xref: /openbmc/linux/include/linux/netdevice.h (revision ccc319dc)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct ethtool_ops;
58 struct phy_device;
59 struct dsa_port;
60 struct ip_tunnel_parm;
61 struct macsec_context;
62 struct macsec_ops;
63 struct netdev_name_node;
64 struct sd_flow_limit;
65 struct sfp_bus;
66 /* 802.11 specific */
67 struct wireless_dev;
68 /* 802.15.4 specific */
69 struct wpan_dev;
70 struct mpls_dev;
71 /* UDP Tunnel offloads */
72 struct udp_tunnel_info;
73 struct udp_tunnel_nic_info;
74 struct udp_tunnel_nic;
75 struct bpf_prog;
76 struct xdp_buff;
77 
78 void synchronize_net(void);
79 void netdev_set_default_ethtool_ops(struct net_device *dev,
80 				    const struct ethtool_ops *ops);
81 
82 /* Backlog congestion levels */
83 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
84 #define NET_RX_DROP		1	/* packet dropped */
85 
86 #define MAX_NEST_DEV 8
87 
88 /*
89  * Transmit return codes: transmit return codes originate from three different
90  * namespaces:
91  *
92  * - qdisc return codes
93  * - driver transmit return codes
94  * - errno values
95  *
96  * Drivers are allowed to return any one of those in their hard_start_xmit()
97  * function. Real network devices commonly used with qdiscs should only return
98  * the driver transmit return codes though - when qdiscs are used, the actual
99  * transmission happens asynchronously, so the value is not propagated to
100  * higher layers. Virtual network devices transmit synchronously; in this case
101  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
102  * others are propagated to higher layers.
103  */
104 
105 /* qdisc ->enqueue() return codes. */
106 #define NET_XMIT_SUCCESS	0x00
107 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
108 #define NET_XMIT_CN		0x02	/* congestion notification	*/
109 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
110 
111 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
112  * indicates that the device will soon be dropping packets, or already drops
113  * some packets of the same priority; prompting us to send less aggressively. */
114 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
115 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
116 
117 /* Driver transmit return codes */
118 #define NETDEV_TX_MASK		0xf0
119 
120 enum netdev_tx {
121 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
122 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
123 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
124 };
125 typedef enum netdev_tx netdev_tx_t;
126 
127 /*
128  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
129  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
130  */
131 static inline bool dev_xmit_complete(int rc)
132 {
133 	/*
134 	 * Positive cases with an skb consumed by a driver:
135 	 * - successful transmission (rc == NETDEV_TX_OK)
136 	 * - error while transmitting (rc < 0)
137 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
138 	 */
139 	if (likely(rc < NET_XMIT_MASK))
140 		return true;
141 
142 	return false;
143 }
144 
145 /*
146  *	Compute the worst-case header length according to the protocols
147  *	used.
148  */
149 
150 #if defined(CONFIG_HYPERV_NET)
151 # define LL_MAX_HEADER 128
152 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
153 # if defined(CONFIG_MAC80211_MESH)
154 #  define LL_MAX_HEADER 128
155 # else
156 #  define LL_MAX_HEADER 96
157 # endif
158 #else
159 # define LL_MAX_HEADER 32
160 #endif
161 
162 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
163     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
164 #define MAX_HEADER LL_MAX_HEADER
165 #else
166 #define MAX_HEADER (LL_MAX_HEADER + 48)
167 #endif
168 
169 /*
170  *	Old network device statistics. Fields are native words
171  *	(unsigned long) so they can be read and written atomically.
172  */
173 
174 struct net_device_stats {
175 	unsigned long	rx_packets;
176 	unsigned long	tx_packets;
177 	unsigned long	rx_bytes;
178 	unsigned long	tx_bytes;
179 	unsigned long	rx_errors;
180 	unsigned long	tx_errors;
181 	unsigned long	rx_dropped;
182 	unsigned long	tx_dropped;
183 	unsigned long	multicast;
184 	unsigned long	collisions;
185 	unsigned long	rx_length_errors;
186 	unsigned long	rx_over_errors;
187 	unsigned long	rx_crc_errors;
188 	unsigned long	rx_frame_errors;
189 	unsigned long	rx_fifo_errors;
190 	unsigned long	rx_missed_errors;
191 	unsigned long	tx_aborted_errors;
192 	unsigned long	tx_carrier_errors;
193 	unsigned long	tx_fifo_errors;
194 	unsigned long	tx_heartbeat_errors;
195 	unsigned long	tx_window_errors;
196 	unsigned long	rx_compressed;
197 	unsigned long	tx_compressed;
198 };
199 
200 /* per-cpu stats, allocated on demand.
201  * Try to fit them in a single cache line, for dev_get_stats() sake.
202  */
203 struct net_device_core_stats {
204 	unsigned long	rx_dropped;
205 	unsigned long	tx_dropped;
206 	unsigned long	rx_nohandler;
207 	unsigned long	rx_otherhost_dropped;
208 } __aligned(4 * sizeof(unsigned long));
209 
210 #include <linux/cache.h>
211 #include <linux/skbuff.h>
212 
213 #ifdef CONFIG_RPS
214 #include <linux/static_key.h>
215 extern struct static_key_false rps_needed;
216 extern struct static_key_false rfs_needed;
217 #endif
218 
219 struct neighbour;
220 struct neigh_parms;
221 struct sk_buff;
222 
223 struct netdev_hw_addr {
224 	struct list_head	list;
225 	struct rb_node		node;
226 	unsigned char		addr[MAX_ADDR_LEN];
227 	unsigned char		type;
228 #define NETDEV_HW_ADDR_T_LAN		1
229 #define NETDEV_HW_ADDR_T_SAN		2
230 #define NETDEV_HW_ADDR_T_UNICAST	3
231 #define NETDEV_HW_ADDR_T_MULTICAST	4
232 	bool			global_use;
233 	int			sync_cnt;
234 	int			refcount;
235 	int			synced;
236 	struct rcu_head		rcu_head;
237 };
238 
239 struct netdev_hw_addr_list {
240 	struct list_head	list;
241 	int			count;
242 
243 	/* Auxiliary tree for faster lookup on addition and deletion */
244 	struct rb_root		tree;
245 };
246 
247 #define netdev_hw_addr_list_count(l) ((l)->count)
248 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
249 #define netdev_hw_addr_list_for_each(ha, l) \
250 	list_for_each_entry(ha, &(l)->list, list)
251 
252 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
253 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
254 #define netdev_for_each_uc_addr(ha, dev) \
255 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
256 
257 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
258 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
259 #define netdev_for_each_mc_addr(ha, dev) \
260 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
261 
262 struct hh_cache {
263 	unsigned int	hh_len;
264 	seqlock_t	hh_lock;
265 
266 	/* cached hardware header; allow for machine alignment needs.        */
267 #define HH_DATA_MOD	16
268 #define HH_DATA_OFF(__len) \
269 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
270 #define HH_DATA_ALIGN(__len) \
271 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
272 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
273 };
274 
275 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
276  * Alternative is:
277  *   dev->hard_header_len ? (dev->hard_header_len +
278  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
279  *
280  * We could use other alignment values, but we must maintain the
281  * relationship HH alignment <= LL alignment.
282  */
283 #define LL_RESERVED_SPACE(dev) \
284 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
285 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
286 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
287 
288 struct header_ops {
289 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
290 			   unsigned short type, const void *daddr,
291 			   const void *saddr, unsigned int len);
292 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
293 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
294 	void	(*cache_update)(struct hh_cache *hh,
295 				const struct net_device *dev,
296 				const unsigned char *haddr);
297 	bool	(*validate)(const char *ll_header, unsigned int len);
298 	__be16	(*parse_protocol)(const struct sk_buff *skb);
299 };
300 
301 /* These flag bits are private to the generic network queueing
302  * layer; they may not be explicitly referenced by any other
303  * code.
304  */
305 
306 enum netdev_state_t {
307 	__LINK_STATE_START,
308 	__LINK_STATE_PRESENT,
309 	__LINK_STATE_NOCARRIER,
310 	__LINK_STATE_LINKWATCH_PENDING,
311 	__LINK_STATE_DORMANT,
312 	__LINK_STATE_TESTING,
313 };
314 
315 struct gro_list {
316 	struct list_head	list;
317 	int			count;
318 };
319 
320 /*
321  * size of gro hash buckets, must less than bit number of
322  * napi_struct::gro_bitmask
323  */
324 #define GRO_HASH_BUCKETS	8
325 
326 /*
327  * Structure for NAPI scheduling similar to tasklet but with weighting
328  */
329 struct napi_struct {
330 	/* The poll_list must only be managed by the entity which
331 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
332 	 * whoever atomically sets that bit can add this napi_struct
333 	 * to the per-CPU poll_list, and whoever clears that bit
334 	 * can remove from the list right before clearing the bit.
335 	 */
336 	struct list_head	poll_list;
337 
338 	unsigned long		state;
339 	int			weight;
340 	int			defer_hard_irqs_count;
341 	unsigned long		gro_bitmask;
342 	int			(*poll)(struct napi_struct *, int);
343 #ifdef CONFIG_NETPOLL
344 	int			poll_owner;
345 #endif
346 	struct net_device	*dev;
347 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
348 	struct sk_buff		*skb;
349 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
350 	int			rx_count; /* length of rx_list */
351 	struct hrtimer		timer;
352 	struct list_head	dev_list;
353 	struct hlist_node	napi_hash_node;
354 	unsigned int		napi_id;
355 	struct task_struct	*thread;
356 };
357 
358 enum {
359 	NAPI_STATE_SCHED,		/* Poll is scheduled */
360 	NAPI_STATE_MISSED,		/* reschedule a napi */
361 	NAPI_STATE_DISABLE,		/* Disable pending */
362 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
363 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
364 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
365 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
366 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
367 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
368 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
369 };
370 
371 enum {
372 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
373 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
374 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
375 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
376 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
377 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
378 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
379 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
380 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
381 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
382 };
383 
384 enum gro_result {
385 	GRO_MERGED,
386 	GRO_MERGED_FREE,
387 	GRO_HELD,
388 	GRO_NORMAL,
389 	GRO_CONSUMED,
390 };
391 typedef enum gro_result gro_result_t;
392 
393 /*
394  * enum rx_handler_result - Possible return values for rx_handlers.
395  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
396  * further.
397  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
398  * case skb->dev was changed by rx_handler.
399  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
400  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
401  *
402  * rx_handlers are functions called from inside __netif_receive_skb(), to do
403  * special processing of the skb, prior to delivery to protocol handlers.
404  *
405  * Currently, a net_device can only have a single rx_handler registered. Trying
406  * to register a second rx_handler will return -EBUSY.
407  *
408  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
409  * To unregister a rx_handler on a net_device, use
410  * netdev_rx_handler_unregister().
411  *
412  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
413  * do with the skb.
414  *
415  * If the rx_handler consumed the skb in some way, it should return
416  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
417  * the skb to be delivered in some other way.
418  *
419  * If the rx_handler changed skb->dev, to divert the skb to another
420  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
421  * new device will be called if it exists.
422  *
423  * If the rx_handler decides the skb should be ignored, it should return
424  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
425  * are registered on exact device (ptype->dev == skb->dev).
426  *
427  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
428  * delivered, it should return RX_HANDLER_PASS.
429  *
430  * A device without a registered rx_handler will behave as if rx_handler
431  * returned RX_HANDLER_PASS.
432  */
433 
434 enum rx_handler_result {
435 	RX_HANDLER_CONSUMED,
436 	RX_HANDLER_ANOTHER,
437 	RX_HANDLER_EXACT,
438 	RX_HANDLER_PASS,
439 };
440 typedef enum rx_handler_result rx_handler_result_t;
441 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
442 
443 void __napi_schedule(struct napi_struct *n);
444 void __napi_schedule_irqoff(struct napi_struct *n);
445 
446 static inline bool napi_disable_pending(struct napi_struct *n)
447 {
448 	return test_bit(NAPI_STATE_DISABLE, &n->state);
449 }
450 
451 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
452 {
453 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
454 }
455 
456 bool napi_schedule_prep(struct napi_struct *n);
457 
458 /**
459  *	napi_schedule - schedule NAPI poll
460  *	@n: NAPI context
461  *
462  * Schedule NAPI poll routine to be called if it is not already
463  * running.
464  */
465 static inline void napi_schedule(struct napi_struct *n)
466 {
467 	if (napi_schedule_prep(n))
468 		__napi_schedule(n);
469 }
470 
471 /**
472  *	napi_schedule_irqoff - schedule NAPI poll
473  *	@n: NAPI context
474  *
475  * Variant of napi_schedule(), assuming hard irqs are masked.
476  */
477 static inline void napi_schedule_irqoff(struct napi_struct *n)
478 {
479 	if (napi_schedule_prep(n))
480 		__napi_schedule_irqoff(n);
481 }
482 
483 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
484 static inline bool napi_reschedule(struct napi_struct *napi)
485 {
486 	if (napi_schedule_prep(napi)) {
487 		__napi_schedule(napi);
488 		return true;
489 	}
490 	return false;
491 }
492 
493 bool napi_complete_done(struct napi_struct *n, int work_done);
494 /**
495  *	napi_complete - NAPI processing complete
496  *	@n: NAPI context
497  *
498  * Mark NAPI processing as complete.
499  * Consider using napi_complete_done() instead.
500  * Return false if device should avoid rearming interrupts.
501  */
502 static inline bool napi_complete(struct napi_struct *n)
503 {
504 	return napi_complete_done(n, 0);
505 }
506 
507 int dev_set_threaded(struct net_device *dev, bool threaded);
508 
509 /**
510  *	napi_disable - prevent NAPI from scheduling
511  *	@n: NAPI context
512  *
513  * Stop NAPI from being scheduled on this context.
514  * Waits till any outstanding processing completes.
515  */
516 void napi_disable(struct napi_struct *n);
517 
518 void napi_enable(struct napi_struct *n);
519 
520 /**
521  *	napi_synchronize - wait until NAPI is not running
522  *	@n: NAPI context
523  *
524  * Wait until NAPI is done being scheduled on this context.
525  * Waits till any outstanding processing completes but
526  * does not disable future activations.
527  */
528 static inline void napi_synchronize(const struct napi_struct *n)
529 {
530 	if (IS_ENABLED(CONFIG_SMP))
531 		while (test_bit(NAPI_STATE_SCHED, &n->state))
532 			msleep(1);
533 	else
534 		barrier();
535 }
536 
537 /**
538  *	napi_if_scheduled_mark_missed - if napi is running, set the
539  *	NAPIF_STATE_MISSED
540  *	@n: NAPI context
541  *
542  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
543  * NAPI is scheduled.
544  **/
545 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
546 {
547 	unsigned long val, new;
548 
549 	do {
550 		val = READ_ONCE(n->state);
551 		if (val & NAPIF_STATE_DISABLE)
552 			return true;
553 
554 		if (!(val & NAPIF_STATE_SCHED))
555 			return false;
556 
557 		new = val | NAPIF_STATE_MISSED;
558 	} while (cmpxchg(&n->state, val, new) != val);
559 
560 	return true;
561 }
562 
563 enum netdev_queue_state_t {
564 	__QUEUE_STATE_DRV_XOFF,
565 	__QUEUE_STATE_STACK_XOFF,
566 	__QUEUE_STATE_FROZEN,
567 };
568 
569 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
570 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
571 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
572 
573 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
574 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
575 					QUEUE_STATE_FROZEN)
576 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
577 					QUEUE_STATE_FROZEN)
578 
579 /*
580  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
581  * netif_tx_* functions below are used to manipulate this flag.  The
582  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
583  * queue independently.  The netif_xmit_*stopped functions below are called
584  * to check if the queue has been stopped by the driver or stack (either
585  * of the XOFF bits are set in the state).  Drivers should not need to call
586  * netif_xmit*stopped functions, they should only be using netif_tx_*.
587  */
588 
589 struct netdev_queue {
590 /*
591  * read-mostly part
592  */
593 	struct net_device	*dev;
594 	netdevice_tracker	dev_tracker;
595 
596 	struct Qdisc __rcu	*qdisc;
597 	struct Qdisc		*qdisc_sleeping;
598 #ifdef CONFIG_SYSFS
599 	struct kobject		kobj;
600 #endif
601 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
602 	int			numa_node;
603 #endif
604 	unsigned long		tx_maxrate;
605 	/*
606 	 * Number of TX timeouts for this queue
607 	 * (/sys/class/net/DEV/Q/trans_timeout)
608 	 */
609 	atomic_long_t		trans_timeout;
610 
611 	/* Subordinate device that the queue has been assigned to */
612 	struct net_device	*sb_dev;
613 #ifdef CONFIG_XDP_SOCKETS
614 	struct xsk_buff_pool    *pool;
615 #endif
616 /*
617  * write-mostly part
618  */
619 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
620 	int			xmit_lock_owner;
621 	/*
622 	 * Time (in jiffies) of last Tx
623 	 */
624 	unsigned long		trans_start;
625 
626 	unsigned long		state;
627 
628 #ifdef CONFIG_BQL
629 	struct dql		dql;
630 #endif
631 } ____cacheline_aligned_in_smp;
632 
633 extern int sysctl_fb_tunnels_only_for_init_net;
634 extern int sysctl_devconf_inherit_init_net;
635 
636 /*
637  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
638  *                                     == 1 : For initns only
639  *                                     == 2 : For none.
640  */
641 static inline bool net_has_fallback_tunnels(const struct net *net)
642 {
643 	return !IS_ENABLED(CONFIG_SYSCTL) ||
644 	       !sysctl_fb_tunnels_only_for_init_net ||
645 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
646 }
647 
648 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
649 {
650 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
651 	return q->numa_node;
652 #else
653 	return NUMA_NO_NODE;
654 #endif
655 }
656 
657 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
658 {
659 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
660 	q->numa_node = node;
661 #endif
662 }
663 
664 #ifdef CONFIG_RPS
665 /*
666  * This structure holds an RPS map which can be of variable length.  The
667  * map is an array of CPUs.
668  */
669 struct rps_map {
670 	unsigned int len;
671 	struct rcu_head rcu;
672 	u16 cpus[];
673 };
674 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
675 
676 /*
677  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
678  * tail pointer for that CPU's input queue at the time of last enqueue, and
679  * a hardware filter index.
680  */
681 struct rps_dev_flow {
682 	u16 cpu;
683 	u16 filter;
684 	unsigned int last_qtail;
685 };
686 #define RPS_NO_FILTER 0xffff
687 
688 /*
689  * The rps_dev_flow_table structure contains a table of flow mappings.
690  */
691 struct rps_dev_flow_table {
692 	unsigned int mask;
693 	struct rcu_head rcu;
694 	struct rps_dev_flow flows[];
695 };
696 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
697     ((_num) * sizeof(struct rps_dev_flow)))
698 
699 /*
700  * The rps_sock_flow_table contains mappings of flows to the last CPU
701  * on which they were processed by the application (set in recvmsg).
702  * Each entry is a 32bit value. Upper part is the high-order bits
703  * of flow hash, lower part is CPU number.
704  * rps_cpu_mask is used to partition the space, depending on number of
705  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
706  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
707  * meaning we use 32-6=26 bits for the hash.
708  */
709 struct rps_sock_flow_table {
710 	u32	mask;
711 
712 	u32	ents[] ____cacheline_aligned_in_smp;
713 };
714 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
715 
716 #define RPS_NO_CPU 0xffff
717 
718 extern u32 rps_cpu_mask;
719 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
720 
721 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
722 					u32 hash)
723 {
724 	if (table && hash) {
725 		unsigned int index = hash & table->mask;
726 		u32 val = hash & ~rps_cpu_mask;
727 
728 		/* We only give a hint, preemption can change CPU under us */
729 		val |= raw_smp_processor_id();
730 
731 		if (table->ents[index] != val)
732 			table->ents[index] = val;
733 	}
734 }
735 
736 #ifdef CONFIG_RFS_ACCEL
737 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
738 			 u16 filter_id);
739 #endif
740 #endif /* CONFIG_RPS */
741 
742 /* This structure contains an instance of an RX queue. */
743 struct netdev_rx_queue {
744 	struct xdp_rxq_info		xdp_rxq;
745 #ifdef CONFIG_RPS
746 	struct rps_map __rcu		*rps_map;
747 	struct rps_dev_flow_table __rcu	*rps_flow_table;
748 #endif
749 	struct kobject			kobj;
750 	struct net_device		*dev;
751 	netdevice_tracker		dev_tracker;
752 
753 #ifdef CONFIG_XDP_SOCKETS
754 	struct xsk_buff_pool            *pool;
755 #endif
756 } ____cacheline_aligned_in_smp;
757 
758 /*
759  * RX queue sysfs structures and functions.
760  */
761 struct rx_queue_attribute {
762 	struct attribute attr;
763 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
764 	ssize_t (*store)(struct netdev_rx_queue *queue,
765 			 const char *buf, size_t len);
766 };
767 
768 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
769 enum xps_map_type {
770 	XPS_CPUS = 0,
771 	XPS_RXQS,
772 	XPS_MAPS_MAX,
773 };
774 
775 #ifdef CONFIG_XPS
776 /*
777  * This structure holds an XPS map which can be of variable length.  The
778  * map is an array of queues.
779  */
780 struct xps_map {
781 	unsigned int len;
782 	unsigned int alloc_len;
783 	struct rcu_head rcu;
784 	u16 queues[];
785 };
786 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
787 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
788        - sizeof(struct xps_map)) / sizeof(u16))
789 
790 /*
791  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
792  *
793  * We keep track of the number of cpus/rxqs used when the struct is allocated,
794  * in nr_ids. This will help not accessing out-of-bound memory.
795  *
796  * We keep track of the number of traffic classes used when the struct is
797  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
798  * not crossing its upper bound, as the original dev->num_tc can be updated in
799  * the meantime.
800  */
801 struct xps_dev_maps {
802 	struct rcu_head rcu;
803 	unsigned int nr_ids;
804 	s16 num_tc;
805 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
806 };
807 
808 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
809 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
810 
811 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
812 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
813 
814 #endif /* CONFIG_XPS */
815 
816 #define TC_MAX_QUEUE	16
817 #define TC_BITMASK	15
818 /* HW offloaded queuing disciplines txq count and offset maps */
819 struct netdev_tc_txq {
820 	u16 count;
821 	u16 offset;
822 };
823 
824 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
825 /*
826  * This structure is to hold information about the device
827  * configured to run FCoE protocol stack.
828  */
829 struct netdev_fcoe_hbainfo {
830 	char	manufacturer[64];
831 	char	serial_number[64];
832 	char	hardware_version[64];
833 	char	driver_version[64];
834 	char	optionrom_version[64];
835 	char	firmware_version[64];
836 	char	model[256];
837 	char	model_description[256];
838 };
839 #endif
840 
841 #define MAX_PHYS_ITEM_ID_LEN 32
842 
843 /* This structure holds a unique identifier to identify some
844  * physical item (port for example) used by a netdevice.
845  */
846 struct netdev_phys_item_id {
847 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
848 	unsigned char id_len;
849 };
850 
851 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
852 					    struct netdev_phys_item_id *b)
853 {
854 	return a->id_len == b->id_len &&
855 	       memcmp(a->id, b->id, a->id_len) == 0;
856 }
857 
858 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
859 				       struct sk_buff *skb,
860 				       struct net_device *sb_dev);
861 
862 enum net_device_path_type {
863 	DEV_PATH_ETHERNET = 0,
864 	DEV_PATH_VLAN,
865 	DEV_PATH_BRIDGE,
866 	DEV_PATH_PPPOE,
867 	DEV_PATH_DSA,
868 	DEV_PATH_MTK_WDMA,
869 };
870 
871 struct net_device_path {
872 	enum net_device_path_type	type;
873 	const struct net_device		*dev;
874 	union {
875 		struct {
876 			u16		id;
877 			__be16		proto;
878 			u8		h_dest[ETH_ALEN];
879 		} encap;
880 		struct {
881 			enum {
882 				DEV_PATH_BR_VLAN_KEEP,
883 				DEV_PATH_BR_VLAN_TAG,
884 				DEV_PATH_BR_VLAN_UNTAG,
885 				DEV_PATH_BR_VLAN_UNTAG_HW,
886 			}		vlan_mode;
887 			u16		vlan_id;
888 			__be16		vlan_proto;
889 		} bridge;
890 		struct {
891 			int port;
892 			u16 proto;
893 		} dsa;
894 		struct {
895 			u8 wdma_idx;
896 			u8 queue;
897 			u16 wcid;
898 			u8 bss;
899 		} mtk_wdma;
900 	};
901 };
902 
903 #define NET_DEVICE_PATH_STACK_MAX	5
904 #define NET_DEVICE_PATH_VLAN_MAX	2
905 
906 struct net_device_path_stack {
907 	int			num_paths;
908 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
909 };
910 
911 struct net_device_path_ctx {
912 	const struct net_device *dev;
913 	u8			daddr[ETH_ALEN];
914 
915 	int			num_vlans;
916 	struct {
917 		u16		id;
918 		__be16		proto;
919 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
920 };
921 
922 enum tc_setup_type {
923 	TC_SETUP_QDISC_MQPRIO,
924 	TC_SETUP_CLSU32,
925 	TC_SETUP_CLSFLOWER,
926 	TC_SETUP_CLSMATCHALL,
927 	TC_SETUP_CLSBPF,
928 	TC_SETUP_BLOCK,
929 	TC_SETUP_QDISC_CBS,
930 	TC_SETUP_QDISC_RED,
931 	TC_SETUP_QDISC_PRIO,
932 	TC_SETUP_QDISC_MQ,
933 	TC_SETUP_QDISC_ETF,
934 	TC_SETUP_ROOT_QDISC,
935 	TC_SETUP_QDISC_GRED,
936 	TC_SETUP_QDISC_TAPRIO,
937 	TC_SETUP_FT,
938 	TC_SETUP_QDISC_ETS,
939 	TC_SETUP_QDISC_TBF,
940 	TC_SETUP_QDISC_FIFO,
941 	TC_SETUP_QDISC_HTB,
942 	TC_SETUP_ACT,
943 };
944 
945 /* These structures hold the attributes of bpf state that are being passed
946  * to the netdevice through the bpf op.
947  */
948 enum bpf_netdev_command {
949 	/* Set or clear a bpf program used in the earliest stages of packet
950 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
951 	 * is responsible for calling bpf_prog_put on any old progs that are
952 	 * stored. In case of error, the callee need not release the new prog
953 	 * reference, but on success it takes ownership and must bpf_prog_put
954 	 * when it is no longer used.
955 	 */
956 	XDP_SETUP_PROG,
957 	XDP_SETUP_PROG_HW,
958 	/* BPF program for offload callbacks, invoked at program load time. */
959 	BPF_OFFLOAD_MAP_ALLOC,
960 	BPF_OFFLOAD_MAP_FREE,
961 	XDP_SETUP_XSK_POOL,
962 };
963 
964 struct bpf_prog_offload_ops;
965 struct netlink_ext_ack;
966 struct xdp_umem;
967 struct xdp_dev_bulk_queue;
968 struct bpf_xdp_link;
969 
970 enum bpf_xdp_mode {
971 	XDP_MODE_SKB = 0,
972 	XDP_MODE_DRV = 1,
973 	XDP_MODE_HW = 2,
974 	__MAX_XDP_MODE
975 };
976 
977 struct bpf_xdp_entity {
978 	struct bpf_prog *prog;
979 	struct bpf_xdp_link *link;
980 };
981 
982 struct netdev_bpf {
983 	enum bpf_netdev_command command;
984 	union {
985 		/* XDP_SETUP_PROG */
986 		struct {
987 			u32 flags;
988 			struct bpf_prog *prog;
989 			struct netlink_ext_ack *extack;
990 		};
991 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
992 		struct {
993 			struct bpf_offloaded_map *offmap;
994 		};
995 		/* XDP_SETUP_XSK_POOL */
996 		struct {
997 			struct xsk_buff_pool *pool;
998 			u16 queue_id;
999 		} xsk;
1000 	};
1001 };
1002 
1003 /* Flags for ndo_xsk_wakeup. */
1004 #define XDP_WAKEUP_RX (1 << 0)
1005 #define XDP_WAKEUP_TX (1 << 1)
1006 
1007 #ifdef CONFIG_XFRM_OFFLOAD
1008 struct xfrmdev_ops {
1009 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
1010 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1011 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1012 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1013 				       struct xfrm_state *x);
1014 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1015 };
1016 #endif
1017 
1018 struct dev_ifalias {
1019 	struct rcu_head rcuhead;
1020 	char ifalias[];
1021 };
1022 
1023 struct devlink;
1024 struct tlsdev_ops;
1025 
1026 struct netdev_net_notifier {
1027 	struct list_head list;
1028 	struct notifier_block *nb;
1029 };
1030 
1031 /*
1032  * This structure defines the management hooks for network devices.
1033  * The following hooks can be defined; unless noted otherwise, they are
1034  * optional and can be filled with a null pointer.
1035  *
1036  * int (*ndo_init)(struct net_device *dev);
1037  *     This function is called once when a network device is registered.
1038  *     The network device can use this for any late stage initialization
1039  *     or semantic validation. It can fail with an error code which will
1040  *     be propagated back to register_netdev.
1041  *
1042  * void (*ndo_uninit)(struct net_device *dev);
1043  *     This function is called when device is unregistered or when registration
1044  *     fails. It is not called if init fails.
1045  *
1046  * int (*ndo_open)(struct net_device *dev);
1047  *     This function is called when a network device transitions to the up
1048  *     state.
1049  *
1050  * int (*ndo_stop)(struct net_device *dev);
1051  *     This function is called when a network device transitions to the down
1052  *     state.
1053  *
1054  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1055  *                               struct net_device *dev);
1056  *	Called when a packet needs to be transmitted.
1057  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1058  *	the queue before that can happen; it's for obsolete devices and weird
1059  *	corner cases, but the stack really does a non-trivial amount
1060  *	of useless work if you return NETDEV_TX_BUSY.
1061  *	Required; cannot be NULL.
1062  *
1063  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1064  *					   struct net_device *dev
1065  *					   netdev_features_t features);
1066  *	Called by core transmit path to determine if device is capable of
1067  *	performing offload operations on a given packet. This is to give
1068  *	the device an opportunity to implement any restrictions that cannot
1069  *	be otherwise expressed by feature flags. The check is called with
1070  *	the set of features that the stack has calculated and it returns
1071  *	those the driver believes to be appropriate.
1072  *
1073  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1074  *                         struct net_device *sb_dev);
1075  *	Called to decide which queue to use when device supports multiple
1076  *	transmit queues.
1077  *
1078  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1079  *	This function is called to allow device receiver to make
1080  *	changes to configuration when multicast or promiscuous is enabled.
1081  *
1082  * void (*ndo_set_rx_mode)(struct net_device *dev);
1083  *	This function is called device changes address list filtering.
1084  *	If driver handles unicast address filtering, it should set
1085  *	IFF_UNICAST_FLT in its priv_flags.
1086  *
1087  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1088  *	This function  is called when the Media Access Control address
1089  *	needs to be changed. If this interface is not defined, the
1090  *	MAC address can not be changed.
1091  *
1092  * int (*ndo_validate_addr)(struct net_device *dev);
1093  *	Test if Media Access Control address is valid for the device.
1094  *
1095  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1096  *	Old-style ioctl entry point. This is used internally by the
1097  *	appletalk and ieee802154 subsystems but is no longer called by
1098  *	the device ioctl handler.
1099  *
1100  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1101  *	Used by the bonding driver for its device specific ioctls:
1102  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1103  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1104  *
1105  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1106  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1107  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1108  *
1109  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1110  *	Used to set network devices bus interface parameters. This interface
1111  *	is retained for legacy reasons; new devices should use the bus
1112  *	interface (PCI) for low level management.
1113  *
1114  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1115  *	Called when a user wants to change the Maximum Transfer Unit
1116  *	of a device.
1117  *
1118  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1119  *	Callback used when the transmitter has not made any progress
1120  *	for dev->watchdog ticks.
1121  *
1122  * void (*ndo_get_stats64)(struct net_device *dev,
1123  *                         struct rtnl_link_stats64 *storage);
1124  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1125  *	Called when a user wants to get the network device usage
1126  *	statistics. Drivers must do one of the following:
1127  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1128  *	   rtnl_link_stats64 structure passed by the caller.
1129  *	2. Define @ndo_get_stats to update a net_device_stats structure
1130  *	   (which should normally be dev->stats) and return a pointer to
1131  *	   it. The structure may be changed asynchronously only if each
1132  *	   field is written atomically.
1133  *	3. Update dev->stats asynchronously and atomically, and define
1134  *	   neither operation.
1135  *
1136  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1137  *	Return true if this device supports offload stats of this attr_id.
1138  *
1139  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1140  *	void *attr_data)
1141  *	Get statistics for offload operations by attr_id. Write it into the
1142  *	attr_data pointer.
1143  *
1144  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1145  *	If device supports VLAN filtering this function is called when a
1146  *	VLAN id is registered.
1147  *
1148  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1149  *	If device supports VLAN filtering this function is called when a
1150  *	VLAN id is unregistered.
1151  *
1152  * void (*ndo_poll_controller)(struct net_device *dev);
1153  *
1154  *	SR-IOV management functions.
1155  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1156  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1157  *			  u8 qos, __be16 proto);
1158  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1159  *			  int max_tx_rate);
1160  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1161  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1162  * int (*ndo_get_vf_config)(struct net_device *dev,
1163  *			    int vf, struct ifla_vf_info *ivf);
1164  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1165  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1166  *			  struct nlattr *port[]);
1167  *
1168  *      Enable or disable the VF ability to query its RSS Redirection Table and
1169  *      Hash Key. This is needed since on some devices VF share this information
1170  *      with PF and querying it may introduce a theoretical security risk.
1171  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1172  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1173  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1174  *		       void *type_data);
1175  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1176  *	This is always called from the stack with the rtnl lock held and netif
1177  *	tx queues stopped. This allows the netdevice to perform queue
1178  *	management safely.
1179  *
1180  *	Fiber Channel over Ethernet (FCoE) offload functions.
1181  * int (*ndo_fcoe_enable)(struct net_device *dev);
1182  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1183  *	so the underlying device can perform whatever needed configuration or
1184  *	initialization to support acceleration of FCoE traffic.
1185  *
1186  * int (*ndo_fcoe_disable)(struct net_device *dev);
1187  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1188  *	so the underlying device can perform whatever needed clean-ups to
1189  *	stop supporting acceleration of FCoE traffic.
1190  *
1191  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1192  *			     struct scatterlist *sgl, unsigned int sgc);
1193  *	Called when the FCoE Initiator wants to initialize an I/O that
1194  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1195  *	perform necessary setup and returns 1 to indicate the device is set up
1196  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1197  *
1198  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1199  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1200  *	indicated by the FC exchange id 'xid', so the underlying device can
1201  *	clean up and reuse resources for later DDP requests.
1202  *
1203  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1204  *			      struct scatterlist *sgl, unsigned int sgc);
1205  *	Called when the FCoE Target wants to initialize an I/O that
1206  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1207  *	perform necessary setup and returns 1 to indicate the device is set up
1208  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1209  *
1210  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1211  *			       struct netdev_fcoe_hbainfo *hbainfo);
1212  *	Called when the FCoE Protocol stack wants information on the underlying
1213  *	device. This information is utilized by the FCoE protocol stack to
1214  *	register attributes with Fiber Channel management service as per the
1215  *	FC-GS Fabric Device Management Information(FDMI) specification.
1216  *
1217  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1218  *	Called when the underlying device wants to override default World Wide
1219  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1220  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1221  *	protocol stack to use.
1222  *
1223  *	RFS acceleration.
1224  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1225  *			    u16 rxq_index, u32 flow_id);
1226  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1227  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1228  *	Return the filter ID on success, or a negative error code.
1229  *
1230  *	Slave management functions (for bridge, bonding, etc).
1231  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1232  *	Called to make another netdev an underling.
1233  *
1234  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1235  *	Called to release previously enslaved netdev.
1236  *
1237  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1238  *					    struct sk_buff *skb,
1239  *					    bool all_slaves);
1240  *	Get the xmit slave of master device. If all_slaves is true, function
1241  *	assume all the slaves can transmit.
1242  *
1243  *      Feature/offload setting functions.
1244  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1245  *		netdev_features_t features);
1246  *	Adjusts the requested feature flags according to device-specific
1247  *	constraints, and returns the resulting flags. Must not modify
1248  *	the device state.
1249  *
1250  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1251  *	Called to update device configuration to new features. Passed
1252  *	feature set might be less than what was returned by ndo_fix_features()).
1253  *	Must return >0 or -errno if it changed dev->features itself.
1254  *
1255  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1256  *		      struct net_device *dev,
1257  *		      const unsigned char *addr, u16 vid, u16 flags,
1258  *		      struct netlink_ext_ack *extack);
1259  *	Adds an FDB entry to dev for addr.
1260  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1261  *		      struct net_device *dev,
1262  *		      const unsigned char *addr, u16 vid)
1263  *	Deletes the FDB entry from dev coresponding to addr.
1264  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1265  *			   struct net_device *dev,
1266  *			   u16 vid,
1267  *			   struct netlink_ext_ack *extack);
1268  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1269  *		       struct net_device *dev, struct net_device *filter_dev,
1270  *		       int *idx)
1271  *	Used to add FDB entries to dump requests. Implementers should add
1272  *	entries to skb and update idx with the number of entries.
1273  *
1274  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1275  *			     u16 flags, struct netlink_ext_ack *extack)
1276  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1277  *			     struct net_device *dev, u32 filter_mask,
1278  *			     int nlflags)
1279  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1280  *			     u16 flags);
1281  *
1282  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1283  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1284  *	which do not represent real hardware may define this to allow their
1285  *	userspace components to manage their virtual carrier state. Devices
1286  *	that determine carrier state from physical hardware properties (eg
1287  *	network cables) or protocol-dependent mechanisms (eg
1288  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1289  *
1290  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1291  *			       struct netdev_phys_item_id *ppid);
1292  *	Called to get ID of physical port of this device. If driver does
1293  *	not implement this, it is assumed that the hw is not able to have
1294  *	multiple net devices on single physical port.
1295  *
1296  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1297  *				 struct netdev_phys_item_id *ppid)
1298  *	Called to get the parent ID of the physical port of this device.
1299  *
1300  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1301  *				 struct net_device *dev)
1302  *	Called by upper layer devices to accelerate switching or other
1303  *	station functionality into hardware. 'pdev is the lowerdev
1304  *	to use for the offload and 'dev' is the net device that will
1305  *	back the offload. Returns a pointer to the private structure
1306  *	the upper layer will maintain.
1307  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1308  *	Called by upper layer device to delete the station created
1309  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1310  *	the station and priv is the structure returned by the add
1311  *	operation.
1312  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1313  *			     int queue_index, u32 maxrate);
1314  *	Called when a user wants to set a max-rate limitation of specific
1315  *	TX queue.
1316  * int (*ndo_get_iflink)(const struct net_device *dev);
1317  *	Called to get the iflink value of this device.
1318  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1319  *	This function is used to get egress tunnel information for given skb.
1320  *	This is useful for retrieving outer tunnel header parameters while
1321  *	sampling packet.
1322  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1323  *	This function is used to specify the headroom that the skb must
1324  *	consider when allocation skb during packet reception. Setting
1325  *	appropriate rx headroom value allows avoiding skb head copy on
1326  *	forward. Setting a negative value resets the rx headroom to the
1327  *	default value.
1328  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1329  *	This function is used to set or query state related to XDP on the
1330  *	netdevice and manage BPF offload. See definition of
1331  *	enum bpf_netdev_command for details.
1332  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1333  *			u32 flags);
1334  *	This function is used to submit @n XDP packets for transmit on a
1335  *	netdevice. Returns number of frames successfully transmitted, frames
1336  *	that got dropped are freed/returned via xdp_return_frame().
1337  *	Returns negative number, means general error invoking ndo, meaning
1338  *	no frames were xmit'ed and core-caller will free all frames.
1339  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1340  *					        struct xdp_buff *xdp);
1341  *      Get the xmit slave of master device based on the xdp_buff.
1342  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1343  *      This function is used to wake up the softirq, ksoftirqd or kthread
1344  *	responsible for sending and/or receiving packets on a specific
1345  *	queue id bound to an AF_XDP socket. The flags field specifies if
1346  *	only RX, only Tx, or both should be woken up using the flags
1347  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1348  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1349  *	Get devlink port instance associated with a given netdev.
1350  *	Called with a reference on the netdevice and devlink locks only,
1351  *	rtnl_lock is not held.
1352  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1353  *			 int cmd);
1354  *	Add, change, delete or get information on an IPv4 tunnel.
1355  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1356  *	If a device is paired with a peer device, return the peer instance.
1357  *	The caller must be under RCU read context.
1358  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1359  *     Get the forwarding path to reach the real device from the HW destination address
1360  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1361  *			     const struct skb_shared_hwtstamps *hwtstamps,
1362  *			     bool cycles);
1363  *	Get hardware timestamp based on normal/adjustable time or free running
1364  *	cycle counter. This function is required if physical clock supports a
1365  *	free running cycle counter.
1366  */
1367 struct net_device_ops {
1368 	int			(*ndo_init)(struct net_device *dev);
1369 	void			(*ndo_uninit)(struct net_device *dev);
1370 	int			(*ndo_open)(struct net_device *dev);
1371 	int			(*ndo_stop)(struct net_device *dev);
1372 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1373 						  struct net_device *dev);
1374 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1375 						      struct net_device *dev,
1376 						      netdev_features_t features);
1377 	u16			(*ndo_select_queue)(struct net_device *dev,
1378 						    struct sk_buff *skb,
1379 						    struct net_device *sb_dev);
1380 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1381 						       int flags);
1382 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1383 	int			(*ndo_set_mac_address)(struct net_device *dev,
1384 						       void *addr);
1385 	int			(*ndo_validate_addr)(struct net_device *dev);
1386 	int			(*ndo_do_ioctl)(struct net_device *dev,
1387 					        struct ifreq *ifr, int cmd);
1388 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1389 						 struct ifreq *ifr, int cmd);
1390 	int			(*ndo_siocbond)(struct net_device *dev,
1391 						struct ifreq *ifr, int cmd);
1392 	int			(*ndo_siocwandev)(struct net_device *dev,
1393 						  struct if_settings *ifs);
1394 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1395 						      struct ifreq *ifr,
1396 						      void __user *data, int cmd);
1397 	int			(*ndo_set_config)(struct net_device *dev,
1398 					          struct ifmap *map);
1399 	int			(*ndo_change_mtu)(struct net_device *dev,
1400 						  int new_mtu);
1401 	int			(*ndo_neigh_setup)(struct net_device *dev,
1402 						   struct neigh_parms *);
1403 	void			(*ndo_tx_timeout) (struct net_device *dev,
1404 						   unsigned int txqueue);
1405 
1406 	void			(*ndo_get_stats64)(struct net_device *dev,
1407 						   struct rtnl_link_stats64 *storage);
1408 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1409 	int			(*ndo_get_offload_stats)(int attr_id,
1410 							 const struct net_device *dev,
1411 							 void *attr_data);
1412 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1413 
1414 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1415 						       __be16 proto, u16 vid);
1416 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1417 						        __be16 proto, u16 vid);
1418 #ifdef CONFIG_NET_POLL_CONTROLLER
1419 	void                    (*ndo_poll_controller)(struct net_device *dev);
1420 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1421 						     struct netpoll_info *info);
1422 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1423 #endif
1424 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1425 						  int queue, u8 *mac);
1426 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1427 						   int queue, u16 vlan,
1428 						   u8 qos, __be16 proto);
1429 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1430 						   int vf, int min_tx_rate,
1431 						   int max_tx_rate);
1432 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1433 						       int vf, bool setting);
1434 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1435 						    int vf, bool setting);
1436 	int			(*ndo_get_vf_config)(struct net_device *dev,
1437 						     int vf,
1438 						     struct ifla_vf_info *ivf);
1439 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1440 							 int vf, int link_state);
1441 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1442 						    int vf,
1443 						    struct ifla_vf_stats
1444 						    *vf_stats);
1445 	int			(*ndo_set_vf_port)(struct net_device *dev,
1446 						   int vf,
1447 						   struct nlattr *port[]);
1448 	int			(*ndo_get_vf_port)(struct net_device *dev,
1449 						   int vf, struct sk_buff *skb);
1450 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1451 						   int vf,
1452 						   struct ifla_vf_guid *node_guid,
1453 						   struct ifla_vf_guid *port_guid);
1454 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1455 						   int vf, u64 guid,
1456 						   int guid_type);
1457 	int			(*ndo_set_vf_rss_query_en)(
1458 						   struct net_device *dev,
1459 						   int vf, bool setting);
1460 	int			(*ndo_setup_tc)(struct net_device *dev,
1461 						enum tc_setup_type type,
1462 						void *type_data);
1463 #if IS_ENABLED(CONFIG_FCOE)
1464 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1465 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1466 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1467 						      u16 xid,
1468 						      struct scatterlist *sgl,
1469 						      unsigned int sgc);
1470 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1471 						     u16 xid);
1472 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1473 						       u16 xid,
1474 						       struct scatterlist *sgl,
1475 						       unsigned int sgc);
1476 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1477 							struct netdev_fcoe_hbainfo *hbainfo);
1478 #endif
1479 
1480 #if IS_ENABLED(CONFIG_LIBFCOE)
1481 #define NETDEV_FCOE_WWNN 0
1482 #define NETDEV_FCOE_WWPN 1
1483 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1484 						    u64 *wwn, int type);
1485 #endif
1486 
1487 #ifdef CONFIG_RFS_ACCEL
1488 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1489 						     const struct sk_buff *skb,
1490 						     u16 rxq_index,
1491 						     u32 flow_id);
1492 #endif
1493 	int			(*ndo_add_slave)(struct net_device *dev,
1494 						 struct net_device *slave_dev,
1495 						 struct netlink_ext_ack *extack);
1496 	int			(*ndo_del_slave)(struct net_device *dev,
1497 						 struct net_device *slave_dev);
1498 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1499 						      struct sk_buff *skb,
1500 						      bool all_slaves);
1501 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1502 							struct sock *sk);
1503 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1504 						    netdev_features_t features);
1505 	int			(*ndo_set_features)(struct net_device *dev,
1506 						    netdev_features_t features);
1507 	int			(*ndo_neigh_construct)(struct net_device *dev,
1508 						       struct neighbour *n);
1509 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1510 						     struct neighbour *n);
1511 
1512 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1513 					       struct nlattr *tb[],
1514 					       struct net_device *dev,
1515 					       const unsigned char *addr,
1516 					       u16 vid,
1517 					       u16 flags,
1518 					       struct netlink_ext_ack *extack);
1519 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1520 					       struct nlattr *tb[],
1521 					       struct net_device *dev,
1522 					       const unsigned char *addr,
1523 					       u16 vid, struct netlink_ext_ack *extack);
1524 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1525 						    struct nlattr *tb[],
1526 						    struct net_device *dev,
1527 						    u16 vid,
1528 						    struct netlink_ext_ack *extack);
1529 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1530 						struct netlink_callback *cb,
1531 						struct net_device *dev,
1532 						struct net_device *filter_dev,
1533 						int *idx);
1534 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1535 					       struct nlattr *tb[],
1536 					       struct net_device *dev,
1537 					       const unsigned char *addr,
1538 					       u16 vid, u32 portid, u32 seq,
1539 					       struct netlink_ext_ack *extack);
1540 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1541 						      struct nlmsghdr *nlh,
1542 						      u16 flags,
1543 						      struct netlink_ext_ack *extack);
1544 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1545 						      u32 pid, u32 seq,
1546 						      struct net_device *dev,
1547 						      u32 filter_mask,
1548 						      int nlflags);
1549 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1550 						      struct nlmsghdr *nlh,
1551 						      u16 flags);
1552 	int			(*ndo_change_carrier)(struct net_device *dev,
1553 						      bool new_carrier);
1554 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1555 							struct netdev_phys_item_id *ppid);
1556 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1557 							  struct netdev_phys_item_id *ppid);
1558 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1559 							  char *name, size_t len);
1560 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1561 							struct net_device *dev);
1562 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1563 							void *priv);
1564 
1565 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1566 						      int queue_index,
1567 						      u32 maxrate);
1568 	int			(*ndo_get_iflink)(const struct net_device *dev);
1569 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1570 						       struct sk_buff *skb);
1571 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1572 						       int needed_headroom);
1573 	int			(*ndo_bpf)(struct net_device *dev,
1574 					   struct netdev_bpf *bpf);
1575 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1576 						struct xdp_frame **xdp,
1577 						u32 flags);
1578 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1579 							  struct xdp_buff *xdp);
1580 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1581 						  u32 queue_id, u32 flags);
1582 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1583 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1584 						  struct ip_tunnel_parm *p, int cmd);
1585 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1586 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1587                                                          struct net_device_path *path);
1588 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1589 						  const struct skb_shared_hwtstamps *hwtstamps,
1590 						  bool cycles);
1591 };
1592 
1593 /**
1594  * enum netdev_priv_flags - &struct net_device priv_flags
1595  *
1596  * These are the &struct net_device, they are only set internally
1597  * by drivers and used in the kernel. These flags are invisible to
1598  * userspace; this means that the order of these flags can change
1599  * during any kernel release.
1600  *
1601  * You should have a pretty good reason to be extending these flags.
1602  *
1603  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1604  * @IFF_EBRIDGE: Ethernet bridging device
1605  * @IFF_BONDING: bonding master or slave
1606  * @IFF_ISATAP: ISATAP interface (RFC4214)
1607  * @IFF_WAN_HDLC: WAN HDLC device
1608  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1609  *	release skb->dst
1610  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1611  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1612  * @IFF_MACVLAN_PORT: device used as macvlan port
1613  * @IFF_BRIDGE_PORT: device used as bridge port
1614  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1615  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1616  * @IFF_UNICAST_FLT: Supports unicast filtering
1617  * @IFF_TEAM_PORT: device used as team port
1618  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1619  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1620  *	change when it's running
1621  * @IFF_MACVLAN: Macvlan device
1622  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1623  *	underlying stacked devices
1624  * @IFF_L3MDEV_MASTER: device is an L3 master device
1625  * @IFF_NO_QUEUE: device can run without qdisc attached
1626  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1627  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1628  * @IFF_TEAM: device is a team device
1629  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1630  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1631  *	entity (i.e. the master device for bridged veth)
1632  * @IFF_MACSEC: device is a MACsec device
1633  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1634  * @IFF_FAILOVER: device is a failover master device
1635  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1636  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1637  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1638  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1639  *	skb_headlen(skb) == 0 (data starts from frag0)
1640  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1641  */
1642 enum netdev_priv_flags {
1643 	IFF_802_1Q_VLAN			= 1<<0,
1644 	IFF_EBRIDGE			= 1<<1,
1645 	IFF_BONDING			= 1<<2,
1646 	IFF_ISATAP			= 1<<3,
1647 	IFF_WAN_HDLC			= 1<<4,
1648 	IFF_XMIT_DST_RELEASE		= 1<<5,
1649 	IFF_DONT_BRIDGE			= 1<<6,
1650 	IFF_DISABLE_NETPOLL		= 1<<7,
1651 	IFF_MACVLAN_PORT		= 1<<8,
1652 	IFF_BRIDGE_PORT			= 1<<9,
1653 	IFF_OVS_DATAPATH		= 1<<10,
1654 	IFF_TX_SKB_SHARING		= 1<<11,
1655 	IFF_UNICAST_FLT			= 1<<12,
1656 	IFF_TEAM_PORT			= 1<<13,
1657 	IFF_SUPP_NOFCS			= 1<<14,
1658 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1659 	IFF_MACVLAN			= 1<<16,
1660 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1661 	IFF_L3MDEV_MASTER		= 1<<18,
1662 	IFF_NO_QUEUE			= 1<<19,
1663 	IFF_OPENVSWITCH			= 1<<20,
1664 	IFF_L3MDEV_SLAVE		= 1<<21,
1665 	IFF_TEAM			= 1<<22,
1666 	IFF_RXFH_CONFIGURED		= 1<<23,
1667 	IFF_PHONY_HEADROOM		= 1<<24,
1668 	IFF_MACSEC			= 1<<25,
1669 	IFF_NO_RX_HANDLER		= 1<<26,
1670 	IFF_FAILOVER			= 1<<27,
1671 	IFF_FAILOVER_SLAVE		= 1<<28,
1672 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1673 	IFF_LIVE_RENAME_OK		= 1<<30,
1674 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1675 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1676 };
1677 
1678 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1679 #define IFF_EBRIDGE			IFF_EBRIDGE
1680 #define IFF_BONDING			IFF_BONDING
1681 #define IFF_ISATAP			IFF_ISATAP
1682 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1683 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1684 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1685 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1686 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1687 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1688 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1689 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1690 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1691 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1692 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1693 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1694 #define IFF_MACVLAN			IFF_MACVLAN
1695 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1696 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1697 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1698 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1699 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1700 #define IFF_TEAM			IFF_TEAM
1701 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1702 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1703 #define IFF_MACSEC			IFF_MACSEC
1704 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1705 #define IFF_FAILOVER			IFF_FAILOVER
1706 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1707 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1708 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1709 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1710 
1711 /* Specifies the type of the struct net_device::ml_priv pointer */
1712 enum netdev_ml_priv_type {
1713 	ML_PRIV_NONE,
1714 	ML_PRIV_CAN,
1715 };
1716 
1717 /**
1718  *	struct net_device - The DEVICE structure.
1719  *
1720  *	Actually, this whole structure is a big mistake.  It mixes I/O
1721  *	data with strictly "high-level" data, and it has to know about
1722  *	almost every data structure used in the INET module.
1723  *
1724  *	@name:	This is the first field of the "visible" part of this structure
1725  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1726  *		of the interface.
1727  *
1728  *	@name_node:	Name hashlist node
1729  *	@ifalias:	SNMP alias
1730  *	@mem_end:	Shared memory end
1731  *	@mem_start:	Shared memory start
1732  *	@base_addr:	Device I/O address
1733  *	@irq:		Device IRQ number
1734  *
1735  *	@state:		Generic network queuing layer state, see netdev_state_t
1736  *	@dev_list:	The global list of network devices
1737  *	@napi_list:	List entry used for polling NAPI devices
1738  *	@unreg_list:	List entry  when we are unregistering the
1739  *			device; see the function unregister_netdev
1740  *	@close_list:	List entry used when we are closing the device
1741  *	@ptype_all:     Device-specific packet handlers for all protocols
1742  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1743  *
1744  *	@adj_list:	Directly linked devices, like slaves for bonding
1745  *	@features:	Currently active device features
1746  *	@hw_features:	User-changeable features
1747  *
1748  *	@wanted_features:	User-requested features
1749  *	@vlan_features:		Mask of features inheritable by VLAN devices
1750  *
1751  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1752  *				This field indicates what encapsulation
1753  *				offloads the hardware is capable of doing,
1754  *				and drivers will need to set them appropriately.
1755  *
1756  *	@mpls_features:	Mask of features inheritable by MPLS
1757  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1758  *
1759  *	@ifindex:	interface index
1760  *	@group:		The group the device belongs to
1761  *
1762  *	@stats:		Statistics struct, which was left as a legacy, use
1763  *			rtnl_link_stats64 instead
1764  *
1765  *	@core_stats:	core networking counters,
1766  *			do not use this in drivers
1767  *	@carrier_up_count:	Number of times the carrier has been up
1768  *	@carrier_down_count:	Number of times the carrier has been down
1769  *
1770  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1771  *				instead of ioctl,
1772  *				see <net/iw_handler.h> for details.
1773  *	@wireless_data:	Instance data managed by the core of wireless extensions
1774  *
1775  *	@netdev_ops:	Includes several pointers to callbacks,
1776  *			if one wants to override the ndo_*() functions
1777  *	@ethtool_ops:	Management operations
1778  *	@l3mdev_ops:	Layer 3 master device operations
1779  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1780  *			discovery handling. Necessary for e.g. 6LoWPAN.
1781  *	@xfrmdev_ops:	Transformation offload operations
1782  *	@tlsdev_ops:	Transport Layer Security offload operations
1783  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1784  *			of Layer 2 headers.
1785  *
1786  *	@flags:		Interface flags (a la BSD)
1787  *	@priv_flags:	Like 'flags' but invisible to userspace,
1788  *			see if.h for the definitions
1789  *	@gflags:	Global flags ( kept as legacy )
1790  *	@padded:	How much padding added by alloc_netdev()
1791  *	@operstate:	RFC2863 operstate
1792  *	@link_mode:	Mapping policy to operstate
1793  *	@if_port:	Selectable AUI, TP, ...
1794  *	@dma:		DMA channel
1795  *	@mtu:		Interface MTU value
1796  *	@min_mtu:	Interface Minimum MTU value
1797  *	@max_mtu:	Interface Maximum MTU value
1798  *	@type:		Interface hardware type
1799  *	@hard_header_len: Maximum hardware header length.
1800  *	@min_header_len:  Minimum hardware header length
1801  *
1802  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1803  *			  cases can this be guaranteed
1804  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1805  *			  cases can this be guaranteed. Some cases also use
1806  *			  LL_MAX_HEADER instead to allocate the skb
1807  *
1808  *	interface address info:
1809  *
1810  * 	@perm_addr:		Permanent hw address
1811  * 	@addr_assign_type:	Hw address assignment type
1812  * 	@addr_len:		Hardware address length
1813  *	@upper_level:		Maximum depth level of upper devices.
1814  *	@lower_level:		Maximum depth level of lower devices.
1815  *	@neigh_priv_len:	Used in neigh_alloc()
1816  * 	@dev_id:		Used to differentiate devices that share
1817  * 				the same link layer address
1818  * 	@dev_port:		Used to differentiate devices that share
1819  * 				the same function
1820  *	@addr_list_lock:	XXX: need comments on this one
1821  *	@name_assign_type:	network interface name assignment type
1822  *	@uc_promisc:		Counter that indicates promiscuous mode
1823  *				has been enabled due to the need to listen to
1824  *				additional unicast addresses in a device that
1825  *				does not implement ndo_set_rx_mode()
1826  *	@uc:			unicast mac addresses
1827  *	@mc:			multicast mac addresses
1828  *	@dev_addrs:		list of device hw addresses
1829  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1830  *	@promiscuity:		Number of times the NIC is told to work in
1831  *				promiscuous mode; if it becomes 0 the NIC will
1832  *				exit promiscuous mode
1833  *	@allmulti:		Counter, enables or disables allmulticast mode
1834  *
1835  *	@vlan_info:	VLAN info
1836  *	@dsa_ptr:	dsa specific data
1837  *	@tipc_ptr:	TIPC specific data
1838  *	@atalk_ptr:	AppleTalk link
1839  *	@ip_ptr:	IPv4 specific data
1840  *	@dn_ptr:	DECnet specific data
1841  *	@ip6_ptr:	IPv6 specific data
1842  *	@ax25_ptr:	AX.25 specific data
1843  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1844  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1845  *			 device struct
1846  *	@mpls_ptr:	mpls_dev struct pointer
1847  *	@mctp_ptr:	MCTP specific data
1848  *
1849  *	@dev_addr:	Hw address (before bcast,
1850  *			because most packets are unicast)
1851  *
1852  *	@_rx:			Array of RX queues
1853  *	@num_rx_queues:		Number of RX queues
1854  *				allocated at register_netdev() time
1855  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1856  *	@xdp_prog:		XDP sockets filter program pointer
1857  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1858  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1859  *				allow to avoid NIC hard IRQ, on busy queues.
1860  *
1861  *	@rx_handler:		handler for received packets
1862  *	@rx_handler_data: 	XXX: need comments on this one
1863  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1864  *				ingress processing
1865  *	@ingress_queue:		XXX: need comments on this one
1866  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1867  *	@broadcast:		hw bcast address
1868  *
1869  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1870  *			indexed by RX queue number. Assigned by driver.
1871  *			This must only be set if the ndo_rx_flow_steer
1872  *			operation is defined
1873  *	@index_hlist:		Device index hash chain
1874  *
1875  *	@_tx:			Array of TX queues
1876  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1877  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1878  *	@qdisc:			Root qdisc from userspace point of view
1879  *	@tx_queue_len:		Max frames per queue allowed
1880  *	@tx_global_lock: 	XXX: need comments on this one
1881  *	@xdp_bulkq:		XDP device bulk queue
1882  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1883  *
1884  *	@xps_maps:	XXX: need comments on this one
1885  *	@miniq_egress:		clsact qdisc specific data for
1886  *				egress processing
1887  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1888  *	@qdisc_hash:		qdisc hash table
1889  *	@watchdog_timeo:	Represents the timeout that is used by
1890  *				the watchdog (see dev_watchdog())
1891  *	@watchdog_timer:	List of timers
1892  *
1893  *	@proto_down_reason:	reason a netdev interface is held down
1894  *	@pcpu_refcnt:		Number of references to this device
1895  *	@dev_refcnt:		Number of references to this device
1896  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1897  *	@todo_list:		Delayed register/unregister
1898  *	@link_watch_list:	XXX: need comments on this one
1899  *
1900  *	@reg_state:		Register/unregister state machine
1901  *	@dismantle:		Device is going to be freed
1902  *	@rtnl_link_state:	This enum represents the phases of creating
1903  *				a new link
1904  *
1905  *	@needs_free_netdev:	Should unregister perform free_netdev?
1906  *	@priv_destructor:	Called from unregister
1907  *	@npinfo:		XXX: need comments on this one
1908  * 	@nd_net:		Network namespace this network device is inside
1909  *
1910  * 	@ml_priv:	Mid-layer private
1911  *	@ml_priv_type:  Mid-layer private type
1912  * 	@lstats:	Loopback statistics
1913  * 	@tstats:	Tunnel statistics
1914  * 	@dstats:	Dummy statistics
1915  * 	@vstats:	Virtual ethernet statistics
1916  *
1917  *	@garp_port:	GARP
1918  *	@mrp_port:	MRP
1919  *
1920  *	@dm_private:	Drop monitor private
1921  *
1922  *	@dev:		Class/net/name entry
1923  *	@sysfs_groups:	Space for optional device, statistics and wireless
1924  *			sysfs groups
1925  *
1926  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1927  *	@rtnl_link_ops:	Rtnl_link_ops
1928  *
1929  *	@gso_max_size:	Maximum size of generic segmentation offload
1930  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1931  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1932  *			NIC for GSO
1933  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1934  *
1935  *	@dcbnl_ops:	Data Center Bridging netlink ops
1936  *	@num_tc:	Number of traffic classes in the net device
1937  *	@tc_to_txq:	XXX: need comments on this one
1938  *	@prio_tc_map:	XXX: need comments on this one
1939  *
1940  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1941  *
1942  *	@priomap:	XXX: need comments on this one
1943  *	@phydev:	Physical device may attach itself
1944  *			for hardware timestamping
1945  *	@sfp_bus:	attached &struct sfp_bus structure.
1946  *
1947  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1948  *
1949  *	@proto_down:	protocol port state information can be sent to the
1950  *			switch driver and used to set the phys state of the
1951  *			switch port.
1952  *
1953  *	@wol_enabled:	Wake-on-LAN is enabled
1954  *
1955  *	@threaded:	napi threaded mode is enabled
1956  *
1957  *	@net_notifier_list:	List of per-net netdev notifier block
1958  *				that follow this device when it is moved
1959  *				to another network namespace.
1960  *
1961  *	@macsec_ops:    MACsec offloading ops
1962  *
1963  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1964  *				offload capabilities of the device
1965  *	@udp_tunnel_nic:	UDP tunnel offload state
1966  *	@xdp_state:		stores info on attached XDP BPF programs
1967  *
1968  *	@nested_level:	Used as a parameter of spin_lock_nested() of
1969  *			dev->addr_list_lock.
1970  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1971  *			keep a list of interfaces to be deleted.
1972  *	@gro_max_size:	Maximum size of aggregated packet in generic
1973  *			receive offload (GRO)
1974  *
1975  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
1976  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
1977  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
1978  *	@dev_registered_tracker:	tracker for reference held while
1979  *					registered
1980  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
1981  *
1982  *	FIXME: cleanup struct net_device such that network protocol info
1983  *	moves out.
1984  */
1985 
1986 struct net_device {
1987 	char			name[IFNAMSIZ];
1988 	struct netdev_name_node	*name_node;
1989 	struct dev_ifalias	__rcu *ifalias;
1990 	/*
1991 	 *	I/O specific fields
1992 	 *	FIXME: Merge these and struct ifmap into one
1993 	 */
1994 	unsigned long		mem_end;
1995 	unsigned long		mem_start;
1996 	unsigned long		base_addr;
1997 
1998 	/*
1999 	 *	Some hardware also needs these fields (state,dev_list,
2000 	 *	napi_list,unreg_list,close_list) but they are not
2001 	 *	part of the usual set specified in Space.c.
2002 	 */
2003 
2004 	unsigned long		state;
2005 
2006 	struct list_head	dev_list;
2007 	struct list_head	napi_list;
2008 	struct list_head	unreg_list;
2009 	struct list_head	close_list;
2010 	struct list_head	ptype_all;
2011 	struct list_head	ptype_specific;
2012 
2013 	struct {
2014 		struct list_head upper;
2015 		struct list_head lower;
2016 	} adj_list;
2017 
2018 	/* Read-mostly cache-line for fast-path access */
2019 	unsigned int		flags;
2020 	unsigned long long	priv_flags;
2021 	const struct net_device_ops *netdev_ops;
2022 	int			ifindex;
2023 	unsigned short		gflags;
2024 	unsigned short		hard_header_len;
2025 
2026 	/* Note : dev->mtu is often read without holding a lock.
2027 	 * Writers usually hold RTNL.
2028 	 * It is recommended to use READ_ONCE() to annotate the reads,
2029 	 * and to use WRITE_ONCE() to annotate the writes.
2030 	 */
2031 	unsigned int		mtu;
2032 	unsigned short		needed_headroom;
2033 	unsigned short		needed_tailroom;
2034 
2035 	netdev_features_t	features;
2036 	netdev_features_t	hw_features;
2037 	netdev_features_t	wanted_features;
2038 	netdev_features_t	vlan_features;
2039 	netdev_features_t	hw_enc_features;
2040 	netdev_features_t	mpls_features;
2041 	netdev_features_t	gso_partial_features;
2042 
2043 	unsigned int		min_mtu;
2044 	unsigned int		max_mtu;
2045 	unsigned short		type;
2046 	unsigned char		min_header_len;
2047 	unsigned char		name_assign_type;
2048 
2049 	int			group;
2050 
2051 	struct net_device_stats	stats; /* not used by modern drivers */
2052 
2053 	struct net_device_core_stats __percpu *core_stats;
2054 
2055 	/* Stats to monitor link on/off, flapping */
2056 	atomic_t		carrier_up_count;
2057 	atomic_t		carrier_down_count;
2058 
2059 #ifdef CONFIG_WIRELESS_EXT
2060 	const struct iw_handler_def *wireless_handlers;
2061 	struct iw_public_data	*wireless_data;
2062 #endif
2063 	const struct ethtool_ops *ethtool_ops;
2064 #ifdef CONFIG_NET_L3_MASTER_DEV
2065 	const struct l3mdev_ops	*l3mdev_ops;
2066 #endif
2067 #if IS_ENABLED(CONFIG_IPV6)
2068 	const struct ndisc_ops *ndisc_ops;
2069 #endif
2070 
2071 #ifdef CONFIG_XFRM_OFFLOAD
2072 	const struct xfrmdev_ops *xfrmdev_ops;
2073 #endif
2074 
2075 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2076 	const struct tlsdev_ops *tlsdev_ops;
2077 #endif
2078 
2079 	const struct header_ops *header_ops;
2080 
2081 	unsigned char		operstate;
2082 	unsigned char		link_mode;
2083 
2084 	unsigned char		if_port;
2085 	unsigned char		dma;
2086 
2087 	/* Interface address info. */
2088 	unsigned char		perm_addr[MAX_ADDR_LEN];
2089 	unsigned char		addr_assign_type;
2090 	unsigned char		addr_len;
2091 	unsigned char		upper_level;
2092 	unsigned char		lower_level;
2093 
2094 	unsigned short		neigh_priv_len;
2095 	unsigned short          dev_id;
2096 	unsigned short          dev_port;
2097 	unsigned short		padded;
2098 
2099 	spinlock_t		addr_list_lock;
2100 	int			irq;
2101 
2102 	struct netdev_hw_addr_list	uc;
2103 	struct netdev_hw_addr_list	mc;
2104 	struct netdev_hw_addr_list	dev_addrs;
2105 
2106 #ifdef CONFIG_SYSFS
2107 	struct kset		*queues_kset;
2108 #endif
2109 #ifdef CONFIG_LOCKDEP
2110 	struct list_head	unlink_list;
2111 #endif
2112 	unsigned int		promiscuity;
2113 	unsigned int		allmulti;
2114 	bool			uc_promisc;
2115 #ifdef CONFIG_LOCKDEP
2116 	unsigned char		nested_level;
2117 #endif
2118 
2119 
2120 	/* Protocol-specific pointers */
2121 
2122 	struct in_device __rcu	*ip_ptr;
2123 	struct inet6_dev __rcu	*ip6_ptr;
2124 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2125 	struct vlan_info __rcu	*vlan_info;
2126 #endif
2127 #if IS_ENABLED(CONFIG_NET_DSA)
2128 	struct dsa_port		*dsa_ptr;
2129 #endif
2130 #if IS_ENABLED(CONFIG_TIPC)
2131 	struct tipc_bearer __rcu *tipc_ptr;
2132 #endif
2133 #if IS_ENABLED(CONFIG_ATALK)
2134 	void 			*atalk_ptr;
2135 #endif
2136 #if IS_ENABLED(CONFIG_DECNET)
2137 	struct dn_dev __rcu     *dn_ptr;
2138 #endif
2139 #if IS_ENABLED(CONFIG_AX25)
2140 	void			*ax25_ptr;
2141 #endif
2142 #if IS_ENABLED(CONFIG_CFG80211)
2143 	struct wireless_dev	*ieee80211_ptr;
2144 #endif
2145 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2146 	struct wpan_dev		*ieee802154_ptr;
2147 #endif
2148 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2149 	struct mpls_dev __rcu	*mpls_ptr;
2150 #endif
2151 #if IS_ENABLED(CONFIG_MCTP)
2152 	struct mctp_dev __rcu	*mctp_ptr;
2153 #endif
2154 
2155 /*
2156  * Cache lines mostly used on receive path (including eth_type_trans())
2157  */
2158 	/* Interface address info used in eth_type_trans() */
2159 	const unsigned char	*dev_addr;
2160 
2161 	struct netdev_rx_queue	*_rx;
2162 	unsigned int		num_rx_queues;
2163 	unsigned int		real_num_rx_queues;
2164 
2165 	struct bpf_prog __rcu	*xdp_prog;
2166 	unsigned long		gro_flush_timeout;
2167 	int			napi_defer_hard_irqs;
2168 #define GRO_LEGACY_MAX_SIZE	65536u
2169 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2170  * and shinfo->gso_segs is a 16bit field.
2171  */
2172 #define GRO_MAX_SIZE		(8 * 65535u)
2173 	unsigned int		gro_max_size;
2174 	rx_handler_func_t __rcu	*rx_handler;
2175 	void __rcu		*rx_handler_data;
2176 
2177 #ifdef CONFIG_NET_CLS_ACT
2178 	struct mini_Qdisc __rcu	*miniq_ingress;
2179 #endif
2180 	struct netdev_queue __rcu *ingress_queue;
2181 #ifdef CONFIG_NETFILTER_INGRESS
2182 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2183 #endif
2184 
2185 	unsigned char		broadcast[MAX_ADDR_LEN];
2186 #ifdef CONFIG_RFS_ACCEL
2187 	struct cpu_rmap		*rx_cpu_rmap;
2188 #endif
2189 	struct hlist_node	index_hlist;
2190 
2191 /*
2192  * Cache lines mostly used on transmit path
2193  */
2194 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2195 	unsigned int		num_tx_queues;
2196 	unsigned int		real_num_tx_queues;
2197 	struct Qdisc __rcu	*qdisc;
2198 	unsigned int		tx_queue_len;
2199 	spinlock_t		tx_global_lock;
2200 
2201 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2202 
2203 #ifdef CONFIG_XPS
2204 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2205 #endif
2206 #ifdef CONFIG_NET_CLS_ACT
2207 	struct mini_Qdisc __rcu	*miniq_egress;
2208 #endif
2209 #ifdef CONFIG_NETFILTER_EGRESS
2210 	struct nf_hook_entries __rcu *nf_hooks_egress;
2211 #endif
2212 
2213 #ifdef CONFIG_NET_SCHED
2214 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2215 #endif
2216 	/* These may be needed for future network-power-down code. */
2217 	struct timer_list	watchdog_timer;
2218 	int			watchdog_timeo;
2219 
2220 	u32                     proto_down_reason;
2221 
2222 	struct list_head	todo_list;
2223 
2224 #ifdef CONFIG_PCPU_DEV_REFCNT
2225 	int __percpu		*pcpu_refcnt;
2226 #else
2227 	refcount_t		dev_refcnt;
2228 #endif
2229 	struct ref_tracker_dir	refcnt_tracker;
2230 
2231 	struct list_head	link_watch_list;
2232 
2233 	enum { NETREG_UNINITIALIZED=0,
2234 	       NETREG_REGISTERED,	/* completed register_netdevice */
2235 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2236 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2237 	       NETREG_RELEASED,		/* called free_netdev */
2238 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2239 	} reg_state:8;
2240 
2241 	bool dismantle;
2242 
2243 	enum {
2244 		RTNL_LINK_INITIALIZED,
2245 		RTNL_LINK_INITIALIZING,
2246 	} rtnl_link_state:16;
2247 
2248 	bool needs_free_netdev;
2249 	void (*priv_destructor)(struct net_device *dev);
2250 
2251 #ifdef CONFIG_NETPOLL
2252 	struct netpoll_info __rcu	*npinfo;
2253 #endif
2254 
2255 	possible_net_t			nd_net;
2256 
2257 	/* mid-layer private */
2258 	void				*ml_priv;
2259 	enum netdev_ml_priv_type	ml_priv_type;
2260 
2261 	union {
2262 		struct pcpu_lstats __percpu		*lstats;
2263 		struct pcpu_sw_netstats __percpu	*tstats;
2264 		struct pcpu_dstats __percpu		*dstats;
2265 	};
2266 
2267 #if IS_ENABLED(CONFIG_GARP)
2268 	struct garp_port __rcu	*garp_port;
2269 #endif
2270 #if IS_ENABLED(CONFIG_MRP)
2271 	struct mrp_port __rcu	*mrp_port;
2272 #endif
2273 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2274 	struct dm_hw_stat_delta __rcu *dm_private;
2275 #endif
2276 	struct device		dev;
2277 	const struct attribute_group *sysfs_groups[4];
2278 	const struct attribute_group *sysfs_rx_queue_group;
2279 
2280 	const struct rtnl_link_ops *rtnl_link_ops;
2281 
2282 	/* for setting kernel sock attribute on TCP connection setup */
2283 #define GSO_MAX_SEGS		65535u
2284 #define GSO_LEGACY_MAX_SIZE	65536u
2285 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2286  * and shinfo->gso_segs is a 16bit field.
2287  */
2288 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2289 
2290 	unsigned int		gso_max_size;
2291 #define TSO_LEGACY_MAX_SIZE	65536
2292 #define TSO_MAX_SIZE		UINT_MAX
2293 	unsigned int		tso_max_size;
2294 	u16			gso_max_segs;
2295 #define TSO_MAX_SEGS		U16_MAX
2296 	u16			tso_max_segs;
2297 
2298 #ifdef CONFIG_DCB
2299 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2300 #endif
2301 	s16			num_tc;
2302 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2303 	u8			prio_tc_map[TC_BITMASK + 1];
2304 
2305 #if IS_ENABLED(CONFIG_FCOE)
2306 	unsigned int		fcoe_ddp_xid;
2307 #endif
2308 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2309 	struct netprio_map __rcu *priomap;
2310 #endif
2311 	struct phy_device	*phydev;
2312 	struct sfp_bus		*sfp_bus;
2313 	struct lock_class_key	*qdisc_tx_busylock;
2314 	bool			proto_down;
2315 	unsigned		wol_enabled:1;
2316 	unsigned		threaded:1;
2317 
2318 	struct list_head	net_notifier_list;
2319 
2320 #if IS_ENABLED(CONFIG_MACSEC)
2321 	/* MACsec management functions */
2322 	const struct macsec_ops *macsec_ops;
2323 #endif
2324 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2325 	struct udp_tunnel_nic	*udp_tunnel_nic;
2326 
2327 	/* protected by rtnl_lock */
2328 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2329 
2330 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2331 	netdevice_tracker	linkwatch_dev_tracker;
2332 	netdevice_tracker	watchdog_dev_tracker;
2333 	netdevice_tracker	dev_registered_tracker;
2334 	struct rtnl_hw_stats64	*offload_xstats_l3;
2335 };
2336 #define to_net_dev(d) container_of(d, struct net_device, dev)
2337 
2338 static inline bool netif_elide_gro(const struct net_device *dev)
2339 {
2340 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2341 		return true;
2342 	return false;
2343 }
2344 
2345 #define	NETDEV_ALIGN		32
2346 
2347 static inline
2348 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2349 {
2350 	return dev->prio_tc_map[prio & TC_BITMASK];
2351 }
2352 
2353 static inline
2354 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2355 {
2356 	if (tc >= dev->num_tc)
2357 		return -EINVAL;
2358 
2359 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2360 	return 0;
2361 }
2362 
2363 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2364 void netdev_reset_tc(struct net_device *dev);
2365 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2366 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2367 
2368 static inline
2369 int netdev_get_num_tc(struct net_device *dev)
2370 {
2371 	return dev->num_tc;
2372 }
2373 
2374 static inline void net_prefetch(void *p)
2375 {
2376 	prefetch(p);
2377 #if L1_CACHE_BYTES < 128
2378 	prefetch((u8 *)p + L1_CACHE_BYTES);
2379 #endif
2380 }
2381 
2382 static inline void net_prefetchw(void *p)
2383 {
2384 	prefetchw(p);
2385 #if L1_CACHE_BYTES < 128
2386 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2387 #endif
2388 }
2389 
2390 void netdev_unbind_sb_channel(struct net_device *dev,
2391 			      struct net_device *sb_dev);
2392 int netdev_bind_sb_channel_queue(struct net_device *dev,
2393 				 struct net_device *sb_dev,
2394 				 u8 tc, u16 count, u16 offset);
2395 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2396 static inline int netdev_get_sb_channel(struct net_device *dev)
2397 {
2398 	return max_t(int, -dev->num_tc, 0);
2399 }
2400 
2401 static inline
2402 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2403 					 unsigned int index)
2404 {
2405 	return &dev->_tx[index];
2406 }
2407 
2408 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2409 						    const struct sk_buff *skb)
2410 {
2411 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2412 }
2413 
2414 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2415 					    void (*f)(struct net_device *,
2416 						      struct netdev_queue *,
2417 						      void *),
2418 					    void *arg)
2419 {
2420 	unsigned int i;
2421 
2422 	for (i = 0; i < dev->num_tx_queues; i++)
2423 		f(dev, &dev->_tx[i], arg);
2424 }
2425 
2426 #define netdev_lockdep_set_classes(dev)				\
2427 {								\
2428 	static struct lock_class_key qdisc_tx_busylock_key;	\
2429 	static struct lock_class_key qdisc_xmit_lock_key;	\
2430 	static struct lock_class_key dev_addr_list_lock_key;	\
2431 	unsigned int i;						\
2432 								\
2433 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2434 	lockdep_set_class(&(dev)->addr_list_lock,		\
2435 			  &dev_addr_list_lock_key);		\
2436 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2437 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2438 				  &qdisc_xmit_lock_key);	\
2439 }
2440 
2441 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2442 		     struct net_device *sb_dev);
2443 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2444 					 struct sk_buff *skb,
2445 					 struct net_device *sb_dev);
2446 
2447 /* returns the headroom that the master device needs to take in account
2448  * when forwarding to this dev
2449  */
2450 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2451 {
2452 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2453 }
2454 
2455 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2456 {
2457 	if (dev->netdev_ops->ndo_set_rx_headroom)
2458 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2459 }
2460 
2461 /* set the device rx headroom to the dev's default */
2462 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2463 {
2464 	netdev_set_rx_headroom(dev, -1);
2465 }
2466 
2467 static inline void *netdev_get_ml_priv(struct net_device *dev,
2468 				       enum netdev_ml_priv_type type)
2469 {
2470 	if (dev->ml_priv_type != type)
2471 		return NULL;
2472 
2473 	return dev->ml_priv;
2474 }
2475 
2476 static inline void netdev_set_ml_priv(struct net_device *dev,
2477 				      void *ml_priv,
2478 				      enum netdev_ml_priv_type type)
2479 {
2480 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2481 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2482 	     dev->ml_priv_type, type);
2483 	WARN(!dev->ml_priv_type && dev->ml_priv,
2484 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2485 
2486 	dev->ml_priv = ml_priv;
2487 	dev->ml_priv_type = type;
2488 }
2489 
2490 /*
2491  * Net namespace inlines
2492  */
2493 static inline
2494 struct net *dev_net(const struct net_device *dev)
2495 {
2496 	return read_pnet(&dev->nd_net);
2497 }
2498 
2499 static inline
2500 void dev_net_set(struct net_device *dev, struct net *net)
2501 {
2502 	write_pnet(&dev->nd_net, net);
2503 }
2504 
2505 /**
2506  *	netdev_priv - access network device private data
2507  *	@dev: network device
2508  *
2509  * Get network device private data
2510  */
2511 static inline void *netdev_priv(const struct net_device *dev)
2512 {
2513 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2514 }
2515 
2516 /* Set the sysfs physical device reference for the network logical device
2517  * if set prior to registration will cause a symlink during initialization.
2518  */
2519 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2520 
2521 /* Set the sysfs device type for the network logical device to allow
2522  * fine-grained identification of different network device types. For
2523  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2524  */
2525 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2526 
2527 /* Default NAPI poll() weight
2528  * Device drivers are strongly advised to not use bigger value
2529  */
2530 #define NAPI_POLL_WEIGHT 64
2531 
2532 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2533 			   int (*poll)(struct napi_struct *, int), int weight);
2534 
2535 /**
2536  * netif_napi_add() - initialize a NAPI context
2537  * @dev:  network device
2538  * @napi: NAPI context
2539  * @poll: polling function
2540  * @weight: default weight
2541  *
2542  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2543  * *any* of the other NAPI-related functions.
2544  */
2545 static inline void
2546 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2547 	       int (*poll)(struct napi_struct *, int), int weight)
2548 {
2549 	netif_napi_add_weight(dev, napi, poll, weight);
2550 }
2551 
2552 static inline void
2553 netif_napi_add_tx_weight(struct net_device *dev,
2554 			 struct napi_struct *napi,
2555 			 int (*poll)(struct napi_struct *, int),
2556 			 int weight)
2557 {
2558 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2559 	netif_napi_add_weight(dev, napi, poll, weight);
2560 }
2561 
2562 #define netif_tx_napi_add netif_napi_add_tx_weight
2563 
2564 /**
2565  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2566  * @dev:  network device
2567  * @napi: NAPI context
2568  * @poll: polling function
2569  *
2570  * This variant of netif_napi_add() should be used from drivers using NAPI
2571  * to exclusively poll a TX queue.
2572  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2573  */
2574 static inline void netif_napi_add_tx(struct net_device *dev,
2575 				     struct napi_struct *napi,
2576 				     int (*poll)(struct napi_struct *, int))
2577 {
2578 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2579 }
2580 
2581 /**
2582  *  __netif_napi_del - remove a NAPI context
2583  *  @napi: NAPI context
2584  *
2585  * Warning: caller must observe RCU grace period before freeing memory
2586  * containing @napi. Drivers might want to call this helper to combine
2587  * all the needed RCU grace periods into a single one.
2588  */
2589 void __netif_napi_del(struct napi_struct *napi);
2590 
2591 /**
2592  *  netif_napi_del - remove a NAPI context
2593  *  @napi: NAPI context
2594  *
2595  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2596  */
2597 static inline void netif_napi_del(struct napi_struct *napi)
2598 {
2599 	__netif_napi_del(napi);
2600 	synchronize_net();
2601 }
2602 
2603 struct packet_type {
2604 	__be16			type;	/* This is really htons(ether_type). */
2605 	bool			ignore_outgoing;
2606 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2607 	netdevice_tracker	dev_tracker;
2608 	int			(*func) (struct sk_buff *,
2609 					 struct net_device *,
2610 					 struct packet_type *,
2611 					 struct net_device *);
2612 	void			(*list_func) (struct list_head *,
2613 					      struct packet_type *,
2614 					      struct net_device *);
2615 	bool			(*id_match)(struct packet_type *ptype,
2616 					    struct sock *sk);
2617 	struct net		*af_packet_net;
2618 	void			*af_packet_priv;
2619 	struct list_head	list;
2620 };
2621 
2622 struct offload_callbacks {
2623 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2624 						netdev_features_t features);
2625 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2626 						struct sk_buff *skb);
2627 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2628 };
2629 
2630 struct packet_offload {
2631 	__be16			 type;	/* This is really htons(ether_type). */
2632 	u16			 priority;
2633 	struct offload_callbacks callbacks;
2634 	struct list_head	 list;
2635 };
2636 
2637 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2638 struct pcpu_sw_netstats {
2639 	u64     rx_packets;
2640 	u64     rx_bytes;
2641 	u64     tx_packets;
2642 	u64     tx_bytes;
2643 	struct u64_stats_sync   syncp;
2644 } __aligned(4 * sizeof(u64));
2645 
2646 struct pcpu_lstats {
2647 	u64_stats_t packets;
2648 	u64_stats_t bytes;
2649 	struct u64_stats_sync syncp;
2650 } __aligned(2 * sizeof(u64));
2651 
2652 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2653 
2654 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2655 {
2656 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2657 
2658 	u64_stats_update_begin(&tstats->syncp);
2659 	tstats->rx_bytes += len;
2660 	tstats->rx_packets++;
2661 	u64_stats_update_end(&tstats->syncp);
2662 }
2663 
2664 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2665 					  unsigned int packets,
2666 					  unsigned int len)
2667 {
2668 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2669 
2670 	u64_stats_update_begin(&tstats->syncp);
2671 	tstats->tx_bytes += len;
2672 	tstats->tx_packets += packets;
2673 	u64_stats_update_end(&tstats->syncp);
2674 }
2675 
2676 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2677 {
2678 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2679 
2680 	u64_stats_update_begin(&lstats->syncp);
2681 	u64_stats_add(&lstats->bytes, len);
2682 	u64_stats_inc(&lstats->packets);
2683 	u64_stats_update_end(&lstats->syncp);
2684 }
2685 
2686 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2687 ({									\
2688 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2689 	if (pcpu_stats)	{						\
2690 		int __cpu;						\
2691 		for_each_possible_cpu(__cpu) {				\
2692 			typeof(type) *stat;				\
2693 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2694 			u64_stats_init(&stat->syncp);			\
2695 		}							\
2696 	}								\
2697 	pcpu_stats;							\
2698 })
2699 
2700 #define netdev_alloc_pcpu_stats(type)					\
2701 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2702 
2703 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2704 ({									\
2705 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2706 	if (pcpu_stats) {						\
2707 		int __cpu;						\
2708 		for_each_possible_cpu(__cpu) {				\
2709 			typeof(type) *stat;				\
2710 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2711 			u64_stats_init(&stat->syncp);			\
2712 		}							\
2713 	}								\
2714 	pcpu_stats;							\
2715 })
2716 
2717 enum netdev_lag_tx_type {
2718 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2719 	NETDEV_LAG_TX_TYPE_RANDOM,
2720 	NETDEV_LAG_TX_TYPE_BROADCAST,
2721 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2722 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2723 	NETDEV_LAG_TX_TYPE_HASH,
2724 };
2725 
2726 enum netdev_lag_hash {
2727 	NETDEV_LAG_HASH_NONE,
2728 	NETDEV_LAG_HASH_L2,
2729 	NETDEV_LAG_HASH_L34,
2730 	NETDEV_LAG_HASH_L23,
2731 	NETDEV_LAG_HASH_E23,
2732 	NETDEV_LAG_HASH_E34,
2733 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2734 	NETDEV_LAG_HASH_UNKNOWN,
2735 };
2736 
2737 struct netdev_lag_upper_info {
2738 	enum netdev_lag_tx_type tx_type;
2739 	enum netdev_lag_hash hash_type;
2740 };
2741 
2742 struct netdev_lag_lower_state_info {
2743 	u8 link_up : 1,
2744 	   tx_enabled : 1;
2745 };
2746 
2747 #include <linux/notifier.h>
2748 
2749 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2750  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2751  * adding new types.
2752  */
2753 enum netdev_cmd {
2754 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2755 	NETDEV_DOWN,
2756 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2757 				   detected a hardware crash and restarted
2758 				   - we can use this eg to kick tcp sessions
2759 				   once done */
2760 	NETDEV_CHANGE,		/* Notify device state change */
2761 	NETDEV_REGISTER,
2762 	NETDEV_UNREGISTER,
2763 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2764 	NETDEV_CHANGEADDR,	/* notify after the address change */
2765 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2766 	NETDEV_GOING_DOWN,
2767 	NETDEV_CHANGENAME,
2768 	NETDEV_FEAT_CHANGE,
2769 	NETDEV_BONDING_FAILOVER,
2770 	NETDEV_PRE_UP,
2771 	NETDEV_PRE_TYPE_CHANGE,
2772 	NETDEV_POST_TYPE_CHANGE,
2773 	NETDEV_POST_INIT,
2774 	NETDEV_RELEASE,
2775 	NETDEV_NOTIFY_PEERS,
2776 	NETDEV_JOIN,
2777 	NETDEV_CHANGEUPPER,
2778 	NETDEV_RESEND_IGMP,
2779 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2780 	NETDEV_CHANGEINFODATA,
2781 	NETDEV_BONDING_INFO,
2782 	NETDEV_PRECHANGEUPPER,
2783 	NETDEV_CHANGELOWERSTATE,
2784 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2785 	NETDEV_UDP_TUNNEL_DROP_INFO,
2786 	NETDEV_CHANGE_TX_QUEUE_LEN,
2787 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2788 	NETDEV_CVLAN_FILTER_DROP_INFO,
2789 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2790 	NETDEV_SVLAN_FILTER_DROP_INFO,
2791 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2792 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2793 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2794 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2795 };
2796 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2797 
2798 int register_netdevice_notifier(struct notifier_block *nb);
2799 int unregister_netdevice_notifier(struct notifier_block *nb);
2800 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2801 int unregister_netdevice_notifier_net(struct net *net,
2802 				      struct notifier_block *nb);
2803 int register_netdevice_notifier_dev_net(struct net_device *dev,
2804 					struct notifier_block *nb,
2805 					struct netdev_net_notifier *nn);
2806 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2807 					  struct notifier_block *nb,
2808 					  struct netdev_net_notifier *nn);
2809 
2810 struct netdev_notifier_info {
2811 	struct net_device	*dev;
2812 	struct netlink_ext_ack	*extack;
2813 };
2814 
2815 struct netdev_notifier_info_ext {
2816 	struct netdev_notifier_info info; /* must be first */
2817 	union {
2818 		u32 mtu;
2819 	} ext;
2820 };
2821 
2822 struct netdev_notifier_change_info {
2823 	struct netdev_notifier_info info; /* must be first */
2824 	unsigned int flags_changed;
2825 };
2826 
2827 struct netdev_notifier_changeupper_info {
2828 	struct netdev_notifier_info info; /* must be first */
2829 	struct net_device *upper_dev; /* new upper dev */
2830 	bool master; /* is upper dev master */
2831 	bool linking; /* is the notification for link or unlink */
2832 	void *upper_info; /* upper dev info */
2833 };
2834 
2835 struct netdev_notifier_changelowerstate_info {
2836 	struct netdev_notifier_info info; /* must be first */
2837 	void *lower_state_info; /* is lower dev state */
2838 };
2839 
2840 struct netdev_notifier_pre_changeaddr_info {
2841 	struct netdev_notifier_info info; /* must be first */
2842 	const unsigned char *dev_addr;
2843 };
2844 
2845 enum netdev_offload_xstats_type {
2846 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2847 };
2848 
2849 struct netdev_notifier_offload_xstats_info {
2850 	struct netdev_notifier_info info; /* must be first */
2851 	enum netdev_offload_xstats_type type;
2852 
2853 	union {
2854 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2855 		struct netdev_notifier_offload_xstats_rd *report_delta;
2856 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2857 		struct netdev_notifier_offload_xstats_ru *report_used;
2858 	};
2859 };
2860 
2861 int netdev_offload_xstats_enable(struct net_device *dev,
2862 				 enum netdev_offload_xstats_type type,
2863 				 struct netlink_ext_ack *extack);
2864 int netdev_offload_xstats_disable(struct net_device *dev,
2865 				  enum netdev_offload_xstats_type type);
2866 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2867 				   enum netdev_offload_xstats_type type);
2868 int netdev_offload_xstats_get(struct net_device *dev,
2869 			      enum netdev_offload_xstats_type type,
2870 			      struct rtnl_hw_stats64 *stats, bool *used,
2871 			      struct netlink_ext_ack *extack);
2872 void
2873 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2874 				   const struct rtnl_hw_stats64 *stats);
2875 void
2876 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2877 void netdev_offload_xstats_push_delta(struct net_device *dev,
2878 				      enum netdev_offload_xstats_type type,
2879 				      const struct rtnl_hw_stats64 *stats);
2880 
2881 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2882 					     struct net_device *dev)
2883 {
2884 	info->dev = dev;
2885 	info->extack = NULL;
2886 }
2887 
2888 static inline struct net_device *
2889 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2890 {
2891 	return info->dev;
2892 }
2893 
2894 static inline struct netlink_ext_ack *
2895 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2896 {
2897 	return info->extack;
2898 }
2899 
2900 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2901 
2902 
2903 extern rwlock_t				dev_base_lock;		/* Device list lock */
2904 
2905 #define for_each_netdev(net, d)		\
2906 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2907 #define for_each_netdev_reverse(net, d)	\
2908 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2909 #define for_each_netdev_rcu(net, d)		\
2910 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2911 #define for_each_netdev_safe(net, d, n)	\
2912 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2913 #define for_each_netdev_continue(net, d)		\
2914 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2915 #define for_each_netdev_continue_reverse(net, d)		\
2916 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2917 						     dev_list)
2918 #define for_each_netdev_continue_rcu(net, d)		\
2919 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2920 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2921 		for_each_netdev_rcu(&init_net, slave)	\
2922 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2923 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2924 
2925 static inline struct net_device *next_net_device(struct net_device *dev)
2926 {
2927 	struct list_head *lh;
2928 	struct net *net;
2929 
2930 	net = dev_net(dev);
2931 	lh = dev->dev_list.next;
2932 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2933 }
2934 
2935 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2936 {
2937 	struct list_head *lh;
2938 	struct net *net;
2939 
2940 	net = dev_net(dev);
2941 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2942 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2943 }
2944 
2945 static inline struct net_device *first_net_device(struct net *net)
2946 {
2947 	return list_empty(&net->dev_base_head) ? NULL :
2948 		net_device_entry(net->dev_base_head.next);
2949 }
2950 
2951 static inline struct net_device *first_net_device_rcu(struct net *net)
2952 {
2953 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2954 
2955 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2956 }
2957 
2958 int netdev_boot_setup_check(struct net_device *dev);
2959 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2960 				       const char *hwaddr);
2961 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2962 void dev_add_pack(struct packet_type *pt);
2963 void dev_remove_pack(struct packet_type *pt);
2964 void __dev_remove_pack(struct packet_type *pt);
2965 void dev_add_offload(struct packet_offload *po);
2966 void dev_remove_offload(struct packet_offload *po);
2967 
2968 int dev_get_iflink(const struct net_device *dev);
2969 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2970 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2971 			  struct net_device_path_stack *stack);
2972 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2973 				      unsigned short mask);
2974 struct net_device *dev_get_by_name(struct net *net, const char *name);
2975 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2976 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2977 bool netdev_name_in_use(struct net *net, const char *name);
2978 int dev_alloc_name(struct net_device *dev, const char *name);
2979 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2980 void dev_close(struct net_device *dev);
2981 void dev_close_many(struct list_head *head, bool unlink);
2982 void dev_disable_lro(struct net_device *dev);
2983 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2984 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2985 		     struct net_device *sb_dev);
2986 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2987 		       struct net_device *sb_dev);
2988 
2989 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
2990 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2991 
2992 static inline int dev_queue_xmit(struct sk_buff *skb)
2993 {
2994 	return __dev_queue_xmit(skb, NULL);
2995 }
2996 
2997 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
2998 				       struct net_device *sb_dev)
2999 {
3000 	return __dev_queue_xmit(skb, sb_dev);
3001 }
3002 
3003 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3004 {
3005 	int ret;
3006 
3007 	ret = __dev_direct_xmit(skb, queue_id);
3008 	if (!dev_xmit_complete(ret))
3009 		kfree_skb(skb);
3010 	return ret;
3011 }
3012 
3013 int register_netdevice(struct net_device *dev);
3014 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3015 void unregister_netdevice_many(struct list_head *head);
3016 static inline void unregister_netdevice(struct net_device *dev)
3017 {
3018 	unregister_netdevice_queue(dev, NULL);
3019 }
3020 
3021 int netdev_refcnt_read(const struct net_device *dev);
3022 void free_netdev(struct net_device *dev);
3023 void netdev_freemem(struct net_device *dev);
3024 int init_dummy_netdev(struct net_device *dev);
3025 
3026 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3027 					 struct sk_buff *skb,
3028 					 bool all_slaves);
3029 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3030 					    struct sock *sk);
3031 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3032 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3033 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3034 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3035 int dev_restart(struct net_device *dev);
3036 
3037 
3038 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3039 				  unsigned short type,
3040 				  const void *daddr, const void *saddr,
3041 				  unsigned int len)
3042 {
3043 	if (!dev->header_ops || !dev->header_ops->create)
3044 		return 0;
3045 
3046 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3047 }
3048 
3049 static inline int dev_parse_header(const struct sk_buff *skb,
3050 				   unsigned char *haddr)
3051 {
3052 	const struct net_device *dev = skb->dev;
3053 
3054 	if (!dev->header_ops || !dev->header_ops->parse)
3055 		return 0;
3056 	return dev->header_ops->parse(skb, haddr);
3057 }
3058 
3059 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3060 {
3061 	const struct net_device *dev = skb->dev;
3062 
3063 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3064 		return 0;
3065 	return dev->header_ops->parse_protocol(skb);
3066 }
3067 
3068 /* ll_header must have at least hard_header_len allocated */
3069 static inline bool dev_validate_header(const struct net_device *dev,
3070 				       char *ll_header, int len)
3071 {
3072 	if (likely(len >= dev->hard_header_len))
3073 		return true;
3074 	if (len < dev->min_header_len)
3075 		return false;
3076 
3077 	if (capable(CAP_SYS_RAWIO)) {
3078 		memset(ll_header + len, 0, dev->hard_header_len - len);
3079 		return true;
3080 	}
3081 
3082 	if (dev->header_ops && dev->header_ops->validate)
3083 		return dev->header_ops->validate(ll_header, len);
3084 
3085 	return false;
3086 }
3087 
3088 static inline bool dev_has_header(const struct net_device *dev)
3089 {
3090 	return dev->header_ops && dev->header_ops->create;
3091 }
3092 
3093 /*
3094  * Incoming packets are placed on per-CPU queues
3095  */
3096 struct softnet_data {
3097 	struct list_head	poll_list;
3098 	struct sk_buff_head	process_queue;
3099 
3100 	/* stats */
3101 	unsigned int		processed;
3102 	unsigned int		time_squeeze;
3103 	unsigned int		received_rps;
3104 #ifdef CONFIG_RPS
3105 	struct softnet_data	*rps_ipi_list;
3106 #endif
3107 #ifdef CONFIG_NET_FLOW_LIMIT
3108 	struct sd_flow_limit __rcu *flow_limit;
3109 #endif
3110 	struct Qdisc		*output_queue;
3111 	struct Qdisc		**output_queue_tailp;
3112 	struct sk_buff		*completion_queue;
3113 #ifdef CONFIG_XFRM_OFFLOAD
3114 	struct sk_buff_head	xfrm_backlog;
3115 #endif
3116 	/* written and read only by owning cpu: */
3117 	struct {
3118 		u16 recursion;
3119 		u8  more;
3120 #ifdef CONFIG_NET_EGRESS
3121 		u8  skip_txqueue;
3122 #endif
3123 	} xmit;
3124 #ifdef CONFIG_RPS
3125 	/* input_queue_head should be written by cpu owning this struct,
3126 	 * and only read by other cpus. Worth using a cache line.
3127 	 */
3128 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3129 
3130 	/* Elements below can be accessed between CPUs for RPS/RFS */
3131 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3132 	struct softnet_data	*rps_ipi_next;
3133 	unsigned int		cpu;
3134 	unsigned int		input_queue_tail;
3135 #endif
3136 	unsigned int		dropped;
3137 	struct sk_buff_head	input_pkt_queue;
3138 	struct napi_struct	backlog;
3139 
3140 	/* Another possibly contended cache line */
3141 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3142 	int			defer_count;
3143 	int			defer_ipi_scheduled;
3144 	struct sk_buff		*defer_list;
3145 	call_single_data_t	defer_csd;
3146 };
3147 
3148 static inline void input_queue_head_incr(struct softnet_data *sd)
3149 {
3150 #ifdef CONFIG_RPS
3151 	sd->input_queue_head++;
3152 #endif
3153 }
3154 
3155 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3156 					      unsigned int *qtail)
3157 {
3158 #ifdef CONFIG_RPS
3159 	*qtail = ++sd->input_queue_tail;
3160 #endif
3161 }
3162 
3163 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3164 
3165 static inline int dev_recursion_level(void)
3166 {
3167 	return this_cpu_read(softnet_data.xmit.recursion);
3168 }
3169 
3170 #define XMIT_RECURSION_LIMIT	8
3171 static inline bool dev_xmit_recursion(void)
3172 {
3173 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3174 			XMIT_RECURSION_LIMIT);
3175 }
3176 
3177 static inline void dev_xmit_recursion_inc(void)
3178 {
3179 	__this_cpu_inc(softnet_data.xmit.recursion);
3180 }
3181 
3182 static inline void dev_xmit_recursion_dec(void)
3183 {
3184 	__this_cpu_dec(softnet_data.xmit.recursion);
3185 }
3186 
3187 void __netif_schedule(struct Qdisc *q);
3188 void netif_schedule_queue(struct netdev_queue *txq);
3189 
3190 static inline void netif_tx_schedule_all(struct net_device *dev)
3191 {
3192 	unsigned int i;
3193 
3194 	for (i = 0; i < dev->num_tx_queues; i++)
3195 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3196 }
3197 
3198 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3199 {
3200 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3201 }
3202 
3203 /**
3204  *	netif_start_queue - allow transmit
3205  *	@dev: network device
3206  *
3207  *	Allow upper layers to call the device hard_start_xmit routine.
3208  */
3209 static inline void netif_start_queue(struct net_device *dev)
3210 {
3211 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3212 }
3213 
3214 static inline void netif_tx_start_all_queues(struct net_device *dev)
3215 {
3216 	unsigned int i;
3217 
3218 	for (i = 0; i < dev->num_tx_queues; i++) {
3219 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3220 		netif_tx_start_queue(txq);
3221 	}
3222 }
3223 
3224 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3225 
3226 /**
3227  *	netif_wake_queue - restart transmit
3228  *	@dev: network device
3229  *
3230  *	Allow upper layers to call the device hard_start_xmit routine.
3231  *	Used for flow control when transmit resources are available.
3232  */
3233 static inline void netif_wake_queue(struct net_device *dev)
3234 {
3235 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3236 }
3237 
3238 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3239 {
3240 	unsigned int i;
3241 
3242 	for (i = 0; i < dev->num_tx_queues; i++) {
3243 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3244 		netif_tx_wake_queue(txq);
3245 	}
3246 }
3247 
3248 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3249 {
3250 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3251 }
3252 
3253 /**
3254  *	netif_stop_queue - stop transmitted packets
3255  *	@dev: network device
3256  *
3257  *	Stop upper layers calling the device hard_start_xmit routine.
3258  *	Used for flow control when transmit resources are unavailable.
3259  */
3260 static inline void netif_stop_queue(struct net_device *dev)
3261 {
3262 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3263 }
3264 
3265 void netif_tx_stop_all_queues(struct net_device *dev);
3266 
3267 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3268 {
3269 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3270 }
3271 
3272 /**
3273  *	netif_queue_stopped - test if transmit queue is flowblocked
3274  *	@dev: network device
3275  *
3276  *	Test if transmit queue on device is currently unable to send.
3277  */
3278 static inline bool netif_queue_stopped(const struct net_device *dev)
3279 {
3280 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3281 }
3282 
3283 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3284 {
3285 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3286 }
3287 
3288 static inline bool
3289 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3290 {
3291 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3292 }
3293 
3294 static inline bool
3295 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3296 {
3297 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3298 }
3299 
3300 /**
3301  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3302  *	@dev_queue: pointer to transmit queue
3303  *	@min_limit: dql minimum limit
3304  *
3305  * Forces xmit_more() to return true until the minimum threshold
3306  * defined by @min_limit is reached (or until the tx queue is
3307  * empty). Warning: to be use with care, misuse will impact the
3308  * latency.
3309  */
3310 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3311 						  unsigned int min_limit)
3312 {
3313 #ifdef CONFIG_BQL
3314 	dev_queue->dql.min_limit = min_limit;
3315 #endif
3316 }
3317 
3318 /**
3319  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3320  *	@dev_queue: pointer to transmit queue
3321  *
3322  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3323  * to give appropriate hint to the CPU.
3324  */
3325 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3326 {
3327 #ifdef CONFIG_BQL
3328 	prefetchw(&dev_queue->dql.num_queued);
3329 #endif
3330 }
3331 
3332 /**
3333  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3334  *	@dev_queue: pointer to transmit queue
3335  *
3336  * BQL enabled drivers might use this helper in their TX completion path,
3337  * to give appropriate hint to the CPU.
3338  */
3339 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3340 {
3341 #ifdef CONFIG_BQL
3342 	prefetchw(&dev_queue->dql.limit);
3343 #endif
3344 }
3345 
3346 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3347 					unsigned int bytes)
3348 {
3349 #ifdef CONFIG_BQL
3350 	dql_queued(&dev_queue->dql, bytes);
3351 
3352 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3353 		return;
3354 
3355 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3356 
3357 	/*
3358 	 * The XOFF flag must be set before checking the dql_avail below,
3359 	 * because in netdev_tx_completed_queue we update the dql_completed
3360 	 * before checking the XOFF flag.
3361 	 */
3362 	smp_mb();
3363 
3364 	/* check again in case another CPU has just made room avail */
3365 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3366 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3367 #endif
3368 }
3369 
3370 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3371  * that they should not test BQL status themselves.
3372  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3373  * skb of a batch.
3374  * Returns true if the doorbell must be used to kick the NIC.
3375  */
3376 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3377 					  unsigned int bytes,
3378 					  bool xmit_more)
3379 {
3380 	if (xmit_more) {
3381 #ifdef CONFIG_BQL
3382 		dql_queued(&dev_queue->dql, bytes);
3383 #endif
3384 		return netif_tx_queue_stopped(dev_queue);
3385 	}
3386 	netdev_tx_sent_queue(dev_queue, bytes);
3387 	return true;
3388 }
3389 
3390 /**
3391  * 	netdev_sent_queue - report the number of bytes queued to hardware
3392  * 	@dev: network device
3393  * 	@bytes: number of bytes queued to the hardware device queue
3394  *
3395  * 	Report the number of bytes queued for sending/completion to the network
3396  * 	device hardware queue. @bytes should be a good approximation and should
3397  * 	exactly match netdev_completed_queue() @bytes
3398  */
3399 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3400 {
3401 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3402 }
3403 
3404 static inline bool __netdev_sent_queue(struct net_device *dev,
3405 				       unsigned int bytes,
3406 				       bool xmit_more)
3407 {
3408 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3409 				      xmit_more);
3410 }
3411 
3412 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3413 					     unsigned int pkts, unsigned int bytes)
3414 {
3415 #ifdef CONFIG_BQL
3416 	if (unlikely(!bytes))
3417 		return;
3418 
3419 	dql_completed(&dev_queue->dql, bytes);
3420 
3421 	/*
3422 	 * Without the memory barrier there is a small possiblity that
3423 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3424 	 * be stopped forever
3425 	 */
3426 	smp_mb();
3427 
3428 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3429 		return;
3430 
3431 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3432 		netif_schedule_queue(dev_queue);
3433 #endif
3434 }
3435 
3436 /**
3437  * 	netdev_completed_queue - report bytes and packets completed by device
3438  * 	@dev: network device
3439  * 	@pkts: actual number of packets sent over the medium
3440  * 	@bytes: actual number of bytes sent over the medium
3441  *
3442  * 	Report the number of bytes and packets transmitted by the network device
3443  * 	hardware queue over the physical medium, @bytes must exactly match the
3444  * 	@bytes amount passed to netdev_sent_queue()
3445  */
3446 static inline void netdev_completed_queue(struct net_device *dev,
3447 					  unsigned int pkts, unsigned int bytes)
3448 {
3449 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3450 }
3451 
3452 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3453 {
3454 #ifdef CONFIG_BQL
3455 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3456 	dql_reset(&q->dql);
3457 #endif
3458 }
3459 
3460 /**
3461  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3462  * 	@dev_queue: network device
3463  *
3464  * 	Reset the bytes and packet count of a network device and clear the
3465  * 	software flow control OFF bit for this network device
3466  */
3467 static inline void netdev_reset_queue(struct net_device *dev_queue)
3468 {
3469 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3470 }
3471 
3472 /**
3473  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3474  * 	@dev: network device
3475  * 	@queue_index: given tx queue index
3476  *
3477  * 	Returns 0 if given tx queue index >= number of device tx queues,
3478  * 	otherwise returns the originally passed tx queue index.
3479  */
3480 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3481 {
3482 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3483 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3484 				     dev->name, queue_index,
3485 				     dev->real_num_tx_queues);
3486 		return 0;
3487 	}
3488 
3489 	return queue_index;
3490 }
3491 
3492 /**
3493  *	netif_running - test if up
3494  *	@dev: network device
3495  *
3496  *	Test if the device has been brought up.
3497  */
3498 static inline bool netif_running(const struct net_device *dev)
3499 {
3500 	return test_bit(__LINK_STATE_START, &dev->state);
3501 }
3502 
3503 /*
3504  * Routines to manage the subqueues on a device.  We only need start,
3505  * stop, and a check if it's stopped.  All other device management is
3506  * done at the overall netdevice level.
3507  * Also test the device if we're multiqueue.
3508  */
3509 
3510 /**
3511  *	netif_start_subqueue - allow sending packets on subqueue
3512  *	@dev: network device
3513  *	@queue_index: sub queue index
3514  *
3515  * Start individual transmit queue of a device with multiple transmit queues.
3516  */
3517 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3518 {
3519 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3520 
3521 	netif_tx_start_queue(txq);
3522 }
3523 
3524 /**
3525  *	netif_stop_subqueue - stop sending packets on subqueue
3526  *	@dev: network device
3527  *	@queue_index: sub queue index
3528  *
3529  * Stop individual transmit queue of a device with multiple transmit queues.
3530  */
3531 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3532 {
3533 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3534 	netif_tx_stop_queue(txq);
3535 }
3536 
3537 /**
3538  *	__netif_subqueue_stopped - test status of subqueue
3539  *	@dev: network device
3540  *	@queue_index: sub queue index
3541  *
3542  * Check individual transmit queue of a device with multiple transmit queues.
3543  */
3544 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3545 					    u16 queue_index)
3546 {
3547 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3548 
3549 	return netif_tx_queue_stopped(txq);
3550 }
3551 
3552 /**
3553  *	netif_subqueue_stopped - test status of subqueue
3554  *	@dev: network device
3555  *	@skb: sub queue buffer pointer
3556  *
3557  * Check individual transmit queue of a device with multiple transmit queues.
3558  */
3559 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3560 					  struct sk_buff *skb)
3561 {
3562 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3563 }
3564 
3565 /**
3566  *	netif_wake_subqueue - allow sending packets on subqueue
3567  *	@dev: network device
3568  *	@queue_index: sub queue index
3569  *
3570  * Resume individual transmit queue of a device with multiple transmit queues.
3571  */
3572 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3573 {
3574 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3575 
3576 	netif_tx_wake_queue(txq);
3577 }
3578 
3579 #ifdef CONFIG_XPS
3580 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3581 			u16 index);
3582 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3583 			  u16 index, enum xps_map_type type);
3584 
3585 /**
3586  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3587  *	@j: CPU/Rx queue index
3588  *	@mask: bitmask of all cpus/rx queues
3589  *	@nr_bits: number of bits in the bitmask
3590  *
3591  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3592  */
3593 static inline bool netif_attr_test_mask(unsigned long j,
3594 					const unsigned long *mask,
3595 					unsigned int nr_bits)
3596 {
3597 	cpu_max_bits_warn(j, nr_bits);
3598 	return test_bit(j, mask);
3599 }
3600 
3601 /**
3602  *	netif_attr_test_online - Test for online CPU/Rx queue
3603  *	@j: CPU/Rx queue index
3604  *	@online_mask: bitmask for CPUs/Rx queues that are online
3605  *	@nr_bits: number of bits in the bitmask
3606  *
3607  * Returns true if a CPU/Rx queue is online.
3608  */
3609 static inline bool netif_attr_test_online(unsigned long j,
3610 					  const unsigned long *online_mask,
3611 					  unsigned int nr_bits)
3612 {
3613 	cpu_max_bits_warn(j, nr_bits);
3614 
3615 	if (online_mask)
3616 		return test_bit(j, online_mask);
3617 
3618 	return (j < nr_bits);
3619 }
3620 
3621 /**
3622  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3623  *	@n: CPU/Rx queue index
3624  *	@srcp: the cpumask/Rx queue mask pointer
3625  *	@nr_bits: number of bits in the bitmask
3626  *
3627  * Returns >= nr_bits if no further CPUs/Rx queues set.
3628  */
3629 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3630 					       unsigned int nr_bits)
3631 {
3632 	/* -1 is a legal arg here. */
3633 	if (n != -1)
3634 		cpu_max_bits_warn(n, nr_bits);
3635 
3636 	if (srcp)
3637 		return find_next_bit(srcp, nr_bits, n + 1);
3638 
3639 	return n + 1;
3640 }
3641 
3642 /**
3643  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3644  *	@n: CPU/Rx queue index
3645  *	@src1p: the first CPUs/Rx queues mask pointer
3646  *	@src2p: the second CPUs/Rx queues mask pointer
3647  *	@nr_bits: number of bits in the bitmask
3648  *
3649  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3650  */
3651 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3652 					  const unsigned long *src2p,
3653 					  unsigned int nr_bits)
3654 {
3655 	/* -1 is a legal arg here. */
3656 	if (n != -1)
3657 		cpu_max_bits_warn(n, nr_bits);
3658 
3659 	if (src1p && src2p)
3660 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3661 	else if (src1p)
3662 		return find_next_bit(src1p, nr_bits, n + 1);
3663 	else if (src2p)
3664 		return find_next_bit(src2p, nr_bits, n + 1);
3665 
3666 	return n + 1;
3667 }
3668 #else
3669 static inline int netif_set_xps_queue(struct net_device *dev,
3670 				      const struct cpumask *mask,
3671 				      u16 index)
3672 {
3673 	return 0;
3674 }
3675 
3676 static inline int __netif_set_xps_queue(struct net_device *dev,
3677 					const unsigned long *mask,
3678 					u16 index, enum xps_map_type type)
3679 {
3680 	return 0;
3681 }
3682 #endif
3683 
3684 /**
3685  *	netif_is_multiqueue - test if device has multiple transmit queues
3686  *	@dev: network device
3687  *
3688  * Check if device has multiple transmit queues
3689  */
3690 static inline bool netif_is_multiqueue(const struct net_device *dev)
3691 {
3692 	return dev->num_tx_queues > 1;
3693 }
3694 
3695 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3696 
3697 #ifdef CONFIG_SYSFS
3698 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3699 #else
3700 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3701 						unsigned int rxqs)
3702 {
3703 	dev->real_num_rx_queues = rxqs;
3704 	return 0;
3705 }
3706 #endif
3707 int netif_set_real_num_queues(struct net_device *dev,
3708 			      unsigned int txq, unsigned int rxq);
3709 
3710 static inline struct netdev_rx_queue *
3711 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3712 {
3713 	return dev->_rx + rxq;
3714 }
3715 
3716 #ifdef CONFIG_SYSFS
3717 static inline unsigned int get_netdev_rx_queue_index(
3718 		struct netdev_rx_queue *queue)
3719 {
3720 	struct net_device *dev = queue->dev;
3721 	int index = queue - dev->_rx;
3722 
3723 	BUG_ON(index >= dev->num_rx_queues);
3724 	return index;
3725 }
3726 #endif
3727 
3728 int netif_get_num_default_rss_queues(void);
3729 
3730 enum skb_free_reason {
3731 	SKB_REASON_CONSUMED,
3732 	SKB_REASON_DROPPED,
3733 };
3734 
3735 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3736 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3737 
3738 /*
3739  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3740  * interrupt context or with hardware interrupts being disabled.
3741  * (in_hardirq() || irqs_disabled())
3742  *
3743  * We provide four helpers that can be used in following contexts :
3744  *
3745  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3746  *  replacing kfree_skb(skb)
3747  *
3748  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3749  *  Typically used in place of consume_skb(skb) in TX completion path
3750  *
3751  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3752  *  replacing kfree_skb(skb)
3753  *
3754  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3755  *  and consumed a packet. Used in place of consume_skb(skb)
3756  */
3757 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3758 {
3759 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3760 }
3761 
3762 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3763 {
3764 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3765 }
3766 
3767 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3768 {
3769 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3770 }
3771 
3772 static inline void dev_consume_skb_any(struct sk_buff *skb)
3773 {
3774 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3775 }
3776 
3777 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3778 			     struct bpf_prog *xdp_prog);
3779 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3780 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3781 int netif_rx(struct sk_buff *skb);
3782 int __netif_rx(struct sk_buff *skb);
3783 
3784 int netif_receive_skb(struct sk_buff *skb);
3785 int netif_receive_skb_core(struct sk_buff *skb);
3786 void netif_receive_skb_list_internal(struct list_head *head);
3787 void netif_receive_skb_list(struct list_head *head);
3788 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3789 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3790 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3791 gro_result_t napi_gro_frags(struct napi_struct *napi);
3792 struct packet_offload *gro_find_receive_by_type(__be16 type);
3793 struct packet_offload *gro_find_complete_by_type(__be16 type);
3794 
3795 static inline void napi_free_frags(struct napi_struct *napi)
3796 {
3797 	kfree_skb(napi->skb);
3798 	napi->skb = NULL;
3799 }
3800 
3801 bool netdev_is_rx_handler_busy(struct net_device *dev);
3802 int netdev_rx_handler_register(struct net_device *dev,
3803 			       rx_handler_func_t *rx_handler,
3804 			       void *rx_handler_data);
3805 void netdev_rx_handler_unregister(struct net_device *dev);
3806 
3807 bool dev_valid_name(const char *name);
3808 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3809 {
3810 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3811 }
3812 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3813 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3814 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3815 		void __user *data, bool *need_copyout);
3816 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3817 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3818 unsigned int dev_get_flags(const struct net_device *);
3819 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3820 		       struct netlink_ext_ack *extack);
3821 int dev_change_flags(struct net_device *dev, unsigned int flags,
3822 		     struct netlink_ext_ack *extack);
3823 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3824 			unsigned int gchanges);
3825 int dev_set_alias(struct net_device *, const char *, size_t);
3826 int dev_get_alias(const struct net_device *, char *, size_t);
3827 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3828 			       const char *pat, int new_ifindex);
3829 static inline
3830 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3831 			     const char *pat)
3832 {
3833 	return __dev_change_net_namespace(dev, net, pat, 0);
3834 }
3835 int __dev_set_mtu(struct net_device *, int);
3836 int dev_set_mtu(struct net_device *, int);
3837 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3838 			      struct netlink_ext_ack *extack);
3839 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3840 			struct netlink_ext_ack *extack);
3841 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3842 			     struct netlink_ext_ack *extack);
3843 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3844 int dev_get_port_parent_id(struct net_device *dev,
3845 			   struct netdev_phys_item_id *ppid, bool recurse);
3846 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3847 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3848 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3849 				    struct netdev_queue *txq, int *ret);
3850 
3851 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3852 u8 dev_xdp_prog_count(struct net_device *dev);
3853 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3854 
3855 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3856 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3857 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3858 bool is_skb_forwardable(const struct net_device *dev,
3859 			const struct sk_buff *skb);
3860 
3861 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3862 						 const struct sk_buff *skb,
3863 						 const bool check_mtu)
3864 {
3865 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3866 	unsigned int len;
3867 
3868 	if (!(dev->flags & IFF_UP))
3869 		return false;
3870 
3871 	if (!check_mtu)
3872 		return true;
3873 
3874 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3875 	if (skb->len <= len)
3876 		return true;
3877 
3878 	/* if TSO is enabled, we don't care about the length as the packet
3879 	 * could be forwarded without being segmented before
3880 	 */
3881 	if (skb_is_gso(skb))
3882 		return true;
3883 
3884 	return false;
3885 }
3886 
3887 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3888 
3889 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3890 {
3891 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3892 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3893 
3894 	if (likely(p))
3895 		return p;
3896 
3897 	return netdev_core_stats_alloc(dev);
3898 }
3899 
3900 #define DEV_CORE_STATS_INC(FIELD)						\
3901 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
3902 {										\
3903 	struct net_device_core_stats __percpu *p;				\
3904 										\
3905 	p = dev_core_stats(dev);						\
3906 	if (p)									\
3907 		this_cpu_inc(p->FIELD);						\
3908 }
3909 DEV_CORE_STATS_INC(rx_dropped)
3910 DEV_CORE_STATS_INC(tx_dropped)
3911 DEV_CORE_STATS_INC(rx_nohandler)
3912 DEV_CORE_STATS_INC(rx_otherhost_dropped)
3913 
3914 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3915 					       struct sk_buff *skb,
3916 					       const bool check_mtu)
3917 {
3918 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3919 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3920 		dev_core_stats_rx_dropped_inc(dev);
3921 		kfree_skb(skb);
3922 		return NET_RX_DROP;
3923 	}
3924 
3925 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3926 	skb->priority = 0;
3927 	return 0;
3928 }
3929 
3930 bool dev_nit_active(struct net_device *dev);
3931 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3932 
3933 static inline void __dev_put(struct net_device *dev)
3934 {
3935 	if (dev) {
3936 #ifdef CONFIG_PCPU_DEV_REFCNT
3937 		this_cpu_dec(*dev->pcpu_refcnt);
3938 #else
3939 		refcount_dec(&dev->dev_refcnt);
3940 #endif
3941 	}
3942 }
3943 
3944 static inline void __dev_hold(struct net_device *dev)
3945 {
3946 	if (dev) {
3947 #ifdef CONFIG_PCPU_DEV_REFCNT
3948 		this_cpu_inc(*dev->pcpu_refcnt);
3949 #else
3950 		refcount_inc(&dev->dev_refcnt);
3951 #endif
3952 	}
3953 }
3954 
3955 static inline void __netdev_tracker_alloc(struct net_device *dev,
3956 					  netdevice_tracker *tracker,
3957 					  gfp_t gfp)
3958 {
3959 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3960 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
3961 #endif
3962 }
3963 
3964 /* netdev_tracker_alloc() can upgrade a prior untracked reference
3965  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
3966  */
3967 static inline void netdev_tracker_alloc(struct net_device *dev,
3968 					netdevice_tracker *tracker, gfp_t gfp)
3969 {
3970 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3971 	refcount_dec(&dev->refcnt_tracker.no_tracker);
3972 	__netdev_tracker_alloc(dev, tracker, gfp);
3973 #endif
3974 }
3975 
3976 static inline void netdev_tracker_free(struct net_device *dev,
3977 				       netdevice_tracker *tracker)
3978 {
3979 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3980 	ref_tracker_free(&dev->refcnt_tracker, tracker);
3981 #endif
3982 }
3983 
3984 static inline void dev_hold_track(struct net_device *dev,
3985 				  netdevice_tracker *tracker, gfp_t gfp)
3986 {
3987 	if (dev) {
3988 		__dev_hold(dev);
3989 		__netdev_tracker_alloc(dev, tracker, gfp);
3990 	}
3991 }
3992 
3993 static inline void dev_put_track(struct net_device *dev,
3994 				 netdevice_tracker *tracker)
3995 {
3996 	if (dev) {
3997 		netdev_tracker_free(dev, tracker);
3998 		__dev_put(dev);
3999 	}
4000 }
4001 
4002 /**
4003  *	dev_hold - get reference to device
4004  *	@dev: network device
4005  *
4006  * Hold reference to device to keep it from being freed.
4007  * Try using dev_hold_track() instead.
4008  */
4009 static inline void dev_hold(struct net_device *dev)
4010 {
4011 	dev_hold_track(dev, NULL, GFP_ATOMIC);
4012 }
4013 
4014 /**
4015  *	dev_put - release reference to device
4016  *	@dev: network device
4017  *
4018  * Release reference to device to allow it to be freed.
4019  * Try using dev_put_track() instead.
4020  */
4021 static inline void dev_put(struct net_device *dev)
4022 {
4023 	dev_put_track(dev, NULL);
4024 }
4025 
4026 static inline void dev_replace_track(struct net_device *odev,
4027 				     struct net_device *ndev,
4028 				     netdevice_tracker *tracker,
4029 				     gfp_t gfp)
4030 {
4031 	if (odev)
4032 		netdev_tracker_free(odev, tracker);
4033 
4034 	__dev_hold(ndev);
4035 	__dev_put(odev);
4036 
4037 	if (ndev)
4038 		__netdev_tracker_alloc(ndev, tracker, gfp);
4039 }
4040 
4041 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4042  * and _off may be called from IRQ context, but it is caller
4043  * who is responsible for serialization of these calls.
4044  *
4045  * The name carrier is inappropriate, these functions should really be
4046  * called netif_lowerlayer_*() because they represent the state of any
4047  * kind of lower layer not just hardware media.
4048  */
4049 void linkwatch_fire_event(struct net_device *dev);
4050 
4051 /**
4052  *	netif_carrier_ok - test if carrier present
4053  *	@dev: network device
4054  *
4055  * Check if carrier is present on device
4056  */
4057 static inline bool netif_carrier_ok(const struct net_device *dev)
4058 {
4059 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4060 }
4061 
4062 unsigned long dev_trans_start(struct net_device *dev);
4063 
4064 void __netdev_watchdog_up(struct net_device *dev);
4065 
4066 void netif_carrier_on(struct net_device *dev);
4067 void netif_carrier_off(struct net_device *dev);
4068 void netif_carrier_event(struct net_device *dev);
4069 
4070 /**
4071  *	netif_dormant_on - mark device as dormant.
4072  *	@dev: network device
4073  *
4074  * Mark device as dormant (as per RFC2863).
4075  *
4076  * The dormant state indicates that the relevant interface is not
4077  * actually in a condition to pass packets (i.e., it is not 'up') but is
4078  * in a "pending" state, waiting for some external event.  For "on-
4079  * demand" interfaces, this new state identifies the situation where the
4080  * interface is waiting for events to place it in the up state.
4081  */
4082 static inline void netif_dormant_on(struct net_device *dev)
4083 {
4084 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4085 		linkwatch_fire_event(dev);
4086 }
4087 
4088 /**
4089  *	netif_dormant_off - set device as not dormant.
4090  *	@dev: network device
4091  *
4092  * Device is not in dormant state.
4093  */
4094 static inline void netif_dormant_off(struct net_device *dev)
4095 {
4096 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4097 		linkwatch_fire_event(dev);
4098 }
4099 
4100 /**
4101  *	netif_dormant - test if device is dormant
4102  *	@dev: network device
4103  *
4104  * Check if device is dormant.
4105  */
4106 static inline bool netif_dormant(const struct net_device *dev)
4107 {
4108 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4109 }
4110 
4111 
4112 /**
4113  *	netif_testing_on - mark device as under test.
4114  *	@dev: network device
4115  *
4116  * Mark device as under test (as per RFC2863).
4117  *
4118  * The testing state indicates that some test(s) must be performed on
4119  * the interface. After completion, of the test, the interface state
4120  * will change to up, dormant, or down, as appropriate.
4121  */
4122 static inline void netif_testing_on(struct net_device *dev)
4123 {
4124 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4125 		linkwatch_fire_event(dev);
4126 }
4127 
4128 /**
4129  *	netif_testing_off - set device as not under test.
4130  *	@dev: network device
4131  *
4132  * Device is not in testing state.
4133  */
4134 static inline void netif_testing_off(struct net_device *dev)
4135 {
4136 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4137 		linkwatch_fire_event(dev);
4138 }
4139 
4140 /**
4141  *	netif_testing - test if device is under test
4142  *	@dev: network device
4143  *
4144  * Check if device is under test
4145  */
4146 static inline bool netif_testing(const struct net_device *dev)
4147 {
4148 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4149 }
4150 
4151 
4152 /**
4153  *	netif_oper_up - test if device is operational
4154  *	@dev: network device
4155  *
4156  * Check if carrier is operational
4157  */
4158 static inline bool netif_oper_up(const struct net_device *dev)
4159 {
4160 	return (dev->operstate == IF_OPER_UP ||
4161 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4162 }
4163 
4164 /**
4165  *	netif_device_present - is device available or removed
4166  *	@dev: network device
4167  *
4168  * Check if device has not been removed from system.
4169  */
4170 static inline bool netif_device_present(const struct net_device *dev)
4171 {
4172 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4173 }
4174 
4175 void netif_device_detach(struct net_device *dev);
4176 
4177 void netif_device_attach(struct net_device *dev);
4178 
4179 /*
4180  * Network interface message level settings
4181  */
4182 
4183 enum {
4184 	NETIF_MSG_DRV_BIT,
4185 	NETIF_MSG_PROBE_BIT,
4186 	NETIF_MSG_LINK_BIT,
4187 	NETIF_MSG_TIMER_BIT,
4188 	NETIF_MSG_IFDOWN_BIT,
4189 	NETIF_MSG_IFUP_BIT,
4190 	NETIF_MSG_RX_ERR_BIT,
4191 	NETIF_MSG_TX_ERR_BIT,
4192 	NETIF_MSG_TX_QUEUED_BIT,
4193 	NETIF_MSG_INTR_BIT,
4194 	NETIF_MSG_TX_DONE_BIT,
4195 	NETIF_MSG_RX_STATUS_BIT,
4196 	NETIF_MSG_PKTDATA_BIT,
4197 	NETIF_MSG_HW_BIT,
4198 	NETIF_MSG_WOL_BIT,
4199 
4200 	/* When you add a new bit above, update netif_msg_class_names array
4201 	 * in net/ethtool/common.c
4202 	 */
4203 	NETIF_MSG_CLASS_COUNT,
4204 };
4205 /* Both ethtool_ops interface and internal driver implementation use u32 */
4206 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4207 
4208 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4209 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4210 
4211 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4212 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4213 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4214 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4215 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4216 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4217 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4218 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4219 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4220 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4221 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4222 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4223 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4224 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4225 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4226 
4227 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4228 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4229 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4230 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4231 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4232 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4233 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4234 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4235 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4236 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4237 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4238 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4239 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4240 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4241 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4242 
4243 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4244 {
4245 	/* use default */
4246 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4247 		return default_msg_enable_bits;
4248 	if (debug_value == 0)	/* no output */
4249 		return 0;
4250 	/* set low N bits */
4251 	return (1U << debug_value) - 1;
4252 }
4253 
4254 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4255 {
4256 	spin_lock(&txq->_xmit_lock);
4257 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4258 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4259 }
4260 
4261 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4262 {
4263 	__acquire(&txq->_xmit_lock);
4264 	return true;
4265 }
4266 
4267 static inline void __netif_tx_release(struct netdev_queue *txq)
4268 {
4269 	__release(&txq->_xmit_lock);
4270 }
4271 
4272 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4273 {
4274 	spin_lock_bh(&txq->_xmit_lock);
4275 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4276 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4277 }
4278 
4279 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4280 {
4281 	bool ok = spin_trylock(&txq->_xmit_lock);
4282 
4283 	if (likely(ok)) {
4284 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4285 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4286 	}
4287 	return ok;
4288 }
4289 
4290 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4291 {
4292 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4293 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4294 	spin_unlock(&txq->_xmit_lock);
4295 }
4296 
4297 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4298 {
4299 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4300 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4301 	spin_unlock_bh(&txq->_xmit_lock);
4302 }
4303 
4304 /*
4305  * txq->trans_start can be read locklessly from dev_watchdog()
4306  */
4307 static inline void txq_trans_update(struct netdev_queue *txq)
4308 {
4309 	if (txq->xmit_lock_owner != -1)
4310 		WRITE_ONCE(txq->trans_start, jiffies);
4311 }
4312 
4313 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4314 {
4315 	unsigned long now = jiffies;
4316 
4317 	if (READ_ONCE(txq->trans_start) != now)
4318 		WRITE_ONCE(txq->trans_start, now);
4319 }
4320 
4321 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4322 static inline void netif_trans_update(struct net_device *dev)
4323 {
4324 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4325 
4326 	txq_trans_cond_update(txq);
4327 }
4328 
4329 /**
4330  *	netif_tx_lock - grab network device transmit lock
4331  *	@dev: network device
4332  *
4333  * Get network device transmit lock
4334  */
4335 void netif_tx_lock(struct net_device *dev);
4336 
4337 static inline void netif_tx_lock_bh(struct net_device *dev)
4338 {
4339 	local_bh_disable();
4340 	netif_tx_lock(dev);
4341 }
4342 
4343 void netif_tx_unlock(struct net_device *dev);
4344 
4345 static inline void netif_tx_unlock_bh(struct net_device *dev)
4346 {
4347 	netif_tx_unlock(dev);
4348 	local_bh_enable();
4349 }
4350 
4351 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4352 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4353 		__netif_tx_lock(txq, cpu);		\
4354 	} else {					\
4355 		__netif_tx_acquire(txq);		\
4356 	}						\
4357 }
4358 
4359 #define HARD_TX_TRYLOCK(dev, txq)			\
4360 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4361 		__netif_tx_trylock(txq) :		\
4362 		__netif_tx_acquire(txq))
4363 
4364 #define HARD_TX_UNLOCK(dev, txq) {			\
4365 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4366 		__netif_tx_unlock(txq);			\
4367 	} else {					\
4368 		__netif_tx_release(txq);		\
4369 	}						\
4370 }
4371 
4372 static inline void netif_tx_disable(struct net_device *dev)
4373 {
4374 	unsigned int i;
4375 	int cpu;
4376 
4377 	local_bh_disable();
4378 	cpu = smp_processor_id();
4379 	spin_lock(&dev->tx_global_lock);
4380 	for (i = 0; i < dev->num_tx_queues; i++) {
4381 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4382 
4383 		__netif_tx_lock(txq, cpu);
4384 		netif_tx_stop_queue(txq);
4385 		__netif_tx_unlock(txq);
4386 	}
4387 	spin_unlock(&dev->tx_global_lock);
4388 	local_bh_enable();
4389 }
4390 
4391 static inline void netif_addr_lock(struct net_device *dev)
4392 {
4393 	unsigned char nest_level = 0;
4394 
4395 #ifdef CONFIG_LOCKDEP
4396 	nest_level = dev->nested_level;
4397 #endif
4398 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4399 }
4400 
4401 static inline void netif_addr_lock_bh(struct net_device *dev)
4402 {
4403 	unsigned char nest_level = 0;
4404 
4405 #ifdef CONFIG_LOCKDEP
4406 	nest_level = dev->nested_level;
4407 #endif
4408 	local_bh_disable();
4409 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4410 }
4411 
4412 static inline void netif_addr_unlock(struct net_device *dev)
4413 {
4414 	spin_unlock(&dev->addr_list_lock);
4415 }
4416 
4417 static inline void netif_addr_unlock_bh(struct net_device *dev)
4418 {
4419 	spin_unlock_bh(&dev->addr_list_lock);
4420 }
4421 
4422 /*
4423  * dev_addrs walker. Should be used only for read access. Call with
4424  * rcu_read_lock held.
4425  */
4426 #define for_each_dev_addr(dev, ha) \
4427 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4428 
4429 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4430 
4431 void ether_setup(struct net_device *dev);
4432 
4433 /* Support for loadable net-drivers */
4434 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4435 				    unsigned char name_assign_type,
4436 				    void (*setup)(struct net_device *),
4437 				    unsigned int txqs, unsigned int rxqs);
4438 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4439 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4440 
4441 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4442 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4443 			 count)
4444 
4445 int register_netdev(struct net_device *dev);
4446 void unregister_netdev(struct net_device *dev);
4447 
4448 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4449 
4450 /* General hardware address lists handling functions */
4451 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4452 		   struct netdev_hw_addr_list *from_list, int addr_len);
4453 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4454 		      struct netdev_hw_addr_list *from_list, int addr_len);
4455 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4456 		       struct net_device *dev,
4457 		       int (*sync)(struct net_device *, const unsigned char *),
4458 		       int (*unsync)(struct net_device *,
4459 				     const unsigned char *));
4460 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4461 			   struct net_device *dev,
4462 			   int (*sync)(struct net_device *,
4463 				       const unsigned char *, int),
4464 			   int (*unsync)(struct net_device *,
4465 					 const unsigned char *, int));
4466 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4467 			      struct net_device *dev,
4468 			      int (*unsync)(struct net_device *,
4469 					    const unsigned char *, int));
4470 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4471 			  struct net_device *dev,
4472 			  int (*unsync)(struct net_device *,
4473 					const unsigned char *));
4474 void __hw_addr_init(struct netdev_hw_addr_list *list);
4475 
4476 /* Functions used for device addresses handling */
4477 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4478 		  const void *addr, size_t len);
4479 
4480 static inline void
4481 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4482 {
4483 	dev_addr_mod(dev, 0, addr, len);
4484 }
4485 
4486 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4487 {
4488 	__dev_addr_set(dev, addr, dev->addr_len);
4489 }
4490 
4491 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4492 		 unsigned char addr_type);
4493 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4494 		 unsigned char addr_type);
4495 
4496 /* Functions used for unicast addresses handling */
4497 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4498 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4499 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4500 int dev_uc_sync(struct net_device *to, struct net_device *from);
4501 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4502 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4503 void dev_uc_flush(struct net_device *dev);
4504 void dev_uc_init(struct net_device *dev);
4505 
4506 /**
4507  *  __dev_uc_sync - Synchonize device's unicast list
4508  *  @dev:  device to sync
4509  *  @sync: function to call if address should be added
4510  *  @unsync: function to call if address should be removed
4511  *
4512  *  Add newly added addresses to the interface, and release
4513  *  addresses that have been deleted.
4514  */
4515 static inline int __dev_uc_sync(struct net_device *dev,
4516 				int (*sync)(struct net_device *,
4517 					    const unsigned char *),
4518 				int (*unsync)(struct net_device *,
4519 					      const unsigned char *))
4520 {
4521 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4522 }
4523 
4524 /**
4525  *  __dev_uc_unsync - Remove synchronized addresses from device
4526  *  @dev:  device to sync
4527  *  @unsync: function to call if address should be removed
4528  *
4529  *  Remove all addresses that were added to the device by dev_uc_sync().
4530  */
4531 static inline void __dev_uc_unsync(struct net_device *dev,
4532 				   int (*unsync)(struct net_device *,
4533 						 const unsigned char *))
4534 {
4535 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4536 }
4537 
4538 /* Functions used for multicast addresses handling */
4539 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4540 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4541 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4542 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4543 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4544 int dev_mc_sync(struct net_device *to, struct net_device *from);
4545 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4546 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4547 void dev_mc_flush(struct net_device *dev);
4548 void dev_mc_init(struct net_device *dev);
4549 
4550 /**
4551  *  __dev_mc_sync - Synchonize device's multicast list
4552  *  @dev:  device to sync
4553  *  @sync: function to call if address should be added
4554  *  @unsync: function to call if address should be removed
4555  *
4556  *  Add newly added addresses to the interface, and release
4557  *  addresses that have been deleted.
4558  */
4559 static inline int __dev_mc_sync(struct net_device *dev,
4560 				int (*sync)(struct net_device *,
4561 					    const unsigned char *),
4562 				int (*unsync)(struct net_device *,
4563 					      const unsigned char *))
4564 {
4565 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4566 }
4567 
4568 /**
4569  *  __dev_mc_unsync - Remove synchronized addresses from device
4570  *  @dev:  device to sync
4571  *  @unsync: function to call if address should be removed
4572  *
4573  *  Remove all addresses that were added to the device by dev_mc_sync().
4574  */
4575 static inline void __dev_mc_unsync(struct net_device *dev,
4576 				   int (*unsync)(struct net_device *,
4577 						 const unsigned char *))
4578 {
4579 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4580 }
4581 
4582 /* Functions used for secondary unicast and multicast support */
4583 void dev_set_rx_mode(struct net_device *dev);
4584 int dev_set_promiscuity(struct net_device *dev, int inc);
4585 int dev_set_allmulti(struct net_device *dev, int inc);
4586 void netdev_state_change(struct net_device *dev);
4587 void __netdev_notify_peers(struct net_device *dev);
4588 void netdev_notify_peers(struct net_device *dev);
4589 void netdev_features_change(struct net_device *dev);
4590 /* Load a device via the kmod */
4591 void dev_load(struct net *net, const char *name);
4592 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4593 					struct rtnl_link_stats64 *storage);
4594 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4595 			     const struct net_device_stats *netdev_stats);
4596 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4597 			   const struct pcpu_sw_netstats __percpu *netstats);
4598 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4599 
4600 extern int		netdev_max_backlog;
4601 extern int		dev_rx_weight;
4602 extern int		dev_tx_weight;
4603 extern int		gro_normal_batch;
4604 
4605 enum {
4606 	NESTED_SYNC_IMM_BIT,
4607 	NESTED_SYNC_TODO_BIT,
4608 };
4609 
4610 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4611 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4612 
4613 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4614 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4615 
4616 struct netdev_nested_priv {
4617 	unsigned char flags;
4618 	void *data;
4619 };
4620 
4621 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4622 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4623 						     struct list_head **iter);
4624 
4625 /* iterate through upper list, must be called under RCU read lock */
4626 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4627 	for (iter = &(dev)->adj_list.upper, \
4628 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4629 	     updev; \
4630 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4631 
4632 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4633 				  int (*fn)(struct net_device *upper_dev,
4634 					    struct netdev_nested_priv *priv),
4635 				  struct netdev_nested_priv *priv);
4636 
4637 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4638 				  struct net_device *upper_dev);
4639 
4640 bool netdev_has_any_upper_dev(struct net_device *dev);
4641 
4642 void *netdev_lower_get_next_private(struct net_device *dev,
4643 				    struct list_head **iter);
4644 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4645 					struct list_head **iter);
4646 
4647 #define netdev_for_each_lower_private(dev, priv, iter) \
4648 	for (iter = (dev)->adj_list.lower.next, \
4649 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4650 	     priv; \
4651 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4652 
4653 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4654 	for (iter = &(dev)->adj_list.lower, \
4655 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4656 	     priv; \
4657 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4658 
4659 void *netdev_lower_get_next(struct net_device *dev,
4660 				struct list_head **iter);
4661 
4662 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4663 	for (iter = (dev)->adj_list.lower.next, \
4664 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4665 	     ldev; \
4666 	     ldev = netdev_lower_get_next(dev, &(iter)))
4667 
4668 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4669 					     struct list_head **iter);
4670 int netdev_walk_all_lower_dev(struct net_device *dev,
4671 			      int (*fn)(struct net_device *lower_dev,
4672 					struct netdev_nested_priv *priv),
4673 			      struct netdev_nested_priv *priv);
4674 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4675 				  int (*fn)(struct net_device *lower_dev,
4676 					    struct netdev_nested_priv *priv),
4677 				  struct netdev_nested_priv *priv);
4678 
4679 void *netdev_adjacent_get_private(struct list_head *adj_list);
4680 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4681 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4682 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4683 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4684 			  struct netlink_ext_ack *extack);
4685 int netdev_master_upper_dev_link(struct net_device *dev,
4686 				 struct net_device *upper_dev,
4687 				 void *upper_priv, void *upper_info,
4688 				 struct netlink_ext_ack *extack);
4689 void netdev_upper_dev_unlink(struct net_device *dev,
4690 			     struct net_device *upper_dev);
4691 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4692 				   struct net_device *new_dev,
4693 				   struct net_device *dev,
4694 				   struct netlink_ext_ack *extack);
4695 void netdev_adjacent_change_commit(struct net_device *old_dev,
4696 				   struct net_device *new_dev,
4697 				   struct net_device *dev);
4698 void netdev_adjacent_change_abort(struct net_device *old_dev,
4699 				  struct net_device *new_dev,
4700 				  struct net_device *dev);
4701 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4702 void *netdev_lower_dev_get_private(struct net_device *dev,
4703 				   struct net_device *lower_dev);
4704 void netdev_lower_state_changed(struct net_device *lower_dev,
4705 				void *lower_state_info);
4706 
4707 /* RSS keys are 40 or 52 bytes long */
4708 #define NETDEV_RSS_KEY_LEN 52
4709 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4710 void netdev_rss_key_fill(void *buffer, size_t len);
4711 
4712 int skb_checksum_help(struct sk_buff *skb);
4713 int skb_crc32c_csum_help(struct sk_buff *skb);
4714 int skb_csum_hwoffload_help(struct sk_buff *skb,
4715 			    const netdev_features_t features);
4716 
4717 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4718 				  netdev_features_t features, bool tx_path);
4719 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4720 				    netdev_features_t features, __be16 type);
4721 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4722 				    netdev_features_t features);
4723 
4724 struct netdev_bonding_info {
4725 	ifslave	slave;
4726 	ifbond	master;
4727 };
4728 
4729 struct netdev_notifier_bonding_info {
4730 	struct netdev_notifier_info info; /* must be first */
4731 	struct netdev_bonding_info  bonding_info;
4732 };
4733 
4734 void netdev_bonding_info_change(struct net_device *dev,
4735 				struct netdev_bonding_info *bonding_info);
4736 
4737 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4738 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4739 #else
4740 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4741 				  const void *data)
4742 {
4743 }
4744 #endif
4745 
4746 static inline
4747 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4748 {
4749 	return __skb_gso_segment(skb, features, true);
4750 }
4751 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4752 
4753 static inline bool can_checksum_protocol(netdev_features_t features,
4754 					 __be16 protocol)
4755 {
4756 	if (protocol == htons(ETH_P_FCOE))
4757 		return !!(features & NETIF_F_FCOE_CRC);
4758 
4759 	/* Assume this is an IP checksum (not SCTP CRC) */
4760 
4761 	if (features & NETIF_F_HW_CSUM) {
4762 		/* Can checksum everything */
4763 		return true;
4764 	}
4765 
4766 	switch (protocol) {
4767 	case htons(ETH_P_IP):
4768 		return !!(features & NETIF_F_IP_CSUM);
4769 	case htons(ETH_P_IPV6):
4770 		return !!(features & NETIF_F_IPV6_CSUM);
4771 	default:
4772 		return false;
4773 	}
4774 }
4775 
4776 #ifdef CONFIG_BUG
4777 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4778 #else
4779 static inline void netdev_rx_csum_fault(struct net_device *dev,
4780 					struct sk_buff *skb)
4781 {
4782 }
4783 #endif
4784 /* rx skb timestamps */
4785 void net_enable_timestamp(void);
4786 void net_disable_timestamp(void);
4787 
4788 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4789 					const struct skb_shared_hwtstamps *hwtstamps,
4790 					bool cycles)
4791 {
4792 	const struct net_device_ops *ops = dev->netdev_ops;
4793 
4794 	if (ops->ndo_get_tstamp)
4795 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4796 
4797 	return hwtstamps->hwtstamp;
4798 }
4799 
4800 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4801 					      struct sk_buff *skb, struct net_device *dev,
4802 					      bool more)
4803 {
4804 	__this_cpu_write(softnet_data.xmit.more, more);
4805 	return ops->ndo_start_xmit(skb, dev);
4806 }
4807 
4808 static inline bool netdev_xmit_more(void)
4809 {
4810 	return __this_cpu_read(softnet_data.xmit.more);
4811 }
4812 
4813 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4814 					    struct netdev_queue *txq, bool more)
4815 {
4816 	const struct net_device_ops *ops = dev->netdev_ops;
4817 	netdev_tx_t rc;
4818 
4819 	rc = __netdev_start_xmit(ops, skb, dev, more);
4820 	if (rc == NETDEV_TX_OK)
4821 		txq_trans_update(txq);
4822 
4823 	return rc;
4824 }
4825 
4826 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4827 				const void *ns);
4828 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4829 				 const void *ns);
4830 
4831 extern const struct kobj_ns_type_operations net_ns_type_operations;
4832 
4833 const char *netdev_drivername(const struct net_device *dev);
4834 
4835 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4836 							  netdev_features_t f2)
4837 {
4838 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4839 		if (f1 & NETIF_F_HW_CSUM)
4840 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4841 		else
4842 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4843 	}
4844 
4845 	return f1 & f2;
4846 }
4847 
4848 static inline netdev_features_t netdev_get_wanted_features(
4849 	struct net_device *dev)
4850 {
4851 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4852 }
4853 netdev_features_t netdev_increment_features(netdev_features_t all,
4854 	netdev_features_t one, netdev_features_t mask);
4855 
4856 /* Allow TSO being used on stacked device :
4857  * Performing the GSO segmentation before last device
4858  * is a performance improvement.
4859  */
4860 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4861 							netdev_features_t mask)
4862 {
4863 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4864 }
4865 
4866 int __netdev_update_features(struct net_device *dev);
4867 void netdev_update_features(struct net_device *dev);
4868 void netdev_change_features(struct net_device *dev);
4869 
4870 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4871 					struct net_device *dev);
4872 
4873 netdev_features_t passthru_features_check(struct sk_buff *skb,
4874 					  struct net_device *dev,
4875 					  netdev_features_t features);
4876 netdev_features_t netif_skb_features(struct sk_buff *skb);
4877 
4878 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4879 {
4880 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4881 
4882 	/* check flags correspondence */
4883 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4884 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4885 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4886 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4887 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4888 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4889 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4890 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4891 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4892 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4893 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4894 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4895 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4896 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4897 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4898 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4899 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4900 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4901 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4902 
4903 	return (features & feature) == feature;
4904 }
4905 
4906 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4907 {
4908 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4909 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4910 }
4911 
4912 static inline bool netif_needs_gso(struct sk_buff *skb,
4913 				   netdev_features_t features)
4914 {
4915 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4916 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4917 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4918 }
4919 
4920 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
4921 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
4922 void netif_inherit_tso_max(struct net_device *to,
4923 			   const struct net_device *from);
4924 
4925 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4926 					int pulled_hlen, u16 mac_offset,
4927 					int mac_len)
4928 {
4929 	skb->protocol = protocol;
4930 	skb->encapsulation = 1;
4931 	skb_push(skb, pulled_hlen);
4932 	skb_reset_transport_header(skb);
4933 	skb->mac_header = mac_offset;
4934 	skb->network_header = skb->mac_header + mac_len;
4935 	skb->mac_len = mac_len;
4936 }
4937 
4938 static inline bool netif_is_macsec(const struct net_device *dev)
4939 {
4940 	return dev->priv_flags & IFF_MACSEC;
4941 }
4942 
4943 static inline bool netif_is_macvlan(const struct net_device *dev)
4944 {
4945 	return dev->priv_flags & IFF_MACVLAN;
4946 }
4947 
4948 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4949 {
4950 	return dev->priv_flags & IFF_MACVLAN_PORT;
4951 }
4952 
4953 static inline bool netif_is_bond_master(const struct net_device *dev)
4954 {
4955 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4956 }
4957 
4958 static inline bool netif_is_bond_slave(const struct net_device *dev)
4959 {
4960 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4961 }
4962 
4963 static inline bool netif_supports_nofcs(struct net_device *dev)
4964 {
4965 	return dev->priv_flags & IFF_SUPP_NOFCS;
4966 }
4967 
4968 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4969 {
4970 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4971 }
4972 
4973 static inline bool netif_is_l3_master(const struct net_device *dev)
4974 {
4975 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4976 }
4977 
4978 static inline bool netif_is_l3_slave(const struct net_device *dev)
4979 {
4980 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4981 }
4982 
4983 static inline bool netif_is_bridge_master(const struct net_device *dev)
4984 {
4985 	return dev->priv_flags & IFF_EBRIDGE;
4986 }
4987 
4988 static inline bool netif_is_bridge_port(const struct net_device *dev)
4989 {
4990 	return dev->priv_flags & IFF_BRIDGE_PORT;
4991 }
4992 
4993 static inline bool netif_is_ovs_master(const struct net_device *dev)
4994 {
4995 	return dev->priv_flags & IFF_OPENVSWITCH;
4996 }
4997 
4998 static inline bool netif_is_ovs_port(const struct net_device *dev)
4999 {
5000 	return dev->priv_flags & IFF_OVS_DATAPATH;
5001 }
5002 
5003 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5004 {
5005 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5006 }
5007 
5008 static inline bool netif_is_team_master(const struct net_device *dev)
5009 {
5010 	return dev->priv_flags & IFF_TEAM;
5011 }
5012 
5013 static inline bool netif_is_team_port(const struct net_device *dev)
5014 {
5015 	return dev->priv_flags & IFF_TEAM_PORT;
5016 }
5017 
5018 static inline bool netif_is_lag_master(const struct net_device *dev)
5019 {
5020 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5021 }
5022 
5023 static inline bool netif_is_lag_port(const struct net_device *dev)
5024 {
5025 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5026 }
5027 
5028 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5029 {
5030 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5031 }
5032 
5033 static inline bool netif_is_failover(const struct net_device *dev)
5034 {
5035 	return dev->priv_flags & IFF_FAILOVER;
5036 }
5037 
5038 static inline bool netif_is_failover_slave(const struct net_device *dev)
5039 {
5040 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5041 }
5042 
5043 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5044 static inline void netif_keep_dst(struct net_device *dev)
5045 {
5046 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5047 }
5048 
5049 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5050 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5051 {
5052 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5053 	return netif_is_macsec(dev);
5054 }
5055 
5056 extern struct pernet_operations __net_initdata loopback_net_ops;
5057 
5058 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5059 
5060 /* netdev_printk helpers, similar to dev_printk */
5061 
5062 static inline const char *netdev_name(const struct net_device *dev)
5063 {
5064 	if (!dev->name[0] || strchr(dev->name, '%'))
5065 		return "(unnamed net_device)";
5066 	return dev->name;
5067 }
5068 
5069 static inline bool netdev_unregistering(const struct net_device *dev)
5070 {
5071 	return dev->reg_state == NETREG_UNREGISTERING;
5072 }
5073 
5074 static inline const char *netdev_reg_state(const struct net_device *dev)
5075 {
5076 	switch (dev->reg_state) {
5077 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5078 	case NETREG_REGISTERED: return "";
5079 	case NETREG_UNREGISTERING: return " (unregistering)";
5080 	case NETREG_UNREGISTERED: return " (unregistered)";
5081 	case NETREG_RELEASED: return " (released)";
5082 	case NETREG_DUMMY: return " (dummy)";
5083 	}
5084 
5085 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5086 	return " (unknown)";
5087 }
5088 
5089 #define MODULE_ALIAS_NETDEV(device) \
5090 	MODULE_ALIAS("netdev-" device)
5091 
5092 /*
5093  * netdev_WARN() acts like dev_printk(), but with the key difference
5094  * of using a WARN/WARN_ON to get the message out, including the
5095  * file/line information and a backtrace.
5096  */
5097 #define netdev_WARN(dev, format, args...)			\
5098 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5099 	     netdev_reg_state(dev), ##args)
5100 
5101 #define netdev_WARN_ONCE(dev, format, args...)				\
5102 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5103 		  netdev_reg_state(dev), ##args)
5104 
5105 /*
5106  *	The list of packet types we will receive (as opposed to discard)
5107  *	and the routines to invoke.
5108  *
5109  *	Why 16. Because with 16 the only overlap we get on a hash of the
5110  *	low nibble of the protocol value is RARP/SNAP/X.25.
5111  *
5112  *		0800	IP
5113  *		0001	802.3
5114  *		0002	AX.25
5115  *		0004	802.2
5116  *		8035	RARP
5117  *		0005	SNAP
5118  *		0805	X.25
5119  *		0806	ARP
5120  *		8137	IPX
5121  *		0009	Localtalk
5122  *		86DD	IPv6
5123  */
5124 #define PTYPE_HASH_SIZE	(16)
5125 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5126 
5127 extern struct list_head ptype_all __read_mostly;
5128 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5129 
5130 extern struct net_device *blackhole_netdev;
5131 
5132 #endif	/* _LINUX_NETDEVICE_H */
5133