1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <net/xdp.h> 44 45 #include <linux/netdev_features.h> 46 #include <linux/neighbour.h> 47 #include <uapi/linux/netdevice.h> 48 #include <uapi/linux/if_bonding.h> 49 #include <uapi/linux/pkt_cls.h> 50 #include <linux/hashtable.h> 51 #include <linux/rbtree.h> 52 #include <net/net_trackers.h> 53 #include <net/net_debug.h> 54 55 struct netpoll_info; 56 struct device; 57 struct ethtool_ops; 58 struct phy_device; 59 struct dsa_port; 60 struct ip_tunnel_parm; 61 struct macsec_context; 62 struct macsec_ops; 63 struct netdev_name_node; 64 struct sd_flow_limit; 65 struct sfp_bus; 66 /* 802.11 specific */ 67 struct wireless_dev; 68 /* 802.15.4 specific */ 69 struct wpan_dev; 70 struct mpls_dev; 71 /* UDP Tunnel offloads */ 72 struct udp_tunnel_info; 73 struct udp_tunnel_nic_info; 74 struct udp_tunnel_nic; 75 struct bpf_prog; 76 struct xdp_buff; 77 78 void synchronize_net(void); 79 void netdev_set_default_ethtool_ops(struct net_device *dev, 80 const struct ethtool_ops *ops); 81 82 /* Backlog congestion levels */ 83 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 84 #define NET_RX_DROP 1 /* packet dropped */ 85 86 #define MAX_NEST_DEV 8 87 88 /* 89 * Transmit return codes: transmit return codes originate from three different 90 * namespaces: 91 * 92 * - qdisc return codes 93 * - driver transmit return codes 94 * - errno values 95 * 96 * Drivers are allowed to return any one of those in their hard_start_xmit() 97 * function. Real network devices commonly used with qdiscs should only return 98 * the driver transmit return codes though - when qdiscs are used, the actual 99 * transmission happens asynchronously, so the value is not propagated to 100 * higher layers. Virtual network devices transmit synchronously; in this case 101 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 102 * others are propagated to higher layers. 103 */ 104 105 /* qdisc ->enqueue() return codes. */ 106 #define NET_XMIT_SUCCESS 0x00 107 #define NET_XMIT_DROP 0x01 /* skb dropped */ 108 #define NET_XMIT_CN 0x02 /* congestion notification */ 109 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 110 111 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 112 * indicates that the device will soon be dropping packets, or already drops 113 * some packets of the same priority; prompting us to send less aggressively. */ 114 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 115 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 116 117 /* Driver transmit return codes */ 118 #define NETDEV_TX_MASK 0xf0 119 120 enum netdev_tx { 121 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 122 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 123 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 124 }; 125 typedef enum netdev_tx netdev_tx_t; 126 127 /* 128 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 129 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 130 */ 131 static inline bool dev_xmit_complete(int rc) 132 { 133 /* 134 * Positive cases with an skb consumed by a driver: 135 * - successful transmission (rc == NETDEV_TX_OK) 136 * - error while transmitting (rc < 0) 137 * - error while queueing to a different device (rc & NET_XMIT_MASK) 138 */ 139 if (likely(rc < NET_XMIT_MASK)) 140 return true; 141 142 return false; 143 } 144 145 /* 146 * Compute the worst-case header length according to the protocols 147 * used. 148 */ 149 150 #if defined(CONFIG_HYPERV_NET) 151 # define LL_MAX_HEADER 128 152 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 153 # if defined(CONFIG_MAC80211_MESH) 154 # define LL_MAX_HEADER 128 155 # else 156 # define LL_MAX_HEADER 96 157 # endif 158 #else 159 # define LL_MAX_HEADER 32 160 #endif 161 162 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 163 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 164 #define MAX_HEADER LL_MAX_HEADER 165 #else 166 #define MAX_HEADER (LL_MAX_HEADER + 48) 167 #endif 168 169 /* 170 * Old network device statistics. Fields are native words 171 * (unsigned long) so they can be read and written atomically. 172 */ 173 174 struct net_device_stats { 175 unsigned long rx_packets; 176 unsigned long tx_packets; 177 unsigned long rx_bytes; 178 unsigned long tx_bytes; 179 unsigned long rx_errors; 180 unsigned long tx_errors; 181 unsigned long rx_dropped; 182 unsigned long tx_dropped; 183 unsigned long multicast; 184 unsigned long collisions; 185 unsigned long rx_length_errors; 186 unsigned long rx_over_errors; 187 unsigned long rx_crc_errors; 188 unsigned long rx_frame_errors; 189 unsigned long rx_fifo_errors; 190 unsigned long rx_missed_errors; 191 unsigned long tx_aborted_errors; 192 unsigned long tx_carrier_errors; 193 unsigned long tx_fifo_errors; 194 unsigned long tx_heartbeat_errors; 195 unsigned long tx_window_errors; 196 unsigned long rx_compressed; 197 unsigned long tx_compressed; 198 }; 199 200 /* per-cpu stats, allocated on demand. 201 * Try to fit them in a single cache line, for dev_get_stats() sake. 202 */ 203 struct net_device_core_stats { 204 unsigned long rx_dropped; 205 unsigned long tx_dropped; 206 unsigned long rx_nohandler; 207 unsigned long rx_otherhost_dropped; 208 } __aligned(4 * sizeof(unsigned long)); 209 210 #include <linux/cache.h> 211 #include <linux/skbuff.h> 212 213 #ifdef CONFIG_RPS 214 #include <linux/static_key.h> 215 extern struct static_key_false rps_needed; 216 extern struct static_key_false rfs_needed; 217 #endif 218 219 struct neighbour; 220 struct neigh_parms; 221 struct sk_buff; 222 223 struct netdev_hw_addr { 224 struct list_head list; 225 struct rb_node node; 226 unsigned char addr[MAX_ADDR_LEN]; 227 unsigned char type; 228 #define NETDEV_HW_ADDR_T_LAN 1 229 #define NETDEV_HW_ADDR_T_SAN 2 230 #define NETDEV_HW_ADDR_T_UNICAST 3 231 #define NETDEV_HW_ADDR_T_MULTICAST 4 232 bool global_use; 233 int sync_cnt; 234 int refcount; 235 int synced; 236 struct rcu_head rcu_head; 237 }; 238 239 struct netdev_hw_addr_list { 240 struct list_head list; 241 int count; 242 243 /* Auxiliary tree for faster lookup on addition and deletion */ 244 struct rb_root tree; 245 }; 246 247 #define netdev_hw_addr_list_count(l) ((l)->count) 248 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 249 #define netdev_hw_addr_list_for_each(ha, l) \ 250 list_for_each_entry(ha, &(l)->list, list) 251 252 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 253 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 254 #define netdev_for_each_uc_addr(ha, dev) \ 255 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 256 257 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 258 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 259 #define netdev_for_each_mc_addr(ha, dev) \ 260 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 261 262 struct hh_cache { 263 unsigned int hh_len; 264 seqlock_t hh_lock; 265 266 /* cached hardware header; allow for machine alignment needs. */ 267 #define HH_DATA_MOD 16 268 #define HH_DATA_OFF(__len) \ 269 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 270 #define HH_DATA_ALIGN(__len) \ 271 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 272 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 273 }; 274 275 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 276 * Alternative is: 277 * dev->hard_header_len ? (dev->hard_header_len + 278 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 279 * 280 * We could use other alignment values, but we must maintain the 281 * relationship HH alignment <= LL alignment. 282 */ 283 #define LL_RESERVED_SPACE(dev) \ 284 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 285 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 286 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 287 288 struct header_ops { 289 int (*create) (struct sk_buff *skb, struct net_device *dev, 290 unsigned short type, const void *daddr, 291 const void *saddr, unsigned int len); 292 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 293 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 294 void (*cache_update)(struct hh_cache *hh, 295 const struct net_device *dev, 296 const unsigned char *haddr); 297 bool (*validate)(const char *ll_header, unsigned int len); 298 __be16 (*parse_protocol)(const struct sk_buff *skb); 299 }; 300 301 /* These flag bits are private to the generic network queueing 302 * layer; they may not be explicitly referenced by any other 303 * code. 304 */ 305 306 enum netdev_state_t { 307 __LINK_STATE_START, 308 __LINK_STATE_PRESENT, 309 __LINK_STATE_NOCARRIER, 310 __LINK_STATE_LINKWATCH_PENDING, 311 __LINK_STATE_DORMANT, 312 __LINK_STATE_TESTING, 313 }; 314 315 struct gro_list { 316 struct list_head list; 317 int count; 318 }; 319 320 /* 321 * size of gro hash buckets, must less than bit number of 322 * napi_struct::gro_bitmask 323 */ 324 #define GRO_HASH_BUCKETS 8 325 326 /* 327 * Structure for NAPI scheduling similar to tasklet but with weighting 328 */ 329 struct napi_struct { 330 /* The poll_list must only be managed by the entity which 331 * changes the state of the NAPI_STATE_SCHED bit. This means 332 * whoever atomically sets that bit can add this napi_struct 333 * to the per-CPU poll_list, and whoever clears that bit 334 * can remove from the list right before clearing the bit. 335 */ 336 struct list_head poll_list; 337 338 unsigned long state; 339 int weight; 340 int defer_hard_irqs_count; 341 unsigned long gro_bitmask; 342 int (*poll)(struct napi_struct *, int); 343 #ifdef CONFIG_NETPOLL 344 int poll_owner; 345 #endif 346 struct net_device *dev; 347 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 348 struct sk_buff *skb; 349 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 350 int rx_count; /* length of rx_list */ 351 struct hrtimer timer; 352 struct list_head dev_list; 353 struct hlist_node napi_hash_node; 354 unsigned int napi_id; 355 struct task_struct *thread; 356 }; 357 358 enum { 359 NAPI_STATE_SCHED, /* Poll is scheduled */ 360 NAPI_STATE_MISSED, /* reschedule a napi */ 361 NAPI_STATE_DISABLE, /* Disable pending */ 362 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 363 NAPI_STATE_LISTED, /* NAPI added to system lists */ 364 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 365 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 366 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 367 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 368 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 369 }; 370 371 enum { 372 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 373 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 374 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 375 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 376 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 377 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 378 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 379 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 380 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 381 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 382 }; 383 384 enum gro_result { 385 GRO_MERGED, 386 GRO_MERGED_FREE, 387 GRO_HELD, 388 GRO_NORMAL, 389 GRO_CONSUMED, 390 }; 391 typedef enum gro_result gro_result_t; 392 393 /* 394 * enum rx_handler_result - Possible return values for rx_handlers. 395 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 396 * further. 397 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 398 * case skb->dev was changed by rx_handler. 399 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 400 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 401 * 402 * rx_handlers are functions called from inside __netif_receive_skb(), to do 403 * special processing of the skb, prior to delivery to protocol handlers. 404 * 405 * Currently, a net_device can only have a single rx_handler registered. Trying 406 * to register a second rx_handler will return -EBUSY. 407 * 408 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 409 * To unregister a rx_handler on a net_device, use 410 * netdev_rx_handler_unregister(). 411 * 412 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 413 * do with the skb. 414 * 415 * If the rx_handler consumed the skb in some way, it should return 416 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 417 * the skb to be delivered in some other way. 418 * 419 * If the rx_handler changed skb->dev, to divert the skb to another 420 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 421 * new device will be called if it exists. 422 * 423 * If the rx_handler decides the skb should be ignored, it should return 424 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 425 * are registered on exact device (ptype->dev == skb->dev). 426 * 427 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 428 * delivered, it should return RX_HANDLER_PASS. 429 * 430 * A device without a registered rx_handler will behave as if rx_handler 431 * returned RX_HANDLER_PASS. 432 */ 433 434 enum rx_handler_result { 435 RX_HANDLER_CONSUMED, 436 RX_HANDLER_ANOTHER, 437 RX_HANDLER_EXACT, 438 RX_HANDLER_PASS, 439 }; 440 typedef enum rx_handler_result rx_handler_result_t; 441 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 442 443 void __napi_schedule(struct napi_struct *n); 444 void __napi_schedule_irqoff(struct napi_struct *n); 445 446 static inline bool napi_disable_pending(struct napi_struct *n) 447 { 448 return test_bit(NAPI_STATE_DISABLE, &n->state); 449 } 450 451 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 452 { 453 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 454 } 455 456 bool napi_schedule_prep(struct napi_struct *n); 457 458 /** 459 * napi_schedule - schedule NAPI poll 460 * @n: NAPI context 461 * 462 * Schedule NAPI poll routine to be called if it is not already 463 * running. 464 */ 465 static inline void napi_schedule(struct napi_struct *n) 466 { 467 if (napi_schedule_prep(n)) 468 __napi_schedule(n); 469 } 470 471 /** 472 * napi_schedule_irqoff - schedule NAPI poll 473 * @n: NAPI context 474 * 475 * Variant of napi_schedule(), assuming hard irqs are masked. 476 */ 477 static inline void napi_schedule_irqoff(struct napi_struct *n) 478 { 479 if (napi_schedule_prep(n)) 480 __napi_schedule_irqoff(n); 481 } 482 483 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 484 static inline bool napi_reschedule(struct napi_struct *napi) 485 { 486 if (napi_schedule_prep(napi)) { 487 __napi_schedule(napi); 488 return true; 489 } 490 return false; 491 } 492 493 bool napi_complete_done(struct napi_struct *n, int work_done); 494 /** 495 * napi_complete - NAPI processing complete 496 * @n: NAPI context 497 * 498 * Mark NAPI processing as complete. 499 * Consider using napi_complete_done() instead. 500 * Return false if device should avoid rearming interrupts. 501 */ 502 static inline bool napi_complete(struct napi_struct *n) 503 { 504 return napi_complete_done(n, 0); 505 } 506 507 int dev_set_threaded(struct net_device *dev, bool threaded); 508 509 /** 510 * napi_disable - prevent NAPI from scheduling 511 * @n: NAPI context 512 * 513 * Stop NAPI from being scheduled on this context. 514 * Waits till any outstanding processing completes. 515 */ 516 void napi_disable(struct napi_struct *n); 517 518 void napi_enable(struct napi_struct *n); 519 520 /** 521 * napi_synchronize - wait until NAPI is not running 522 * @n: NAPI context 523 * 524 * Wait until NAPI is done being scheduled on this context. 525 * Waits till any outstanding processing completes but 526 * does not disable future activations. 527 */ 528 static inline void napi_synchronize(const struct napi_struct *n) 529 { 530 if (IS_ENABLED(CONFIG_SMP)) 531 while (test_bit(NAPI_STATE_SCHED, &n->state)) 532 msleep(1); 533 else 534 barrier(); 535 } 536 537 /** 538 * napi_if_scheduled_mark_missed - if napi is running, set the 539 * NAPIF_STATE_MISSED 540 * @n: NAPI context 541 * 542 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 543 * NAPI is scheduled. 544 **/ 545 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 546 { 547 unsigned long val, new; 548 549 do { 550 val = READ_ONCE(n->state); 551 if (val & NAPIF_STATE_DISABLE) 552 return true; 553 554 if (!(val & NAPIF_STATE_SCHED)) 555 return false; 556 557 new = val | NAPIF_STATE_MISSED; 558 } while (cmpxchg(&n->state, val, new) != val); 559 560 return true; 561 } 562 563 enum netdev_queue_state_t { 564 __QUEUE_STATE_DRV_XOFF, 565 __QUEUE_STATE_STACK_XOFF, 566 __QUEUE_STATE_FROZEN, 567 }; 568 569 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 570 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 571 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 572 573 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 574 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 575 QUEUE_STATE_FROZEN) 576 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 577 QUEUE_STATE_FROZEN) 578 579 /* 580 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 581 * netif_tx_* functions below are used to manipulate this flag. The 582 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 583 * queue independently. The netif_xmit_*stopped functions below are called 584 * to check if the queue has been stopped by the driver or stack (either 585 * of the XOFF bits are set in the state). Drivers should not need to call 586 * netif_xmit*stopped functions, they should only be using netif_tx_*. 587 */ 588 589 struct netdev_queue { 590 /* 591 * read-mostly part 592 */ 593 struct net_device *dev; 594 netdevice_tracker dev_tracker; 595 596 struct Qdisc __rcu *qdisc; 597 struct Qdisc *qdisc_sleeping; 598 #ifdef CONFIG_SYSFS 599 struct kobject kobj; 600 #endif 601 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 602 int numa_node; 603 #endif 604 unsigned long tx_maxrate; 605 /* 606 * Number of TX timeouts for this queue 607 * (/sys/class/net/DEV/Q/trans_timeout) 608 */ 609 atomic_long_t trans_timeout; 610 611 /* Subordinate device that the queue has been assigned to */ 612 struct net_device *sb_dev; 613 #ifdef CONFIG_XDP_SOCKETS 614 struct xsk_buff_pool *pool; 615 #endif 616 /* 617 * write-mostly part 618 */ 619 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 620 int xmit_lock_owner; 621 /* 622 * Time (in jiffies) of last Tx 623 */ 624 unsigned long trans_start; 625 626 unsigned long state; 627 628 #ifdef CONFIG_BQL 629 struct dql dql; 630 #endif 631 } ____cacheline_aligned_in_smp; 632 633 extern int sysctl_fb_tunnels_only_for_init_net; 634 extern int sysctl_devconf_inherit_init_net; 635 636 /* 637 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 638 * == 1 : For initns only 639 * == 2 : For none. 640 */ 641 static inline bool net_has_fallback_tunnels(const struct net *net) 642 { 643 return !IS_ENABLED(CONFIG_SYSCTL) || 644 !sysctl_fb_tunnels_only_for_init_net || 645 (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1); 646 } 647 648 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 649 { 650 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 651 return q->numa_node; 652 #else 653 return NUMA_NO_NODE; 654 #endif 655 } 656 657 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 658 { 659 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 660 q->numa_node = node; 661 #endif 662 } 663 664 #ifdef CONFIG_RPS 665 /* 666 * This structure holds an RPS map which can be of variable length. The 667 * map is an array of CPUs. 668 */ 669 struct rps_map { 670 unsigned int len; 671 struct rcu_head rcu; 672 u16 cpus[]; 673 }; 674 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 675 676 /* 677 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 678 * tail pointer for that CPU's input queue at the time of last enqueue, and 679 * a hardware filter index. 680 */ 681 struct rps_dev_flow { 682 u16 cpu; 683 u16 filter; 684 unsigned int last_qtail; 685 }; 686 #define RPS_NO_FILTER 0xffff 687 688 /* 689 * The rps_dev_flow_table structure contains a table of flow mappings. 690 */ 691 struct rps_dev_flow_table { 692 unsigned int mask; 693 struct rcu_head rcu; 694 struct rps_dev_flow flows[]; 695 }; 696 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 697 ((_num) * sizeof(struct rps_dev_flow))) 698 699 /* 700 * The rps_sock_flow_table contains mappings of flows to the last CPU 701 * on which they were processed by the application (set in recvmsg). 702 * Each entry is a 32bit value. Upper part is the high-order bits 703 * of flow hash, lower part is CPU number. 704 * rps_cpu_mask is used to partition the space, depending on number of 705 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 706 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 707 * meaning we use 32-6=26 bits for the hash. 708 */ 709 struct rps_sock_flow_table { 710 u32 mask; 711 712 u32 ents[] ____cacheline_aligned_in_smp; 713 }; 714 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 715 716 #define RPS_NO_CPU 0xffff 717 718 extern u32 rps_cpu_mask; 719 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 720 721 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 722 u32 hash) 723 { 724 if (table && hash) { 725 unsigned int index = hash & table->mask; 726 u32 val = hash & ~rps_cpu_mask; 727 728 /* We only give a hint, preemption can change CPU under us */ 729 val |= raw_smp_processor_id(); 730 731 if (table->ents[index] != val) 732 table->ents[index] = val; 733 } 734 } 735 736 #ifdef CONFIG_RFS_ACCEL 737 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 738 u16 filter_id); 739 #endif 740 #endif /* CONFIG_RPS */ 741 742 /* This structure contains an instance of an RX queue. */ 743 struct netdev_rx_queue { 744 struct xdp_rxq_info xdp_rxq; 745 #ifdef CONFIG_RPS 746 struct rps_map __rcu *rps_map; 747 struct rps_dev_flow_table __rcu *rps_flow_table; 748 #endif 749 struct kobject kobj; 750 struct net_device *dev; 751 netdevice_tracker dev_tracker; 752 753 #ifdef CONFIG_XDP_SOCKETS 754 struct xsk_buff_pool *pool; 755 #endif 756 } ____cacheline_aligned_in_smp; 757 758 /* 759 * RX queue sysfs structures and functions. 760 */ 761 struct rx_queue_attribute { 762 struct attribute attr; 763 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 764 ssize_t (*store)(struct netdev_rx_queue *queue, 765 const char *buf, size_t len); 766 }; 767 768 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 769 enum xps_map_type { 770 XPS_CPUS = 0, 771 XPS_RXQS, 772 XPS_MAPS_MAX, 773 }; 774 775 #ifdef CONFIG_XPS 776 /* 777 * This structure holds an XPS map which can be of variable length. The 778 * map is an array of queues. 779 */ 780 struct xps_map { 781 unsigned int len; 782 unsigned int alloc_len; 783 struct rcu_head rcu; 784 u16 queues[]; 785 }; 786 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 787 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 788 - sizeof(struct xps_map)) / sizeof(u16)) 789 790 /* 791 * This structure holds all XPS maps for device. Maps are indexed by CPU. 792 * 793 * We keep track of the number of cpus/rxqs used when the struct is allocated, 794 * in nr_ids. This will help not accessing out-of-bound memory. 795 * 796 * We keep track of the number of traffic classes used when the struct is 797 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 798 * not crossing its upper bound, as the original dev->num_tc can be updated in 799 * the meantime. 800 */ 801 struct xps_dev_maps { 802 struct rcu_head rcu; 803 unsigned int nr_ids; 804 s16 num_tc; 805 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 806 }; 807 808 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 809 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 810 811 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 812 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 813 814 #endif /* CONFIG_XPS */ 815 816 #define TC_MAX_QUEUE 16 817 #define TC_BITMASK 15 818 /* HW offloaded queuing disciplines txq count and offset maps */ 819 struct netdev_tc_txq { 820 u16 count; 821 u16 offset; 822 }; 823 824 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 825 /* 826 * This structure is to hold information about the device 827 * configured to run FCoE protocol stack. 828 */ 829 struct netdev_fcoe_hbainfo { 830 char manufacturer[64]; 831 char serial_number[64]; 832 char hardware_version[64]; 833 char driver_version[64]; 834 char optionrom_version[64]; 835 char firmware_version[64]; 836 char model[256]; 837 char model_description[256]; 838 }; 839 #endif 840 841 #define MAX_PHYS_ITEM_ID_LEN 32 842 843 /* This structure holds a unique identifier to identify some 844 * physical item (port for example) used by a netdevice. 845 */ 846 struct netdev_phys_item_id { 847 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 848 unsigned char id_len; 849 }; 850 851 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 852 struct netdev_phys_item_id *b) 853 { 854 return a->id_len == b->id_len && 855 memcmp(a->id, b->id, a->id_len) == 0; 856 } 857 858 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 859 struct sk_buff *skb, 860 struct net_device *sb_dev); 861 862 enum net_device_path_type { 863 DEV_PATH_ETHERNET = 0, 864 DEV_PATH_VLAN, 865 DEV_PATH_BRIDGE, 866 DEV_PATH_PPPOE, 867 DEV_PATH_DSA, 868 DEV_PATH_MTK_WDMA, 869 }; 870 871 struct net_device_path { 872 enum net_device_path_type type; 873 const struct net_device *dev; 874 union { 875 struct { 876 u16 id; 877 __be16 proto; 878 u8 h_dest[ETH_ALEN]; 879 } encap; 880 struct { 881 enum { 882 DEV_PATH_BR_VLAN_KEEP, 883 DEV_PATH_BR_VLAN_TAG, 884 DEV_PATH_BR_VLAN_UNTAG, 885 DEV_PATH_BR_VLAN_UNTAG_HW, 886 } vlan_mode; 887 u16 vlan_id; 888 __be16 vlan_proto; 889 } bridge; 890 struct { 891 int port; 892 u16 proto; 893 } dsa; 894 struct { 895 u8 wdma_idx; 896 u8 queue; 897 u16 wcid; 898 u8 bss; 899 } mtk_wdma; 900 }; 901 }; 902 903 #define NET_DEVICE_PATH_STACK_MAX 5 904 #define NET_DEVICE_PATH_VLAN_MAX 2 905 906 struct net_device_path_stack { 907 int num_paths; 908 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 909 }; 910 911 struct net_device_path_ctx { 912 const struct net_device *dev; 913 u8 daddr[ETH_ALEN]; 914 915 int num_vlans; 916 struct { 917 u16 id; 918 __be16 proto; 919 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 920 }; 921 922 enum tc_setup_type { 923 TC_SETUP_QDISC_MQPRIO, 924 TC_SETUP_CLSU32, 925 TC_SETUP_CLSFLOWER, 926 TC_SETUP_CLSMATCHALL, 927 TC_SETUP_CLSBPF, 928 TC_SETUP_BLOCK, 929 TC_SETUP_QDISC_CBS, 930 TC_SETUP_QDISC_RED, 931 TC_SETUP_QDISC_PRIO, 932 TC_SETUP_QDISC_MQ, 933 TC_SETUP_QDISC_ETF, 934 TC_SETUP_ROOT_QDISC, 935 TC_SETUP_QDISC_GRED, 936 TC_SETUP_QDISC_TAPRIO, 937 TC_SETUP_FT, 938 TC_SETUP_QDISC_ETS, 939 TC_SETUP_QDISC_TBF, 940 TC_SETUP_QDISC_FIFO, 941 TC_SETUP_QDISC_HTB, 942 TC_SETUP_ACT, 943 }; 944 945 /* These structures hold the attributes of bpf state that are being passed 946 * to the netdevice through the bpf op. 947 */ 948 enum bpf_netdev_command { 949 /* Set or clear a bpf program used in the earliest stages of packet 950 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 951 * is responsible for calling bpf_prog_put on any old progs that are 952 * stored. In case of error, the callee need not release the new prog 953 * reference, but on success it takes ownership and must bpf_prog_put 954 * when it is no longer used. 955 */ 956 XDP_SETUP_PROG, 957 XDP_SETUP_PROG_HW, 958 /* BPF program for offload callbacks, invoked at program load time. */ 959 BPF_OFFLOAD_MAP_ALLOC, 960 BPF_OFFLOAD_MAP_FREE, 961 XDP_SETUP_XSK_POOL, 962 }; 963 964 struct bpf_prog_offload_ops; 965 struct netlink_ext_ack; 966 struct xdp_umem; 967 struct xdp_dev_bulk_queue; 968 struct bpf_xdp_link; 969 970 enum bpf_xdp_mode { 971 XDP_MODE_SKB = 0, 972 XDP_MODE_DRV = 1, 973 XDP_MODE_HW = 2, 974 __MAX_XDP_MODE 975 }; 976 977 struct bpf_xdp_entity { 978 struct bpf_prog *prog; 979 struct bpf_xdp_link *link; 980 }; 981 982 struct netdev_bpf { 983 enum bpf_netdev_command command; 984 union { 985 /* XDP_SETUP_PROG */ 986 struct { 987 u32 flags; 988 struct bpf_prog *prog; 989 struct netlink_ext_ack *extack; 990 }; 991 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 992 struct { 993 struct bpf_offloaded_map *offmap; 994 }; 995 /* XDP_SETUP_XSK_POOL */ 996 struct { 997 struct xsk_buff_pool *pool; 998 u16 queue_id; 999 } xsk; 1000 }; 1001 }; 1002 1003 /* Flags for ndo_xsk_wakeup. */ 1004 #define XDP_WAKEUP_RX (1 << 0) 1005 #define XDP_WAKEUP_TX (1 << 1) 1006 1007 #ifdef CONFIG_XFRM_OFFLOAD 1008 struct xfrmdev_ops { 1009 int (*xdo_dev_state_add) (struct xfrm_state *x); 1010 void (*xdo_dev_state_delete) (struct xfrm_state *x); 1011 void (*xdo_dev_state_free) (struct xfrm_state *x); 1012 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1013 struct xfrm_state *x); 1014 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1015 }; 1016 #endif 1017 1018 struct dev_ifalias { 1019 struct rcu_head rcuhead; 1020 char ifalias[]; 1021 }; 1022 1023 struct devlink; 1024 struct tlsdev_ops; 1025 1026 struct netdev_net_notifier { 1027 struct list_head list; 1028 struct notifier_block *nb; 1029 }; 1030 1031 /* 1032 * This structure defines the management hooks for network devices. 1033 * The following hooks can be defined; unless noted otherwise, they are 1034 * optional and can be filled with a null pointer. 1035 * 1036 * int (*ndo_init)(struct net_device *dev); 1037 * This function is called once when a network device is registered. 1038 * The network device can use this for any late stage initialization 1039 * or semantic validation. It can fail with an error code which will 1040 * be propagated back to register_netdev. 1041 * 1042 * void (*ndo_uninit)(struct net_device *dev); 1043 * This function is called when device is unregistered or when registration 1044 * fails. It is not called if init fails. 1045 * 1046 * int (*ndo_open)(struct net_device *dev); 1047 * This function is called when a network device transitions to the up 1048 * state. 1049 * 1050 * int (*ndo_stop)(struct net_device *dev); 1051 * This function is called when a network device transitions to the down 1052 * state. 1053 * 1054 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1055 * struct net_device *dev); 1056 * Called when a packet needs to be transmitted. 1057 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1058 * the queue before that can happen; it's for obsolete devices and weird 1059 * corner cases, but the stack really does a non-trivial amount 1060 * of useless work if you return NETDEV_TX_BUSY. 1061 * Required; cannot be NULL. 1062 * 1063 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1064 * struct net_device *dev 1065 * netdev_features_t features); 1066 * Called by core transmit path to determine if device is capable of 1067 * performing offload operations on a given packet. This is to give 1068 * the device an opportunity to implement any restrictions that cannot 1069 * be otherwise expressed by feature flags. The check is called with 1070 * the set of features that the stack has calculated and it returns 1071 * those the driver believes to be appropriate. 1072 * 1073 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1074 * struct net_device *sb_dev); 1075 * Called to decide which queue to use when device supports multiple 1076 * transmit queues. 1077 * 1078 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1079 * This function is called to allow device receiver to make 1080 * changes to configuration when multicast or promiscuous is enabled. 1081 * 1082 * void (*ndo_set_rx_mode)(struct net_device *dev); 1083 * This function is called device changes address list filtering. 1084 * If driver handles unicast address filtering, it should set 1085 * IFF_UNICAST_FLT in its priv_flags. 1086 * 1087 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1088 * This function is called when the Media Access Control address 1089 * needs to be changed. If this interface is not defined, the 1090 * MAC address can not be changed. 1091 * 1092 * int (*ndo_validate_addr)(struct net_device *dev); 1093 * Test if Media Access Control address is valid for the device. 1094 * 1095 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1096 * Old-style ioctl entry point. This is used internally by the 1097 * appletalk and ieee802154 subsystems but is no longer called by 1098 * the device ioctl handler. 1099 * 1100 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1101 * Used by the bonding driver for its device specific ioctls: 1102 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1103 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1104 * 1105 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1106 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1107 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1108 * 1109 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1110 * Used to set network devices bus interface parameters. This interface 1111 * is retained for legacy reasons; new devices should use the bus 1112 * interface (PCI) for low level management. 1113 * 1114 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1115 * Called when a user wants to change the Maximum Transfer Unit 1116 * of a device. 1117 * 1118 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1119 * Callback used when the transmitter has not made any progress 1120 * for dev->watchdog ticks. 1121 * 1122 * void (*ndo_get_stats64)(struct net_device *dev, 1123 * struct rtnl_link_stats64 *storage); 1124 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1125 * Called when a user wants to get the network device usage 1126 * statistics. Drivers must do one of the following: 1127 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1128 * rtnl_link_stats64 structure passed by the caller. 1129 * 2. Define @ndo_get_stats to update a net_device_stats structure 1130 * (which should normally be dev->stats) and return a pointer to 1131 * it. The structure may be changed asynchronously only if each 1132 * field is written atomically. 1133 * 3. Update dev->stats asynchronously and atomically, and define 1134 * neither operation. 1135 * 1136 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1137 * Return true if this device supports offload stats of this attr_id. 1138 * 1139 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1140 * void *attr_data) 1141 * Get statistics for offload operations by attr_id. Write it into the 1142 * attr_data pointer. 1143 * 1144 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1145 * If device supports VLAN filtering this function is called when a 1146 * VLAN id is registered. 1147 * 1148 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1149 * If device supports VLAN filtering this function is called when a 1150 * VLAN id is unregistered. 1151 * 1152 * void (*ndo_poll_controller)(struct net_device *dev); 1153 * 1154 * SR-IOV management functions. 1155 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1156 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1157 * u8 qos, __be16 proto); 1158 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1159 * int max_tx_rate); 1160 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1161 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1162 * int (*ndo_get_vf_config)(struct net_device *dev, 1163 * int vf, struct ifla_vf_info *ivf); 1164 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1165 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1166 * struct nlattr *port[]); 1167 * 1168 * Enable or disable the VF ability to query its RSS Redirection Table and 1169 * Hash Key. This is needed since on some devices VF share this information 1170 * with PF and querying it may introduce a theoretical security risk. 1171 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1172 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1173 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1174 * void *type_data); 1175 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1176 * This is always called from the stack with the rtnl lock held and netif 1177 * tx queues stopped. This allows the netdevice to perform queue 1178 * management safely. 1179 * 1180 * Fiber Channel over Ethernet (FCoE) offload functions. 1181 * int (*ndo_fcoe_enable)(struct net_device *dev); 1182 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1183 * so the underlying device can perform whatever needed configuration or 1184 * initialization to support acceleration of FCoE traffic. 1185 * 1186 * int (*ndo_fcoe_disable)(struct net_device *dev); 1187 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1188 * so the underlying device can perform whatever needed clean-ups to 1189 * stop supporting acceleration of FCoE traffic. 1190 * 1191 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1192 * struct scatterlist *sgl, unsigned int sgc); 1193 * Called when the FCoE Initiator wants to initialize an I/O that 1194 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1195 * perform necessary setup and returns 1 to indicate the device is set up 1196 * successfully to perform DDP on this I/O, otherwise this returns 0. 1197 * 1198 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1199 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1200 * indicated by the FC exchange id 'xid', so the underlying device can 1201 * clean up and reuse resources for later DDP requests. 1202 * 1203 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1204 * struct scatterlist *sgl, unsigned int sgc); 1205 * Called when the FCoE Target wants to initialize an I/O that 1206 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1207 * perform necessary setup and returns 1 to indicate the device is set up 1208 * successfully to perform DDP on this I/O, otherwise this returns 0. 1209 * 1210 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1211 * struct netdev_fcoe_hbainfo *hbainfo); 1212 * Called when the FCoE Protocol stack wants information on the underlying 1213 * device. This information is utilized by the FCoE protocol stack to 1214 * register attributes with Fiber Channel management service as per the 1215 * FC-GS Fabric Device Management Information(FDMI) specification. 1216 * 1217 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1218 * Called when the underlying device wants to override default World Wide 1219 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1220 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1221 * protocol stack to use. 1222 * 1223 * RFS acceleration. 1224 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1225 * u16 rxq_index, u32 flow_id); 1226 * Set hardware filter for RFS. rxq_index is the target queue index; 1227 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1228 * Return the filter ID on success, or a negative error code. 1229 * 1230 * Slave management functions (for bridge, bonding, etc). 1231 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1232 * Called to make another netdev an underling. 1233 * 1234 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1235 * Called to release previously enslaved netdev. 1236 * 1237 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1238 * struct sk_buff *skb, 1239 * bool all_slaves); 1240 * Get the xmit slave of master device. If all_slaves is true, function 1241 * assume all the slaves can transmit. 1242 * 1243 * Feature/offload setting functions. 1244 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1245 * netdev_features_t features); 1246 * Adjusts the requested feature flags according to device-specific 1247 * constraints, and returns the resulting flags. Must not modify 1248 * the device state. 1249 * 1250 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1251 * Called to update device configuration to new features. Passed 1252 * feature set might be less than what was returned by ndo_fix_features()). 1253 * Must return >0 or -errno if it changed dev->features itself. 1254 * 1255 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1256 * struct net_device *dev, 1257 * const unsigned char *addr, u16 vid, u16 flags, 1258 * struct netlink_ext_ack *extack); 1259 * Adds an FDB entry to dev for addr. 1260 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1261 * struct net_device *dev, 1262 * const unsigned char *addr, u16 vid) 1263 * Deletes the FDB entry from dev coresponding to addr. 1264 * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[], 1265 * struct net_device *dev, 1266 * u16 vid, 1267 * struct netlink_ext_ack *extack); 1268 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1269 * struct net_device *dev, struct net_device *filter_dev, 1270 * int *idx) 1271 * Used to add FDB entries to dump requests. Implementers should add 1272 * entries to skb and update idx with the number of entries. 1273 * 1274 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1275 * u16 flags, struct netlink_ext_ack *extack) 1276 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1277 * struct net_device *dev, u32 filter_mask, 1278 * int nlflags) 1279 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1280 * u16 flags); 1281 * 1282 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1283 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1284 * which do not represent real hardware may define this to allow their 1285 * userspace components to manage their virtual carrier state. Devices 1286 * that determine carrier state from physical hardware properties (eg 1287 * network cables) or protocol-dependent mechanisms (eg 1288 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1289 * 1290 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1291 * struct netdev_phys_item_id *ppid); 1292 * Called to get ID of physical port of this device. If driver does 1293 * not implement this, it is assumed that the hw is not able to have 1294 * multiple net devices on single physical port. 1295 * 1296 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1297 * struct netdev_phys_item_id *ppid) 1298 * Called to get the parent ID of the physical port of this device. 1299 * 1300 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1301 * struct net_device *dev) 1302 * Called by upper layer devices to accelerate switching or other 1303 * station functionality into hardware. 'pdev is the lowerdev 1304 * to use for the offload and 'dev' is the net device that will 1305 * back the offload. Returns a pointer to the private structure 1306 * the upper layer will maintain. 1307 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1308 * Called by upper layer device to delete the station created 1309 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1310 * the station and priv is the structure returned by the add 1311 * operation. 1312 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1313 * int queue_index, u32 maxrate); 1314 * Called when a user wants to set a max-rate limitation of specific 1315 * TX queue. 1316 * int (*ndo_get_iflink)(const struct net_device *dev); 1317 * Called to get the iflink value of this device. 1318 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1319 * This function is used to get egress tunnel information for given skb. 1320 * This is useful for retrieving outer tunnel header parameters while 1321 * sampling packet. 1322 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1323 * This function is used to specify the headroom that the skb must 1324 * consider when allocation skb during packet reception. Setting 1325 * appropriate rx headroom value allows avoiding skb head copy on 1326 * forward. Setting a negative value resets the rx headroom to the 1327 * default value. 1328 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1329 * This function is used to set or query state related to XDP on the 1330 * netdevice and manage BPF offload. See definition of 1331 * enum bpf_netdev_command for details. 1332 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1333 * u32 flags); 1334 * This function is used to submit @n XDP packets for transmit on a 1335 * netdevice. Returns number of frames successfully transmitted, frames 1336 * that got dropped are freed/returned via xdp_return_frame(). 1337 * Returns negative number, means general error invoking ndo, meaning 1338 * no frames were xmit'ed and core-caller will free all frames. 1339 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1340 * struct xdp_buff *xdp); 1341 * Get the xmit slave of master device based on the xdp_buff. 1342 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1343 * This function is used to wake up the softirq, ksoftirqd or kthread 1344 * responsible for sending and/or receiving packets on a specific 1345 * queue id bound to an AF_XDP socket. The flags field specifies if 1346 * only RX, only Tx, or both should be woken up using the flags 1347 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1348 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1349 * Get devlink port instance associated with a given netdev. 1350 * Called with a reference on the netdevice and devlink locks only, 1351 * rtnl_lock is not held. 1352 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1353 * int cmd); 1354 * Add, change, delete or get information on an IPv4 tunnel. 1355 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1356 * If a device is paired with a peer device, return the peer instance. 1357 * The caller must be under RCU read context. 1358 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1359 * Get the forwarding path to reach the real device from the HW destination address 1360 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1361 * const struct skb_shared_hwtstamps *hwtstamps, 1362 * bool cycles); 1363 * Get hardware timestamp based on normal/adjustable time or free running 1364 * cycle counter. This function is required if physical clock supports a 1365 * free running cycle counter. 1366 */ 1367 struct net_device_ops { 1368 int (*ndo_init)(struct net_device *dev); 1369 void (*ndo_uninit)(struct net_device *dev); 1370 int (*ndo_open)(struct net_device *dev); 1371 int (*ndo_stop)(struct net_device *dev); 1372 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1373 struct net_device *dev); 1374 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1375 struct net_device *dev, 1376 netdev_features_t features); 1377 u16 (*ndo_select_queue)(struct net_device *dev, 1378 struct sk_buff *skb, 1379 struct net_device *sb_dev); 1380 void (*ndo_change_rx_flags)(struct net_device *dev, 1381 int flags); 1382 void (*ndo_set_rx_mode)(struct net_device *dev); 1383 int (*ndo_set_mac_address)(struct net_device *dev, 1384 void *addr); 1385 int (*ndo_validate_addr)(struct net_device *dev); 1386 int (*ndo_do_ioctl)(struct net_device *dev, 1387 struct ifreq *ifr, int cmd); 1388 int (*ndo_eth_ioctl)(struct net_device *dev, 1389 struct ifreq *ifr, int cmd); 1390 int (*ndo_siocbond)(struct net_device *dev, 1391 struct ifreq *ifr, int cmd); 1392 int (*ndo_siocwandev)(struct net_device *dev, 1393 struct if_settings *ifs); 1394 int (*ndo_siocdevprivate)(struct net_device *dev, 1395 struct ifreq *ifr, 1396 void __user *data, int cmd); 1397 int (*ndo_set_config)(struct net_device *dev, 1398 struct ifmap *map); 1399 int (*ndo_change_mtu)(struct net_device *dev, 1400 int new_mtu); 1401 int (*ndo_neigh_setup)(struct net_device *dev, 1402 struct neigh_parms *); 1403 void (*ndo_tx_timeout) (struct net_device *dev, 1404 unsigned int txqueue); 1405 1406 void (*ndo_get_stats64)(struct net_device *dev, 1407 struct rtnl_link_stats64 *storage); 1408 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1409 int (*ndo_get_offload_stats)(int attr_id, 1410 const struct net_device *dev, 1411 void *attr_data); 1412 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1413 1414 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1415 __be16 proto, u16 vid); 1416 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1417 __be16 proto, u16 vid); 1418 #ifdef CONFIG_NET_POLL_CONTROLLER 1419 void (*ndo_poll_controller)(struct net_device *dev); 1420 int (*ndo_netpoll_setup)(struct net_device *dev, 1421 struct netpoll_info *info); 1422 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1423 #endif 1424 int (*ndo_set_vf_mac)(struct net_device *dev, 1425 int queue, u8 *mac); 1426 int (*ndo_set_vf_vlan)(struct net_device *dev, 1427 int queue, u16 vlan, 1428 u8 qos, __be16 proto); 1429 int (*ndo_set_vf_rate)(struct net_device *dev, 1430 int vf, int min_tx_rate, 1431 int max_tx_rate); 1432 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1433 int vf, bool setting); 1434 int (*ndo_set_vf_trust)(struct net_device *dev, 1435 int vf, bool setting); 1436 int (*ndo_get_vf_config)(struct net_device *dev, 1437 int vf, 1438 struct ifla_vf_info *ivf); 1439 int (*ndo_set_vf_link_state)(struct net_device *dev, 1440 int vf, int link_state); 1441 int (*ndo_get_vf_stats)(struct net_device *dev, 1442 int vf, 1443 struct ifla_vf_stats 1444 *vf_stats); 1445 int (*ndo_set_vf_port)(struct net_device *dev, 1446 int vf, 1447 struct nlattr *port[]); 1448 int (*ndo_get_vf_port)(struct net_device *dev, 1449 int vf, struct sk_buff *skb); 1450 int (*ndo_get_vf_guid)(struct net_device *dev, 1451 int vf, 1452 struct ifla_vf_guid *node_guid, 1453 struct ifla_vf_guid *port_guid); 1454 int (*ndo_set_vf_guid)(struct net_device *dev, 1455 int vf, u64 guid, 1456 int guid_type); 1457 int (*ndo_set_vf_rss_query_en)( 1458 struct net_device *dev, 1459 int vf, bool setting); 1460 int (*ndo_setup_tc)(struct net_device *dev, 1461 enum tc_setup_type type, 1462 void *type_data); 1463 #if IS_ENABLED(CONFIG_FCOE) 1464 int (*ndo_fcoe_enable)(struct net_device *dev); 1465 int (*ndo_fcoe_disable)(struct net_device *dev); 1466 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1467 u16 xid, 1468 struct scatterlist *sgl, 1469 unsigned int sgc); 1470 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1471 u16 xid); 1472 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1473 u16 xid, 1474 struct scatterlist *sgl, 1475 unsigned int sgc); 1476 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1477 struct netdev_fcoe_hbainfo *hbainfo); 1478 #endif 1479 1480 #if IS_ENABLED(CONFIG_LIBFCOE) 1481 #define NETDEV_FCOE_WWNN 0 1482 #define NETDEV_FCOE_WWPN 1 1483 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1484 u64 *wwn, int type); 1485 #endif 1486 1487 #ifdef CONFIG_RFS_ACCEL 1488 int (*ndo_rx_flow_steer)(struct net_device *dev, 1489 const struct sk_buff *skb, 1490 u16 rxq_index, 1491 u32 flow_id); 1492 #endif 1493 int (*ndo_add_slave)(struct net_device *dev, 1494 struct net_device *slave_dev, 1495 struct netlink_ext_ack *extack); 1496 int (*ndo_del_slave)(struct net_device *dev, 1497 struct net_device *slave_dev); 1498 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1499 struct sk_buff *skb, 1500 bool all_slaves); 1501 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1502 struct sock *sk); 1503 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1504 netdev_features_t features); 1505 int (*ndo_set_features)(struct net_device *dev, 1506 netdev_features_t features); 1507 int (*ndo_neigh_construct)(struct net_device *dev, 1508 struct neighbour *n); 1509 void (*ndo_neigh_destroy)(struct net_device *dev, 1510 struct neighbour *n); 1511 1512 int (*ndo_fdb_add)(struct ndmsg *ndm, 1513 struct nlattr *tb[], 1514 struct net_device *dev, 1515 const unsigned char *addr, 1516 u16 vid, 1517 u16 flags, 1518 struct netlink_ext_ack *extack); 1519 int (*ndo_fdb_del)(struct ndmsg *ndm, 1520 struct nlattr *tb[], 1521 struct net_device *dev, 1522 const unsigned char *addr, 1523 u16 vid, struct netlink_ext_ack *extack); 1524 int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, 1525 struct nlattr *tb[], 1526 struct net_device *dev, 1527 u16 vid, 1528 struct netlink_ext_ack *extack); 1529 int (*ndo_fdb_dump)(struct sk_buff *skb, 1530 struct netlink_callback *cb, 1531 struct net_device *dev, 1532 struct net_device *filter_dev, 1533 int *idx); 1534 int (*ndo_fdb_get)(struct sk_buff *skb, 1535 struct nlattr *tb[], 1536 struct net_device *dev, 1537 const unsigned char *addr, 1538 u16 vid, u32 portid, u32 seq, 1539 struct netlink_ext_ack *extack); 1540 int (*ndo_bridge_setlink)(struct net_device *dev, 1541 struct nlmsghdr *nlh, 1542 u16 flags, 1543 struct netlink_ext_ack *extack); 1544 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1545 u32 pid, u32 seq, 1546 struct net_device *dev, 1547 u32 filter_mask, 1548 int nlflags); 1549 int (*ndo_bridge_dellink)(struct net_device *dev, 1550 struct nlmsghdr *nlh, 1551 u16 flags); 1552 int (*ndo_change_carrier)(struct net_device *dev, 1553 bool new_carrier); 1554 int (*ndo_get_phys_port_id)(struct net_device *dev, 1555 struct netdev_phys_item_id *ppid); 1556 int (*ndo_get_port_parent_id)(struct net_device *dev, 1557 struct netdev_phys_item_id *ppid); 1558 int (*ndo_get_phys_port_name)(struct net_device *dev, 1559 char *name, size_t len); 1560 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1561 struct net_device *dev); 1562 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1563 void *priv); 1564 1565 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1566 int queue_index, 1567 u32 maxrate); 1568 int (*ndo_get_iflink)(const struct net_device *dev); 1569 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1570 struct sk_buff *skb); 1571 void (*ndo_set_rx_headroom)(struct net_device *dev, 1572 int needed_headroom); 1573 int (*ndo_bpf)(struct net_device *dev, 1574 struct netdev_bpf *bpf); 1575 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1576 struct xdp_frame **xdp, 1577 u32 flags); 1578 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1579 struct xdp_buff *xdp); 1580 int (*ndo_xsk_wakeup)(struct net_device *dev, 1581 u32 queue_id, u32 flags); 1582 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1583 int (*ndo_tunnel_ctl)(struct net_device *dev, 1584 struct ip_tunnel_parm *p, int cmd); 1585 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1586 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1587 struct net_device_path *path); 1588 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1589 const struct skb_shared_hwtstamps *hwtstamps, 1590 bool cycles); 1591 }; 1592 1593 /** 1594 * enum netdev_priv_flags - &struct net_device priv_flags 1595 * 1596 * These are the &struct net_device, they are only set internally 1597 * by drivers and used in the kernel. These flags are invisible to 1598 * userspace; this means that the order of these flags can change 1599 * during any kernel release. 1600 * 1601 * You should have a pretty good reason to be extending these flags. 1602 * 1603 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1604 * @IFF_EBRIDGE: Ethernet bridging device 1605 * @IFF_BONDING: bonding master or slave 1606 * @IFF_ISATAP: ISATAP interface (RFC4214) 1607 * @IFF_WAN_HDLC: WAN HDLC device 1608 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1609 * release skb->dst 1610 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1611 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1612 * @IFF_MACVLAN_PORT: device used as macvlan port 1613 * @IFF_BRIDGE_PORT: device used as bridge port 1614 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1615 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1616 * @IFF_UNICAST_FLT: Supports unicast filtering 1617 * @IFF_TEAM_PORT: device used as team port 1618 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1619 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1620 * change when it's running 1621 * @IFF_MACVLAN: Macvlan device 1622 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1623 * underlying stacked devices 1624 * @IFF_L3MDEV_MASTER: device is an L3 master device 1625 * @IFF_NO_QUEUE: device can run without qdisc attached 1626 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1627 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1628 * @IFF_TEAM: device is a team device 1629 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1630 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1631 * entity (i.e. the master device for bridged veth) 1632 * @IFF_MACSEC: device is a MACsec device 1633 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1634 * @IFF_FAILOVER: device is a failover master device 1635 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1636 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1637 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1638 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1639 * skb_headlen(skb) == 0 (data starts from frag0) 1640 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1641 */ 1642 enum netdev_priv_flags { 1643 IFF_802_1Q_VLAN = 1<<0, 1644 IFF_EBRIDGE = 1<<1, 1645 IFF_BONDING = 1<<2, 1646 IFF_ISATAP = 1<<3, 1647 IFF_WAN_HDLC = 1<<4, 1648 IFF_XMIT_DST_RELEASE = 1<<5, 1649 IFF_DONT_BRIDGE = 1<<6, 1650 IFF_DISABLE_NETPOLL = 1<<7, 1651 IFF_MACVLAN_PORT = 1<<8, 1652 IFF_BRIDGE_PORT = 1<<9, 1653 IFF_OVS_DATAPATH = 1<<10, 1654 IFF_TX_SKB_SHARING = 1<<11, 1655 IFF_UNICAST_FLT = 1<<12, 1656 IFF_TEAM_PORT = 1<<13, 1657 IFF_SUPP_NOFCS = 1<<14, 1658 IFF_LIVE_ADDR_CHANGE = 1<<15, 1659 IFF_MACVLAN = 1<<16, 1660 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1661 IFF_L3MDEV_MASTER = 1<<18, 1662 IFF_NO_QUEUE = 1<<19, 1663 IFF_OPENVSWITCH = 1<<20, 1664 IFF_L3MDEV_SLAVE = 1<<21, 1665 IFF_TEAM = 1<<22, 1666 IFF_RXFH_CONFIGURED = 1<<23, 1667 IFF_PHONY_HEADROOM = 1<<24, 1668 IFF_MACSEC = 1<<25, 1669 IFF_NO_RX_HANDLER = 1<<26, 1670 IFF_FAILOVER = 1<<27, 1671 IFF_FAILOVER_SLAVE = 1<<28, 1672 IFF_L3MDEV_RX_HANDLER = 1<<29, 1673 IFF_LIVE_RENAME_OK = 1<<30, 1674 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1675 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1676 }; 1677 1678 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1679 #define IFF_EBRIDGE IFF_EBRIDGE 1680 #define IFF_BONDING IFF_BONDING 1681 #define IFF_ISATAP IFF_ISATAP 1682 #define IFF_WAN_HDLC IFF_WAN_HDLC 1683 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1684 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1685 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1686 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1687 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1688 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1689 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1690 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1691 #define IFF_TEAM_PORT IFF_TEAM_PORT 1692 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1693 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1694 #define IFF_MACVLAN IFF_MACVLAN 1695 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1696 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1697 #define IFF_NO_QUEUE IFF_NO_QUEUE 1698 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1699 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1700 #define IFF_TEAM IFF_TEAM 1701 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1702 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1703 #define IFF_MACSEC IFF_MACSEC 1704 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1705 #define IFF_FAILOVER IFF_FAILOVER 1706 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1707 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1708 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1709 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1710 1711 /* Specifies the type of the struct net_device::ml_priv pointer */ 1712 enum netdev_ml_priv_type { 1713 ML_PRIV_NONE, 1714 ML_PRIV_CAN, 1715 }; 1716 1717 /** 1718 * struct net_device - The DEVICE structure. 1719 * 1720 * Actually, this whole structure is a big mistake. It mixes I/O 1721 * data with strictly "high-level" data, and it has to know about 1722 * almost every data structure used in the INET module. 1723 * 1724 * @name: This is the first field of the "visible" part of this structure 1725 * (i.e. as seen by users in the "Space.c" file). It is the name 1726 * of the interface. 1727 * 1728 * @name_node: Name hashlist node 1729 * @ifalias: SNMP alias 1730 * @mem_end: Shared memory end 1731 * @mem_start: Shared memory start 1732 * @base_addr: Device I/O address 1733 * @irq: Device IRQ number 1734 * 1735 * @state: Generic network queuing layer state, see netdev_state_t 1736 * @dev_list: The global list of network devices 1737 * @napi_list: List entry used for polling NAPI devices 1738 * @unreg_list: List entry when we are unregistering the 1739 * device; see the function unregister_netdev 1740 * @close_list: List entry used when we are closing the device 1741 * @ptype_all: Device-specific packet handlers for all protocols 1742 * @ptype_specific: Device-specific, protocol-specific packet handlers 1743 * 1744 * @adj_list: Directly linked devices, like slaves for bonding 1745 * @features: Currently active device features 1746 * @hw_features: User-changeable features 1747 * 1748 * @wanted_features: User-requested features 1749 * @vlan_features: Mask of features inheritable by VLAN devices 1750 * 1751 * @hw_enc_features: Mask of features inherited by encapsulating devices 1752 * This field indicates what encapsulation 1753 * offloads the hardware is capable of doing, 1754 * and drivers will need to set them appropriately. 1755 * 1756 * @mpls_features: Mask of features inheritable by MPLS 1757 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1758 * 1759 * @ifindex: interface index 1760 * @group: The group the device belongs to 1761 * 1762 * @stats: Statistics struct, which was left as a legacy, use 1763 * rtnl_link_stats64 instead 1764 * 1765 * @core_stats: core networking counters, 1766 * do not use this in drivers 1767 * @carrier_up_count: Number of times the carrier has been up 1768 * @carrier_down_count: Number of times the carrier has been down 1769 * 1770 * @wireless_handlers: List of functions to handle Wireless Extensions, 1771 * instead of ioctl, 1772 * see <net/iw_handler.h> for details. 1773 * @wireless_data: Instance data managed by the core of wireless extensions 1774 * 1775 * @netdev_ops: Includes several pointers to callbacks, 1776 * if one wants to override the ndo_*() functions 1777 * @ethtool_ops: Management operations 1778 * @l3mdev_ops: Layer 3 master device operations 1779 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1780 * discovery handling. Necessary for e.g. 6LoWPAN. 1781 * @xfrmdev_ops: Transformation offload operations 1782 * @tlsdev_ops: Transport Layer Security offload operations 1783 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1784 * of Layer 2 headers. 1785 * 1786 * @flags: Interface flags (a la BSD) 1787 * @priv_flags: Like 'flags' but invisible to userspace, 1788 * see if.h for the definitions 1789 * @gflags: Global flags ( kept as legacy ) 1790 * @padded: How much padding added by alloc_netdev() 1791 * @operstate: RFC2863 operstate 1792 * @link_mode: Mapping policy to operstate 1793 * @if_port: Selectable AUI, TP, ... 1794 * @dma: DMA channel 1795 * @mtu: Interface MTU value 1796 * @min_mtu: Interface Minimum MTU value 1797 * @max_mtu: Interface Maximum MTU value 1798 * @type: Interface hardware type 1799 * @hard_header_len: Maximum hardware header length. 1800 * @min_header_len: Minimum hardware header length 1801 * 1802 * @needed_headroom: Extra headroom the hardware may need, but not in all 1803 * cases can this be guaranteed 1804 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1805 * cases can this be guaranteed. Some cases also use 1806 * LL_MAX_HEADER instead to allocate the skb 1807 * 1808 * interface address info: 1809 * 1810 * @perm_addr: Permanent hw address 1811 * @addr_assign_type: Hw address assignment type 1812 * @addr_len: Hardware address length 1813 * @upper_level: Maximum depth level of upper devices. 1814 * @lower_level: Maximum depth level of lower devices. 1815 * @neigh_priv_len: Used in neigh_alloc() 1816 * @dev_id: Used to differentiate devices that share 1817 * the same link layer address 1818 * @dev_port: Used to differentiate devices that share 1819 * the same function 1820 * @addr_list_lock: XXX: need comments on this one 1821 * @name_assign_type: network interface name assignment type 1822 * @uc_promisc: Counter that indicates promiscuous mode 1823 * has been enabled due to the need to listen to 1824 * additional unicast addresses in a device that 1825 * does not implement ndo_set_rx_mode() 1826 * @uc: unicast mac addresses 1827 * @mc: multicast mac addresses 1828 * @dev_addrs: list of device hw addresses 1829 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1830 * @promiscuity: Number of times the NIC is told to work in 1831 * promiscuous mode; if it becomes 0 the NIC will 1832 * exit promiscuous mode 1833 * @allmulti: Counter, enables or disables allmulticast mode 1834 * 1835 * @vlan_info: VLAN info 1836 * @dsa_ptr: dsa specific data 1837 * @tipc_ptr: TIPC specific data 1838 * @atalk_ptr: AppleTalk link 1839 * @ip_ptr: IPv4 specific data 1840 * @dn_ptr: DECnet specific data 1841 * @ip6_ptr: IPv6 specific data 1842 * @ax25_ptr: AX.25 specific data 1843 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1844 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1845 * device struct 1846 * @mpls_ptr: mpls_dev struct pointer 1847 * @mctp_ptr: MCTP specific data 1848 * 1849 * @dev_addr: Hw address (before bcast, 1850 * because most packets are unicast) 1851 * 1852 * @_rx: Array of RX queues 1853 * @num_rx_queues: Number of RX queues 1854 * allocated at register_netdev() time 1855 * @real_num_rx_queues: Number of RX queues currently active in device 1856 * @xdp_prog: XDP sockets filter program pointer 1857 * @gro_flush_timeout: timeout for GRO layer in NAPI 1858 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1859 * allow to avoid NIC hard IRQ, on busy queues. 1860 * 1861 * @rx_handler: handler for received packets 1862 * @rx_handler_data: XXX: need comments on this one 1863 * @miniq_ingress: ingress/clsact qdisc specific data for 1864 * ingress processing 1865 * @ingress_queue: XXX: need comments on this one 1866 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1867 * @broadcast: hw bcast address 1868 * 1869 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1870 * indexed by RX queue number. Assigned by driver. 1871 * This must only be set if the ndo_rx_flow_steer 1872 * operation is defined 1873 * @index_hlist: Device index hash chain 1874 * 1875 * @_tx: Array of TX queues 1876 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1877 * @real_num_tx_queues: Number of TX queues currently active in device 1878 * @qdisc: Root qdisc from userspace point of view 1879 * @tx_queue_len: Max frames per queue allowed 1880 * @tx_global_lock: XXX: need comments on this one 1881 * @xdp_bulkq: XDP device bulk queue 1882 * @xps_maps: all CPUs/RXQs maps for XPS device 1883 * 1884 * @xps_maps: XXX: need comments on this one 1885 * @miniq_egress: clsact qdisc specific data for 1886 * egress processing 1887 * @nf_hooks_egress: netfilter hooks executed for egress packets 1888 * @qdisc_hash: qdisc hash table 1889 * @watchdog_timeo: Represents the timeout that is used by 1890 * the watchdog (see dev_watchdog()) 1891 * @watchdog_timer: List of timers 1892 * 1893 * @proto_down_reason: reason a netdev interface is held down 1894 * @pcpu_refcnt: Number of references to this device 1895 * @dev_refcnt: Number of references to this device 1896 * @refcnt_tracker: Tracker directory for tracked references to this device 1897 * @todo_list: Delayed register/unregister 1898 * @link_watch_list: XXX: need comments on this one 1899 * 1900 * @reg_state: Register/unregister state machine 1901 * @dismantle: Device is going to be freed 1902 * @rtnl_link_state: This enum represents the phases of creating 1903 * a new link 1904 * 1905 * @needs_free_netdev: Should unregister perform free_netdev? 1906 * @priv_destructor: Called from unregister 1907 * @npinfo: XXX: need comments on this one 1908 * @nd_net: Network namespace this network device is inside 1909 * 1910 * @ml_priv: Mid-layer private 1911 * @ml_priv_type: Mid-layer private type 1912 * @lstats: Loopback statistics 1913 * @tstats: Tunnel statistics 1914 * @dstats: Dummy statistics 1915 * @vstats: Virtual ethernet statistics 1916 * 1917 * @garp_port: GARP 1918 * @mrp_port: MRP 1919 * 1920 * @dm_private: Drop monitor private 1921 * 1922 * @dev: Class/net/name entry 1923 * @sysfs_groups: Space for optional device, statistics and wireless 1924 * sysfs groups 1925 * 1926 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1927 * @rtnl_link_ops: Rtnl_link_ops 1928 * 1929 * @gso_max_size: Maximum size of generic segmentation offload 1930 * @tso_max_size: Device (as in HW) limit on the max TSO request size 1931 * @gso_max_segs: Maximum number of segments that can be passed to the 1932 * NIC for GSO 1933 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 1934 * 1935 * @dcbnl_ops: Data Center Bridging netlink ops 1936 * @num_tc: Number of traffic classes in the net device 1937 * @tc_to_txq: XXX: need comments on this one 1938 * @prio_tc_map: XXX: need comments on this one 1939 * 1940 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1941 * 1942 * @priomap: XXX: need comments on this one 1943 * @phydev: Physical device may attach itself 1944 * for hardware timestamping 1945 * @sfp_bus: attached &struct sfp_bus structure. 1946 * 1947 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1948 * 1949 * @proto_down: protocol port state information can be sent to the 1950 * switch driver and used to set the phys state of the 1951 * switch port. 1952 * 1953 * @wol_enabled: Wake-on-LAN is enabled 1954 * 1955 * @threaded: napi threaded mode is enabled 1956 * 1957 * @net_notifier_list: List of per-net netdev notifier block 1958 * that follow this device when it is moved 1959 * to another network namespace. 1960 * 1961 * @macsec_ops: MACsec offloading ops 1962 * 1963 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 1964 * offload capabilities of the device 1965 * @udp_tunnel_nic: UDP tunnel offload state 1966 * @xdp_state: stores info on attached XDP BPF programs 1967 * 1968 * @nested_level: Used as a parameter of spin_lock_nested() of 1969 * dev->addr_list_lock. 1970 * @unlink_list: As netif_addr_lock() can be called recursively, 1971 * keep a list of interfaces to be deleted. 1972 * @gro_max_size: Maximum size of aggregated packet in generic 1973 * receive offload (GRO) 1974 * 1975 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 1976 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 1977 * @watchdog_dev_tracker: refcount tracker used by watchdog. 1978 * @dev_registered_tracker: tracker for reference held while 1979 * registered 1980 * @offload_xstats_l3: L3 HW stats for this netdevice. 1981 * 1982 * FIXME: cleanup struct net_device such that network protocol info 1983 * moves out. 1984 */ 1985 1986 struct net_device { 1987 char name[IFNAMSIZ]; 1988 struct netdev_name_node *name_node; 1989 struct dev_ifalias __rcu *ifalias; 1990 /* 1991 * I/O specific fields 1992 * FIXME: Merge these and struct ifmap into one 1993 */ 1994 unsigned long mem_end; 1995 unsigned long mem_start; 1996 unsigned long base_addr; 1997 1998 /* 1999 * Some hardware also needs these fields (state,dev_list, 2000 * napi_list,unreg_list,close_list) but they are not 2001 * part of the usual set specified in Space.c. 2002 */ 2003 2004 unsigned long state; 2005 2006 struct list_head dev_list; 2007 struct list_head napi_list; 2008 struct list_head unreg_list; 2009 struct list_head close_list; 2010 struct list_head ptype_all; 2011 struct list_head ptype_specific; 2012 2013 struct { 2014 struct list_head upper; 2015 struct list_head lower; 2016 } adj_list; 2017 2018 /* Read-mostly cache-line for fast-path access */ 2019 unsigned int flags; 2020 unsigned long long priv_flags; 2021 const struct net_device_ops *netdev_ops; 2022 int ifindex; 2023 unsigned short gflags; 2024 unsigned short hard_header_len; 2025 2026 /* Note : dev->mtu is often read without holding a lock. 2027 * Writers usually hold RTNL. 2028 * It is recommended to use READ_ONCE() to annotate the reads, 2029 * and to use WRITE_ONCE() to annotate the writes. 2030 */ 2031 unsigned int mtu; 2032 unsigned short needed_headroom; 2033 unsigned short needed_tailroom; 2034 2035 netdev_features_t features; 2036 netdev_features_t hw_features; 2037 netdev_features_t wanted_features; 2038 netdev_features_t vlan_features; 2039 netdev_features_t hw_enc_features; 2040 netdev_features_t mpls_features; 2041 netdev_features_t gso_partial_features; 2042 2043 unsigned int min_mtu; 2044 unsigned int max_mtu; 2045 unsigned short type; 2046 unsigned char min_header_len; 2047 unsigned char name_assign_type; 2048 2049 int group; 2050 2051 struct net_device_stats stats; /* not used by modern drivers */ 2052 2053 struct net_device_core_stats __percpu *core_stats; 2054 2055 /* Stats to monitor link on/off, flapping */ 2056 atomic_t carrier_up_count; 2057 atomic_t carrier_down_count; 2058 2059 #ifdef CONFIG_WIRELESS_EXT 2060 const struct iw_handler_def *wireless_handlers; 2061 struct iw_public_data *wireless_data; 2062 #endif 2063 const struct ethtool_ops *ethtool_ops; 2064 #ifdef CONFIG_NET_L3_MASTER_DEV 2065 const struct l3mdev_ops *l3mdev_ops; 2066 #endif 2067 #if IS_ENABLED(CONFIG_IPV6) 2068 const struct ndisc_ops *ndisc_ops; 2069 #endif 2070 2071 #ifdef CONFIG_XFRM_OFFLOAD 2072 const struct xfrmdev_ops *xfrmdev_ops; 2073 #endif 2074 2075 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2076 const struct tlsdev_ops *tlsdev_ops; 2077 #endif 2078 2079 const struct header_ops *header_ops; 2080 2081 unsigned char operstate; 2082 unsigned char link_mode; 2083 2084 unsigned char if_port; 2085 unsigned char dma; 2086 2087 /* Interface address info. */ 2088 unsigned char perm_addr[MAX_ADDR_LEN]; 2089 unsigned char addr_assign_type; 2090 unsigned char addr_len; 2091 unsigned char upper_level; 2092 unsigned char lower_level; 2093 2094 unsigned short neigh_priv_len; 2095 unsigned short dev_id; 2096 unsigned short dev_port; 2097 unsigned short padded; 2098 2099 spinlock_t addr_list_lock; 2100 int irq; 2101 2102 struct netdev_hw_addr_list uc; 2103 struct netdev_hw_addr_list mc; 2104 struct netdev_hw_addr_list dev_addrs; 2105 2106 #ifdef CONFIG_SYSFS 2107 struct kset *queues_kset; 2108 #endif 2109 #ifdef CONFIG_LOCKDEP 2110 struct list_head unlink_list; 2111 #endif 2112 unsigned int promiscuity; 2113 unsigned int allmulti; 2114 bool uc_promisc; 2115 #ifdef CONFIG_LOCKDEP 2116 unsigned char nested_level; 2117 #endif 2118 2119 2120 /* Protocol-specific pointers */ 2121 2122 struct in_device __rcu *ip_ptr; 2123 struct inet6_dev __rcu *ip6_ptr; 2124 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2125 struct vlan_info __rcu *vlan_info; 2126 #endif 2127 #if IS_ENABLED(CONFIG_NET_DSA) 2128 struct dsa_port *dsa_ptr; 2129 #endif 2130 #if IS_ENABLED(CONFIG_TIPC) 2131 struct tipc_bearer __rcu *tipc_ptr; 2132 #endif 2133 #if IS_ENABLED(CONFIG_ATALK) 2134 void *atalk_ptr; 2135 #endif 2136 #if IS_ENABLED(CONFIG_DECNET) 2137 struct dn_dev __rcu *dn_ptr; 2138 #endif 2139 #if IS_ENABLED(CONFIG_AX25) 2140 void *ax25_ptr; 2141 #endif 2142 #if IS_ENABLED(CONFIG_CFG80211) 2143 struct wireless_dev *ieee80211_ptr; 2144 #endif 2145 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2146 struct wpan_dev *ieee802154_ptr; 2147 #endif 2148 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2149 struct mpls_dev __rcu *mpls_ptr; 2150 #endif 2151 #if IS_ENABLED(CONFIG_MCTP) 2152 struct mctp_dev __rcu *mctp_ptr; 2153 #endif 2154 2155 /* 2156 * Cache lines mostly used on receive path (including eth_type_trans()) 2157 */ 2158 /* Interface address info used in eth_type_trans() */ 2159 const unsigned char *dev_addr; 2160 2161 struct netdev_rx_queue *_rx; 2162 unsigned int num_rx_queues; 2163 unsigned int real_num_rx_queues; 2164 2165 struct bpf_prog __rcu *xdp_prog; 2166 unsigned long gro_flush_timeout; 2167 int napi_defer_hard_irqs; 2168 #define GRO_LEGACY_MAX_SIZE 65536u 2169 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2170 * and shinfo->gso_segs is a 16bit field. 2171 */ 2172 #define GRO_MAX_SIZE (8 * 65535u) 2173 unsigned int gro_max_size; 2174 rx_handler_func_t __rcu *rx_handler; 2175 void __rcu *rx_handler_data; 2176 2177 #ifdef CONFIG_NET_CLS_ACT 2178 struct mini_Qdisc __rcu *miniq_ingress; 2179 #endif 2180 struct netdev_queue __rcu *ingress_queue; 2181 #ifdef CONFIG_NETFILTER_INGRESS 2182 struct nf_hook_entries __rcu *nf_hooks_ingress; 2183 #endif 2184 2185 unsigned char broadcast[MAX_ADDR_LEN]; 2186 #ifdef CONFIG_RFS_ACCEL 2187 struct cpu_rmap *rx_cpu_rmap; 2188 #endif 2189 struct hlist_node index_hlist; 2190 2191 /* 2192 * Cache lines mostly used on transmit path 2193 */ 2194 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2195 unsigned int num_tx_queues; 2196 unsigned int real_num_tx_queues; 2197 struct Qdisc __rcu *qdisc; 2198 unsigned int tx_queue_len; 2199 spinlock_t tx_global_lock; 2200 2201 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2202 2203 #ifdef CONFIG_XPS 2204 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2205 #endif 2206 #ifdef CONFIG_NET_CLS_ACT 2207 struct mini_Qdisc __rcu *miniq_egress; 2208 #endif 2209 #ifdef CONFIG_NETFILTER_EGRESS 2210 struct nf_hook_entries __rcu *nf_hooks_egress; 2211 #endif 2212 2213 #ifdef CONFIG_NET_SCHED 2214 DECLARE_HASHTABLE (qdisc_hash, 4); 2215 #endif 2216 /* These may be needed for future network-power-down code. */ 2217 struct timer_list watchdog_timer; 2218 int watchdog_timeo; 2219 2220 u32 proto_down_reason; 2221 2222 struct list_head todo_list; 2223 2224 #ifdef CONFIG_PCPU_DEV_REFCNT 2225 int __percpu *pcpu_refcnt; 2226 #else 2227 refcount_t dev_refcnt; 2228 #endif 2229 struct ref_tracker_dir refcnt_tracker; 2230 2231 struct list_head link_watch_list; 2232 2233 enum { NETREG_UNINITIALIZED=0, 2234 NETREG_REGISTERED, /* completed register_netdevice */ 2235 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2236 NETREG_UNREGISTERED, /* completed unregister todo */ 2237 NETREG_RELEASED, /* called free_netdev */ 2238 NETREG_DUMMY, /* dummy device for NAPI poll */ 2239 } reg_state:8; 2240 2241 bool dismantle; 2242 2243 enum { 2244 RTNL_LINK_INITIALIZED, 2245 RTNL_LINK_INITIALIZING, 2246 } rtnl_link_state:16; 2247 2248 bool needs_free_netdev; 2249 void (*priv_destructor)(struct net_device *dev); 2250 2251 #ifdef CONFIG_NETPOLL 2252 struct netpoll_info __rcu *npinfo; 2253 #endif 2254 2255 possible_net_t nd_net; 2256 2257 /* mid-layer private */ 2258 void *ml_priv; 2259 enum netdev_ml_priv_type ml_priv_type; 2260 2261 union { 2262 struct pcpu_lstats __percpu *lstats; 2263 struct pcpu_sw_netstats __percpu *tstats; 2264 struct pcpu_dstats __percpu *dstats; 2265 }; 2266 2267 #if IS_ENABLED(CONFIG_GARP) 2268 struct garp_port __rcu *garp_port; 2269 #endif 2270 #if IS_ENABLED(CONFIG_MRP) 2271 struct mrp_port __rcu *mrp_port; 2272 #endif 2273 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2274 struct dm_hw_stat_delta __rcu *dm_private; 2275 #endif 2276 struct device dev; 2277 const struct attribute_group *sysfs_groups[4]; 2278 const struct attribute_group *sysfs_rx_queue_group; 2279 2280 const struct rtnl_link_ops *rtnl_link_ops; 2281 2282 /* for setting kernel sock attribute on TCP connection setup */ 2283 #define GSO_MAX_SEGS 65535u 2284 #define GSO_LEGACY_MAX_SIZE 65536u 2285 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2286 * and shinfo->gso_segs is a 16bit field. 2287 */ 2288 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2289 2290 unsigned int gso_max_size; 2291 #define TSO_LEGACY_MAX_SIZE 65536 2292 #define TSO_MAX_SIZE UINT_MAX 2293 unsigned int tso_max_size; 2294 u16 gso_max_segs; 2295 #define TSO_MAX_SEGS U16_MAX 2296 u16 tso_max_segs; 2297 2298 #ifdef CONFIG_DCB 2299 const struct dcbnl_rtnl_ops *dcbnl_ops; 2300 #endif 2301 s16 num_tc; 2302 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2303 u8 prio_tc_map[TC_BITMASK + 1]; 2304 2305 #if IS_ENABLED(CONFIG_FCOE) 2306 unsigned int fcoe_ddp_xid; 2307 #endif 2308 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2309 struct netprio_map __rcu *priomap; 2310 #endif 2311 struct phy_device *phydev; 2312 struct sfp_bus *sfp_bus; 2313 struct lock_class_key *qdisc_tx_busylock; 2314 bool proto_down; 2315 unsigned wol_enabled:1; 2316 unsigned threaded:1; 2317 2318 struct list_head net_notifier_list; 2319 2320 #if IS_ENABLED(CONFIG_MACSEC) 2321 /* MACsec management functions */ 2322 const struct macsec_ops *macsec_ops; 2323 #endif 2324 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2325 struct udp_tunnel_nic *udp_tunnel_nic; 2326 2327 /* protected by rtnl_lock */ 2328 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2329 2330 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2331 netdevice_tracker linkwatch_dev_tracker; 2332 netdevice_tracker watchdog_dev_tracker; 2333 netdevice_tracker dev_registered_tracker; 2334 struct rtnl_hw_stats64 *offload_xstats_l3; 2335 }; 2336 #define to_net_dev(d) container_of(d, struct net_device, dev) 2337 2338 static inline bool netif_elide_gro(const struct net_device *dev) 2339 { 2340 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2341 return true; 2342 return false; 2343 } 2344 2345 #define NETDEV_ALIGN 32 2346 2347 static inline 2348 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2349 { 2350 return dev->prio_tc_map[prio & TC_BITMASK]; 2351 } 2352 2353 static inline 2354 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2355 { 2356 if (tc >= dev->num_tc) 2357 return -EINVAL; 2358 2359 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2360 return 0; 2361 } 2362 2363 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2364 void netdev_reset_tc(struct net_device *dev); 2365 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2366 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2367 2368 static inline 2369 int netdev_get_num_tc(struct net_device *dev) 2370 { 2371 return dev->num_tc; 2372 } 2373 2374 static inline void net_prefetch(void *p) 2375 { 2376 prefetch(p); 2377 #if L1_CACHE_BYTES < 128 2378 prefetch((u8 *)p + L1_CACHE_BYTES); 2379 #endif 2380 } 2381 2382 static inline void net_prefetchw(void *p) 2383 { 2384 prefetchw(p); 2385 #if L1_CACHE_BYTES < 128 2386 prefetchw((u8 *)p + L1_CACHE_BYTES); 2387 #endif 2388 } 2389 2390 void netdev_unbind_sb_channel(struct net_device *dev, 2391 struct net_device *sb_dev); 2392 int netdev_bind_sb_channel_queue(struct net_device *dev, 2393 struct net_device *sb_dev, 2394 u8 tc, u16 count, u16 offset); 2395 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2396 static inline int netdev_get_sb_channel(struct net_device *dev) 2397 { 2398 return max_t(int, -dev->num_tc, 0); 2399 } 2400 2401 static inline 2402 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2403 unsigned int index) 2404 { 2405 return &dev->_tx[index]; 2406 } 2407 2408 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2409 const struct sk_buff *skb) 2410 { 2411 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2412 } 2413 2414 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2415 void (*f)(struct net_device *, 2416 struct netdev_queue *, 2417 void *), 2418 void *arg) 2419 { 2420 unsigned int i; 2421 2422 for (i = 0; i < dev->num_tx_queues; i++) 2423 f(dev, &dev->_tx[i], arg); 2424 } 2425 2426 #define netdev_lockdep_set_classes(dev) \ 2427 { \ 2428 static struct lock_class_key qdisc_tx_busylock_key; \ 2429 static struct lock_class_key qdisc_xmit_lock_key; \ 2430 static struct lock_class_key dev_addr_list_lock_key; \ 2431 unsigned int i; \ 2432 \ 2433 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2434 lockdep_set_class(&(dev)->addr_list_lock, \ 2435 &dev_addr_list_lock_key); \ 2436 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2437 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2438 &qdisc_xmit_lock_key); \ 2439 } 2440 2441 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2442 struct net_device *sb_dev); 2443 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2444 struct sk_buff *skb, 2445 struct net_device *sb_dev); 2446 2447 /* returns the headroom that the master device needs to take in account 2448 * when forwarding to this dev 2449 */ 2450 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2451 { 2452 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2453 } 2454 2455 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2456 { 2457 if (dev->netdev_ops->ndo_set_rx_headroom) 2458 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2459 } 2460 2461 /* set the device rx headroom to the dev's default */ 2462 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2463 { 2464 netdev_set_rx_headroom(dev, -1); 2465 } 2466 2467 static inline void *netdev_get_ml_priv(struct net_device *dev, 2468 enum netdev_ml_priv_type type) 2469 { 2470 if (dev->ml_priv_type != type) 2471 return NULL; 2472 2473 return dev->ml_priv; 2474 } 2475 2476 static inline void netdev_set_ml_priv(struct net_device *dev, 2477 void *ml_priv, 2478 enum netdev_ml_priv_type type) 2479 { 2480 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2481 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2482 dev->ml_priv_type, type); 2483 WARN(!dev->ml_priv_type && dev->ml_priv, 2484 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2485 2486 dev->ml_priv = ml_priv; 2487 dev->ml_priv_type = type; 2488 } 2489 2490 /* 2491 * Net namespace inlines 2492 */ 2493 static inline 2494 struct net *dev_net(const struct net_device *dev) 2495 { 2496 return read_pnet(&dev->nd_net); 2497 } 2498 2499 static inline 2500 void dev_net_set(struct net_device *dev, struct net *net) 2501 { 2502 write_pnet(&dev->nd_net, net); 2503 } 2504 2505 /** 2506 * netdev_priv - access network device private data 2507 * @dev: network device 2508 * 2509 * Get network device private data 2510 */ 2511 static inline void *netdev_priv(const struct net_device *dev) 2512 { 2513 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2514 } 2515 2516 /* Set the sysfs physical device reference for the network logical device 2517 * if set prior to registration will cause a symlink during initialization. 2518 */ 2519 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2520 2521 /* Set the sysfs device type for the network logical device to allow 2522 * fine-grained identification of different network device types. For 2523 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2524 */ 2525 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2526 2527 /* Default NAPI poll() weight 2528 * Device drivers are strongly advised to not use bigger value 2529 */ 2530 #define NAPI_POLL_WEIGHT 64 2531 2532 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2533 int (*poll)(struct napi_struct *, int), int weight); 2534 2535 /** 2536 * netif_napi_add() - initialize a NAPI context 2537 * @dev: network device 2538 * @napi: NAPI context 2539 * @poll: polling function 2540 * @weight: default weight 2541 * 2542 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2543 * *any* of the other NAPI-related functions. 2544 */ 2545 static inline void 2546 netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2547 int (*poll)(struct napi_struct *, int), int weight) 2548 { 2549 netif_napi_add_weight(dev, napi, poll, weight); 2550 } 2551 2552 static inline void 2553 netif_napi_add_tx_weight(struct net_device *dev, 2554 struct napi_struct *napi, 2555 int (*poll)(struct napi_struct *, int), 2556 int weight) 2557 { 2558 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2559 netif_napi_add_weight(dev, napi, poll, weight); 2560 } 2561 2562 #define netif_tx_napi_add netif_napi_add_tx_weight 2563 2564 /** 2565 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2566 * @dev: network device 2567 * @napi: NAPI context 2568 * @poll: polling function 2569 * 2570 * This variant of netif_napi_add() should be used from drivers using NAPI 2571 * to exclusively poll a TX queue. 2572 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2573 */ 2574 static inline void netif_napi_add_tx(struct net_device *dev, 2575 struct napi_struct *napi, 2576 int (*poll)(struct napi_struct *, int)) 2577 { 2578 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2579 } 2580 2581 /** 2582 * __netif_napi_del - remove a NAPI context 2583 * @napi: NAPI context 2584 * 2585 * Warning: caller must observe RCU grace period before freeing memory 2586 * containing @napi. Drivers might want to call this helper to combine 2587 * all the needed RCU grace periods into a single one. 2588 */ 2589 void __netif_napi_del(struct napi_struct *napi); 2590 2591 /** 2592 * netif_napi_del - remove a NAPI context 2593 * @napi: NAPI context 2594 * 2595 * netif_napi_del() removes a NAPI context from the network device NAPI list 2596 */ 2597 static inline void netif_napi_del(struct napi_struct *napi) 2598 { 2599 __netif_napi_del(napi); 2600 synchronize_net(); 2601 } 2602 2603 struct packet_type { 2604 __be16 type; /* This is really htons(ether_type). */ 2605 bool ignore_outgoing; 2606 struct net_device *dev; /* NULL is wildcarded here */ 2607 netdevice_tracker dev_tracker; 2608 int (*func) (struct sk_buff *, 2609 struct net_device *, 2610 struct packet_type *, 2611 struct net_device *); 2612 void (*list_func) (struct list_head *, 2613 struct packet_type *, 2614 struct net_device *); 2615 bool (*id_match)(struct packet_type *ptype, 2616 struct sock *sk); 2617 struct net *af_packet_net; 2618 void *af_packet_priv; 2619 struct list_head list; 2620 }; 2621 2622 struct offload_callbacks { 2623 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2624 netdev_features_t features); 2625 struct sk_buff *(*gro_receive)(struct list_head *head, 2626 struct sk_buff *skb); 2627 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2628 }; 2629 2630 struct packet_offload { 2631 __be16 type; /* This is really htons(ether_type). */ 2632 u16 priority; 2633 struct offload_callbacks callbacks; 2634 struct list_head list; 2635 }; 2636 2637 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2638 struct pcpu_sw_netstats { 2639 u64 rx_packets; 2640 u64 rx_bytes; 2641 u64 tx_packets; 2642 u64 tx_bytes; 2643 struct u64_stats_sync syncp; 2644 } __aligned(4 * sizeof(u64)); 2645 2646 struct pcpu_lstats { 2647 u64_stats_t packets; 2648 u64_stats_t bytes; 2649 struct u64_stats_sync syncp; 2650 } __aligned(2 * sizeof(u64)); 2651 2652 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2653 2654 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2655 { 2656 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2657 2658 u64_stats_update_begin(&tstats->syncp); 2659 tstats->rx_bytes += len; 2660 tstats->rx_packets++; 2661 u64_stats_update_end(&tstats->syncp); 2662 } 2663 2664 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2665 unsigned int packets, 2666 unsigned int len) 2667 { 2668 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2669 2670 u64_stats_update_begin(&tstats->syncp); 2671 tstats->tx_bytes += len; 2672 tstats->tx_packets += packets; 2673 u64_stats_update_end(&tstats->syncp); 2674 } 2675 2676 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2677 { 2678 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2679 2680 u64_stats_update_begin(&lstats->syncp); 2681 u64_stats_add(&lstats->bytes, len); 2682 u64_stats_inc(&lstats->packets); 2683 u64_stats_update_end(&lstats->syncp); 2684 } 2685 2686 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2687 ({ \ 2688 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2689 if (pcpu_stats) { \ 2690 int __cpu; \ 2691 for_each_possible_cpu(__cpu) { \ 2692 typeof(type) *stat; \ 2693 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2694 u64_stats_init(&stat->syncp); \ 2695 } \ 2696 } \ 2697 pcpu_stats; \ 2698 }) 2699 2700 #define netdev_alloc_pcpu_stats(type) \ 2701 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2702 2703 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2704 ({ \ 2705 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2706 if (pcpu_stats) { \ 2707 int __cpu; \ 2708 for_each_possible_cpu(__cpu) { \ 2709 typeof(type) *stat; \ 2710 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2711 u64_stats_init(&stat->syncp); \ 2712 } \ 2713 } \ 2714 pcpu_stats; \ 2715 }) 2716 2717 enum netdev_lag_tx_type { 2718 NETDEV_LAG_TX_TYPE_UNKNOWN, 2719 NETDEV_LAG_TX_TYPE_RANDOM, 2720 NETDEV_LAG_TX_TYPE_BROADCAST, 2721 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2722 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2723 NETDEV_LAG_TX_TYPE_HASH, 2724 }; 2725 2726 enum netdev_lag_hash { 2727 NETDEV_LAG_HASH_NONE, 2728 NETDEV_LAG_HASH_L2, 2729 NETDEV_LAG_HASH_L34, 2730 NETDEV_LAG_HASH_L23, 2731 NETDEV_LAG_HASH_E23, 2732 NETDEV_LAG_HASH_E34, 2733 NETDEV_LAG_HASH_VLAN_SRCMAC, 2734 NETDEV_LAG_HASH_UNKNOWN, 2735 }; 2736 2737 struct netdev_lag_upper_info { 2738 enum netdev_lag_tx_type tx_type; 2739 enum netdev_lag_hash hash_type; 2740 }; 2741 2742 struct netdev_lag_lower_state_info { 2743 u8 link_up : 1, 2744 tx_enabled : 1; 2745 }; 2746 2747 #include <linux/notifier.h> 2748 2749 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2750 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2751 * adding new types. 2752 */ 2753 enum netdev_cmd { 2754 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2755 NETDEV_DOWN, 2756 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2757 detected a hardware crash and restarted 2758 - we can use this eg to kick tcp sessions 2759 once done */ 2760 NETDEV_CHANGE, /* Notify device state change */ 2761 NETDEV_REGISTER, 2762 NETDEV_UNREGISTER, 2763 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2764 NETDEV_CHANGEADDR, /* notify after the address change */ 2765 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2766 NETDEV_GOING_DOWN, 2767 NETDEV_CHANGENAME, 2768 NETDEV_FEAT_CHANGE, 2769 NETDEV_BONDING_FAILOVER, 2770 NETDEV_PRE_UP, 2771 NETDEV_PRE_TYPE_CHANGE, 2772 NETDEV_POST_TYPE_CHANGE, 2773 NETDEV_POST_INIT, 2774 NETDEV_RELEASE, 2775 NETDEV_NOTIFY_PEERS, 2776 NETDEV_JOIN, 2777 NETDEV_CHANGEUPPER, 2778 NETDEV_RESEND_IGMP, 2779 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2780 NETDEV_CHANGEINFODATA, 2781 NETDEV_BONDING_INFO, 2782 NETDEV_PRECHANGEUPPER, 2783 NETDEV_CHANGELOWERSTATE, 2784 NETDEV_UDP_TUNNEL_PUSH_INFO, 2785 NETDEV_UDP_TUNNEL_DROP_INFO, 2786 NETDEV_CHANGE_TX_QUEUE_LEN, 2787 NETDEV_CVLAN_FILTER_PUSH_INFO, 2788 NETDEV_CVLAN_FILTER_DROP_INFO, 2789 NETDEV_SVLAN_FILTER_PUSH_INFO, 2790 NETDEV_SVLAN_FILTER_DROP_INFO, 2791 NETDEV_OFFLOAD_XSTATS_ENABLE, 2792 NETDEV_OFFLOAD_XSTATS_DISABLE, 2793 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2794 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2795 }; 2796 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2797 2798 int register_netdevice_notifier(struct notifier_block *nb); 2799 int unregister_netdevice_notifier(struct notifier_block *nb); 2800 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2801 int unregister_netdevice_notifier_net(struct net *net, 2802 struct notifier_block *nb); 2803 int register_netdevice_notifier_dev_net(struct net_device *dev, 2804 struct notifier_block *nb, 2805 struct netdev_net_notifier *nn); 2806 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2807 struct notifier_block *nb, 2808 struct netdev_net_notifier *nn); 2809 2810 struct netdev_notifier_info { 2811 struct net_device *dev; 2812 struct netlink_ext_ack *extack; 2813 }; 2814 2815 struct netdev_notifier_info_ext { 2816 struct netdev_notifier_info info; /* must be first */ 2817 union { 2818 u32 mtu; 2819 } ext; 2820 }; 2821 2822 struct netdev_notifier_change_info { 2823 struct netdev_notifier_info info; /* must be first */ 2824 unsigned int flags_changed; 2825 }; 2826 2827 struct netdev_notifier_changeupper_info { 2828 struct netdev_notifier_info info; /* must be first */ 2829 struct net_device *upper_dev; /* new upper dev */ 2830 bool master; /* is upper dev master */ 2831 bool linking; /* is the notification for link or unlink */ 2832 void *upper_info; /* upper dev info */ 2833 }; 2834 2835 struct netdev_notifier_changelowerstate_info { 2836 struct netdev_notifier_info info; /* must be first */ 2837 void *lower_state_info; /* is lower dev state */ 2838 }; 2839 2840 struct netdev_notifier_pre_changeaddr_info { 2841 struct netdev_notifier_info info; /* must be first */ 2842 const unsigned char *dev_addr; 2843 }; 2844 2845 enum netdev_offload_xstats_type { 2846 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2847 }; 2848 2849 struct netdev_notifier_offload_xstats_info { 2850 struct netdev_notifier_info info; /* must be first */ 2851 enum netdev_offload_xstats_type type; 2852 2853 union { 2854 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2855 struct netdev_notifier_offload_xstats_rd *report_delta; 2856 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2857 struct netdev_notifier_offload_xstats_ru *report_used; 2858 }; 2859 }; 2860 2861 int netdev_offload_xstats_enable(struct net_device *dev, 2862 enum netdev_offload_xstats_type type, 2863 struct netlink_ext_ack *extack); 2864 int netdev_offload_xstats_disable(struct net_device *dev, 2865 enum netdev_offload_xstats_type type); 2866 bool netdev_offload_xstats_enabled(const struct net_device *dev, 2867 enum netdev_offload_xstats_type type); 2868 int netdev_offload_xstats_get(struct net_device *dev, 2869 enum netdev_offload_xstats_type type, 2870 struct rtnl_hw_stats64 *stats, bool *used, 2871 struct netlink_ext_ack *extack); 2872 void 2873 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 2874 const struct rtnl_hw_stats64 *stats); 2875 void 2876 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 2877 void netdev_offload_xstats_push_delta(struct net_device *dev, 2878 enum netdev_offload_xstats_type type, 2879 const struct rtnl_hw_stats64 *stats); 2880 2881 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2882 struct net_device *dev) 2883 { 2884 info->dev = dev; 2885 info->extack = NULL; 2886 } 2887 2888 static inline struct net_device * 2889 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2890 { 2891 return info->dev; 2892 } 2893 2894 static inline struct netlink_ext_ack * 2895 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2896 { 2897 return info->extack; 2898 } 2899 2900 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2901 2902 2903 extern rwlock_t dev_base_lock; /* Device list lock */ 2904 2905 #define for_each_netdev(net, d) \ 2906 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2907 #define for_each_netdev_reverse(net, d) \ 2908 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2909 #define for_each_netdev_rcu(net, d) \ 2910 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2911 #define for_each_netdev_safe(net, d, n) \ 2912 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2913 #define for_each_netdev_continue(net, d) \ 2914 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2915 #define for_each_netdev_continue_reverse(net, d) \ 2916 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 2917 dev_list) 2918 #define for_each_netdev_continue_rcu(net, d) \ 2919 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2920 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2921 for_each_netdev_rcu(&init_net, slave) \ 2922 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2923 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2924 2925 static inline struct net_device *next_net_device(struct net_device *dev) 2926 { 2927 struct list_head *lh; 2928 struct net *net; 2929 2930 net = dev_net(dev); 2931 lh = dev->dev_list.next; 2932 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2933 } 2934 2935 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2936 { 2937 struct list_head *lh; 2938 struct net *net; 2939 2940 net = dev_net(dev); 2941 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2942 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2943 } 2944 2945 static inline struct net_device *first_net_device(struct net *net) 2946 { 2947 return list_empty(&net->dev_base_head) ? NULL : 2948 net_device_entry(net->dev_base_head.next); 2949 } 2950 2951 static inline struct net_device *first_net_device_rcu(struct net *net) 2952 { 2953 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2954 2955 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2956 } 2957 2958 int netdev_boot_setup_check(struct net_device *dev); 2959 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2960 const char *hwaddr); 2961 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2962 void dev_add_pack(struct packet_type *pt); 2963 void dev_remove_pack(struct packet_type *pt); 2964 void __dev_remove_pack(struct packet_type *pt); 2965 void dev_add_offload(struct packet_offload *po); 2966 void dev_remove_offload(struct packet_offload *po); 2967 2968 int dev_get_iflink(const struct net_device *dev); 2969 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2970 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 2971 struct net_device_path_stack *stack); 2972 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2973 unsigned short mask); 2974 struct net_device *dev_get_by_name(struct net *net, const char *name); 2975 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2976 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2977 bool netdev_name_in_use(struct net *net, const char *name); 2978 int dev_alloc_name(struct net_device *dev, const char *name); 2979 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2980 void dev_close(struct net_device *dev); 2981 void dev_close_many(struct list_head *head, bool unlink); 2982 void dev_disable_lro(struct net_device *dev); 2983 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2984 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2985 struct net_device *sb_dev); 2986 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2987 struct net_device *sb_dev); 2988 2989 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 2990 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2991 2992 static inline int dev_queue_xmit(struct sk_buff *skb) 2993 { 2994 return __dev_queue_xmit(skb, NULL); 2995 } 2996 2997 static inline int dev_queue_xmit_accel(struct sk_buff *skb, 2998 struct net_device *sb_dev) 2999 { 3000 return __dev_queue_xmit(skb, sb_dev); 3001 } 3002 3003 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3004 { 3005 int ret; 3006 3007 ret = __dev_direct_xmit(skb, queue_id); 3008 if (!dev_xmit_complete(ret)) 3009 kfree_skb(skb); 3010 return ret; 3011 } 3012 3013 int register_netdevice(struct net_device *dev); 3014 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3015 void unregister_netdevice_many(struct list_head *head); 3016 static inline void unregister_netdevice(struct net_device *dev) 3017 { 3018 unregister_netdevice_queue(dev, NULL); 3019 } 3020 3021 int netdev_refcnt_read(const struct net_device *dev); 3022 void free_netdev(struct net_device *dev); 3023 void netdev_freemem(struct net_device *dev); 3024 int init_dummy_netdev(struct net_device *dev); 3025 3026 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3027 struct sk_buff *skb, 3028 bool all_slaves); 3029 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3030 struct sock *sk); 3031 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3032 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3033 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3034 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3035 int dev_restart(struct net_device *dev); 3036 3037 3038 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3039 unsigned short type, 3040 const void *daddr, const void *saddr, 3041 unsigned int len) 3042 { 3043 if (!dev->header_ops || !dev->header_ops->create) 3044 return 0; 3045 3046 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3047 } 3048 3049 static inline int dev_parse_header(const struct sk_buff *skb, 3050 unsigned char *haddr) 3051 { 3052 const struct net_device *dev = skb->dev; 3053 3054 if (!dev->header_ops || !dev->header_ops->parse) 3055 return 0; 3056 return dev->header_ops->parse(skb, haddr); 3057 } 3058 3059 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3060 { 3061 const struct net_device *dev = skb->dev; 3062 3063 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3064 return 0; 3065 return dev->header_ops->parse_protocol(skb); 3066 } 3067 3068 /* ll_header must have at least hard_header_len allocated */ 3069 static inline bool dev_validate_header(const struct net_device *dev, 3070 char *ll_header, int len) 3071 { 3072 if (likely(len >= dev->hard_header_len)) 3073 return true; 3074 if (len < dev->min_header_len) 3075 return false; 3076 3077 if (capable(CAP_SYS_RAWIO)) { 3078 memset(ll_header + len, 0, dev->hard_header_len - len); 3079 return true; 3080 } 3081 3082 if (dev->header_ops && dev->header_ops->validate) 3083 return dev->header_ops->validate(ll_header, len); 3084 3085 return false; 3086 } 3087 3088 static inline bool dev_has_header(const struct net_device *dev) 3089 { 3090 return dev->header_ops && dev->header_ops->create; 3091 } 3092 3093 /* 3094 * Incoming packets are placed on per-CPU queues 3095 */ 3096 struct softnet_data { 3097 struct list_head poll_list; 3098 struct sk_buff_head process_queue; 3099 3100 /* stats */ 3101 unsigned int processed; 3102 unsigned int time_squeeze; 3103 unsigned int received_rps; 3104 #ifdef CONFIG_RPS 3105 struct softnet_data *rps_ipi_list; 3106 #endif 3107 #ifdef CONFIG_NET_FLOW_LIMIT 3108 struct sd_flow_limit __rcu *flow_limit; 3109 #endif 3110 struct Qdisc *output_queue; 3111 struct Qdisc **output_queue_tailp; 3112 struct sk_buff *completion_queue; 3113 #ifdef CONFIG_XFRM_OFFLOAD 3114 struct sk_buff_head xfrm_backlog; 3115 #endif 3116 /* written and read only by owning cpu: */ 3117 struct { 3118 u16 recursion; 3119 u8 more; 3120 #ifdef CONFIG_NET_EGRESS 3121 u8 skip_txqueue; 3122 #endif 3123 } xmit; 3124 #ifdef CONFIG_RPS 3125 /* input_queue_head should be written by cpu owning this struct, 3126 * and only read by other cpus. Worth using a cache line. 3127 */ 3128 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3129 3130 /* Elements below can be accessed between CPUs for RPS/RFS */ 3131 call_single_data_t csd ____cacheline_aligned_in_smp; 3132 struct softnet_data *rps_ipi_next; 3133 unsigned int cpu; 3134 unsigned int input_queue_tail; 3135 #endif 3136 unsigned int dropped; 3137 struct sk_buff_head input_pkt_queue; 3138 struct napi_struct backlog; 3139 3140 /* Another possibly contended cache line */ 3141 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3142 int defer_count; 3143 int defer_ipi_scheduled; 3144 struct sk_buff *defer_list; 3145 call_single_data_t defer_csd; 3146 }; 3147 3148 static inline void input_queue_head_incr(struct softnet_data *sd) 3149 { 3150 #ifdef CONFIG_RPS 3151 sd->input_queue_head++; 3152 #endif 3153 } 3154 3155 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3156 unsigned int *qtail) 3157 { 3158 #ifdef CONFIG_RPS 3159 *qtail = ++sd->input_queue_tail; 3160 #endif 3161 } 3162 3163 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3164 3165 static inline int dev_recursion_level(void) 3166 { 3167 return this_cpu_read(softnet_data.xmit.recursion); 3168 } 3169 3170 #define XMIT_RECURSION_LIMIT 8 3171 static inline bool dev_xmit_recursion(void) 3172 { 3173 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3174 XMIT_RECURSION_LIMIT); 3175 } 3176 3177 static inline void dev_xmit_recursion_inc(void) 3178 { 3179 __this_cpu_inc(softnet_data.xmit.recursion); 3180 } 3181 3182 static inline void dev_xmit_recursion_dec(void) 3183 { 3184 __this_cpu_dec(softnet_data.xmit.recursion); 3185 } 3186 3187 void __netif_schedule(struct Qdisc *q); 3188 void netif_schedule_queue(struct netdev_queue *txq); 3189 3190 static inline void netif_tx_schedule_all(struct net_device *dev) 3191 { 3192 unsigned int i; 3193 3194 for (i = 0; i < dev->num_tx_queues; i++) 3195 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3196 } 3197 3198 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3199 { 3200 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3201 } 3202 3203 /** 3204 * netif_start_queue - allow transmit 3205 * @dev: network device 3206 * 3207 * Allow upper layers to call the device hard_start_xmit routine. 3208 */ 3209 static inline void netif_start_queue(struct net_device *dev) 3210 { 3211 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3212 } 3213 3214 static inline void netif_tx_start_all_queues(struct net_device *dev) 3215 { 3216 unsigned int i; 3217 3218 for (i = 0; i < dev->num_tx_queues; i++) { 3219 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3220 netif_tx_start_queue(txq); 3221 } 3222 } 3223 3224 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3225 3226 /** 3227 * netif_wake_queue - restart transmit 3228 * @dev: network device 3229 * 3230 * Allow upper layers to call the device hard_start_xmit routine. 3231 * Used for flow control when transmit resources are available. 3232 */ 3233 static inline void netif_wake_queue(struct net_device *dev) 3234 { 3235 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3236 } 3237 3238 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3239 { 3240 unsigned int i; 3241 3242 for (i = 0; i < dev->num_tx_queues; i++) { 3243 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3244 netif_tx_wake_queue(txq); 3245 } 3246 } 3247 3248 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3249 { 3250 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3251 } 3252 3253 /** 3254 * netif_stop_queue - stop transmitted packets 3255 * @dev: network device 3256 * 3257 * Stop upper layers calling the device hard_start_xmit routine. 3258 * Used for flow control when transmit resources are unavailable. 3259 */ 3260 static inline void netif_stop_queue(struct net_device *dev) 3261 { 3262 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3263 } 3264 3265 void netif_tx_stop_all_queues(struct net_device *dev); 3266 3267 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3268 { 3269 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3270 } 3271 3272 /** 3273 * netif_queue_stopped - test if transmit queue is flowblocked 3274 * @dev: network device 3275 * 3276 * Test if transmit queue on device is currently unable to send. 3277 */ 3278 static inline bool netif_queue_stopped(const struct net_device *dev) 3279 { 3280 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3281 } 3282 3283 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3284 { 3285 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3286 } 3287 3288 static inline bool 3289 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3290 { 3291 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3292 } 3293 3294 static inline bool 3295 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3296 { 3297 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3298 } 3299 3300 /** 3301 * netdev_queue_set_dql_min_limit - set dql minimum limit 3302 * @dev_queue: pointer to transmit queue 3303 * @min_limit: dql minimum limit 3304 * 3305 * Forces xmit_more() to return true until the minimum threshold 3306 * defined by @min_limit is reached (or until the tx queue is 3307 * empty). Warning: to be use with care, misuse will impact the 3308 * latency. 3309 */ 3310 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3311 unsigned int min_limit) 3312 { 3313 #ifdef CONFIG_BQL 3314 dev_queue->dql.min_limit = min_limit; 3315 #endif 3316 } 3317 3318 /** 3319 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3320 * @dev_queue: pointer to transmit queue 3321 * 3322 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3323 * to give appropriate hint to the CPU. 3324 */ 3325 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3326 { 3327 #ifdef CONFIG_BQL 3328 prefetchw(&dev_queue->dql.num_queued); 3329 #endif 3330 } 3331 3332 /** 3333 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3334 * @dev_queue: pointer to transmit queue 3335 * 3336 * BQL enabled drivers might use this helper in their TX completion path, 3337 * to give appropriate hint to the CPU. 3338 */ 3339 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3340 { 3341 #ifdef CONFIG_BQL 3342 prefetchw(&dev_queue->dql.limit); 3343 #endif 3344 } 3345 3346 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3347 unsigned int bytes) 3348 { 3349 #ifdef CONFIG_BQL 3350 dql_queued(&dev_queue->dql, bytes); 3351 3352 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3353 return; 3354 3355 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3356 3357 /* 3358 * The XOFF flag must be set before checking the dql_avail below, 3359 * because in netdev_tx_completed_queue we update the dql_completed 3360 * before checking the XOFF flag. 3361 */ 3362 smp_mb(); 3363 3364 /* check again in case another CPU has just made room avail */ 3365 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3366 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3367 #endif 3368 } 3369 3370 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3371 * that they should not test BQL status themselves. 3372 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3373 * skb of a batch. 3374 * Returns true if the doorbell must be used to kick the NIC. 3375 */ 3376 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3377 unsigned int bytes, 3378 bool xmit_more) 3379 { 3380 if (xmit_more) { 3381 #ifdef CONFIG_BQL 3382 dql_queued(&dev_queue->dql, bytes); 3383 #endif 3384 return netif_tx_queue_stopped(dev_queue); 3385 } 3386 netdev_tx_sent_queue(dev_queue, bytes); 3387 return true; 3388 } 3389 3390 /** 3391 * netdev_sent_queue - report the number of bytes queued to hardware 3392 * @dev: network device 3393 * @bytes: number of bytes queued to the hardware device queue 3394 * 3395 * Report the number of bytes queued for sending/completion to the network 3396 * device hardware queue. @bytes should be a good approximation and should 3397 * exactly match netdev_completed_queue() @bytes 3398 */ 3399 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3400 { 3401 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3402 } 3403 3404 static inline bool __netdev_sent_queue(struct net_device *dev, 3405 unsigned int bytes, 3406 bool xmit_more) 3407 { 3408 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3409 xmit_more); 3410 } 3411 3412 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3413 unsigned int pkts, unsigned int bytes) 3414 { 3415 #ifdef CONFIG_BQL 3416 if (unlikely(!bytes)) 3417 return; 3418 3419 dql_completed(&dev_queue->dql, bytes); 3420 3421 /* 3422 * Without the memory barrier there is a small possiblity that 3423 * netdev_tx_sent_queue will miss the update and cause the queue to 3424 * be stopped forever 3425 */ 3426 smp_mb(); 3427 3428 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3429 return; 3430 3431 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3432 netif_schedule_queue(dev_queue); 3433 #endif 3434 } 3435 3436 /** 3437 * netdev_completed_queue - report bytes and packets completed by device 3438 * @dev: network device 3439 * @pkts: actual number of packets sent over the medium 3440 * @bytes: actual number of bytes sent over the medium 3441 * 3442 * Report the number of bytes and packets transmitted by the network device 3443 * hardware queue over the physical medium, @bytes must exactly match the 3444 * @bytes amount passed to netdev_sent_queue() 3445 */ 3446 static inline void netdev_completed_queue(struct net_device *dev, 3447 unsigned int pkts, unsigned int bytes) 3448 { 3449 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3450 } 3451 3452 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3453 { 3454 #ifdef CONFIG_BQL 3455 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3456 dql_reset(&q->dql); 3457 #endif 3458 } 3459 3460 /** 3461 * netdev_reset_queue - reset the packets and bytes count of a network device 3462 * @dev_queue: network device 3463 * 3464 * Reset the bytes and packet count of a network device and clear the 3465 * software flow control OFF bit for this network device 3466 */ 3467 static inline void netdev_reset_queue(struct net_device *dev_queue) 3468 { 3469 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3470 } 3471 3472 /** 3473 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3474 * @dev: network device 3475 * @queue_index: given tx queue index 3476 * 3477 * Returns 0 if given tx queue index >= number of device tx queues, 3478 * otherwise returns the originally passed tx queue index. 3479 */ 3480 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3481 { 3482 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3483 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3484 dev->name, queue_index, 3485 dev->real_num_tx_queues); 3486 return 0; 3487 } 3488 3489 return queue_index; 3490 } 3491 3492 /** 3493 * netif_running - test if up 3494 * @dev: network device 3495 * 3496 * Test if the device has been brought up. 3497 */ 3498 static inline bool netif_running(const struct net_device *dev) 3499 { 3500 return test_bit(__LINK_STATE_START, &dev->state); 3501 } 3502 3503 /* 3504 * Routines to manage the subqueues on a device. We only need start, 3505 * stop, and a check if it's stopped. All other device management is 3506 * done at the overall netdevice level. 3507 * Also test the device if we're multiqueue. 3508 */ 3509 3510 /** 3511 * netif_start_subqueue - allow sending packets on subqueue 3512 * @dev: network device 3513 * @queue_index: sub queue index 3514 * 3515 * Start individual transmit queue of a device with multiple transmit queues. 3516 */ 3517 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3518 { 3519 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3520 3521 netif_tx_start_queue(txq); 3522 } 3523 3524 /** 3525 * netif_stop_subqueue - stop sending packets on subqueue 3526 * @dev: network device 3527 * @queue_index: sub queue index 3528 * 3529 * Stop individual transmit queue of a device with multiple transmit queues. 3530 */ 3531 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3532 { 3533 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3534 netif_tx_stop_queue(txq); 3535 } 3536 3537 /** 3538 * __netif_subqueue_stopped - test status of subqueue 3539 * @dev: network device 3540 * @queue_index: sub queue index 3541 * 3542 * Check individual transmit queue of a device with multiple transmit queues. 3543 */ 3544 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3545 u16 queue_index) 3546 { 3547 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3548 3549 return netif_tx_queue_stopped(txq); 3550 } 3551 3552 /** 3553 * netif_subqueue_stopped - test status of subqueue 3554 * @dev: network device 3555 * @skb: sub queue buffer pointer 3556 * 3557 * Check individual transmit queue of a device with multiple transmit queues. 3558 */ 3559 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3560 struct sk_buff *skb) 3561 { 3562 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3563 } 3564 3565 /** 3566 * netif_wake_subqueue - allow sending packets on subqueue 3567 * @dev: network device 3568 * @queue_index: sub queue index 3569 * 3570 * Resume individual transmit queue of a device with multiple transmit queues. 3571 */ 3572 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3573 { 3574 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3575 3576 netif_tx_wake_queue(txq); 3577 } 3578 3579 #ifdef CONFIG_XPS 3580 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3581 u16 index); 3582 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3583 u16 index, enum xps_map_type type); 3584 3585 /** 3586 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3587 * @j: CPU/Rx queue index 3588 * @mask: bitmask of all cpus/rx queues 3589 * @nr_bits: number of bits in the bitmask 3590 * 3591 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3592 */ 3593 static inline bool netif_attr_test_mask(unsigned long j, 3594 const unsigned long *mask, 3595 unsigned int nr_bits) 3596 { 3597 cpu_max_bits_warn(j, nr_bits); 3598 return test_bit(j, mask); 3599 } 3600 3601 /** 3602 * netif_attr_test_online - Test for online CPU/Rx queue 3603 * @j: CPU/Rx queue index 3604 * @online_mask: bitmask for CPUs/Rx queues that are online 3605 * @nr_bits: number of bits in the bitmask 3606 * 3607 * Returns true if a CPU/Rx queue is online. 3608 */ 3609 static inline bool netif_attr_test_online(unsigned long j, 3610 const unsigned long *online_mask, 3611 unsigned int nr_bits) 3612 { 3613 cpu_max_bits_warn(j, nr_bits); 3614 3615 if (online_mask) 3616 return test_bit(j, online_mask); 3617 3618 return (j < nr_bits); 3619 } 3620 3621 /** 3622 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3623 * @n: CPU/Rx queue index 3624 * @srcp: the cpumask/Rx queue mask pointer 3625 * @nr_bits: number of bits in the bitmask 3626 * 3627 * Returns >= nr_bits if no further CPUs/Rx queues set. 3628 */ 3629 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3630 unsigned int nr_bits) 3631 { 3632 /* -1 is a legal arg here. */ 3633 if (n != -1) 3634 cpu_max_bits_warn(n, nr_bits); 3635 3636 if (srcp) 3637 return find_next_bit(srcp, nr_bits, n + 1); 3638 3639 return n + 1; 3640 } 3641 3642 /** 3643 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3644 * @n: CPU/Rx queue index 3645 * @src1p: the first CPUs/Rx queues mask pointer 3646 * @src2p: the second CPUs/Rx queues mask pointer 3647 * @nr_bits: number of bits in the bitmask 3648 * 3649 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3650 */ 3651 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3652 const unsigned long *src2p, 3653 unsigned int nr_bits) 3654 { 3655 /* -1 is a legal arg here. */ 3656 if (n != -1) 3657 cpu_max_bits_warn(n, nr_bits); 3658 3659 if (src1p && src2p) 3660 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3661 else if (src1p) 3662 return find_next_bit(src1p, nr_bits, n + 1); 3663 else if (src2p) 3664 return find_next_bit(src2p, nr_bits, n + 1); 3665 3666 return n + 1; 3667 } 3668 #else 3669 static inline int netif_set_xps_queue(struct net_device *dev, 3670 const struct cpumask *mask, 3671 u16 index) 3672 { 3673 return 0; 3674 } 3675 3676 static inline int __netif_set_xps_queue(struct net_device *dev, 3677 const unsigned long *mask, 3678 u16 index, enum xps_map_type type) 3679 { 3680 return 0; 3681 } 3682 #endif 3683 3684 /** 3685 * netif_is_multiqueue - test if device has multiple transmit queues 3686 * @dev: network device 3687 * 3688 * Check if device has multiple transmit queues 3689 */ 3690 static inline bool netif_is_multiqueue(const struct net_device *dev) 3691 { 3692 return dev->num_tx_queues > 1; 3693 } 3694 3695 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3696 3697 #ifdef CONFIG_SYSFS 3698 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3699 #else 3700 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3701 unsigned int rxqs) 3702 { 3703 dev->real_num_rx_queues = rxqs; 3704 return 0; 3705 } 3706 #endif 3707 int netif_set_real_num_queues(struct net_device *dev, 3708 unsigned int txq, unsigned int rxq); 3709 3710 static inline struct netdev_rx_queue * 3711 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3712 { 3713 return dev->_rx + rxq; 3714 } 3715 3716 #ifdef CONFIG_SYSFS 3717 static inline unsigned int get_netdev_rx_queue_index( 3718 struct netdev_rx_queue *queue) 3719 { 3720 struct net_device *dev = queue->dev; 3721 int index = queue - dev->_rx; 3722 3723 BUG_ON(index >= dev->num_rx_queues); 3724 return index; 3725 } 3726 #endif 3727 3728 int netif_get_num_default_rss_queues(void); 3729 3730 enum skb_free_reason { 3731 SKB_REASON_CONSUMED, 3732 SKB_REASON_DROPPED, 3733 }; 3734 3735 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3736 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3737 3738 /* 3739 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3740 * interrupt context or with hardware interrupts being disabled. 3741 * (in_hardirq() || irqs_disabled()) 3742 * 3743 * We provide four helpers that can be used in following contexts : 3744 * 3745 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3746 * replacing kfree_skb(skb) 3747 * 3748 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3749 * Typically used in place of consume_skb(skb) in TX completion path 3750 * 3751 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3752 * replacing kfree_skb(skb) 3753 * 3754 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3755 * and consumed a packet. Used in place of consume_skb(skb) 3756 */ 3757 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3758 { 3759 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3760 } 3761 3762 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3763 { 3764 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3765 } 3766 3767 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3768 { 3769 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3770 } 3771 3772 static inline void dev_consume_skb_any(struct sk_buff *skb) 3773 { 3774 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3775 } 3776 3777 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3778 struct bpf_prog *xdp_prog); 3779 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3780 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3781 int netif_rx(struct sk_buff *skb); 3782 int __netif_rx(struct sk_buff *skb); 3783 3784 int netif_receive_skb(struct sk_buff *skb); 3785 int netif_receive_skb_core(struct sk_buff *skb); 3786 void netif_receive_skb_list_internal(struct list_head *head); 3787 void netif_receive_skb_list(struct list_head *head); 3788 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3789 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3790 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3791 gro_result_t napi_gro_frags(struct napi_struct *napi); 3792 struct packet_offload *gro_find_receive_by_type(__be16 type); 3793 struct packet_offload *gro_find_complete_by_type(__be16 type); 3794 3795 static inline void napi_free_frags(struct napi_struct *napi) 3796 { 3797 kfree_skb(napi->skb); 3798 napi->skb = NULL; 3799 } 3800 3801 bool netdev_is_rx_handler_busy(struct net_device *dev); 3802 int netdev_rx_handler_register(struct net_device *dev, 3803 rx_handler_func_t *rx_handler, 3804 void *rx_handler_data); 3805 void netdev_rx_handler_unregister(struct net_device *dev); 3806 3807 bool dev_valid_name(const char *name); 3808 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3809 { 3810 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3811 } 3812 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3813 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3814 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3815 void __user *data, bool *need_copyout); 3816 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3817 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3818 unsigned int dev_get_flags(const struct net_device *); 3819 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3820 struct netlink_ext_ack *extack); 3821 int dev_change_flags(struct net_device *dev, unsigned int flags, 3822 struct netlink_ext_ack *extack); 3823 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3824 unsigned int gchanges); 3825 int dev_set_alias(struct net_device *, const char *, size_t); 3826 int dev_get_alias(const struct net_device *, char *, size_t); 3827 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3828 const char *pat, int new_ifindex); 3829 static inline 3830 int dev_change_net_namespace(struct net_device *dev, struct net *net, 3831 const char *pat) 3832 { 3833 return __dev_change_net_namespace(dev, net, pat, 0); 3834 } 3835 int __dev_set_mtu(struct net_device *, int); 3836 int dev_set_mtu(struct net_device *, int); 3837 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3838 struct netlink_ext_ack *extack); 3839 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3840 struct netlink_ext_ack *extack); 3841 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3842 struct netlink_ext_ack *extack); 3843 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3844 int dev_get_port_parent_id(struct net_device *dev, 3845 struct netdev_phys_item_id *ppid, bool recurse); 3846 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3847 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3848 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3849 struct netdev_queue *txq, int *ret); 3850 3851 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3852 u8 dev_xdp_prog_count(struct net_device *dev); 3853 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3854 3855 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3856 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3857 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3858 bool is_skb_forwardable(const struct net_device *dev, 3859 const struct sk_buff *skb); 3860 3861 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 3862 const struct sk_buff *skb, 3863 const bool check_mtu) 3864 { 3865 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 3866 unsigned int len; 3867 3868 if (!(dev->flags & IFF_UP)) 3869 return false; 3870 3871 if (!check_mtu) 3872 return true; 3873 3874 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 3875 if (skb->len <= len) 3876 return true; 3877 3878 /* if TSO is enabled, we don't care about the length as the packet 3879 * could be forwarded without being segmented before 3880 */ 3881 if (skb_is_gso(skb)) 3882 return true; 3883 3884 return false; 3885 } 3886 3887 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev); 3888 3889 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev) 3890 { 3891 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 3892 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 3893 3894 if (likely(p)) 3895 return p; 3896 3897 return netdev_core_stats_alloc(dev); 3898 } 3899 3900 #define DEV_CORE_STATS_INC(FIELD) \ 3901 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 3902 { \ 3903 struct net_device_core_stats __percpu *p; \ 3904 \ 3905 p = dev_core_stats(dev); \ 3906 if (p) \ 3907 this_cpu_inc(p->FIELD); \ 3908 } 3909 DEV_CORE_STATS_INC(rx_dropped) 3910 DEV_CORE_STATS_INC(tx_dropped) 3911 DEV_CORE_STATS_INC(rx_nohandler) 3912 DEV_CORE_STATS_INC(rx_otherhost_dropped) 3913 3914 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3915 struct sk_buff *skb, 3916 const bool check_mtu) 3917 { 3918 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3919 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 3920 dev_core_stats_rx_dropped_inc(dev); 3921 kfree_skb(skb); 3922 return NET_RX_DROP; 3923 } 3924 3925 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 3926 skb->priority = 0; 3927 return 0; 3928 } 3929 3930 bool dev_nit_active(struct net_device *dev); 3931 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3932 3933 static inline void __dev_put(struct net_device *dev) 3934 { 3935 if (dev) { 3936 #ifdef CONFIG_PCPU_DEV_REFCNT 3937 this_cpu_dec(*dev->pcpu_refcnt); 3938 #else 3939 refcount_dec(&dev->dev_refcnt); 3940 #endif 3941 } 3942 } 3943 3944 static inline void __dev_hold(struct net_device *dev) 3945 { 3946 if (dev) { 3947 #ifdef CONFIG_PCPU_DEV_REFCNT 3948 this_cpu_inc(*dev->pcpu_refcnt); 3949 #else 3950 refcount_inc(&dev->dev_refcnt); 3951 #endif 3952 } 3953 } 3954 3955 static inline void __netdev_tracker_alloc(struct net_device *dev, 3956 netdevice_tracker *tracker, 3957 gfp_t gfp) 3958 { 3959 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 3960 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 3961 #endif 3962 } 3963 3964 /* netdev_tracker_alloc() can upgrade a prior untracked reference 3965 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 3966 */ 3967 static inline void netdev_tracker_alloc(struct net_device *dev, 3968 netdevice_tracker *tracker, gfp_t gfp) 3969 { 3970 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 3971 refcount_dec(&dev->refcnt_tracker.no_tracker); 3972 __netdev_tracker_alloc(dev, tracker, gfp); 3973 #endif 3974 } 3975 3976 static inline void netdev_tracker_free(struct net_device *dev, 3977 netdevice_tracker *tracker) 3978 { 3979 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 3980 ref_tracker_free(&dev->refcnt_tracker, tracker); 3981 #endif 3982 } 3983 3984 static inline void dev_hold_track(struct net_device *dev, 3985 netdevice_tracker *tracker, gfp_t gfp) 3986 { 3987 if (dev) { 3988 __dev_hold(dev); 3989 __netdev_tracker_alloc(dev, tracker, gfp); 3990 } 3991 } 3992 3993 static inline void dev_put_track(struct net_device *dev, 3994 netdevice_tracker *tracker) 3995 { 3996 if (dev) { 3997 netdev_tracker_free(dev, tracker); 3998 __dev_put(dev); 3999 } 4000 } 4001 4002 /** 4003 * dev_hold - get reference to device 4004 * @dev: network device 4005 * 4006 * Hold reference to device to keep it from being freed. 4007 * Try using dev_hold_track() instead. 4008 */ 4009 static inline void dev_hold(struct net_device *dev) 4010 { 4011 dev_hold_track(dev, NULL, GFP_ATOMIC); 4012 } 4013 4014 /** 4015 * dev_put - release reference to device 4016 * @dev: network device 4017 * 4018 * Release reference to device to allow it to be freed. 4019 * Try using dev_put_track() instead. 4020 */ 4021 static inline void dev_put(struct net_device *dev) 4022 { 4023 dev_put_track(dev, NULL); 4024 } 4025 4026 static inline void dev_replace_track(struct net_device *odev, 4027 struct net_device *ndev, 4028 netdevice_tracker *tracker, 4029 gfp_t gfp) 4030 { 4031 if (odev) 4032 netdev_tracker_free(odev, tracker); 4033 4034 __dev_hold(ndev); 4035 __dev_put(odev); 4036 4037 if (ndev) 4038 __netdev_tracker_alloc(ndev, tracker, gfp); 4039 } 4040 4041 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4042 * and _off may be called from IRQ context, but it is caller 4043 * who is responsible for serialization of these calls. 4044 * 4045 * The name carrier is inappropriate, these functions should really be 4046 * called netif_lowerlayer_*() because they represent the state of any 4047 * kind of lower layer not just hardware media. 4048 */ 4049 void linkwatch_fire_event(struct net_device *dev); 4050 4051 /** 4052 * netif_carrier_ok - test if carrier present 4053 * @dev: network device 4054 * 4055 * Check if carrier is present on device 4056 */ 4057 static inline bool netif_carrier_ok(const struct net_device *dev) 4058 { 4059 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4060 } 4061 4062 unsigned long dev_trans_start(struct net_device *dev); 4063 4064 void __netdev_watchdog_up(struct net_device *dev); 4065 4066 void netif_carrier_on(struct net_device *dev); 4067 void netif_carrier_off(struct net_device *dev); 4068 void netif_carrier_event(struct net_device *dev); 4069 4070 /** 4071 * netif_dormant_on - mark device as dormant. 4072 * @dev: network device 4073 * 4074 * Mark device as dormant (as per RFC2863). 4075 * 4076 * The dormant state indicates that the relevant interface is not 4077 * actually in a condition to pass packets (i.e., it is not 'up') but is 4078 * in a "pending" state, waiting for some external event. For "on- 4079 * demand" interfaces, this new state identifies the situation where the 4080 * interface is waiting for events to place it in the up state. 4081 */ 4082 static inline void netif_dormant_on(struct net_device *dev) 4083 { 4084 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4085 linkwatch_fire_event(dev); 4086 } 4087 4088 /** 4089 * netif_dormant_off - set device as not dormant. 4090 * @dev: network device 4091 * 4092 * Device is not in dormant state. 4093 */ 4094 static inline void netif_dormant_off(struct net_device *dev) 4095 { 4096 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4097 linkwatch_fire_event(dev); 4098 } 4099 4100 /** 4101 * netif_dormant - test if device is dormant 4102 * @dev: network device 4103 * 4104 * Check if device is dormant. 4105 */ 4106 static inline bool netif_dormant(const struct net_device *dev) 4107 { 4108 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4109 } 4110 4111 4112 /** 4113 * netif_testing_on - mark device as under test. 4114 * @dev: network device 4115 * 4116 * Mark device as under test (as per RFC2863). 4117 * 4118 * The testing state indicates that some test(s) must be performed on 4119 * the interface. After completion, of the test, the interface state 4120 * will change to up, dormant, or down, as appropriate. 4121 */ 4122 static inline void netif_testing_on(struct net_device *dev) 4123 { 4124 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4125 linkwatch_fire_event(dev); 4126 } 4127 4128 /** 4129 * netif_testing_off - set device as not under test. 4130 * @dev: network device 4131 * 4132 * Device is not in testing state. 4133 */ 4134 static inline void netif_testing_off(struct net_device *dev) 4135 { 4136 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4137 linkwatch_fire_event(dev); 4138 } 4139 4140 /** 4141 * netif_testing - test if device is under test 4142 * @dev: network device 4143 * 4144 * Check if device is under test 4145 */ 4146 static inline bool netif_testing(const struct net_device *dev) 4147 { 4148 return test_bit(__LINK_STATE_TESTING, &dev->state); 4149 } 4150 4151 4152 /** 4153 * netif_oper_up - test if device is operational 4154 * @dev: network device 4155 * 4156 * Check if carrier is operational 4157 */ 4158 static inline bool netif_oper_up(const struct net_device *dev) 4159 { 4160 return (dev->operstate == IF_OPER_UP || 4161 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4162 } 4163 4164 /** 4165 * netif_device_present - is device available or removed 4166 * @dev: network device 4167 * 4168 * Check if device has not been removed from system. 4169 */ 4170 static inline bool netif_device_present(const struct net_device *dev) 4171 { 4172 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4173 } 4174 4175 void netif_device_detach(struct net_device *dev); 4176 4177 void netif_device_attach(struct net_device *dev); 4178 4179 /* 4180 * Network interface message level settings 4181 */ 4182 4183 enum { 4184 NETIF_MSG_DRV_BIT, 4185 NETIF_MSG_PROBE_BIT, 4186 NETIF_MSG_LINK_BIT, 4187 NETIF_MSG_TIMER_BIT, 4188 NETIF_MSG_IFDOWN_BIT, 4189 NETIF_MSG_IFUP_BIT, 4190 NETIF_MSG_RX_ERR_BIT, 4191 NETIF_MSG_TX_ERR_BIT, 4192 NETIF_MSG_TX_QUEUED_BIT, 4193 NETIF_MSG_INTR_BIT, 4194 NETIF_MSG_TX_DONE_BIT, 4195 NETIF_MSG_RX_STATUS_BIT, 4196 NETIF_MSG_PKTDATA_BIT, 4197 NETIF_MSG_HW_BIT, 4198 NETIF_MSG_WOL_BIT, 4199 4200 /* When you add a new bit above, update netif_msg_class_names array 4201 * in net/ethtool/common.c 4202 */ 4203 NETIF_MSG_CLASS_COUNT, 4204 }; 4205 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4206 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4207 4208 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4209 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4210 4211 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4212 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4213 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4214 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4215 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4216 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4217 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4218 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4219 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4220 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4221 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4222 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4223 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4224 #define NETIF_MSG_HW __NETIF_MSG(HW) 4225 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4226 4227 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4228 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4229 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4230 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4231 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4232 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4233 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4234 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4235 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4236 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4237 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4238 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4239 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4240 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4241 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4242 4243 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4244 { 4245 /* use default */ 4246 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4247 return default_msg_enable_bits; 4248 if (debug_value == 0) /* no output */ 4249 return 0; 4250 /* set low N bits */ 4251 return (1U << debug_value) - 1; 4252 } 4253 4254 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4255 { 4256 spin_lock(&txq->_xmit_lock); 4257 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4258 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4259 } 4260 4261 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4262 { 4263 __acquire(&txq->_xmit_lock); 4264 return true; 4265 } 4266 4267 static inline void __netif_tx_release(struct netdev_queue *txq) 4268 { 4269 __release(&txq->_xmit_lock); 4270 } 4271 4272 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4273 { 4274 spin_lock_bh(&txq->_xmit_lock); 4275 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4276 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4277 } 4278 4279 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4280 { 4281 bool ok = spin_trylock(&txq->_xmit_lock); 4282 4283 if (likely(ok)) { 4284 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4285 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4286 } 4287 return ok; 4288 } 4289 4290 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4291 { 4292 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4293 WRITE_ONCE(txq->xmit_lock_owner, -1); 4294 spin_unlock(&txq->_xmit_lock); 4295 } 4296 4297 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4298 { 4299 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4300 WRITE_ONCE(txq->xmit_lock_owner, -1); 4301 spin_unlock_bh(&txq->_xmit_lock); 4302 } 4303 4304 /* 4305 * txq->trans_start can be read locklessly from dev_watchdog() 4306 */ 4307 static inline void txq_trans_update(struct netdev_queue *txq) 4308 { 4309 if (txq->xmit_lock_owner != -1) 4310 WRITE_ONCE(txq->trans_start, jiffies); 4311 } 4312 4313 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4314 { 4315 unsigned long now = jiffies; 4316 4317 if (READ_ONCE(txq->trans_start) != now) 4318 WRITE_ONCE(txq->trans_start, now); 4319 } 4320 4321 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4322 static inline void netif_trans_update(struct net_device *dev) 4323 { 4324 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4325 4326 txq_trans_cond_update(txq); 4327 } 4328 4329 /** 4330 * netif_tx_lock - grab network device transmit lock 4331 * @dev: network device 4332 * 4333 * Get network device transmit lock 4334 */ 4335 void netif_tx_lock(struct net_device *dev); 4336 4337 static inline void netif_tx_lock_bh(struct net_device *dev) 4338 { 4339 local_bh_disable(); 4340 netif_tx_lock(dev); 4341 } 4342 4343 void netif_tx_unlock(struct net_device *dev); 4344 4345 static inline void netif_tx_unlock_bh(struct net_device *dev) 4346 { 4347 netif_tx_unlock(dev); 4348 local_bh_enable(); 4349 } 4350 4351 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4352 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4353 __netif_tx_lock(txq, cpu); \ 4354 } else { \ 4355 __netif_tx_acquire(txq); \ 4356 } \ 4357 } 4358 4359 #define HARD_TX_TRYLOCK(dev, txq) \ 4360 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4361 __netif_tx_trylock(txq) : \ 4362 __netif_tx_acquire(txq)) 4363 4364 #define HARD_TX_UNLOCK(dev, txq) { \ 4365 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4366 __netif_tx_unlock(txq); \ 4367 } else { \ 4368 __netif_tx_release(txq); \ 4369 } \ 4370 } 4371 4372 static inline void netif_tx_disable(struct net_device *dev) 4373 { 4374 unsigned int i; 4375 int cpu; 4376 4377 local_bh_disable(); 4378 cpu = smp_processor_id(); 4379 spin_lock(&dev->tx_global_lock); 4380 for (i = 0; i < dev->num_tx_queues; i++) { 4381 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4382 4383 __netif_tx_lock(txq, cpu); 4384 netif_tx_stop_queue(txq); 4385 __netif_tx_unlock(txq); 4386 } 4387 spin_unlock(&dev->tx_global_lock); 4388 local_bh_enable(); 4389 } 4390 4391 static inline void netif_addr_lock(struct net_device *dev) 4392 { 4393 unsigned char nest_level = 0; 4394 4395 #ifdef CONFIG_LOCKDEP 4396 nest_level = dev->nested_level; 4397 #endif 4398 spin_lock_nested(&dev->addr_list_lock, nest_level); 4399 } 4400 4401 static inline void netif_addr_lock_bh(struct net_device *dev) 4402 { 4403 unsigned char nest_level = 0; 4404 4405 #ifdef CONFIG_LOCKDEP 4406 nest_level = dev->nested_level; 4407 #endif 4408 local_bh_disable(); 4409 spin_lock_nested(&dev->addr_list_lock, nest_level); 4410 } 4411 4412 static inline void netif_addr_unlock(struct net_device *dev) 4413 { 4414 spin_unlock(&dev->addr_list_lock); 4415 } 4416 4417 static inline void netif_addr_unlock_bh(struct net_device *dev) 4418 { 4419 spin_unlock_bh(&dev->addr_list_lock); 4420 } 4421 4422 /* 4423 * dev_addrs walker. Should be used only for read access. Call with 4424 * rcu_read_lock held. 4425 */ 4426 #define for_each_dev_addr(dev, ha) \ 4427 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4428 4429 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4430 4431 void ether_setup(struct net_device *dev); 4432 4433 /* Support for loadable net-drivers */ 4434 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4435 unsigned char name_assign_type, 4436 void (*setup)(struct net_device *), 4437 unsigned int txqs, unsigned int rxqs); 4438 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4439 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4440 4441 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4442 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4443 count) 4444 4445 int register_netdev(struct net_device *dev); 4446 void unregister_netdev(struct net_device *dev); 4447 4448 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4449 4450 /* General hardware address lists handling functions */ 4451 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4452 struct netdev_hw_addr_list *from_list, int addr_len); 4453 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4454 struct netdev_hw_addr_list *from_list, int addr_len); 4455 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4456 struct net_device *dev, 4457 int (*sync)(struct net_device *, const unsigned char *), 4458 int (*unsync)(struct net_device *, 4459 const unsigned char *)); 4460 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4461 struct net_device *dev, 4462 int (*sync)(struct net_device *, 4463 const unsigned char *, int), 4464 int (*unsync)(struct net_device *, 4465 const unsigned char *, int)); 4466 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4467 struct net_device *dev, 4468 int (*unsync)(struct net_device *, 4469 const unsigned char *, int)); 4470 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4471 struct net_device *dev, 4472 int (*unsync)(struct net_device *, 4473 const unsigned char *)); 4474 void __hw_addr_init(struct netdev_hw_addr_list *list); 4475 4476 /* Functions used for device addresses handling */ 4477 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4478 const void *addr, size_t len); 4479 4480 static inline void 4481 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4482 { 4483 dev_addr_mod(dev, 0, addr, len); 4484 } 4485 4486 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4487 { 4488 __dev_addr_set(dev, addr, dev->addr_len); 4489 } 4490 4491 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4492 unsigned char addr_type); 4493 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4494 unsigned char addr_type); 4495 4496 /* Functions used for unicast addresses handling */ 4497 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4498 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4499 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4500 int dev_uc_sync(struct net_device *to, struct net_device *from); 4501 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4502 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4503 void dev_uc_flush(struct net_device *dev); 4504 void dev_uc_init(struct net_device *dev); 4505 4506 /** 4507 * __dev_uc_sync - Synchonize device's unicast list 4508 * @dev: device to sync 4509 * @sync: function to call if address should be added 4510 * @unsync: function to call if address should be removed 4511 * 4512 * Add newly added addresses to the interface, and release 4513 * addresses that have been deleted. 4514 */ 4515 static inline int __dev_uc_sync(struct net_device *dev, 4516 int (*sync)(struct net_device *, 4517 const unsigned char *), 4518 int (*unsync)(struct net_device *, 4519 const unsigned char *)) 4520 { 4521 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4522 } 4523 4524 /** 4525 * __dev_uc_unsync - Remove synchronized addresses from device 4526 * @dev: device to sync 4527 * @unsync: function to call if address should be removed 4528 * 4529 * Remove all addresses that were added to the device by dev_uc_sync(). 4530 */ 4531 static inline void __dev_uc_unsync(struct net_device *dev, 4532 int (*unsync)(struct net_device *, 4533 const unsigned char *)) 4534 { 4535 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4536 } 4537 4538 /* Functions used for multicast addresses handling */ 4539 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4540 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4541 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4542 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4543 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4544 int dev_mc_sync(struct net_device *to, struct net_device *from); 4545 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4546 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4547 void dev_mc_flush(struct net_device *dev); 4548 void dev_mc_init(struct net_device *dev); 4549 4550 /** 4551 * __dev_mc_sync - Synchonize device's multicast list 4552 * @dev: device to sync 4553 * @sync: function to call if address should be added 4554 * @unsync: function to call if address should be removed 4555 * 4556 * Add newly added addresses to the interface, and release 4557 * addresses that have been deleted. 4558 */ 4559 static inline int __dev_mc_sync(struct net_device *dev, 4560 int (*sync)(struct net_device *, 4561 const unsigned char *), 4562 int (*unsync)(struct net_device *, 4563 const unsigned char *)) 4564 { 4565 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4566 } 4567 4568 /** 4569 * __dev_mc_unsync - Remove synchronized addresses from device 4570 * @dev: device to sync 4571 * @unsync: function to call if address should be removed 4572 * 4573 * Remove all addresses that were added to the device by dev_mc_sync(). 4574 */ 4575 static inline void __dev_mc_unsync(struct net_device *dev, 4576 int (*unsync)(struct net_device *, 4577 const unsigned char *)) 4578 { 4579 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4580 } 4581 4582 /* Functions used for secondary unicast and multicast support */ 4583 void dev_set_rx_mode(struct net_device *dev); 4584 int dev_set_promiscuity(struct net_device *dev, int inc); 4585 int dev_set_allmulti(struct net_device *dev, int inc); 4586 void netdev_state_change(struct net_device *dev); 4587 void __netdev_notify_peers(struct net_device *dev); 4588 void netdev_notify_peers(struct net_device *dev); 4589 void netdev_features_change(struct net_device *dev); 4590 /* Load a device via the kmod */ 4591 void dev_load(struct net *net, const char *name); 4592 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4593 struct rtnl_link_stats64 *storage); 4594 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4595 const struct net_device_stats *netdev_stats); 4596 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4597 const struct pcpu_sw_netstats __percpu *netstats); 4598 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4599 4600 extern int netdev_max_backlog; 4601 extern int dev_rx_weight; 4602 extern int dev_tx_weight; 4603 extern int gro_normal_batch; 4604 4605 enum { 4606 NESTED_SYNC_IMM_BIT, 4607 NESTED_SYNC_TODO_BIT, 4608 }; 4609 4610 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4611 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4612 4613 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4614 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4615 4616 struct netdev_nested_priv { 4617 unsigned char flags; 4618 void *data; 4619 }; 4620 4621 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4622 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4623 struct list_head **iter); 4624 4625 /* iterate through upper list, must be called under RCU read lock */ 4626 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4627 for (iter = &(dev)->adj_list.upper, \ 4628 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4629 updev; \ 4630 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4631 4632 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4633 int (*fn)(struct net_device *upper_dev, 4634 struct netdev_nested_priv *priv), 4635 struct netdev_nested_priv *priv); 4636 4637 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4638 struct net_device *upper_dev); 4639 4640 bool netdev_has_any_upper_dev(struct net_device *dev); 4641 4642 void *netdev_lower_get_next_private(struct net_device *dev, 4643 struct list_head **iter); 4644 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4645 struct list_head **iter); 4646 4647 #define netdev_for_each_lower_private(dev, priv, iter) \ 4648 for (iter = (dev)->adj_list.lower.next, \ 4649 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4650 priv; \ 4651 priv = netdev_lower_get_next_private(dev, &(iter))) 4652 4653 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4654 for (iter = &(dev)->adj_list.lower, \ 4655 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4656 priv; \ 4657 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4658 4659 void *netdev_lower_get_next(struct net_device *dev, 4660 struct list_head **iter); 4661 4662 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4663 for (iter = (dev)->adj_list.lower.next, \ 4664 ldev = netdev_lower_get_next(dev, &(iter)); \ 4665 ldev; \ 4666 ldev = netdev_lower_get_next(dev, &(iter))) 4667 4668 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4669 struct list_head **iter); 4670 int netdev_walk_all_lower_dev(struct net_device *dev, 4671 int (*fn)(struct net_device *lower_dev, 4672 struct netdev_nested_priv *priv), 4673 struct netdev_nested_priv *priv); 4674 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4675 int (*fn)(struct net_device *lower_dev, 4676 struct netdev_nested_priv *priv), 4677 struct netdev_nested_priv *priv); 4678 4679 void *netdev_adjacent_get_private(struct list_head *adj_list); 4680 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4681 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4682 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4683 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4684 struct netlink_ext_ack *extack); 4685 int netdev_master_upper_dev_link(struct net_device *dev, 4686 struct net_device *upper_dev, 4687 void *upper_priv, void *upper_info, 4688 struct netlink_ext_ack *extack); 4689 void netdev_upper_dev_unlink(struct net_device *dev, 4690 struct net_device *upper_dev); 4691 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4692 struct net_device *new_dev, 4693 struct net_device *dev, 4694 struct netlink_ext_ack *extack); 4695 void netdev_adjacent_change_commit(struct net_device *old_dev, 4696 struct net_device *new_dev, 4697 struct net_device *dev); 4698 void netdev_adjacent_change_abort(struct net_device *old_dev, 4699 struct net_device *new_dev, 4700 struct net_device *dev); 4701 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4702 void *netdev_lower_dev_get_private(struct net_device *dev, 4703 struct net_device *lower_dev); 4704 void netdev_lower_state_changed(struct net_device *lower_dev, 4705 void *lower_state_info); 4706 4707 /* RSS keys are 40 or 52 bytes long */ 4708 #define NETDEV_RSS_KEY_LEN 52 4709 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4710 void netdev_rss_key_fill(void *buffer, size_t len); 4711 4712 int skb_checksum_help(struct sk_buff *skb); 4713 int skb_crc32c_csum_help(struct sk_buff *skb); 4714 int skb_csum_hwoffload_help(struct sk_buff *skb, 4715 const netdev_features_t features); 4716 4717 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4718 netdev_features_t features, bool tx_path); 4719 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb, 4720 netdev_features_t features, __be16 type); 4721 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4722 netdev_features_t features); 4723 4724 struct netdev_bonding_info { 4725 ifslave slave; 4726 ifbond master; 4727 }; 4728 4729 struct netdev_notifier_bonding_info { 4730 struct netdev_notifier_info info; /* must be first */ 4731 struct netdev_bonding_info bonding_info; 4732 }; 4733 4734 void netdev_bonding_info_change(struct net_device *dev, 4735 struct netdev_bonding_info *bonding_info); 4736 4737 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4738 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4739 #else 4740 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4741 const void *data) 4742 { 4743 } 4744 #endif 4745 4746 static inline 4747 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4748 { 4749 return __skb_gso_segment(skb, features, true); 4750 } 4751 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4752 4753 static inline bool can_checksum_protocol(netdev_features_t features, 4754 __be16 protocol) 4755 { 4756 if (protocol == htons(ETH_P_FCOE)) 4757 return !!(features & NETIF_F_FCOE_CRC); 4758 4759 /* Assume this is an IP checksum (not SCTP CRC) */ 4760 4761 if (features & NETIF_F_HW_CSUM) { 4762 /* Can checksum everything */ 4763 return true; 4764 } 4765 4766 switch (protocol) { 4767 case htons(ETH_P_IP): 4768 return !!(features & NETIF_F_IP_CSUM); 4769 case htons(ETH_P_IPV6): 4770 return !!(features & NETIF_F_IPV6_CSUM); 4771 default: 4772 return false; 4773 } 4774 } 4775 4776 #ifdef CONFIG_BUG 4777 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4778 #else 4779 static inline void netdev_rx_csum_fault(struct net_device *dev, 4780 struct sk_buff *skb) 4781 { 4782 } 4783 #endif 4784 /* rx skb timestamps */ 4785 void net_enable_timestamp(void); 4786 void net_disable_timestamp(void); 4787 4788 static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4789 const struct skb_shared_hwtstamps *hwtstamps, 4790 bool cycles) 4791 { 4792 const struct net_device_ops *ops = dev->netdev_ops; 4793 4794 if (ops->ndo_get_tstamp) 4795 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4796 4797 return hwtstamps->hwtstamp; 4798 } 4799 4800 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4801 struct sk_buff *skb, struct net_device *dev, 4802 bool more) 4803 { 4804 __this_cpu_write(softnet_data.xmit.more, more); 4805 return ops->ndo_start_xmit(skb, dev); 4806 } 4807 4808 static inline bool netdev_xmit_more(void) 4809 { 4810 return __this_cpu_read(softnet_data.xmit.more); 4811 } 4812 4813 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4814 struct netdev_queue *txq, bool more) 4815 { 4816 const struct net_device_ops *ops = dev->netdev_ops; 4817 netdev_tx_t rc; 4818 4819 rc = __netdev_start_xmit(ops, skb, dev, more); 4820 if (rc == NETDEV_TX_OK) 4821 txq_trans_update(txq); 4822 4823 return rc; 4824 } 4825 4826 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4827 const void *ns); 4828 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4829 const void *ns); 4830 4831 extern const struct kobj_ns_type_operations net_ns_type_operations; 4832 4833 const char *netdev_drivername(const struct net_device *dev); 4834 4835 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4836 netdev_features_t f2) 4837 { 4838 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4839 if (f1 & NETIF_F_HW_CSUM) 4840 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4841 else 4842 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4843 } 4844 4845 return f1 & f2; 4846 } 4847 4848 static inline netdev_features_t netdev_get_wanted_features( 4849 struct net_device *dev) 4850 { 4851 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4852 } 4853 netdev_features_t netdev_increment_features(netdev_features_t all, 4854 netdev_features_t one, netdev_features_t mask); 4855 4856 /* Allow TSO being used on stacked device : 4857 * Performing the GSO segmentation before last device 4858 * is a performance improvement. 4859 */ 4860 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4861 netdev_features_t mask) 4862 { 4863 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4864 } 4865 4866 int __netdev_update_features(struct net_device *dev); 4867 void netdev_update_features(struct net_device *dev); 4868 void netdev_change_features(struct net_device *dev); 4869 4870 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4871 struct net_device *dev); 4872 4873 netdev_features_t passthru_features_check(struct sk_buff *skb, 4874 struct net_device *dev, 4875 netdev_features_t features); 4876 netdev_features_t netif_skb_features(struct sk_buff *skb); 4877 4878 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4879 { 4880 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4881 4882 /* check flags correspondence */ 4883 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4884 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4885 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4886 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4887 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4888 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4889 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4890 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4891 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4892 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4893 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4894 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4895 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4896 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4897 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4898 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4899 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4900 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4901 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 4902 4903 return (features & feature) == feature; 4904 } 4905 4906 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4907 { 4908 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4909 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4910 } 4911 4912 static inline bool netif_needs_gso(struct sk_buff *skb, 4913 netdev_features_t features) 4914 { 4915 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4916 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4917 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4918 } 4919 4920 void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 4921 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 4922 void netif_inherit_tso_max(struct net_device *to, 4923 const struct net_device *from); 4924 4925 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4926 int pulled_hlen, u16 mac_offset, 4927 int mac_len) 4928 { 4929 skb->protocol = protocol; 4930 skb->encapsulation = 1; 4931 skb_push(skb, pulled_hlen); 4932 skb_reset_transport_header(skb); 4933 skb->mac_header = mac_offset; 4934 skb->network_header = skb->mac_header + mac_len; 4935 skb->mac_len = mac_len; 4936 } 4937 4938 static inline bool netif_is_macsec(const struct net_device *dev) 4939 { 4940 return dev->priv_flags & IFF_MACSEC; 4941 } 4942 4943 static inline bool netif_is_macvlan(const struct net_device *dev) 4944 { 4945 return dev->priv_flags & IFF_MACVLAN; 4946 } 4947 4948 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4949 { 4950 return dev->priv_flags & IFF_MACVLAN_PORT; 4951 } 4952 4953 static inline bool netif_is_bond_master(const struct net_device *dev) 4954 { 4955 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4956 } 4957 4958 static inline bool netif_is_bond_slave(const struct net_device *dev) 4959 { 4960 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4961 } 4962 4963 static inline bool netif_supports_nofcs(struct net_device *dev) 4964 { 4965 return dev->priv_flags & IFF_SUPP_NOFCS; 4966 } 4967 4968 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 4969 { 4970 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 4971 } 4972 4973 static inline bool netif_is_l3_master(const struct net_device *dev) 4974 { 4975 return dev->priv_flags & IFF_L3MDEV_MASTER; 4976 } 4977 4978 static inline bool netif_is_l3_slave(const struct net_device *dev) 4979 { 4980 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4981 } 4982 4983 static inline bool netif_is_bridge_master(const struct net_device *dev) 4984 { 4985 return dev->priv_flags & IFF_EBRIDGE; 4986 } 4987 4988 static inline bool netif_is_bridge_port(const struct net_device *dev) 4989 { 4990 return dev->priv_flags & IFF_BRIDGE_PORT; 4991 } 4992 4993 static inline bool netif_is_ovs_master(const struct net_device *dev) 4994 { 4995 return dev->priv_flags & IFF_OPENVSWITCH; 4996 } 4997 4998 static inline bool netif_is_ovs_port(const struct net_device *dev) 4999 { 5000 return dev->priv_flags & IFF_OVS_DATAPATH; 5001 } 5002 5003 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5004 { 5005 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5006 } 5007 5008 static inline bool netif_is_team_master(const struct net_device *dev) 5009 { 5010 return dev->priv_flags & IFF_TEAM; 5011 } 5012 5013 static inline bool netif_is_team_port(const struct net_device *dev) 5014 { 5015 return dev->priv_flags & IFF_TEAM_PORT; 5016 } 5017 5018 static inline bool netif_is_lag_master(const struct net_device *dev) 5019 { 5020 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5021 } 5022 5023 static inline bool netif_is_lag_port(const struct net_device *dev) 5024 { 5025 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5026 } 5027 5028 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5029 { 5030 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5031 } 5032 5033 static inline bool netif_is_failover(const struct net_device *dev) 5034 { 5035 return dev->priv_flags & IFF_FAILOVER; 5036 } 5037 5038 static inline bool netif_is_failover_slave(const struct net_device *dev) 5039 { 5040 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5041 } 5042 5043 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5044 static inline void netif_keep_dst(struct net_device *dev) 5045 { 5046 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5047 } 5048 5049 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5050 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5051 { 5052 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5053 return netif_is_macsec(dev); 5054 } 5055 5056 extern struct pernet_operations __net_initdata loopback_net_ops; 5057 5058 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5059 5060 /* netdev_printk helpers, similar to dev_printk */ 5061 5062 static inline const char *netdev_name(const struct net_device *dev) 5063 { 5064 if (!dev->name[0] || strchr(dev->name, '%')) 5065 return "(unnamed net_device)"; 5066 return dev->name; 5067 } 5068 5069 static inline bool netdev_unregistering(const struct net_device *dev) 5070 { 5071 return dev->reg_state == NETREG_UNREGISTERING; 5072 } 5073 5074 static inline const char *netdev_reg_state(const struct net_device *dev) 5075 { 5076 switch (dev->reg_state) { 5077 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5078 case NETREG_REGISTERED: return ""; 5079 case NETREG_UNREGISTERING: return " (unregistering)"; 5080 case NETREG_UNREGISTERED: return " (unregistered)"; 5081 case NETREG_RELEASED: return " (released)"; 5082 case NETREG_DUMMY: return " (dummy)"; 5083 } 5084 5085 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5086 return " (unknown)"; 5087 } 5088 5089 #define MODULE_ALIAS_NETDEV(device) \ 5090 MODULE_ALIAS("netdev-" device) 5091 5092 /* 5093 * netdev_WARN() acts like dev_printk(), but with the key difference 5094 * of using a WARN/WARN_ON to get the message out, including the 5095 * file/line information and a backtrace. 5096 */ 5097 #define netdev_WARN(dev, format, args...) \ 5098 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5099 netdev_reg_state(dev), ##args) 5100 5101 #define netdev_WARN_ONCE(dev, format, args...) \ 5102 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5103 netdev_reg_state(dev), ##args) 5104 5105 /* 5106 * The list of packet types we will receive (as opposed to discard) 5107 * and the routines to invoke. 5108 * 5109 * Why 16. Because with 16 the only overlap we get on a hash of the 5110 * low nibble of the protocol value is RARP/SNAP/X.25. 5111 * 5112 * 0800 IP 5113 * 0001 802.3 5114 * 0002 AX.25 5115 * 0004 802.2 5116 * 8035 RARP 5117 * 0005 SNAP 5118 * 0805 X.25 5119 * 0806 ARP 5120 * 8137 IPX 5121 * 0009 Localtalk 5122 * 86DD IPv6 5123 */ 5124 #define PTYPE_HASH_SIZE (16) 5125 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5126 5127 extern struct list_head ptype_all __read_mostly; 5128 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5129 5130 extern struct net_device *blackhole_netdev; 5131 5132 #endif /* _LINUX_NETDEVICE_H */ 5133