xref: /openbmc/linux/include/linux/netdevice.h (revision ca460cc2)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <linux/prefetch.h>
34 #include <asm/cache.h>
35 #include <asm/byteorder.h>
36 
37 #include <linux/percpu.h>
38 #include <linux/rculist.h>
39 #include <linux/dmaengine.h>
40 #include <linux/workqueue.h>
41 #include <linux/dynamic_queue_limits.h>
42 
43 #include <linux/ethtool.h>
44 #include <net/net_namespace.h>
45 #include <net/dsa.h>
46 #ifdef CONFIG_DCB
47 #include <net/dcbnl.h>
48 #endif
49 #include <net/netprio_cgroup.h>
50 
51 #include <linux/netdev_features.h>
52 #include <linux/neighbour.h>
53 #include <uapi/linux/netdevice.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 
61 void netdev_set_default_ethtool_ops(struct net_device *dev,
62 				    const struct ethtool_ops *ops);
63 
64 /* Backlog congestion levels */
65 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
66 #define NET_RX_DROP		1	/* packet dropped */
67 
68 /*
69  * Transmit return codes: transmit return codes originate from three different
70  * namespaces:
71  *
72  * - qdisc return codes
73  * - driver transmit return codes
74  * - errno values
75  *
76  * Drivers are allowed to return any one of those in their hard_start_xmit()
77  * function. Real network devices commonly used with qdiscs should only return
78  * the driver transmit return codes though - when qdiscs are used, the actual
79  * transmission happens asynchronously, so the value is not propagated to
80  * higher layers. Virtual network devices transmit synchronously, in this case
81  * the driver transmit return codes are consumed by dev_queue_xmit(), all
82  * others are propagated to higher layers.
83  */
84 
85 /* qdisc ->enqueue() return codes. */
86 #define NET_XMIT_SUCCESS	0x00
87 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
88 #define NET_XMIT_CN		0x02	/* congestion notification	*/
89 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
90 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
91 
92 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
93  * indicates that the device will soon be dropping packets, or already drops
94  * some packets of the same priority; prompting us to send less aggressively. */
95 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
96 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
97 
98 /* Driver transmit return codes */
99 #define NETDEV_TX_MASK		0xf0
100 
101 enum netdev_tx {
102 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
103 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
104 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
105 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
106 };
107 typedef enum netdev_tx netdev_tx_t;
108 
109 /*
110  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
111  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
112  */
113 static inline bool dev_xmit_complete(int rc)
114 {
115 	/*
116 	 * Positive cases with an skb consumed by a driver:
117 	 * - successful transmission (rc == NETDEV_TX_OK)
118 	 * - error while transmitting (rc < 0)
119 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
120 	 */
121 	if (likely(rc < NET_XMIT_MASK))
122 		return true;
123 
124 	return false;
125 }
126 
127 /*
128  *	Compute the worst case header length according to the protocols
129  *	used.
130  */
131 
132 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
133 # if defined(CONFIG_MAC80211_MESH)
134 #  define LL_MAX_HEADER 128
135 # else
136 #  define LL_MAX_HEADER 96
137 # endif
138 #else
139 # define LL_MAX_HEADER 32
140 #endif
141 
142 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
143     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
144 #define MAX_HEADER LL_MAX_HEADER
145 #else
146 #define MAX_HEADER (LL_MAX_HEADER + 48)
147 #endif
148 
149 /*
150  *	Old network device statistics. Fields are native words
151  *	(unsigned long) so they can be read and written atomically.
152  */
153 
154 struct net_device_stats {
155 	unsigned long	rx_packets;
156 	unsigned long	tx_packets;
157 	unsigned long	rx_bytes;
158 	unsigned long	tx_bytes;
159 	unsigned long	rx_errors;
160 	unsigned long	tx_errors;
161 	unsigned long	rx_dropped;
162 	unsigned long	tx_dropped;
163 	unsigned long	multicast;
164 	unsigned long	collisions;
165 	unsigned long	rx_length_errors;
166 	unsigned long	rx_over_errors;
167 	unsigned long	rx_crc_errors;
168 	unsigned long	rx_frame_errors;
169 	unsigned long	rx_fifo_errors;
170 	unsigned long	rx_missed_errors;
171 	unsigned long	tx_aborted_errors;
172 	unsigned long	tx_carrier_errors;
173 	unsigned long	tx_fifo_errors;
174 	unsigned long	tx_heartbeat_errors;
175 	unsigned long	tx_window_errors;
176 	unsigned long	rx_compressed;
177 	unsigned long	tx_compressed;
178 };
179 
180 
181 #include <linux/cache.h>
182 #include <linux/skbuff.h>
183 
184 #ifdef CONFIG_RPS
185 #include <linux/static_key.h>
186 extern struct static_key rps_needed;
187 #endif
188 
189 struct neighbour;
190 struct neigh_parms;
191 struct sk_buff;
192 
193 struct netdev_hw_addr {
194 	struct list_head	list;
195 	unsigned char		addr[MAX_ADDR_LEN];
196 	unsigned char		type;
197 #define NETDEV_HW_ADDR_T_LAN		1
198 #define NETDEV_HW_ADDR_T_SAN		2
199 #define NETDEV_HW_ADDR_T_SLAVE		3
200 #define NETDEV_HW_ADDR_T_UNICAST	4
201 #define NETDEV_HW_ADDR_T_MULTICAST	5
202 	bool			global_use;
203 	int			sync_cnt;
204 	int			refcount;
205 	int			synced;
206 	struct rcu_head		rcu_head;
207 };
208 
209 struct netdev_hw_addr_list {
210 	struct list_head	list;
211 	int			count;
212 };
213 
214 #define netdev_hw_addr_list_count(l) ((l)->count)
215 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
216 #define netdev_hw_addr_list_for_each(ha, l) \
217 	list_for_each_entry(ha, &(l)->list, list)
218 
219 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
220 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
221 #define netdev_for_each_uc_addr(ha, dev) \
222 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
223 
224 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
225 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
226 #define netdev_for_each_mc_addr(ha, dev) \
227 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
228 
229 struct hh_cache {
230 	u16		hh_len;
231 	u16		__pad;
232 	seqlock_t	hh_lock;
233 
234 	/* cached hardware header; allow for machine alignment needs.        */
235 #define HH_DATA_MOD	16
236 #define HH_DATA_OFF(__len) \
237 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
238 #define HH_DATA_ALIGN(__len) \
239 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
240 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
241 };
242 
243 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
244  * Alternative is:
245  *   dev->hard_header_len ? (dev->hard_header_len +
246  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
247  *
248  * We could use other alignment values, but we must maintain the
249  * relationship HH alignment <= LL alignment.
250  */
251 #define LL_RESERVED_SPACE(dev) \
252 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
253 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
254 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
255 
256 struct header_ops {
257 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
258 			   unsigned short type, const void *daddr,
259 			   const void *saddr, unsigned int len);
260 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
261 	int	(*rebuild)(struct sk_buff *skb);
262 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
263 	void	(*cache_update)(struct hh_cache *hh,
264 				const struct net_device *dev,
265 				const unsigned char *haddr);
266 };
267 
268 /* These flag bits are private to the generic network queueing
269  * layer, they may not be explicitly referenced by any other
270  * code.
271  */
272 
273 enum netdev_state_t {
274 	__LINK_STATE_START,
275 	__LINK_STATE_PRESENT,
276 	__LINK_STATE_NOCARRIER,
277 	__LINK_STATE_LINKWATCH_PENDING,
278 	__LINK_STATE_DORMANT,
279 };
280 
281 
282 /*
283  * This structure holds at boot time configured netdevice settings. They
284  * are then used in the device probing.
285  */
286 struct netdev_boot_setup {
287 	char name[IFNAMSIZ];
288 	struct ifmap map;
289 };
290 #define NETDEV_BOOT_SETUP_MAX 8
291 
292 int __init netdev_boot_setup(char *str);
293 
294 /*
295  * Structure for NAPI scheduling similar to tasklet but with weighting
296  */
297 struct napi_struct {
298 	/* The poll_list must only be managed by the entity which
299 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
300 	 * whoever atomically sets that bit can add this napi_struct
301 	 * to the per-cpu poll_list, and whoever clears that bit
302 	 * can remove from the list right before clearing the bit.
303 	 */
304 	struct list_head	poll_list;
305 
306 	unsigned long		state;
307 	int			weight;
308 	unsigned int		gro_count;
309 	int			(*poll)(struct napi_struct *, int);
310 #ifdef CONFIG_NETPOLL
311 	spinlock_t		poll_lock;
312 	int			poll_owner;
313 #endif
314 	struct net_device	*dev;
315 	struct sk_buff		*gro_list;
316 	struct sk_buff		*skb;
317 	struct list_head	dev_list;
318 	struct hlist_node	napi_hash_node;
319 	unsigned int		napi_id;
320 };
321 
322 enum {
323 	NAPI_STATE_SCHED,	/* Poll is scheduled */
324 	NAPI_STATE_DISABLE,	/* Disable pending */
325 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
326 	NAPI_STATE_HASHED,	/* In NAPI hash */
327 };
328 
329 enum gro_result {
330 	GRO_MERGED,
331 	GRO_MERGED_FREE,
332 	GRO_HELD,
333 	GRO_NORMAL,
334 	GRO_DROP,
335 };
336 typedef enum gro_result gro_result_t;
337 
338 /*
339  * enum rx_handler_result - Possible return values for rx_handlers.
340  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
341  * further.
342  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
343  * case skb->dev was changed by rx_handler.
344  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
345  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
346  *
347  * rx_handlers are functions called from inside __netif_receive_skb(), to do
348  * special processing of the skb, prior to delivery to protocol handlers.
349  *
350  * Currently, a net_device can only have a single rx_handler registered. Trying
351  * to register a second rx_handler will return -EBUSY.
352  *
353  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
354  * To unregister a rx_handler on a net_device, use
355  * netdev_rx_handler_unregister().
356  *
357  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
358  * do with the skb.
359  *
360  * If the rx_handler consumed to skb in some way, it should return
361  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
362  * the skb to be delivered in some other ways.
363  *
364  * If the rx_handler changed skb->dev, to divert the skb to another
365  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
366  * new device will be called if it exists.
367  *
368  * If the rx_handler consider the skb should be ignored, it should return
369  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
370  * are registered on exact device (ptype->dev == skb->dev).
371  *
372  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
373  * delivered, it should return RX_HANDLER_PASS.
374  *
375  * A device without a registered rx_handler will behave as if rx_handler
376  * returned RX_HANDLER_PASS.
377  */
378 
379 enum rx_handler_result {
380 	RX_HANDLER_CONSUMED,
381 	RX_HANDLER_ANOTHER,
382 	RX_HANDLER_EXACT,
383 	RX_HANDLER_PASS,
384 };
385 typedef enum rx_handler_result rx_handler_result_t;
386 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
387 
388 void __napi_schedule(struct napi_struct *n);
389 
390 static inline bool napi_disable_pending(struct napi_struct *n)
391 {
392 	return test_bit(NAPI_STATE_DISABLE, &n->state);
393 }
394 
395 /**
396  *	napi_schedule_prep - check if napi can be scheduled
397  *	@n: napi context
398  *
399  * Test if NAPI routine is already running, and if not mark
400  * it as running.  This is used as a condition variable
401  * insure only one NAPI poll instance runs.  We also make
402  * sure there is no pending NAPI disable.
403  */
404 static inline bool napi_schedule_prep(struct napi_struct *n)
405 {
406 	return !napi_disable_pending(n) &&
407 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
408 }
409 
410 /**
411  *	napi_schedule - schedule NAPI poll
412  *	@n: napi context
413  *
414  * Schedule NAPI poll routine to be called if it is not already
415  * running.
416  */
417 static inline void napi_schedule(struct napi_struct *n)
418 {
419 	if (napi_schedule_prep(n))
420 		__napi_schedule(n);
421 }
422 
423 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
424 static inline bool napi_reschedule(struct napi_struct *napi)
425 {
426 	if (napi_schedule_prep(napi)) {
427 		__napi_schedule(napi);
428 		return true;
429 	}
430 	return false;
431 }
432 
433 /**
434  *	napi_complete - NAPI processing complete
435  *	@n: napi context
436  *
437  * Mark NAPI processing as complete.
438  */
439 void __napi_complete(struct napi_struct *n);
440 void napi_complete(struct napi_struct *n);
441 
442 /**
443  *	napi_by_id - lookup a NAPI by napi_id
444  *	@napi_id: hashed napi_id
445  *
446  * lookup @napi_id in napi_hash table
447  * must be called under rcu_read_lock()
448  */
449 struct napi_struct *napi_by_id(unsigned int napi_id);
450 
451 /**
452  *	napi_hash_add - add a NAPI to global hashtable
453  *	@napi: napi context
454  *
455  * generate a new napi_id and store a @napi under it in napi_hash
456  */
457 void napi_hash_add(struct napi_struct *napi);
458 
459 /**
460  *	napi_hash_del - remove a NAPI from global table
461  *	@napi: napi context
462  *
463  * Warning: caller must observe rcu grace period
464  * before freeing memory containing @napi
465  */
466 void napi_hash_del(struct napi_struct *napi);
467 
468 /**
469  *	napi_disable - prevent NAPI from scheduling
470  *	@n: napi context
471  *
472  * Stop NAPI from being scheduled on this context.
473  * Waits till any outstanding processing completes.
474  */
475 static inline void napi_disable(struct napi_struct *n)
476 {
477 	might_sleep();
478 	set_bit(NAPI_STATE_DISABLE, &n->state);
479 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
480 		msleep(1);
481 	clear_bit(NAPI_STATE_DISABLE, &n->state);
482 }
483 
484 /**
485  *	napi_enable - enable NAPI scheduling
486  *	@n: napi context
487  *
488  * Resume NAPI from being scheduled on this context.
489  * Must be paired with napi_disable.
490  */
491 static inline void napi_enable(struct napi_struct *n)
492 {
493 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
494 	smp_mb__before_atomic();
495 	clear_bit(NAPI_STATE_SCHED, &n->state);
496 }
497 
498 #ifdef CONFIG_SMP
499 /**
500  *	napi_synchronize - wait until NAPI is not running
501  *	@n: napi context
502  *
503  * Wait until NAPI is done being scheduled on this context.
504  * Waits till any outstanding processing completes but
505  * does not disable future activations.
506  */
507 static inline void napi_synchronize(const struct napi_struct *n)
508 {
509 	while (test_bit(NAPI_STATE_SCHED, &n->state))
510 		msleep(1);
511 }
512 #else
513 # define napi_synchronize(n)	barrier()
514 #endif
515 
516 enum netdev_queue_state_t {
517 	__QUEUE_STATE_DRV_XOFF,
518 	__QUEUE_STATE_STACK_XOFF,
519 	__QUEUE_STATE_FROZEN,
520 };
521 
522 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
523 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
524 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
525 
526 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
527 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
528 					QUEUE_STATE_FROZEN)
529 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
530 					QUEUE_STATE_FROZEN)
531 
532 /*
533  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
534  * netif_tx_* functions below are used to manipulate this flag.  The
535  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
536  * queue independently.  The netif_xmit_*stopped functions below are called
537  * to check if the queue has been stopped by the driver or stack (either
538  * of the XOFF bits are set in the state).  Drivers should not need to call
539  * netif_xmit*stopped functions, they should only be using netif_tx_*.
540  */
541 
542 struct netdev_queue {
543 /*
544  * read mostly part
545  */
546 	struct net_device	*dev;
547 	struct Qdisc __rcu	*qdisc;
548 	struct Qdisc		*qdisc_sleeping;
549 #ifdef CONFIG_SYSFS
550 	struct kobject		kobj;
551 #endif
552 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
553 	int			numa_node;
554 #endif
555 /*
556  * write mostly part
557  */
558 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
559 	int			xmit_lock_owner;
560 	/*
561 	 * please use this field instead of dev->trans_start
562 	 */
563 	unsigned long		trans_start;
564 
565 	/*
566 	 * Number of TX timeouts for this queue
567 	 * (/sys/class/net/DEV/Q/trans_timeout)
568 	 */
569 	unsigned long		trans_timeout;
570 
571 	unsigned long		state;
572 
573 #ifdef CONFIG_BQL
574 	struct dql		dql;
575 #endif
576 } ____cacheline_aligned_in_smp;
577 
578 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
579 {
580 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
581 	return q->numa_node;
582 #else
583 	return NUMA_NO_NODE;
584 #endif
585 }
586 
587 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
588 {
589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
590 	q->numa_node = node;
591 #endif
592 }
593 
594 #ifdef CONFIG_RPS
595 /*
596  * This structure holds an RPS map which can be of variable length.  The
597  * map is an array of CPUs.
598  */
599 struct rps_map {
600 	unsigned int len;
601 	struct rcu_head rcu;
602 	u16 cpus[0];
603 };
604 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
605 
606 /*
607  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
608  * tail pointer for that CPU's input queue at the time of last enqueue, and
609  * a hardware filter index.
610  */
611 struct rps_dev_flow {
612 	u16 cpu;
613 	u16 filter;
614 	unsigned int last_qtail;
615 };
616 #define RPS_NO_FILTER 0xffff
617 
618 /*
619  * The rps_dev_flow_table structure contains a table of flow mappings.
620  */
621 struct rps_dev_flow_table {
622 	unsigned int mask;
623 	struct rcu_head rcu;
624 	struct rps_dev_flow flows[0];
625 };
626 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
627     ((_num) * sizeof(struct rps_dev_flow)))
628 
629 /*
630  * The rps_sock_flow_table contains mappings of flows to the last CPU
631  * on which they were processed by the application (set in recvmsg).
632  */
633 struct rps_sock_flow_table {
634 	unsigned int mask;
635 	u16 ents[0];
636 };
637 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
638     ((_num) * sizeof(u16)))
639 
640 #define RPS_NO_CPU 0xffff
641 
642 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
643 					u32 hash)
644 {
645 	if (table && hash) {
646 		unsigned int cpu, index = hash & table->mask;
647 
648 		/* We only give a hint, preemption can change cpu under us */
649 		cpu = raw_smp_processor_id();
650 
651 		if (table->ents[index] != cpu)
652 			table->ents[index] = cpu;
653 	}
654 }
655 
656 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
657 				       u32 hash)
658 {
659 	if (table && hash)
660 		table->ents[hash & table->mask] = RPS_NO_CPU;
661 }
662 
663 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
664 
665 #ifdef CONFIG_RFS_ACCEL
666 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
667 			 u16 filter_id);
668 #endif
669 #endif /* CONFIG_RPS */
670 
671 /* This structure contains an instance of an RX queue. */
672 struct netdev_rx_queue {
673 #ifdef CONFIG_RPS
674 	struct rps_map __rcu		*rps_map;
675 	struct rps_dev_flow_table __rcu	*rps_flow_table;
676 #endif
677 	struct kobject			kobj;
678 	struct net_device		*dev;
679 } ____cacheline_aligned_in_smp;
680 
681 /*
682  * RX queue sysfs structures and functions.
683  */
684 struct rx_queue_attribute {
685 	struct attribute attr;
686 	ssize_t (*show)(struct netdev_rx_queue *queue,
687 	    struct rx_queue_attribute *attr, char *buf);
688 	ssize_t (*store)(struct netdev_rx_queue *queue,
689 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
690 };
691 
692 #ifdef CONFIG_XPS
693 /*
694  * This structure holds an XPS map which can be of variable length.  The
695  * map is an array of queues.
696  */
697 struct xps_map {
698 	unsigned int len;
699 	unsigned int alloc_len;
700 	struct rcu_head rcu;
701 	u16 queues[0];
702 };
703 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
704 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
705     / sizeof(u16))
706 
707 /*
708  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
709  */
710 struct xps_dev_maps {
711 	struct rcu_head rcu;
712 	struct xps_map __rcu *cpu_map[0];
713 };
714 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
715     (nr_cpu_ids * sizeof(struct xps_map *)))
716 #endif /* CONFIG_XPS */
717 
718 #define TC_MAX_QUEUE	16
719 #define TC_BITMASK	15
720 /* HW offloaded queuing disciplines txq count and offset maps */
721 struct netdev_tc_txq {
722 	u16 count;
723 	u16 offset;
724 };
725 
726 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
727 /*
728  * This structure is to hold information about the device
729  * configured to run FCoE protocol stack.
730  */
731 struct netdev_fcoe_hbainfo {
732 	char	manufacturer[64];
733 	char	serial_number[64];
734 	char	hardware_version[64];
735 	char	driver_version[64];
736 	char	optionrom_version[64];
737 	char	firmware_version[64];
738 	char	model[256];
739 	char	model_description[256];
740 };
741 #endif
742 
743 #define MAX_PHYS_PORT_ID_LEN 32
744 
745 /* This structure holds a unique identifier to identify the
746  * physical port used by a netdevice.
747  */
748 struct netdev_phys_port_id {
749 	unsigned char id[MAX_PHYS_PORT_ID_LEN];
750 	unsigned char id_len;
751 };
752 
753 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
754 				       struct sk_buff *skb);
755 
756 /*
757  * This structure defines the management hooks for network devices.
758  * The following hooks can be defined; unless noted otherwise, they are
759  * optional and can be filled with a null pointer.
760  *
761  * int (*ndo_init)(struct net_device *dev);
762  *     This function is called once when network device is registered.
763  *     The network device can use this to any late stage initializaton
764  *     or semantic validattion. It can fail with an error code which will
765  *     be propogated back to register_netdev
766  *
767  * void (*ndo_uninit)(struct net_device *dev);
768  *     This function is called when device is unregistered or when registration
769  *     fails. It is not called if init fails.
770  *
771  * int (*ndo_open)(struct net_device *dev);
772  *     This function is called when network device transistions to the up
773  *     state.
774  *
775  * int (*ndo_stop)(struct net_device *dev);
776  *     This function is called when network device transistions to the down
777  *     state.
778  *
779  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
780  *                               struct net_device *dev);
781  *	Called when a packet needs to be transmitted.
782  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
783  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
784  *	Required can not be NULL.
785  *
786  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
787  *                         void *accel_priv, select_queue_fallback_t fallback);
788  *	Called to decide which queue to when device supports multiple
789  *	transmit queues.
790  *
791  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
792  *	This function is called to allow device receiver to make
793  *	changes to configuration when multicast or promiscious is enabled.
794  *
795  * void (*ndo_set_rx_mode)(struct net_device *dev);
796  *	This function is called device changes address list filtering.
797  *	If driver handles unicast address filtering, it should set
798  *	IFF_UNICAST_FLT to its priv_flags.
799  *
800  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
801  *	This function  is called when the Media Access Control address
802  *	needs to be changed. If this interface is not defined, the
803  *	mac address can not be changed.
804  *
805  * int (*ndo_validate_addr)(struct net_device *dev);
806  *	Test if Media Access Control address is valid for the device.
807  *
808  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
809  *	Called when a user request an ioctl which can't be handled by
810  *	the generic interface code. If not defined ioctl's return
811  *	not supported error code.
812  *
813  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
814  *	Used to set network devices bus interface parameters. This interface
815  *	is retained for legacy reason, new devices should use the bus
816  *	interface (PCI) for low level management.
817  *
818  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
819  *	Called when a user wants to change the Maximum Transfer Unit
820  *	of a device. If not defined, any request to change MTU will
821  *	will return an error.
822  *
823  * void (*ndo_tx_timeout)(struct net_device *dev);
824  *	Callback uses when the transmitter has not made any progress
825  *	for dev->watchdog ticks.
826  *
827  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
828  *                      struct rtnl_link_stats64 *storage);
829  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
830  *	Called when a user wants to get the network device usage
831  *	statistics. Drivers must do one of the following:
832  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
833  *	   rtnl_link_stats64 structure passed by the caller.
834  *	2. Define @ndo_get_stats to update a net_device_stats structure
835  *	   (which should normally be dev->stats) and return a pointer to
836  *	   it. The structure may be changed asynchronously only if each
837  *	   field is written atomically.
838  *	3. Update dev->stats asynchronously and atomically, and define
839  *	   neither operation.
840  *
841  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
842  *	If device support VLAN filtering this function is called when a
843  *	VLAN id is registered.
844  *
845  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
846  *	If device support VLAN filtering this function is called when a
847  *	VLAN id is unregistered.
848  *
849  * void (*ndo_poll_controller)(struct net_device *dev);
850  *
851  *	SR-IOV management functions.
852  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
853  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
854  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
855  *			  int max_tx_rate);
856  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
857  * int (*ndo_get_vf_config)(struct net_device *dev,
858  *			    int vf, struct ifla_vf_info *ivf);
859  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
860  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
861  *			  struct nlattr *port[]);
862  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
863  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
864  * 	Called to setup 'tc' number of traffic classes in the net device. This
865  * 	is always called from the stack with the rtnl lock held and netif tx
866  * 	queues stopped. This allows the netdevice to perform queue management
867  * 	safely.
868  *
869  *	Fiber Channel over Ethernet (FCoE) offload functions.
870  * int (*ndo_fcoe_enable)(struct net_device *dev);
871  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
872  *	so the underlying device can perform whatever needed configuration or
873  *	initialization to support acceleration of FCoE traffic.
874  *
875  * int (*ndo_fcoe_disable)(struct net_device *dev);
876  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
877  *	so the underlying device can perform whatever needed clean-ups to
878  *	stop supporting acceleration of FCoE traffic.
879  *
880  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
881  *			     struct scatterlist *sgl, unsigned int sgc);
882  *	Called when the FCoE Initiator wants to initialize an I/O that
883  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
884  *	perform necessary setup and returns 1 to indicate the device is set up
885  *	successfully to perform DDP on this I/O, otherwise this returns 0.
886  *
887  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
888  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
889  *	indicated by the FC exchange id 'xid', so the underlying device can
890  *	clean up and reuse resources for later DDP requests.
891  *
892  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
893  *			      struct scatterlist *sgl, unsigned int sgc);
894  *	Called when the FCoE Target wants to initialize an I/O that
895  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
896  *	perform necessary setup and returns 1 to indicate the device is set up
897  *	successfully to perform DDP on this I/O, otherwise this returns 0.
898  *
899  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
900  *			       struct netdev_fcoe_hbainfo *hbainfo);
901  *	Called when the FCoE Protocol stack wants information on the underlying
902  *	device. This information is utilized by the FCoE protocol stack to
903  *	register attributes with Fiber Channel management service as per the
904  *	FC-GS Fabric Device Management Information(FDMI) specification.
905  *
906  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
907  *	Called when the underlying device wants to override default World Wide
908  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
909  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
910  *	protocol stack to use.
911  *
912  *	RFS acceleration.
913  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
914  *			    u16 rxq_index, u32 flow_id);
915  *	Set hardware filter for RFS.  rxq_index is the target queue index;
916  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
917  *	Return the filter ID on success, or a negative error code.
918  *
919  *	Slave management functions (for bridge, bonding, etc).
920  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
921  *	Called to make another netdev an underling.
922  *
923  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
924  *	Called to release previously enslaved netdev.
925  *
926  *      Feature/offload setting functions.
927  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
928  *		netdev_features_t features);
929  *	Adjusts the requested feature flags according to device-specific
930  *	constraints, and returns the resulting flags. Must not modify
931  *	the device state.
932  *
933  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
934  *	Called to update device configuration to new features. Passed
935  *	feature set might be less than what was returned by ndo_fix_features()).
936  *	Must return >0 or -errno if it changed dev->features itself.
937  *
938  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
939  *		      struct net_device *dev,
940  *		      const unsigned char *addr, u16 flags)
941  *	Adds an FDB entry to dev for addr.
942  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
943  *		      struct net_device *dev,
944  *		      const unsigned char *addr)
945  *	Deletes the FDB entry from dev coresponding to addr.
946  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
947  *		       struct net_device *dev, struct net_device *filter_dev,
948  *		       int idx)
949  *	Used to add FDB entries to dump requests. Implementers should add
950  *	entries to skb and update idx with the number of entries.
951  *
952  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
953  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
954  *			     struct net_device *dev, u32 filter_mask)
955  *
956  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
957  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
958  *	which do not represent real hardware may define this to allow their
959  *	userspace components to manage their virtual carrier state. Devices
960  *	that determine carrier state from physical hardware properties (eg
961  *	network cables) or protocol-dependent mechanisms (eg
962  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
963  *
964  * int (*ndo_get_phys_port_id)(struct net_device *dev,
965  *			       struct netdev_phys_port_id *ppid);
966  *	Called to get ID of physical port of this device. If driver does
967  *	not implement this, it is assumed that the hw is not able to have
968  *	multiple net devices on single physical port.
969  *
970  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
971  *			      sa_family_t sa_family, __be16 port);
972  *	Called by vxlan to notiy a driver about the UDP port and socket
973  *	address family that vxlan is listnening to. It is called only when
974  *	a new port starts listening. The operation is protected by the
975  *	vxlan_net->sock_lock.
976  *
977  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
978  *			      sa_family_t sa_family, __be16 port);
979  *	Called by vxlan to notify the driver about a UDP port and socket
980  *	address family that vxlan is not listening to anymore. The operation
981  *	is protected by the vxlan_net->sock_lock.
982  *
983  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
984  *				 struct net_device *dev)
985  *	Called by upper layer devices to accelerate switching or other
986  *	station functionality into hardware. 'pdev is the lowerdev
987  *	to use for the offload and 'dev' is the net device that will
988  *	back the offload. Returns a pointer to the private structure
989  *	the upper layer will maintain.
990  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
991  *	Called by upper layer device to delete the station created
992  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
993  *	the station and priv is the structure returned by the add
994  *	operation.
995  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
996  *				      struct net_device *dev,
997  *				      void *priv);
998  *	Callback to use for xmit over the accelerated station. This
999  *	is used in place of ndo_start_xmit on accelerated net
1000  *	devices.
1001  * bool	(*ndo_gso_check) (struct sk_buff *skb,
1002  *			  struct net_device *dev);
1003  *	Called by core transmit path to determine if device is capable of
1004  *	performing GSO on a packet. The device returns true if it is
1005  *	able to GSO the packet, false otherwise. If the return value is
1006  *	false the stack will do software GSO.
1007  */
1008 struct net_device_ops {
1009 	int			(*ndo_init)(struct net_device *dev);
1010 	void			(*ndo_uninit)(struct net_device *dev);
1011 	int			(*ndo_open)(struct net_device *dev);
1012 	int			(*ndo_stop)(struct net_device *dev);
1013 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1014 						   struct net_device *dev);
1015 	u16			(*ndo_select_queue)(struct net_device *dev,
1016 						    struct sk_buff *skb,
1017 						    void *accel_priv,
1018 						    select_queue_fallback_t fallback);
1019 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1020 						       int flags);
1021 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1022 	int			(*ndo_set_mac_address)(struct net_device *dev,
1023 						       void *addr);
1024 	int			(*ndo_validate_addr)(struct net_device *dev);
1025 	int			(*ndo_do_ioctl)(struct net_device *dev,
1026 					        struct ifreq *ifr, int cmd);
1027 	int			(*ndo_set_config)(struct net_device *dev,
1028 					          struct ifmap *map);
1029 	int			(*ndo_change_mtu)(struct net_device *dev,
1030 						  int new_mtu);
1031 	int			(*ndo_neigh_setup)(struct net_device *dev,
1032 						   struct neigh_parms *);
1033 	void			(*ndo_tx_timeout) (struct net_device *dev);
1034 
1035 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1036 						     struct rtnl_link_stats64 *storage);
1037 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1038 
1039 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1040 						       __be16 proto, u16 vid);
1041 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1042 						        __be16 proto, u16 vid);
1043 #ifdef CONFIG_NET_POLL_CONTROLLER
1044 	void                    (*ndo_poll_controller)(struct net_device *dev);
1045 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1046 						     struct netpoll_info *info);
1047 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1048 #endif
1049 #ifdef CONFIG_NET_RX_BUSY_POLL
1050 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1051 #endif
1052 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1053 						  int queue, u8 *mac);
1054 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1055 						   int queue, u16 vlan, u8 qos);
1056 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1057 						   int vf, int min_tx_rate,
1058 						   int max_tx_rate);
1059 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1060 						       int vf, bool setting);
1061 	int			(*ndo_get_vf_config)(struct net_device *dev,
1062 						     int vf,
1063 						     struct ifla_vf_info *ivf);
1064 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1065 							 int vf, int link_state);
1066 	int			(*ndo_set_vf_port)(struct net_device *dev,
1067 						   int vf,
1068 						   struct nlattr *port[]);
1069 	int			(*ndo_get_vf_port)(struct net_device *dev,
1070 						   int vf, struct sk_buff *skb);
1071 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1072 #if IS_ENABLED(CONFIG_FCOE)
1073 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1074 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1075 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1076 						      u16 xid,
1077 						      struct scatterlist *sgl,
1078 						      unsigned int sgc);
1079 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1080 						     u16 xid);
1081 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1082 						       u16 xid,
1083 						       struct scatterlist *sgl,
1084 						       unsigned int sgc);
1085 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1086 							struct netdev_fcoe_hbainfo *hbainfo);
1087 #endif
1088 
1089 #if IS_ENABLED(CONFIG_LIBFCOE)
1090 #define NETDEV_FCOE_WWNN 0
1091 #define NETDEV_FCOE_WWPN 1
1092 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1093 						    u64 *wwn, int type);
1094 #endif
1095 
1096 #ifdef CONFIG_RFS_ACCEL
1097 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1098 						     const struct sk_buff *skb,
1099 						     u16 rxq_index,
1100 						     u32 flow_id);
1101 #endif
1102 	int			(*ndo_add_slave)(struct net_device *dev,
1103 						 struct net_device *slave_dev);
1104 	int			(*ndo_del_slave)(struct net_device *dev,
1105 						 struct net_device *slave_dev);
1106 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1107 						    netdev_features_t features);
1108 	int			(*ndo_set_features)(struct net_device *dev,
1109 						    netdev_features_t features);
1110 	int			(*ndo_neigh_construct)(struct neighbour *n);
1111 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1112 
1113 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1114 					       struct nlattr *tb[],
1115 					       struct net_device *dev,
1116 					       const unsigned char *addr,
1117 					       u16 flags);
1118 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1119 					       struct nlattr *tb[],
1120 					       struct net_device *dev,
1121 					       const unsigned char *addr);
1122 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1123 						struct netlink_callback *cb,
1124 						struct net_device *dev,
1125 						struct net_device *filter_dev,
1126 						int idx);
1127 
1128 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1129 						      struct nlmsghdr *nlh);
1130 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1131 						      u32 pid, u32 seq,
1132 						      struct net_device *dev,
1133 						      u32 filter_mask);
1134 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1135 						      struct nlmsghdr *nlh);
1136 	int			(*ndo_change_carrier)(struct net_device *dev,
1137 						      bool new_carrier);
1138 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1139 							struct netdev_phys_port_id *ppid);
1140 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1141 						      sa_family_t sa_family,
1142 						      __be16 port);
1143 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1144 						      sa_family_t sa_family,
1145 						      __be16 port);
1146 
1147 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1148 							struct net_device *dev);
1149 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1150 							void *priv);
1151 
1152 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1153 							struct net_device *dev,
1154 							void *priv);
1155 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1156 	bool			(*ndo_gso_check) (struct sk_buff *skb,
1157 						  struct net_device *dev);
1158 };
1159 
1160 /**
1161  * enum net_device_priv_flags - &struct net_device priv_flags
1162  *
1163  * These are the &struct net_device, they are only set internally
1164  * by drivers and used in the kernel. These flags are invisible to
1165  * userspace, this means that the order of these flags can change
1166  * during any kernel release.
1167  *
1168  * You should have a pretty good reason to be extending these flags.
1169  *
1170  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1171  * @IFF_EBRIDGE: Ethernet bridging device
1172  * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1173  * @IFF_MASTER_8023AD: bonding master, 802.3ad
1174  * @IFF_MASTER_ALB: bonding master, balance-alb
1175  * @IFF_BONDING: bonding master or slave
1176  * @IFF_SLAVE_NEEDARP: need ARPs for validation
1177  * @IFF_ISATAP: ISATAP interface (RFC4214)
1178  * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1179  * @IFF_WAN_HDLC: WAN HDLC device
1180  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1181  *	release skb->dst
1182  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1183  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1184  * @IFF_MACVLAN_PORT: device used as macvlan port
1185  * @IFF_BRIDGE_PORT: device used as bridge port
1186  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1187  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1188  * @IFF_UNICAST_FLT: Supports unicast filtering
1189  * @IFF_TEAM_PORT: device used as team port
1190  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1191  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1192  *	change when it's running
1193  * @IFF_MACVLAN: Macvlan device
1194  */
1195 enum netdev_priv_flags {
1196 	IFF_802_1Q_VLAN			= 1<<0,
1197 	IFF_EBRIDGE			= 1<<1,
1198 	IFF_SLAVE_INACTIVE		= 1<<2,
1199 	IFF_MASTER_8023AD		= 1<<3,
1200 	IFF_MASTER_ALB			= 1<<4,
1201 	IFF_BONDING			= 1<<5,
1202 	IFF_SLAVE_NEEDARP		= 1<<6,
1203 	IFF_ISATAP			= 1<<7,
1204 	IFF_MASTER_ARPMON		= 1<<8,
1205 	IFF_WAN_HDLC			= 1<<9,
1206 	IFF_XMIT_DST_RELEASE		= 1<<10,
1207 	IFF_DONT_BRIDGE			= 1<<11,
1208 	IFF_DISABLE_NETPOLL		= 1<<12,
1209 	IFF_MACVLAN_PORT		= 1<<13,
1210 	IFF_BRIDGE_PORT			= 1<<14,
1211 	IFF_OVS_DATAPATH		= 1<<15,
1212 	IFF_TX_SKB_SHARING		= 1<<16,
1213 	IFF_UNICAST_FLT			= 1<<17,
1214 	IFF_TEAM_PORT			= 1<<18,
1215 	IFF_SUPP_NOFCS			= 1<<19,
1216 	IFF_LIVE_ADDR_CHANGE		= 1<<20,
1217 	IFF_MACVLAN			= 1<<21,
1218 	IFF_XMIT_DST_RELEASE_PERM	= 1<<22,
1219 };
1220 
1221 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1222 #define IFF_EBRIDGE			IFF_EBRIDGE
1223 #define IFF_SLAVE_INACTIVE		IFF_SLAVE_INACTIVE
1224 #define IFF_MASTER_8023AD		IFF_MASTER_8023AD
1225 #define IFF_MASTER_ALB			IFF_MASTER_ALB
1226 #define IFF_BONDING			IFF_BONDING
1227 #define IFF_SLAVE_NEEDARP		IFF_SLAVE_NEEDARP
1228 #define IFF_ISATAP			IFF_ISATAP
1229 #define IFF_MASTER_ARPMON		IFF_MASTER_ARPMON
1230 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1231 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1232 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1233 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1234 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1235 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1236 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1237 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1238 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1239 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1240 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1241 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1242 #define IFF_MACVLAN			IFF_MACVLAN
1243 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1244 
1245 /**
1246  *	struct net_device - The DEVICE structure.
1247  *		Actually, this whole structure is a big mistake.  It mixes I/O
1248  *		data with strictly "high-level" data, and it has to know about
1249  *		almost every data structure used in the INET module.
1250  *
1251  *	@name:	This is the first field of the "visible" part of this structure
1252  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1253  *	 	of the interface.
1254  *
1255  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1256  *	@ifalias:	SNMP alias
1257  *	@mem_end:	Shared memory end
1258  *	@mem_start:	Shared memory start
1259  *	@base_addr:	Device I/O address
1260  *	@irq:		Device IRQ number
1261  *
1262  *	@state:		Generic network queuing layer state, see netdev_state_t
1263  *	@dev_list:	The global list of network devices
1264  *	@napi_list:	List entry, that is used for polling napi devices
1265  *	@unreg_list:	List entry, that is used, when we are unregistering the
1266  *			device, see the function unregister_netdev
1267  *	@close_list:	List entry, that is used, when we are closing the device
1268  *
1269  *	@adj_list:	Directly linked devices, like slaves for bonding
1270  *	@all_adj_list:	All linked devices, *including* neighbours
1271  *	@features:	Currently active device features
1272  *	@hw_features:	User-changeable features
1273  *
1274  *	@wanted_features:	User-requested features
1275  *	@vlan_features:		Mask of features inheritable by VLAN devices
1276  *
1277  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1278  *				This field indicates what encapsulation
1279  *				offloads the hardware is capable of doing,
1280  *				and drivers will need to set them appropriately.
1281  *
1282  *	@mpls_features:	Mask of features inheritable by MPLS
1283  *
1284  *	@ifindex:	interface index
1285  *	@iflink:	unique device identifier
1286  *
1287  *	@stats:		Statistics struct, which was left as a legacy, use
1288  *			rtnl_link_stats64 instead
1289  *
1290  *	@rx_dropped:	Dropped packets by core network,
1291  *			do not use this in drivers
1292  *	@tx_dropped:	Dropped packets by core network,
1293  *			do not use this in drivers
1294  *
1295  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1296  *
1297  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1298  *				instead of ioctl,
1299  *				see <net/iw_handler.h> for details.
1300  *	@wireless_data:	Instance data managed by the core of wireless extensions
1301  *
1302  *	@netdev_ops:	Includes several pointers to callbacks,
1303  *			if one wants to override the ndo_*() functions
1304  *	@ethtool_ops:	Management operations
1305  *	@fwd_ops:	Management operations
1306  *	@header_ops:	Includes callbacks for creating,parsing,rebuilding,etc
1307  *			of Layer 2 headers.
1308  *
1309  *	@flags:		Interface flags (a la BSD)
1310  *	@priv_flags:	Like 'flags' but invisible to userspace,
1311  *			see if.h for the definitions
1312  *	@gflags:	Global flags ( kept as legacy )
1313  *	@padded:	How much padding added by alloc_netdev()
1314  *	@operstate:	RFC2863 operstate
1315  *	@link_mode:	Mapping policy to operstate
1316  *	@if_port:	Selectable AUI, TP, ...
1317  *	@dma:		DMA channel
1318  *	@mtu:		Interface MTU value
1319  *	@type:		Interface hardware type
1320  *	@hard_header_len: Hardware header length
1321  *
1322  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1323  *			  cases can this be guaranteed
1324  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1325  *			  cases can this be guaranteed. Some cases also use
1326  *			  LL_MAX_HEADER instead to allocate the skb
1327  *
1328  *	interface address info:
1329  *
1330  * 	@perm_addr:		Permanent hw address
1331  * 	@addr_assign_type:	Hw address assignment type
1332  * 	@addr_len:		Hardware address length
1333  * 	@neigh_priv_len;	Used in neigh_alloc(),
1334  * 				initialized only in atm/clip.c
1335  * 	@dev_id:		Used to differentiate devices that share
1336  * 				the same link layer address
1337  * 	@dev_port:		Used to differentiate devices that share
1338  * 				the same function
1339  *	@addr_list_lock:	XXX: need comments on this one
1340  *	@uc:			unicast mac addresses
1341  *	@mc:			multicast mac addresses
1342  *	@dev_addrs:		list of device hw addresses
1343  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1344  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1345  *				has been enabled due to the need to listen to
1346  *				additional unicast addresses in a device that
1347  *				does not implement ndo_set_rx_mode()
1348  *	@promiscuity:		Number of times, the NIC is told to work in
1349  *				Promiscuous mode, if it becomes 0 the NIC will
1350  *				exit from working in Promiscuous mode
1351  *	@allmulti:		Counter, enables or disables allmulticast mode
1352  *
1353  *	@vlan_info:	VLAN info
1354  *	@dsa_ptr:	dsa specific data
1355  *	@tipc_ptr:	TIPC specific data
1356  *	@atalk_ptr:	AppleTalk link
1357  *	@ip_ptr:	IPv4 specific data
1358  *	@dn_ptr:	DECnet specific data
1359  *	@ip6_ptr:	IPv6 specific data
1360  *	@ax25_ptr:	AX.25 specific data
1361  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1362  *
1363  *	@last_rx:	Time of last Rx
1364  *	@dev_addr:	Hw address (before bcast,
1365  *			because most packets are unicast)
1366  *
1367  *	@_rx:			Array of RX queues
1368  *	@num_rx_queues:		Number of RX queues
1369  *				allocated at register_netdev() time
1370  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1371  *
1372  *	@rx_handler:		handler for received packets
1373  *	@rx_handler_data: 	XXX: need comments on this one
1374  *	@ingress_queue:		XXX: need comments on this one
1375  *	@broadcast:		hw bcast address
1376  *
1377  *	@_tx:			Array of TX queues
1378  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1379  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1380  *	@qdisc:			Root qdisc from userspace point of view
1381  *	@tx_queue_len:		Max frames per queue allowed
1382  *	@tx_global_lock: 	XXX: need comments on this one
1383  *
1384  *	@xps_maps:	XXX: need comments on this one
1385  *
1386  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1387  *			indexed by RX queue number. Assigned by driver.
1388  *			This must only be set if the ndo_rx_flow_steer
1389  *			operation is defined
1390  *
1391  *	@trans_start:		Time (in jiffies) of last Tx
1392  *	@watchdog_timeo:	Represents the timeout that is used by
1393  *				the watchdog ( see dev_watchdog() )
1394  *	@watchdog_timer:	List of timers
1395  *
1396  *	@pcpu_refcnt:		Number of references to this device
1397  *	@todo_list:		Delayed register/unregister
1398  *	@index_hlist:		Device index hash chain
1399  *	@link_watch_list:	XXX: need comments on this one
1400  *
1401  *	@reg_state:		Register/unregister state machine
1402  *	@dismantle:		Device is going to be freed
1403  *	@rtnl_link_state:	This enum represents the phases of creating
1404  *				a new link
1405  *
1406  *	@destructor:		Called from unregister,
1407  *				can be used to call free_netdev
1408  *	@npinfo:		XXX: need comments on this one
1409  * 	@nd_net:		Network namespace this network device is inside
1410  *
1411  * 	@ml_priv:	Mid-layer private
1412  * 	@lstats:	Loopback statistics
1413  * 	@tstats:	Tunnel statistics
1414  * 	@dstats:	Dummy statistics
1415  * 	@vstats:	Virtual ethernet statistics
1416  *
1417  *	@garp_port:	GARP
1418  *	@mrp_port:	MRP
1419  *
1420  *	@dev:		Class/net/name entry
1421  *	@sysfs_groups:	Space for optional device, statistics and wireless
1422  *			sysfs groups
1423  *
1424  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1425  *	@rtnl_link_ops:	Rtnl_link_ops
1426  *
1427  *	@gso_max_size:	Maximum size of generic segmentation offload
1428  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1429  *			NIC for GSO
1430  *	@gso_min_segs:	Minimum number of segments that can be passed to the
1431  *			NIC for GSO
1432  *
1433  *	@dcbnl_ops:	Data Center Bridging netlink ops
1434  *	@num_tc:	Number of traffic classes in the net device
1435  *	@tc_to_txq:	XXX: need comments on this one
1436  *	@prio_tc_map	XXX: need comments on this one
1437  *
1438  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1439  *
1440  *	@priomap:	XXX: need comments on this one
1441  *	@phydev:	Physical device may attach itself
1442  *			for hardware timestamping
1443  *
1444  *	@qdisc_tx_busylock:	XXX: need comments on this one
1445  *
1446  *	@group:		The group, that the device belongs to
1447  *	@pm_qos_req:	Power Management QoS object
1448  *
1449  *	FIXME: cleanup struct net_device such that network protocol info
1450  *	moves out.
1451  */
1452 
1453 struct net_device {
1454 	char			name[IFNAMSIZ];
1455 	struct hlist_node	name_hlist;
1456 	char 			*ifalias;
1457 	/*
1458 	 *	I/O specific fields
1459 	 *	FIXME: Merge these and struct ifmap into one
1460 	 */
1461 	unsigned long		mem_end;
1462 	unsigned long		mem_start;
1463 	unsigned long		base_addr;
1464 	int			irq;
1465 
1466 	/*
1467 	 *	Some hardware also needs these fields (state,dev_list,
1468 	 *	napi_list,unreg_list,close_list) but they are not
1469 	 *	part of the usual set specified in Space.c.
1470 	 */
1471 
1472 	unsigned long		state;
1473 
1474 	struct list_head	dev_list;
1475 	struct list_head	napi_list;
1476 	struct list_head	unreg_list;
1477 	struct list_head	close_list;
1478 
1479 	struct {
1480 		struct list_head upper;
1481 		struct list_head lower;
1482 	} adj_list;
1483 
1484 	struct {
1485 		struct list_head upper;
1486 		struct list_head lower;
1487 	} all_adj_list;
1488 
1489 	netdev_features_t	features;
1490 	netdev_features_t	hw_features;
1491 	netdev_features_t	wanted_features;
1492 	netdev_features_t	vlan_features;
1493 	netdev_features_t	hw_enc_features;
1494 	netdev_features_t	mpls_features;
1495 
1496 	int			ifindex;
1497 	int			iflink;
1498 
1499 	struct net_device_stats	stats;
1500 
1501 	atomic_long_t		rx_dropped;
1502 	atomic_long_t		tx_dropped;
1503 
1504 	atomic_t		carrier_changes;
1505 
1506 #ifdef CONFIG_WIRELESS_EXT
1507 	const struct iw_handler_def *	wireless_handlers;
1508 	struct iw_public_data *	wireless_data;
1509 #endif
1510 	const struct net_device_ops *netdev_ops;
1511 	const struct ethtool_ops *ethtool_ops;
1512 	const struct forwarding_accel_ops *fwd_ops;
1513 
1514 	const struct header_ops *header_ops;
1515 
1516 	unsigned int		flags;
1517 	unsigned int		priv_flags;
1518 
1519 	unsigned short		gflags;
1520 	unsigned short		padded;
1521 
1522 	unsigned char		operstate;
1523 	unsigned char		link_mode;
1524 
1525 	unsigned char		if_port;
1526 	unsigned char		dma;
1527 
1528 	unsigned int		mtu;
1529 	unsigned short		type;
1530 	unsigned short		hard_header_len;
1531 
1532 	unsigned short		needed_headroom;
1533 	unsigned short		needed_tailroom;
1534 
1535 	/* Interface address info. */
1536 	unsigned char		perm_addr[MAX_ADDR_LEN];
1537 	unsigned char		addr_assign_type;
1538 	unsigned char		addr_len;
1539 	unsigned short		neigh_priv_len;
1540 	unsigned short          dev_id;
1541 	unsigned short          dev_port;
1542 	spinlock_t		addr_list_lock;
1543 	struct netdev_hw_addr_list	uc;
1544 	struct netdev_hw_addr_list	mc;
1545 	struct netdev_hw_addr_list	dev_addrs;
1546 
1547 #ifdef CONFIG_SYSFS
1548 	struct kset		*queues_kset;
1549 #endif
1550 
1551 	unsigned char		name_assign_type;
1552 
1553 	bool			uc_promisc;
1554 	unsigned int		promiscuity;
1555 	unsigned int		allmulti;
1556 
1557 
1558 	/* Protocol specific pointers */
1559 
1560 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1561 	struct vlan_info __rcu	*vlan_info;
1562 #endif
1563 #if IS_ENABLED(CONFIG_NET_DSA)
1564 	struct dsa_switch_tree	*dsa_ptr;
1565 #endif
1566 #if IS_ENABLED(CONFIG_TIPC)
1567 	struct tipc_bearer __rcu *tipc_ptr;
1568 #endif
1569 	void 			*atalk_ptr;
1570 	struct in_device __rcu	*ip_ptr;
1571 	struct dn_dev __rcu     *dn_ptr;
1572 	struct inet6_dev __rcu	*ip6_ptr;
1573 	void			*ax25_ptr;
1574 	struct wireless_dev	*ieee80211_ptr;
1575 
1576 /*
1577  * Cache lines mostly used on receive path (including eth_type_trans())
1578  */
1579 	unsigned long		last_rx;
1580 
1581 	/* Interface address info used in eth_type_trans() */
1582 	unsigned char		*dev_addr;
1583 
1584 
1585 #ifdef CONFIG_SYSFS
1586 	struct netdev_rx_queue	*_rx;
1587 
1588 	unsigned int		num_rx_queues;
1589 	unsigned int		real_num_rx_queues;
1590 
1591 #endif
1592 
1593 	rx_handler_func_t __rcu	*rx_handler;
1594 	void __rcu		*rx_handler_data;
1595 
1596 	struct netdev_queue __rcu *ingress_queue;
1597 	unsigned char		broadcast[MAX_ADDR_LEN];
1598 
1599 
1600 /*
1601  * Cache lines mostly used on transmit path
1602  */
1603 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1604 	unsigned int		num_tx_queues;
1605 	unsigned int		real_num_tx_queues;
1606 	struct Qdisc		*qdisc;
1607 	unsigned long		tx_queue_len;
1608 	spinlock_t		tx_global_lock;
1609 
1610 #ifdef CONFIG_XPS
1611 	struct xps_dev_maps __rcu *xps_maps;
1612 #endif
1613 #ifdef CONFIG_RFS_ACCEL
1614 	struct cpu_rmap		*rx_cpu_rmap;
1615 #endif
1616 
1617 	/* These may be needed for future network-power-down code. */
1618 
1619 	/*
1620 	 * trans_start here is expensive for high speed devices on SMP,
1621 	 * please use netdev_queue->trans_start instead.
1622 	 */
1623 	unsigned long		trans_start;
1624 
1625 	int			watchdog_timeo;
1626 	struct timer_list	watchdog_timer;
1627 
1628 	int __percpu		*pcpu_refcnt;
1629 	struct list_head	todo_list;
1630 
1631 	struct hlist_node	index_hlist;
1632 	struct list_head	link_watch_list;
1633 
1634 	enum { NETREG_UNINITIALIZED=0,
1635 	       NETREG_REGISTERED,	/* completed register_netdevice */
1636 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1637 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1638 	       NETREG_RELEASED,		/* called free_netdev */
1639 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1640 	} reg_state:8;
1641 
1642 	bool dismantle;
1643 
1644 	enum {
1645 		RTNL_LINK_INITIALIZED,
1646 		RTNL_LINK_INITIALIZING,
1647 	} rtnl_link_state:16;
1648 
1649 	void (*destructor)(struct net_device *dev);
1650 
1651 #ifdef CONFIG_NETPOLL
1652 	struct netpoll_info __rcu	*npinfo;
1653 #endif
1654 
1655 #ifdef CONFIG_NET_NS
1656 	struct net		*nd_net;
1657 #endif
1658 
1659 	/* mid-layer private */
1660 	union {
1661 		void					*ml_priv;
1662 		struct pcpu_lstats __percpu		*lstats;
1663 		struct pcpu_sw_netstats __percpu	*tstats;
1664 		struct pcpu_dstats __percpu		*dstats;
1665 		struct pcpu_vstats __percpu		*vstats;
1666 	};
1667 
1668 	struct garp_port __rcu	*garp_port;
1669 	struct mrp_port __rcu	*mrp_port;
1670 
1671 	struct device	dev;
1672 	const struct attribute_group *sysfs_groups[4];
1673 	const struct attribute_group *sysfs_rx_queue_group;
1674 
1675 	const struct rtnl_link_ops *rtnl_link_ops;
1676 
1677 	/* for setting kernel sock attribute on TCP connection setup */
1678 #define GSO_MAX_SIZE		65536
1679 	unsigned int		gso_max_size;
1680 #define GSO_MAX_SEGS		65535
1681 	u16			gso_max_segs;
1682 	u16			gso_min_segs;
1683 #ifdef CONFIG_DCB
1684 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1685 #endif
1686 	u8 num_tc;
1687 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1688 	u8 prio_tc_map[TC_BITMASK + 1];
1689 
1690 #if IS_ENABLED(CONFIG_FCOE)
1691 	unsigned int		fcoe_ddp_xid;
1692 #endif
1693 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1694 	struct netprio_map __rcu *priomap;
1695 #endif
1696 	struct phy_device *phydev;
1697 	struct lock_class_key *qdisc_tx_busylock;
1698 	int group;
1699 	struct pm_qos_request	pm_qos_req;
1700 };
1701 #define to_net_dev(d) container_of(d, struct net_device, dev)
1702 
1703 #define	NETDEV_ALIGN		32
1704 
1705 static inline
1706 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1707 {
1708 	return dev->prio_tc_map[prio & TC_BITMASK];
1709 }
1710 
1711 static inline
1712 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1713 {
1714 	if (tc >= dev->num_tc)
1715 		return -EINVAL;
1716 
1717 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1718 	return 0;
1719 }
1720 
1721 static inline
1722 void netdev_reset_tc(struct net_device *dev)
1723 {
1724 	dev->num_tc = 0;
1725 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1726 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1727 }
1728 
1729 static inline
1730 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1731 {
1732 	if (tc >= dev->num_tc)
1733 		return -EINVAL;
1734 
1735 	dev->tc_to_txq[tc].count = count;
1736 	dev->tc_to_txq[tc].offset = offset;
1737 	return 0;
1738 }
1739 
1740 static inline
1741 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1742 {
1743 	if (num_tc > TC_MAX_QUEUE)
1744 		return -EINVAL;
1745 
1746 	dev->num_tc = num_tc;
1747 	return 0;
1748 }
1749 
1750 static inline
1751 int netdev_get_num_tc(struct net_device *dev)
1752 {
1753 	return dev->num_tc;
1754 }
1755 
1756 static inline
1757 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1758 					 unsigned int index)
1759 {
1760 	return &dev->_tx[index];
1761 }
1762 
1763 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1764 						    const struct sk_buff *skb)
1765 {
1766 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1767 }
1768 
1769 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1770 					    void (*f)(struct net_device *,
1771 						      struct netdev_queue *,
1772 						      void *),
1773 					    void *arg)
1774 {
1775 	unsigned int i;
1776 
1777 	for (i = 0; i < dev->num_tx_queues; i++)
1778 		f(dev, &dev->_tx[i], arg);
1779 }
1780 
1781 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1782 				    struct sk_buff *skb,
1783 				    void *accel_priv);
1784 
1785 /*
1786  * Net namespace inlines
1787  */
1788 static inline
1789 struct net *dev_net(const struct net_device *dev)
1790 {
1791 	return read_pnet(&dev->nd_net);
1792 }
1793 
1794 static inline
1795 void dev_net_set(struct net_device *dev, struct net *net)
1796 {
1797 #ifdef CONFIG_NET_NS
1798 	release_net(dev->nd_net);
1799 	dev->nd_net = hold_net(net);
1800 #endif
1801 }
1802 
1803 static inline bool netdev_uses_dsa(struct net_device *dev)
1804 {
1805 #if IS_ENABLED(CONFIG_NET_DSA)
1806 	if (dev->dsa_ptr != NULL)
1807 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1808 #endif
1809 	return false;
1810 }
1811 
1812 /**
1813  *	netdev_priv - access network device private data
1814  *	@dev: network device
1815  *
1816  * Get network device private data
1817  */
1818 static inline void *netdev_priv(const struct net_device *dev)
1819 {
1820 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1821 }
1822 
1823 /* Set the sysfs physical device reference for the network logical device
1824  * if set prior to registration will cause a symlink during initialization.
1825  */
1826 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1827 
1828 /* Set the sysfs device type for the network logical device to allow
1829  * fine-grained identification of different network device types. For
1830  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1831  */
1832 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1833 
1834 /* Default NAPI poll() weight
1835  * Device drivers are strongly advised to not use bigger value
1836  */
1837 #define NAPI_POLL_WEIGHT 64
1838 
1839 /**
1840  *	netif_napi_add - initialize a napi context
1841  *	@dev:  network device
1842  *	@napi: napi context
1843  *	@poll: polling function
1844  *	@weight: default weight
1845  *
1846  * netif_napi_add() must be used to initialize a napi context prior to calling
1847  * *any* of the other napi related functions.
1848  */
1849 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1850 		    int (*poll)(struct napi_struct *, int), int weight);
1851 
1852 /**
1853  *  netif_napi_del - remove a napi context
1854  *  @napi: napi context
1855  *
1856  *  netif_napi_del() removes a napi context from the network device napi list
1857  */
1858 void netif_napi_del(struct napi_struct *napi);
1859 
1860 struct napi_gro_cb {
1861 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1862 	void *frag0;
1863 
1864 	/* Length of frag0. */
1865 	unsigned int frag0_len;
1866 
1867 	/* This indicates where we are processing relative to skb->data. */
1868 	int data_offset;
1869 
1870 	/* This is non-zero if the packet cannot be merged with the new skb. */
1871 	u16	flush;
1872 
1873 	/* Save the IP ID here and check when we get to the transport layer */
1874 	u16	flush_id;
1875 
1876 	/* Number of segments aggregated. */
1877 	u16	count;
1878 
1879 	/* This is non-zero if the packet may be of the same flow. */
1880 	u8	same_flow;
1881 
1882 	/* Free the skb? */
1883 	u8	free;
1884 #define NAPI_GRO_FREE		  1
1885 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1886 
1887 	/* jiffies when first packet was created/queued */
1888 	unsigned long age;
1889 
1890 	/* Used in ipv6_gro_receive() and foo-over-udp */
1891 	u16	proto;
1892 
1893 	/* Used in udp_gro_receive */
1894 	u8	udp_mark:1;
1895 
1896 	/* GRO checksum is valid */
1897 	u8	csum_valid:1;
1898 
1899 	/* Number of checksums via CHECKSUM_UNNECESSARY */
1900 	u8	csum_cnt:3;
1901 
1902 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
1903 	u8	is_ipv6:1;
1904 
1905 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
1906 	__wsum	csum;
1907 
1908 	/* used in skb_gro_receive() slow path */
1909 	struct sk_buff *last;
1910 };
1911 
1912 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1913 
1914 struct packet_type {
1915 	__be16			type;	/* This is really htons(ether_type). */
1916 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1917 	int			(*func) (struct sk_buff *,
1918 					 struct net_device *,
1919 					 struct packet_type *,
1920 					 struct net_device *);
1921 	bool			(*id_match)(struct packet_type *ptype,
1922 					    struct sock *sk);
1923 	void			*af_packet_priv;
1924 	struct list_head	list;
1925 };
1926 
1927 struct offload_callbacks {
1928 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1929 						netdev_features_t features);
1930 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1931 					       struct sk_buff *skb);
1932 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
1933 };
1934 
1935 struct packet_offload {
1936 	__be16			 type;	/* This is really htons(ether_type). */
1937 	struct offload_callbacks callbacks;
1938 	struct list_head	 list;
1939 };
1940 
1941 struct udp_offload {
1942 	__be16			 port;
1943 	u8			 ipproto;
1944 	struct offload_callbacks callbacks;
1945 };
1946 
1947 /* often modified stats are per cpu, other are shared (netdev->stats) */
1948 struct pcpu_sw_netstats {
1949 	u64     rx_packets;
1950 	u64     rx_bytes;
1951 	u64     tx_packets;
1952 	u64     tx_bytes;
1953 	struct u64_stats_sync   syncp;
1954 };
1955 
1956 #define netdev_alloc_pcpu_stats(type)				\
1957 ({								\
1958 	typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
1959 	if (pcpu_stats)	{					\
1960 		int i;						\
1961 		for_each_possible_cpu(i) {			\
1962 			typeof(type) *stat;			\
1963 			stat = per_cpu_ptr(pcpu_stats, i);	\
1964 			u64_stats_init(&stat->syncp);		\
1965 		}						\
1966 	}							\
1967 	pcpu_stats;						\
1968 })
1969 
1970 #include <linux/notifier.h>
1971 
1972 /* netdevice notifier chain. Please remember to update the rtnetlink
1973  * notification exclusion list in rtnetlink_event() when adding new
1974  * types.
1975  */
1976 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
1977 #define NETDEV_DOWN	0x0002
1978 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
1979 				   detected a hardware crash and restarted
1980 				   - we can use this eg to kick tcp sessions
1981 				   once done */
1982 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
1983 #define NETDEV_REGISTER 0x0005
1984 #define NETDEV_UNREGISTER	0x0006
1985 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
1986 #define NETDEV_CHANGEADDR	0x0008
1987 #define NETDEV_GOING_DOWN	0x0009
1988 #define NETDEV_CHANGENAME	0x000A
1989 #define NETDEV_FEAT_CHANGE	0x000B
1990 #define NETDEV_BONDING_FAILOVER 0x000C
1991 #define NETDEV_PRE_UP		0x000D
1992 #define NETDEV_PRE_TYPE_CHANGE	0x000E
1993 #define NETDEV_POST_TYPE_CHANGE	0x000F
1994 #define NETDEV_POST_INIT	0x0010
1995 #define NETDEV_UNREGISTER_FINAL 0x0011
1996 #define NETDEV_RELEASE		0x0012
1997 #define NETDEV_NOTIFY_PEERS	0x0013
1998 #define NETDEV_JOIN		0x0014
1999 #define NETDEV_CHANGEUPPER	0x0015
2000 #define NETDEV_RESEND_IGMP	0x0016
2001 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2002 #define NETDEV_CHANGEINFODATA	0x0018
2003 
2004 int register_netdevice_notifier(struct notifier_block *nb);
2005 int unregister_netdevice_notifier(struct notifier_block *nb);
2006 
2007 struct netdev_notifier_info {
2008 	struct net_device *dev;
2009 };
2010 
2011 struct netdev_notifier_change_info {
2012 	struct netdev_notifier_info info; /* must be first */
2013 	unsigned int flags_changed;
2014 };
2015 
2016 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2017 					     struct net_device *dev)
2018 {
2019 	info->dev = dev;
2020 }
2021 
2022 static inline struct net_device *
2023 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2024 {
2025 	return info->dev;
2026 }
2027 
2028 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2029 
2030 
2031 extern rwlock_t				dev_base_lock;		/* Device list lock */
2032 
2033 #define for_each_netdev(net, d)		\
2034 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2035 #define for_each_netdev_reverse(net, d)	\
2036 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2037 #define for_each_netdev_rcu(net, d)		\
2038 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2039 #define for_each_netdev_safe(net, d, n)	\
2040 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2041 #define for_each_netdev_continue(net, d)		\
2042 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2043 #define for_each_netdev_continue_rcu(net, d)		\
2044 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2045 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2046 		for_each_netdev_rcu(&init_net, slave)	\
2047 			if (netdev_master_upper_dev_get_rcu(slave) == bond)
2048 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2049 
2050 static inline struct net_device *next_net_device(struct net_device *dev)
2051 {
2052 	struct list_head *lh;
2053 	struct net *net;
2054 
2055 	net = dev_net(dev);
2056 	lh = dev->dev_list.next;
2057 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2058 }
2059 
2060 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2061 {
2062 	struct list_head *lh;
2063 	struct net *net;
2064 
2065 	net = dev_net(dev);
2066 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2067 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2068 }
2069 
2070 static inline struct net_device *first_net_device(struct net *net)
2071 {
2072 	return list_empty(&net->dev_base_head) ? NULL :
2073 		net_device_entry(net->dev_base_head.next);
2074 }
2075 
2076 static inline struct net_device *first_net_device_rcu(struct net *net)
2077 {
2078 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2079 
2080 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2081 }
2082 
2083 int netdev_boot_setup_check(struct net_device *dev);
2084 unsigned long netdev_boot_base(const char *prefix, int unit);
2085 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2086 				       const char *hwaddr);
2087 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2088 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2089 void dev_add_pack(struct packet_type *pt);
2090 void dev_remove_pack(struct packet_type *pt);
2091 void __dev_remove_pack(struct packet_type *pt);
2092 void dev_add_offload(struct packet_offload *po);
2093 void dev_remove_offload(struct packet_offload *po);
2094 
2095 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2096 				      unsigned short mask);
2097 struct net_device *dev_get_by_name(struct net *net, const char *name);
2098 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2099 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2100 int dev_alloc_name(struct net_device *dev, const char *name);
2101 int dev_open(struct net_device *dev);
2102 int dev_close(struct net_device *dev);
2103 void dev_disable_lro(struct net_device *dev);
2104 int dev_loopback_xmit(struct sk_buff *newskb);
2105 int dev_queue_xmit(struct sk_buff *skb);
2106 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2107 int register_netdevice(struct net_device *dev);
2108 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2109 void unregister_netdevice_many(struct list_head *head);
2110 static inline void unregister_netdevice(struct net_device *dev)
2111 {
2112 	unregister_netdevice_queue(dev, NULL);
2113 }
2114 
2115 int netdev_refcnt_read(const struct net_device *dev);
2116 void free_netdev(struct net_device *dev);
2117 void netdev_freemem(struct net_device *dev);
2118 void synchronize_net(void);
2119 int init_dummy_netdev(struct net_device *dev);
2120 
2121 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2122 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2123 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2124 int netdev_get_name(struct net *net, char *name, int ifindex);
2125 int dev_restart(struct net_device *dev);
2126 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2127 
2128 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2129 {
2130 	return NAPI_GRO_CB(skb)->data_offset;
2131 }
2132 
2133 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2134 {
2135 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2136 }
2137 
2138 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2139 {
2140 	NAPI_GRO_CB(skb)->data_offset += len;
2141 }
2142 
2143 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2144 					unsigned int offset)
2145 {
2146 	return NAPI_GRO_CB(skb)->frag0 + offset;
2147 }
2148 
2149 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2150 {
2151 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2152 }
2153 
2154 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2155 					unsigned int offset)
2156 {
2157 	if (!pskb_may_pull(skb, hlen))
2158 		return NULL;
2159 
2160 	NAPI_GRO_CB(skb)->frag0 = NULL;
2161 	NAPI_GRO_CB(skb)->frag0_len = 0;
2162 	return skb->data + offset;
2163 }
2164 
2165 static inline void *skb_gro_network_header(struct sk_buff *skb)
2166 {
2167 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2168 	       skb_network_offset(skb);
2169 }
2170 
2171 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2172 					const void *start, unsigned int len)
2173 {
2174 	if (NAPI_GRO_CB(skb)->csum_valid)
2175 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2176 						  csum_partial(start, len, 0));
2177 }
2178 
2179 /* GRO checksum functions. These are logical equivalents of the normal
2180  * checksum functions (in skbuff.h) except that they operate on the GRO
2181  * offsets and fields in sk_buff.
2182  */
2183 
2184 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2185 
2186 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2187 						      bool zero_okay,
2188 						      __sum16 check)
2189 {
2190 	return (skb->ip_summed != CHECKSUM_PARTIAL &&
2191 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2192 		(!zero_okay || check));
2193 }
2194 
2195 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2196 							   __wsum psum)
2197 {
2198 	if (NAPI_GRO_CB(skb)->csum_valid &&
2199 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2200 		return 0;
2201 
2202 	NAPI_GRO_CB(skb)->csum = psum;
2203 
2204 	return __skb_gro_checksum_complete(skb);
2205 }
2206 
2207 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2208 {
2209 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2210 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2211 		NAPI_GRO_CB(skb)->csum_cnt--;
2212 	} else {
2213 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2214 		 * verified a new top level checksum or an encapsulated one
2215 		 * during GRO. This saves work if we fallback to normal path.
2216 		 */
2217 		__skb_incr_checksum_unnecessary(skb);
2218 	}
2219 }
2220 
2221 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2222 				    compute_pseudo)			\
2223 ({									\
2224 	__sum16 __ret = 0;						\
2225 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2226 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2227 				compute_pseudo(skb, proto));		\
2228 	if (__ret)							\
2229 		__skb_mark_checksum_bad(skb);				\
2230 	else								\
2231 		skb_gro_incr_csum_unnecessary(skb);			\
2232 	__ret;								\
2233 })
2234 
2235 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2236 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2237 
2238 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2239 					     compute_pseudo)		\
2240 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2241 
2242 #define skb_gro_checksum_simple_validate(skb)				\
2243 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2244 
2245 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2246 {
2247 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2248 		!NAPI_GRO_CB(skb)->csum_valid);
2249 }
2250 
2251 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2252 					      __sum16 check, __wsum pseudo)
2253 {
2254 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2255 	NAPI_GRO_CB(skb)->csum_valid = 1;
2256 }
2257 
2258 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2259 do {									\
2260 	if (__skb_gro_checksum_convert_check(skb))			\
2261 		__skb_gro_checksum_convert(skb, check,			\
2262 					   compute_pseudo(skb, proto));	\
2263 } while (0)
2264 
2265 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2266 				  unsigned short type,
2267 				  const void *daddr, const void *saddr,
2268 				  unsigned int len)
2269 {
2270 	if (!dev->header_ops || !dev->header_ops->create)
2271 		return 0;
2272 
2273 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2274 }
2275 
2276 static inline int dev_parse_header(const struct sk_buff *skb,
2277 				   unsigned char *haddr)
2278 {
2279 	const struct net_device *dev = skb->dev;
2280 
2281 	if (!dev->header_ops || !dev->header_ops->parse)
2282 		return 0;
2283 	return dev->header_ops->parse(skb, haddr);
2284 }
2285 
2286 static inline int dev_rebuild_header(struct sk_buff *skb)
2287 {
2288 	const struct net_device *dev = skb->dev;
2289 
2290 	if (!dev->header_ops || !dev->header_ops->rebuild)
2291 		return 0;
2292 	return dev->header_ops->rebuild(skb);
2293 }
2294 
2295 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2296 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2297 static inline int unregister_gifconf(unsigned int family)
2298 {
2299 	return register_gifconf(family, NULL);
2300 }
2301 
2302 #ifdef CONFIG_NET_FLOW_LIMIT
2303 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2304 struct sd_flow_limit {
2305 	u64			count;
2306 	unsigned int		num_buckets;
2307 	unsigned int		history_head;
2308 	u16			history[FLOW_LIMIT_HISTORY];
2309 	u8			buckets[];
2310 };
2311 
2312 extern int netdev_flow_limit_table_len;
2313 #endif /* CONFIG_NET_FLOW_LIMIT */
2314 
2315 /*
2316  * Incoming packets are placed on per-cpu queues
2317  */
2318 struct softnet_data {
2319 	struct Qdisc		*output_queue;
2320 	struct Qdisc		**output_queue_tailp;
2321 	struct list_head	poll_list;
2322 	struct sk_buff		*completion_queue;
2323 	struct sk_buff_head	process_queue;
2324 
2325 	/* stats */
2326 	unsigned int		processed;
2327 	unsigned int		time_squeeze;
2328 	unsigned int		cpu_collision;
2329 	unsigned int		received_rps;
2330 
2331 #ifdef CONFIG_RPS
2332 	struct softnet_data	*rps_ipi_list;
2333 
2334 	/* Elements below can be accessed between CPUs for RPS */
2335 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2336 	struct softnet_data	*rps_ipi_next;
2337 	unsigned int		cpu;
2338 	unsigned int		input_queue_head;
2339 	unsigned int		input_queue_tail;
2340 #endif
2341 	unsigned int		dropped;
2342 	struct sk_buff_head	input_pkt_queue;
2343 	struct napi_struct	backlog;
2344 
2345 #ifdef CONFIG_NET_FLOW_LIMIT
2346 	struct sd_flow_limit __rcu *flow_limit;
2347 #endif
2348 };
2349 
2350 static inline void input_queue_head_incr(struct softnet_data *sd)
2351 {
2352 #ifdef CONFIG_RPS
2353 	sd->input_queue_head++;
2354 #endif
2355 }
2356 
2357 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2358 					      unsigned int *qtail)
2359 {
2360 #ifdef CONFIG_RPS
2361 	*qtail = ++sd->input_queue_tail;
2362 #endif
2363 }
2364 
2365 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2366 
2367 void __netif_schedule(struct Qdisc *q);
2368 void netif_schedule_queue(struct netdev_queue *txq);
2369 
2370 static inline void netif_tx_schedule_all(struct net_device *dev)
2371 {
2372 	unsigned int i;
2373 
2374 	for (i = 0; i < dev->num_tx_queues; i++)
2375 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2376 }
2377 
2378 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2379 {
2380 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2381 }
2382 
2383 /**
2384  *	netif_start_queue - allow transmit
2385  *	@dev: network device
2386  *
2387  *	Allow upper layers to call the device hard_start_xmit routine.
2388  */
2389 static inline void netif_start_queue(struct net_device *dev)
2390 {
2391 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2392 }
2393 
2394 static inline void netif_tx_start_all_queues(struct net_device *dev)
2395 {
2396 	unsigned int i;
2397 
2398 	for (i = 0; i < dev->num_tx_queues; i++) {
2399 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2400 		netif_tx_start_queue(txq);
2401 	}
2402 }
2403 
2404 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2405 
2406 /**
2407  *	netif_wake_queue - restart transmit
2408  *	@dev: network device
2409  *
2410  *	Allow upper layers to call the device hard_start_xmit routine.
2411  *	Used for flow control when transmit resources are available.
2412  */
2413 static inline void netif_wake_queue(struct net_device *dev)
2414 {
2415 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2416 }
2417 
2418 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2419 {
2420 	unsigned int i;
2421 
2422 	for (i = 0; i < dev->num_tx_queues; i++) {
2423 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2424 		netif_tx_wake_queue(txq);
2425 	}
2426 }
2427 
2428 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2429 {
2430 	if (WARN_ON(!dev_queue)) {
2431 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2432 		return;
2433 	}
2434 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2435 }
2436 
2437 /**
2438  *	netif_stop_queue - stop transmitted packets
2439  *	@dev: network device
2440  *
2441  *	Stop upper layers calling the device hard_start_xmit routine.
2442  *	Used for flow control when transmit resources are unavailable.
2443  */
2444 static inline void netif_stop_queue(struct net_device *dev)
2445 {
2446 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2447 }
2448 
2449 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2450 {
2451 	unsigned int i;
2452 
2453 	for (i = 0; i < dev->num_tx_queues; i++) {
2454 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2455 		netif_tx_stop_queue(txq);
2456 	}
2457 }
2458 
2459 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2460 {
2461 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2462 }
2463 
2464 /**
2465  *	netif_queue_stopped - test if transmit queue is flowblocked
2466  *	@dev: network device
2467  *
2468  *	Test if transmit queue on device is currently unable to send.
2469  */
2470 static inline bool netif_queue_stopped(const struct net_device *dev)
2471 {
2472 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2473 }
2474 
2475 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2476 {
2477 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2478 }
2479 
2480 static inline bool
2481 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2482 {
2483 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2484 }
2485 
2486 static inline bool
2487 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2488 {
2489 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2490 }
2491 
2492 /**
2493  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2494  *	@dev_queue: pointer to transmit queue
2495  *
2496  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2497  * to give appropriate hint to the cpu.
2498  */
2499 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2500 {
2501 #ifdef CONFIG_BQL
2502 	prefetchw(&dev_queue->dql.num_queued);
2503 #endif
2504 }
2505 
2506 /**
2507  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2508  *	@dev_queue: pointer to transmit queue
2509  *
2510  * BQL enabled drivers might use this helper in their TX completion path,
2511  * to give appropriate hint to the cpu.
2512  */
2513 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2514 {
2515 #ifdef CONFIG_BQL
2516 	prefetchw(&dev_queue->dql.limit);
2517 #endif
2518 }
2519 
2520 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2521 					unsigned int bytes)
2522 {
2523 #ifdef CONFIG_BQL
2524 	dql_queued(&dev_queue->dql, bytes);
2525 
2526 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2527 		return;
2528 
2529 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2530 
2531 	/*
2532 	 * The XOFF flag must be set before checking the dql_avail below,
2533 	 * because in netdev_tx_completed_queue we update the dql_completed
2534 	 * before checking the XOFF flag.
2535 	 */
2536 	smp_mb();
2537 
2538 	/* check again in case another CPU has just made room avail */
2539 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2540 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2541 #endif
2542 }
2543 
2544 /**
2545  * 	netdev_sent_queue - report the number of bytes queued to hardware
2546  * 	@dev: network device
2547  * 	@bytes: number of bytes queued to the hardware device queue
2548  *
2549  * 	Report the number of bytes queued for sending/completion to the network
2550  * 	device hardware queue. @bytes should be a good approximation and should
2551  * 	exactly match netdev_completed_queue() @bytes
2552  */
2553 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2554 {
2555 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2556 }
2557 
2558 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2559 					     unsigned int pkts, unsigned int bytes)
2560 {
2561 #ifdef CONFIG_BQL
2562 	if (unlikely(!bytes))
2563 		return;
2564 
2565 	dql_completed(&dev_queue->dql, bytes);
2566 
2567 	/*
2568 	 * Without the memory barrier there is a small possiblity that
2569 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2570 	 * be stopped forever
2571 	 */
2572 	smp_mb();
2573 
2574 	if (dql_avail(&dev_queue->dql) < 0)
2575 		return;
2576 
2577 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2578 		netif_schedule_queue(dev_queue);
2579 #endif
2580 }
2581 
2582 /**
2583  * 	netdev_completed_queue - report bytes and packets completed by device
2584  * 	@dev: network device
2585  * 	@pkts: actual number of packets sent over the medium
2586  * 	@bytes: actual number of bytes sent over the medium
2587  *
2588  * 	Report the number of bytes and packets transmitted by the network device
2589  * 	hardware queue over the physical medium, @bytes must exactly match the
2590  * 	@bytes amount passed to netdev_sent_queue()
2591  */
2592 static inline void netdev_completed_queue(struct net_device *dev,
2593 					  unsigned int pkts, unsigned int bytes)
2594 {
2595 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2596 }
2597 
2598 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2599 {
2600 #ifdef CONFIG_BQL
2601 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2602 	dql_reset(&q->dql);
2603 #endif
2604 }
2605 
2606 /**
2607  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2608  * 	@dev_queue: network device
2609  *
2610  * 	Reset the bytes and packet count of a network device and clear the
2611  * 	software flow control OFF bit for this network device
2612  */
2613 static inline void netdev_reset_queue(struct net_device *dev_queue)
2614 {
2615 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2616 }
2617 
2618 /**
2619  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2620  * 	@dev: network device
2621  * 	@queue_index: given tx queue index
2622  *
2623  * 	Returns 0 if given tx queue index >= number of device tx queues,
2624  * 	otherwise returns the originally passed tx queue index.
2625  */
2626 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2627 {
2628 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2629 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2630 				     dev->name, queue_index,
2631 				     dev->real_num_tx_queues);
2632 		return 0;
2633 	}
2634 
2635 	return queue_index;
2636 }
2637 
2638 /**
2639  *	netif_running - test if up
2640  *	@dev: network device
2641  *
2642  *	Test if the device has been brought up.
2643  */
2644 static inline bool netif_running(const struct net_device *dev)
2645 {
2646 	return test_bit(__LINK_STATE_START, &dev->state);
2647 }
2648 
2649 /*
2650  * Routines to manage the subqueues on a device.  We only need start
2651  * stop, and a check if it's stopped.  All other device management is
2652  * done at the overall netdevice level.
2653  * Also test the device if we're multiqueue.
2654  */
2655 
2656 /**
2657  *	netif_start_subqueue - allow sending packets on subqueue
2658  *	@dev: network device
2659  *	@queue_index: sub queue index
2660  *
2661  * Start individual transmit queue of a device with multiple transmit queues.
2662  */
2663 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2664 {
2665 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2666 
2667 	netif_tx_start_queue(txq);
2668 }
2669 
2670 /**
2671  *	netif_stop_subqueue - stop sending packets on subqueue
2672  *	@dev: network device
2673  *	@queue_index: sub queue index
2674  *
2675  * Stop individual transmit queue of a device with multiple transmit queues.
2676  */
2677 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2678 {
2679 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2680 	netif_tx_stop_queue(txq);
2681 }
2682 
2683 /**
2684  *	netif_subqueue_stopped - test status of subqueue
2685  *	@dev: network device
2686  *	@queue_index: sub queue index
2687  *
2688  * Check individual transmit queue of a device with multiple transmit queues.
2689  */
2690 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2691 					    u16 queue_index)
2692 {
2693 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2694 
2695 	return netif_tx_queue_stopped(txq);
2696 }
2697 
2698 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2699 					  struct sk_buff *skb)
2700 {
2701 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2702 }
2703 
2704 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2705 
2706 #ifdef CONFIG_XPS
2707 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2708 			u16 index);
2709 #else
2710 static inline int netif_set_xps_queue(struct net_device *dev,
2711 				      const struct cpumask *mask,
2712 				      u16 index)
2713 {
2714 	return 0;
2715 }
2716 #endif
2717 
2718 /*
2719  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2720  * as a distribution range limit for the returned value.
2721  */
2722 static inline u16 skb_tx_hash(const struct net_device *dev,
2723 			      struct sk_buff *skb)
2724 {
2725 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2726 }
2727 
2728 /**
2729  *	netif_is_multiqueue - test if device has multiple transmit queues
2730  *	@dev: network device
2731  *
2732  * Check if device has multiple transmit queues
2733  */
2734 static inline bool netif_is_multiqueue(const struct net_device *dev)
2735 {
2736 	return dev->num_tx_queues > 1;
2737 }
2738 
2739 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2740 
2741 #ifdef CONFIG_SYSFS
2742 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2743 #else
2744 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2745 						unsigned int rxq)
2746 {
2747 	return 0;
2748 }
2749 #endif
2750 
2751 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2752 					     const struct net_device *from_dev)
2753 {
2754 	int err;
2755 
2756 	err = netif_set_real_num_tx_queues(to_dev,
2757 					   from_dev->real_num_tx_queues);
2758 	if (err)
2759 		return err;
2760 #ifdef CONFIG_SYSFS
2761 	return netif_set_real_num_rx_queues(to_dev,
2762 					    from_dev->real_num_rx_queues);
2763 #else
2764 	return 0;
2765 #endif
2766 }
2767 
2768 #ifdef CONFIG_SYSFS
2769 static inline unsigned int get_netdev_rx_queue_index(
2770 		struct netdev_rx_queue *queue)
2771 {
2772 	struct net_device *dev = queue->dev;
2773 	int index = queue - dev->_rx;
2774 
2775 	BUG_ON(index >= dev->num_rx_queues);
2776 	return index;
2777 }
2778 #endif
2779 
2780 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2781 int netif_get_num_default_rss_queues(void);
2782 
2783 enum skb_free_reason {
2784 	SKB_REASON_CONSUMED,
2785 	SKB_REASON_DROPPED,
2786 };
2787 
2788 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2789 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2790 
2791 /*
2792  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2793  * interrupt context or with hardware interrupts being disabled.
2794  * (in_irq() || irqs_disabled())
2795  *
2796  * We provide four helpers that can be used in following contexts :
2797  *
2798  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2799  *  replacing kfree_skb(skb)
2800  *
2801  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2802  *  Typically used in place of consume_skb(skb) in TX completion path
2803  *
2804  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2805  *  replacing kfree_skb(skb)
2806  *
2807  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2808  *  and consumed a packet. Used in place of consume_skb(skb)
2809  */
2810 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2811 {
2812 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2813 }
2814 
2815 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2816 {
2817 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2818 }
2819 
2820 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2821 {
2822 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2823 }
2824 
2825 static inline void dev_consume_skb_any(struct sk_buff *skb)
2826 {
2827 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2828 }
2829 
2830 int netif_rx(struct sk_buff *skb);
2831 int netif_rx_ni(struct sk_buff *skb);
2832 int netif_receive_skb(struct sk_buff *skb);
2833 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2834 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2835 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2836 gro_result_t napi_gro_frags(struct napi_struct *napi);
2837 struct packet_offload *gro_find_receive_by_type(__be16 type);
2838 struct packet_offload *gro_find_complete_by_type(__be16 type);
2839 
2840 static inline void napi_free_frags(struct napi_struct *napi)
2841 {
2842 	kfree_skb(napi->skb);
2843 	napi->skb = NULL;
2844 }
2845 
2846 int netdev_rx_handler_register(struct net_device *dev,
2847 			       rx_handler_func_t *rx_handler,
2848 			       void *rx_handler_data);
2849 void netdev_rx_handler_unregister(struct net_device *dev);
2850 
2851 bool dev_valid_name(const char *name);
2852 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2853 int dev_ethtool(struct net *net, struct ifreq *);
2854 unsigned int dev_get_flags(const struct net_device *);
2855 int __dev_change_flags(struct net_device *, unsigned int flags);
2856 int dev_change_flags(struct net_device *, unsigned int);
2857 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2858 			unsigned int gchanges);
2859 int dev_change_name(struct net_device *, const char *);
2860 int dev_set_alias(struct net_device *, const char *, size_t);
2861 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2862 int dev_set_mtu(struct net_device *, int);
2863 void dev_set_group(struct net_device *, int);
2864 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2865 int dev_change_carrier(struct net_device *, bool new_carrier);
2866 int dev_get_phys_port_id(struct net_device *dev,
2867 			 struct netdev_phys_port_id *ppid);
2868 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2869 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2870 				    struct netdev_queue *txq, int *ret);
2871 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2872 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2873 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2874 
2875 extern int		netdev_budget;
2876 
2877 /* Called by rtnetlink.c:rtnl_unlock() */
2878 void netdev_run_todo(void);
2879 
2880 /**
2881  *	dev_put - release reference to device
2882  *	@dev: network device
2883  *
2884  * Release reference to device to allow it to be freed.
2885  */
2886 static inline void dev_put(struct net_device *dev)
2887 {
2888 	this_cpu_dec(*dev->pcpu_refcnt);
2889 }
2890 
2891 /**
2892  *	dev_hold - get reference to device
2893  *	@dev: network device
2894  *
2895  * Hold reference to device to keep it from being freed.
2896  */
2897 static inline void dev_hold(struct net_device *dev)
2898 {
2899 	this_cpu_inc(*dev->pcpu_refcnt);
2900 }
2901 
2902 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2903  * and _off may be called from IRQ context, but it is caller
2904  * who is responsible for serialization of these calls.
2905  *
2906  * The name carrier is inappropriate, these functions should really be
2907  * called netif_lowerlayer_*() because they represent the state of any
2908  * kind of lower layer not just hardware media.
2909  */
2910 
2911 void linkwatch_init_dev(struct net_device *dev);
2912 void linkwatch_fire_event(struct net_device *dev);
2913 void linkwatch_forget_dev(struct net_device *dev);
2914 
2915 /**
2916  *	netif_carrier_ok - test if carrier present
2917  *	@dev: network device
2918  *
2919  * Check if carrier is present on device
2920  */
2921 static inline bool netif_carrier_ok(const struct net_device *dev)
2922 {
2923 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2924 }
2925 
2926 unsigned long dev_trans_start(struct net_device *dev);
2927 
2928 void __netdev_watchdog_up(struct net_device *dev);
2929 
2930 void netif_carrier_on(struct net_device *dev);
2931 
2932 void netif_carrier_off(struct net_device *dev);
2933 
2934 /**
2935  *	netif_dormant_on - mark device as dormant.
2936  *	@dev: network device
2937  *
2938  * Mark device as dormant (as per RFC2863).
2939  *
2940  * The dormant state indicates that the relevant interface is not
2941  * actually in a condition to pass packets (i.e., it is not 'up') but is
2942  * in a "pending" state, waiting for some external event.  For "on-
2943  * demand" interfaces, this new state identifies the situation where the
2944  * interface is waiting for events to place it in the up state.
2945  *
2946  */
2947 static inline void netif_dormant_on(struct net_device *dev)
2948 {
2949 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2950 		linkwatch_fire_event(dev);
2951 }
2952 
2953 /**
2954  *	netif_dormant_off - set device as not dormant.
2955  *	@dev: network device
2956  *
2957  * Device is not in dormant state.
2958  */
2959 static inline void netif_dormant_off(struct net_device *dev)
2960 {
2961 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2962 		linkwatch_fire_event(dev);
2963 }
2964 
2965 /**
2966  *	netif_dormant - test if carrier present
2967  *	@dev: network device
2968  *
2969  * Check if carrier is present on device
2970  */
2971 static inline bool netif_dormant(const struct net_device *dev)
2972 {
2973 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2974 }
2975 
2976 
2977 /**
2978  *	netif_oper_up - test if device is operational
2979  *	@dev: network device
2980  *
2981  * Check if carrier is operational
2982  */
2983 static inline bool netif_oper_up(const struct net_device *dev)
2984 {
2985 	return (dev->operstate == IF_OPER_UP ||
2986 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2987 }
2988 
2989 /**
2990  *	netif_device_present - is device available or removed
2991  *	@dev: network device
2992  *
2993  * Check if device has not been removed from system.
2994  */
2995 static inline bool netif_device_present(struct net_device *dev)
2996 {
2997 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
2998 }
2999 
3000 void netif_device_detach(struct net_device *dev);
3001 
3002 void netif_device_attach(struct net_device *dev);
3003 
3004 /*
3005  * Network interface message level settings
3006  */
3007 
3008 enum {
3009 	NETIF_MSG_DRV		= 0x0001,
3010 	NETIF_MSG_PROBE		= 0x0002,
3011 	NETIF_MSG_LINK		= 0x0004,
3012 	NETIF_MSG_TIMER		= 0x0008,
3013 	NETIF_MSG_IFDOWN	= 0x0010,
3014 	NETIF_MSG_IFUP		= 0x0020,
3015 	NETIF_MSG_RX_ERR	= 0x0040,
3016 	NETIF_MSG_TX_ERR	= 0x0080,
3017 	NETIF_MSG_TX_QUEUED	= 0x0100,
3018 	NETIF_MSG_INTR		= 0x0200,
3019 	NETIF_MSG_TX_DONE	= 0x0400,
3020 	NETIF_MSG_RX_STATUS	= 0x0800,
3021 	NETIF_MSG_PKTDATA	= 0x1000,
3022 	NETIF_MSG_HW		= 0x2000,
3023 	NETIF_MSG_WOL		= 0x4000,
3024 };
3025 
3026 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3027 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3028 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3029 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3030 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3031 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3032 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3033 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3034 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3035 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3036 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3037 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3038 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3039 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3040 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3041 
3042 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3043 {
3044 	/* use default */
3045 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3046 		return default_msg_enable_bits;
3047 	if (debug_value == 0)	/* no output */
3048 		return 0;
3049 	/* set low N bits */
3050 	return (1 << debug_value) - 1;
3051 }
3052 
3053 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3054 {
3055 	spin_lock(&txq->_xmit_lock);
3056 	txq->xmit_lock_owner = cpu;
3057 }
3058 
3059 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3060 {
3061 	spin_lock_bh(&txq->_xmit_lock);
3062 	txq->xmit_lock_owner = smp_processor_id();
3063 }
3064 
3065 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3066 {
3067 	bool ok = spin_trylock(&txq->_xmit_lock);
3068 	if (likely(ok))
3069 		txq->xmit_lock_owner = smp_processor_id();
3070 	return ok;
3071 }
3072 
3073 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3074 {
3075 	txq->xmit_lock_owner = -1;
3076 	spin_unlock(&txq->_xmit_lock);
3077 }
3078 
3079 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3080 {
3081 	txq->xmit_lock_owner = -1;
3082 	spin_unlock_bh(&txq->_xmit_lock);
3083 }
3084 
3085 static inline void txq_trans_update(struct netdev_queue *txq)
3086 {
3087 	if (txq->xmit_lock_owner != -1)
3088 		txq->trans_start = jiffies;
3089 }
3090 
3091 /**
3092  *	netif_tx_lock - grab network device transmit lock
3093  *	@dev: network device
3094  *
3095  * Get network device transmit lock
3096  */
3097 static inline void netif_tx_lock(struct net_device *dev)
3098 {
3099 	unsigned int i;
3100 	int cpu;
3101 
3102 	spin_lock(&dev->tx_global_lock);
3103 	cpu = smp_processor_id();
3104 	for (i = 0; i < dev->num_tx_queues; i++) {
3105 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3106 
3107 		/* We are the only thread of execution doing a
3108 		 * freeze, but we have to grab the _xmit_lock in
3109 		 * order to synchronize with threads which are in
3110 		 * the ->hard_start_xmit() handler and already
3111 		 * checked the frozen bit.
3112 		 */
3113 		__netif_tx_lock(txq, cpu);
3114 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3115 		__netif_tx_unlock(txq);
3116 	}
3117 }
3118 
3119 static inline void netif_tx_lock_bh(struct net_device *dev)
3120 {
3121 	local_bh_disable();
3122 	netif_tx_lock(dev);
3123 }
3124 
3125 static inline void netif_tx_unlock(struct net_device *dev)
3126 {
3127 	unsigned int i;
3128 
3129 	for (i = 0; i < dev->num_tx_queues; i++) {
3130 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3131 
3132 		/* No need to grab the _xmit_lock here.  If the
3133 		 * queue is not stopped for another reason, we
3134 		 * force a schedule.
3135 		 */
3136 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3137 		netif_schedule_queue(txq);
3138 	}
3139 	spin_unlock(&dev->tx_global_lock);
3140 }
3141 
3142 static inline void netif_tx_unlock_bh(struct net_device *dev)
3143 {
3144 	netif_tx_unlock(dev);
3145 	local_bh_enable();
3146 }
3147 
3148 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3149 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3150 		__netif_tx_lock(txq, cpu);		\
3151 	}						\
3152 }
3153 
3154 #define HARD_TX_TRYLOCK(dev, txq)			\
3155 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3156 		__netif_tx_trylock(txq) :		\
3157 		true )
3158 
3159 #define HARD_TX_UNLOCK(dev, txq) {			\
3160 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3161 		__netif_tx_unlock(txq);			\
3162 	}						\
3163 }
3164 
3165 static inline void netif_tx_disable(struct net_device *dev)
3166 {
3167 	unsigned int i;
3168 	int cpu;
3169 
3170 	local_bh_disable();
3171 	cpu = smp_processor_id();
3172 	for (i = 0; i < dev->num_tx_queues; i++) {
3173 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3174 
3175 		__netif_tx_lock(txq, cpu);
3176 		netif_tx_stop_queue(txq);
3177 		__netif_tx_unlock(txq);
3178 	}
3179 	local_bh_enable();
3180 }
3181 
3182 static inline void netif_addr_lock(struct net_device *dev)
3183 {
3184 	spin_lock(&dev->addr_list_lock);
3185 }
3186 
3187 static inline void netif_addr_lock_nested(struct net_device *dev)
3188 {
3189 	int subclass = SINGLE_DEPTH_NESTING;
3190 
3191 	if (dev->netdev_ops->ndo_get_lock_subclass)
3192 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3193 
3194 	spin_lock_nested(&dev->addr_list_lock, subclass);
3195 }
3196 
3197 static inline void netif_addr_lock_bh(struct net_device *dev)
3198 {
3199 	spin_lock_bh(&dev->addr_list_lock);
3200 }
3201 
3202 static inline void netif_addr_unlock(struct net_device *dev)
3203 {
3204 	spin_unlock(&dev->addr_list_lock);
3205 }
3206 
3207 static inline void netif_addr_unlock_bh(struct net_device *dev)
3208 {
3209 	spin_unlock_bh(&dev->addr_list_lock);
3210 }
3211 
3212 /*
3213  * dev_addrs walker. Should be used only for read access. Call with
3214  * rcu_read_lock held.
3215  */
3216 #define for_each_dev_addr(dev, ha) \
3217 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3218 
3219 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3220 
3221 void ether_setup(struct net_device *dev);
3222 
3223 /* Support for loadable net-drivers */
3224 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3225 				    unsigned char name_assign_type,
3226 				    void (*setup)(struct net_device *),
3227 				    unsigned int txqs, unsigned int rxqs);
3228 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3229 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3230 
3231 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3232 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3233 			 count)
3234 
3235 int register_netdev(struct net_device *dev);
3236 void unregister_netdev(struct net_device *dev);
3237 
3238 /* General hardware address lists handling functions */
3239 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3240 		   struct netdev_hw_addr_list *from_list, int addr_len);
3241 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3242 		      struct netdev_hw_addr_list *from_list, int addr_len);
3243 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3244 		       struct net_device *dev,
3245 		       int (*sync)(struct net_device *, const unsigned char *),
3246 		       int (*unsync)(struct net_device *,
3247 				     const unsigned char *));
3248 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3249 			  struct net_device *dev,
3250 			  int (*unsync)(struct net_device *,
3251 					const unsigned char *));
3252 void __hw_addr_init(struct netdev_hw_addr_list *list);
3253 
3254 /* Functions used for device addresses handling */
3255 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3256 		 unsigned char addr_type);
3257 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3258 		 unsigned char addr_type);
3259 void dev_addr_flush(struct net_device *dev);
3260 int dev_addr_init(struct net_device *dev);
3261 
3262 /* Functions used for unicast addresses handling */
3263 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3264 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3265 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3266 int dev_uc_sync(struct net_device *to, struct net_device *from);
3267 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3268 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3269 void dev_uc_flush(struct net_device *dev);
3270 void dev_uc_init(struct net_device *dev);
3271 
3272 /**
3273  *  __dev_uc_sync - Synchonize device's unicast list
3274  *  @dev:  device to sync
3275  *  @sync: function to call if address should be added
3276  *  @unsync: function to call if address should be removed
3277  *
3278  *  Add newly added addresses to the interface, and release
3279  *  addresses that have been deleted.
3280  **/
3281 static inline int __dev_uc_sync(struct net_device *dev,
3282 				int (*sync)(struct net_device *,
3283 					    const unsigned char *),
3284 				int (*unsync)(struct net_device *,
3285 					      const unsigned char *))
3286 {
3287 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3288 }
3289 
3290 /**
3291  *  __dev_uc_unsync - Remove synchronized addresses from device
3292  *  @dev:  device to sync
3293  *  @unsync: function to call if address should be removed
3294  *
3295  *  Remove all addresses that were added to the device by dev_uc_sync().
3296  **/
3297 static inline void __dev_uc_unsync(struct net_device *dev,
3298 				   int (*unsync)(struct net_device *,
3299 						 const unsigned char *))
3300 {
3301 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3302 }
3303 
3304 /* Functions used for multicast addresses handling */
3305 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3306 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3307 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3308 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3309 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3310 int dev_mc_sync(struct net_device *to, struct net_device *from);
3311 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3312 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3313 void dev_mc_flush(struct net_device *dev);
3314 void dev_mc_init(struct net_device *dev);
3315 
3316 /**
3317  *  __dev_mc_sync - Synchonize device's multicast list
3318  *  @dev:  device to sync
3319  *  @sync: function to call if address should be added
3320  *  @unsync: function to call if address should be removed
3321  *
3322  *  Add newly added addresses to the interface, and release
3323  *  addresses that have been deleted.
3324  **/
3325 static inline int __dev_mc_sync(struct net_device *dev,
3326 				int (*sync)(struct net_device *,
3327 					    const unsigned char *),
3328 				int (*unsync)(struct net_device *,
3329 					      const unsigned char *))
3330 {
3331 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3332 }
3333 
3334 /**
3335  *  __dev_mc_unsync - Remove synchronized addresses from device
3336  *  @dev:  device to sync
3337  *  @unsync: function to call if address should be removed
3338  *
3339  *  Remove all addresses that were added to the device by dev_mc_sync().
3340  **/
3341 static inline void __dev_mc_unsync(struct net_device *dev,
3342 				   int (*unsync)(struct net_device *,
3343 						 const unsigned char *))
3344 {
3345 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3346 }
3347 
3348 /* Functions used for secondary unicast and multicast support */
3349 void dev_set_rx_mode(struct net_device *dev);
3350 void __dev_set_rx_mode(struct net_device *dev);
3351 int dev_set_promiscuity(struct net_device *dev, int inc);
3352 int dev_set_allmulti(struct net_device *dev, int inc);
3353 void netdev_state_change(struct net_device *dev);
3354 void netdev_notify_peers(struct net_device *dev);
3355 void netdev_features_change(struct net_device *dev);
3356 /* Load a device via the kmod */
3357 void dev_load(struct net *net, const char *name);
3358 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3359 					struct rtnl_link_stats64 *storage);
3360 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3361 			     const struct net_device_stats *netdev_stats);
3362 
3363 extern int		netdev_max_backlog;
3364 extern int		netdev_tstamp_prequeue;
3365 extern int		weight_p;
3366 extern int		bpf_jit_enable;
3367 
3368 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3369 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3370 						     struct list_head **iter);
3371 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3372 						     struct list_head **iter);
3373 
3374 /* iterate through upper list, must be called under RCU read lock */
3375 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3376 	for (iter = &(dev)->adj_list.upper, \
3377 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3378 	     updev; \
3379 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3380 
3381 /* iterate through upper list, must be called under RCU read lock */
3382 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3383 	for (iter = &(dev)->all_adj_list.upper, \
3384 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3385 	     updev; \
3386 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3387 
3388 void *netdev_lower_get_next_private(struct net_device *dev,
3389 				    struct list_head **iter);
3390 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3391 					struct list_head **iter);
3392 
3393 #define netdev_for_each_lower_private(dev, priv, iter) \
3394 	for (iter = (dev)->adj_list.lower.next, \
3395 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3396 	     priv; \
3397 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3398 
3399 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3400 	for (iter = &(dev)->adj_list.lower, \
3401 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3402 	     priv; \
3403 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3404 
3405 void *netdev_lower_get_next(struct net_device *dev,
3406 				struct list_head **iter);
3407 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3408 	for (iter = &(dev)->adj_list.lower, \
3409 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3410 	     ldev; \
3411 	     ldev = netdev_lower_get_next(dev, &(iter)))
3412 
3413 void *netdev_adjacent_get_private(struct list_head *adj_list);
3414 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3415 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3416 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3417 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3418 int netdev_master_upper_dev_link(struct net_device *dev,
3419 				 struct net_device *upper_dev);
3420 int netdev_master_upper_dev_link_private(struct net_device *dev,
3421 					 struct net_device *upper_dev,
3422 					 void *private);
3423 void netdev_upper_dev_unlink(struct net_device *dev,
3424 			     struct net_device *upper_dev);
3425 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3426 void *netdev_lower_dev_get_private(struct net_device *dev,
3427 				   struct net_device *lower_dev);
3428 int dev_get_nest_level(struct net_device *dev,
3429 		       bool (*type_check)(struct net_device *dev));
3430 int skb_checksum_help(struct sk_buff *skb);
3431 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3432 				  netdev_features_t features, bool tx_path);
3433 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3434 				    netdev_features_t features);
3435 
3436 static inline
3437 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3438 {
3439 	return __skb_gso_segment(skb, features, true);
3440 }
3441 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3442 
3443 static inline bool can_checksum_protocol(netdev_features_t features,
3444 					 __be16 protocol)
3445 {
3446 	return ((features & NETIF_F_GEN_CSUM) ||
3447 		((features & NETIF_F_V4_CSUM) &&
3448 		 protocol == htons(ETH_P_IP)) ||
3449 		((features & NETIF_F_V6_CSUM) &&
3450 		 protocol == htons(ETH_P_IPV6)) ||
3451 		((features & NETIF_F_FCOE_CRC) &&
3452 		 protocol == htons(ETH_P_FCOE)));
3453 }
3454 
3455 #ifdef CONFIG_BUG
3456 void netdev_rx_csum_fault(struct net_device *dev);
3457 #else
3458 static inline void netdev_rx_csum_fault(struct net_device *dev)
3459 {
3460 }
3461 #endif
3462 /* rx skb timestamps */
3463 void net_enable_timestamp(void);
3464 void net_disable_timestamp(void);
3465 
3466 #ifdef CONFIG_PROC_FS
3467 int __init dev_proc_init(void);
3468 #else
3469 #define dev_proc_init() 0
3470 #endif
3471 
3472 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3473 					      struct sk_buff *skb, struct net_device *dev,
3474 					      bool more)
3475 {
3476 	skb->xmit_more = more ? 1 : 0;
3477 	return ops->ndo_start_xmit(skb, dev);
3478 }
3479 
3480 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3481 					    struct netdev_queue *txq, bool more)
3482 {
3483 	const struct net_device_ops *ops = dev->netdev_ops;
3484 	int rc;
3485 
3486 	rc = __netdev_start_xmit(ops, skb, dev, more);
3487 	if (rc == NETDEV_TX_OK)
3488 		txq_trans_update(txq);
3489 
3490 	return rc;
3491 }
3492 
3493 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3494 				const void *ns);
3495 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3496 				 const void *ns);
3497 
3498 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3499 {
3500 	return netdev_class_create_file_ns(class_attr, NULL);
3501 }
3502 
3503 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3504 {
3505 	netdev_class_remove_file_ns(class_attr, NULL);
3506 }
3507 
3508 extern struct kobj_ns_type_operations net_ns_type_operations;
3509 
3510 const char *netdev_drivername(const struct net_device *dev);
3511 
3512 void linkwatch_run_queue(void);
3513 
3514 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3515 							  netdev_features_t f2)
3516 {
3517 	if (f1 & NETIF_F_GEN_CSUM)
3518 		f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3519 	if (f2 & NETIF_F_GEN_CSUM)
3520 		f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3521 	f1 &= f2;
3522 	if (f1 & NETIF_F_GEN_CSUM)
3523 		f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3524 
3525 	return f1;
3526 }
3527 
3528 static inline netdev_features_t netdev_get_wanted_features(
3529 	struct net_device *dev)
3530 {
3531 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3532 }
3533 netdev_features_t netdev_increment_features(netdev_features_t all,
3534 	netdev_features_t one, netdev_features_t mask);
3535 
3536 /* Allow TSO being used on stacked device :
3537  * Performing the GSO segmentation before last device
3538  * is a performance improvement.
3539  */
3540 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3541 							netdev_features_t mask)
3542 {
3543 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3544 }
3545 
3546 int __netdev_update_features(struct net_device *dev);
3547 void netdev_update_features(struct net_device *dev);
3548 void netdev_change_features(struct net_device *dev);
3549 
3550 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3551 					struct net_device *dev);
3552 
3553 netdev_features_t netif_skb_features(struct sk_buff *skb);
3554 
3555 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3556 {
3557 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3558 
3559 	/* check flags correspondence */
3560 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3561 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3562 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3563 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3564 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3565 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3566 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3567 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3568 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3569 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3570 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3571 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3572 	BUILD_BUG_ON(SKB_GSO_MPLS    != (NETIF_F_GSO_MPLS >> NETIF_F_GSO_SHIFT));
3573 
3574 	return (features & feature) == feature;
3575 }
3576 
3577 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3578 {
3579 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3580 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3581 }
3582 
3583 static inline bool netif_needs_gso(struct net_device *dev, struct sk_buff *skb,
3584 				   netdev_features_t features)
3585 {
3586 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3587 		(dev->netdev_ops->ndo_gso_check &&
3588 		 !dev->netdev_ops->ndo_gso_check(skb, dev)) ||
3589 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3590 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3591 }
3592 
3593 static inline void netif_set_gso_max_size(struct net_device *dev,
3594 					  unsigned int size)
3595 {
3596 	dev->gso_max_size = size;
3597 }
3598 
3599 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3600 					int pulled_hlen, u16 mac_offset,
3601 					int mac_len)
3602 {
3603 	skb->protocol = protocol;
3604 	skb->encapsulation = 1;
3605 	skb_push(skb, pulled_hlen);
3606 	skb_reset_transport_header(skb);
3607 	skb->mac_header = mac_offset;
3608 	skb->network_header = skb->mac_header + mac_len;
3609 	skb->mac_len = mac_len;
3610 }
3611 
3612 static inline bool netif_is_macvlan(struct net_device *dev)
3613 {
3614 	return dev->priv_flags & IFF_MACVLAN;
3615 }
3616 
3617 static inline bool netif_is_bond_master(struct net_device *dev)
3618 {
3619 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3620 }
3621 
3622 static inline bool netif_is_bond_slave(struct net_device *dev)
3623 {
3624 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3625 }
3626 
3627 static inline bool netif_supports_nofcs(struct net_device *dev)
3628 {
3629 	return dev->priv_flags & IFF_SUPP_NOFCS;
3630 }
3631 
3632 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3633 static inline void netif_keep_dst(struct net_device *dev)
3634 {
3635 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3636 }
3637 
3638 extern struct pernet_operations __net_initdata loopback_net_ops;
3639 
3640 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3641 
3642 /* netdev_printk helpers, similar to dev_printk */
3643 
3644 static inline const char *netdev_name(const struct net_device *dev)
3645 {
3646 	if (!dev->name[0] || strchr(dev->name, '%'))
3647 		return "(unnamed net_device)";
3648 	return dev->name;
3649 }
3650 
3651 static inline const char *netdev_reg_state(const struct net_device *dev)
3652 {
3653 	switch (dev->reg_state) {
3654 	case NETREG_UNINITIALIZED: return " (uninitialized)";
3655 	case NETREG_REGISTERED: return "";
3656 	case NETREG_UNREGISTERING: return " (unregistering)";
3657 	case NETREG_UNREGISTERED: return " (unregistered)";
3658 	case NETREG_RELEASED: return " (released)";
3659 	case NETREG_DUMMY: return " (dummy)";
3660 	}
3661 
3662 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3663 	return " (unknown)";
3664 }
3665 
3666 __printf(3, 4)
3667 void netdev_printk(const char *level, const struct net_device *dev,
3668 		   const char *format, ...);
3669 __printf(2, 3)
3670 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3671 __printf(2, 3)
3672 void netdev_alert(const struct net_device *dev, const char *format, ...);
3673 __printf(2, 3)
3674 void netdev_crit(const struct net_device *dev, const char *format, ...);
3675 __printf(2, 3)
3676 void netdev_err(const struct net_device *dev, const char *format, ...);
3677 __printf(2, 3)
3678 void netdev_warn(const struct net_device *dev, const char *format, ...);
3679 __printf(2, 3)
3680 void netdev_notice(const struct net_device *dev, const char *format, ...);
3681 __printf(2, 3)
3682 void netdev_info(const struct net_device *dev, const char *format, ...);
3683 
3684 #define MODULE_ALIAS_NETDEV(device) \
3685 	MODULE_ALIAS("netdev-" device)
3686 
3687 #if defined(CONFIG_DYNAMIC_DEBUG)
3688 #define netdev_dbg(__dev, format, args...)			\
3689 do {								\
3690 	dynamic_netdev_dbg(__dev, format, ##args);		\
3691 } while (0)
3692 #elif defined(DEBUG)
3693 #define netdev_dbg(__dev, format, args...)			\
3694 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3695 #else
3696 #define netdev_dbg(__dev, format, args...)			\
3697 ({								\
3698 	if (0)							\
3699 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3700 })
3701 #endif
3702 
3703 #if defined(VERBOSE_DEBUG)
3704 #define netdev_vdbg	netdev_dbg
3705 #else
3706 
3707 #define netdev_vdbg(dev, format, args...)			\
3708 ({								\
3709 	if (0)							\
3710 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3711 	0;							\
3712 })
3713 #endif
3714 
3715 /*
3716  * netdev_WARN() acts like dev_printk(), but with the key difference
3717  * of using a WARN/WARN_ON to get the message out, including the
3718  * file/line information and a backtrace.
3719  */
3720 #define netdev_WARN(dev, format, args...)			\
3721 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
3722 	     netdev_reg_state(dev), ##args)
3723 
3724 /* netif printk helpers, similar to netdev_printk */
3725 
3726 #define netif_printk(priv, type, level, dev, fmt, args...)	\
3727 do {					  			\
3728 	if (netif_msg_##type(priv))				\
3729 		netdev_printk(level, (dev), fmt, ##args);	\
3730 } while (0)
3731 
3732 #define netif_level(level, priv, type, dev, fmt, args...)	\
3733 do {								\
3734 	if (netif_msg_##type(priv))				\
3735 		netdev_##level(dev, fmt, ##args);		\
3736 } while (0)
3737 
3738 #define netif_emerg(priv, type, dev, fmt, args...)		\
3739 	netif_level(emerg, priv, type, dev, fmt, ##args)
3740 #define netif_alert(priv, type, dev, fmt, args...)		\
3741 	netif_level(alert, priv, type, dev, fmt, ##args)
3742 #define netif_crit(priv, type, dev, fmt, args...)		\
3743 	netif_level(crit, priv, type, dev, fmt, ##args)
3744 #define netif_err(priv, type, dev, fmt, args...)		\
3745 	netif_level(err, priv, type, dev, fmt, ##args)
3746 #define netif_warn(priv, type, dev, fmt, args...)		\
3747 	netif_level(warn, priv, type, dev, fmt, ##args)
3748 #define netif_notice(priv, type, dev, fmt, args...)		\
3749 	netif_level(notice, priv, type, dev, fmt, ##args)
3750 #define netif_info(priv, type, dev, fmt, args...)		\
3751 	netif_level(info, priv, type, dev, fmt, ##args)
3752 
3753 #if defined(CONFIG_DYNAMIC_DEBUG)
3754 #define netif_dbg(priv, type, netdev, format, args...)		\
3755 do {								\
3756 	if (netif_msg_##type(priv))				\
3757 		dynamic_netdev_dbg(netdev, format, ##args);	\
3758 } while (0)
3759 #elif defined(DEBUG)
3760 #define netif_dbg(priv, type, dev, format, args...)		\
3761 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3762 #else
3763 #define netif_dbg(priv, type, dev, format, args...)			\
3764 ({									\
3765 	if (0)								\
3766 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3767 	0;								\
3768 })
3769 #endif
3770 
3771 #if defined(VERBOSE_DEBUG)
3772 #define netif_vdbg	netif_dbg
3773 #else
3774 #define netif_vdbg(priv, type, dev, format, args...)		\
3775 ({								\
3776 	if (0)							\
3777 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3778 	0;							\
3779 })
3780 #endif
3781 
3782 /*
3783  *	The list of packet types we will receive (as opposed to discard)
3784  *	and the routines to invoke.
3785  *
3786  *	Why 16. Because with 16 the only overlap we get on a hash of the
3787  *	low nibble of the protocol value is RARP/SNAP/X.25.
3788  *
3789  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3790  *             sure which should go first, but I bet it won't make much
3791  *             difference if we are running VLANs.  The good news is that
3792  *             this protocol won't be in the list unless compiled in, so
3793  *             the average user (w/out VLANs) will not be adversely affected.
3794  *             --BLG
3795  *
3796  *		0800	IP
3797  *		8100    802.1Q VLAN
3798  *		0001	802.3
3799  *		0002	AX.25
3800  *		0004	802.2
3801  *		8035	RARP
3802  *		0005	SNAP
3803  *		0805	X.25
3804  *		0806	ARP
3805  *		8137	IPX
3806  *		0009	Localtalk
3807  *		86DD	IPv6
3808  */
3809 #define PTYPE_HASH_SIZE	(16)
3810 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
3811 
3812 #endif	/* _LINUX_NETDEVICE_H */
3813