo_stop)(struct net_device *dev);
1238 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1239 						  struct net_device *dev);
1240 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1241 						      struct net_device *dev,
1242 						      netdev_features_t features);
1243 	u16			(*ndo_select_queue)(struct net_device *dev,
1244 						    struct sk_buff *skb,
1245 						    struct net_device *sb_dev);
1246 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1247 						       int flags);
1248 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1249 	int			(*ndo_set_mac_address)(struct net_device *dev,
1250 						       void *addr);
1251 	int			(*ndo_validate_addr)(struct net_device *dev);
1252 	int			(*ndo_do_ioctl)(struct net_device *dev,
1253 					        struct ifreq *ifr, int cmd);
1254 	int			(*ndo_set_config)(struct net_device *dev,
1255 					          struct ifmap *map);
1256 	int			(*ndo_change_mtu)(struct net_device *dev,
1257 						  int new_mtu);
1258 	int			(*ndo_neigh_setup)(struct net_device *dev,
1259 						   struct neigh_parms *);
1260 	void			(*ndo_tx_timeout) (struct net_device *dev);
1261 
1262 	void			(*ndo_get_stats64)(struct net_device *dev,
1263 						   struct rtnl_link_stats64 *storage);
1264 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1265 	int			(*ndo_get_offload_stats)(int attr_id,
1266 							 const struct net_device *dev,
1267 							 void *attr_data);
1268 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1269 
1270 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1271 						       __be16 proto, u16 vid);
1272 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1273 						        __be16 proto, u16 vid);
1274 #ifdef CONFIG_NET_POLL_CONTROLLER
1275 	void                    (*ndo_poll_controller)(struct net_device *dev);
1276 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1277 						     struct netpoll_info *info);
1278 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1279 #endif
1280 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1281 						  int queue, u8 *mac);
1282 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1283 						   int queue, u16 vlan,
1284 						   u8 qos, __be16 proto);
1285 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1286 						   int vf, int min_tx_rate,
1287 						   int max_tx_rate);
1288 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1289 						       int vf, bool setting);
1290 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1291 						    int vf, bool setting);
1292 	int			(*ndo_get_vf_config)(struct net_device *dev,
1293 						     int vf,
1294 						     struct ifla_vf_info *ivf);
1295 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1296 							 int vf, int link_state);
1297 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1298 						    int vf,
1299 						    struct ifla_vf_stats
1300 						    *vf_stats);
1301 	int			(*ndo_set_vf_port)(struct net_device *dev,
1302 						   int vf,
1303 						   struct nlattr *port[]);
1304 	int			(*ndo_get_vf_port)(struct net_device *dev,
1305 						   int vf, struct sk_buff *skb);
1306 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1307 						   int vf, u64 guid,
1308 						   int guid_type);
1309 	int			(*ndo_set_vf_rss_query_en)(
1310 						   struct net_device *dev,
1311 						   int vf, bool setting);
1312 	int			(*ndo_setup_tc)(struct net_device *dev,
1313 						enum tc_setup_type type,
1314 						void *type_data);
1315 #if IS_ENABLED(CONFIG_FCOE)
1316 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1317 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1318 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1319 						      u16 xid,
1320 						      struct scatterlist *sgl,
1321 						      unsigned int sgc);
1322 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1323 						     u16 xid);
1324 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1325 						       u16 xid,
1326 						       struct scatterlist *sgl,
1327 						       unsigned int sgc);
1328 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1329 							struct netdev_fcoe_hbainfo *hbainfo);
1330 #endif
1331 
1332 #if IS_ENABLED(CONFIG_LIBFCOE)
1333 #define NETDEV_FCOE_WWNN 0
1334 #define NETDEV_FCOE_WWPN 1
1335 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1336 						    u64 *wwn, int type);
1337 #endif
1338 
1339 #ifdef CONFIG_RFS_ACCEL
1340 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1341 						     const struct sk_buff *skb,
1342 						     u16 rxq_index,
1343 						     u32 flow_id);
1344 #endif
1345 	int			(*ndo_add_slave)(struct net_device *dev,
1346 						 struct net_device *slave_dev,
1347 						 struct netlink_ext_ack *extack);
1348 	int			(*ndo_del_slave)(struct net_device *dev,
1349 						 struct net_device *slave_dev);
1350 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1351 						    netdev_features_t features);
1352 	int			(*ndo_set_features)(struct net_device *dev,
1353 						    netdev_features_t features);
1354 	int			(*ndo_neigh_construct)(struct net_device *dev,
1355 						       struct neighbour *n);
1356 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1357 						     struct neighbour *n);
1358 
1359 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1360 					       struct nlattr *tb[],
1361 					       struct net_device *dev,
1362 					       const unsigned char *addr,
1363 					       u16 vid,
1364 					       u16 flags,
1365 					       struct netlink_ext_ack *extack);
1366 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1367 					       struct nlattr *tb[],
1368 					       struct net_device *dev,
1369 					       const unsigned char *addr,
1370 					       u16 vid);
1371 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1372 						struct netlink_callback *cb,
1373 						struct net_device *dev,
1374 						struct net_device *filter_dev,
1375 						int *idx);
1376 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1377 					       struct nlattr *tb[],
1378 					       struct net_device *dev,
1379 					       const unsigned char *addr,
1380 					       u16 vid, u32 portid, u32 seq,
1381 					       struct netlink_ext_ack *extack);
1382 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1383 						      struct nlmsghdr *nlh,
1384 						      u16 flags,
1385 						      struct netlink_ext_ack *extack);
1386 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1387 						      u32 pid, u32 seq,
1388 						      struct net_device *dev,
1389 						      u32 filter_mask,
1390 						      int nlflags);
1391 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1392 						      struct nlmsghdr *nlh,
1393 						      u16 flags);
1394 	int			(*ndo_change_carrier)(struct net_device *dev,
1395 						      bool new_carrier);
1396 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1397 							struct netdev_phys_item_id *ppid);
1398 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1399 							  struct netdev_phys_item_id *ppid);
1400 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1401 							  char *name, size_t len);
1402 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1403 						      struct udp_tunnel_info *ti);
1404 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1405 						      struct udp_tunnel_info *ti);
1406 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1407 							struct net_device *dev);
1408 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1409 							void *priv);
1410 
1411 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1412 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1413 						      int queue_index,
1414 						      u32 maxrate);
1415 	int			(*ndo_get_iflink)(const struct net_device *dev);
1416 	int			(*ndo_change_proto_down)(struct net_device *dev,
1417 							 bool proto_down);
1418 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1419 						       struct sk_buff *skb);
1420 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1421 						       int needed_headroom);
1422 	int			(*ndo_bpf)(struct net_device *dev,
1423 					   struct netdev_bpf *bpf);
1424 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1425 						struct xdp_frame **xdp,
1426 						u32 flags);
1427 	int			(*ndo_xsk_async_xmit)(struct net_device *dev,
1428 						      u32 queue_id);
1429 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1430 };
1431 
1432 /**
1433  * enum net_device_priv_flags - &struct net_device priv_flags
1434  *
1435  * These are the &struct net_device, they are only set internally
1436  * by drivers and used in the kernel. These flags are invisible to
1437  * userspace; this means that the order of these flags can change
1438  * during any kernel release.
1439  *
1440  * You should have a pretty good reason to be extending these flags.
1441  *
1442  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1443  * @IFF_EBRIDGE: Ethernet bridging device
1444  * @IFF_BONDING: bonding master or slave
1445  * @IFF_ISATAP: ISATAP interface (RFC4214)
1446  * @IFF_WAN_HDLC: WAN HDLC device
1447  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1448  *	release skb->dst
1449  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1450  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1451  * @IFF_MACVLAN_PORT: device used as macvlan port
1452  * @IFF_BRIDGE_PORT: device used as bridge port
1453  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1454  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1455  * @IFF_UNICAST_FLT: Supports unicast filtering
1456  * @IFF_TEAM_PORT: device used as team port
1457  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1458  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1459  *	change when it's running
1460  * @IFF_MACVLAN: Macvlan device
1461  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1462  *	underlying stacked devices
1463  * @IFF_L3MDEV_MASTER: device is an L3 master device
1464  * @IFF_NO_QUEUE: device can run without qdisc attached
1465  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1466  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1467  * @IFF_TEAM: device is a team device
1468  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1469  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1470  *	entity (i.e. the master device for bridged veth)
1471  * @IFF_MACSEC: device is a MACsec device
1472  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1473  * @IFF_FAILOVER: device is a failover master device
1474  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1475  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1476  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1477  */
1478 enum netdev_priv_flags {
1479 	IFF_802_1Q_VLAN			= 1<<0,
1480 	IFF_EBRIDGE			= 1<<1,
1481 	IFF_BONDING			= 1<<2,
1482 	IFF_ISATAP			= 1<<3,
1483 	IFF_WAN_HDLC			= 1<<4,
1484 	IFF_XMIT_DST_RELEASE		= 1<<5,
1485 	IFF_DONT_BRIDGE			= 1<<6,
1486 	IFF_DISABLE_NETPOLL		= 1<<7,
1487 	IFF_MACVLAN_PORT		= 1<<8,
1488 	IFF_BRIDGE_PORT			= 1<<9,
1489 	IFF_OVS_DATAPATH		= 1<<10,
1490 	IFF_TX_SKB_SHARING		= 1<<11,
1491 	IFF_UNICAST_FLT			= 1<<12,
1492 	IFF_TEAM_PORT			= 1<<13,
1493 	IFF_SUPP_NOFCS			= 1<<14,
1494 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1495 	IFF_MACVLAN			= 1<<16,
1496 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1497 	IFF_L3MDEV_MASTER		= 1<<18,
1498 	IFF_NO_QUEUE			= 1<<19,
1499 	IFF_OPENVSWITCH			= 1<<20,
1500 	IFF_L3MDEV_SLAVE		= 1<<21,
1501 	IFF_TEAM			= 1<<22,
1502 	IFF_RXFH_CONFIGURED		= 1<<23,
1503 	IFF_PHONY_HEADROOM		= 1<<24,
1504 	IFF_MACSEC			= 1<<25,
1505 	IFF_NO_RX_HANDLER		= 1<<26,
1506 	IFF_FAILOVER			= 1<<27,
1507 	IFF_FAILOVER_SLAVE		= 1<<28,
1508 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1509 	IFF_LIVE_RENAME_OK		= 1<<30,
1510 };
1511 
1512 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1513 #define IFF_EBRIDGE			IFF_EBRIDGE
1514 #define IFF_BONDING			IFF_BONDING
1515 #define IFF_ISATAP			IFF_ISATAP
1516 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1517 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1518 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1519 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1520 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1521 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1522 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1523 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1524 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1525 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1526 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1527 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1528 #define IFF_MACVLAN			IFF_MACVLAN
1529 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1530 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1531 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1532 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1533 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1534 #define IFF_TEAM			IFF_TEAM
1535 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1536 #define IFF_MACSEC			IFF_MACSEC
1537 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1538 #define IFF_FAILOVER			IFF_FAILOVER
1539 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1540 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1541 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1542 
1543 /**
1544  *	struct net_device - The DEVICE structure.
1545  *
1546  *	Actually, this whole structure is a big mistake.  It mixes I/O
1547  *	data with strictly "high-level" data, and it has to know about
1548  *	almost every data structure used in the INET module.
1549  *
1550  *	@name:	This is the first field of the "visible" part of this structure
1551  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1552  *		of the interface.
1553  *
1554  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1555  *	@ifalias:	SNMP alias
1556  *	@mem_end:	Shared memory end
1557  *	@mem_start:	Shared memory start
1558  *	@base_addr:	Device I/O address
1559  *	@irq:		Device IRQ number
1560  *
1561  *	@state:		Generic network queuing layer state, see netdev_state_t
1562  *	@dev_list:	The global list of network devices
1563  *	@napi_list:	List entry used for polling NAPI devices
1564  *	@unreg_list:	List entry  when we are unregistering the
1565  *			device; see the function unregister_netdev
1566  *	@close_list:	List entry used when we are closing the device
1567  *	@ptype_all:     Device-specific packet handlers for all protocols
1568  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1569  *
1570  *	@adj_list:	Directly linked devices, like slaves for bonding
1571  *	@features:	Currently active device features
1572  *	@hw_features:	User-changeable features
1573  *
1574  *	@wanted_features:	User-requested features
1575  *	@vlan_features:		Mask of features inheritable by VLAN devices
1576  *
1577  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1578  *				This field indicates what encapsulation
1579  *				offloads the hardware is capable of doing,
1580  *				and drivers will need to set them appropriately.
1581  *
1582  *	@mpls_features:	Mask of features inheritable by MPLS
1583  *
1584  *	@ifindex:	interface index
1585  *	@group:		The group the device belongs to
1586  *
1587  *	@stats:		Statistics struct, which was left as a legacy, use
1588  *			rtnl_link_stats64 instead
1589  *
1590  *	@rx_dropped:	Dropped packets by core network,
1591  *			do not use this in drivers
1592  *	@tx_dropped:	Dropped packets by core network,
1593  *			do not use this in drivers
1594  *	@rx_nohandler:	nohandler dropped packets by core network on
1595  *			inactive devices, do not use this in drivers
1596  *	@carrier_up_count:	Number of times the carrier has been up
1597  *	@carrier_down_count:	Number of times the carrier has been down
1598  *
1599  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1600  *				instead of ioctl,
1601  *				see <net/iw_handler.h> for details.
1602  *	@wireless_data:	Instance data managed by the core of wireless extensions
1603  *
1604  *	@netdev_ops:	Includes several pointers to callbacks,
1605  *			if one wants to override the ndo_*() functions
1606  *	@ethtool_ops:	Management operations
1607  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1608  *			discovery handling. Necessary for e.g. 6LoWPAN.
1609  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1610  *			of Layer 2 headers.
1611  *
1612  *	@flags:		Interface flags (a la BSD)
1613  *	@priv_flags:	Like 'flags' but invisible to userspace,
1614  *			see if.h for the definitions
1615  *	@gflags:	Global flags ( kept as legacy )
1616  *	@padded:	How much padding added by alloc_netdev()
1617  *	@operstate:	RFC2863 operstate
1618  *	@link_mode:	Mapping policy to operstate
1619  *	@if_port:	Selectable AUI, TP, ...
1620  *	@dma:		DMA channel
1621  *	@mtu:		Interface MTU value
1622  *	@min_mtu:	Interface Minimum MTU value
1623  *	@max_mtu:	Interface Maximum MTU value
1624  *	@type:		Interface hardware type
1625  *	@hard_header_len: Maximum hardware header length.
1626  *	@min_header_len:  Minimum hardware header length
1627  *
1628  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1629  *			  cases can this be guaranteed
1630  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1631  *			  cases can this be guaranteed. Some cases also use
1632  *			  LL_MAX_HEADER instead to allocate the skb
1633  *
1634  *	interface address info:
1635  *
1636  * 	@perm_addr:		Permanent hw address
1637  * 	@addr_assign_type:	Hw address assignment type
1638  * 	@addr_len:		Hardware address length
1639  *	@neigh_priv_len:	Used in neigh_alloc()
1640  * 	@dev_id:		Used to differentiate devices that share
1641  * 				the same link layer address
1642  * 	@dev_port:		Used to differentiate devices that share
1643  * 				the same function
1644  *	@addr_list_lock:	XXX: need comments on this one
1645  *	@uc_promisc:		Counter that indicates promiscuous mode
1646  *				has been enabled due to the need to listen to
1647  *				additional unicast addresses in a device that
1648  *				does not implement ndo_set_rx_mode()
1649  *	@uc:			unicast mac addresses
1650  *	@mc:			multicast mac addresses
1651  *	@dev_addrs:		list of device hw addresses
1652  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1653  *	@promiscuity:		Number of times the NIC is told to work in
1654  *				promiscuous mode; if it becomes 0 the NIC will
1655  *				exit promiscuous mode
1656  *	@allmulti:		Counter, enables or disables allmulticast mode
1657  *
1658  *	@vlan_info:	VLAN info
1659  *	@dsa_ptr:	dsa specific data
1660  *	@tipc_ptr:	TIPC specific data
1661  *	@atalk_ptr:	AppleTalk link
1662  *	@ip_ptr:	IPv4 specific data
1663  *	@dn_ptr:	DECnet specific data
1664  *	@ip6_ptr:	IPv6 specific data
1665  *	@ax25_ptr:	AX.25 specific data
1666  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1667  *
1668  *	@dev_addr:	Hw address (before bcast,
1669  *			because most packets are unicast)
1670  *
1671  *	@_rx:			Array of RX queues
1672  *	@num_rx_queues:		Number of RX queues
1673  *				allocated at register_netdev() time
1674  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1675  *
1676  *	@rx_handler:		handler for received packets
1677  *	@rx_handler_data: 	XXX: need comments on this one
1678  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1679  *				ingress processing
1680  *	@ingress_queue:		XXX: need comments on this one
1681  *	@broadcast:		hw bcast address
1682  *
1683  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1684  *			indexed by RX queue number. Assigned by driver.
1685  *			This must only be set if the ndo_rx_flow_steer
1686  *			operation is defined
1687  *	@index_hlist:		Device index hash chain
1688  *
1689  *	@_tx:			Array of TX queues
1690  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1691  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1692  *	@qdisc:			Root qdisc from userspace point of view
1693  *	@tx_queue_len:		Max frames per queue allowed
1694  *	@tx_global_lock: 	XXX: need comments on this one
1695  *
1696  *	@xps_maps:	XXX: need comments on this one
1697  *	@miniq_egress:		clsact qdisc specific data for
1698  *				egress processing
1699  *	@watchdog_timeo:	Represents the timeout that is used by
1700  *				the watchdog (see dev_watchdog())
1701  *	@watchdog_timer:	List of timers
1702  *
1703  *	@pcpu_refcnt:		Number of references to this device
1704  *	@todo_list:		Delayed register/unregister
1705  *	@link_watch_list:	XXX: need comments on this one
1706  *
1707  *	@reg_state:		Register/unregister state machine
1708  *	@dismantle:		Device is going to be freed
1709  *	@rtnl_link_state:	This enum represents the phases of creating
1710  *				a new link
1711  *
1712  *	@needs_free_netdev:	Should unregister perform free_netdev?
1713  *	@priv_destructor:	Called from unregister
1714  *	@npinfo:		XXX: need comments on this one
1715  * 	@nd_net:		Network namespace this network device is inside
1716  *
1717  * 	@ml_priv:	Mid-layer private
1718  * 	@lstats:	Loopback statistics
1719  * 	@tstats:	Tunnel statistics
1720  * 	@dstats:	Dummy statistics
1721  * 	@vstats:	Virtual ethernet statistics
1722  *
1723  *	@garp_port:	GARP
1724  *	@mrp_port:	MRP
1725  *
1726  *	@dev:		Class/net/name entry
1727  *	@sysfs_groups:	Space for optional device, statistics and wireless
1728  *			sysfs groups
1729  *
1730  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1731  *	@rtnl_link_ops:	Rtnl_link_ops
1732  *
1733  *	@gso_max_size:	Maximum size of generic segmentation offload
1734  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1735  *			NIC for GSO
1736  *
1737  *	@dcbnl_ops:	Data Center Bridging netlink ops
1738  *	@num_tc:	Number of traffic classes in the net device
1739  *	@tc_to_txq:	XXX: need comments on this one
1740  *	@prio_tc_map:	XXX: need comments on this one
1741  *
1742  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1743  *
1744  *	@priomap:	XXX: need comments on this one
1745  *	@phydev:	Physical device may attach itself
1746  *			for hardware timestamping
1747  *	@sfp_bus:	attached &struct sfp_bus structure.
1748  *
1749  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1750  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1751  *
1752  *	@proto_down:	protocol port state information can be sent to the
1753  *			switch driver and used to set the phys state of the
1754  *			switch port.
1755  *
1756  *	@wol_enabled:	Wake-on-LAN is enabled
1757  *
1758  *	FIXME: cleanup struct net_device such that network protocol info
1759  *	moves out.
1760  */
1761 
1762 struct net_device {
1763 	char			name[IFNAMSIZ];
1764 	struct hlist_node	name_hlist;
1765 	struct dev_ifalias	__rcu *ifalias;
1766 	/*
1767 	 *	I/O specific fields
1768 	 *	FIXME: Merge these and struct ifmap into one
1769 	 */
1770 	unsigned long		mem_end;
1771 	unsigned long		mem_start;
1772 	unsigned long		base_addr;
1773 	int			irq;
1774 
1775 	/*
1776 	 *	Some hardware also needs these fields (state,dev_list,
1777 	 *	napi_list,unreg_list,close_list) but they are not
1778 	 *	part of the usual set specified in Space.c.
1779 	 */
1780 
1781 	unsigned long		state;
1782 
1783 	struct list_head	dev_list;
1784 	struct list_head	napi_list;
1785 	struct list_head	unreg_list;
1786 	struct list_head	close_list;
1787 	struct list_head	ptype_all;
1788 	struct list_head	ptype_specific;
1789 
1790 	struct {
1791 		struct list_head upper;
1792 		struct list_head lower;
1793 	} adj_list;
1794 
1795 	netdev_features_t	features;
1796 	netdev_features_t	hw_features;
1797 	netdev_features_t	wanted_features;
1798 	netdev_features_t	vlan_features;
1799 	netdev_features_t	hw_enc_features;
1800 	netdev_features_t	mpls_features;
1801 	netdev_features_t	gso_partial_features;
1802 
1803 	int			ifindex;
1804 	int			group;
1805 
1806 	struct net_device_stats	stats;
1807 
1808 	atomic_long_t		rx_dropped;
1809 	atomic_long_t		tx_dropped;
1810 	atomic_long_t		rx_nohandler;
1811 
1812 	/* Stats to monitor link on/off, flapping */
1813 	atomic_t		carrier_up_count;
1814 	atomic_t		carrier_down_count;
1815 
1816 #ifdef CONFIG_WIRELESS_EXT
1817 	const struct iw_handler_def *wireless_handlers;
1818 	struct iw_public_data	*wireless_data;
1819 #endif
1820 	const struct net_device_ops *netdev_ops;
1821 	const struct ethtool_ops *ethtool_ops;
1822 #ifdef CONFIG_NET_L3_MASTER_DEV
1823 	const struct l3mdev_ops	*l3mdev_ops;
1824 #endif
1825 #if IS_ENABLED(CONFIG_IPV6)
1826 	const struct ndisc_ops *ndisc_ops;
1827 #endif
1828 
1829 #ifdef CONFIG_XFRM_OFFLOAD
1830 	const struct xfrmdev_ops *xfrmdev_ops;
1831 #endif
1832 
1833 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1834 	const struct tlsdev_ops *tlsdev_ops;
1835 #endif
1836 
1837 	const struct header_ops *header_ops;
1838 
1839 	unsigned int		flags;
1840 	unsigned int		priv_flags;
1841 
1842 	unsigned short		gflags;
1843 	unsigned short		padded;
1844 
1845 	unsigned char		operstate;
1846 	unsigned char		link_mode;
1847 
1848 	unsigned char		if_port;
1849 	unsigned char		dma;
1850 
1851 	unsigned int		mtu;
1852 	unsigned int		min_mtu;
1853 	unsigned int		max_mtu;
1854 	unsigned short		type;
1855 	unsigned short		hard_header_len;
1856 	unsigned char		min_header_len;
1857 
1858 	unsigned short		needed_headroom;
1859 	unsigned short		needed_tailroom;
1860 
1861 	/* Interface address info. */
1862 	unsigned char		perm_addr[MAX_ADDR_LEN];
1863 	unsigned char		addr_assign_type;
1864 	unsigned char		addr_len;
1865 	unsigned short		neigh_priv_len;
1866 	unsigned short          dev_id;
1867 	unsigned short          dev_port;
1868 	spinlock_t		addr_list_lock;
1869 	unsigned char		name_assign_type;
1870 	bool			uc_promisc;
1871 	struct netdev_hw_addr_list	uc;
1872 	struct netdev_hw_addr_list	mc;
1873 	struct netdev_hw_addr_list	dev_addrs;
1874 
1875 #ifdef CONFIG_SYSFS
1876 	struct kset		*queues_kset;
1877 #endif
1878 	unsigned int		promiscuity;
1879 	unsigned int		allmulti;
1880 
1881 
1882 	/* Protocol-specific pointers */
1883 
1884 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1885 	struct vlan_info __rcu	*vlan_info;
1886 #endif
1887 #if IS_ENABLED(CONFIG_NET_DSA)
1888 	struct dsa_port		*dsa_ptr;
1889 #endif
1890 #if IS_ENABLED(CONFIG_TIPC)
1891 	struct tipc_bearer __rcu *tipc_ptr;
1892 #endif
1893 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1894 	void 			*atalk_ptr;
1895 #endif
1896 	struct in_device __rcu	*ip_ptr;
1897 #if IS_ENABLED(CONFIG_DECNET)
1898 	struct dn_dev __rcu     *dn_ptr;
1899 #endif
1900 	struct inet6_dev __rcu	*ip6_ptr;
1901 #if IS_ENABLED(CONFIG_AX25)
1902 	void			*ax25_ptr;
1903 #endif
1904 	struct wireless_dev	*ieee80211_ptr;
1905 	struct wpan_dev		*ieee802154_ptr;
1906 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1907 	struct mpls_dev __rcu	*mpls_ptr;
1908 #endif
1909 
1910 /*
1911  * Cache lines mostly used on receive path (including eth_type_trans())
1912  */
1913 	/* Interface address info used in eth_type_trans() */
1914 	unsigned char		*dev_addr;
1915 
1916 	struct netdev_rx_queue	*_rx;
1917 	unsigned int		num_rx_queues;
1918 	unsigned int		real_num_rx_queues;
1919 
1920 	struct bpf_prog __rcu	*xdp_prog;
1921 	unsigned long		gro_flush_timeout;
1922 	rx_handler_func_t __rcu	*rx_handler;
1923 	void __rcu		*rx_handler_data;
1924 
1925 #ifdef CONFIG_NET_CLS_ACT
1926 	struct mini_Qdisc __rcu	*miniq_ingress;
1927 #endif
1928 	struct netdev_queue __rcu *ingress_queue;
1929 #ifdef CONFIG_NETFILTER_INGRESS
1930 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1931 #endif
1932 
1933 	unsigned char		broadcast[MAX_ADDR_LEN];
1934 #ifdef CONFIG_RFS_ACCEL
1935 	struct cpu_rmap		*rx_cpu_rmap;
1936 #endif
1937 	struct hlist_node	index_hlist;
1938 
1939 /*
1940  * Cache lines mostly used on transmit path
1941  */
1942 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1943 	unsigned int		num_tx_queues;
1944 	unsigned int		real_num_tx_queues;
1945 	struct Qdisc		*qdisc;
1946 #ifdef CONFIG_NET_SCHED
1947 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1948 #endif
1949 	unsigned int		tx_queue_len;
1950 	spinlock_t		tx_global_lock;
1951 	int			watchdog_timeo;
1952 
1953 #ifdef CONFIG_XPS
1954 	struct xps_dev_maps __rcu *xps_cpus_map;
1955 	struct xps_dev_maps __rcu *xps_rxqs_map;
1956 #endif
1957 #ifdef CONFIG_NET_CLS_ACT
1958 	struct mini_Qdisc __rcu	*miniq_egress;
1959 #endif
1960 
1961 	/* These may be needed for future network-power-down code. */
1962 	struct timer_list	watchdog_timer;
1963 
1964 	int __percpu		*pcpu_refcnt;
1965 	struct list_head	todo_list;
1966 
1967 	struct list_head	link_watch_list;
1968 
1969 	enum { NETREG_UNINITIALIZED=0,
1970 	       NETREG_REGISTERED,	/* completed register_netdevice */
1971 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1972 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1973 	       NETREG_RELEASED,		/* called free_netdev */
1974 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1975 	} reg_state:8;
1976 
1977 	bool dismantle;
1978 
1979 	enum {
1980 		RTNL_LINK_INITIALIZED,
1981 		RTNL_LINK_INITIALIZING,
1982 	} rtnl_link_state:16;
1983 
1984 	bool needs_free_netdev;
1985 	void (*priv_destructor)(struct net_device *dev);
1986 
1987 #ifdef CONFIG_NETPOLL
1988 	struct netpoll_info __rcu	*npinfo;
1989 #endif
1990 
1991 	possible_net_t			nd_net;
1992 
1993 	/* mid-layer private */
1994 	union {
1995 		void					*ml_priv;
1996 		struct pcpu_lstats __percpu		*lstats;
1997 		struct pcpu_sw_netstats __percpu	*tstats;
1998 		struct pcpu_dstats __percpu		*dstats;
1999 	};
2000 
2001 #if IS_ENABLED(CONFIG_GARP)
2002 	struct garp_port __rcu	*garp_port;
2003 #endif
2004 #if IS_ENABLED(CONFIG_MRP)
2005 	struct mrp_port __rcu	*mrp_port;
2006 #endif
2007 
2008 	struct device		dev;
2009 	const struct attribute_group *sysfs_groups[4];
2010 	const struct attribute_group *sysfs_rx_queue_group;
2011 
2012 	const struct rtnl_link_ops *rtnl_link_ops;
2013 
2014 	/* for setting kernel sock attribute on TCP connection setup */
2015 #define GSO_MAX_SIZE		65536
2016 	unsigned int		gso_max_size;
2017 #define GSO_MAX_SEGS		65535
2018 	u16			gso_max_segs;
2019 
2020 #ifdef CONFIG_DCB
2021 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2022 #endif
2023 	s16			num_tc;
2024 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2025 	u8			prio_tc_map[TC_BITMASK + 1];
2026 
2027 #if IS_ENABLED(CONFIG_FCOE)
2028 	unsigned int		fcoe_ddp_xid;
2029 #endif
2030 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2031 	struct netprio_map __rcu *priomap;
2032 #endif
2033 	struct phy_device	*phydev;
2034 	struct sfp_bus		*sfp_bus;
2035 	struct lock_class_key	*qdisc_tx_busylock;
2036 	struct lock_class_key	*qdisc_running_key;
2037 	bool			proto_down;
2038 	unsigned		wol_enabled:1;
2039 };
2040 #define to_net_dev(d) container_of(d, struct net_device, dev)
2041 
2042 static inline bool netif_elide_gro(const struct net_device *dev)
2043 {
2044 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2045 		return true;
2046 	return false;
2047 }
2048 
2049 #define	NETDEV_ALIGN		32
2050 
2051 static inline
2052 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2053 {
2054 	return dev->prio_tc_map[prio & TC_BITMASK];
2055 }
2056 
2057 static inline
2058 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2059 {
2060 	if (tc >= dev->num_tc)
2061 		return -EINVAL;
2062 
2063 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2064 	return 0;
2065 }
2066 
2067 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2068 void netdev_reset_tc(struct net_device *dev);
2069 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2070 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2071 
2072 static inline
2073 int netdev_get_num_tc(struct net_device *dev)
2074 {
2075 	return dev->num_tc;
2076 }
2077 
2078 void netdev_unbind_sb_channel(struct net_device *dev,
2079 			      struct net_device *sb_dev);
2080 int netdev_bind_sb_channel_queue(struct net_device *dev,
2081 				 struct net_device *sb_dev,
2082 				 u8 tc, u16 count, u16 offset);
2083 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2084 static inline int netdev_get_sb_channel(struct net_device *dev)
2085 {
2086 	return max_t(int, -dev->num_tc, 0);
2087 }
2088 
2089 static inline
2090 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2091 					 unsigned int index)
2092 {
2093 	return &dev->_tx[index];
2094 }
2095 
2096 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2097 						    const struct sk_buff *skb)
2098 {
2099 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2100 }
2101 
2102 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2103 					    void (*f)(struct net_device *,
2104 						      struct netdev_queue *,
2105 						      void *),
2106 					    void *arg)
2107 {
2108 	unsigned int i;
2109 
2110 	for (i = 0; i < dev->num_tx_queues; i++)
2111 		f(dev, &dev->_tx[i], arg);
2112 }
2113 
2114 #define netdev_lockdep_set_classes(dev)				\
2115 {								\
2116 	static struct lock_class_key qdisc_tx_busylock_key;	\
2117 	static struct lock_class_key qdisc_running_key;		\
2118 	static struct lock_class_key qdisc_xmit_lock_key;	\
2119 	static struct lock_class_key dev_addr_list_lock_key;	\
2120 	unsigned int i;						\
2121 								\
2122 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2123 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2124 	lockdep_set_class(&(dev)->addr_list_lock,		\
2125 			  &dev_addr_list_lock_key); 		\
2126 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2127 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2128 				  &qdisc_xmit_lock_key);	\
2129 }
2130 
2131 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2132 		     struct net_device *sb_dev);
2133 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2134 					 struct sk_buff *skb,
2135 					 struct net_device *sb_dev);
2136 
2137 /* returns the headroom that the master device needs to take in account
2138  * when forwarding to this dev
2139  */
2140 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2141 {
2142 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2143 }
2144 
2145 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2146 {
2147 	if (dev->netdev_ops->ndo_set_rx_headroom)
2148 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2149 }
2150 
2151 /* set the device rx headroom to the dev's default */
2152 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2153 {
2154 	netdev_set_rx_headroom(dev, -1);
2155 }
2156 
2157 /*
2158  * Net namespace inlines
2159  */
2160 static inline
2161 struct net *dev_net(const struct net_device *dev)
2162 {
2163 	return read_pnet(&dev->nd_net);
2164 }
2165 
2166 static inline
2167 void dev_net_set(struct net_device *dev, struct net *net)
2168 {
2169 	write_pnet(&dev->nd_net, net);
2170 }
2171 
2172 /**
2173  *	netdev_priv - access network device private data
2174  *	@dev: network device
2175  *
2176  * Get network device private data
2177  */
2178 static inline void *netdev_priv(const struct net_device *dev)
2179 {
2180 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2181 }
2182 
2183 /* Set the sysfs physical device reference for the network logical device
2184  * if set prior to registration will cause a symlink during initialization.
2185  */
2186 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2187 
2188 /* Set the sysfs device type for the network logical device to allow
2189  * fine-grained identification of different network device types. For
2190  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2191  */
2192 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2193 
2194 /* Default NAPI poll() weight
2195  * Device drivers are strongly advised to not use bigger value
2196  */
2197 #define NAPI_POLL_WEIGHT 64
2198 
2199 /**
2200  *	netif_napi_add - initialize a NAPI context
2201  *	@dev:  network device
2202  *	@napi: NAPI context
2203  *	@poll: polling function
2204  *	@weight: default weight
2205  *
2206  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2207  * *any* of the other NAPI-related functions.
2208  */
2209 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2210 		    int (*poll)(struct napi_struct *, int), int weight);
2211 
2212 /**
2213  *	netif_tx_napi_add - initialize a NAPI context
2214  *	@dev:  network device
2215  *	@napi: NAPI context
2216  *	@poll: polling function
2217  *	@weight: default weight
2218  *
2219  * This variant of netif_napi_add() should be used from drivers using NAPI
2220  * to exclusively poll a TX queue.
2221  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2222  */
2223 static inline void netif_tx_napi_add(struct net_device *dev,
2224 				     struct napi_struct *napi,
2225 				     int (*poll)(struct napi_struct *, int),
2226 				     int weight)
2227 {
2228 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2229 	netif_napi_add(dev, napi, poll, weight);
2230 }
2231 
2232 /**
2233  *  netif_napi_del - remove a NAPI context
2234  *  @napi: NAPI context
2235  *
2236  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2237  */
2238 void netif_napi_del(struct napi_struct *napi);
2239 
2240 struct napi_gro_cb {
2241 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2242 	void	*frag0;
2243 
2244 	/* Length of frag0. */
2245 	unsigned int frag0_len;
2246 
2247 	/* This indicates where we are processing relative to skb->data. */
2248 	int	data_offset;
2249 
2250 	/* This is non-zero if the packet cannot be merged with the new skb. */
2251 	u16	flush;
2252 
2253 	/* Save the IP ID here and check when we get to the transport layer */
2254 	u16	flush_id;
2255 
2256 	/* Number of segments aggregated. */
2257 	u16	count;
2258 
2259 	/* Start offset for remote checksum offload */
2260 	u16	gro_remcsum_start;
2261 
2262 	/* jiffies when first packet was created/queued */
2263 	unsigned long age;
2264 
2265 	/* Used in ipv6_gro_receive() and foo-over-udp */
2266 	u16	proto;
2267 
2268 	/* This is non-zero if the packet may be of the same flow. */
2269 	u8	same_flow:1;
2270 
2271 	/* Used in tunnel GRO receive */
2272 	u8	encap_mark:1;
2273 
2274 	/* GRO checksum is valid */
2275 	u8	csum_valid:1;
2276 
2277 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2278 	u8	csum_cnt:3;
2279 
2280 	/* Free the skb? */
2281 	u8	free:2;
2282 #define NAPI_GRO_FREE		  1
2283 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2284 
2285 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2286 	u8	is_ipv6:1;
2287 
2288 	/* Used in GRE, set in fou/gue_gro_receive */
2289 	u8	is_fou:1;
2290 
2291 	/* Used to determine if flush_id can be ignored */
2292 	u8	is_atomic:1;
2293 
2294 	/* Number of gro_receive callbacks this packet already went through */
2295 	u8 recursion_counter:4;
2296 
2297 	/* 1 bit hole */
2298 
2299 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2300 	__wsum	csum;
2301 
2302 	/* used in skb_gro_receive() slow path */
2303 	struct sk_buff *last;
2304 };
2305 
2306 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2307 
2308 #define GRO_RECURSION_LIMIT 15
2309 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2310 {
2311 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2312 }
2313 
2314 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2315 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2316 					       struct list_head *head,
2317 					       struct sk_buff *skb)
2318 {
2319 	if (unlikely(gro_recursion_inc_test(skb))) {
2320 		NAPI_GRO_CB(skb)->flush |= 1;
2321 		return NULL;
2322 	}
2323 
2324 	return cb(head, skb);
2325 }
2326 
2327 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2328 					    struct sk_buff *);
2329 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2330 						  struct sock *sk,
2331 						  struct list_head *head,
2332 						  struct sk_buff *skb)
2333 {
2334 	if (unlikely(gro_recursion_inc_test(skb))) {
2335 		NAPI_GRO_CB(skb)->flush |= 1;
2336 		return NULL;
2337 	}
2338 
2339 	return cb(sk, head, skb);
2340 }
2341 
2342 struct packet_type {
2343 	__be16			type;	/* This is really htons(ether_type). */
2344 	bool			ignore_outgoing;
2345 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2346 	int			(*func) (struct sk_buff *,
2347 					 struct net_device *,
2348 					 struct packet_type *,
2349 					 struct net_device *);
2350 	void			(*list_func) (struct list_head *,
2351 					      struct packet_type *,
2352 					      struct net_device *);
2353 	bool			(*id_match)(struct packet_type *ptype,
2354 					    struct sock *sk);
2355 	void			*af_packet_priv;
2356 	struct list_head	list;
2357 };
2358 
2359 struct offload_callbacks {
2360 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2361 						netdev_features_t features);
2362 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2363 						struct sk_buff *skb);
2364 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2365 };
2366 
2367 struct packet_offload {
2368 	__be16			 type;	/* This is really htons(ether_type). */
2369 	u16			 priority;
2370 	struct offload_callbacks callbacks;
2371 	struct list_head	 list;
2372 };
2373 
2374 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2375 struct pcpu_sw_netstats {
2376 	u64     rx_packets;
2377 	u64     rx_bytes;
2378 	u64     tx_packets;
2379 	u64     tx_bytes;
2380 	struct u64_stats_sync   syncp;
2381 } __aligned(4 * sizeof(u64));
2382 
2383 struct pcpu_lstats {
2384 	u64 packets;
2385 	u64 bytes;
2386 	struct u64_stats_sync syncp;
2387 } __aligned(2 * sizeof(u64));
2388 
2389 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2390 ({									\
2391 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2392 	if (pcpu_stats)	{						\
2393 		int __cpu;						\
2394 		for_each_possible_cpu(__cpu) {				\
2395 			typeof(type) *stat;				\
2396 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2397 			u64_stats_init(&stat->syncp);			\
2398 		}							\
2399 	}								\
2400 	pcpu_stats;							\
2401 })
2402 
2403 #define netdev_alloc_pcpu_stats(type)					\
2404 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2405 
2406 enum netdev_lag_tx_type {
2407 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2408 	NETDEV_LAG_TX_TYPE_RANDOM,
2409 	NETDEV_LAG_TX_TYPE_BROADCAST,
2410 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2411 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2412 	NETDEV_LAG_TX_TYPE_HASH,
2413 };
2414 
2415 enum netdev_lag_hash {
2416 	NETDEV_LAG_HASH_NONE,
2417 	NETDEV_LAG_HASH_L2,
2418 	NETDEV_LAG_HASH_L34,
2419 	NETDEV_LAG_HASH_L23,
2420 	NETDEV_LAG_HASH_E23,
2421 	NETDEV_LAG_HASH_E34,
2422 	NETDEV_LAG_HASH_UNKNOWN,
2423 };
2424 
2425 struct netdev_lag_upper_info {
2426 	enum netdev_lag_tx_type tx_type;
2427 	enum netdev_lag_hash hash_type;
2428 };
2429 
2430 struct netdev_lag_lower_state_info {
2431 	u8 link_up : 1,
2432 	   tx_enabled : 1;
2433 };
2434 
2435 #include <linux/notifier.h>
2436 
2437 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2438  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2439  * adding new types.
2440  */
2441 enum netdev_cmd {
2442 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2443 	NETDEV_DOWN,
2444 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2445 				   detected a hardware crash and restarted
2446 				   - we can use this eg to kick tcp sessions
2447 				   once done */
2448 	NETDEV_CHANGE,		/* Notify device state change */
2449 	NETDEV_REGISTER,
2450 	NETDEV_UNREGISTER,
2451 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2452 	NETDEV_CHANGEADDR,	/* notify after the address change */
2453 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2454 	NETDEV_GOING_DOWN,
2455 	NETDEV_CHANGENAME,
2456 	NETDEV_FEAT_CHANGE,
2457 	NETDEV_BONDING_FAILOVER,
2458 	NETDEV_PRE_UP,
2459 	NETDEV_PRE_TYPE_CHANGE,
2460 	NETDEV_POST_TYPE_CHANGE,
2461 	NETDEV_POST_INIT,
2462 	NETDEV_RELEASE,
2463 	NETDEV_NOTIFY_PEERS,
2464 	NETDEV_JOIN,
2465 	NETDEV_CHANGEUPPER,
2466 	NETDEV_RESEND_IGMP,
2467 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2468 	NETDEV_CHANGEINFODATA,
2469 	NETDEV_BONDING_INFO,
2470 	NETDEV_PRECHANGEUPPER,
2471 	NETDEV_CHANGELOWERSTATE,
2472 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2473 	NETDEV_UDP_TUNNEL_DROP_INFO,
2474 	NETDEV_CHANGE_TX_QUEUE_LEN,
2475 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2476 	NETDEV_CVLAN_FILTER_DROP_INFO,
2477 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2478 	NETDEV_SVLAN_FILTER_DROP_INFO,
2479 };
2480 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2481 
2482 int register_netdevice_notifier(struct notifier_block *nb);
2483 int unregister_netdevice_notifier(struct notifier_block *nb);
2484 
2485 struct netdev_notifier_info {
2486 	struct net_device	*dev;
2487 	struct netlink_ext_ack	*extack;
2488 };
2489 
2490 struct netdev_notifier_info_ext {
2491 	struct netdev_notifier_info info; /* must be first */
2492 	union {
2493 		u32 mtu;
2494 	} ext;
2495 };
2496 
2497 struct netdev_notifier_change_info {
2498 	struct netdev_notifier_info info; /* must be first */
2499 	unsigned int flags_changed;
2500 };
2501 
2502 struct netdev_notifier_changeupper_info {
2503 	struct netdev_notifier_info info; /* must be first */
2504 	struct net_device *upper_dev; /* new upper dev */
2505 	bool master; /* is upper dev master */
2506 	bool linking; /* is the notification for link or unlink */
2507 	void *upper_info; /* upper dev info */
2508 };
2509 
2510 struct netdev_notifier_changelowerstate_info {
2511 	struct netdev_notifier_info info; /* must be first */
2512 	void *lower_state_info; /* is lower dev state */
2513 };
2514 
2515 struct netdev_notifier_pre_changeaddr_info {
2516 	struct netdev_notifier_info info; /* must be first */
2517 	const unsigned char *dev_addr;
2518 };
2519 
2520 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2521 					     struct net_device *dev)
2522 {
2523 	info->dev = dev;
2524 	info->extack = NULL;
2525 }
2526 
2527 static inline struct net_device *
2528 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2529 {
2530 	return info->dev;
2531 }
2532 
2533 static inline struct netlink_ext_ack *
2534 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2535 {
2536 	return info->extack;
2537 }
2538 
2539 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2540 
2541 
2542 extern rwlock_t				dev_base_lock;		/* Device list lock */
2543 
2544 #define for_each_netdev(net, d)		\
2545 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2546 #define for_each_netdev_reverse(net, d)	\
2547 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2548 #define for_each_netdev_rcu(net, d)		\
2549 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2550 #define for_each_netdev_safe(net, d, n)	\
2551 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2552 #define for_each_netdev_continue(net, d)		\
2553 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2554 #define for_each_netdev_continue_rcu(net, d)		\
2555 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2556 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2557 		for_each_netdev_rcu(&init_net, slave)	\
2558 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2559 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2560 
2561 static inline struct net_device *next_net_device(struct net_device *dev)
2562 {
2563 	struct list_head *lh;
2564 	struct net *net;
2565 
2566 	net = dev_net(dev);
2567 	lh = dev->dev_list.next;
2568 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2569 }
2570 
2571 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2572 {
2573 	struct list_head *lh;
2574 	struct net *net;
2575 
2576 	net = dev_net(dev);
2577 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2578 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2579 }
2580 
2581 static inline struct net_device *first_net_device(struct net *net)
2582 {
2583 	return list_empty(&net->dev_base_head) ? NULL :
2584 		net_device_entry(net->dev_base_head.next);
2585 }
2586 
2587 static inline struct net_device *first_net_device_rcu(struct net *net)
2588 {
2589 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2590 
2591 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2592 }
2593 
2594 int netdev_boot_setup_check(struct net_device *dev);
2595 unsigned long netdev_boot_base(const char *prefix, int unit);
2596 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2597 				       const char *hwaddr);
2598 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2599 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2600 void dev_add_pack(struct packet_type *pt);
2601 void dev_remove_pack(struct packet_type *pt);
2602 void __dev_remove_pack(struct packet_type *pt);
2603 void dev_add_offload(struct packet_offload *po);
2604 void dev_remove_offload(struct packet_offload *po);
2605 
2606 int dev_get_iflink(const struct net_device *dev);
2607 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2608 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2609 				      unsigned short mask);
2610 struct net_device *dev_get_by_name(struct net *net, const char *name);
2611 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2612 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2613 int dev_alloc_name(struct net_device *dev, const char *name);
2614 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2615 void dev_close(struct net_device *dev);
2616 void dev_close_many(struct list_head *head, bool unlink);
2617 void dev_disable_lro(struct net_device *dev);
2618 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2619 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2620 		     struct net_device *sb_dev);
2621 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2622 		       struct net_device *sb_dev);
2623 int dev_queue_xmit(struct sk_buff *skb);
2624 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2625 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2626 int register_netdevice(struct net_device *dev);
2627 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2628 void unregister_netdevice_many(struct list_head *head);
2629 static inline void unregister_netdevice(struct net_device *dev)
2630 {
2631 	unregister_netdevice_queue(dev, NULL);
2632 }
2633 
2634 int netdev_refcnt_read(const struct net_device *dev);
2635 void free_netdev(struct net_device *dev);
2636 void netdev_freemem(struct net_device *dev);
2637 void synchronize_net(void);
2638 int init_dummy_netdev(struct net_device *dev);
2639 
2640 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2641 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2642 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2643 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2644 int netdev_get_name(struct net *net, char *name, int ifindex);
2645 int dev_restart(struct net_device *dev);
2646 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2647 
2648 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2649 {
2650 	return NAPI_GRO_CB(skb)->data_offset;
2651 }
2652 
2653 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2654 {
2655 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2656 }
2657 
2658 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2659 {
2660 	NAPI_GRO_CB(skb)->data_offset += len;
2661 }
2662 
2663 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2664 					unsigned int offset)
2665 {
2666 	return NAPI_GRO_CB(skb)->frag0 + offset;
2667 }
2668 
2669 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2670 {
2671 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2672 }
2673 
2674 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2675 {
2676 	NAPI_GRO_CB(skb)->frag0 = NULL;
2677 	NAPI_GRO_CB(skb)->frag0_len = 0;
2678 }
2679 
2680 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2681 					unsigned int offset)
2682 {
2683 	if (!pskb_may_pull(skb, hlen))
2684 		return NULL;
2685 
2686 	skb_gro_frag0_invalidate(skb);
2687 	return skb->data + offset;
2688 }
2689 
2690 static inline void *skb_gro_network_header(struct sk_buff *skb)
2691 {
2692 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2693 	       skb_network_offset(skb);
2694 }
2695 
2696 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2697 					const void *start, unsigned int len)
2698 {
2699 	if (NAPI_GRO_CB(skb)->csum_valid)
2700 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2701 						  csum_partial(start, len, 0));
2702 }
2703 
2704 /* GRO checksum functions. These are logical equivalents of the normal
2705  * checksum functions (in skbuff.h) except that they operate on the GRO
2706  * offsets and fields in sk_buff.
2707  */
2708 
2709 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2710 
2711 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2712 {
2713 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2714 }
2715 
2716 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2717 						      bool zero_okay,
2718 						      __sum16 check)
2719 {
2720 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2721 		skb_checksum_start_offset(skb) <
2722 		 skb_gro_offset(skb)) &&
2723 		!skb_at_gro_remcsum_start(skb) &&
2724 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2725 		(!zero_okay || check));
2726 }
2727 
2728 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2729 							   __wsum psum)
2730 {
2731 	if (NAPI_GRO_CB(skb)->csum_valid &&
2732 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2733 		return 0;
2734 
2735 	NAPI_GRO_CB(skb)->csum = psum;
2736 
2737 	return __skb_gro_checksum_complete(skb);
2738 }
2739 
2740 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2741 {
2742 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2743 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2744 		NAPI_GRO_CB(skb)->csum_cnt--;
2745 	} else {
2746 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2747 		 * verified a new top level checksum or an encapsulated one
2748 		 * during GRO. This saves work if we fallback to normal path.
2749 		 */
2750 		__skb_incr_checksum_unnecessary(skb);
2751 	}
2752 }
2753 
2754 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2755 				    compute_pseudo)			\
2756 ({									\
2757 	__sum16 __ret = 0;						\
2758 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2759 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2760 				compute_pseudo(skb, proto));		\
2761 	if (!__ret)							\
2762 		skb_gro_incr_csum_unnecessary(skb);			\
2763 	__ret;								\
2764 })
2765 
2766 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2767 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2768 
2769 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2770 					     compute_pseudo)		\
2771 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2772 
2773 #define skb_gro_checksum_simple_validate(skb)				\
2774 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2775 
2776 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2777 {
2778 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2779 		!NAPI_GRO_CB(skb)->csum_valid);
2780 }
2781 
2782 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2783 					      __sum16 check, __wsum pseudo)
2784 {
2785 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2786 	NAPI_GRO_CB(skb)->csum_valid = 1;
2787 }
2788 
2789 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2790 do {									\
2791 	if (__skb_gro_checksum_convert_check(skb))			\
2792 		__skb_gro_checksum_convert(skb, check,			\
2793 					   compute_pseudo(skb, proto));	\
2794 } while (0)
2795 
2796 struct gro_remcsum {
2797 	int offset;
2798 	__wsum delta;
2799 };
2800 
2801 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2802 {
2803 	grc->offset = 0;
2804 	grc->delta = 0;
2805 }
2806 
2807 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2808 					    unsigned int off, size_t hdrlen,
2809 					    int start, int offset,
2810 					    struct gro_remcsum *grc,
2811 					    bool nopartial)
2812 {
2813 	__wsum delta;
2814 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2815 
2816 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2817 
2818 	if (!nopartial) {
2819 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2820 		return ptr;
2821 	}
2822 
2823 	ptr = skb_gro_header_fast(skb, off);
2824 	if (skb_gro_header_hard(skb, off + plen)) {
2825 		ptr = skb_gro_header_slow(skb, off + plen, off);
2826 		if (!ptr)
2827 			return NULL;
2828 	}
2829 
2830 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2831 			       start, offset);
2832 
2833 	/* Adjust skb->csum since we changed the packet */
2834 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2835 
2836 	grc->offset = off + hdrlen + offset;
2837 	grc->delta = delta;
2838 
2839 	return ptr;
2840 }
2841 
2842 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2843 					   struct gro_remcsum *grc)
2844 {
2845 	void *ptr;
2846 	size_t plen = grc->offset + sizeof(u16);
2847 
2848 	if (!grc->delta)
2849 		return;
2850 
2851 	ptr = skb_gro_header_fast(skb, grc->offset);
2852 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2853 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2854 		if (!ptr)
2855 			return;
2856 	}
2857 
2858 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2859 }
2860 
2861 #ifdef CONFIG_XFRM_OFFLOAD
2862 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2863 {
2864 	if (PTR_ERR(pp) != -EINPROGRESS)
2865 		NAPI_GRO_CB(skb)->flush |= flush;
2866 }
2867 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2868 					       struct sk_buff *pp,
2869 					       int flush,
2870 					       struct gro_remcsum *grc)
2871 {
2872 	if (PTR_ERR(pp) != -EINPROGRESS) {
2873 		NAPI_GRO_CB(skb)->flush |= flush;
2874 		skb_gro_remcsum_cleanup(skb, grc);
2875 		skb->remcsum_offload = 0;
2876 	}
2877 }
2878 #else
2879 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2880 {
2881 	NAPI_GRO_CB(skb)->flush |= flush;
2882 }
2883 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2884 					       struct sk_buff *pp,
2885 					       int flush,
2886 					       struct gro_remcsum *grc)
2887 {
2888 	NAPI_GRO_CB(skb)->flush |= flush;
2889 	skb_gro_remcsum_cleanup(skb, grc);
2890 	skb->remcsum_offload = 0;
2891 }
2892 #endif
2893 
2894 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2895 				  unsigned short type,
2896 				  const void *daddr, const void *saddr,
2897 				  unsigned int len)
2898 {
2899 	if (!dev->header_ops || !dev->header_ops->create)
2900 		return 0;
2901 
2902 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2903 }
2904 
2905 static inline int dev_parse_header(const struct sk_buff *skb,
2906 				   unsigned char *haddr)
2907 {
2908 	const struct net_device *dev = skb->dev;
2909 
2910 	if (!dev->header_ops || !dev->header_ops->parse)
2911 		return 0;
2912 	return dev->header_ops->parse(skb, haddr);
2913 }
2914 
2915 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2916 {
2917 	const struct net_device *dev = skb->dev;
2918 
2919 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
2920 		return 0;
2921 	return dev->header_ops->parse_protocol(skb);
2922 }
2923 
2924 /* ll_header must have at least hard_header_len allocated */
2925 static inline bool dev_validate_header(const struct net_device *dev,
2926 				       char *ll_header, int len)
2927 {
2928 	if (likely(len >= dev->hard_header_len))
2929 		return true;
2930 	if (len < dev->min_header_len)
2931 		return false;
2932 
2933 	if (capable(CAP_SYS_RAWIO)) {
2934 		memset(ll_header + len, 0, dev->hard_header_len - len);
2935 		return true;
2936 	}
2937 
2938 	if (dev->header_ops && dev->header_ops->validate)
2939 		return dev->header_ops->validate(ll_header, len);
2940 
2941 	return false;
2942 }
2943 
2944 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2945 			   int len, int size);
2946 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2947 static inline int unregister_gifconf(unsigned int family)
2948 {
2949 	return register_gifconf(family, NULL);
2950 }
2951 
2952 #ifdef CONFIG_NET_FLOW_LIMIT
2953 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2954 struct sd_flow_limit {
2955 	u64			count;
2956 	unsigned int		num_buckets;
2957 	unsigned int		history_head;
2958 	u16			history[FLOW_LIMIT_HISTORY];
2959 	u8			buckets[];
2960 };
2961 
2962 extern int netdev_flow_limit_table_len;
2963 #endif /* CONFIG_NET_FLOW_LIMIT */
2964 
2965 /*
2966  * Incoming packets are placed on per-CPU queues
2967  */
2968 struct softnet_data {
2969 	struct list_head	poll_list;
2970 	struct sk_buff_head	process_queue;
2971 
2972 	/* stats */
2973 	unsigned int		processed;
2974 	unsigned int		time_squeeze;
2975 	unsigned int		received_rps;
2976 #ifdef CONFIG_RPS
2977 	struct softnet_data	*rps_ipi_list;
2978 #endif
2979 #ifdef CONFIG_NET_FLOW_LIMIT
2980 	struct sd_flow_limit __rcu *flow_limit;
2981 #endif
2982 	struct Qdisc		*output_queue;
2983 	struct Qdisc		**output_queue_tailp;
2984 	struct sk_buff		*completion_queue;
2985 #ifdef CONFIG_XFRM_OFFLOAD
2986 	struct sk_buff_head	xfrm_backlog;
2987 #endif
2988 	/* written and read only by owning cpu: */
2989 	struct {
2990 		u16 recursion;
2991 		u8  more;
2992 	} xmit;
2993 #ifdef CONFIG_RPS
2994 	/* input_queue_head should be written by cpu owning this struct,
2995 	 * and only read by other cpus. Worth using a cache line.
2996 	 */
2997 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2998 
2999 	/* Elements below can be accessed between CPUs for RPS/RFS */
3000 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3001 	struct softnet_data	*rps_ipi_next;
3002 	unsigned int		cpu;
3003 	unsigned int		input_queue_tail;
3004 #endif
3005 	unsigned int		dropped;
3006 	struct sk_buff_head	input_pkt_queue;
3007 	struct napi_struct	backlog;
3008 
3009 };
3010 
3011 static inline void input_queue_head_incr(struct softnet_data *sd)
3012 {
3013 #ifdef CONFIG_RPS
3014 	sd->input_queue_head++;
3015 #endif
3016 }
3017 
3018 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3019 					      unsigned int *qtail)
3020 {
3021 #ifdef CONFIG_RPS
3022 	*qtail = ++sd->input_queue_tail;
3023 #endif
3024 }
3025 
3026 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3027 
3028 static inline int dev_recursion_level(void)
3029 {
3030 	return this_cpu_read(softnet_data.xmit.recursion);
3031 }
3032 
3033 #define XMIT_RECURSION_LIMIT	10
3034 static inline bool dev_xmit_recursion(void)
3035 {
3036 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3037 			XMIT_RECURSION_LIMIT);
3038 }
3039 
3040 static inline void dev_xmit_recursion_inc(void)
3041 {
3042 	__this_cpu_inc(softnet_data.xmit.recursion);
3043 }
3044 
3045 static inline void dev_xmit_recursion_dec(void)
3046 {
3047 	__this_cpu_dec(softnet_data.xmit.recursion);
3048 }
3049 
3050 void __netif_schedule(struct Qdisc *q);
3051 void netif_schedule_queue(struct netdev_queue *txq);
3052 
3053 static inline void netif_tx_schedule_all(struct net_device *dev)
3054 {
3055 	unsigned int i;
3056 
3057 	for (i = 0; i < dev->num_tx_queues; i++)
3058 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3059 }
3060 
3061 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3062 {
3063 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3064 }
3065 
3066 /**
3067  *	netif_start_queue - allow transmit
3068  *	@dev: network device
3069  *
3070  *	Allow upper layers to call the device hard_start_xmit routine.
3071  */
3072 static inline void netif_start_queue(struct net_device *dev)
3073 {
3074 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3075 }
3076 
3077 static inline void netif_tx_start_all_queues(struct net_device *dev)
3078 {
3079 	unsigned int i;
3080 
3081 	for (i = 0; i < dev->num_tx_queues; i++) {
3082 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3083 		netif_tx_start_queue(txq);
3084 	}
3085 }
3086 
3087 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3088 
3089 /**
3090  *	netif_wake_queue - restart transmit
3091  *	@dev: network device
3092  *
3093  *	Allow upper layers to call the device hard_start_xmit routine.
3094  *	Used for flow control when transmit resources are available.
3095  */
3096 static inline void netif_wake_queue(struct net_device *dev)
3097 {
3098 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3099 }
3100 
3101 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3102 {
3103 	unsigned int i;
3104 
3105 	for (i = 0; i < dev->num_tx_queues; i++) {
3106 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3107 		netif_tx_wake_queue(txq);
3108 	}
3109 }
3110 
3111 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3112 {
3113 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3114 }
3115 
3116 /**
3117  *	netif_stop_queue - stop transmitted packets
3118  *	@dev: network device
3119  *
3120  *	Stop upper layers calling the device hard_start_xmit routine.
3121  *	Used for flow control when transmit resources are unavailable.
3122  */
3123 static inline void netif_stop_queue(struct net_device *dev)
3124 {
3125 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3126 }
3127 
3128 void netif_tx_stop_all_queues(struct net_device *dev);
3129 
3130 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3131 {
3132 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3133 }
3134 
3135 /**
3136  *	netif_queue_stopped - test if transmit queue is flowblocked
3137  *	@dev: network device
3138  *
3139  *	Test if transmit queue on device is currently unable to send.
3140  */
3141 static inline bool netif_queue_stopped(const struct net_device *dev)
3142 {
3143 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3144 }
3145 
3146 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3147 {
3148 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3149 }
3150 
3151 static inline bool
3152 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3153 {
3154 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3155 }
3156 
3157 static inline bool
3158 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3159 {
3160 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3161 }
3162 
3163 /**
3164  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3165  *	@dev_queue: pointer to transmit queue
3166  *
3167  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3168  * to give appropriate hint to the CPU.
3169  */
3170 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3171 {
3172 #ifdef CONFIG_BQL
3173 	prefetchw(&dev_queue->dql.num_queued);
3174 #endif
3175 }
3176 
3177 /**
3178  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3179  *	@dev_queue: pointer to transmit queue
3180  *
3181  * BQL enabled drivers might use this helper in their TX completion path,
3182  * to give appropriate hint to the CPU.
3183  */
3184 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3185 {
3186 #ifdef CONFIG_BQL
3187 	prefetchw(&dev_queue->dql.limit);
3188 #endif
3189 }
3190 
3191 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3192 					unsigned int bytes)
3193 {
3194 #ifdef CONFIG_BQL
3195 	dql_queued(&dev_queue->dql, bytes);
3196 
3197 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3198 		return;
3199 
3200 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3201 
3202 	/*
3203 	 * The XOFF flag must be set before checking the dql_avail below,
3204 	 * because in netdev_tx_completed_queue we update the dql_completed
3205 	 * before checking the XOFF flag.
3206 	 */
3207 	smp_mb();
3208 
3209 	/* check again in case another CPU has just made room avail */
3210 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3211 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3212 #endif
3213 }
3214 
3215 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3216  * that they should not test BQL status themselves.
3217  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3218  * skb of a batch.
3219  * Returns true if the doorbell must be used to kick the NIC.
3220  */
3221 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3222 					  unsigned int bytes,
3223 					  bool xmit_more)
3224 {
3225 	if (xmit_more) {
3226 #ifdef CONFIG_BQL
3227 		dql_queued(&dev_queue->dql, bytes);
3228 #endif
3229 		return netif_tx_queue_stopped(dev_queue);
3230 	}
3231 	netdev_tx_sent_queue(dev_queue, bytes);
3232 	return true;
3233 }
3234 
3235 /**
3236  * 	netdev_sent_queue - report the number of bytes queued to hardware
3237  * 	@dev: network device
3238  * 	@bytes: number of bytes queued to the hardware device queue
3239  *
3240  * 	Report the number of bytes queued for sending/completion to the network
3241  * 	device hardware queue. @bytes should be a good approximation and should
3242  * 	exactly match netdev_completed_queue() @bytes
3243  */
3244 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3245 {
3246 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3247 }
3248 
3249 static inline bool __netdev_sent_queue(struct net_device *dev,
3250 				       unsigned int bytes,
3251 				       bool xmit_more)
3252 {
3253 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3254 				      xmit_more);
3255 }
3256 
3257 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3258 					     unsigned int pkts, unsigned int bytes)
3259 {
3260 #ifdef CONFIG_BQL
3261 	if (unlikely(!bytes))
3262 		return;
3263 
3264 	dql_completed(&dev_queue->dql, bytes);
3265 
3266 	/*
3267 	 * Without the memory barrier there is a small possiblity that
3268 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3269 	 * be stopped forever
3270 	 */
3271 	smp_mb();
3272 
3273 	if (dql_avail(&dev_queue->dql) < 0)
3274 		return;
3275 
3276 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3277 		netif_schedule_queue(dev_queue);
3278 #endif
3279 }
3280 
3281 /**
3282  * 	netdev_completed_queue - report bytes and packets completed by device
3283  * 	@dev: network device
3284  * 	@pkts: actual number of packets sent over the medium
3285  * 	@bytes: actual number of bytes sent over the medium
3286  *
3287  * 	Report the number of bytes and packets transmitted by the network device
3288  * 	hardware queue over the physical medium, @bytes must exactly match the
3289  * 	@bytes amount passed to netdev_sent_queue()
3290  */
3291 static inline void netdev_completed_queue(struct net_device *dev,
3292 					  unsigned int pkts, unsigned int bytes)
3293 {
3294 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3295 }
3296 
3297 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3298 {
3299 #ifdef CONFIG_BQL
3300 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3301 	dql_reset(&q->dql);
3302 #endif
3303 }
3304 
3305 /**
3306  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3307  * 	@dev_queue: network device
3308  *
3309  * 	Reset the bytes and packet count of a network device and clear the
3310  * 	software flow control OFF bit for this network device
3311  */
3312 static inline void netdev_reset_queue(struct net_device *dev_queue)
3313 {
3314 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3315 }
3316 
3317 /**
3318  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3319  * 	@dev: network device
3320  * 	@queue_index: given tx queue index
3321  *
3322  * 	Returns 0 if given tx queue index >= number of device tx queues,
3323  * 	otherwise returns the originally passed tx queue index.
3324  */
3325 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3326 {
3327 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3328 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3329 				     dev->name, queue_index,
3330 				     dev->real_num_tx_queues);
3331 		return 0;
3332 	}
3333 
3334 	return queue_index;
3335 }
3336 
3337 /**
3338  *	netif_running - test if up
3339  *	@dev: network device
3340  *
3341  *	Test if the device has been brought up.
3342  */
3343 static inline bool netif_running(const struct net_device *dev)
3344 {
3345 	return test_bit(__LINK_STATE_START, &dev->state);
3346 }
3347 
3348 /*
3349  * Routines to manage the subqueues on a device.  We only need start,
3350  * stop, and a check if it's stopped.  All other device management is
3351  * done at the overall netdevice level.
3352  * Also test the device if we're multiqueue.
3353  */
3354 
3355 /**
3356  *	netif_start_subqueue - allow sending packets on subqueue
3357  *	@dev: network device
3358  *	@queue_index: sub queue index
3359  *
3360  * Start individual transmit queue of a device with multiple transmit queues.
3361  */
3362 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3363 {
3364 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3365 
3366 	netif_tx_start_queue(txq);
3367 }
3368 
3369 /**
3370  *	netif_stop_subqueue - stop sending packets on subqueue
3371  *	@dev: network device
3372  *	@queue_index: sub queue index
3373  *
3374  * Stop individual transmit queue of a device with multiple transmit queues.
3375  */
3376 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3377 {
3378 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3379 	netif_tx_stop_queue(txq);
3380 }
3381 
3382 /**
3383  *	netif_subqueue_stopped - test status of subqueue
3384  *	@dev: network device
3385  *	@queue_index: sub queue index
3386  *
3387  * Check individual transmit queue of a device with multiple transmit queues.
3388  */
3389 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3390 					    u16 queue_index)
3391 {
3392 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3393 
3394 	return netif_tx_queue_stopped(txq);
3395 }
3396 
3397 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3398 					  struct sk_buff *skb)
3399 {
3400 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3401 }
3402 
3403 /**
3404  *	netif_wake_subqueue - allow sending packets on subqueue
3405  *	@dev: network device
3406  *	@queue_index: sub queue index
3407  *
3408  * Resume individual transmit queue of a device with multiple transmit queues.
3409  */
3410 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3411 {
3412 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3413 
3414 	netif_tx_wake_queue(txq);
3415 }
3416 
3417 #ifdef CONFIG_XPS
3418 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3419 			u16 index);
3420 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3421 			  u16 index, bool is_rxqs_map);
3422 
3423 /**
3424  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3425  *	@j: CPU/Rx queue index
3426  *	@mask: bitmask of all cpus/rx queues
3427  *	@nr_bits: number of bits in the bitmask
3428  *
3429  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3430  */
3431 static inline bool netif_attr_test_mask(unsigned long j,
3432 					const unsigned long *mask,
3433 					unsigned int nr_bits)
3434 {
3435 	cpu_max_bits_warn(j, nr_bits);
3436 	return test_bit(j, mask);
3437 }
3438 
3439 /**
3440  *	netif_attr_test_online - Test for online CPU/Rx queue
3441  *	@j: CPU/Rx queue index
3442  *	@online_mask: bitmask for CPUs/Rx queues that are online
3443  *	@nr_bits: number of bits in the bitmask
3444  *
3445  * Returns true if a CPU/Rx queue is online.
3446  */
3447 static inline bool netif_attr_test_online(unsigned long j,
3448 					  const unsigned long *online_mask,
3449 					  unsigned int nr_bits)
3450 {
3451 	cpu_max_bits_warn(j, nr_bits);
3452 
3453 	if (online_mask)
3454 		return test_bit(j, online_mask);
3455 
3456 	return (j < nr_bits);
3457 }
3458 
3459 /**
3460  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3461  *	@n: CPU/Rx queue index
3462  *	@srcp: the cpumask/Rx queue mask pointer
3463  *	@nr_bits: number of bits in the bitmask
3464  *
3465  * Returns >= nr_bits if no further CPUs/Rx queues set.
3466  */
3467 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3468 					       unsigned int nr_bits)
3469 {
3470 	/* -1 is a legal arg here. */
3471 	if (n != -1)
3472 		cpu_max_bits_warn(n, nr_bits);
3473 
3474 	if (srcp)
3475 		return find_next_bit(srcp, nr_bits, n + 1);
3476 
3477 	return n + 1;
3478 }
3479 
3480 /**
3481  *	netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3482  *	@n: CPU/Rx queue index
3483  *	@src1p: the first CPUs/Rx queues mask pointer
3484  *	@src2p: the second CPUs/Rx queues mask pointer
3485  *	@nr_bits: number of bits in the bitmask
3486  *
3487  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3488  */
3489 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3490 					  const unsigned long *src2p,
3491 					  unsigned int nr_bits)
3492 {
3493 	/* -1 is a legal arg here. */
3494 	if (n != -1)
3495 		cpu_max_bits_warn(n, nr_bits);
3496 
3497 	if (src1p && src2p)
3498 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3499 	else if (src1p)
3500 		return find_next_bit(src1p, nr_bits, n + 1);
3501 	else if (src2p)
3502 		return find_next_bit(src2p, nr_bits, n + 1);
3503 
3504 	return n + 1;
3505 }
3506 #else
3507 static inline int netif_set_xps_queue(struct net_device *dev,
3508 				      const struct cpumask *mask,
3509 				      u16 index)
3510 {
3511 	return 0;
3512 }
3513 
3514 static inline int __netif_set_xps_queue(struct net_device *dev,
3515 					const unsigned long *mask,
3516 					u16 index, bool is_rxqs_map)
3517 {
3518 	return 0;
3519 }
3520 #endif
3521 
3522 /**
3523  *	netif_is_multiqueue - test if device has multiple transmit queues
3524  *	@dev: network device
3525  *
3526  * Check if device has multiple transmit queues
3527  */
3528 static inline bool netif_is_multiqueue(const struct net_device *dev)
3529 {
3530 	return dev->num_tx_queues > 1;
3531 }
3532 
3533 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3534 
3535 #ifdef CONFIG_SYSFS
3536 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3537 #else
3538 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3539 						unsigned int rxqs)
3540 {
3541 	dev->real_num_rx_queues = rxqs;
3542 	return 0;
3543 }
3544 #endif
3545 
3546 static inline struct netdev_rx_queue *
3547 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3548 {
3549 	return dev->_rx + rxq;
3550 }
3551 
3552 #ifdef CONFIG_SYSFS
3553 static inline unsigned int get_netdev_rx_queue_index(
3554 		struct netdev_rx_queue *queue)
3555 {
3556 	struct net_device *dev = queue->dev;
3557 	int index = queue - dev->_rx;
3558 
3559 	BUG_ON(index >= dev->num_rx_queues);
3560 	return index;
3561 }
3562 #endif
3563 
3564 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3565 int netif_get_num_default_rss_queues(void);
3566 
3567 enum skb_free_reason {
3568 	SKB_REASON_CONSUMED,
3569 	SKB_REASON_DROPPED,
3570 };
3571 
3572 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3573 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3574 
3575 /*
3576  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3577  * interrupt context or with hardware interrupts being disabled.
3578  * (in_irq() || irqs_disabled())
3579  *
3580  * We provide four helpers that can be used in following contexts :
3581  *
3582  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3583  *  replacing kfree_skb(skb)
3584  *
3585  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3586  *  Typically used in place of consume_skb(skb) in TX completion path
3587  *
3588  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3589  *  replacing kfree_skb(skb)
3590  *
3591  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3592  *  and consumed a packet. Used in place of consume_skb(skb)
3593  */
3594 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3595 {
3596 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3597 }
3598 
3599 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3600 {
3601 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3602 }
3603 
3604 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3605 {
3606 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3607 }
3608 
3609 static inline void dev_consume_skb_any(struct sk_buff *skb)
3610 {
3611 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3612 }
3613 
3614 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3615 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3616 int netif_rx(struct sk_buff *skb);
3617 int netif_rx_ni(struct sk_buff *skb);
3618 int netif_receive_skb(struct sk_buff *skb);
3619 int netif_receive_skb_core(struct sk_buff *skb);
3620 void netif_receive_skb_list(struct list_head *head);
3621 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3622 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3623 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3624 gro_result_t napi_gro_frags(struct napi_struct *napi);
3625 struct packet_offload *gro_find_receive_by_type(__be16 type);
3626 struct packet_offload *gro_find_complete_by_type(__be16 type);
3627 
3628 static inline void napi_free_frags(struct napi_struct *napi)
3629 {
3630 	kfree_skb(napi->skb);
3631 	napi->skb = NULL;
3632 }
3633 
3634 bool netdev_is_rx_handler_busy(struct net_device *dev);
3635 int netdev_rx_handler_register(struct net_device *dev,
3636 			       rx_handler_func_t *rx_handler,
3637 			       void *rx_handler_data);
3638 void netdev_rx_handler_unregister(struct net_device *dev);
3639 
3640 bool dev_valid_name(const char *name);
3641 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3642 		bool *need_copyout);
3643 int dev_ifconf(struct net *net, struct ifconf *, int);
3644 int dev_ethtool(struct net *net, struct ifreq *);
3645 unsigned int dev_get_flags(const struct net_device *);
3646 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3647 		       struct netlink_ext_ack *extack);
3648 int dev_change_flags(struct net_device *dev, unsigned int flags,
3649 		     struct netlink_ext_ack *extack);
3650 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3651 			unsigned int gchanges);
3652 int dev_change_name(struct net_device *, const char *);
3653 int dev_set_alias(struct net_device *, const char *, size_t);
3654 int dev_get_alias(const struct net_device *, char *, size_t);
3655 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3656 int __dev_set_mtu(struct net_device *, int);
3657 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3658 		    struct netlink_ext_ack *extack);
3659 int dev_set_mtu(struct net_device *, int);
3660 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3661 void dev_set_group(struct net_device *, int);
3662 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3663 			      struct netlink_ext_ack *extack);
3664 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3665 			struct netlink_ext_ack *extack);
3666 int dev_change_carrier(struct net_device *, bool new_carrier);
3667 int dev_get_phys_port_id(struct net_device *dev,
3668 			 struct netdev_phys_item_id *ppid);
3669 int dev_get_phys_port_name(struct net_device *dev,
3670 			   char *name, size_t len);
3671 int dev_get_port_parent_id(struct net_device *dev,
3672 			   struct netdev_phys_item_id *ppid, bool recurse);
3673 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3674 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3675 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3676 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3677 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3678 				    struct netdev_queue *txq, int *ret);
3679 
3680 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3681 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3682 		      int fd, u32 flags);
3683 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3684 		    enum bpf_netdev_command cmd);
3685 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3686 
3687 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3688 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3689 bool is_skb_forwardable(const struct net_device *dev,
3690 			const struct sk_buff *skb);
3691 
3692 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3693 					       struct sk_buff *skb)
3694 {
3695 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3696 	    unlikely(!is_skb_forwardable(dev, skb))) {
3697 		atomic_long_inc(&dev->rx_dropped);
3698 		kfree_skb(skb);
3699 		return NET_RX_DROP;
3700 	}
3701 
3702 	skb_scrub_packet(skb, true);
3703 	skb->priority = 0;
3704 	return 0;
3705 }
3706 
3707 bool dev_nit_active(struct net_device *dev);
3708 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3709 
3710 extern int		netdev_budget;
3711 extern unsigned int	netdev_budget_usecs;
3712 
3713 /* Called by rtnetlink.c:rtnl_unlock() */
3714 void netdev_run_todo(void);
3715 
3716 /**
3717  *	dev_put - release reference to device
3718  *	@dev: network device
3719  *
3720  * Release reference to device to allow it to be freed.
3721  */
3722 static inline void dev_put(struct net_device *dev)
3723 {
3724 	this_cpu_dec(*dev->pcpu_refcnt);
3725 }
3726 
3727 /**
3728  *	dev_hold - get reference to device
3729  *	@dev: network device
3730  *
3731  * Hold reference to device to keep it from being freed.
3732  */
3733 static inline void dev_hold(struct net_device *dev)
3734 {
3735 	this_cpu_inc(*dev->pcpu_refcnt);
3736 }
3737 
3738 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3739  * and _off may be called from IRQ context, but it is caller
3740  * who is responsible for serialization of these calls.
3741  *
3742  * The name carrier is inappropriate, these functions should really be
3743  * called netif_lowerlayer_*() because they represent the state of any
3744  * kind of lower layer not just hardware media.
3745  */
3746 
3747 void linkwatch_init_dev(struct net_device *dev);
3748 void linkwatch_fire_event(struct net_device *dev);
3749 void linkwatch_forget_dev(struct net_device *dev);
3750 
3751 /**
3752  *	netif_carrier_ok - test if carrier present
3753  *	@dev: network device
3754  *
3755  * Check if carrier is present on device
3756  */
3757 static inline bool netif_carrier_ok(const struct net_device *dev)
3758 {
3759 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3760 }
3761 
3762 unsigned long dev_trans_start(struct net_device *dev);
3763 
3764 void __netdev_watchdog_up(struct net_device *dev);
3765 
3766 void netif_carrier_on(struct net_device *dev);
3767 
3768 void netif_carrier_off(struct net_device *dev);
3769 
3770 /**
3771  *	netif_dormant_on - mark device as dormant.
3772  *	@dev: network device
3773  *
3774  * Mark device as dormant (as per RFC2863).
3775  *
3776  * The dormant state indicates that the relevant interface is not
3777  * actually in a condition to pass packets (i.e., it is not 'up') but is
3778  * in a "pending" state, waiting for some external event.  For "on-
3779  * demand" interfaces, this new state identifies the situation where the
3780  * interface is waiting for events to place it in the up state.
3781  */
3782 static inline void netif_dormant_on(struct net_device *dev)
3783 {
3784 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3785 		linkwatch_fire_event(dev);
3786 }
3787 
3788 /**
3789  *	netif_dormant_off - set device as not dormant.
3790  *	@dev: network device
3791  *
3792  * Device is not in dormant state.
3793  */
3794 static inline void netif_dormant_off(struct net_device *dev)
3795 {
3796 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3797 		linkwatch_fire_event(dev);
3798 }
3799 
3800 /**
3801  *	netif_dormant - test if device is dormant
3802  *	@dev: network device
3803  *
3804  * Check if device is dormant.
3805  */
3806 static inline bool netif_dormant(const struct net_device *dev)
3807 {
3808 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3809 }
3810 
3811 
3812 /**
3813  *	netif_oper_up - test if device is operational
3814  *	@dev: network device
3815  *
3816  * Check if carrier is operational
3817  */
3818 static inline bool netif_oper_up(const struct net_device *dev)
3819 {
3820 	return (dev->operstate == IF_OPER_UP ||
3821 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3822 }
3823 
3824 /**
3825  *	netif_device_present - is device available or removed
3826  *	@dev: network device
3827  *
3828  * Check if device has not been removed from system.
3829  */
3830 static inline bool netif_device_present(struct net_device *dev)
3831 {
3832 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3833 }
3834 
3835 void netif_device_detach(struct net_device *dev);
3836 
3837 void netif_device_attach(struct net_device *dev);
3838 
3839 /*
3840  * Network interface message level settings
3841  */
3842 
3843 enum {
3844 	NETIF_MSG_DRV		= 0x0001,
3845 	NETIF_MSG_PROBE		= 0x0002,
3846 	NETIF_MSG_LINK		= 0x0004,
3847 	NETIF_MSG_TIMER		= 0x0008,
3848 	NETIF_MSG_IFDOWN	= 0x0010,
3849 	NETIF_MSG_IFUP		= 0x0020,
3850 	NETIF_MSG_RX_ERR	= 0x0040,
3851 	NETIF_MSG_TX_ERR	= 0x0080,
3852 	NETIF_MSG_TX_QUEUED	= 0x0100,
3853 	NETIF_MSG_INTR		= 0x0200,
3854 	NETIF_MSG_TX_DONE	= 0x0400,
3855 	NETIF_MSG_RX_STATUS	= 0x0800,
3856 	NETIF_MSG_PKTDATA	= 0x1000,
3857 	NETIF_MSG_HW		= 0x2000,
3858 	NETIF_MSG_WOL		= 0x4000,
3859 };
3860 
3861 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3862 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3863 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3864 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3865 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3866 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3867 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3868 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3869 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3870 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3871 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3872 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3873 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3874 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3875 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3876 
3877 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3878 {
3879 	/* use default */
3880 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3881 		return default_msg_enable_bits;
3882 	if (debug_value == 0)	/* no output */
3883 		return 0;
3884 	/* set low N bits */
3885 	return (1U << debug_value) - 1;
3886 }
3887 
3888 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3889 {
3890 	spin_lock(&txq->_xmit_lock);
3891 	txq->xmit_lock_owner = cpu;
3892 }
3893 
3894 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3895 {
3896 	__acquire(&txq->_xmit_lock);
3897 	return true;
3898 }
3899 
3900 static inline void __netif_tx_release(struct netdev_queue *txq)
3901 {
3902 	__release(&txq->_xmit_lock);
3903 }
3904 
3905 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3906 {
3907 	spin_lock_bh(&txq->_xmit_lock);
3908 	txq->xmit_lock_owner = smp_processor_id();
3909 }
3910 
3911 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3912 {
3913 	bool ok = spin_trylock(&txq->_xmit_lock);
3914 	if (likely(ok))
3915 		txq->xmit_lock_owner = smp_processor_id();
3916 	return ok;
3917 }
3918 
3919 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3920 {
3921 	txq->xmit_lock_owner = -1;
3922 	spin_unlock(&txq->_xmit_lock);
3923 }
3924 
3925 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3926 {
3927 	txq->xmit_lock_owner = -1;
3928 	spin_unlock_bh(&txq->_xmit_lock);
3929 }
3930 
3931 static inline void txq_trans_update(struct netdev_queue *txq)
3932 {
3933 	if (txq->xmit_lock_owner != -1)
3934 		txq->trans_start = jiffies;
3935 }
3936 
3937 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3938 static inline void netif_trans_update(struct net_device *dev)
3939 {
3940 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3941 
3942 	if (txq->trans_start != jiffies)
3943 		txq->trans_start = jiffies;
3944 }
3945 
3946 /**
3947  *	netif_tx_lock - grab network device transmit lock
3948  *	@dev: network device
3949  *
3950  * Get network device transmit lock
3951  */
3952 static inline void netif_tx_lock(struct net_device *dev)
3953 {
3954 	unsigned int i;
3955 	int cpu;
3956 
3957 	spin_lock(&dev->tx_global_lock);
3958 	cpu = smp_processor_id();
3959 	for (i = 0; i < dev->num_tx_queues; i++) {
3960 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3961 
3962 		/* We are the only thread of execution doing a
3963 		 * freeze, but we have to grab the _xmit_lock in
3964 		 * order to synchronize with threads which are in
3965 		 * the ->hard_start_xmit() handler and already
3966 		 * checked the frozen bit.
3967 		 */
3968 		__netif_tx_lock(txq, cpu);
3969 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3970 		__netif_tx_unlock(txq);
3971 	}
3972 }
3973 
3974 static inline void netif_tx_lock_bh(struct net_device *dev)
3975 {
3976 	local_bh_disable();
3977 	netif_tx_lock(dev);
3978 }
3979 
3980 static inline void netif_tx_unlock(struct net_device *dev)
3981 {
3982 	unsigned int i;
3983 
3984 	for (i = 0; i < dev->num_tx_queues; i++) {
3985 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3986 
3987 		/* No need to grab the _xmit_lock here.  If the
3988 		 * queue is not stopped for another reason, we
3989 		 * force a schedule.
3990 		 */
3991 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3992 		netif_schedule_queue(txq);
3993 	}
3994 	spin_unlock(&dev->tx_global_lock);
3995 }
3996 
3997 static inline void netif_tx_unlock_bh(struct net_device *dev)
3998 {
3999 	netif_tx_unlock(dev);
4000 	local_bh_enable();
4001 }
4002 
4003 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4004 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4005 		__netif_tx_lock(txq, cpu);		\
4006 	} else {					\
4007 		__netif_tx_acquire(txq);		\
4008 	}						\
4009 }
4010 
4011 #define HARD_TX_TRYLOCK(dev, txq)			\
4012 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4013 		__netif_tx_trylock(txq) :		\
4014 		__netif_tx_acquire(txq))
4015 
4016 #define HARD_TX_UNLOCK(dev, txq) {			\
4017 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4018 		__netif_tx_unlock(txq);			\
4019 	} else {					\
4020 		__netif_tx_release(txq);		\
4021 	}						\
4022 }
4023 
4024 static inline void netif_tx_disable(struct net_device *dev)
4025 {
4026 	unsigned int i;
4027 	int cpu;
4028 
4029 	local_bh_disable();
4030 	cpu = smp_processor_id();
4031 	for (i = 0; i < dev->num_tx_queues; i++) {
4032 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4033 
4034 		__netif_tx_lock(txq, cpu);
4035 		netif_tx_stop_queue(txq);
4036 		__netif_tx_unlock(txq);
4037 	}
4038 	local_bh_enable();
4039 }
4040 
4041 static inline void netif_addr_lock(struct net_device *dev)
4042 {
4043 	spin_lock(&dev->addr_list_lock);
4044 }
4045 
4046 static inline void netif_addr_lock_nested(struct net_device *dev)
4047 {
4048 	int subclass = SINGLE_DEPTH_NESTING;
4049 
4050 	if (dev->netdev_ops->ndo_get_lock_subclass)
4051 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
4052 
4053 	spin_lock_nested(&dev->addr_list_lock, subclass);
4054 }
4055 
4056 static inline void netif_addr_lock_bh(struct net_device *dev)
4057 {
4058 	spin_lock_bh(&dev->addr_list_lock);
4059 }
4060 
4061 static inline void netif_addr_unlock(struct net_device *dev)
4062 {
4063 	spin_unlock(&dev->addr_list_lock);
4064 }
4065 
4066 static inline void netif_addr_unlock_bh(struct net_device *dev)
4067 {
4068 	spin_unlock_bh(&dev->addr_list_lock);
4069 }
4070 
4071 /*
4072  * dev_addrs walker. Should be used only for read access. Call with
4073  * rcu_read_lock held.
4074  */
4075 #define for_each_dev_addr(dev, ha) \
4076 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4077 
4078 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4079 
4080 void ether_setup(struct net_device *dev);
4081 
4082 /* Support for loadable net-drivers */
4083 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4084 				    unsigned char name_assign_type,
4085 				    void (*setup)(struct net_device *),
4086 				    unsigned int txqs, unsigned int rxqs);
4087 int dev_get_valid_name(struct net *net, struct net_device *dev,
4088 		       const char *name);
4089 
4090 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4091 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4092 
4093 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4094 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4095 			 count)
4096 
4097 int register_netdev(struct net_device *dev);
4098 void unregister_netdev(struct net_device *dev);
4099 
4100 /* General hardware address lists handling functions */
4101 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4102 		   struct netdev_hw_addr_list *from_list, int addr_len);
4103 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4104 		      struct netdev_hw_addr_list *from_list, int addr_len);
4105 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4106 		       struct net_device *dev,
4107 		       int (*sync)(struct net_device *, const unsigned char *),
4108 		       int (*unsync)(struct net_device *,
4109 				     const unsigned char *));
4110 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4111 			   struct net_device *dev,
4112 			   int (*sync)(struct net_device *,
4113 				       const unsigned char *, int),
4114 			   int (*unsync)(struct net_device *,
4115 					 const unsigned char *, int));
4116 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4117 			      struct net_device *dev,
4118 			      int (*unsync)(struct net_device *,
4119 					    const unsigned char *, int));
4120 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4121 			  struct net_device *dev,
4122 			  int (*unsync)(struct net_device *,
4123 					const unsigned char *));
4124 void __hw_addr_init(struct netdev_hw_addr_list *list);
4125 
4126 /* Functions used for device addresses handling */
4127 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4128 		 unsigned char addr_type);
4129 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4130 		 unsigned char addr_type);
4131 void dev_addr_flush(struct net_device *dev);
4132 int dev_addr_init(struct net_device *dev);
4133 
4134 /* Functions used for unicast addresses handling */
4135 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4136 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4137 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4138 int dev_uc_sync(struct net_device *to, struct net_device *from);
4139 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4140 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4141 void dev_uc_flush(struct net_device *dev);
4142 void dev_uc_init(struct net_device *dev);
4143 
4144 /**
4145  *  __dev_uc_sync - Synchonize device's unicast list
4146  *  @dev:  device to sync
4147  *  @sync: function to call if address should be added
4148  *  @unsync: function to call if address should be removed
4149  *
4150  *  Add newly added addresses to the interface, and release
4151  *  addresses that have been deleted.
4152  */
4153 static inline int __dev_uc_sync(struct net_device *dev,
4154 				int (*sync)(struct net_device *,
4155 					    const unsigned char *),
4156 				int (*unsync)(struct net_device *,
4157 					      const unsigned char *))
4158 {
4159 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4160 }
4161 
4162 /**
4163  *  __dev_uc_unsync - Remove synchronized addresses from device
4164  *  @dev:  device to sync
4165  *  @unsync: function to call if address should be removed
4166  *
4167  *  Remove all addresses that were added to the device by dev_uc_sync().
4168  */
4169 static inline void __dev_uc_unsync(struct net_device *dev,
4170 				   int (*unsync)(struct net_device *,
4171 						 const unsigned char *))
4172 {
4173 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4174 }
4175 
4176 /* Functions used for multicast addresses handling */
4177 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4178 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4179 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4180 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4181 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4182 int dev_mc_sync(struct net_device *to, struct net_device *from);
4183 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4184 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4185 void dev_mc_flush(struct net_device *dev);
4186 void dev_mc_init(struct net_device *dev);
4187 
4188 /**
4189  *  __dev_mc_sync - Synchonize device's multicast list
4190  *  @dev:  device to sync
4191  *  @sync: function to call if address should be added
4192  *  @unsync: function to call if address should be removed
4193  *
4194  *  Add newly added addresses to the interface, and release
4195  *  addresses that have been deleted.
4196  */
4197 static inline int __dev_mc_sync(struct net_device *dev,
4198 				int (*sync)(struct net_device *,
4199 					    const unsigned char *),
4200 				int (*unsync)(struct net_device *,
4201 					      const unsigned char *))
4202 {
4203 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4204 }
4205 
4206 /**
4207  *  __dev_mc_unsync - Remove synchronized addresses from device
4208  *  @dev:  device to sync
4209  *  @unsync: function to call if address should be removed
4210  *
4211  *  Remove all addresses that were added to the device by dev_mc_sync().
4212  */
4213 static inline void __dev_mc_unsync(struct net_device *dev,
4214 				   int (*unsync)(struct net_device *,
4215 						 const unsigned char *))
4216 {
4217 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4218 }
4219 
4220 /* Functions used for secondary unicast and multicast support */
4221 void dev_set_rx_mode(struct net_device *dev);
4222 void __dev_set_rx_mode(struct net_device *dev);
4223 int dev_set_promiscuity(struct net_device *dev, int inc);
4224 int dev_set_allmulti(struct net_device *dev, int inc);
4225 void netdev_state_change(struct net_device *dev);
4226 void netdev_notify_peers(struct net_device *dev);
4227 void netdev_features_change(struct net_device *dev);
4228 /* Load a device via the kmod */
4229 void dev_load(struct net *net, const char *name);
4230 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4231 					struct rtnl_link_stats64 *storage);
4232 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4233 			     const struct net_device_stats *netdev_stats);
4234 
4235 extern int		netdev_max_backlog;
4236 extern int		netdev_tstamp_prequeue;
4237 extern int		weight_p;
4238 extern int		dev_weight_rx_bias;
4239 extern int		dev_weight_tx_bias;
4240 extern int		dev_rx_weight;
4241 extern int		dev_tx_weight;
4242 
4243 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4244 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4245 						     struct list_head **iter);
4246 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4247 						     struct list_head **iter);
4248 
4249 /* iterate through upper list, must be called under RCU read lock */
4250 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4251 	for (iter = &(dev)->adj_list.upper, \
4252 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4253 	     updev; \
4254 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4255 
4256 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4257 				  int (*fn)(struct net_device *upper_dev,
4258 					    void *data),
4259 				  void *data);
4260 
4261 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4262 				  struct net_device *upper_dev);
4263 
4264 bool netdev_has_any_upper_dev(struct net_device *dev);
4265 
4266 void *netdev_lower_get_next_private(struct net_device *dev,
4267 				    struct list_head **iter);
4268 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4269 					struct list_head **iter);
4270 
4271 #define netdev_for_each_lower_private(dev, priv, iter) \
4272 	for (iter = (dev)->adj_list.lower.next, \
4273 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4274 	     priv; \
4275 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4276 
4277 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4278 	for (iter = &(dev)->adj_list.lower, \
4279 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4280 	     priv; \
4281 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4282 
4283 void *netdev_lower_get_next(struct net_device *dev,
4284 				struct list_head **iter);
4285 
4286 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4287 	for (iter = (dev)->adj_list.lower.next, \
4288 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4289 	     ldev; \
4290 	     ldev = netdev_lower_get_next(dev, &(iter)))
4291 
4292 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4293 					     struct list_head **iter);
4294 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4295 						 struct list_head **iter);
4296 
4297 int netdev_walk_all_lower_dev(struct net_device *dev,
4298 			      int (*fn)(struct net_device *lower_dev,
4299 					void *data),
4300 			      void *data);
4301 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4302 				  int (*fn)(struct net_device *lower_dev,
4303 					    void *data),
4304 				  void *data);
4305 
4306 void *netdev_adjacent_get_private(struct list_head *adj_list);
4307 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4308 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4309 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4310 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4311 			  struct netlink_ext_ack *extack);
4312 int netdev_master_upper_dev_link(struct net_device *dev,
4313 				 struct net_device *upper_dev,
4314 				 void *upper_priv, void *upper_info,
4315 				 struct netlink_ext_ack *extack);
4316 void netdev_upper_dev_unlink(struct net_device *dev,
4317 			     struct net_device *upper_dev);
4318 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4319 void *netdev_lower_dev_get_private(struct net_device *dev,
4320 				   struct net_device *lower_dev);
4321 void netdev_lower_state_changed(struct net_device *lower_dev,
4322 				void *lower_state_info);
4323 
4324 /* RSS keys are 40 or 52 bytes long */
4325 #define NETDEV_RSS_KEY_LEN 52
4326 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4327 void netdev_rss_key_fill(void *buffer, size_t len);
4328 
4329 int dev_get_nest_level(struct net_device *dev);
4330 int skb_checksum_help(struct sk_buff *skb);
4331 int skb_crc32c_csum_help(struct sk_buff *skb);
4332 int skb_csum_hwoffload_help(struct sk_buff *skb,
4333 			    const netdev_features_t features);
4334 
4335 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4336 				  netdev_features_t features, bool tx_path);
4337 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4338 				    netdev_features_t features);
4339 
4340 struct netdev_bonding_info {
4341 	ifslave	slave;
4342 	ifbond	master;
4343 };
4344 
4345 struct netdev_notifier_bonding_info {
4346 	struct netdev_notifier_info info; /* must be first */
4347 	struct netdev_bonding_info  bonding_info;
4348 };
4349 
4350 void netdev_bonding_info_change(struct net_device *dev,
4351 				struct netdev_bonding_info *bonding_info);
4352 
4353 static inline
4354 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4355 {
4356 	return __skb_gso_segment(skb, features, true);
4357 }
4358 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4359 
4360 static inline bool can_checksum_protocol(netdev_features_t features,
4361 					 __be16 protocol)
4362 {
4363 	if (protocol == htons(ETH_P_FCOE))
4364 		return !!(features & NETIF_F_FCOE_CRC);
4365 
4366 	/* Assume this is an IP checksum (not SCTP CRC) */
4367 
4368 	if (features & NETIF_F_HW_CSUM) {
4369 		/* Can checksum everything */
4370 		return true;
4371 	}
4372 
4373 	switch (protocol) {
4374 	case htons(ETH_P_IP):
4375 		return !!(features & NETIF_F_IP_CSUM);
4376 	case htons(ETH_P_IPV6):
4377 		return !!(features & NETIF_F_IPV6_CSUM);
4378 	default:
4379 		return false;
4380 	}
4381 }
4382 
4383 #ifdef CONFIG_BUG
4384 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4385 #else
4386 static inline void netdev_rx_csum_fault(struct net_device *dev,
4387 					struct sk_buff *skb)
4388 {
4389 }
4390 #endif
4391 /* rx skb timestamps */
4392 void net_enable_timestamp(void);
4393 void net_disable_timestamp(void);
4394 
4395 #ifdef CONFIG_PROC_FS
4396 int __init dev_proc_init(void);
4397 #else
4398 #define dev_proc_init() 0
4399 #endif
4400 
4401 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4402 					      struct sk_buff *skb, struct net_device *dev,
4403 					      bool more)
4404 {
4405 	__this_cpu_write(softnet_data.xmit.more, more);
4406 	return ops->ndo_start_xmit(skb, dev);
4407 }
4408 
4409 static inline bool netdev_xmit_more(void)
4410 {
4411 	return __this_cpu_read(softnet_data.xmit.more);
4412 }
4413 
4414 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4415 					    struct netdev_queue *txq, bool more)
4416 {
4417 	const struct net_device_ops *ops = dev->netdev_ops;
4418 	netdev_tx_t rc;
4419 
4420 	rc = __netdev_start_xmit(ops, skb, dev, more);
4421 	if (rc == NETDEV_TX_OK)
4422 		txq_trans_update(txq);
4423 
4424 	return rc;
4425 }
4426 
4427 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4428 				const void *ns);
4429 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4430 				 const void *ns);
4431 
4432 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4433 {
4434 	return netdev_class_create_file_ns(class_attr, NULL);
4435 }
4436 
4437 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4438 {
4439 	netdev_class_remove_file_ns(class_attr, NULL);
4440 }
4441 
4442 extern const struct kobj_ns_type_operations net_ns_type_operations;
4443 
4444 const char *netdev_drivername(const struct net_device *dev);
4445 
4446 void linkwatch_run_queue(void);
4447 
4448 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4449 							  netdev_features_t f2)
4450 {
4451 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4452 		if (f1 & NETIF_F_HW_CSUM)
4453 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4454 		else
4455 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4456 	}
4457 
4458 	return f1 & f2;
4459 }
4460 
4461 static inline netdev_features_t netdev_get_wanted_features(
4462 	struct net_device *dev)
4463 {
4464 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4465 }
4466 netdev_features_t netdev_increment_features(netdev_features_t all,
4467 	netdev_features_t one, netdev_features_t mask);
4468 
4469 /* Allow TSO being used on stacked device :
4470  * Performing the GSO segmentation before last device
4471  * is a performance improvement.
4472  */
4473 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4474 							netdev_features_t mask)
4475 {
4476 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4477 }
4478 
4479 int __netdev_update_features(struct net_device *dev);
4480 void netdev_update_features(struct net_device *dev);
4481 void netdev_change_features(struct net_device *dev);
4482 
4483 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4484 					struct net_device *dev);
4485 
4486 netdev_features_t passthru_features_check(struct sk_buff *skb,
4487 					  struct net_device *dev,
4488 					  netdev_features_t features);
4489 netdev_features_t netif_skb_features(struct sk_buff *skb);
4490 
4491 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4492 {
4493 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4494 
4495 	/* check flags correspondence */
4496 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4497 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4498 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4499 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4500 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4501 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4502 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4503 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4504 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4505 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4506 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4507 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4508 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4509 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4510 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4511 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4512 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4513 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4514 
4515 	return (features & feature) == feature;
4516 }
4517 
4518 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4519 {
4520 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4521 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4522 }
4523 
4524 static inline bool netif_needs_gso(struct sk_buff *skb,
4525 				   netdev_features_t features)
4526 {
4527 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4528 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4529 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4530 }
4531 
4532 static inline void netif_set_gso_max_size(struct net_device *dev,
4533 					  unsigned int size)
4534 {
4535 	dev->gso_max_size = size;
4536 }
4537 
4538 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4539 					int pulled_hlen, u16 mac_offset,
4540 					int mac_len)
4541 {
4542 	skb->protocol = protocol;
4543 	skb->encapsulation = 1;
4544 	skb_push(skb, pulled_hlen);
4545 	skb_reset_transport_header(skb);
4546 	skb->mac_header = mac_offset;
4547 	skb->network_header = skb->mac_header + mac_len;
4548 	skb->mac_len = mac_len;
4549 }
4550 
4551 static inline bool netif_is_macsec(const struct net_device *dev)
4552 {
4553 	return dev->priv_flags & IFF_MACSEC;
4554 }
4555 
4556 static inline bool netif_is_macvlan(const struct net_device *dev)
4557 {
4558 	return dev->priv_flags & IFF_MACVLAN;
4559 }
4560 
4561 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4562 {
4563 	return dev->priv_flags & IFF_MACVLAN_PORT;
4564 }
4565 
4566 static inline bool netif_is_bond_master(const struct net_device *dev)
4567 {
4568 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4569 }
4570 
4571 static inline bool netif_is_bond_slave(const struct net_device *dev)
4572 {
4573 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4574 }
4575 
4576 static inline bool netif_supports_nofcs(struct net_device *dev)
4577 {
4578 	return dev->priv_flags & IFF_SUPP_NOFCS;
4579 }
4580 
4581 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4582 {
4583 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4584 }
4585 
4586 static inline bool netif_is_l3_master(const struct net_device *dev)
4587 {
4588 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4589 }
4590 
4591 static inline bool netif_is_l3_slave(const struct net_device *dev)
4592 {
4593 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4594 }
4595 
4596 static inline bool netif_is_bridge_master(const struct net_device *dev)
4597 {
4598 	return dev->priv_flags & IFF_EBRIDGE;
4599 }
4600 
4601 static inline bool netif_is_bridge_port(const struct net_device *dev)
4602 {
4603 	return dev->priv_flags & IFF_BRIDGE_PORT;
4604 }
4605 
4606 static inline bool netif_is_ovs_master(const struct net_device *dev)
4607 {
4608 	return dev->priv_flags & IFF_OPENVSWITCH;
4609 }
4610 
4611 static inline bool netif_is_ovs_port(const struct net_device *dev)
4612 {
4613 	return dev->priv_flags & IFF_OVS_DATAPATH;
4614 }
4615 
4616 static inline bool netif_is_team_master(const struct net_device *dev)
4617 {
4618 	return dev->priv_flags & IFF_TEAM;
4619 }
4620 
4621 static inline bool netif_is_team_port(const struct net_device *dev)
4622 {
4623 	return dev->priv_flags & IFF_TEAM_PORT;
4624 }
4625 
4626 static inline bool netif_is_lag_master(const struct net_device *dev)
4627 {
4628 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4629 }
4630 
4631 static inline bool netif_is_lag_port(const struct net_device *dev)
4632 {
4633 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4634 }
4635 
4636 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4637 {
4638 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4639 }
4640 
4641 static inline bool netif_is_failover(const struct net_device *dev)
4642 {
4643 	return dev->priv_flags & IFF_FAILOVER;
4644 }
4645 
4646 static inline bool netif_is_failover_slave(const struct net_device *dev)
4647 {
4648 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4649 }
4650 
4651 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4652 static inline void netif_keep_dst(struct net_device *dev)
4653 {
4654 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4655 }
4656 
4657 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4658 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4659 {
4660 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4661 	return dev->priv_flags & IFF_MACSEC;
4662 }
4663 
4664 extern struct pernet_operations __net_initdata loopback_net_ops;
4665 
4666 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4667 
4668 /* netdev_printk helpers, similar to dev_printk */
4669 
4670 static inline const char *netdev_name(const struct net_device *dev)
4671 {
4672 	if (!dev->name[0] || strchr(dev->name, '%'))
4673 		return "(unnamed net_device)";
4674 	return dev->name;
4675 }
4676 
4677 static inline bool netdev_unregistering(const struct net_device *dev)
4678 {
4679 	return dev->reg_state == NETREG_UNREGISTERING;
4680 }
4681 
4682 static inline const char *netdev_reg_state(const struct net_device *dev)
4683 {
4684 	switch (dev->reg_state) {
4685 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4686 	case NETREG_REGISTERED: return "";
4687 	case NETREG_UNREGISTERING: return " (unregistering)";
4688 	case NETREG_UNREGISTERED: return " (unregistered)";
4689 	case NETREG_RELEASED: return " (released)";
4690 	case NETREG_DUMMY: return " (dummy)";
4691 	}
4692 
4693 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4694 	return " (unknown)";
4695 }
4696 
4697 __printf(3, 4) __cold
4698 void netdev_printk(const char *level, const struct net_device *dev,
4699 		   const char *format, ...);
4700 __printf(2, 3) __cold
4701 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4702 __printf(2, 3) __cold
4703 void netdev_alert(const struct net_device *dev, const char *format, ...);
4704 __printf(2, 3) __cold
4705 void netdev_crit(const struct net_device *dev, const char *format, ...);
4706 __printf(2, 3) __cold
4707 void netdev_err(const struct net_device *dev, const char *format, ...);
4708 __printf(2, 3) __cold
4709 void netdev_warn(const struct net_device *dev, const char *format, ...);
4710 __printf(2, 3) __cold
4711 void netdev_notice(const struct net_device *dev, const char *format, ...);
4712 __printf(2, 3) __cold
4713 void netdev_info(const struct net_device *dev, const char *format, ...);
4714 
4715 #define netdev_level_once(level, dev, fmt, ...)			\
4716 do {								\
4717 	static bool __print_once __read_mostly;			\
4718 								\
4719 	if (!__print_once) {					\
4720 		__print_once = true;				\
4721 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4722 	}							\
4723 } while (0)
4724 
4725 #define netdev_emerg_once(dev, fmt, ...) \
4726 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4727 #define netdev_alert_once(dev, fmt, ...) \
4728 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4729 #define netdev_crit_once(dev, fmt, ...) \
4730 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4731 #define netdev_err_once(dev, fmt, ...) \
4732 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4733 #define netdev_warn_once(dev, fmt, ...) \
4734 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4735 #define netdev_notice_once(dev, fmt, ...) \
4736 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4737 #define netdev_info_once(dev, fmt, ...) \
4738 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4739 
4740 #define MODULE_ALIAS_NETDEV(device) \
4741 	MODULE_ALIAS("netdev-" device)
4742 
4743 #if defined(CONFIG_DYNAMIC_DEBUG)
4744 #define netdev_dbg(__dev, format, args...)			\
4745 do {								\
4746 	dynamic_netdev_dbg(__dev, format, ##args);		\
4747 } while (0)
4748 #elif defined(DEBUG)
4749 #define netdev_dbg(__dev, format, args...)			\
4750 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4751 #else
4752 #define netdev_dbg(__dev, format, args...)			\
4753 ({								\
4754 	if (0)							\
4755 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4756 })
4757 #endif
4758 
4759 #if defined(VERBOSE_DEBUG)
4760 #define netdev_vdbg	netdev_dbg
4761 #else
4762 
4763 #define netdev_vdbg(dev, format, args...)			\
4764 ({								\
4765 	if (0)							\
4766 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4767 	0;							\
4768 })
4769 #endif
4770 
4771 /*
4772  * netdev_WARN() acts like dev_printk(), but with the key difference
4773  * of using a WARN/WARN_ON to get the message out, including the
4774  * file/line information and a backtrace.
4775  */
4776 #define netdev_WARN(dev, format, args...)			\
4777 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4778 	     netdev_reg_state(dev), ##args)
4779 
4780 #define netdev_WARN_ONCE(dev, format, args...)				\
4781 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4782 		  netdev_reg_state(dev), ##args)
4783 
4784 /* netif printk helpers, similar to netdev_printk */
4785 
4786 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4787 do {					  			\
4788 	if (netif_msg_##type(priv))				\
4789 		netdev_printk(level, (dev), fmt, ##args);	\
4790 } while (0)
4791 
4792 #define netif_level(level, priv, type, dev, fmt, args...)	\
4793 do {								\
4794 	if (netif_msg_##type(priv))				\
4795 		netdev_##level(dev, fmt, ##args);		\
4796 } while (0)
4797 
4798 #define netif_emerg(priv, type, dev, fmt, args...)		\
4799 	netif_level(emerg, priv, type, dev, fmt, ##args)
4800 #define netif_alert(priv, type, dev, fmt, args...)		\
4801 	netif_level(alert, priv, type, dev, fmt, ##args)
4802 #define netif_crit(priv, type, dev, fmt, args...)		\
4803 	netif_level(crit, priv, type, dev, fmt, ##args)
4804 #define netif_err(priv, type, dev, fmt, args...)		\
4805 	netif_level(err, priv, type, dev, fmt, ##args)
4806 #define netif_warn(priv, type, dev, fmt, args...)		\
4807 	netif_level(warn, priv, type, dev, fmt, ##args)
4808 #define netif_notice(priv, type, dev, fmt, args...)		\
4809 	netif_level(notice, priv, type, dev, fmt, ##args)
4810 #define netif_info(priv, type, dev, fmt, args...)		\
4811 	netif_level(info, priv, type, dev, fmt, ##args)
4812 
4813 #if defined(CONFIG_DYNAMIC_DEBUG)
4814 #define netif_dbg(priv, type, netdev, format, args...)		\
4815 do {								\
4816 	if (netif_msg_##type(priv))				\
4817 		dynamic_netdev_dbg(netdev, format, ##args);	\
4818 } while (0)
4819 #elif defined(DEBUG)
4820 #define netif_dbg(priv, type, dev, format, args...)		\
4821 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4822 #else
4823 #define netif_dbg(priv, type, dev, format, args...)			\
4824 ({									\
4825 	if (0)								\
4826 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4827 	0;								\
4828 })
4829 #endif
4830 
4831 /* if @cond then downgrade to debug, else print at @level */
4832 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4833 	do {                                                              \
4834 		if (cond)                                                 \
4835 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4836 		else                                                      \
4837 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4838 	} while (0)
4839 
4840 #if defined(VERBOSE_DEBUG)
4841 #define netif_vdbg	netif_dbg
4842 #else
4843 #define netif_vdbg(priv, type, dev, format, args...)		\
4844 ({								\
4845 	if (0)							\
4846 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4847 	0;							\
4848 })
4849 #endif
4850 
4851 /*
4852  *	The list of packet types we will receive (as opposed to discard)
4853  *	and the routines to invoke.
4854  *
4855  *	Why 16. Because with 16 the only overlap we get on a hash of the
4856  *	low nibble of the protocol value is RARP/SNAP/X.25.
4857  *
4858  *		0800	IP
4859  *		0001	802.3
4860  *		0002	AX.25
4861  *		0004	802.2
4862  *		8035	RARP
4863  *		0005	SNAP
4864  *		0805	X.25
4865  *		0806	ARP
4866  *		8137	IPX
4867  *		0009	Localtalk
4868  *		86DD	IPv6
4869  */
4870 #define PTYPE_HASH_SIZE	(16)
4871 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4872 
4873 extern struct net_device *blackhole_netdev;
4874 
4875 #endif	/* _LINUX_NETDEVICE_H */
4876